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ABSTRACT 

My first essay examines the effects of dividend policy on the liquidity risk of REITs.  I 

argue that the mandatory high cash payouts of REITs reduce investor reliance on the stock market 

to satisfy their liquidity needs.  Using a sample of equity REITs from 1980 through 2015, I find 

strong empirical evidence consistent with this paradigm.  Unlike non-REIT property companies, I 

find REITs exhibit negative sensitivity to marketwide liquidity shocks; a result that is evident 

across most property type sectors.  Moreover, while my findings are robust across a wide range of 

portfolios based on size, dividend frequency, leverage, market-to-book, operations type, and the 

presence of dividend reinvestment plans, smaller REITs mitigate liquidity risk only when their 

dividend frequency is relatively high.  Finally, I find that price sensitivities to marketwide liquidity 

shocks increase after firms elect to discontinue REIT status.  These findings strongly support the 

notions that investors view dividend payouts as a substitute for liquidity, and that REITs’ relatively 

high mandated payout requirements benefit investors with reduced liquidity risk. 

My second essay re-examines the ability of the Mills-Muth neoclassical land use theory to 

explain urban sprawl.  I test the robustness of Brueckner and Fansler’s (1983) seminal study using 

data drawn from the 1970 U.S. Census.  A repeated sampling test shows that their 1970 sampling 

methodology led to spurious estimates; their conclusions regarding the economic factors driving 

sprawl cannot be supported.  Nor can they be supported using more recent data from the 2000 and 

2010 Census.  Given this, I offer two alternate measures of urban sprawl: the traditional population 

density gradient and a new measure that relaxes the monotonicity constraint implied by traditional 
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density gradients.  I find the factors identified by neoclassical theory better explain sprawl when 

using the density gradient and the non-monotonic measure than the Brueckner-Fansler approach. 
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INTRODUCTION 

This dissertation comprises two essays on applications of financial economics to real estate.  

The first essay uses the unique dividend payout rules of real estate investment trusts (REITs) to 

examine the effects of dividend policy on the liquidity risk of REITs.  REITs are required by law 

to distribute the vast majority of their ordinary taxable income as dividends.  Given these 

regulatory mandates, as well as REITs’ significant non-cash expenses such as depreciation, in 

practice it is not uncommon for REITs to have payout ratios in excess of 100%.  Based on finance 

theory, I argue that the mandatory high cash payouts of REITs benefit investors by reducing 

investor reliance on the stock market to satisfy their liquidity needs.  Miller and Modigliani (1961) 

predict a firm’s payout policy is irrelevant and should not affect asset prices.  However, their theory 

describes and requires a perfectly liquid capital market with no trading frictions.  In practice, stock 

markets are not perfectly liquid and involve non-trivial frictions.  To this point, Chordia, Roll, and 

Subrahmanyam (2000) find that liquidity has a common underlying component across different 

securities, leading to marketwide liquidity shocks, while Pástor and Stambaugh (2003) and Liu 

(2006) find significant evidence that this common component in liquidity is a state variable which 

is both material and value relevant with respect to asset prices.  

Using a sample of equity REITs from 1980 through 2015, I find strong empirical evidence 

consistent with this paradigm along four key dimensions.  First, unlike non-REIT property 

companies, REITs exhibit a negative sensitivity to marketwide liquidity shocks.  More specifically, 

when marketwide liquidity declines, REIT prices tend to increase.  Second, my findings are not 

property type specific, but rather are evident across broad classifications of property type sectors.  
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Interestingly, however, diversified REITs tend to provide less protection against adverse 

marketwide liquidity shocks than REITs with more focused investment strategies.  Third, while 

my findings are robust across a wide range of portfolios based on REIT size, dividend frequency, 

leverage, market-to-book, operations type, and the presence of dividend reinvestment plans 

(DRIPs), smaller REITs provide protection to liquidity risk only when their dividend frequency is 

relatively high.  Finally, examining only those firms electing to discontinue their REIT status, I 

find that price sensitivities to marketwide liquidity shocks increase after such changes.  Taken 

together, the findings provide strong support for the notion that investors view dividend payouts 

as a substitute for liquidity, and further, that REITs, as a security class with relatively high 

regulatory mandated payout requirements, provide investors with an important benefit in the form 

of reduced liquidity risk. 

The second essay re-examines the ability of the Mills-Muth neoclassical land use theory to 

explain urban sprawl.  The policy debate over the extent to which urban sprawl is efficient or 

represents market failure has driven urban policy discussion since the start of the U.S. 

suburbanization process in the late 19th century (Mills and Hamilton, 1994).  The neoclassical land 

use theory built on the seminal works by Mills (1967) and Muth (1969) provides a framework for 

understanding how real income growth, population growth, and long-run improvements in urban 

transportation technology drive the suburbanization of jobs and population typically identified as 

evidence of inefficient sprawl (Wheaton 1974, Bruckner 1987).  Further, the debate over the extent 

to which urban sprawl represents market failure versus how much represents efficient market 

outcomes has been hampered by the lack of solid empirical analysis.   
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I begin empirical analysis in this essay by testing the robustness of Brueckner and Fansler’s 

(1983) seminal study using data drawn from the 1970 U.S. Census.  A repeated sampling test 

shows that their 1970 sampling methodology led to spurious estimates; their conclusions regarding 

the economic factors driving sprawl cannot be supported.  Nor can they be supported using more 

recent data from the 2000 and 2010 Census.  In light of this conclusion, this study offers two 

alternate measures of urban sprawl: the traditional population density gradient and a new measure, 

adapted from Wilder’s (1978) financial market technical indicators, that relaxes the monotonicity 

constraint implied by traditional density gradients.  While the factors identified by neoclassical 

theory cannot explain sprawl using the Brueckner-Fansler approach, this study finds that these 

factors do a better job explaining sprawl when using the density gradient and the non-monotonic 

measure than found previously in the literature.  
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ESSAY 1: THE EFFECT OF DIVIDEND POLICY ON LIQUIDITY RISK:  
EVIDENCE FROM REITS 

1. Introduction 

Real estate investment trusts (REITs) are required by law to distribute the vast majority of 

their ordinary taxable income as dividends.  Given these regulatory mandates, as well as REITs’ 

significant non-cash expenses such as depreciation, in practice it is not uncommon for REITs to 

have payout ratios in excess of 100%.1  In comparison, non-REIT property companies are not 

required to pay any dividends on their common stock, and in recent years the aggregate payout 

ratio for stocks in the S&P 500 index has been substantively below that for REITs, with an average 

annual payout ratio hovering near 40%.  From a valuation perspective, these relatively high REIT 

payout ratios offer the potential for significant clientele effects, while from a risk management 

perspective, the mandatory distribution requirements may increase and ensure liquidity for 

investors, reduce agency problems associated with managing and/or accounting for the firm’s free 

cash flows, enhance the financial transparency of the organization, and as a result, reduce potential 

sources of investment risk for market participants.   

To place these contentions more firmly within the context of the existing literature, 

consider first the implications strict dividend payout rules have for REIT prices.  While the seminal 

work of Miller and Modigliani (1961) predicts a firm’s payout policy is irrelevant and should not 

affect asset prices, their theory describes and requires a perfectly liquid capital market with no 

trading frictions.  Within such a market, firms can costlessly repurchase shares to distribute free 

                                                 
1 The REIT Modernization Act of 1999 reduced the mandatory minimum dividend distribution requirement to retain 
tax transparency for federal income tax purposes from 95% of ordinary taxable income to its current level of 90%.   
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cash flows, and investors with liquidity needs can costlessly sell shares and create homemade 

dividends.  In practice, however, trading typically involves non-trivial frictions and stock markets 

are not perfectly liquid.  This simple difference between theory and practice has potentially 

important ramifications, especially given the growing body of research, starting with Chordia, 

Roll, and Subrahmanyam (2000), finding that liquidity has a common underlying component.  

More specifically, the existing empirical evidence consistently shows liquidity is positively 

correlated across different securities, leading to marketwide liquidity shocks.  Of great import 

along this dimension are the findings of Pástor and Stambaugh (2003) and Liu (2006), who provide 

significant evidence that this common component in liquidity is a state variable which is both 

material and value relevant with respect to asset prices.   

Building upon these foundations, the current study contends that by paying dividends, 

firms provide an alternative source of liquidity to their investors.  Within the confines of 

commercial property and REIT markets, I therefore argue that, due to their unique dividend payout 

requirements and subsequently high cash payouts, REITs benefit investors by reducing investor 

reliance on the stock market to satisfy their liquidity needs.  This benefit should be especially 

evident and pronounced during marketwide liquidity shocks, as REITs have the potential to (at 

least partially) shield investors from such shocks.  Thus, I propose REITs benefit investors by 

reducing their exposure to marketwide liquidity risk.   

To test and evaluate this hypothesis, I examine the liquidity risk of REITs over the period 

1980 through 2015.  More specifically, following Pástor and Stambaugh (2003) I control for the 

market, size, and value factors of Fama and French (1993), the momentum factor of Carhart 

(1997), and use sample REITs’ price sensitivity to marketwide liquidity shocks (i.e. REITs’ 
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liquidity betas) as a measure of liquidity risk.  Previewing the core results, I find the prices of REIT 

stocks exhibit a significantly negative sensitivity to marketwide liquidity shocks.  More directly, 

when market liquidity declines REIT prices increase.  In contrast to REIT prices, the prices of 

property company stocks, which are not governed by the same mandatory distribution 

requirements as REITs, exhibit a statistically insignificant sensitivity to marketwide liquidity 

shocks.  These findings are robust to both analyses of individual REITs and analyses performed at 

aggregate REIT levels using REIT indices.   

Additionally, I find that the documented negative liquidity betas of equity REITs are not 

concentrated in REITs investing in any particular property type, but rather are evident across the 

majority of equity REITs.  That said, I do find diversified REITs tend to provide less protection 

against adverse marketwide liquidity shocks than REITs with more focused investment holdings.  

Finally, I identify a subsample of firms that do not retain their REIT status throughout the entire 

sample period and compare their observed liquidity risk across intervals during which the REIT 

tax status election is, and is not, in place.  Using this more selective sample, and consistent with 

my conceptual arguments, I find the price sensitivity to marketwide liquidity shocks increases after 

firms choose to discontinue their REIT tax status election.   

I further examine the robustness of the findings by estimating the liquidity risk of REITs 

for a wide range of portfolios based on REIT size, dividend frequency, leverage, market-to-book, 

operations type, and the presence of dividend reinvestment plans (DRIPs).  For the majority of 

these portfolios, I find REITs exhibit a significant negative sensitivity to liquidity risk.  However, 

I do find that small REITs with infrequent dividend payments provide substantially less protection 

to liquidity risk than larger REITs and/or REITs with frequent dividend payments.   
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Taken together, these findings provide strong support for the notion that dividend policy 

has a significant effect on liquidity risk, and further suggest that due (in part) to their high dividend 

payouts, REITs exhibit relatively low liquidity risk.  The findings also indicate, that from the 

perspective of investors, REITs become a more attractive investment during periods in which 

marketwide liquidity is constrained.  As such, this study contributes to the understanding of how 

financial policy, and specifically dividend payout policy, affects asset prices, relative risk levels, 

and (potentially) expected returns of REITs in relation to other assets. 

The remainder of the paper is organized as follows.  Section 2 presents a review of the 

relevant literature and develops empirically testable hypotheses.  Section 3 describes the data, 

variables, and methodology employed throughout the paper.  Section 4 presents the main findings, 

while section 5 presents findings from a series of additional robustness tests.  Finally, Section 6 

summarizes the key findings, discusses their implications, and offers concluding remarks.   

2. Literature Review and Hypotheses Development 

Pástor and Stambaugh (2003) develop a liquidity risk factor, hereinafter referred to as PS, 

which measures a stock’s sensitivity to unexpected changes in marketwide liquidity.  Using a broad 

sample of non-REIT stocks, they find liquidity risk to be a priced factor which is not subsumed by 

the traditional (MKT, SML, and HML) risk factors of Fama and French (1993).  Conceptually, the 

PS measure relies on return reversals on day t that follow signed dollar volume on day t-1.  To 

demonstrate the intuition behind this metric, consider a day with heavy selling induced by a large 

shock to marketwide liquidity demand.  Under such a scenario, stocks with a relatively high 

sensitivity to marketwide liquidity shocks will experience greater transitory price declines than 
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stocks with lower sensitivities.  Consequently, securities with higher sensitivities should 

experience stronger return reversals than those with lower sensitivities.  The reason a liquidity-

sensitive stock experiences a transitory decline in value on days with heavy selling is that investors 

seeking liquidity are relegated to trade with the market maker due to the absence of buyers, and 

the market maker’s bid price may well reflect a steep discount.  An investor that owns a liquidity-

sensitive stock will thus experience a drop in wealth, as other shareholders of the same firm meet 

their liquidity demands by selling shares.  Ex ante, the investor may not know whether the drop in 

wealth will be temporary, which will be the case if the investor continues to hold the stock, or 

permanent, which will be the case if the investor is affected by the marketwide liquidity shock and 

thus needs to sell.  Liquidity risk thus stems (in part) from the uncertainty in investor future wealth 

due to aggregate liquidity shocks.   

A priori, there are multiple important reasons to expect that liquidity risk may be lower for 

REITs than for similarly situated non-REIT firms.  Of note, Clayton and McKinnon (2000) find 

market makers faced reduced risk of trading against informed traders during the REIT boom of 

1993 due to an increase in liquidity traders that more than compensated for the increase in 

institutional traders during that time.  Their results suggest that during hot markets, even on low-

liquidity days, traders wishing to sell shares of a REIT may not find that the market maker is the 

only willing buyer.  While the REIT boom has faded, and institutional investors now dominate the 

REIT market, both Blau, Nguyen, and Whitby (2015) and Ametefe, Devaney, and Marcato (2016) 

nevertheless report consistent and continuing improvements in REIT market liquidity over the past 
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two decades.2  Moreover, the general intuition in Pástor and Stambaugh (2003) can accommodate 

alternative sources of liquidity to investors, such as cash dividends.  For example, Banerjee, 

Gatchev, and Spindt (2007) find dividends substitute for liquidity, and thus, investors do not 

necessarily have to create homemade dividends by selling shares.  More specifically, using a 

sample of non-REIT stocks, they find stock sensitivities to liquidity shocks fall substantially after 

dividend initiations.  However, for a typical common stock, dividend policy is a choice variable 

and is endogenously determined within the firm, thus making it difficult to establish a direct causal 

link between observed dividends and stock price sensitivities to liquidity shocks.3  A focus on 

REITs provides a (partial) remedy to the endogeneity problem, as firms within this industry receive 

preferential tax treatment in exchange for meeting regulatory requirements including mandates 

regarding their sources of income and minimum dividend payout ratios.  The requirement perhaps 

most pertinent to this paper is the regulatory mandate that REITs must disgorge a minimum of 

90% of their ordinary taxable income as dividends in order to maintain tax transparency for Federal 

Income Tax purposes.  Since investors in REITs have ex ante knowledge of this required minimum 

dividend payout ratio, they may well prioritize investing in REITs to enhance both their periodic 

cash flow returns and expected liquidity.   

Conversely, many market participants and academic researchers argue the minimum 

dividend payout requirements represent a non-binding constraint for many, if not most, REITs.  To 

                                                 
2 See, for example, Cashman, Harrison, and Panasian (2016) for a discussion of the role of institutional investors in 
REIT markets. 
3 In contrast to Banerjee, Gatchev, and Spindt (2007), who completely exclude REITs from their estimation sample, 
the current investigation focuses extensively on these firms and exploits the legal environment of REITs to mitigate 
this endogeneity concern.  Since REITs are required by law to distribute 90% of their taxable income as dividends, 
the decision to pay dividends is driven, in large part, by exogenous factors -- namely firm profits. 
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this point, nearly a quarter century ago Wang, Erickson, and Gau (1993) reported that many REITs 

pay out over 100% of their reported earnings.  More recently, both Bradley, Capozza, and Seguin 

(1998) and Feng, Price, and Sirmans (2011) confirm this pattern continues to hold.  While 

somewhat counterintuitive from traditional finance, accounting, or economics perspectives, REITs 

and other property companies can often sustain high payout ratios of this magnitude as their cash 

flows often greatly exceed net income due to large (non-cash) depreciation expenses.4  Dividend 

payments in excess of regulatory minimums, up to 100% of taxable income, also offer potential 

tax advantages to the firm and its investors, as current period retained profits remain subject to 

federal income taxation at the corporate/entity level.  For example, if a REIT distributes the 90% 

regulatory minimum, the firm will be taxed at corporate rates on the remaining 10%.  Thus, REITs 

have an additional incentive to pay out more than the minimum to avoid an economic transfer of 

wealth from shareholders to the government, for which shareholders would likely punish the firm 

through a lower share price.5  Conversely, large dividend payouts may come at the cost of leaving 

essentially no retained earnings to internally fund growth and expansion activities.  However, Ott, 

Riddiough, and Yi (2005) suggest this cost may be relatively minor as REITs, on average, use 

internally generated capital to fund only 7% of their asset growth, while Hardin and Hill (2008) 

note the need for REITs to carefully manage their dividend policy decisions to ensure they convey 

meaningful information on the firm’s operating position and expansion plans to key market 

                                                 
4 Income and expense accruals, as well as capital raising activities may also support consistently high payout 
thresholds.  Moreover, Hardin et al. (2009) show that the cash holdings of REITs are magnitudes lower than those of 
the average public firm.   
5 Other empirical evidence is also consistent with increased dividend payouts when taxation policy favors dividends.  
For example, Chetty and Saez (2005, 2006) find an increase in dividends after the Jobs and Growth Tax Relief 
Reconciliation Act of 2003 that reduced the maximum tax rate on dividends from 38% to 15%.   
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participants and other relevant stakeholders.  Within this context, I derive specific, empirically 

hypotheses below.   

Before outlining the main hypothesis, I make two important observations.  First, the current 

investigation is not the only paper to investigate the interplay of REIT and non-REIT equities 

across equivalent trading venues.  Notably, Subrahmanyam (2007) studies the joint dynamics 

between equity REIT and non-REIT stocks on the NYSE and finds effective spreads on non-REIT 

stocks forecast REIT spreads at both daily and monthly intervals.  The author measures the 

participation of large (retail) traders by dollar (transaction) volume, and finds non-REIT order flow 

(measured in dollars) inversely leads REIT order flow (measured by transaction count).  He 

subsequently attributes this relation to retail traders moving money into REITs when institutional 

traders sell non-REIT stocks.  The current paper differs from Subrahmanyam (2007) both in its 

use of an aggregate measure of liquidity, and also by linking dividends to a stock’s sensitivity to 

liquidity.  Second, by construction, the PS liquidity factor explicitly excludes REITs.  As the 

sample REITs trade on the same exchanges as the non-REIT property company stocks, the 

methodology employed in this paper measures the exposure of REITs to marketwide liquidity 

shocks in the markets for stocks that trade on these same venues.   

Based upon the discussion above, the primary goal and contribution of the current 

manuscript is to examine and ascertain the relative importance of liquidity risk in REIT markets.  

More specifically, I advance the general proposition that, due to their unique dividend payout 

requirements, REITs reduce investor reliance on the liquidity provision role performed by 

secondary markets.  The central hypothesis flows directly from this proposition, and may be 

summarized as follows:  
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Hypothesis 1: Investments in REITs are less sensitive to marketwide liquidity shocks than are  

investments in similarly situated property companies which have not elected REIT status. 

Clearly, in addition to the focal regulatory considerations outlined above, the financial and 

operational transparency of a firm’s activities may exert a significant influence over the firm’s 

financial market liquidity.  Across both the general finance and real estate investments literature, 

greater transparency has consistently been shown to enhance market based measures of liquidity, 

and lower investment risk along this key dimension.6  In the work perhaps most relevant to the 

current investigation along this dimension, Danielsen and Harrison (2007) decompose the bid-ask 

spreads of REITs and find that the types of properties in which they invest materially impacts the 

liquidity of the firms’ equity shares.  Importantly, they find property type diversified investments 

lead to lower share liquidity.  Conceptually, they argue diversification endows managers with real 

options for capital redeployment that investors find difficult to value.  REITs with focused 

investment strategies do not confer such options to managers because of (self-imposed) constraints 

on the types of properties in which these firms invest.  While the authors do not explicitly include 

non-REIT property companies in their analysis, I see no obvious reason why their results would 

not be generalizable to the broader cross section of real estate firms.  Additionally, Capozza and 

Seguin (1999) find the market may penalize diversified REITs by way of reduced valuations, even 

though diversified REITs may not have lower cash flows.  These findings again suggest diversified 

REITs may be viewed differently in the marketplace than their more property type focused peers.  

Given these previous findings, to examine whether the investment focus of both REITs and non-

                                                 
6 See, for example, Amihud, Mendelson, and Pedersen (2005), Lang and Maffett (2011), and the references therein. 
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REIT property companies materially influences the liquidity risk of these organizations, I examine 

and test Hypothesis 2: 

Hypothesis 2: Property type diversified REITs exhibit a higher sensitivity to marketwide liquidity 

shocks than do their counterparts with property type focused investment strategies.  

Even though all REITs are subject to the same payout rule, REITs differ in how frequently 

they provide dividends to their shareholders.  While some REITs pay dividends every quarter, 

other REITs do not.  There are two primary reasons for these observable differences.  First, some 

REITs may simply elect to pay semi-annual dividends, which will naturally lead to a lower 

observed dividend frequency.  Second, even if a REIT generally pays dividends every quarter, 

managers may decide to omit dividend payments in some quarters if, for instance, cash is not 

readily available.  All else equal, investors relying on dividends to satisfy their liquidity needs will 

have a preference for more frequent dividend payments, or at the minimum avoid REITs that are 

likely to omit dividend payments.  This consideration should be especially pronounced when the 

REIT is small, and hence when dividend omissions are likely to correspond to adverse economic 

conditions.7  Based on these arguments, I propose and test the following hypothesis: 

Hypothesis 3: Smaller REITs with infrequent dividend payments exhibit a higher sensitivity to 

marketwide liquidity shocks than larger REITs or REITs with frequent dividend payments.   

Finally, as real estate markets are fraught with multiple sources of exogenous variation 

which may obscure key economic relations, and to provide a cleaner test of the focal relations, I 

                                                 
7 The general finance literature consistently demonstrates firm size is highly correlated with the firm’s level of 
financial constraint.  See, for example, Kaplan and Zingales (2000). 
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lastly examine the subset of firms which experience a change in REIT status.  Firms obtain REIT 

status by filing an election to do so with the U.S Internal Revenue Service and, in general, are free 

to alter this election at any time.  As I seek to address whether a firm’s REIT status is materially 

tied to their sensitivity to marketwide liquidity shocks (i.e., liquidity risk), unique insight may be 

gained from the examination of those firms which have operated under both REIT and non-REIT 

regulatory regimes.  Consistent with the arguments advanced above, I propose the following 

hypothesis: 

Hypothesis 4: A firm becomes more sensitive to liquidity shocks after it elects to discontinue its 

REIT status. 

3. Data and Methodology 

3.1 Data 

In assembling the data necessary to conduct this investigation, I begin by identifying a 

sample of publicly traded equity REITs and non-REIT listed property companies over the period 

1980 through 2015.8  Regulatory changes regarding dividend payouts in the REIT industry over 

this period should not materially influence the test results, as while the REIT Modernization Act 

of 1999 reduced the dividend distribution requirement from 95% to 90% of ordinary taxable 

income, the key assertion that REITs and non-REIT property companies differ in their dividend 

payout policies due to dissimilar constraints and incentives remains valid both before and after the 

                                                 
8 While I use this relatively long time frame for the core analyses, I also demonstrate that the findings are robust for 
both the earlier and more recent years of the sample.   
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passage and implementation of the act.9  Since this paper relies on the ex ante knowledge that 

REITs must distribute a required percentage of their operating profits while no other real estate 

firm operates under such a restriction, non-REIT property companies provide an ideal matching 

sample of firms that operate within the real estate industry but do not face the exogenous dividend 

constraint of REITs.10  As such, I sample all equity REITs in the CRSP/Ziman database and all 

firms identified as non-REIT property companies in the S&P Global Market Intelligence (formerly 

SNL Financial) database from January, 1980 through December, 2015.  To ensure the findings are 

not driven by extremely small REITs, I exclude firms-years with a reported market capitalization 

of less than $20 million as measured in 2015 U.S. dollars.   

For equity REITs and property companies in the sample, I next obtain stock market data 

over the sample period from CRSP, REIT characteristics from Ziman, and financial metrics from 

Compustat – Capital IQ.  Unlike prior REIT studies that include only firms with positive income, 

I see no theoretical motivation to do so in this study, and only require firms to have non-missing 

dividend and earnings data.  This identification procedure produces a sample of 440 unique equity 

REITs and 48 non-REIT property companies.11 

                                                 
9 On the other hand, readers may reasonably wonder whether the rise of institutional investors throughout real estate 
markets which accompanied the onset of the modern REIT era in the early to mid-1990s alters the hypothesized 
relations.  Reassuringly, unreported analyses conducted exclusively on both sample observations occurring post-1993, 
as well as on organizations incorporated subsequent to 1993, produce qualitatively similar results to those outlined 
below.  These results should not be surprising, as while institutional investors have clearly changed the operating 
landscape of REIT markets, the dividend requirements which I aver are driving the mitigation of liquidity risk within 
this market sector are fundamentally independent of the presence of institutional investors in the marketplace.  For 
additional insight on REIT market changes during the modern REIT era, see Ott, Riddiough, and Yi (2005).   
10 See 26 U.S.C §857 (2015) for the U.S. Internal Revenue code pertaining to REITs. 
11 On the surface, including firms with negative earnings that pay dividends leads to negative observed payout ratios.  
While obviously problematic from a conceptual perspective, dividend payout ratios do not enter directly into the 
estimation of the factor models, and thus do not pose serious econometric concerns.  Rather, I contend the omission 
of firms with negative current period earnings would pose a greater threat to the generalizability of the focal results.  
As such, all available observations along this dimension are retained within the final estimation sample.   
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Table 1 reports financial and stock market characteristics for the sample firms, and 

highlights the comparability between REITs and non-REIT property companies.  Among the 

important similarities are earnings and return on assets (ROA).12  More specifically, the average 

ROA for the sample of equity REITs is 3.26%, while that of comparable non-REIT property 

companies averaged a nearly identical 3.24%.  Given both sets of organizations operate within the 

same general business environment, and their performance is measured over an identical time 

horizon, this result is not surprising.13   

Within the sample, equity REITs are significantly smaller than non-REIT property 

companies, when looking both at market capitalization and at asset size.  Additionally, consistent 

with conventional wisdom, REITs are more likely to pay dividends, pay significantly more 

dividends, and have significantly higher payout ratios.  Specifically, REITs pay dividends across 

94% of the sample firm-years whereas property companies pay dividends in only 54% of the firm-

years.  Moreover, the average payout ratio of dividend-paying REITs is 2.36 times earnings.  In 

contrast, the average payout ratio of dividend-paying non-REIT property companies is only 0.67 

times earnings.  Such differences are (at least partially) attributable to regulatory differences 

between the two firm types.  Notably, the mandatory minimum distribution requirements 

prescribed for REITs virtually ensures their payout ratios will exceed those of their less regulated 

counterparts, while relatedly, the inability to retain profits and endogenously fund firm growth 

                                                 
12 While REITs generally employ and report funds from operations (FFO) as their primary operating performance 
benchmark, to ensure compatibility with the matched non-REIT property companies the current investigation employs 
the more traditional return on assets (ROA) measure of accounting profitability. 
13 I readily recognize and cede the point that REITs, particularly those with strong growth plans or ambitions, maintain 
incentives to manage earnings from a dividend policy perspective.  More specifically, accounting practices which 
reduce reported taxable income will lower mandatory dividend payments for REITs, thus facilitating increased capital 
retention activities, which, in turn, may lower capital acquisition costs and enhance expected firm growth. 
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may dampen REIT expansion activities and contribute to their relatively smaller firm size.  Viewed 

in this light, the somewhat higher market-to-book ratios of property companies (1.56) relative to 

REITs (1.22) is not particularly surprising.   

Interestingly, I also find REITs exhibit higher average monthly stock returns than the 

comparison set of property companies.  This difference in returns could be explained, at least in 

part, by differences in size and market-to-book ratios across the two types of firms.  For example, 

smaller firms and firms with lower market-to-book (sample REITs) are generally expected to 

generate higher returns than larger firms and firms with higher market-to-book ratios (sample non-

REIT property companies).  Additionally, these differences in return may be due to variations over 

time in the number of observations within each subsample.  The subsequent estimation approach 

and empirical models examining the returns of both REITs and property companies account for 

these possibilities.  

Continuing, debt utilization ratios across the two firm types reveal REITs employ less 

leverage in their capital structure than non-REIT property companies.  The averages show REITs 

have a total debt ratio of 52%, while non-REIT property companies have a total debt ratio of 61%.  

While the observed leverage of sample REITs and property companies are somewhat higher than 

would be observed for the cross section of all publicly traded firms, these sample averages are 

similar to findings of recent real estate capital structure studies and lend support to the contention 
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that the tangible nature of real estate asset holdings increases the debt capacity of firms within this 

market sector. 14 

Table 2 reports aggregate annual payout ratios for equity REITs and non-REIT property 

companies, calculated from annual earnings and dividends over the period 1980 through 2015.  

Consistent with the main hypothesis that REITs enhance investor liquidity, across all sample years, 

REITs paid out more dividends as a percentage of earnings than their non-REIT property company 

counterparts.  Even during the financial crisis years of 2007 through 2009, when earnings were 

very low or negative for many sample firms, aggregate REIT dividend payout ratios remained 

relatively strong, though both 2008 and 2009 witnessed non-trivial declines in the total dollar 

amount of dividends distributed.  As a point of comparison, aggregate non-REIT property 

company dividends in 2009 fell even more precipitously, to less than half of their 2007 level. 

Table 3 further outlines the sample attributes by reporting the exchange trading venue for 

both sample REITs and non-REIT property companies.  The majority of both types of firms trade 

on specialist exchanges, with a much smaller proportion trading through market makers.  Across 

the two subsamples, 64% (18%) of REITs and 58% (15%) of property companies trade on the 

NYSE (NYSE American), while 19% of REITs and 27% of property companies trade on 

NASDAQ.15  The similarities in trading venues between equity REITs and non-REIT property 

                                                 
14 See, for example, Feng, Ghosh, and Sirmans (2007), Boudry, Kallberg, and Liu (2010), or Harrison, Panasian, and 
Seiler (2011). 
15 While Danielsen and Harrison (2000) find differences in liquidity between REITs that trade on organized exchanges 
compared to those that trade over-the-counter, their use of a microstructure liquidity measure differs greatly from my 
operationalization of liquidity. 
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companies provide confidence that the findings are not a relic of differences in the market making 

environment for the two types of firms.   

3.2 Variables 

To minimize model misspecification and ensure the results are attributable to liquidity risk 

rather than other potential sources of value relevant, systematic risk, I employ several risk factors 

commonly used in asset pricing studies to explain REIT and property company returns.  The first 

three control metrics I include are the Fama and French (1993) market (MKT), small-minus-big 

(SMB, or “size”), and book-to-market (HML, or “value”) factors.  The market factor represents 

the value-weighted excess return on all stocks in the CRSP database over and above the risk-free 

rate.  The size and value factors are constructed from 6 portfolios formed on size and book-to-

market equity ratios, as follows.  Stocks are halved at the median market capitalization into small 

versus large stocks, and stocks are similarly split into the lowest and highest 30% (growth and 

value stocks, respectively) and middle 40% (neutral stocks) of book-to-market equity ratios.  SMB 

is the return to a portfolio that is long the three small portfolios (small-value, - neutral, and -growth) 

and short the three large portfolios (large-value, - neutral, and -growth).  HML is similarly 

computed, and is the return to a strategy that is long value portfolios (small- and big-value) and 

short growth portfolios (small- and big-growth).  Fama and French (1993) find these three factors 

explain over 90% of common stock returns. 

The Carhart (1997) momentum factor (UMD) is also commonly used in asset pricing 

studies.  Like the MKT, SMB, and HML factors, UMD is also the return to a zero-investment 

portfolio, and operationally is computed as the return to a portfolio which is long the past 1-year 



20 
 

winners (highest return) and short the past 1-year losers (lowest return).16  The fifth risk factor I 

employ is the Pástor and Stambaugh (2003) liquidity factor (LIQ).  The resultant liquidity betas I 

estimate along this dimension are the primary focus of this study.  More precisely, the liquidity 

factor is the return to a zero-investment portfolio which is long the least liquid stocks and short the 

most liquid stocks, where liquidity is measured by the sensitivity of prices to unexpected changes 

in marketwide liquidity.  The estimated coefficient measures how resilient a stock is to marketwide 

liquidity shocks.  Such an aggregated measure of liquidity is different from the microstructure 

metrics frequently employed across the REIT literature, which tend to focus on some variant of 

the firm’s bid-ask spread.  The fact that the liquidity factor is based on the non-REIT stock market 

makes it ideally suited to test if REITs provide investors protection from reductions in broader, 

marketwide liquidity. 

Figure 1 charts the growth over the sample period of a $1 investment in January, 1980 in 

the liquidity factor, the market factor, the CRSP/Ziman value-weighted REIT index, and a value-

weighted property company index.  The liquidity and market factors are akin to portfolios 

comprised of the liquidity risk and market risk premia, respectively.  When marketwide liquidity 

is low, returns to the liquidity portfolio should decline.  Examining the chart, the REIT index tends 

to hold its value in periods of declining liquidity, while the market factor and property company 

index lose value.  For example, consider the period from early 2000 through 2002.  During this 

period, not only did the tech stock bubble burst, but the September 11th terrorist attacks on the 

U.S. occurred.  Both events were marked by broad selling, which led to severe declines in 

                                                 
16 Consistent with the existing literature on momentum factors, the annualized UMD factor omits previous month (t-
1) returns to avoid complications associated with short-term return reversals. 
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marketwide liquidity.  The long-short portfolio that is the liquidity factor saw large drops in value, 

as did the market and property company portfolios.  Interestingly, the REIT portfolio actually 

gained value during this period, largely making up for returns that lagged the market from 1989 

until the turn of the century. 

3.3 Methodology 

To test the central hypothesis that REITs are less sensitive to marketwide liquidity shocks 

than non-REIT property companies, I employ Fama and French (1993) three-factor and Carhart 

(1997) four-factor frameworks, augmented with the Pástor and Stambaugh (2003) liquidity factor.  

Specifically, I estimate the following model: 

 𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼 + 𝛽𝐿𝐼𝑄𝐿𝐼𝑄𝑡 + 𝛽𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝛽𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝛽𝑈𝑀𝐷𝑈𝑀𝐷𝑡 + 𝜇𝑖𝑡 ( 1 ) 

where for firm i in month t, Rit is the monthly return and Rft is the rate on 1-month Treasury 

bills.  The explanatory variables are the Fama and French (1993) market, size, and value factors 

and UMD is the Carhart (1997) 1-year momentum factor.  Of key interest across these models are 

the liquidity betas (𝛽𝐿𝐼𝑄) associated with the Pastor and Stambaugh (2003) liquidity factor.  

Throughout the remainder of the paper I refer to Equation 1 as the 5-factor model. 

4. Main Findings 

4.1 Firm-Level Results for REITs and Property Companies 

Consistent with prior studies that examine the returns of REITs using factor models, I 

expect the estimated coefficients to satisfy the following conditions: 𝛽𝑀𝐾𝑇 > 0, 𝛽𝑆𝑀𝐵 > 0, 𝛽𝐻𝑀𝐿 >
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0, and 𝛽𝑈𝑀𝐷 < 0 (see, for example, Chen, Downs, and Patterson, 2012).  With respect to new 

innovations and insight offered by the current investigation, Hypothesis 1 suggests the estimated 

REIT liquidity betas, 𝛽𝐿𝐼𝑄, should be negative.   

Table 4 reports estimates of the five-factor model separately for REITs and for non-REIT 

property companies, where I estimate the model using both firm-month observations and using 

value-weighted portfolios.  As the results of these two alternative specifications are nearly 

identical, throughout the remainder of this section I focus the discussion primarily on the firm-

level estimates.  As predicted, 𝛽𝐿𝐼𝑄 is negative and significant at the 1% level for REITs, and 

statistically insignificant for property companies.  Examining the firm-level estimates, I see that 𝛽𝐿𝐼𝑄 is equal to -0.094, suggesting REIT returns increase by approximately 0.094% for every 1% 

decrease observed in the liquidity of the non-REIT stock market.  For non-REIT property 

companies, the point estimate for 𝛽𝐿𝐼𝑄 is equal to -0.008, which is also statistically 

indistinguishable from zero.  More importantly, the difference in estimates is equal to -0.086 and 

is highly significant (at the 0.01 level), strongly suggesting REITs provide much greater protection 

against marketwide liquidity shocks than their non-REIT property company counterparts.  The 𝛽𝑀𝐾𝑇, 𝛽𝑆𝑀𝐵, 𝛽𝐻𝑀𝐿, and 𝛽𝑈𝑀𝐷estimates also are all highly significant and exhibit the expected sign 

patterns outlined above.  These results further indicate that, on average, REITs are less sensitive 

than non-REIT property companies to the market, size, and momentum factors.  No differential 

sensitivity between REITs and property companies is observed with respect to the value factor.   

The absolute magnitudes of the estimated betas reveal investor preferences for property 

companies along the market, size, and momentum factors and indifference between REITs and 
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property companies when investor preference for value increases.  This is not surprising given that 

property companies tend to be larger than REITs (as reported in Table 1).  The property company 

factor model appears to exhibit somewhat better explanatory power than its REIT company 

counterpart, with an adjusted R-squared value of 20.92% for property companies compared to 

19.98% for REITs.   

4.2 Portfolio Results for REITs and Property Companies 

Without further analysis, it is possible that the firm-level estimates are sample-dependent, 

or alternatively, that one of the restrictions imposed on the sample is driving the results.  A simple 

test to help eliminate this possibility is to use portfolio, rather than firm, excess returns as the 

dependent variable.  Consistent with the previous literature, I construct value-weighted portfolios 

using one-month lagged market capitalization as the value-weight of each REIT or property 

company.17   

In general, the results closely follow the patterns previously reported for the firm-level 

estimates, and provide further evidence supporting the notion that REITs are less sensitive to non-

REIT market liquidity shocks than a comparable sample of non-REIT property companies.  The 

estimate for 𝛽𝐿𝐼𝑄 for REITs is again negative, and statistically significant at the 0.01 level.  While 

still statistically insignificant, liquidity betas now exhibit an unexpected positive sign for property 

companies.  More importantly, I again find that the difference is both negative (-0.127) and highly 

significant (at the 0.01 level).   

                                                 
17 The use of lagged monthly market capitalizations to value-weight returns follows CRSP methodology for index 
construction. 
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Additionally, looking at the portfolio results, I now find no significant difference between 

the sensitivity of REITs and property companies to the size factor.  However, I do find a difference 

in the value factor sensitivities, as REITs are now more sensitive to the value factor than property 

companies.  This latter result is entirely consistent with the earlier findings that REITs tend to have 

somewhat lower market-to-book ratios than property companies.  As a final comment, I also note 

that the portfolio models obtain substantially better fit, as signified by higher adjusted R-squared, 

than the firm-level models.   

 

5. Robustness Analysis 

5.1 Does Property Type Focus Affect Liquidity? 

To examine the validity of Hypothesis 2 and further explore the robustness of the results, I 

next examine whether the nature of the direct property investment affects equity REIT sensitivity 

to marketwide liquidity conditions.  Of particular interest is whether the results of the previous 

section are concentrated within a few select types of property investments, or alternatively, 

whether the results are more general and apply to investments across the spectrum of property type 

holdings.  Motivating this inquiry, Capozza and Seguin (1999) find that, among equity REITs, the 

shares of firms with more diversified property investments are less liquid than those of firms with 

more focused property investments.  Additionally, they further note that while project-level cash 

flows tend to be higher for diversified REITs than for those with more property type focused 

investment portfolios, cash flows available to shareholders are roughly equivalent because of 

higher managerial and interest expenses.  CRSP/Ziman reports property type index returns for 
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diversified, health care, industrial/office, lodging/resorts, residential, retail, self-storage, and 

unclassified equity REITs.  Using these property type value-weighted excess index returns over 

the risk-free rate as the dependent variables, I re-estimate the factor models and report the results 

in Table 6.18   

Given the findings of Capozza and Seguin (1999), ex-ante I expect 𝛽𝐿𝐼𝑄 to be larger (i.e., 

less negative) for diversified equity REITs than for firms with investment holdings focused on a 

particular property type sector.  Consistent with this expectation, I find 𝛽𝐿𝐼𝑄 is -0.076 (and 

significant at the 5% level) for diversified REITs.  In contract, 𝛽𝐿𝐼𝑄 for REITs who specialize and 

focus their investments on health care, industrial and office, retail, and self-storage properties are 

all less than -0.100.19   

Comfortingly, the return drivers for diversified REITs do not appear substantially different 

from those of more focused REITs with respect to any of the other traditional risk factors.  

Examining these additional factor loadings more closely, equity REITs invested in lodging and 

resort properties consistently exhibit the highest sensitivity to risk factors in the non-REIT stock 

market, with 𝛽𝑀𝐾𝑇 of 0.968, 𝛽𝑆𝑀𝐵 of 0.734, 𝛽𝐻𝑀𝐿 of 1.049, and 𝛽𝑈𝑀𝐷 of -0.359, while equity 

REITs invested in healthcare and self-storage properties have among the smallest absolute factor 

loadings along each of these dimensions.  Further to the previous point, the factor models for self-

storage and health care REITs account for only 21.06% and 27.43% of the variation in their 

                                                 
18 The number of monthly observation varies across property focus due to data availability from CRSP/Ziman.  
Nevertheless, index return series for most property types cover all months from 1980 through 2015.   
19 I note two exceptions to this general pattern.  Specifically, the 𝛽𝐿𝐼𝑄 estimates for REITs that invest in either 

lodging/resorts and/or residential properties are higher than those found for diversified REITs.  As such, I urge caution 
when drawing definitive conclusions regarding the relative magnitude of liquidity betas across these sectors. 
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respective property type indices, while the factor models for all other property type classifications 

exhibit significantly higher explanatory power with adjusted R-squared values ranging from 

approximately 42% to 51%.   

5.2 Robustness over Time 

I next examine and demonstrate the robustness of the estimates over time.  The interest in 

variations of REIT liquidity risk over time is motivated by two considerations.  First, the REIT 

Modernization Act of 1999 directly altered the dividend distribution requirements of REITs, and 

thus may have affected both the pricing of firms within this industry, as well as their sensitivity to 

liquidity risk.  Given that my theoretical rationale applies both before and after this legislative 

change, I would like to ensure the findings are robust to the passage and implementation of the 

Act.20  Second, the REIT Improvement Act of 2003 eliminated important tax disadvantages that 

served as effective barriers to REIT investment for non-U.S. citizens.  These changes potentially 

increased the demand for publicly traded REIT equities across U.S. markets, thereby enhancing 

both market depth and REIT liquidity.21   

To examine these issues, I re-estimate the model separately for two sub-periods: pre-1999 

and post-2003.  Panel A reports the estimates using firm-month level returns. Examining these 

estimates, consistent with the full sample analyses I find that the liquidity betas of REITs are 

significantly negative both in the pre-1999 sample and in the post-2003 periods.  More specifically, 

                                                 
20 In addition to altering mandatory dividend requirement, the Act dramatically broadened the array of services REITs 
could directly provide to their tenants.  I make no a priori assumptions as to the anticipated effects of these additional 
changes on REIT liquidity betas. 
21 While the REIT Improvement Act of 2003 was initially introduced in Congress by James “Jim” McCrery III (R – 
Louisiana) on April 30th, 2003, it wasn’t formally signed into law until October 2004 by President George W. Bush. 
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for the pre-1999 period, REITs exhibit a liquidity beta of -0.071.  This implies that for every 1% 

decrease in marketwide liquidity, REIT prices increased by approximately 0.07%.  While these 

subsample results suggest the focal relations are generally robust to the passage and 

implementation of the REIT Modernization Act, as the regulatory changed reduced mandatory 

dividends for REITs I are somewhat surprised to find liquidity betas are marginally higher after its 

implementation.  To further examine the effects of regulatory changes on the REIT liquidity 

metrics, I next re-estimate the model exclusively on these firm-month observations following the 

introduction of the REIT Improvement Act of 2003.  Interestingly, and entirely consistent with my 

central thesis that REIT investors care meaningfully about liquidity risk concerns, the estimated 

REIT liquidity betas and results regarding observable firm sensitivities to market wide liquidity 

shocks are even more pronounced during this latter, less restrictive era.  Specifically, after 2003, 

the estimated REIT liquidity beta is -0.176, implying that for every 1% decrease in marketwide 

liquidity, REIT prices increase by approximately 0.176%.  I therefore conclude that in more recent 

years, subsequent to the passage of key changes in REIT regulatory provisions, REIT prices have 

become more countercyclical with respect to marketwide liquidity risk.  As an interesting aside, 

when I examine the estimates for non-REIT property companies, I again find property companies 

exhibit a significantly higher liquidity risk than REITs, and further, this difference is significant 

across both the pre-1999 and post-2003 periods.  For the pre-1999 period, the difference in 

liquidity betas between the two types of firms is -0.139, while for the post-2003 period the 

difference is -0.099; both of these differences are statistically significant at the 0.01 level.   

In Panel B, I re-estimate the model for these two sub-periods using the value-weighted 

portfolio return measured at a monthly frequency as the dependent variable.  Not surprisingly, 
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these portfolio estimates are similar to the firm-level estimates.  More importantly, I again find 

that REITs have a lower liquidity risk than non-REIT property companies, and once again, these 

differences are statistically significant (at the 0.05 level for the pre-1999 sample, and at the 0.10 

level for the post-2003 period). 

5.3 Dividend Frequency and the Liquidity Risk of REITs 

As mentioned before, REITs differ in how frequently they provide dividends to their 

shareholders.  For example, of the 39,546 firm-months with available dividend data over the past 

eight quarters, I find that approximately 80% pay dividends in each of the past eight quarters.  

Thus, approximately 20% of sample firm-month observations come from organizations which paid 

dividends in fewer than eight quarters.  Infrequent dividend payments may be of relatively little 

concern for larger, and hence less risky, REITs.  On the other hand, as stated in Hypothesis 3, for 

small REITs, infrequent dividend payments may be a point of serious concern, particularly for 

liquidity-sensitive investors.   

To test this idea, I re-estimate the five-factor model for double-sorts based on REIT size 

and dividend frequency.  I thus construct six portfolios, where each month REITs are sorted 

independently into three portfolios based on firm size and two portfolios based on dividend 

frequency.  I use the 30th and 70th percentiles of one-month lagged REIT market capitalizations 

to construct the three size portfolios.  REITs are further classified into either paying dividends in 

each of the past eight quarters (dividend frequency equals 100%), or not paying dividends in all of 

the past eight quarters (dividend frequency less than 100%).  In constructing these portfolio sorts, 

it is important to ensure that sample REITs exist for at least two years (eight quarters) to avoid 
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potential misclassification issues.  Thus, I estimate the model on only those REITs with available 

asset data over the past two years.  The estimates for these portfolios are reported in Table 7.   

Before discussing the estimates, I first note that dividend frequency is positively related to 

REIT size.  For instance, within the less-than-100% dividend frequency portfolios, there are more 

small REITs than large REITs, whereas for the 100% dividend frequency portfolios, there are more 

large REITs than small REITs.  These patterns further underscore the importance of controlling 

for REIT size when performing the analyses.   

Turning to the estimates presented in Table 7, I find they are generally consistent with 

Hypothesis 3.  Specifically, I find small REITs with a less-than-100% dividend frequency exhibit 

an estimated liquidity beta (𝛽𝐿𝐼𝑄) equal to -0.003, which is statistically indistinguishable from zero.  

This finding suggests small REITs that do not pay frequent dividends fail to provide protection 

against adverse marketwide liquidity shocks.  This result is again entirely consistent with the idea 

that liquidity-sensitive investors discount the prices of such REITs when marketwide liquidity 

deteriorates.  In contrast, small REITs with a 100% dividend frequency exhibit an estimated 

liquidity beta (𝛽𝐿𝐼𝑄) equal to -0.107, which is statistically significant at the 0.01 level.  Moreover, 

the two estimates are significantly different from each other at the 0.01 level.   

When I examine the liquidity sensitivities of medium-sized REITs, I find that 𝛽𝐿𝐼𝑄 is 

similar across REITs regardless of their dividend frequency (-0.102 versus -0.117).  For large 

REITs, I find those firms in the 100% dividend frequency portfolio have a less negative liquidity 

beta (𝛽𝐿𝐼𝑄 = -0.095) than do firms in the less-than-100% dividend frequency portfolio (𝛽𝐿𝐼𝑄 = -

0.173).  To further investigate this intriguing result, I next examine REIT size for the two large 
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REIT portfolios.  Interestingly, I find that the average REIT size is substantially higher in the less-

than-100% dividend frequency portfolio than in the 100% dividend frequency portfolio, 

suggesting the portfolio sorts may not perfectly control for REIT size.  In an attempt to address 

this problem, I bifurcate the less-than-100% dividend frequency portfolio of large REITs into two 

additional portfolios: large-1 and large-2.  After doing so, I find that the highly negative estimate 

of 𝛽𝐿𝐼𝑄 for the less-than-100% dividend frequency portfolio comes from the largest REITs in the 

sample (i.e., the ones entering the large-2 portfolio).  In fact, the estimate of 𝛽𝐿𝐼𝑄 for the large-1 

portfolio of REITs with less-than-100% dividend frequency is indistinguishable from the estimates 

for 𝛽𝐿𝐼𝑄 for the large portfolio of REITs with 100% dividend frequency.   

Taken together, the evidence presented in this section is consistent with the idea that 

investors value REITs, at least in part, based on their ability to deliver liquidity through dividends.  

Specifically, I find REIT prices respond less favorably to adverse marketwide liquidity shocks 

when REITs are less likely to meet investor liquidity needs, such as in the case of smaller REITs 

with a lower frequency of past dividend payments. 

5.4 The Liquidity Risk of REITs Conditional on Firm Characteristics 

In further robustness tests I examine the liquidity risk of REIT portfolios formed based on 

various double-sorts using firm size, leverage, market-to-book ratios, operations type, and the 

presence or absence of a dividend reinvestment plan.  My main objective in performing these 

analyses is to ensure the main findings are not concentrated within a subset of REITs with 
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particular financial characteristics.  With that objective in mind, I report and focus my discussion 

on the estimates of the resultant liquidity betas.22 

Table 8 presents the estimates of 𝛽𝐿𝐼𝑄 from Equation (1) for double-sorts based on both 

firm leverage and market-to-book ratios.  I thus estimate the model for nine portfolios, where each 

month REITs are sorted independently into three portfolios based on leverage and three portfolios 

based on market-to-book.  To construct these portfolios, I use the 30th and the 70th percentiles of 

lagged REIT leverage (total liabilities over total assets) and lagged market-to-book of assets (the 

sum of market capitalization and total liabilities divided by total assets).   

Examining the estimates in Table 8, I do not find any particular patterns that consistently 

relate 𝛽𝐿𝐼𝑄 to firm leverage or market-to-book.  For instance, the least negative 𝛽𝐿𝐼𝑄 (-0.050) is 

estimated for the portfolio of firms with low leverage and low market-to-book, while the most 

negative 𝛽𝐿𝐼𝑄 (-0.125) is estimated for the portfolio of firms with medium leverage and again low 

market-to-book (both estimates are statistically significant at the 0.01 level, but are not 

significantly different from each other).  The finding that liquidity risk is similar across REITs 

with different leverage suggests that, on average, REITs set their capital structure at levels that do 

not adversely affect their ability to generate and distribute earnings to shareholders.   

Table 9 presents the estimates of 𝛽𝐿𝐼𝑄 for double-sorts based on REIT size and operations 

type.  Specifically, I estimate the model for six portfolios, where each month REITs are sorted 

independently into three portfolios based on size and two portfolios based on REIT operations 

type.  I use the 30th and 70th percentiles of one-month lagged REIT market capitalizations to 

                                                 
22 All estimates are available from the authors upon request. 
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construct the three size portfolios, while REIT operations type is further classified into either 

development or operational based upon whether or not the firm has recently reported the existence 

of any new projects in their development pipeline.   

Interestingly, I find that development REITs have a significantly lower liquidity risk than 

operational REITs.  For example, 𝛽𝐿𝐼𝑄 of small/operational REITs is equal to -0.076 whereas 𝛽𝐿𝐼𝑄 

of small/development REITs is equal to -0.179.  The difference between the two estimates is both 

economically and statistically significant (at the 0.01 level).  I find similar difference patterns for 

both medium-sized and large REITs as well.  One possible explanation for these findings is that 

REITs with relatively low (high) risk levels – including exposure to liquidity risk – are rewarded 

(penalized) with a lower (higher) cost of capital, and are thus more (less) likely to undertake new 

development projects.  Regardless of the root cause of these differences, consistent with my focal 

hypotheses, I note that even operational REITs exhibit a significantly negative sensitivity to 

marketwide liquidity shocks.   

Finally, Table 10presents the estimates of 𝛽𝐿𝐼𝑄 for double-sorts on both firm size and the 

presence of a dividend reinvestment plan.  I estimate the model for six portfolios, where each 

month REITs are sorted independently into three portfolios based on firm size and two portfolios 

based on whether or not the REIT offers a dividend reinvestment plan.  I again use the 30th and 

70th percentiles of one-month lagged REIT market capitalizations to construct the three size 

portfolios.  Dividend reinvestment plans allow investors to reinvest dividends back into the issuing 

company without incurring significant transactions costs.  However, such a benefit will only be of 

unique relevance: 1) to investors that do not consider dividends as supplying their liquidity needs, 
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and 2) only if those same investors face relatively high transaction costs in reinvesting such 

dividends through a broker.   

Examining the results, I do not find any discernable differences in liquidity betas between 

REITs that have a dividend reinvestment program and those that do not.  For instance, small REITs 

with a dividend reinvestment program have a 𝛽𝐿𝐼𝑄 of -0.082, which is quite similar to (and 

statistically indistinguishable from) the -0.100 estimate of 𝛽𝐿𝐼𝑄 for small REITs with no dividend 

reinvestment program in place.  As such, I conclude that while REITs with dividend reinvestment 

programs evidence a slightly lower liquidity risk than comparable firms without such a program, 

the differences are relatively trivial.  While these estimates could be viewed as evidence that 

dividend reinvestment programs further enhance the liquidity of REITs (especially for investors 

without pressing liquidity needs or concerns), the small differences in estimates suggest the lack 

of a dividend reinvestment program does not impose material illiquidity costs on investors.   

Overall, the findings presented in this section demonstrate that REITs provide significant 

protection against marketwide liquidity shocks regardless of REIT size, leverage, market-to-book, 

REIT operations type, and/or the presence of dividend reinvestment plans.  The similar findings 

across different portfolios are once again consistent with my focal hypothesis that it is the legal 

status of REITs (and not their particular financial characteristics) that enhances investor liquidity.   

5.5 Does REIT Status Affect Liquidity? 

Having established that equity REITs offer market participants an investment with a 

relatively low sensitivity to marketwide liquidity shocks, I next examine what happens to the 

shares of a firm that elects to discontinue its REIT status.  If the previously described liquidity risk 
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results are the by-product of REIT regulations which credibly commit firms to high dividend 

payments, when a firm discontinues this special tax status election and becomes a taxable property 

company, investors may no longer be willing or able to rely on the continuation of such robust 

dividend payouts.  As a consequence, the shares of the company may become more sensitive to 

marketwide liquidity shocks.  Alternatively, to the extent the previous results are driven by firm 

characteristics and attributes not sufficiently controlled for in previous model specifications, the 

change in tax status election should contain little to no information regarding the firm’s future 

dividend payouts, and thus, such changes should not influence the firm’s sensitivity to marketwide 

liquidity shocks.   

To explore these conflicting hypotheticals and to provide a test of Hypothesis 4, I augment 

the factor models of Equation (1) with an indicator variable Status, which takes the value of one if 

the firm is operating as a REIT at the time of the observation, and zero if the firm has not elected 

REIT status for that period.23  The estimation sample for this final robustness test includes only 

those firms that operated as a REIT at some point during the sample observation period.  

CRSP/Ziman reports both the date a firm first obtains REIT status and when the firm discontinues 

this election.  Using this information, I identify those months during which each firm operates as 

a REIT and as a non-REIT property company.  The augmented factor model used to investigate 

the importance of this selection is specified as follows: 

 𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼1𝑆𝑡𝑎𝑡𝑢𝑠𝑖𝑡 + 𝛼0(1 − 𝑆𝑡𝑎𝑡𝑢𝑠𝑖𝑡) + 𝛽1𝑆𝑡𝑎𝑡𝑢𝑠𝑖𝑡 × 𝐹𝑡 + 𝛽0(1 − 𝑆𝑡𝑎𝑡𝑢𝑠𝑖𝑡) × 𝐹𝑡 + 𝑢𝑖𝑡 ( 2 ) 

                                                 
23 One potential concern with the results of this subsection is that many REITs who discontinue their REIT status do 
so in response to a merger, acquisition, or bankruptcy.  Frequently, this leaves only one monthly observation with 
return data for out-of-status REITs, thereby limiting the power of the empirical tests of this relation.   
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In this model, Ft is a 5×1 vector containing all five previously employed risk factors, while 

the 𝛽vectors contain the corresponding coefficients for the five factors.  This specification allows 

estimation of the factor sensitivities of returns both when companies have elected REIT status (𝛽1) 

and when they have not (𝛽0).   

The estimates from this augmented factor model are reported in Table 11.  The results are 

once again consistent with the notion that REIT firms are relatively insulated from marketwide 

liquidity shocks.  The liquidity beta (𝛽𝐿𝐼𝑄) for stocks operating under the REIT status election 

equals -0.096.  In contrast, when these same firms do not operate as REITs their liquidity beta 

(𝛽𝐿𝐼𝑄) is equal to -0.025, and is statistically indistinguishable from 0.  More importantly, the 

difference in liquidity betas across this choice of firm status has a t-statistic of 2.16, and is thus 

statistically significant at the 0.05 level.  These findings highlight the differential liquidity risk 

faced by REITs versus non-REIT property companies.  More specifically, when property 

companies elect to not retain their existing REIT status, their shares become more sensitive to 

marketwide liquidity shocks.   

In sum, the results reported in this subsection support the conclusion that liquidity is 

directly tied to a firm’s status as a REIT, and moreover, reinforce the prior conclusion that equity 

REITs have lower sensitivities to marketwide liquidity shocks than similarly situated non-REIT 

property companies.   

6. Concluding Remarks 

The primary purpose of this paper is to determine the sensitivity of REIT returns to 

unexpected changes in marketwide liquidity.  The paper further investigates the types of REITs, 
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by investment focus, that are most sensitive to marketwide liquidity shocks.  In completing this 

study, I use a comparison sample of both REITs and non-REIT property companies that do not 

face the same regulatory mandate to pay high dividends.  The main findings may be summarized 

as follows.  First, equity REITs, as a group, exhibit a negative sensitivity to marketwide liquidity 

shocks, such that when marketwide liquidity declines, REIT values increase.  I interpret this 

finding as providing evidence that REIT prices reflect a liquidity benefit to investors.  In contrast, 

non-REIT property companies exhibit no such relation, as their prices do not increase when 

marketwide liquidity deteriorates.  Together, these findings suggest investors view the high 

mandatory dividend payouts of REITs as a substitute for liquidity, especially when marketwide 

liquidity is low.   

Second, the documented effects are not specific to REITs investing in any single property 

type category, but rather appear to influence the pricing of equity REITs across the spectrum of 

alternative property type investment holdings.  Prior studies have found that both diversified 

REITs, and those invested in difficult to value property types, suffer from lower valuations and 

reduced liquidity.  I similarly find that diversified REITs, as well as those invested in lodging, 

resort, and residential properties, exhibit higher sensitivities to marketwide liquidity shocks than 

firms with more property type focused investment holdings, and/or whose investments are 

concentrated in more easily valued assets.  Third, the liquidity benefits of REITs do not extend to 

small REITs when such firms have infrequent dividend payments.  I attribute this result, in part, 

to the inability of such firms to credibly commit to sustaining dividend levels which liquidity 

conscious investors value.  Lastly, as a fourth and final test of my focal hypothesis, I examine how 

the liquidity betas of stocks change when firms elect to drop their REIT status and become fully 
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taxable, non-REIT property companies.  Consistent with the primary findings, I again observe firm 

share price sensitivities to marketwide liquidity shocks increase when companies elect to 

discontinue their REIT status.   

In conclusion, the findings presented in this paper are consistent with the notion that the 

structure of financial claims may exert a significant impact on the values of those claims.  In 

particular, due to market imperfections, the payout structure of equity securities, such as REITs, 

is highly relevant.  Finally, the findings further suggest that REITs, as a security class with 

demonstrably high regulatory mandated payout requirements, provide investors with an important 

benefit in the form of reduced exposure to liquidity risk.   
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Figures and Tables 

 

Figure 1: Growth of Portfolios 

This figure plots the growth over time of a one-dollar investment in the Pástor and Stambaugh (2003) 
liquidity factor, the Fama and French (1993) market factor, the CRSP/Ziman value-weighted REIT index, 
and a value-weighted property company index.  The liquidity factor is the return to a portfolio which is long 
the least liquid stocks and short the most liquid stocks.  The market factor is the excess value-weighted 
return on stocks over the 1-month Treasury bill rate.  The property company index is the excess return over 
and above the 1-month Treasury bill rate to a value-weighted portfolio of all property companies in the 
sample.  
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Table 1: Summary Statistics 

This table reports summary statistics for equity REITs (Panel A) and property companies (Panel B), as well 
as Wilcoxon rank-sum tests of differences between the two sets of firms (Panel C).  I identify 440 equity 
REITs from the CRSP/Ziman database and 48 property companies from the S&P Global Market 
Intelligence (formerly SNL) database with return data in the Center for Research in Securities Prices 
(CRSP) monthly files over the interval 1980 through 2015.  I exclude firm-years with a market 
capitalization below $20 million.  Compustat provides data on annual assets, non-diluted earnings per share 
(EPS) excluding extraordinary items, dividends, net income, the number of shares outstanding, the number 
of shares used to calculate non-diluted EPS, total liabilities, and quarterly dividends.  REIT month-end 
market capitalization is obtained from the CRSP/Ziman database.  Property company market capitalization 
is the month-end closing stock price multiplied by the number of shares outstanding.  Earnings are 
calculated as the non-diluted EPS excluding extraordinary items multiplied by the number of shares used 
to calculate non-diluted EPS.  Market capitalization, assets, earnings, and dividends are reported in millions 
of 2015 U.S. dollars using the GDP deflator from the U.S. Bureau of Labor Statistics.  The dividend payer 
dummy is set equal to one if a firm reports a positive dividend in a given year, and zero otherwise.  The 
dividend payout ratio is calculated as dividends divided by earnings for firm-years with positive earnings 
and positive dividends.  Return on assets (ROA) equals net income divided by total assets, leverage equals 
total liabilities divided by total assets, and the market-to-book of assets is the ratio of a firm’s market value 
to book value of total assets, where firm market value is the sum of the firm’s market capitalization and 
total liabilities.  Dividend frequency is the moving average of the past eight quarters of a binary variable 
that equals one if the firm paid positive dividends in a quarter, and zero otherwise. 

Panel A: REITs (4,014 firm-year observations) 

 Mean Median 
Standard 
deviation 

25th 
percentile 

75th 
percentile 

      

Market capitalization (mill. 2015 USD) 1,660.46 525.66 3,380.41 154.97 1,676.95 

Assets (mill. 2015 USD) 2,350.66 1,012.80 3,704.13 311.14 2,788.28 

Earnings (mill. 2015 USD) 41.43 16.92 112.50 2.57 51.69 

Dividends (mill. 2015 USD) 77.57 34.39 121.64 10.05 91.47 

Dividend payer dummy 0.94     

Payout ratio for dividend payers 2.36 1.32 4.72 1.02 2.04 

ROA (%) 3.26 2.92 8.64 1.12 4.92 

Monthly return (%) 1.15 1.02 7.92 – 2.70 4.97 

Leverage 0.52 0.53 0.21 0.41 0.64 

Market-to-book of assets  1.22 1.14 0.59 0.96 1.36 

Dividend frequency (8-qtr. moving avg.) 0.91 1.00 0.23 1.00 1.00 
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Table 1: Summary Statistics 

Panel B: Property companies (579 firm-year observations) 

 Mean Median 
Standard 
deviation 

25th 
percentile 

75th 
percentile 

      

Market capitalization (mill. 2015 USD) 1,935.25 361.34 3,579.73 115.02 2,128.71 

Assets (mill. 2015 USD) 2,454.30 721.18 4,292.65 329.72 2,180.26 

Earnings (mill. 2015 USD) 65.06 13.64 196.27 – 2.26 74.97 

Dividends (mill. 2015 USD) 23.53 0.89 60.59 0.00 17.72 

Dividend payer dummy 0.54     

Payout ratio for dividend payers 0.67 0.34 1.86 0.17 0.55 

ROA (%) 3.24 2.96 7.28 – 0.12 5.94 

Monthly return (%) 0.99 0.51 10.70 – 4.88 6.42 

Leverage 0.61 0.61 0.24 0.47 0.77 

Market-to-book of assets 1.56 1.19 1.21 0.95 1.73 

Dividend frequency (8-qtr. moving avg.) 0.44 0.38 0.43 0.00 1.00 

      

 

Panel C: Wilcoxon rank-sum tests of differences  

 Difference in means 
(REITs – property companies) 

 
Difference in medians 

(REITs – property companies) 
 Diff. z-score p-value  Diff. z-score p-value 

       

Market capitalization (mill. 2015 USD) – 274.79 5.57 0.001  164.32 9.29 0.001 

Assets (mill. 2015 USD) – 103.64 1.91 0.056  291.61 4.66 0.001 

Earnings (mill. 2015 USD) – 23.63 0.90 0.366  3.28 1.55 0.121 

>> Dividends (mill. 2015 USD) 54.04 21.85 0.001  33.50 15.42 0.001 

Dividend payer dummy 0.40 29.35 0.001  0.00 29.35 0.001 

Payout ratio for dividend payers 1.70 21.80 0.001  0.99 14.08 0.001 

ROA (%) 0.00 0.71 0.475  0.00 0.05 0.960 

Monthly return (%) 0.16 4.21 0.001  0.51 4.52 0.001 

Leverage – 0.10 9.24 0.001  – 0.08 7.43 0.001 

Market-to-book of assets – 0.34 4.70 0.001  – 0.05 1.83 0.068 

Dividend frequency (8-qtr. moving avg.) 0.48 55.66 0.001  0.63 49.49 0.001 
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Table 2: Aggregate Earnings, Dividends, and Payout Ratios 

This table reports aggregate earnings, dividends, and payout ratios for the REIT and property company 
samples during each year of the sample period: 1980 - 2015.  Specifically, I identify 440 equity REITs from 
the CRSP/Ziman database and 48 property companies from the S&P Global Market Intelligence (formerly 
SNL) database with return data in the Center for Research in Securities Prices (CRSP) monthly files.  I 
exclude firm-years with a market capitalization below $20 million.  Compustat provides data on annual 
non-diluted earnings per share (EPS) excluding extraordinary items, dividends, and the number of shares 
used to calculate non-diluted EPS.  Earnings are calculated as the non-diluted EPS excluding extraordinary 
items multiplied by the number of shares used to calculate non-diluted EPS.  Earnings and dividends are 
reported in millions of 2015 U.S. dollars using the GDP deflator from the U.S. Bureau of Labor Statistics 
to adjust nominal values for inflation.  The aggregate payout ratio is equal to aggregate dividends divided 
by aggregate earnings.   
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Table 2: Aggregate Earnings, Dividends, and Payout Ratios 

 REITs  Property companies 

Year Firms 
Aggregate 
earnings 

Aggregate 
dividends 

Aggregate 
payout 

 Firms 
Aggregate 
earnings 

Aggregate 
dividends 

Aggregate 
payout 

          
1980 33 449.45 454.57 1.01  5 337.34 105.67 0.31 

1981 38 311.23 272.56 0.88  4 312.01 113.00 0.36 

1982 42 370.29 340.90 0.92  4 225.91 117.94 0.52 

1983 40 548.94 480.04 0.87  4 253.63 129.64 0.51 

1984 39 705.22 578.07 0.82  6 308.99 111.27 0.36 

1985 43 983.92 1,111.58 1.13  4 286.56 281.69 0.98 

1986 47 634.26 704.89 1.11  5 317.03 121.99 0.38 

1987 57 757.85 947.77 1.25  7 473.34 200.31 0.42 

1988 51 802.63 970.78 1.21  8 433.02 220.21 0.51 

1989 44 741.55 876.93 1.18  7 403.25 227.32 0.56 

1990 43 745.44 916.94 1.23  6 392.65 213.34 0.54 

1991 57 684.07 936.65 1.37  8 309.95 219.58 0.71 

1992 57 759.20 938.71 1.24  7 270.29 165.34 0.61 

1993 90 1,283.33 1,667.75 1.30  8 235.91 159.67 0.68 

1994 144 2,495.16 3,723.78 1.49  7 228.66 139.42 0.61 

1995 149 3,319.79 4,635.43 1.40  6 247.87 146.12 0.59 

1996 146 4,610.37 5,676.34 1.23  7 457.67 154.88 0.34 

1997 152 6,399.25 8,307.69 1.30  9 500.40 205.62 0.41 

1998 155 9,018.57 12,098.14 1.34  7 867.00 230.42 0.27 

1999 154 10,666.40 12,492.49 1.17  8 1,070.03 147.23 0.14 

2000 137 11,881.46 12,370.67 1.04  7 1,253.61 162.38 0.13 

2001 115 8,658.22 11,052.60 1.28  6 771.45 154.31 0.20 

2002 107 8,379.29 11,663.38 1.39  6 1,112.56 159.73 0.14 

2003 104 8,608.20 12,355.40 1.44  6 1,036.51 272.42 0.26 

2004 109 9,125.57 13,933.45 1.53  7 1,172.32 230.86 0.20 

2005 105 8,713.64 13,627.69 1.56  10 1,540.98 287.48 0.19 

2006 99 8,919.89 13,069.35 1.47  10 2,988.87 812.18 0.27 

2007 86 9,539.59 12,613.02 1.32  11 2,396.38 516.86 0.22 

2008 76 4,953.17 10,369.96 2.09  9 946.00 427.71 0.45 

2009 62 4,202.72 7,109.47 1.69  7 763.87 198.47 0.26 

2010 65 5,358.62 8,958.66 1.67  8 1,804.36 417.41 0.23 

2011 70 6,481.41 10,062.21 1.55  9 2,149.51 492.56 0.23 

2012 84 7,899.02 13,516.86 1.71  10 2,367.59 1,365.77 0.58 

2013 101 9,696.95 16,403.07 1.69  11 3,020.91 952.80 0.32 

2014 121 18,316.48 23,965.34 1.31  11 2,585.22 1,296.62 0.50 

2015 129 21,237.01 26,830.85 1.26  12 4,079.91 1,040.83 0.26 

          
Overall 440 198,258.16 276,034.00 1.39  48 37,921.55 12,199.03 0.32 

          
  



45 
 

Table 3: Listing Exchange 

This table reports the listing exchange for each firm in the REIT and property company samples.  I identify 
440 equity REITs from the CRSP/Ziman database and 48 property companies from the S&P Global Market 
Intelligence (formerly SNL) database.  I exclude firm-years with a market capitalization below $20 million.  
The listing exchange for each firm is obtained from the Center for Research in Securities Prices (CRSP).  
For firms that changed listing exchanges during the sample period, the table reports only the last exchange.  
The three listing exchanges represented in the sample are the New York Stock Exchange (NYSE) American 
(formerly NYSE MKT and the American Stock Exchange), the New York Stock Exchange (NYSE), and 
the National Association of Securities Dealers Automated Quotation system (NASDAQ).  

 REITs  Property companies 

Exchange Firms  % of Sample  Firms  % of Sample 
        

NYSE American 77 18 7 15 

NYSE 280 64 28 58 

NASDAQ 83 19 13 27 

     
Total 440 100 48 100 
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Table 4: The Liquidity Risk of REITs and Property Companies 

This table reports OLS regression estimates from a five-factor model explaining the monthly excess returns 
of equity REITs and of property companies.  The table also reports the differences in estimates between the 
two sets of firms.  In the firm-level regressions, the dependent variable is each firm’s monthly stock return 
in excess of the 1-month Treasury rate.  I also estimate the model using as dependent variables the monthly 
value-weighted excess return of REITs and of property companies, where weights are based on each firm’s 
past-month market capitalization.  As explanatory variables, the model includes the liquidity factor of 
Pástor and Stambaugh (2002), the market, size, and value factors of Fama and French (1993), and the 
momentum factor of Carhart (1997).  The coefficients for these factors are βLIQ, βMKT, βSMB, βHML, and βUMD 
respectively.  The reported t-statistics (in parentheses) test whether estimates are significantly different 
from 0.  a, b and c denote significance at the 0.01, 0.05, and 0.10 levels. 

The dependent variable is the monthly excess return 

 Firm-level  Value-weighted portfolio  Differences in coefficients 

 REITs 
Property 

companies 
 REITs 

Property 
companies 

 Firm-level Portfolio 

 49,828 obs. 6,916 obs.  431 obs.   

        

 0.003a 0.001 0.001 0.001 0.002 – 0.001 
 (9.21) (0.95) (0.28) (0.54) (1.75) (– 0.26) 

LIQ – 0.094a – 0.008 – 0.095a 0.032 – 0.086a – 0.127a 
 (– 17.31) (– 0.41) (– 3.31) (0.83) (– 4.40) (– 2.66) 

MKT 0.678a 0.869a 0.757a 1.079a – 0.191a – 0.322a 

 (83.19) (30.43) (19.00) (20.44) (– 6.43) (– 4.87) 

SMB 0.485a 0.614a 0.441a 0.404a – 0.129a 0.037 
 (47.17) (16.82) (8.03) (5.55) (– 3.39) (0.41) 

HML 0.7198a 0.672a 0.682a 0.471a 0.048 0.211b 

 (60.83) (16.70) (11.45) (5.96) (1.11) (2.14) 

UMD – 0.132a – 0.196a – 0.086b – 0.309a 0.064b 0.223a 

 (– 18.57) (– 8.11) (– 2.38) (– 6.41) (2.54) (3.68) 

       

Adj. R2 19.98% 20.92% 55.66% 60.52%   
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Table 5: The Liquidity Risk of REITs by Investment Focus 

This table reports OLS regression estimates from a five-factor model explaining the monthly excess returns 
of equity REITs, by REIT investment focus.  The dependent variable is the monthly return, in excess of the 
1-month Treasury rate, of the CRSP/Ziman value-weighted indexes segmented by property type investment 
focus.  As explanatory variables, the model includes the liquidity factor of Pástor and Stambaugh (2002), 
the market, size, and value factors of Fama and French (1993), and the momentum factor of Carhart (1997).  
The coefficients for these factors are βLIQ, βMKT, βSMB, βHML, and βUMD respectively.  The reported t-statistics 
(in parentheses) test whether estimates are significantly different from 0.  a, b and c denote significance at 
the 0.01, 0.05, and 0.10 levels. 

The dependent variable is the monthly excess return of the index 

 Unclassified Diversified 
Health 
care 

Industrial/ 
office 

Lodging/ 
resorts 

Residential Retail 
Self- 

storage 

         

 0.001 – 0.001 0.006b – 0.001 – 0.003 0.002 0.002 0.005 
 (0.20) (– 0.39) (2.42) (– 0.18) (– 0.91) (0.87) (0.97) (1.89) 

LIQ 0.021 – 0.076b – 0.152a – 0.122a 0.001 – 0.058c – 0.140a – 0.107b 

 (0.50) (– 2.23) (– 3.70) (– 3.22) (0.01) (– 1.69) (– 3.91) (– 2.35) 

MKT 0.670a 0.756a 0.585a 0.808a 0.968a 0.700a 0.772a 0.525a 

 (11.65) (16.00) (10.20) (15.44) (14.22) (14.75) (15.60) (8.17) 

SMB 0.506a 0.569a 0.300a 0.473a 0.734a 0.400a 0.438a 0.421a 

 (6.37) (8.72) (3.82) (6.55) (7.82) (6.10) (6.41) (4.78) 

HML 0.409a 0.802a 0.551a 0.728a 1.049a 0.671a 0.712a 0.608a 

 (4.75) (11.33) (6.45) (9.29) (10.30) (9.44) (9.61) (6.33) 

UMD – 0.112b – 0.095b – 0.145a – 0.080c – 0.359a – 0.018 – 0.113b – 0.031 
 (– 2.14) (– 2.21) (– 2.76) (– 1.68) (– 5.79) (– 0.41) (– 2.51) (– 0.52) 

         

Obs. 431 431 428 431 430 431 431 420 

Adj. R2 35.52% 50.52% 27.43% 44.85% 50.01% 42.42% 45.82% 21.06% 
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Table 6: The Liquidity Risk of REITs and Property Companies Across Time 

This table reports OLS regression estimates from a five-factor model explaining the monthly excess returns 
of equity REITs and of property companies for pre-1999 and post-2003 chronological sub-periods.  The 
table also reports the differences in estimates between the two sets of firms.  In Panel A, the dependent 
variable is each firm’s monthly stock return in excess of the 1-month Treasury rate.  In Panel B, the 
dependent variable is the monthly value-weighted excess return of REITs and of property companies, where 
weights are based on each firm’s past-month market capitalization.  As explanatory variables, the model 
includes the liquidity factor of Pástor and Stambaugh (2002), the market, size, and value factors of Fama 
and French (1993), and the momentum factor of Carhart (1997).  The coefficients for these factors are 
βLIQ, βMKT, βSMB, βHML, and βUMD respectively.  The reported t-statistics (in parentheses) test 
whether estimates are significantly different from 0.  a, b and c denote significance at the 0.01, 0.05, and 
0.10 levels. 

Panel A: The dependent variable is each stock’s monthly excess return 
 Pre-1999  Post-2003 

 REITs 
Property 

companies 
Diff.  REITs 

Property 
companies 

Diff. 

        

 0.001 <0.001 0.001 0.005a 0.003c 0.002 
 (1.16) (0.20) (0.10) (8.28) (1.81) (0.79) 

LIQ – 0.071a 0.068b – 0.139a – 0.176a – 0.077b – 0.099a 
 (– 7.86) (2.01) (– 3.99) (– 17.79) (– 2.50) (– 3.09) 

MKT 0.546a 0.739a – 0.193a 1.028a 1.094a – 0.066 
 (42.54) (15.15) (– 3.83) (65.36) (22.64) (– 1.29) 

SMB 0.577a 0.849a – 0.272a 0.380a 0.736a – 0.356a 
 (30.39) (11.46) (– 3.55) (14.87) (9.05) (– 4.18) 

HML 0.551a 0.378a 0.173c 0.547a 0.268a 0.279a 
 (24.23) (4.35) (1.92) (21.83) (3.47) (3.43) 

UMD 0.076a 0.023 0.053 – 0.223a – 0.334a 0.111b 
 (4.68) (0.37) (0.85) (– 16.21) (– 8.04) (2.54) 

        

Obs. 20,639 2,166   19,571 3,302  

Adj. R2 12.07% 18.26%   33.10% 28.76%  
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Table 6: The Liquidity Risk of REITs and Property Companies Across Time 

Panel B: The dependent variable is the value-weighted portfolio monthly excess return 
 Pre-1999  Post-2003 

 REITs 
Property 

companies 
Diff.  REITs 

Property 
companies 

Diff. 

        

 – 0.002 <0.001 – 0.002 0.004 0.002 0.002 
 (– 0.98) (0.09) (– 0.54) (1.06) (0.70) (0.33) 

LIQ – 0.051 0.116b – 0.167b – 0.204a – 0.068 – 0.136c 
 (– 1.52) (1.78) (2.28) (– 3.35) (– 1.25) (– 1.67) 

MKT 0.611a 0.948a – 0.336a 1.098a 1.288a – 0.190 
 (14.43) (11.39) (– 3.60) (11.27) (14.89) (– 1.46) 

SMB 0.577a 0.534a 0.043 0.228 0.554a – 0.325 
 (8.89) (4.19) (0.30) (1.39) (3.80) (– 1.49) 

HML 0.430a 0.112 0.318b 0.594a 0.106 0.487b 
 (5.99) (0.80) (2.01) (3.88) (0.78) (2.38) 

UMD 0.056 – 0.180c 0.236b – 0.140 – 0.461a 0.321a 
 (1.11) (– 1.82) (2.13) (– 1.70) (– 6.31) (2.92) 

        

Obs. 227  144 

Adj. R2 59.37% 51.04%   64.89% 78.61%  
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Table 7: The Liquidity Risk of REITs by Size and Dividend Frequency Portfolio 

This table reports the coefficient estimates for the liquidity factor, βLIQ, from OLS regressions of a five-
factor model explaining the monthly excess returns of equity REITs.  The dependent variable is each firm’s 
monthly stock return in excess of the 1-month Treasury rate.  As explanatory variables, the model includes 
the liquidity factor of Pástor and Stambaugh (2002), the market, size, and value factors of Fama and French 
(1993), and the momentum factor of Carhart (1997).  I estimate the model for six portfolios, where each 
month REITs are sorted independently into three portfolios based on firm size and two portfolios based on 
past dividend frequency.  I use the 30th and 70th percentiles of one-month lagged REIT market 
capitalizations to construct the three size portfolios.  Dividend frequency is the moving average of the past 
eight quarters of a binary variable that equals one if the REIT paid positive dividends in a quarter, and zero 
otherwise.  REITs with a moving average equal to one form the “=100%” dividend frequency portfolio, 
while REITs with a moving average less than one form the “<100%” dividend frequency portfolio.  The 
reported t-statistics (in parentheses) test whether estimates are significantly different from 0.  a, b and c 
denote significance at the 0.01, 0.05, and 0.10 levels.  

The dependent variable is each stock’s monthly excess return 
   Size portfolio   

   Small Med Large  Diff. in LIQ 

        

D
iv

id
en

d
 f

re
q
u
en

cy
 p

o
rt

fo
li

o
 

<
 1

0
0
%

 LIQ  – 0.003 – 0.117a – 0.173a 0.170a 
 (– 0.12) (– 3.91) (– 6.49) (4.35) 

Obs. 3,640 2,194 1,761  

Adj. R2 14.33% 23.56% 28.61%  

      

=
 1

0
0
%

 LIQ  – 0.107a – 0.102a – 0.095a – 0.013 
 (– 8.03) (– 10.19) (– 10.59) (– 0.78) 

Obs. 8,595 11,127 12,229  

Adj. R2 21.19% 24.97% 25.58%  
       
  Diff. in LIQ 0.104a – 0.015 – 0.078a  

   (3.30) (– 0.47) (– 2.79)  
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Table 8: The Liquidity Risk of REITs by Leverage and Mart-to-Book Portfolios 

This table reports the coefficient estimates for the liquidity factor, βLIQ, from OLS regressions of a five-
factor model explaining the monthly excess returns of equity REITs.  The dependent variable is each firm’s 
monthly stock return in excess of the 1-month Treasury rate.  As explanatory variables, the model includes 
the liquidity factor of Pástor and Stambaugh (2002), the market, size, and value factors of Fama and French 
(1993), and the momentum factor of Carhart (1997).  I estimate the model for nine portfolios, where each 
month REITs are sorted independently into three portfolios based on firm leverage and three portfolios 
based on market-to-book ratios.  To construct the portfolios, I use the 30th and 70th percentiles of lagged 
REIT leverage (total liabilities over total assets) and lagged market-to-book of assets (the sum of market 
capitalization and total liabilities divided by total assets).  The reported t-statistics (in parentheses) test 
whether estimates are significantly different from 0.  a, b and c denote significance at the 0.01, 0.05, and 0.10 
levels.  

The dependent variable is each stock’s monthly excess return 

      Leverage portfolio     
   Low Med High  Diff. in LIQ 

        

M
ar

k
et

-t
o
-b

o
o
k
 p

o
rt

fo
li

o
 

L
o
w

 

LIQ  – 0.050a – 0.125a – 0.119a 0.069b 
 (– 3.21) (– 6.29) (– 4.67) (2.31) 

Obs. 6,151 4,894 3,714  

Adj. R2 17.77% 25.49% 22.29%  

 

     

M
ed

 

LIQ  – 0.115a – 0.104a – 0.080a – 0.035 
 (– 8.04) (– 7.15) (– 4.15) (– 1.48) 

Obs. 4,782 5,322 5,074  

Adj. R2 22.21% 24.32% 19.86%  

      

H
ig

h
 

LIQ  – 0.119a – 0.059a – 0.091a – 0.028 

 (– 7.72) (– 4.21) (– 6.38) (– 1.35) 

Obs. 3,934 5,076 6,176  

Adj. R2 22.73% 19.42% 16.44%  

       

  Diff. in LIQ 0.069a – 0.066a – 0.028  

   (3.17) (– 2.71) (– 0.95)  
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Table 9: The Liquidity Risk of REITs by Size and Operations Type Portfolios 

This table reports the coefficient estimates for the liquidity factor, βLIQ, from OLS regressions of a five-
factor model explaining the monthly excess returns of equity REITs.  The dependent variable is each firm’s 
monthly stock return in excess of the 1-month Treasury rate.  As explanatory variables, the model includes 
the liquidity factor of Pástor and Stambaugh (2002), the market, size, and value factors of Fama and French 
(1993), and the momentum factor of Carhart (1997).  I estimate the model for six portfolios, where each 
month REITs are sorted independently into three portfolios based on firm size and two portfolios based on 
REIT operations type.  I use the 30th and 70th percentiles of one-month lagged REIT market capitalizations 
to construct the three size portfolios.  REITs are further classified into either development or operational 
firms based on their recent participation in, or avoidance of, real property development activities.  The 
reported t-statistics (in parentheses) test whether estimates are significantly different from 0.  a, b and c 
denote significance at the 0.01, 0.05, and 0.10 levels.  

The dependent variable is each stock’s monthly excess return 
   Size portfolio   

   Small Med Large  Diff. in LIQ 

        

R
E

IT
 o

p
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at
io

n
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ty
p
e 

O
p
er

at
io

n
al

 LIQ  – 0.076a – 0.082 a – 0.071a – 0.05 
 (– 6.17) (– 7.59) (– 6.20) (– 0.30) 

Obs. 11,835 10,193 7,846  

Adj. R2 15.53% 21.45% 19.75%  

      

D
ev

el
o
p
m

en
t LIQ  – 0.179a – 0.147a – 0.150a – 0.029 

 (– 5.93) (– 9.72) (– 12.72) (– 0.91) 

Obs. 2,221 5,346 7,609  

Adj. R2 28.04% 26.62% 30.47%  
       
  Diff. in LIQ 0.103 a 0.065a 0.079a  

   (3.17) (3.46) (4.81)  
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Table 10: The Liquidity Risk of REITs by Size and Dividend Reinvestment Plan Portfolios 

This table reports the coefficient estimates for the liquidity factor, βLIQ, from OLS regressions of a five-
factor model explaining the monthly excess returns of equity REITs.  The dependent variable is each firm’s 
monthly stock return in excess of the 1-month Treasury rate.  As explanatory variables, the model includes 
the liquidity factor of Pástor and Stambaugh (2002), the market, size, and value factors of Fama and French 
(1993), and the momentum factor of Carhart (1997).  I estimate the model for six portfolios, where each 
month REITs are sorted independently into three portfolios based on firm size and two portfolios based on 
whether or not the REIT offers a dividend reinvestment plan (DRIP).  I use the 30th and 70th percentiles of 
one-month lagged REIT market capitalization to construct the three size portfolios.  The reported t-statistics 
(in parentheses) test whether estimates are significantly different from 0.  a, b and c denote significance at 
the 0.01, 0.05, and 0.10 levels.  

The dependent variable is each stock’s monthly excess return 
   Size portfolio   

   Small Med Large  Diff. in LIQ 

        

D
iv

id
en

d
 r

ei
n
v
es

tm
en

t 
p
la

n
 

N
o
 

LIQ  – 0.082a – 0.068a – 0.116a 0.033 
 (– 4.28) (– 4.51) (– 6.81) (1.30) 

Obs. 6,301 6,113 4,391  

Adj. R2 15.01% 22.44% 23.04%  

      

Y
es

 

LIQ  – 0.100a – 0.123a – 0.108a 0.009 
 (– 7.28) (– 11.39) (– 11.76) (0.53) 

Obs. 7,755 9,426 11,064  

Adj. R2 20.40% 24.00% 26.45%  
       
  Diff. in LIQ 0.017 0.055a – 0.007  

   (0.73) (2.96) (– 0.39)  
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Table 11: The Liquidity Risk of Conditional REIT Status 

This table reports OLS regression estimates from a five-factor model explaining the monthly excess returns 
of stocks conditional on their REIT status.  I identify 440 equity REITs from the CRSP/Ziman database 
with return data in the Center for Research in Securities Prices (CRSP) monthly files over the interval 1980 
through 2015.  I exclude firm-years with a market capitalization below $20 million.  For each firm-month 
observation I construct a binary variable (REIT status) that equals one if the monthly observation is within 
the first and last dates the stock is reported as having elected REIT status within the CRSP/Ziman dataset.  
If the monthly observation for the firm is outside of that date range, I classify the observation as not in 
REIT status.  The dependent variable is each firm’s monthly stock return in excess of the 1-month Treasury 
rate.  As explanatory variables, the model includes the liquidity factor of Pástor and Stambaugh (2002), the 
market, size, and value factors of Fama and French (1993), and the momentum factor of Carhart (1997).  
The coefficients for these factors are βLIQ, βMKT, βSMB, βHML, and βUMD respectively.  I then estimate the 
following model: 

    1 0 1 01 1it ft it it it t it t itR R Status Status B Status F B Status F u             , 

where Ft is a 5×1 vector containing all five factors and the B vectors contain the coefficients for the five 
factors.  This specification allows estimation of the factor sensitivities of returns both when firms have 
elected REIT status (B1) and when they have not elected REIT status (B0).  The reported t-statistics (in 
parentheses) test whether the coefficient estimates are significantly different from 0.  a, b and c denote 
significance at the 0.01, 0.05, and 0.10 levels.  

The dependent variable is each stock’s monthly excess return 

 REIT status: Yes REIT status: No Diff. 

    

 0.003a – 0.001 0.003c 
 (9.36) (– 0.12) (1.68) 

LIQ – 0.096a – 0.025 – 0.071b 
 (– 17.42) (– 0.78) (– 2.16) 

MKT 0.678a 0.640 0.038 
 (81.99) (12.79) (0.75) 

SMB 0.491a 0.274 0.217a 
 (47.06) (4.48) (3.49) 

HML 0.720a 0.641 0.080 
 (60.16) (8.62) (1.06) 

UMD – 0.133a – 0.065 – 0.068 
 (– 18.55) (– 1.38) (– 1.43) 

    

Obs. 49,822 

Adj. R2 20.00% 
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ESSAY 2: ON MEASURING URBAN SPRAWL 

1. Introduction 

The policy debate over the extent to which urban sprawl represents market failure versus 

how much represents efficient market outcomes has been hampered by the lack of solid empirical 

analysis. While conceptually straightforward, the notion that sprawl represents the dispersion of 

population and jobs over a wider geographic area turns out to be difficult to capture with a scalar 

empirical measure.24 This paper contributes to the literature analyzing urban sprawl. It offers an 

empirical approach that has the potential to move the empirical study of urban sprawl to a new 

level.  

This study examines two existing sprawl measures and proposes a new alternative adapted 

from financial market technical analysis. The results show that one of the older approaches is not 

consistent with existing land use theory. While the second older approach, the density gradient, 

yields results broadly consistent with land use theory, the new measure of urban sprawl offered 

here relaxes the stringent monotonicity constraint imposed by the traditional density gradient 

approach, providing results that better reflect polycentric aspects of urban areas that are also 

important aspects of sprawl (see Henderson and Mitra, 1996).  

The debate over the extent to which urban sprawl is efficient or represents market failure 

has driven urban policy discussion since the start of the U.S. suburbanization process in the late 

19th century (Mills and Hamilton, 1994).  The neoclassical land use theory built on the seminal 

                                                 
24 Notable empirical studies on polycentric city structure include McMillen and Smith (2003) and Redfearn (2007).  
Notable articles that develop theoretical frameworks for the polycentric city structure include Fujita and Ogawa 
(1982), Anas and Kim (1996), Anas and Xu (1999) 
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works by Mills (1967) and Muth (1969) provides a framework for understanding how real income 

growth, population growth, and long-run improvements in urban transportation technology drive 

the suburbanization of jobs and population typically identified as evidence of inefficient sprawl 

(Wheaton 1974, Bruckner 1987).  The insights obtained from the formalization of land use theory 

should not be understated on this point, since the theory shows that sprawl is also the efficient 

market response to changes in these underlying economic factors.  

In light of the insights provided by urban economic theory, the policy concerns related to 

urban sprawl have slowly begun to be tied to the question of how much observed sprawl is the 

result of efficient market responses to changes in household income, urban population, and 

transportation cost. Presumably, once the sprawl attributable to these factors can be quantified, the 

remaining extent of urban sprawl is the result of factors not included in the theory, including 

market failure (Mills and Lubuele 1997, Nechyba and Walsh 2004).  

The seminal work by Brueckner and Fansler (1983), hereafter BF, provides widely cited 

empirical evidence on this point. The empirical results are consistent with urban land market 

theory; household income, population, agricultural land value, and urban transportation costs 

appear to drive the geographic extent of urban areas as predicted by theory. As important to the 

sprawl debate, these factors appear to explain 78% of the variation in size. Their evidence, 

however, is limited to small urban areas contained within single counties, a small fraction of urban 

areas in the U.S. in 1970 and an even less important segment of urban areas today.25  Further, 

                                                 
25 Brueckner and Fansler (1983) further constrained their sample to exclude cities with topographical irregularities, 
based on an implicit assumption in the Muth-Mills model that all land at any given distance from the CBD can be 
used for housing. 
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closer analysis undertaken here reveals that the original results even for that subset of urban areas 

are spurious; re-estimation of the BF model using repeated samples of urban areas drawn from the 

original 1970 Census data source yields results consistent with the original study in only 2-11% 

percent of samples, depending on the proxy used for transportation costs. It also turns out that the 

BF approach does not yield useful results for later sample periods.   

Motivated by the poor performance of the BF approach, this paper turns to the venerable 

population density gradient (PDG) as one measure of urban sprawl. The measure is appealing in 

its simplicity; it depicts the percentage decline in population density with greater distance over the 

entire urban area. It does, however, impose monotonicity and symmetry in the population density 

distribution function for all directions centered on the CBD; the extent to which these 

characteristics distort empirical analyses is not known. While this paper uses the very popular 

exponential form, it should be noted that the broader literature is not in complete agreement about 

functional form for the population density distribution function underlying the single parameter 

measure. Kau and Lee (1976), for example, test linear, log, and quadratic functional forms of the 

population density distribution function early in the debate, and find that while the linear form can 

be rejected for most of the cities in their sample, the exponential form cannot. Nonetheless, they 

conclude that the appropriate functional form may vary across cities. 

The differing degrees of polycentricity across urban areas may provide one reason why the 

simple density gradient approach does not work uniformly well. The growth of employment 

centers outside the CBD destroys the symmetry of the population distribution around the CBD as 

it also weakens monotonicity.  The notion that the CBD is stationary over time may also be 
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problematic. Alperovich and Deutsche (1994) find that the (functional) CBD location can vary 

significantly over time.  

Given these potential weaknesses, this paper offers a sprawl measure based on Wilder’s 

(1978) directional index (DX), a technical indicator of a financial security’s price trend strength. 

While the original measure is designed to measure financial market characteristics, I borrow from 

the finance literature and exploit the versatility of DX by adapting it to capture urban sprawl as a 

dynamic process that takes place over time.  It has the additional advantage of not imposing the 

strong monotonicity that the traditional gradient approach does. Tests of both the PDG and DX 

measures on a broad sample of metropolitan areas using 2000 and 2010 Census data yield stronger 

support for the DX measure of urban sprawl.  As important to the urban sprawl policy debate, these 

measures of sprawl indicate only up to 34% (for PDG) or up to 40% (for DX) of the variation in 

sprawl can be explained by the economic factors identified by neoclassical land use theory. This 

is considerably less than half of the proportion found by BF. This represents a major shift in the 

empirical evidence underlying much of the policy debate concerning sprawl; it calls into question 

whether a large part of urban development experienced in the U.S. can be construed as efficient 

market-driven outcomes or instead represents market failure. 

The rest of this paper is structured as follows.  In section 2, I discuss relevant literature and 

important empirical and theoretical results previously obtained in the study of urban sprawl.  

Section 3 develops the PDG and DX measures of sprawl I use in this paper, and section 4 details 

my data sampling methodology and variables used.  I perform empirical testing of the three 
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approaches to measuring sprawl, test whether I can improve upon the models with additional 

explanatory variables, and present and discuss results in section 5.  Section 6 concludes. 

2. Literature Review 

The Mills-Muth model depicts sprawl as an efficient market process.  A tradeoff between 

transportation costs and land rents drives the structure of urbanized areas, with decreasing rent and 

population density gradients with increased distance from the CBD.  In addition, the model also 

relies on the joint effect of rising incomes and reduced commuting costs on encouraging sprawl.  

The literature has thus far supported these assertions.  Glaeser and Kahn (2003) show the major 

factor influencing sprawl is not market failure, but rather the necessity of vehicle ownership for 

urban living in the 20th century.  LeRoy and Sonstelie (1983) model the movement of two income 

groups, rich and poor, into and out of city centers, and show that transportation costs are an 

important factor.  Margo (1992) provides empirical evidence on the importance of rising incomes 

in driving sprawl.   

Wheaton (1974) derives the following comparative statics results of the Mills-Muth model 

for distance to urban-rural boundary (�̅�), urban population (𝐿), agricultural land rent (𝑟𝑎), income 

(𝑦), and commuting cost per round-trip mile (𝑡), respectively, 

 
𝜕�̅�𝜕𝐿 > 0, 

𝜕�̅�𝜕𝑟𝑎 < 0, 
𝜕�̅�𝜕𝑦 > 0, 

𝜕�̅�𝜕𝑡 < 0  ( 3 ) 
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and BF empirically tested those predictions.26  Specifically, BF found for a small sample of urban 

areas in 1970 that land area is negatively related to commuting costs (  𝜕�̅�𝜕𝑡 < 0) and agricultural 

land values (
𝜕�̅�𝜕𝑟𝑎 < 0) but positively related to incomes (

𝜕�̅�𝜕𝑦 > 0) and population (
𝜕�̅�𝜕𝐿 > 0).  While 

their sample was heavily constrained within population bounds and that the areas be contained 

within a single county, their results have been widely cited as validating the Mills-Muth model. 

BF used two measures of commuting costs from the Census available at the time of their 

study; the percent of households with at least one vehicle and the percent of commuters using 

public transportation, with the notions that increased vehicle ownership indicates reduced 

commuting costs and increased use of public transportation indicates increased (time) cost.  To 

this end, LeRoy and Sonstelie (1983) point out that not every resident of an area commutes via the 

same method.  In their model, the residential location choice of rich and poor groups is driven by 

relative income elasticities of housing and marginal commuting costs for two different methods of 

transportation, a faster, expensive mode and a slower, less expensive mode.  In the context of BF, 

I consider vehicles the faster, expensive mode and public transportation the slower, less expensive 

mode.  LeRoy and Sonstelie show that, ultimately, all residents of the poor group are able to afford 

the faster mode of transport as its ubiquity reduces its relative cost, which will enable this group 

to leave the inner city for the suburbs.  The implication of this result is that as the rich move back 

downtown, suburban deterioration precedes urban rejuvenation. 

In a more recent study, Spivey (2008) tests whether Wheaton’s (1974) predictions of the 

Mills-Muth model hold for modern cities in the year 2000.  Spivey follows BF’s estimation 

                                                 
26 See the appendix for derivation of the comparative statics. 
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methodology for all urbanized areas from the 2000 Census and reports results that generally 

support the Mills-Muth model.  Moreover, she improves on the BF specification with new proxies 

for commuting costs and agricultural land values and additional variables to capture polycentricity 

and physical boundaries.  However, her results are susceptible to the use of a previously estimated 

measure of city sub-centers for only 60 urban areas to indicate polycentricity.  With a sample size 

of 452 urban areas, she assumes that areas for which sub-centers were not measured were 

monocentric.  Further, the extent to which her results are driven by outliers is unknown.  Unlike 

BF, her sample is unconstrained and includes urban areas with populations exceeding 17 million.  

To this point, the author notes that for a sample constrained only by the single-county requirement 

of BF, no stronger support for the Mills-Muth model is obtained.  However, this sub-sample was 

not constrained by population and included urban area populations in excess of 2.7 million. 

At issue with the prior empirical studies is whether Wheaton’s (1974) result that the scalar 

measure of urban spatial size is sufficient to capture the process of urban sprawl.  Indeed, sprawl 

is usually defined as an expansion of a city footprint accompanied by a lower urban population 

density.  Edge cities are a prime example of sprawl.  Typically characterized by low-density 

suburbanization and employment (Glaeser and Kahn, 2003), edge cities derive their name from 

their location on the urban fringe, which leads to loss in welfare resultant of the loss in open space.  

However, Nechyba and Walsh (2004) point out that while most monocentric city models constrain 

the definition of open space to rural areas on the urban fringe, there is no reason to believe that 

households highly value such open space, and that open space within a suburb is valued more than 
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that at the fringe.  The literature supports this claim, with empirical findings showing a nonlinear 

relationship between house prices and open space proximity.27 

Nonetheless, the size of an area doesn’t account for how people become dispersed 

throughout an urban area over time, and the literature has thus far struggled to capture the time-

series nature of sprawl from cross-sectional data.  On one hand, the PDG improves over the land 

area measure by indicating the degree to which residents are moving away from the city center.  

Yet, the PDG relies on strict monotonicity of the population distribution function, which may or 

may not hold.  On the other hand, the land area of an urban area fails to capture any information 

about the density gradient and can be heavily influenced by the existence of an edge city or a few 

houses popping up on previously agricultural land.   In addition, both the PDG and spatial size 

implicitly assume that the momentum of past population changes can be inferred from cross-

sectional data. 

I consider two examples to help illustrate the above short-comings of the PDG and land 

area as measures of sprawl.  First, it may be that the size of a closed city expands as a few residents 

move outward from the CBD to previously agricultural land, while the majority of residents live 

in denser housing relatively closer to the city center due to employment opportunities.  This may 

be due to positive income and population shocks, as income variations across residents contribute 

to the spatial distribution of housing location choice.  Second, it may be the development of a 

bustling planned community on the urban fringe that is causing the foot print of an area to expand, 

and the spatial expansion is accompanied by a sizeable portion of the population moving to the 

                                                 
27 See Geoghegan et al. (1997). 
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new community.  The former scenario is consistent with Wheaton (1974), who shows that for a 

monocentric urban area, an increase in population can lead to higher structural densities as the 

producers of housing substitute away from land due to higher land prices, while at the same time 

the increase in population causes an urban area to expand.  The latter case is just as likely, yet the 

PDG and spatial size metrics fail to differentiate between the two scenarios.  The measure 

developed herein deals with the inability of prior measures to jointly capture the spatial and 

population changes within the area and aims to capture the strength of population movement 

trends, not simply land area expansions. 

3. Constructing a Measure of Sprawl 

3.1 Population Density Gradient 

The PDG used in this paper begins with calculating Census tract-level population densities 

as  

 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑗𝑖 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝐴𝑟𝑒𝑎 𝑖𝑛 𝑚𝑖𝑖2   ( 4 ) 

where the subscripts i index each tract and j each urban area.  Following the findings of Kau and 

Lee (1976), the PDG is obtained as 𝛽 from the following regression for each urban area  

 𝑙𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑗𝑖 = 𝛼 + 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 + 𝜀𝑖   ( 5 ) 

where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 is the average distance, computed using the Vincenty geodesic, between each 

CBD centroid and the centroid of the ith tract. 
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3.2 Directional Index for Securities Prices 

Wilder (1978) developed directional indicators for the technical analysis of commodities 

price movements, which have since been applied to almost all securities prices.  Though Wilder 

(1978) developed these indicators across time and price-space, I adapt them for use across time 

and spatial deciles based on distance from the CBD.  I begin by developing the directional index 

used for the technical analysis of securities prices.  With notation borrowed from Lam and Chong 

(2006), the first in a series of intermediate calculations are +𝐷𝑀𝑡 to indicate positive price 

movement and −𝐷𝑀𝑡 to indicate negative price movement, where for time 𝑡, 𝑃𝐻𝑡 is the intraday 

high and 𝑃𝐿𝑡 is the intraday low security price. 

 +𝐷𝑀𝑡 = {𝑃𝐻𝑡 − 𝑃𝐻𝑡−10 { 𝑃𝐻𝑡 − 𝑃𝐻𝑡−1 > 0 𝑎𝑛𝑑 𝑃𝐻𝑡 − 𝑃𝐻𝑡−1 > 𝑃𝐿𝑡−1 − 𝑃𝐿𝑡}𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   ( 6 ) 

 −𝐷𝑀𝑡 = {𝑃𝐿𝑡−1 − 𝑃𝐿𝑡0 { 𝑃𝐿𝑡−1 − 𝑃𝐿𝑡 > 0 𝑎𝑛𝑑 𝑃𝐿𝑡−1 − 𝑃𝐿𝑡 > 𝑃𝐻𝑡 − 𝑃𝐻𝑡−1}𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    ( 7 ) 

Note that for any given 𝑡, both +𝐷𝑀 and –𝐷𝑀 must both be non-negative and at least one must 

be positive.  For each 𝑡, a single value is obtained that indicates whether 1) for +𝐷𝑀 > 0, the 

intraday high has moved higher from its prior intraday high than its low has moved lower from its 

prior intraday low or 2) for –𝐷𝑀 > 0, the intraday low has moved lower from its prior intraday 

low than its high has moved higher from its prior intraday high.   

Next, the true range, 𝑇𝑅𝑡, is defined as 

 𝑇𝑅𝑡 = 𝑚𝑎𝑥{𝑃𝐻𝑡 − 𝑃𝐿𝑡 , 𝑃𝐻𝑡 − 𝑃𝑡−1, 𝑃𝑡−1 − 𝑃𝐿𝑡}, ( 8 ) 
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where 𝑃𝑡 is the security closing price at time 𝑡.  As the true range measures the trading range of a 

security price, it proxies for volatility by taking the maximum of 1) the difference between the 

current intraday high and low prices, 2) the difference between the current intraday high and the 

prior day’s closing prices, and 3) the difference between the prior day’s closing and current 

intraday low prices.  The true range and directional movement indicators are then combined to 

form 𝑁-day directional indicators, +𝐷𝐼𝑁(𝑡) and −𝐷𝐼𝑁(𝑡), defined as 

 +𝐷𝐼𝑁(𝑡) = ∑ +𝐷𝑀𝑖𝑡𝑖=𝑡−𝑁+1∑ 𝑇𝑅𝑖𝑡𝑡−𝑁+1   ( 9 ) 

 −𝐷𝐼𝑁(𝑡) = ∑ −𝐷𝑀𝑖𝑡𝑖=𝑡−𝑁+1∑ 𝑇𝑅𝑖𝑡𝑡−𝑁+1   ( 10 ) 

where 𝑖 indicates the time reference and 𝑁 the number of days over which the directional 

movement indicators are summed.  +𝐷𝐼𝑁 and −𝐷𝐼𝑁 convert the directional movement of a security 

price into a proportion of that security's true range, with higher values of +𝐷𝐼𝑁, relative to −𝐷𝐼𝑁, 

implying relatively smaller downward price movements and higher values of −𝐷𝐼𝑁, relative to +𝐷𝐼𝑁, implying relatively smaller upward price movements. 

By taking the difference between the 𝑁-day directional indicators as a ratio to their sum, 

the 𝑁-day directional index combines the information in Equations 9 and 10 to compute a daily 

indicator of the strength of the price trend, and is valued between 0 and 100, with higher values 

indicating a stronger price trend.  The directional index is calculated as 

 𝐷𝑋𝑁(𝑡) = |(+𝐷𝐼𝑁(𝑡))−(−𝐷𝐼𝑁(𝑡))(+𝐷𝐼𝑁(𝑡))+(−𝐷𝐼𝑁(𝑡))| ∗ 100  ( 11 ) 
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Wilder (1978) continues to develop Equation 11 into the average directional movement index by 

taking its simple moving average, which indicates the relative strength of the price movement over 

a given time period.  However, as the index developed in this paper will be considered over two 

time periods, development beyond Equation 11 is not necessary. 

3.3 Adapting the Directional Index to Measure Sprawl 

The first step in adapting Equation 11 to measure sprawl is to divide the urban areas into 

deciles, denoted 𝑑𝑖 , 𝑖 ∈ [1, 10], based on the spatial size in square miles of the areas.  I determine 

decile placement of each tract in a given area by using the Vicenty geodesic to calculate the 

distance from the CBD centroids to each tract centroid.  For each urban area, the decile populations 

are then computed with tract-level data.  In doing so, I am able to attain the granularity of frequent 

financial transactions needed to adapt DX to measure sprawl.  The choice of deciles, rather than a 

finer or broader division, is motivated by the need to achieve information about changes occurring 

in the urban area, while at the same time mitigating uninformative computational excess.  After 

computing each decile-population, the directional movement indicators of Equations 6 and 7 are 

calculated, for urban area 𝑗, decile 𝑖, and time t as 

 +𝐷𝑀𝑗,𝑖 = {𝑝𝑖,𝑡 − 𝑝𝑖,𝑡−10 {𝑝𝑖,𝑡 − 𝑝𝑖,𝑡−1 > 0}𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   ( 12 ) 

 −𝐷𝑀𝑗,𝑖 = {𝑝𝑖,𝑡−1 − 𝑝𝑖,𝑡0 {𝑝𝑖,𝑡−1 − 𝑝𝑖,𝑡 > 0}𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   ( 13 ) 

where 𝐷𝑀𝑗,𝑖 is the directional movement, either positive or negative, and 𝑝𝑖,𝑡 is the population for 

decile i.  In this adaptation, +𝐷𝑀𝑗,𝑖 > 0 indicates population growth in decile i for time period t, 
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while −𝐷𝑀𝑗,𝑖 > 0 indicates that the population has decreased in that decile and time period.  The 

true range of Equation 8 is then calculated as 

 𝑇𝑅𝑗 = 𝑚𝑎𝑥(+𝐷𝑀𝑗,𝑖, −𝐷𝑀𝑗,𝑖),  ( 14 ) 

and, instead of a volatility proxy as in Equation 8,Equation 14 provides information on the 

maximum decile population change of urban area 𝑗 for later use in determining proportional 

changes.  Once 𝑇𝑅 is obtained, the directional indicators defined in Equations 9 and 10 are 

computed below as Equations 15 and 16, except now the numerator is summed across space (index 𝑖 is a decile, instead of a time, reference) and the denominator is not a sum, as the true range is 

now computed over two time periods.   

 +𝐷𝐼𝑗 = ∑ (+𝐷𝑀𝑗,𝑖∗𝑤𝑖)10𝑖=1 𝑇𝑅   ( 15 ) 

 −𝐷𝐼𝑗 = ∑ (−𝐷𝑀𝑗,𝑖∗𝑤𝑖)10𝑖=1 𝑇𝑅 .  ( 16 ) 

A notable change in Equations 15 and 16 from Equations 9 and 10 is that a weighting 

system must be employed in order to develop a meaningful measure of sprawl, or arbitrary values 

are obtained.  I use a distance-weighted k-nearest-neighbor rule (Dudani, 1976), where 𝑤1 = 1, 𝑤𝑖 = 𝑑𝑖𝑠𝑡10−𝑑𝑖𝑠𝑡𝑖𝑑𝑖𝑠𝑡10−𝑑𝑖𝑠𝑡1 , 𝑖 ∈ [2, 9], and 𝑤10 = 1𝑑𝑖𝑠𝑡10−𝑑𝑖𝑠𝑡1, where subscripts denote the decile, and 𝑑𝑖𝑠𝑡𝑖 
is the average distance, for each urban area, from the center of the CBD to the centroids of the 

tracts contained within corresponding decile, 𝑖.  This is a naturally intuitive choice for the 

weighting rule as it is non-probabilistic, assigns varying weights for each urban area based on 

distance from the CBD to urban boundary, and assigns decreasing weights for each decile with 
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distance from the CBD.  As with the PDG, the Vincenty geodesic is used to compute the CBD 

centroid-to-tract centroid distances.  The importance of the directional indicators is that each one 

aggregates all of the information from the weighted decile population changes as a ratio to the 

maximum decile population change for a given urban area, with +𝐷𝐼 and – 𝐷𝐼 aggregating those 

deciles for which population increased or decreased, respectively.  Finally, the directional index, 

which captures the direction and magnitude of the population density gradient, is defined as 

 𝐷𝑋𝑗 = (+𝐷𝐼𝑗)−(−𝐷𝐼𝑗)(+𝐷𝐼𝑗)+(−𝐷𝐼𝑗) ∗ 100.  ( 17 ) 

3.4 Empirical Characteristics of the Directional Index 

One important change in Equation 17 from Equation 11 is that the absolute value of the 

quotient is not used, so 𝐷𝑋 is now bounded by [−100, 100] and the measure can assume negative 

or positive values. A negative value indicates that the population density gradient is shallower, 

suggesting sprawl.  For instance, consider Pocatello, ID and Tuscaloosa, AL, for which directional 

index values of  -58.21 and -29.70 are obtained, respectively.  Having negative values indicates 

that both area populations are expanding toward their peripheries, while Pocatello has a stronger 

trend of sprawl over the measurement period than does Tuscaloosa.  Conversely, a positive value 

for the directional index indicates that the population density gradient is steeper, or that there is 

relatively more population growth towards the CBD.  Again, consider two areas, Danbury, CT and 

Missoula, MT, with DX values of 44.62 and 18.95, respectively.  In this example, Danbury 

experienced more population growth toward the CBD than Missoula, MT over the measurement 

period.   
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Further, it is worth noting a few important characteristics of DX that affect its interpretation 

and implementation.  First, while the directional index benefits from relaxing the strict 

monotonicity of the PDG and is thus more informative with respect to asymmetric growth and 

polycentric urban structure, it is unable to indicate which decile is experiencing the population 

change.  For example, DX cannot explicitly differentiate between population growth in decile 10, 

at the extreme periphery, and growth in deciles 8 or 9.   However, its strength lies in capturing 

population movement trends either toward or away from the CBD. Second, as it measures 

population changes, DX can take on a negative value, indicating sprawl, for an area that spatially 

contracted but experienced relative population growth in the outer deciles.  Conversely, DX can 

take on a positive value, indicating urban contraction, for an area that spatially expanded but 

experienced relative population growth toward the CBD.  Consider population and land area 

changes for the urban areas discussed above, which are presented in Table 12.  In panel A of Table 

12, Pocatello and Tuscaloosa experienced both population growth in the outer deciles toward their 

urban peripheries and contraction in the inner deciles closer to their CBDs, yet Tuscaloosa spatially 

contracted from 2000 to 2010.  This is evident by the lower directional index value for Tuscaloosa, 

suggesting weaker sprawl.  In panel B of Table 12, Danbury and Missoula spatially expanded 

while their populations declined in the outermost deciles, and Danbury experienced much stronger 

population growth toward the CBD than Missoula.   Lastly, a value of zero for DX indicates that 

the population has remained constant in each decile.  Empirically, however, I did not have any 

such cases of a stagnant population in any of the samples. 
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4. Data 

Testing on whether the BF methodology lead to spurious results is performed using data 

from the 1970 decennial U.S. Census and is collected from the 1972 County and City Databook.  

Specifically, the variables I collect are median income (MedInc), the percent of households with 

at least one vehicle (Vehicles), the percent of residents commuting via public transit, excluding 

taxis (Transit), land area in square miles (Area), and population (Pop).  Agricultural land rents 

(AgValue) are collected from the 1969 USDA Census.28  To empirically test the PDG and DX, I 

begin with the population of all urban areas as defined by the U.S. Census Bureau for the years 

2000 and 2010.  Eliminating observations for which a missing value prevented complete 

calculations of either the PDG or the DX, resulted in 440 and 308 observations for the years 2000 

and 2010, respectively.  In addition to those variables noted above, I also collect the location 

coordinates for the centroid of each urban area from the Census bureau.29  For the year 2000, data 

are obtained from the decennial Census.  However, as the “short form” Census was conducted for 

the 2010, American Community Survey 5-year estimates are used for 2010 data, with the exception 

of the urban area population, which is obtained from the 2010 decennial Census.  Finally, the rental 

value of agricultural land is collected from the USDA Census for the years 2002 and 2012.  Lists 

of the Census tracts contained within each urban area, with tract centroid coordinates, population, 

and containing county, are obtained for the years 2000 and 2010 from the Missouri Census Data 

                                                 
28 The USDA Census is not conducted decennially, and the years for which it is conducted do not coincide with the 
U.S. Census Bureau decennial program 
29 The urban area coordinates obtained from the U.S. Census Bureau are not necessarily for the precise urban area 
centroid, but are a close approximation, according to a Census Bureau employee. 
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Center, with centroid coordinates for tracts partially contained within an urban area weighted by 

the proportion of the population of the tract that resided within the urban area.   

BF sample 40 urban areas from the 1970 U.S. Census.  Their relatively small sample size 

is dictated by the constraints that the urban areas are contained within single counties and have 

populations inclusively bounded by 52,000 and 257,000.  The motivation for these constraints is 

to “accurately measure the value of agricultural land immediately adjacent to the built-up part of 

the city” (Brueckner and Fansler (1983, p. 481)).  However, as Nechyba and Walsh (2004) argue 

that the Census defined urban areas accurately represent built-up urban and suburban Census 

blocks, I test whether the constraint imposed by BF is necessary and leads to spurious results in 

two ways:  1) sample the population of urban areas from the 1970 Census and, after applying the 

population and single-county constraints, obtain 79 observations, from which I create 1,000 

subsamples of 40 urban areas and 2) out-of-sample tests from the 2000 and 2010 Censuses both 

with and without the population and single-county constraints.  After applying the sample 

constraints noted above, the constrained sample has 48 and 103 urban areas for 2000 and 2010, 

respectively. 

Additionally, I test alternate measures of commuting costs obtained from the Texas A&M 

University’s (TAM) Transportation Institute for the years 2000 and 2010.  The institute compiles 

an Urban Mobility Scorecard annually dating back to 1982 for 101 urban areas.30  Due to the fact 

that these commuting cost measures are available for limited number of urban areas, I only 

                                                 
30 For a detailed discussion of the methodology used to compute the various measures obtained from the Urban 
Mobility Scorecard, see Appendix A; Methodology for the 2015 Urban Mobility Scorecard, accessible via 
http://mobility.tamu.edu/ums/congestion-data/ 
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compiled unconstrained samples for 2000 and 2010, comprising 97 and 83 urban areas, 

respectively.  The loss in observations from 101 urban areas is due different naming conventions 

between the U.S. Census and TAM urban areas, which I was unable to match with certainty.  The 

variables of interest are freeway (Freeway) and arterial street (Arterial) daily vehicle miles of 

travel per auto commuter, gallons of excess fuel consumption due to travel delay per auto 

commuter (Gallons), annual hours of delay per auto commuter (Delay), travel time index (TTI), 

stress index (Stress), and congestion costs (Congestion).  Freeway and arterial miles driven, excess 

fuel consumption due to delay, or annual hours of delay are self-explanatory.  The travel time 

index is simply a measure to capture the ratio of delayed travel time during peak travel hours to 

non-delayed travel time.  While the travel time index includes travel in all directions during the 

peak periods, the stress index is computed similarly, except it considers only travel in the peak 

direction during the peak periods.  In essence, the stress index is intended to capture the daily delay 

of commuting to work.  Further, congestion costs are measured in dollars, and are estimates of the 

costs of excess fuel consumption and time delay. 

Contrary to notion of rising incomes encouraging sprawl, Turnbull (1998) shows that 

multiple worker households and job site uncertainty, whether from greater job mobility or 

employment insecurity coupled with multiple potential job sites in the urban area, pull households 

to more central residential locations than predicted for single worker households under jub site 

certainty. Intuitively, centrally located residential sites generate both lower expected commuting 

costs and variance in commuting costs when there is a probability that both workers will not be 

employed at the same urban location. This result suggests that I should include a proxy for dual 
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income households in the empirical models.  I include the percentage of the civilian workforce that 

is female (Female) for each urban area. This variable is drawn from the U.S. Census. 

Descriptive statistics for the year 1970 data are presented in Table 13.  Taking a random 

sample of 40 urban areas from these data, as in BF, may very well lead to spurious results, due to 

outliers with respect to the unconstrained variables.  Descriptive statistics for the years 2000 and 

2010, for the unconstrained and constrained samples, are reported in Table 14 and Table 15, 

respectively.  These samples will be used to test the PDG, as well as, whether the BF methodology 

is robust to out-of-sample tests.31  For both 2000 and 2010, the PDGs have maximum values that 

are positive, except for the constrained 2000 sample.  I investigate the sample further and perform 

regression analysis both with and without those urban areas for which the PDG was positive and 

obtain results that are qualitatively identical and quantitatively similar, with only a negligible 

improvement in adjusted R2s.  The results obtained without positive-gradient urban areas are not 

reported but are available from the author upon request. 

Turning to Table 14 and Table 15, there are considerable ranges for the variables, attesting 

to the fact that urban areas are substantially heterogeneous.  For example, considering the average 

value of agricultural land, it can be inferred from the minimum and maximum values that the 

premium agricultural land carries in some locales constrains sprawl more so than it does in others, 

a point consistent with Wheaton (1974).  Descriptive statistics for the directional index are 

displayed in Table 16 for the unconstrained (panel A) and constrained (panel B) samples.  For the 

unconstrained sample, the average urban area has a DX value of 23.24, suggesting that the urban 

                                                 
31 Chow tests using both commuting cost proxies rejected the null hypothesis of pooling the 2000 and 2010 samples 
at the 10% level or better. 
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areas were contracting between 2000 and 2010, while for the constrained sample, the average value 

of -70.17 suggests that the urban areas were expanding.  The average directional index values for 

the two samples indicate that the sample constraints imposed by BF lead to the selection of urban 

areas that better fit the theory, an assertion that is tested in the next section. 

5. Empirical Analysis 

5.1 Subsample Analysis 

BF find that the land area of an urban area is positively related to median income and 

population, while it is negatively related to the value of agricultural land and commuting costs.  

They measure commuting costs using either the percent of households with at least one vehicle or 

the percent of commuters using public transit, excluding taxis.  While an increase in the usage of 

public transit reflects an increase in commuting (time) costs, an increase in vehicle ownership 

represents a decrease.  I perform testing by estimating Equation 18 on 1,000 repeated samples of 

40 observations drawn from the 79 urban areas that fall within the constraints noted in section 4.  

Though BF perform regressions using both OLS and the Box-Cox (1964) transformation, they 

note that the results are qualitatively similar.  For comparability across results in this paper, I only 

estimate the following linear specification 

 𝐴𝑟𝑒𝑎𝑗 = ∝ +𝛽1𝑃𝑜𝑝𝑗 + 𝛽2𝑀𝑒𝑑𝐼𝑛𝑐𝑗 + 𝛽3𝐶𝑜𝑚𝑚𝑢𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑠𝑗 + 𝛽4𝐴𝑔𝑉𝑎𝑙𝑢𝑒𝑗 + 𝜀𝑗,  ( 18 ) 

where the coefficient expectations are 𝛽1 > 0, 𝛽2 > 0, 𝛽4 < 0, and 𝛽3 > 0 if vehicle ownership is 

used (model I), or 𝛽3 < 0 if public transit use is used (model II) to proxy for commuting costs.  

Table 17 reports hypothesis tests of the results from estimating Equation 18.  Hypotheses, where 
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the null is in agreement with the BF findings, cannot be rejected for all variables, except median 

income, at the 1% level.  However, I find that the coefficient on the value of agricultural land is 

positive in about 20% and 8% of regressions for models I and II, respectively.  Further, though I 

reject the null for median income, I find that it is positive in only 10.8% of the regressions for 

model II.  Comparing this to the quantity for which the coefficient on median income is positive 

in model I (2%), it appears that public transit usage is a better proxy for commuting costs than 

vehicle ownership. 

The results of subsample testing suggest that the BF results are highly sample dependent.  

This is further illustrated by the distributions of coefficients from estimating Equation 18 with 

1,000 repeated samples in Figure 2 through Figure 5 for model I and Figure 6 through Figure 9 for 

model II, followed by descriptive statistics of the coefficients for both models in Table 18 (panel 

A) and linear regression results reproduced from BF (panel B).  The distributions in Figure 2 

through Figure 9 visually illustrate the vast range of coefficient estimates and further evince how 

highly sample dependent the results obtained by BF are.  For instance, consider median income.  

BF obtained a coefficient estimate of 0.00624 on MedInc and (panel B,Table 18) for the model 

using Vehicles as the commuting cost.  Compared to the average coefficient estimate from repeated 

samples in Table 18 (panel A) for MedInc of -3.15*10-3 for the comparable model, BF’s estimates 

are remarkably different.  Indeed, I find that the mean coefficient on median income in model I is 

over two standard deviations from being positive and over six standard deviations away from BFs 

estimate.  Continuing with Table 18, the magnitudes of the mean coefficients from repeatedly 

sampling the 1970 data (panel A) are strikingly different from those obtained by BF (panel B).  

Most notably is the mean coefficient on median income, which is negative in the repeated samples, 
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but positive in the BF results.  Moreover, the only coefficients that are quantitatively similar to 

those found by BF are those on Pop, yet the current estimates are about one hundred times smaller. 

5.2 Out-of-sample Tests 

In light of the results presented in the previous section, I perform out-of-sample testing of 

the model in Equation 18 with 2000 and 2010 Census samples for the same variables, the results 

of which are reported in Table 19.  Overall, the results from out-of-sample tests do not align with 

the conclusions of BF, and the model appears to explain about 9-10% of the cross-sectional 

variation in urban land areas.  Median income is positive only in the unconstrained sample for year 

2000 and significant only when using public transit usage as a proxy for commuting costs, while 

it is negative in all other regressions and significantly so for the constrained sample.  As with the 

results from subsample testing, population is positive and significant across both samples and 

years.  The value of agricultural land is unexpectedly positive and significant for all regressions, 

except the year 2000 constrained sample, where the coefficients are not significant.  The 

coefficients on vehicle ownership are of the expected positive signs, though none is significant in 

any models, and public transit usage is of the expected negative sign in most of the models, and 

significant in only the year 2010.  Thus, the results from out-of-sample tests of the BF model 

evince the highly sample-dependent nature of their results, with the only variable to reliably 

support the BF findings in out-of-sample tests being population. 

5.3 Population Density Gradient 

In that the BF results cannot be replicated in- or out-of-sample, I turn to the PDG as another 

measure of urban sprawl.  While the PDG is appealing in its simplicity and ease of interpretation, 
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as noted in section 1, it suffers from imposing strict monotonicity and symmetry constraints on the 

population density distribution function.  Nonetheless, in light of the failure of the BF model shown 

earlier, I compare the PDG against the urban area size by regressing the PDG on the unconstrained 

and constrained samples for 2000 and 2010, as follows 

 𝑃𝐷𝐺𝑗,𝑡 = ∝ +𝛽1𝑃𝑜𝑝𝑗,𝑡 + 𝛽2𝑀𝑒𝑑𝐼𝑛𝑐𝑗,𝑡 + 𝛽3𝐶𝑜𝑚𝑚𝑢𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑠𝑗,𝑡 + 𝛽4𝐴𝑔𝑉𝑎𝑙𝑢𝑒𝑗,𝑡 + 𝜀𝑗,𝑡  ( 19 ) 

the results of which are presented in Table 20.  A negative coefficient in Table 20 suggests that a 

variable encourages urban sprawl, as the PDG becomes flatter.  Conversely, a positive coefficient 

indicates a steeper PDG and thus diminishes sprawl.  The coefficient expectations are 𝛽1 < 0, 𝛽2 < 0, 𝛽4 > 0, and 𝛽3 < 0 if vehicle ownership is used, or 𝛽3 > 0 if public transit use is used.  

Although median income, population, and public transit usage are all of the expected signs, median 

income is significant in fewer than half of the regressions, and transit usage is significant in only 

one.  The negative coefficient on the value of agricultural land in both unconstrained models for 

year 2000 and the unconstrained model for year 2010 when Vehicles is used is unexpected and 

puzzling.  As expected, the coefficient on AgValue is positive in all other regressions, but is not 

statistically significant.  Though public transit usage may be a better proxy for commuting costs 

than vehicle ownership, as it has positive coefficients in all regressions, the coefficient is only 

significant in the year 2000 unconstrained sampled. 

Even though the results in Table 20 are generated using the PDG, the use of both 

unconstrained and constrained samples is intended to test, not only an alternate measure of sprawl, 

but also the sampling methodology of BF.  However, for the constrained sample, the model 

explains about 6% of the cross-sectional variation in PDG for 2010, while it is able to explain 
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approximately 27% of the variation in PDG for 2000.  This result is anomalous, as the model 

consistently explains approximately 7-8% of the variation in PDG for both years in the 

unconstrained sample.  However, the results appear to be improved by constraining the sample for 

the year 2000. 

5.4 Directional Index 

In light of the mediocre performance of the PDG in the previous section, I now test the 

directional index, which relaxes the monotonicity imposed by the PDG.  To test the directional 

index, the following model is estimated 

 𝐷𝑋𝑗,𝑡 = 𝛼 + 𝛽1∆𝑀𝑒𝑑𝐼𝑛𝑐𝑜𝑚𝑒𝑗,𝑡 + 𝛽2∆𝐶𝑜𝑚𝑚𝑢𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠𝑗,𝑡 + 𝛽3∆𝐴𝑔𝑉𝑎𝑙𝑢𝑒𝑗,𝑡 + 𝛽4𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑡 + 𝜀𝑗,𝑡   ( 20 ) 

where the changes in the level variables are used as independent variables.  ∆𝐶𝑜𝑚𝑚𝑢𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠 

are either the point-change in the percent of households that own at least one vehicle (∆𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠) 

or the point-change in the percent of commuters using public transit, excluding taxies, (∆𝑇𝑟𝑎𝑛𝑠𝑖𝑡) 

and 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 is either the year 2000 land area in square miles (𝐴𝑟𝑒𝑎) or the year 2000 population 

(Pop).  The results of estimating Equation 20 for the unconstrained and constrained samples are 

reported in Table 21.   

I expect 𝛽1 < 0, 𝛽3 > 0, 𝛽4 < 0, and 𝛽2 < 0 if vehicle ownership is used, or 𝛽3 > 0 if 

public transit use is used.  Overall, the results are improved over the land area or PDG measures, 

especially for the constrained sample, and Transit continues to a better proxy for commuting costs 

than Vehicles.  The change in median income is statistically significant in all regressions, but 

opposite from the expected sign for the unconstrained sample.  Vehicle ownership is of the 
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expected negative sign in three out of four regressions yet significant in only one.  On the other 

hand, public transit usage is positive and statistically significant in all regressions, which, like the 

results in section 5.1 Subsample Analysis, suggest that it is a better proxy for commuting costs 

than vehicle ownership.  The value of agricultural land, 2000 population, and 2000 land area are 

all significant at the 1% level and of the expected signs.  Additionally, the adjusted R2 values of 

27-40% for the constrained sample vs. 16-21% for the unconstrained sample further suggest that 

constraining the sample may lead to better results.  Thus, it appears that DX is a better measure of 

sprawl than land area or the PDG.   

5.5 Alternate Measures of Commuting Costs 

I now consider other measures of commuting costs.  Perhaps, the factors chosen by BF are 

indeed the underlying economic forces that drive the process of sprawl, but the proxies for 

commuting costs can be improved.  In this section, I test measures of TAM commuting costs 

discussed in section 4. Data.  These measures are all expected to have positive coefficients, as an 

increase in any one of these variables represents an increase in commuting costs and should 

decrease sprawl.  As the directional index inherently measures change, I compute the changes in 

the variables for use in regressions of DX.  The change variables are preceded by a Δ in the relevant 

output tables.  An important note should be made on the interpretation of the changes the travel 

time and stress indices.  For example, as TTI is a ratio of peak travel time to non-peak travel time, 

a value of 1.11 the year 2000 indicates that it would take an auto commuter 11% longer during 

peak hours than non-peak hours to complete the same trip.  If in the year 2010 the TTI for the same 

urban area were 1.22, one might be inclined to think that this represents an increase of 11 
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percentage points, but the reader would be mistaken.  An increase from 1.11 to 1.22 represents a 

100% increase in TTI, as it is a doubling from 11% to 22% in travel times during peak hours over 

non-peak hours.  Stress is interpreted similarly. 

5.5.1 Population Density Gradient 

The results of estimating Equation 19 with the TAM measures of commuting costs are 

reported in Table 22 (2000) and Table 23 (2010).  Though the signs on the commuting costs 

coefficients are mixed, none of the coefficients is significant for 2010, and only Delay and 

Congestion are for 2000.  However, the signs on Delay and Congestion are opposite from those 

expected.  The negative coefficient on MedInc is as expected in both years, yet it is not statistically 

significant in any model in 2010, while it is significant in every model in 2000, except when TTI 

is used.  That population is negative is as expected, though it is not significant in regressions where 

Gallons, Delay, TTI, or Congestion is used with the year 2000 samples.  Further, while the negative 

coefficient on AgValue is not as expected, it is not significant in any regression. 

5.5.2 Directional Index 

Table 24 and Table 25 present the results of estimating Equation 20 with the TAM 

measures of commuting costs and either Pop or Area as the control, respectively.  Most notably is 

the opposite and statistically significant income effect from that expected, which is puzzling, 

especially considering that both population and area are both negative and significant.  AgValue is 

of the correct positive sign when Freeway, Arterial, or Gallons is used with Area, but only when 

Freeway or Arterial is used with Pop.  However, the value of agricultural land is not significant 
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in any regression.  Interestingly, when population is used, all of the alternate commuting cost 

measures are significant and opposite in signs from those expected, but when land area is used, 

only gallons is of the correct positive sign and significant.  The TAM commuting cost measures 

do not seem to perform better than public transit usage or vehicles in either the PDG or DX 

regressions.  I further examine these measures in section, after testing whether dual-income 

households affect residential location choice. 

5.6 Dual-Income Households 

In the previous section, I tested various alternate commuting cost measures, and none 

emerged as being empirically reliable.  Now, I examine whether dual-income households are 

indicative of minimizing transportation costs by living centrally, and thus encouraging urban 

contraction (Turnbull, 1998).  I chose to use the percent of the civilian labor force that is female 

(Female) as a proxy for dual-income households. 

5.6.1 Population Density Gradient 

I augment Equation 19 with Female as 

 𝑃𝐷𝐺𝑗 = ∝ +𝛽1𝑃𝑜𝑝𝑗,𝑡 + 𝛽2𝑀𝑒𝑑𝐼𝑛𝑐𝑗,𝑡 + 𝛽3𝐶𝑜𝑚𝑚𝑢𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑠𝑗,𝑡 + 𝛽4𝐴𝑔𝑉𝑎𝑙𝑢𝑒𝑗,𝑡 + 𝛽5𝐹𝑒𝑚𝑎𝑙𝑒𝑗,𝑡 + 𝜀𝑗,𝑡 . ( 21 ) 

The results of estimating Equation 21 are presented in Table 26.  If dual-income households cause 

sprawl to diminish, then 𝛽5 > 0.  Again, the model fits the 2000 constrained sample remarkably 

better than any other sample, with adjusted R2 values of 49%, compared to 9-11% for the 

unconstrained and 2010 constrained samples.  The coefficient of interest here is 𝛽5, which is 

positive and significant in all year 2000 samples.  Although 𝛽5 is mixed in sign for 2010, it is not 
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significant in any model.  Of the other variables, the coefficients on income and population are 

reliably negative, but income is not significant for the year 2010, while population remains 

significant across samples and years.  AgValue remains statistically insignificant, as do Vehicles 

and Transit. 

5.6.2 Directional Index 

By adding ∆𝐹𝑒𝑚𝑎𝑙𝑒 to (14), I test the effect of dual-income households with the directional 

index as 

 𝐷𝑋𝑗,𝑡 =∝ +𝛽1𝑃𝑜𝑝𝑗,𝑡 + 𝛽2𝑀𝑒𝑑𝐼𝑛𝑐𝑗,𝑡 + 𝛽3𝐶𝑜𝑚𝑚𝑢𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑠𝑗,𝑡 + 𝛽4𝐴𝑔𝑉𝑎𝑙𝑢𝑒𝑗,𝑡 + 𝛽5𝐹𝑒𝑚𝑎𝑙𝑒𝑗,𝑡 + 𝜀𝑗,𝑡  ( 22 ) 

where ∆𝐹𝑒𝑚𝑎𝑙𝑒 is the point-change in female participation in the civilian labor force from 2000 

to 2010.  Results from estimating Equation 22 are reported in Table 27.  I expect 𝛽5 > 0.  The first 

thing to notice is that the adjusted R2 values remain effectively unchanged for the unconstrained 

samples but are substantially reduced for the constrained samples.  This is may be due 

transportation costs not being as much of a factor in housing location choice for dual-income 

households residing in a small, single-county urban areas, as these costs may be for a similar 

household that resides within a large urban area.  However, the coefficient on Female is 

unexpectedly negative, though significant only in the year 2010 constrained samples.  Also 

unexpectedly, MedInc and Vehicles are positive, but only the coefficient on income is significant 

in the unconstrained sample and one constrained sample regression.  Transit, Pop, and Area are 

all of the expected signs and significant.  Female as a proxy for dual-income households does not 

perform empirically as expected. 
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5.7 Dual-income Households with Alternate Measures of Commuting Costs 

Because I obtained mixed results in the prior two sections, in this section, I combine female 

labor force participation and the TAM commuting costs. 

5.7.1 Population Density Gradient 

I re-estimate Equation 21 with the TAM measures of commuting costs, the results of which 

are in Table 28 (2000) and Table 29 (2010).  Overall, the model for the year 2000 works better 

than for the year 2010, a theme that has been somewhat consistent and puzzling throughout this 

study with the PDG.  In Table 28, MedInc, Pop, AgValue, and Female are all of the expected signs, 

though only AgValue is not significant.  Further, Delay and Congestion are both negative and 

significant, suggesting that they contribute the sprawl, opposite from what I expected.  Turning to 

Table 29, only Pop is significant.  The adjusted R2 values of 23-28% for year 2000 and 32% for 

all regressions for year 2010 are improved over the results with either Female or the TAM 

commuting costs. 

5.7.2 Directional Index 

The results of re-estimating Equation 22 with the TAM commuting cost measures are 

reported in Table 30 and Table 31 with population and area as the control variables, respectively.  

The results are mixed, with Area emerging as a better control variable than Pop as measured by 

the R2 values.  This finding in regressions of DX has been consistent throughout this paper.  Another 

finding throughout regressions of DX is the opposite income effect from that expected.  In both 

Table 30 and Table 31, income is positive and significant in all models, a result that remains 
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perplexing.  Further, AgValue is not significant in any model, though it is correctly positive in all 

regressions where Area is the control, and Pop and Area remain negative and significant.  As for 

the TAM commuting costs, in the Area regressions, Freeway and Arterial are unexpectedly 

negative and significant.  Yet in the Pop regressions, every TAM measure is significant and 

negative.  It seems as though Transit is the only empirically reliable measure of commuting costs 

to emerge.  Consistently throughout the tests in the paper, it is the one measure to withstand 

different measures of sprawl, and different model specifications, while remaining positive and 

significant. 

5.8 The Influence of Very Large Urban Areas 

The review of the U.S. metropolitan growth experience in the 1990s by Glaeser and 

Shapiro (2003) suggests that, for a variety of reasons, the largest metropolitan areas in the U.S. 

exhibit spatial distributions of growth that differ from most smaller urban areas.  This section 

investigates how the gradient and DX sprawl measures perform when the five largest urban areas 

are omitted from the sample.  For brevity, I report only results from estimating Equations 21 and 

22 in the two sections that follow.  Results from estimating Equations 19 and 20 with the TAM 

commuting cost measures, without the female labor force participation variable, are qualitatively 

similar and can be obtained from the author. 

5.8.1 Population Density Gradient 

Results of re-estimating Equation 21, less the five largest urban areas by population, are 

reported in Table 32 and Table 33 for the years 2000 and 2010, respectively.  MedInc, Pop, 
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Transit, and Female are all of the expected signs and significant for 2000.  The same is true for 

2010, except Transit and Female are not significant.  Additionally, none of the TAM commuting 

costs are statistically significant. 

5.8.2 Directional Index 

The results presented in Table 34 and Table 35 are from re-estimating Equation 22, less 

the five largest urban areas by population.  The positive coefficient on MedInc is significant and 

has persisted throughout testing in this article.  This result is remains unexpected and puzzling.  

AgValue is of the expected positive sign and significant in the models using Vehicles or Transit.  

Though the sign on AgValue is mixed in the models using the TAM commuting costs, none of the 

coefficients on AgValue is significant, while all of the coefficients on the TAM commuting costs 

are opposite from that expected and significant.  Further, Female is unexpectedly negative and 

significant in every regression, except the model with Area as the control and Gallons as the 

commuting cost, where it is not significant. 

The results presented in the preceding sections point to a several conclusions.  First, the 

results reported by BF are highly sample dependent.  Their results cannot be replicated and are 

robust to neither repeated in-sample nor out-of-sample tests.  Second, the directional index 

developed herein appears to better capture the non-monotonic process of sprawl than the 

population density gradient.  The results obtained for the PDG suggest a break in the data between 

the years 2000 and 2010.  Indeed, I rejected pooling of the 2000 and 2010 samples based on the 

Chow test noted above.  The DX does not indicate any such break, and is thus more flexible and 

better able to handle a wider variety of urban configurations than PDG.  One result that is 
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consistently puzzling is the significant and positive income effect obtained from regressions of DX.  

The only model in which a negative income effect occurs for DX is the original model of BF with 

the constrained sample (Table 21), again attesting to the BF sample constraints positively 

influencing the results. 

Third, more sophisticated measures of commuting costs do not perform better than the two 

used by BF.  Of all the regressions with the TAM measures across PDG and DX, only the change 

in the excess gallons of fuel consumed due to delay is significant in one model.  Further, Transit 

outperforms Vehicles in every DX model, while neither seems to work consistently well with PDG.  

Lastly, neither removing the largest urban areas from the sample nor accounting for dual-income 

households seemed to consistently help explain sprawl.  With regard to dual-income households, 

I may have chosen a poor proxy with female labor force participation; positive and significant 

coefficients are obtained only for the PDG in the year 2000.  With regard to omitting large urban 

areas, if anything, the sample constraints originally imposed by BF produced stronger results, as 

expected, with DX, and qualitatively, though not quantitatively, stronger results with PDG.  

However, I question the empirical appropriateness of the BF sample constraints, as Nechyba and 

Walsh (2004) contend the Census defined urban area sufficiently delineates the built-up portion of 

the city. 

6. Concluding Remarks 

The literature has struggled for decades to accurately capture the process of sprawl in a 

scalar measure.  One metric motivated by the Mills-Muth urban land use theory is the spatial size 

of an urban area.  BF test the Mills-Muth model, and their results have been heavily relied upon 
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as supporting the theory.  In this article, I show that the results of BF cannot be replicated in- or 

out-of-sample and test two alternate measures of urban sprawl.  The measure I develop, the 

directional index, outperforms the population density gradient, and thus provides urban economists 

with a new empirical tool that advances the study of urban sprawl.  In that DX relaxes the strict 

monotonicity constrained implied by PDG and is measured over time, it is better able to capture 

the dynamic process of sprawl in a scalar measure.  Additionally, I test the effects of dual-income 

households, removing the largest areas from the sample, and alternate measures of commuting 

costs, and I find no consistency across PDG and DX.
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Figures and Tables 

 

Figure 2: Kernel Density Estimate of 1970 Population (Model I) 

Kernel density estimate of the OLS coefficient estimates of population from repeated sampling of the 1970 
data source used in Brueckner and Fansler (1983).  Data were obtained from the 1970 U.S. Decennial 
Census.  The data source was sampled 1,000 times, with each sample taken without replacement. 
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Figure 3: Kernel Density Estimate of 1970 Median Income (Model I) 

Kernel density estimate of the OLS coefficient estimates of median income from repeated sampling of the 
1970 data source used in Brueckner and Fansler (1983).  Data were obtained from the 1970 U.S. Decennial 
Census.  The data source was sampled 1,000 times, with each sample taken without replacement. 
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Figure 4: Kernel Density Estimate of 1969 Value of Agricultural Land (Model I) 

Kernel density estimate of the OLS coefficient estimates of agricultural land value from repeated sampling 
of the 1970 data source used in Brueckner and Fansler (1983).  Agricultural land values were obtained from 
the 1969 USDA Census.  The data source was sampled 1,000 times, with each sample taken without 
replacement.
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Figure 5: Kernel Density Estimate of 1970 Percent of Households with at least One Vehicle 

(Model I) 

Kernel density estimate of the OLS coefficient estimates of the percent of households with at least one 
vehicle from repeated sampling of the 1970 data source used in Brueckner and Fansler (1983).  Data were 
obtained from the 1970 U.S. Decennial Census.  The data source was sampled 1,000 times, with each 
sample taken without replacement. 
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Figure 6: Kernel Density Estimate of 1970 Population (Model II) 

Kernel density estimate of the OLS coefficient estimates of population from repeated sampling of the 1970 
data source used in Brueckner and Fansler (1983).  Data were obtained from the 1970 U.S. Decennial 
Census.  The data source was sampled 1,000 times, with each sample taken without replacement. 
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Figure 7: Kernel Density Estimate of 1970 Median Income (Model II) 

Kernel density estimate of the OLS coefficient estimates of median income from repeated sampling of the 
1970 data source used in Brueckner and Fansler (1983).  Data were obtained from the 1970 U.S. Decennial 
Census.  The data source was sampled 1,000 times, with each sample taken without replacement. 
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Figure 8: Kernel Density Estimate of 1969 Value of Agricultural Land (Model II) 

Kernel density estimate of the OLS coefficient estimates of agricultural land value from repeated sampling 
of the 1970 data source used in Brueckner and Fansler (1983).  Agricultural land values were obtained from 
the 1969 USDA Census.  The data source was sampled 1,000 times, with each sample taken without 
replacement. 
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Figure 9: Kernel Density Estimate of 1970 Percent of Commuters using Public Transit, 

Excluding Taxis (Model II) 

Kernel density estimate of the OLS coefficient estimates of the percent of commuters using public transit, 
excluding taxis, from repeated sampling of the 1970 data source used in Brueckner and Fansler (1983).  
Data were obtained from the 1970 U.S. Decennial Census.  The data source was sampled 1,000 times, with 
each sample taken without replacement. 
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Table 12: Example Urban Areas 

Population and land area changes for sample urban areas.  Areas which experienced sprawl are presented 
in panel A, and areas which experienced contraction are presented in panel B.  Land area is in square miles, 
and DX is the directional index, as computed by Equation 17.  The deciles are calculated for each urban area 
based on the distance from the CBD centroid to the urban boundary. 

Panel A: Urban Areas that Experienced Sprawl 

Urban 

Area 

Pocatello, ID Tuscaloosa, AL 

 
2000 Land Area: 22.70 2000 Land Area: 91.95 

2010 Land Area: 89.52 
 

2010 Land Area: 31.01  
DX: -58.21 DX: -29.70 

   

Decile 
2000 

Population 

2010 

Population 

Population 

Change 

2000 

Population 

2010 

Population 

Population 

Change 

1 5,952 5,803 -149 12,808 18,421 5,613 

2 12,302 6,709 -5,593 12,449 11,801 -648 

3 8,823 6,670 -2,153 17,435 16,428 -1,007 

4 8,373 7,006 -1,367 19,913 14,045 -5,868 

5 10,123 4,026 -6,097 30,512 15,735 -14,777 

6 10,835 5,533 -5,302 19,281 16,150 -3,131 

7 9,449 12,524 3,075 8,892 10,805 1,913 

8 8,834 12,350 3,516 9,735 11,855 2,120 

9 4,020 8,400 4,380 10,297 17,733 7,436 

10 936 788 -148 2,504 6,141 3,637 
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Table 12: Example Urban Areas 

Panel B: Urban Areas that Experienced Contraction 

Urban 

Area 

Danbury, CT Missoula, MT 

  
2000 Land Area: 59.33 2000 Land Area: 35.75 

2010 Land Area: 45.20 
 

2010 Land Area: 131.66  
DX: 44.62 DX: 18.95 

   

Decile 
2000 

Population 

2010 

Population 

Population 

Change 

2000 

Population 

2010 

Population 

Population 

Change 

1 10,643 18,058 7,415 6,974 6,026 -948 

2 15,776 17,509 1,733 8,545 10,670 2,125 

3 15,217 24,679 9,462 9,587 7,926 -1,661 

4 21,928 25,460 3,532 8,262 7,757 -505 

5 14,546 20,263 5,717 13,483 14,096 613 

6 16,602 20,361 3,759 7,851 12,266 4,415 

7 22,112 13,468 -8,644 5,553 10,834 5,281 

8 15,966 5,495 -10,471 4,310 9,091 4,781 

9 14,031 8,963 -5,068 11,455 141 -11,314 

10 8,513 7,067 -1,446 9,227 3,350 -5,877 
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Table 13: Descriptive Statics for the Year 1970 Sample 

Descriptive statistics for the year 1970 sample (N = 79) for the variables: land area of the urban area in 
square miles (Land), median income in dollars(MedInc), the percent of household with at least one vehicle 
(Vehicles), the percent of commuters that use public transit excluding taxis (Transit), the value of 
agricultural land per acre in dollars (AgValue), and urban area population (Pop).  Data were obtained from 
the 1970 U.S. Decennial Census and the 1969 USDA Census. 

Variable Mean Median Minimum Maximum 
Standard 

Deviation 

Land 46.29 38.70 11.90 121.20 24.99 

MedInc 9,412 10 4,894 12,322 1,347 

Vehicles 85.33 86.80 67.30 94.20 5.14 

Transit 3.69 3.00 0.30 13.00 2.72 

AgValue 406.00 370.00 33.00 959.00 218.00 

Pop 118,660 103,300 52,627 255,824 54,672 
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Table 14: Descriptive Statics for the Year 2000 Population Density Gradient 

Descriptive statics for the year 2000 unconstrained (N = 440) and constrained (N = 48) samples in panels 
A and B, respectively.  The variables are: the population density gradient (Gradient), average rental value 
of agricultural land (Avg. AgValue), median income (MedInc), population (Pop), spatial area in square miles 
of the urban area (Area), percent of households with at least one vehicle (Vehicles), and percent of 
commuters using public transportation excluding taxis (Transit).  Data were obtained from the 2000 U.S. 
Decennial Census. 

Panel A: Unconstrained Sample 

 Mean Median Minimum Maximum 
Standard 

Deviation 

      

Gradient 0.06 0.46 -0.99 3.54 0.50 

Avg. AgValue 4,095 3,029 149 29,392 3,748 

MedInc 40,438 38,229 20,914 78,971 9,357 

Pop 173,022 48,314 16,513 6,844,393 481,132 

Area 160.82 63.43 12.10 3,352.60 305.67 

Vehicles 91.26 91.70 67.60 97.23 3.05 

Transit 1.80 1.10 0.00 28.20 2.47 

      

Panel B: Constrained Sample 

 Mean Median Minimum Maximum 
Standard 

Deviation 

      

Gradient 0.40 0.36 0.02 1.26 0.25 

Avg. AgValue 4,492 3,235 595 15,544 3,651 

MedInc 41,882 40,359 24,964 71,537 10,027 

Pop 95,679 83,557 52,668 209,030 39,292 

Area 102.83 91.17 40.64 313.83 51.38 

Vehicles 92.10 92.28 87.29 96.40 2.20 

Transit 2.12 1.20 0.20 10.50 2.14 

      

 

  



102 
 

Table 15: Descriptive Statistics for the Year 2010 Population Density Gradient 

Descriptive statics for the year 2000 unconstrained (N = 308) and constrained (N = 103) samples in panels 
A and B, respectively.  The variables are: the population density gradient (Gradient), average rental value 
of agricultural land (Avg. AgValue), median income (MedInc), population (Pop), spatial area in square miles 
of the urban area (Area), percent of households with at least one vehicle (Vehicles), and percent of 
commuters using public transportation excluding taxis (Transit).  Data were obtained from the 2010 U.S. 
Decennial Census. 

Panel A: Unconstrained Sample 

 Mean Median Minimum Maximum 
Standard 

Deviation 

      

Gradient 0.47 0.35 -1.33 5.29 0.50 

Avg. AgValue 6,422 5,151 209 58,587 5,644 

MedInc 56,519 43,575 27,153 95,538 11,201 

Pop 599,226 176,617 62,182 18,351,295 1,552,850 

Area 228.77 91.68 14.12 3,450.20 396.35 

Vehicles 92.37 92.55 68.62 97.63 2.71 

Transit 2.01 1.20 0.00 31.30 2.71 

      

Panel B: Constrained Sample 

 Mean Median Minimum Maximum 
Standard 

Deviation 

      

Gradient 0.78 0.66 -0.16 5.29 0.66 

Avg. AgValue 5,597 4,682 209 26,446 4,543 

MedInc 44,928 41,662 27,153 95,538 12,513 

Pop 118,512 98,413 62,182 247,421 48,373 

Area 57.14 49.91 14.17 182.28 28.66 

Vehicles 92.74 92.77 86.56 96.74 2.18 

Transit 1.70 1.10 0.20 8.90 1.71 
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Table 16: Descriptive Statistics for the Directional Index 

Descriptive statistics for the unconstrained (N = 2,937) and constrained (N = 453) sample in panels A and 
B, respectively.  The variables are: the directional index (DX), the year 2000 urban area population (Pop) 
and spatial area in square miles of the urban area (Area), and the changes in in median income (∆MedInc), 
the value of agricultural land (∆AgValue), the percent of households with at least one vehicle (∆Vehicles), 
and the percent of commuters using public transit excluding taxis (∆Transit).  Data were obtained from the 
2000 and 2010 U.S. Decennial Census programs. 

Panel A: Unconstrained Sample 

 
Mean Median Minimum Maximum 

Standard 

Deviation 

      

DX 23.24 83.61 -100.00 100.00 88.22 

Pop 180,860 46,412 16,513 6,844,393 556,017 

Area 176.06 54.14 12.10 3,352.60 342.33 𝛥MedInc 6,418 5,301 -43,667 59,827 14,580 𝛥AgValue 2,478 1,797 -55,302 199,032 10,082 𝛥Vehicles 1.13 0.91 -23.48 26.21 3.89 𝛥Transit 0.18 0.20 -28.10 29.80 3.43 

      

Panel B: Constrained Sample 

 
Mean Median Minimum Maximum 

Standard 

Deviation 

      

DX -70.17 -100.00 -100.00 91.83 58.22 

Pop 93,090 82,429 52,668 209,030 36,345 

Area 102.32 90.40 40.64 313.83 52.01 𝛥MedInc 2,004 1,730 -33,696 41,220 12,713 𝛥AgValue 909 482 -12,177 23,504 6,449 𝛥Vehicles 0.44 0.16 -3.53 6.44 2.26 𝛥Transit -0.07 -0.40 -8.30 8.00 2.95 
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Table 17: Hypothesis Tests 

Hypothesis tests of the 1,000 1970 census repeated regression results for conformity with the Brueckner 
and Fansler (1983) empirical results.  For each urban area, the variables are the population (Pop), median 
incomes (MedInc), rental value of agricultural land (AgValue), percent of households with at least one 
vehicle (Vehicles), and percent of commuters using public transportation, excluding taxis (Transit).  
Rejection of the null hypothesis at the 1% level is indicated with an *.  Data were obtained from the 1970 
U.S. Decennial Census and the 1969 USDA Census. 

Variable 
Null 

Hypothesis 
t-statistic 

Fail to Reject Null 

(%) 
t-statistic 

Fail to Reject Null 

(%) 

Pop 𝜇 ≥ 0 392.31 100.0 353.42 100.0 

MedInc 𝜇 ≥ 0 -64.95 * 2.0 -37.05 * 10.8 

AgValue 𝜇 ≤ 0 -25.34 80.7 -46.05 92.1 

Vehicles 𝜇 ≥ 0 53.86 97.1   

Transit 𝜇 ≤ 0   -28.76 81.8 
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Table 18: Descriptive Statistics and Results from Repeated Sampling 

Descriptive Statistics for the estimated coefficients from 1,000 repeated samples of the 1970 census data (panel A): median income in dollars 
(MedInc), the percent of households with at least one vehicle (Vehicles), the percent of commuters that use public transit excluding taxies 
(Transit), the value of agricultural land per acer in dollars (AgValue), and urban area population (Pop).  Reproduced results from Brueckner 
and Fansler (1983) linear regressions are reported (panel B).  The reproduced results in panel B are expressed in scientific notation to remain 
consistent with results reported in panel A.  Brueckner and Fansler (1983) reported their results to five decimal places.  Data were obtained 
from the 2000 and 2010 U.S. Census programs, as discussed in Section 4. Data. 

Dependent variable: square miles of land area 

Panel A 
        

 
   Standard 

Deviation 

   Standard 
Deviation 

Variable Mean Minimum Maximum Mean Minimum Maximum 

Pop*10-4 4.14 3.11 5.25 0.33 4.22 3.06 5.54 0.38 

MedInc*10-3 -3.15 -9.61 1.92 1.53 -1.56 -5.90 2.58 1.33 

AgValue*10-3 -6.36 -30.30 2.19 7.94 -11.40 -33.40 14.80 7.81 

Vehicles 0.85 -0.72 2.45 0.50     

Transit     -0.73 -3.19 1.69 0.80 

         

Panel B Coefficient Estimates             

Pop*10-4 4.00 4.10       

MedInc*10-3 6.24 6.20 
      

AgValue*10-3 - 28.88 -30.28 
      

Vehicles 0.25  
      

Transit   -0.24 
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Table 19: Out-of-Sample Tests 

OLS regression results from out-of-sample tests of the Brueckner and Fansler (1983) model with the unconstrained and constrained samples.  
For each urban area, the independent variables are median income (Medinc), population (Pop), the rental value of agricultural land per acer 
(AgValue), the percent of households with at least one vehicle (Vehicles), and the percent of commuters using public transit (Transit).  
Independent variables are for the appropriate year, either 2000 or 2010, except for the rental value of agricultural land, which is for the years 
2002 or 2012, aligning with the years 2000 and 2010, respectively.  The dependent variable in all regressions is the spatial size of the urban 
area in square miles, for the appropriate year, either 2000 or 2010.  t-statistics are listed in parentheses.  Statistical significance at the 1%, 
5%, and 10% levels is indicated by a, b, or c, respectively. 

Dependent variable: square miles of land area 

  Unconstrained  Constrained 

Year  2000  2010  2000  2010 

Variable  N = 440  N = 309  N = 48  N = 103 

Intercept  -105.41 9.42  -509.80 85.60b  -289.59 59.83a  -92.56 20.84b 
  (-0.56) (0.39)  (-1.28) (2.05)  (-1.31) (2.80)  (-1.00) (2.56) 

MedInc*10-4  5.79 10.80c  -18.30 -5.87  -20.90a -15.00b  -6.24a -4.27b 
  (0.77) (1.66)  (-1.64) (-0.59)  (-3.20) (-2.60)  (-3.04) (-2.57) 

Pop*10-4  5.83a 5.94a  2.31a 2.36a  10.60a 10.70a  4.40a 4.48a 
  (44.00) (40.33)  (31.02) (27.12)  (9.46) (9.08)  (11.56) (11.98) 

AgValue*10-3  3.02c 3.50c  6.97a 7.15a  0.77 0.51  1.07b 1.25a 
  (1.67) (1.94)  (3.41) (3.49)  (0.54) (0.35)  (2.26) (2.65) 

Vehicles  1.42   6.89   4.07   1.29  

  (0.65)   (1.53)   (1.59)   (1.24)  

Transit   -5.07   -9.97c   0.27   -2.70b 
   (-1.64)   (-1.82)   (0.12)   (-2.42) 

Adj. R2  87.2% 87.3%  82.4% 82.4%  66.9% 65.0%  59.9% 61.5% 
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Table 20: Population Density Gradient 

OLS regression results of the population density gradient with the unconstrained and constrained samples.  For each urban area, the 
independent variables are median income (Medinc), population (Pop), the rental value of agricultural land per acer (AgValue), the percent 
of households with at least one vehicle (Vehicles), and the percent of commuters using public transit (Transit).  Independent variables are 
for the appropriate year, either 2000 or 2010, except for the rental value of agricultural land, which is for the years 2002 or 2012, aligning 
with the years 2000 and 2010, respectively.  The dependent variable in all population density gradient for the appropriate year.  t-statistics 
are listed in parentheses.  Statistical significance at the 1%, 5%, and 10% levels is indicated by a, b, or c, respectively. 

Dependent variable: population density gradient 

    Unconstrained   Constrained 

Year  2000  2010 
 

2000  2010 

Variable  N = 440  N = 309 
 

N = 48  N = 103 

Intercept 
 

0.71 0.91
a
  0.01 0.70

a
  2.15 0.97

a
  -1.07 1.32

a
 

  (0.86) (8.71) (0.01) (5.73)  (1.37) (6.60) (-0.33) (4.51) 

MedInc*10-6  -7.21
b
 -8.04

a
  -3.95 -3.55  -5.08 -8.57

b
  -4.26 -1.36 

  (-2.20) (-2.85) (-1.22) (-1.23)  (-1.10) (-2.16) (-0.59) (-0.23) 

Pop*10-7  -2.38
a
 -3.11

a
  -0.75

a
 -0.96

a
  -28.60

a
 -27.10

a
  -41.00

a
 -42.60

a
 

  (-4.10) (-4.84) (-3.48) (-3.78)  (-3.59) (-3.32) (-3.06) (-3.16) 

AgValue*10-7  -9.29 -52.40  -32.20 52.20  18.10 20.60  31.60 12.00 
 (-0.12) (-0.66) (-0.54) (-0.88)  (0.18) (-0.20) (0.19) (0.07) 

Vehicles*10-2  0.21   0.76   -1.39   2.70  
 (0.22) (0.58)  (-0.76) (0.74) 

Transit*10-2   2.58
c
   1.31   1.61   0.73 

 (1.92) (0.83)  (1.00) (0.18) 
             

Adj. R2  7.8% 8.5%   7.6% 7.7%   27.0% 27.8%   6.3% 5.8% 
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Table 21: Directional Index 

OLS regression results of the directional index (DX) with the (un)constrained samples.  The independent variables are the changes in median 
income (Δincome), the percent of households with at least one vehicle (ΔVehicles), the percent of commuters using public transportation, 
excluding taxis (ΔTransit), the rental value of agricultural land (ΔAgValue), and the percent of civilian labor force that is (Female).  Either 
the year 2000 urban area population (Pop) or spatial size (Area) in square miles is used as a control variable.  t-statistics are in parentheses.  
Statistical significance at the 1%, 5%, and 10% levels is denoted by a, b or c, respectively. 

Dependent Variable:  Directional Index 

  Unconstrained 
 

Constrained 

Variable  N = 2,937 
 

N = 453 

Intercept  22.08
a
 30.61

a
 21.81

a
 30.24

a 
 -15.85

b
 -42.21

a
 -12.97

b
 -39.93

a
 

 (12.66) (16.88) (12.53) (16.62)  (-2.57) (-7.95) (-2.21) (-7.97) 

Δincome*10-4  12.50
a
 10.70

a
 9.55

a
 9.49

a
  -18.50

a
 -15.80

a
 -18.70

a
 -17.10

a
 

 (10.15) (8.85) (8.03) (8.26)  (-7.11) (-5.74) (8.86) (7.61) 

ΔVehicles  -0.97
b
 -0.26   

 0.28 -0.62   

 (-2.10) (-0.59)   
 (0.23) (-0.47)   

ΔTransit  
  2.52

a
 1.24

b
  

  5.37
a
 5.35

a
 

   (4.20) (2.19)  
  (6.61) (6.18) 

ΔAgValue*10-4  7.11
a
 5.74

a
 6.16

a
 5.13

a
  54.20

a
 50.80

a
 43.40

a
 40.30

a
 

 (4.28) (3.55) (3.69) (3.15)  (12.39) (11.00) (9.72) (8.49) 

Pop*10-5  -4.17
a
  -3.69

a
  

 -59.80
a
  -61.26

a
  

 (-13.74)  (-11.30)  
 (-9.74)  (-10.45)  

Area  
 -0.09

a
  -0.09

a
  

 -0.28
a
  -0.29

a
 

  (-19.22)  (-17.18)  
 (-6.21)  (-6.77) 

Adj. R2  15.6% 20.3% 16.1% 20.4% 
 

34.0% 26.3% 39.3% 32.1% 
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Table 22: Population Density Gradient with Alternative Commuting Cost Measures (Year 

2000) 

OLS regression results for urban areas for which Texas A&M Transportation Institute commuting cost 
proxies were available.  The independent variables are median income (MedInc), population (Pop), rental 
value of agricultural land per acre (AgValue), freeway miles driven per auto commuter (Freeway), arterial 
street miles driven per auto commuter (Arterial), annual excess fuel consumed due to traffic congestion per 
auto commuter (Gallons), vehicle hours of delay due to traffic congestion per auto commuter (Delay), travel 
time index as the ratio of peak travel time to free-flow travel time as measured in both peak and non-peak 
travel directions (TTI), commuter stress as measured by the ratio of peak travel time to free-flow travel time 
in the peak travel direction during the peak travel period (Stress), and annual vehicle and time congestion 
cost in dollars (Congestion).  Agricultural land rent values are for the year 2002, aligning with the year 
2000.  t-statistics are in parentheses.  Statistical significance at the 1%, 5%, and 10% levels is indicated by 
a, b, or c superscripts, respectively. 

Dependent Variable:  Population Density Gradient (2000) 

Variable  N = 97 

Intercept 
 0.54

a 0.52
a
 0.55

a
 0.54

a
 0.94

a
 0.60

a
 0.55

a
 

(5.32) (4.04) (5.32) (5.38) (2.93) (2.68) (5.46) 

MedInc*10-6  -5.99
b
 -6.92

a
 -6.19

b
 -4.72

c
 -5.29 -6.54

b
 -4.88

c
 

(-2.27) (-2.78) (-2.38) (-1.71) (-1.33) (-2.39) (-1.83) 

Pop*10-8  -5.10
b
 -5.16

b
 -4.00 -2.52 -3.57 -5.85

b
 -2.04 

(-2.30) (-2.30) (-1.58) (-0.95) (-1.44) (-2.06) (-0.76) 

AgValue*10-7  -7.00 -7.47 -8.29 -15.30 -8.57 -7.78 -10.80 

(-0.18) (-0.18) (-0.21) (-0.39) (-0.22) (-0.19) (-0.28) 

Freeway*10-3  -2.67    
 

 
 

(-1.03)     

Arterial*10-4  
 6.33   

 
 

 
 (0.17)    

Gallons*10-3  
  -3.84  

 
 

 
  (0.91)   

Delay*10-3  
   

-3.25
c
  

 
 

   (-1.75)  

TTI  
    -0.41  

 
    (-1.33)  

Stress  
     -0.07  
     (-0.34) 

Congestion*10-4   
    

 -1.34
c
 

    (-1.94) 

Adj. R2   18.3% 17.3% 18.1% 20.00% 18.9% 17.4% 20.6% 



110 
 

Table 23: Population Density Gradient with Alternative Commuting Cost Measures (Year 

2010) 

OLS regression results for urban areas for which Texas A&M Transportation Institute commuting cost 
proxies were available.  The independent variables are median income (MedInc), population (Pop), rental 
value of agricultural land per acre (AgValue), freeway miles driven per auto commuter (Freeway), arterial 
street miles driven per auto commuter (Arterial), annual excess fuel consumed due to traffic congestion per 
auto commuter (Gallons), vehicle hours of delay due to traffic congestion per auto commuter (Delay), travel 
time index as the ratio of peak travel time to free-flow travel time as measured in both peak and non-peak 
travel directions (TTI), commuter stress as measured by the ratio of peak travel time to free-flow travel 
time in the peak travel direction during the peak travel period (Stress), and annual vehicle and time 
congestion cost in dollars (Congestion).  Agricultural land rent values are for the year 2012, aligning with 
the year 2010.  t-statistics are in parentheses.  Statistical significance at the 1%, 5%, and 10% levels is 
indicated by a, b, or c superscripts, respectively. 

Dependent Variable:  Population Density Gradient (2010) 

Variable  N = 83 

Intercept 
 

0.33
a
 0.28

c
 0.31

b
 0.33

a
 0.37 0.23 0.34

a
 

  (2.81) (1.81) (2.49) (2.69) (0.91) (0.83) (2.76) 

MedInc*10-6  -1.32 -1.73 -2.09 -1.89 -1.76 -2.32 -1.54 
  (-0.46) (-0.65) (-0.76) (-0.67) (-0.60) (-0.80) (-0.55) 

Pop*10-8  
-3.46

a
 -3.50

a
 -3.65

a
 -3.50

a
 -3.44

a
 -3.61

a
 -3.24

a
 

  (-4.38) (-4.44) (-4.00) (-3.55) (-3.78) (-4.24) (-3.20) 

AgValue*10-7  -8.31 -9.37 -9.61 -8.60 -8.33 -10.20 -7.80 
  (-0.29) (-0.32) (-0.33) (-0.30) (-0.29) (-0.35) (-0.27) 

Freeway*10-3  -1.85       

  (-0.52)       

Arterial*10-3 
 

 2.41   
 

 
 

 
  (0.52)   

 
 

 

Gallons*10-3    1.71     

    (0.37)     

Delay*10-5     5.89    

     (0.03)    

TTI      -0.04   

      (-0.09)   

Stress       0.10  

       (0.38)  

Congestion*10-5  
      -3.69 

 
 

      (-0.38) 

Adj. R2   22.9% 22.9% 22.7% 22.6% 22.6% 22.8% 22.7% 
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Table 24: Directional Index with Alternative Commuting Cost Measures 

OLS regression results for urban areas for which Texas A&M Transportation Institute commuting cost 
proxies were available.  The independent variables are changes in median income (ΔMedInc), rental value 
of agricultural land per acre (ΔAgValue), freeway miles driven per auto commuter (ΔFreeway), arterial 
street miles driven per auto commuter (ΔArterial), annual excess fuel consumed due to traffic congestion 
per auto commuter (ΔGallons), vehicle hours of delay due to traffic congestion per auto commuter (ΔDelay), 
travel time index as the ratio of peak travel time to free-flow travel time as measured in both peak and non-
peak travel directions (ΔTTI), commuter stress as measured by the ratio of peak travel time to free-flow 
travel time in the peak travel direction during the peak travel period (ΔStress), and annual vehicle and time 
congestion cost in dollars (ΔCongestion).  Population (Pop) is the 2000 population level.  t-statistics are in 
parentheses.  Statistical significance at the 1%, 5%, and 10% level sis indicated by a, b, or c superscripts, 
respectively. 

Dependent Variable:  Directional Index 

Variable  N = 803 

Intercept  74.82
a
 63.31

a
 81.29

a
 79.61

a
 79.87

a
 80.19

a
 74.84

a
 

 (30.87) (22.44) (24.99) (29.75) (29.43) (30.09) (29.31) 

Δincome*10-4  12.80
a
 13.80

a
 13.00

a
 13.00

a
 13.20

a
 12.70

a
 13.60

a
 

 (7.92) (8.60) (7.88) (7.96) (8.12) (7.77) (8.20) 

ΔAgValue*10-5  2.48 5.00 -4.97 -5.19 -5.47 -5.06 -5.74 
 (0.22) (-0.45) (-0.44) (-0.46) (-0.48) (-0.45) (-0.50) 

Pop*10-5  -6.94
a
 -6.82

a
 -6.50

a
 -6.42

a
 -6.50

a
 -6.34

a
 -6.68

a
 

 (-19.48) (-19.27) (-17.67) (-17.68) (-17.97) (-17.49) (-18.29) 

ΔFreeway  -1.01
a
 

      

 (-6.57)       

ΔArterial  
 

-1.08
a
 

     

  (-7.01)      

ΔGallons  
  

-0.18
a
 

    

   (-3.60)     

ΔDelay  
   

-0.42
a
 

   

    (-5.42)    

ΔTTI  
    

-0.45
a
 

  

     (-5.25)   

ΔStress  
     

-0.58
a
 

 

      (-5.98)  

ΔCongestion  
      

-0.02
c
 

       (-1.94) 

Adj. R2   39.7% 40.1% 37.5% 38.7% 38.6% 39.2% 36.8% 
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Table 25: Directional Index with Alternative Commuting Cost Measures 

OLS regression results for urban areas for which Texas A&M Transportation Institute commuting cost 
proxies were available.  The independent variables are changes in median income (ΔMedInc), rental value 
of agricultural land per acre (ΔAgValue), freeway miles driven per auto commuter (ΔFreeway), arterial 
street miles driven per auto commuter (ΔArterial), annual excess fuel consumed due to traffic congestion 
per auto commuter (ΔGallons), vehicle hours of delay due to traffic congestion per auto commuter (ΔDelay), 
travel time index as the ratio of peak travel time to free-flow travel time as measured in both peak and non-
peak travel directions (ΔTTI), commuter stress as measured by the ratio of peak travel time to free-flow 
travel time in the peak travel direction during the peak travel period (ΔStress), and annual vehicle and time 
congestion cost in dollars (ΔCongestion).  Area (Area) is the 2000 urban area spatial size in square miles.  
t-statistics are in parentheses.  Statistical significance at the 1%, 5%, and 10% level sis indicated by a, b, or 
c superscripts, respectively. 

Dependent Variable:  Directional Index 

Variable  N = 803 

Intercept 
 

85.38
a
 71.81

a
 80.01

a
 83.14

a
 83.56

a
 83.39

a
 83.79

a
 

  (34.76) (25.79) (25.46) (31.20) (30.94) (31.35) (32.22) 

Δincome * 10-4  
9.98

a
 11.30

a
 11.60

a
 11.40

a
 11.40

a
 11.30

a
 11.20

a
 

  (6.44) (7.33) (7.20) (7.06) (7.06) (7.03) (6.99) 

ΔAgValue * 10 -6  56.49 8.12 3.56 -5.18 -7.06 -5.92 -25.20 
  (0.53) (0.76) (0.03) (-0.05) (-0.06) (-0.05) (-0.23) 

Area  
-0.13

a
 -0.12

a
 -0.12

a
 -0.12

a
 -0.12

a
 -0.12

a
 -0.12

a
 

  (-22.66) (-22.24) (-19.59) (-18.90) (-19.25) (-18.48) (-20.50) 

ΔFreeway  
-1.23

a
 

      

  (-8.42)       

ΔArterial   
-1.24

a
 

     

   (-8.41)      

ΔGallons    
0.09

a
 

    

    (1.65)     

Δdelay * 10-3     -8.42    

     (-0.10)    

ΔTTI      -0.05   

      (-0.56)   

ΔStress       -0.04  

       (-0.42)  

ΔCongestion        -0.02 
        (-1.35) 

Adj. R2  45.9% 45.9% 41.3% 41.1% 41.1% 41.1% 41.2% 
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Table 26: Population Density Gradient with Workforce Demographics 

OLS regression results of the population density gradient with the unconstrained and constrained samples.  For each urban area, the independent 
variables are median income (Medinc), population (Pop), the rental value of agricultural land per acer (AgValue), the percent of households with 
at least one vehicle (Vehicles), the percent of commuters using public transit (Transit), and the percent of civilian labor force that is (Female).  
Independent variables are for the appropriate year, either 2000 or 2010, except for the rental value of agricultural land, which is for the years 2002 
or 2012, aligning with the years 2000 and 2010, respectively.  The dependent variable in all population density gradient for the appropriate year.  
t-statistics are listed in parentheses.  Statistical significance at the 1%, 5%, and 10% levels is indicated by a, b, or c, respectively. 

Dependent Variable:  Population Density Gradient 

    Unconstrained   Constrained 

Year  2000  2010 
 

2000  2010 

Variable  N = 440  N = 308 
 

N = 48  N = 102 

Intercept  0.24 0.40
c
  -0.25 0.43 

 
0.79 0.14  -1.07 1.37

b
 

 (0.29) (1.70) (-0.21) (1.90)  (0.55) (0.54) (-0.31) (2.32) 

MedInc*10-6  -11.05
a
 -11.60

a
  -4.06 -3.64  

-12.39
a
 -14.25

a
  -4.28 -1.51 

 (-3.11) (-3.68) (-1.25) (-1.26)  (-2.71) (-3.69) (-0.58) (-0.24) 

Pop*10-7  -2.41
a
 -3.02

a
  -0.76

a
 -0.96

a
 

 
-22.00

a
 -21.30

a
  -41.00

a
 -42.50

a
 

 (-4.18) (-4.72) (-3.52) (-3.79)  (-3.02) (-2.87) (-3.01) (-3.09) 

AgValue*10-6  2.26 -1.51  -3.00 -4.95  12.49 12.53  3.16 1.36 
 (0.29) (-0.19) (-0.51) (-0.83)  (1.31) (1.32) (0.19) (0.08) 

Vehicles*10-3  1.08  
 7.49   -7.72  

 27.01  

 (0.11)  (0.57)   (-0.48)  (0.72)  

Transit*10-3  
 22.00  

 12.58   8.79  
 8.02 

  (1.63)  (0.79)   (0.61)  (0.19) 

Female*10-3  12.03
a
 11.20

b
  5.00 4.84  

17.00
a
 16.82

a
  0.02 -0.75 

 (2.67) (2.48) (-1.45) (1.40)  (3.60) (3.55) (0.00) (-0.08) 

Adj. R2  9.0% 9.6%  7.9% 8.0%  42.9% 43.1%  5.3% 4.8% 
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Table 27: Directional Index with Workforce Demographics 

OLS regression results of the directional index (DX) with the (un)constrained samples.  The independent variables are the changes in median 
income (Δincome), the percent of households with at least one vehicle (ΔVehicles), the percent of commuters using public transportation, excluding 
taxis (ΔTransit), the rental value of agricultural land (ΔAgValue), and the percent of civilian labor force that is (ΔFemale).  Either the year 2000 
urban area population (Pop) or spatial size in square miles (Area) is used as a control variable.  t-statistics are in parentheses.  Statistical significance 
at the 1%, 5%, and 10% levels is denoted by a, b or c, respectively. 

Dependent Variable:  Directional Index 

    Unconstrained  Constrained 

Variable  N = 2,917  N = 453 

Intercept  22.78
a
 31.36

a
 22.61

a
 31.04

a
 

 
12.13

a
 11.64 6.94 9.27 

 (12.42) (16.53) (12.36) (16.33)  (1.72) (1.59) (0.96) (1.30) 

Δincome*10-4  12.70
a
 10.90

a
 9.92

a
 9.83

a
 

 4.28 5.28
c
 1.03 -6.52 

 (10.06) (8.79) (8.16) (8.39)  (1.35) (1.66) (0.36) (-0.23) 

ΔVehicles  -0.90
c
 -0.19    -0.85 -1.50   

 (-1.93) (-0.43)    (-0.71) (-1.23)   

ΔTransit  
  

2.49
a
 1.24

a
 

   
5.69

a
 10.02

a
 

   (4.16) (2.17)    (2.75) (5.09) 

ΔAgValue*10-4  7.12
a
 5.84

a
 6.23

a
 5.20

a
 

 11.50 2.85 12.60
 c
 5.38 

 (4.33) (3.61) (3.73) (3.19)  (1.55) (-0.38) (1.75) -0.75 

Pop*10-5  -4.21
a
 

 
-3.73

a
 

  
-55.84

a
 

 
-51.45

a
 

 

 (-13.85)  (-11.40)   (-10.38)  (-9.20)  

Area  
 

-0.09
a
 

 
-0.09

a
 

  
-0.45

a
 

 
-0.43

a
 

  (-19.31)  (-17.24)   (-9.85)  (-9.68) 

ΔFemale  -0.19 -0.19 -0.21 -0.20  -0.16 -0.47
c
 -0.25 -0.61

b
 

  (-1.20) (-1.24) (-1.34) (-1.35)  (-0.58) (-1.74) (-0.92) (-2.30) 

Adj. R2   15.7% 20.4% 16.1% 20.5%   17.3% 16.00% 18.3% 19.5% 
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Table 28: Population Density Gradient with Alternative Commuting Cost Measures and 

Workforce Demographics (Year 2000) 

OLS regression results for urban areas for which Texas A&M Transportation Institute commuting cost 
proxies were available.  The independent variables are median income (MedInc), population (Pop), rental 
value of agricultural land per acre (AgValue), the percent of civilian labor force that is (Female), freeway 
miles driven per auto commuter (Freeway), arterial street miles driven per auto commuter (Arterial), annual 
excess fuel consumed due to traffic congestion per auto commuter (Gallons), vehicle hours of delay due to 
traffic congestion per auto commuter (Delay), travel time index as the ratio of peak travel time to free-flow 
travel time as measured in both peak and non-peak travel directions (TTI), commuter stress as measured by 
the ratio of peak travel time to free-flow travel time in the peak travel direction during the peak travel period 
(Stress), and annual vehicle and time congestion cost in dollars (Congestion).  Agricultural land rent values 
are for the years 2002, aligning with the years 2000.  t-statistics are in parentheses.  Statistical significance 
at the 1%, 5%, and 10% level sis indicated by a, b, or c superscripts, respectively. 

Dependent Variable:  Population Density Gradient (2000) 

Variable  N = 97 

Intercept  0.19 0.26 0.22 0.21 0.65
c
 0.25 0.21 

 (1.03) (1.30) (1.20) (1.13) (1.79) (0.82) (1.12) 

MedInc*10-6  -9.55
a
 -10.20

a
 -9.66

a
 -8.17

b
 -8.50b -10.20

a
 -8.50

a
 

 (-3.12) (-3.28) (-3.14) (-2.60) (-2.55) (-2.95) (-2.77) 

Pop*10-8  -4.48
b
 -4.65

b
 -2.81 -1.36 -3.22 -4.67

b
 -0.75 

 (-2.04) (-2.08) (-1.10) (-0.51) (-1.30) (-2.00) (-0.28) 

AgValue*10-7  9.95 3.74 6.76 -1.69 3.22 3.45 4.33 
 (0.25) (0.09) (0.17) (-0.04) (0.08) (0.09) (0.11) 

Female*10-3  8.81
b
 6.84

c
 8.24

 b
 8.39

b
 6.59

c
 6.90

c
 8.67

b
 

 (2.17) (1.73) (2.04) (2.14) (1.68) (1.70) (2.22) 

Freeway*10-3  -4.36    
 

 
 

 (-1.65)     

Arterial*10-4  
 1.21   

 
 

 
  (0.03)    

Gallons*10-3  
  -5.99  

 
 

 
   (-1.40)   

Delay*10-3  
   

-3.97
b
 

  
 

    (-2.15)   

TTI  
    -0.39  

 
     (-1.25)  

Stress*10-3   
    9.72  

     (0.05)  

Congestion*10-4   
    

 -1.64
b
 

     (-2.38) 

Adj. R2   21.4% 19.1% 20.8% 23.0% 20.5% 19.1% 23.8% 
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Table 29: Population Density Gradient with Alternative Commuting Cost Measures and 

Workforce Demographics (Year 2010) 

OLS regression results for urban areas for which Texas A&M Transportation Institute commuting cost 
proxies were available.  The independent variables are median income (MedInc), population (Pop), rental 
value of agricultural land per acre (AgValue), freeway miles driven per auto commuter (Freeway), arterial 
street miles driven per auto commuter (Arterial), annual excess fuel consumed due to traffic congestion per 
auto commuter (Gallons), vehicle hours of delay due to traffic congestion per auto commuter (Delay), travel 
time index as the ratio of peak travel time to free-flow travel time as measured in both peak and non-peak 
travel directions (TTI), commuter stress as measured by the ratio of peak travel time to free-flow travel time 
in the peak travel direction during the peak travel period (Stress), and annual vehicle and time congestion 
cost in dollars (Congestion).  Agricultural land rent values are for the year 2012, aligning with the year 
2010.  t-statistics are in parentheses.  Statistical significance at the 1%, 5%, and 10% levels is indicated by 
a, b, or c superscripts, respectively. 

Dependent Variable:  Population Density Gradient (2010) 

Variable  N = 82 

Intercept 
 

0.32
b
 0.27 0.32

b
 0.32

b
 0.43 0.25 0.32

b
 

  (1.97) (1.52) (1.99) (2.00) (1.26) (1.01) (2.00) 

MedInc * 10-6  -4.00 -3.63 -3.87 -3.81 -3.40 -4.13 -3.73 
  (-1.60) (-1.57) (-1.65) (-1.56) (-1.36) (-1.65) (-1.54) 

Pop * 10-8  
-2.98

a
 -3.00

a
 -3.10

a
 -3.02

a
 -2.80

a
 -3.12

a
 -2.96

a
 

  (-4.09) (-4.12) (-3.54) (-3.25) (-3.19) (-3.81) (-3.07) 

AgValue * 10-8  13.74 6.30 8.63 12.68 19.40 1.70 14.44 
  (0.06) (0.03) (0.03) (0.05) (0.08) (0.01) (0.06) 

Female * 10-3  1.38 1.33 1.20 1.33 1.62 1.07 1.38 
  (0.59) (0.56) (0.49) (0.55) (0.66) (0.43) -0.56 

Freeway * 10-4 
 

7.64       
 

 (0.25)       

Arterial * 10-3 
 

 2.25      
 

  (0.57)      

Gallons * 10-3    1.03     

    (0.25)     

Delay * 10-4     1.31    

     (0.06)    

TTI      -0.13   

      (0.38)   

Stress  
     0.09  

 
 

     (0.38)  

Congestion * 10-6  
      -2.83 

 
         (-0.03) 

Adj. R2   27.7% 28.0% 27.7% 27.7% 27.8% 27.8% 27.7% 
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Table 30: Directional Index with Alternative Commuting Cost Measures and Workforce 

Demographics 

OLS regression results for urban areas for which Texas A&M Transportation Institute commuting cost 
proxies were available.  The independent variables are changes in median income (ΔMedInc), rental value 
of agricultural land per acre (ΔAgValue), the percent of civilian labor force that is (ΔFemale), freeway miles 
driven per auto commuter (ΔFreeway), arterial street miles driven per auto commuter (ΔArterial), annual 
excess fuel consumed due to traffic congestion per auto commuter (ΔGallons), vehicle hours of delay due 
to traffic congestion per auto commuter (ΔDelay), travel time index as the ratio of peak travel time to free-
flow travel time as measured in both peak and non-peak travel directions (ΔTTI), commuter stress as 
measured by the ratio of peak travel time to free-flow travel time in the peak travel direction during the 
peak travel period (ΔStress), and annual vehicle and time congestion cost in dollars (ΔCongestion).  
Population (Pop) is the 2000 population level.  t-statistics are in parentheses.  Statistical significance at the 
1%, 5%, and 10% level is indicated by a, b, or c superscripts, respectively. 

Dependent Variable:  Directional Index 

Variable  N = 803 

Intercept 
 

77.59
a
 64.91

a
 84.28

a
 83.14

a
 83.47

a
 82.99

a
 76.78

a
 

  (30.39) (22.70) (24.28) (28.85) (28.50) (29.28) (28.27) 

Δincome * 10-3  
1.40

a
 1.50

a
 1.39

a
 1.41

a
 1.44

a
 1.37

a
 1.43

a
 

  (8.48) (9.10) (8.23) (8.50) (8.66) (8.22) (8.47) 

ΔAgValue * 10-5  6.57 8.67 -2.66 -2.12 2.47 -2.28 -4.12 
  (0.59) (-0.77) (-0.23) (-0.19) (-0.22) (-0.20) (-0.36) 

Pop * 10-5  
-7.16

a
 -7.00

a
 -6.61

a
 -6.56

a
 -6.64

a
 -6.47

a
 -6.79

a
 

  (-19.87) (-19.58) (-17.89) (-18.04) (-18.33) (-17.78) (-18.44) 

ΔFemale  
-0.64

a
 -0.57

a
 -0.48

a
 -0.63

a
 -0.63

a
 -0.54

a
 -0.41

b
 

  (-3.28) (-2.96) (-2.42) (-3.18) (-3.17) (-2.81) (-2.07) 

ΔFreeway  
-1.12

a
 

      

  (-7.18)       

ΔArterial   
-1.16

a
 

     

   (-7.45)      

ΔGallons    
-0.21

a
 

    

    (-4.02)     

ΔDelay     
-0.49

a
 

   

     (-6.01)    

ΔTTI      
-0.52

a
 

  

      (-5.92)   

ΔStress       
-0.63

a
 

 

       (-6.41)  

ΔCongestion        
-0.03

b
 

        (-2.30) 

Adj. R2   40.4% 40.7% 37.9% 39.4% 39.3% 39.7% 37.0% 
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Table 31: Directional Index with Alternative Commuting Cost Measures and Workforce 

Demographics 

OLS regression results for urban areas for which Texas A&M Transportation Institute commuting cost 
proxies were available.  The independent variables are changes in median income (ΔMedInc), rental value 
of agricultural land per acre (ΔAgValue), the percent of civilian labor force that is (ΔFemale), freeway miles 
driven per auto commuter (ΔFreeway), arterial street miles driven per auto commuter (ΔArterial), annual 
excess fuel consumed due to traffic congestion per auto commuter (ΔGallons), vehicle hours of delay due 
to traffic congestion per auto commuter (ΔDelay), travel time index as the ratio of peak travel time to free-
flow travel time as measured in both peak and non-peak travel directions (ΔTTI), commuter stress as 
measured by the ratio of peak travel time to free-flow travel time in the peak travel direction during the 
peak travel period (ΔStress), and annual vehicle and time congestion cost in dollars (ΔCongestion).  Area 
(Area) is the 2000 urban area spatial size in square miles.  t-statistics are in parentheses.  Statistical 
significance at the 1%, 5%, and 10% level sis indicated by a, b, or c superscripts, respectively. 

Dependent Variable:  Directional Index 

Variable       N = 803       

Intercept 
 

88.09
a
 73.24

a
 80.99

a
 84.36

a
 84.95

a
 84.53

a
 85.09

a
 

  (34.11) (25.94) (24.19) (29.58) (29.33) (30.00) (30.90) 

Δincome * 10-3  
1.10

a
 1.22

a
 1.19

a
 1.18

a
 1.18

a
 1.18

a
 1.17

a
 

  (7.00) (7.77) (7.22) (7.16) (7.18) (7.13) (7.14) 

ΔAgValue * 10 -6  96.21 114.60 12.08 7.29 6.36 7.04 -13.65 
  (0.91) (1.07) (0.11) (0.07) (0.06) (0.06) (-0.12) 

Area  
-0.13

a
 -0.12

a
 -0.12

a
 -0.12

a
 -0.12

a
 -0.12

a
 -0.12

a
 

  (-23.01) (-22.49) (-19.61) (-18.92) (-19.29) (-18.51) (-20.56) 

ΔFemale  
-0.59

a
 -0.49

a
 -0.16 -0.23 -0.25 -0.23 -0.27 

  (-3.23) (-2.71) (-0.85) (-1.20) (-1.32) (-1.23) (-1.43) 

ΔFreeway  
-1.34

a
 

      

  (-8.98)       

ΔArterial   
-1.31

a
 

     

   (-8.79)      

ΔGallons    0.08     

    (1.46)     

ΔDelay     -0.03    

     (-0.40)    

ΔTTI      -0.08   

      (-0.87)   

ΔStress       -0.07  

       (-0.62)  

ΔCongestion        -0.02 
        (-1.60) 

Adj. R2   46.5% 46.3% 41.2% 41.1% 41.1% 41.1% 41.3% 
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Table 32: Population Density Gradient with Alternative Commuting Cost Measures and 

Workforce Demographics, Excluding the 5 Largest Urban Areas (Year 2000) 

OLS regression results of the population density gradient with the unconstrained sample, less the five most 
populous urban areas.  For each urban area, the independent variables are median income (Medinc), 
population (Pop), the rental value of agricultural land per acer (AgValue), the percent of households with 
at least one vehicle (Vehicles), the percent of commuters using public transit (Transit), and the percent of 
the civilian labor force that is female (Female).  For those urban areas for which Texas A&M Transportation 
Institute commuting cost proxies were available, the additional independent variables are freeway miles 
driven per auto commuter (Freeway), arterial street miles driven per auto commuter (Arterial), annual 
excess fuel consumed due to traffic congestion per auto commuter (Gallons), vehicle hours of delay due to 
traffic congestion per auto commuter (Delay), travel time index (TTI), commuter stress index (Stress), and 
annual vehicle and time congestion cost in dollars (Congestion).  t-statistics are listed in parentheses.  
Statistical significance at the 1%, 5%, and 10% levels is indicated by a, b, or c, respectively. 

Dependent Variable:  Population Density Gradient (2000) 

Variable  N = 435  N = 92 

Intercept 0.06 0.30 
 

0.12 0.17 0.18 0.17 0.11 -0.12 0.16 
 (0.07) (1.32)  (0.66) (0.88) (0.97) (0.92) (0.28) (-0.39) (0.89) 

MedInc*10-6 -9.14
a
 -9.58

a
 

 
-6.52

b
 -6.98

b
 -6.99

b
 -6.72

b
 -7.19

b
 -8.65

b
 -6.77

b
 

 (-2.62) (-3.10)  (-2.10) (-2.23) (-2.23) (-2.11) (-2.18) (-2.53) (-2.16) 

Pop*10-7 -6.97
a
 -7.69

a
 

 
-1.80

a
 -1.86

a
 -1.87

a
 -1.67

a
 -1.91

a
 -2.07

a
 -1.54

b
 

 (-7.02) (-7.40)  (-3.92) (-4.02) (-3.36) (-2.74) (-3.53) (-4.20) (-2.55) 

AgValue*10-7 25.10 -16.00  0.54 -4.75 -5.59 -5.62 -5.73 -9.11 -2.33 
 (0.32) (-0.20)  (0.01) (-0.12) (-0.14) (-0.14) (-0.14) (-0.23) (-0.06) 

Female*10-3 13.19
a
 12.41

a
 

 
8.73

b
 6.97

c
 6.94

c
 7.41

c
 7.03

c
 8.08

b
 7.76

c
 

 (3.01) (2.83)  (2.22) (1.82) (1.75) (1.90) (1.84) (2.08) (1.99) 
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Table 32: Population Density Gradient with Alternative Commuting Cost Measures and 

Workforce Demographics, Excluding the 5 Largest Urban Areas (Year 2000) 

Vehicles*10-3 2.07         

 (0.22)         

Transit  
0.02

c
 

       

  (1.73)        

Freeway*10-3   -3.90       

   (-1.50)       

Arterial*10-4    3.35      

    (0.10)      

Gallons*10-4     2.31     

     (0.05)     

Delay*10-3      -1.05    

      (-0.49)    

TTI       0.06   

       (0.19)   

Stress        0.26  

        (1.16)  

Congestion*10-5         -6.56 
         (-0.82) 

Adj. R2 14.4% 15.0% 28.7% 26.8% 26.8% 27.0% 26.8% 27.9% 27.4% 
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Table 33: Population Density Gradient with Alternative Commuting Cost Measures and 

Workforce Demographics, Excluding the 5 Largest Urban Areas (Year 2010) 

OLS regression results of the population density gradient with the unconstrained sample, less the five most 
populous urban areas.  For each urban area, the independent variables are median income (Medinc), 
population (Pop), the rental value of agricultural land per acer (AgValue), the percent of households with 
at least one vehicle (Vehicles), the percent of commuters using public transit (Transit), and the percent of 
the civilian labor force that is female (Female).  For those urban areas for which Texas A&M Transportation 
Institute commuting cost proxies were available, the additional independent variables are freeway miles 
driven per auto commuter (Freeway), arterial street miles driven per auto commuter (Arterial), annual 
excess fuel consumed due to traffic congestion per auto commuter (Gallons), vehicle hours of delay due to 
traffic congestion per auto commuter (Delay), travel time index (TTI), commuter stress index (Stress), and 
annual vehicle and time congestion cost in dollars (Congestion).  t-statistics are listed in parentheses.  
Statistical significance at the 1%, 5%, and 10% levels is indicated by a, b, or c, respectively. 

Dependent Variable:  Population Density Gradient (2010) 

Variable  N = 303  N = 77 

Intercept -0.81 0.51
b
 0.35

b
 0.33

b
 0.35

b
 0.36

b
 0.52 0.34 0.36

b
 

 (-0.64) (2.26) (2.43) (2.08) (2.48) (2.51) (1.59) (1.47) (2.52) 

MedInc*10-6 -4.83 -3.32 -4.26
c
 -3.52

c
 -3.78

c
 -3.76

 c
 -3.13 -3.71 -3.48 

 (-1.46) (-1.15) (-1.91) (-1.68) (-1.79) (-1.71) (-1.38) (-1.62) (-1.60) 

Pop*10-8 -19.53
a
 -20.84

a
 -5.27

a
 -5.03

a
 -5.46

a
 -5.32

a
 -4.65

a
 -5.16

a
 -4.92

a
 

 (-4.98) (-5.07) (-3.52) (-3.37) (-3.33) (-3.00) (-2.75) (-3.28) (-2.78) 

AgValue*10-7 29.10 -2.75 13.30 12.20 12.60 13.10 12.70 12.90 13.00 
 (0.46) (-0.04) (0.57) (0.52) (0.54) (0.56) (0.54) (0.55) (0.56) 

Female*10-4 34.90 35.20 7.82 6.39 4.13 5.92 9.67 5.92 7.59 
 -1.01 (1.02) (0.37) (0.30) (0.19) (0.27) (0.44) (0.26) (0.35) 
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Table 33: Population Density Gradient with Alternative Commuting Cost Measures and 

Workforce Demographics, Excluding the 5 Largest Urban Areas (Year 2010) 

Vehicles 0.01         

 (1.06)         

Transit*10-3  9.96        

  (0.56)        

Freeway*10-3   2.23       

   (0.81)       

Arterial*10-3    1.45      

    (0.41)      

Gallons*10-3     1.94     

     (0.52)     

Delay*10-4      4.38    

      (0.23)    

TTI       -0.17   

       (-0.54)   

Stress        0.03  

        (0.12)  

Congestion*10-5         -1.48 
         (-0.18) 

Adj. R2 9.9% 9.6% 20.2% 19.7% 19.8% 19.6% 19.8% 19.5% 19.5% 
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Table 34: Directional Index with Alternative Commuting Cost Measures and Workforce 

Demographics, Excluding the 5 Largest Urban Areas 

OLS regression results of the directional index (DX) with the unconstrained sample, less the five most 
populous urban areas.  The independent variables are the changes in median income (Δincome), the percent 
of households with at least one vehicle (ΔVehicles), the percent of commuters using public transportation, 
excluding taxis (ΔTransit), the rental value of agricultural land (ΔAgValue), and the percent of civilian 
labor force that is (Female).  For those urban areas for which Texas A&M Transportation Institute 
commuting costs proxies were available, the additional independent variables are freeway miles drive per 
auto commuter (Freeway), arterial street miles driven per auto commuter (Arterial), annual excess fuel 
consumed due to traffic congestion per auto commuter (Gallons), vehicle hours of delay due to traffic 
congestion per auto commuter (Delay), travel time index (TTI), commuter stress index (Stress), and annual 
vehicle and time congestion costs in dollar (Congestion).  t-statistics are in parentheses.  Statistical 
significance at the 1%, 5%, and 10% levels is denoted by a, b or c, respectively. 

Dependent Variable:  Directional Index 

Variable  N = 2,867  N = 762 

Intercept 36.21
a 36.12

a  
90.05

a 76.37
a 94.67

a 95.57
a 95.66

a 96.73
a 91.01

a 

 (19.08) (19.15)  (35.14) (27.94) (25.50) (32.72) (32.57) (33.63) (33.46) 

Δincome*10-4 11.10
a 7.11

a  
9.83

a 10.40
a 10.10

a 10.50
a 10.70

a 10.10
a 10.00

a 

 (8.98) (6.06)  (6.55) (7.20) (6.57) (6.97) (7.08) (6.71) (6.57) 

ΔAgValue*10-4 5.71
a 4.18

a  0.67 1.22 -0.20 -0.28 -0.28 -0.37 -4.33 
 (3.58) (2.60)  (0.66) (1.25) (-0.20) (-0.28) (-0.27) (-0.37) (-0.42) 

Pop*10-4 -1.48
a -1.42

a  
-1.41

a -1.32
a -1.45

a -1.42
a -1.42

a -1.42
a -1.45

a 

 (-22.25) (-21.25)  (-9.63) (-9.32) (-9.64) (-9.61) (-9.59) (-9.72) (-9.71) 

ΔFemale -0.07 -0.11  
-0.52

a -0.57
a -0.32

c -0.50
a -0.50

a -0.42
b -0.36

c 

 (-0.48) (-0.76)  (-2.89) (-3.31) (-1.76) (-2.71) (-2.72) (-2.36) (-1.96) 
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Table 34: Directional Index with Alternative Commuting Cost Measures and Workforce 

Demographics, Excluding the 5 Largest Urban Areas 

ΔVehicles -1.26
a          

 (-2.79)          

ΔTransit  
3.73

a         

  (6.29)         

ΔFreeway    
-0.93

a       

    (-6.23)       

ΔArterial     
-1.36

a
 

     

     (-9.93)      

ΔGallons      
-0.15

b
 

    

      (-2.41)     

ΔDelay       
-0.50

a
 

   

       (-5.22)    

ΔTTI        
-0.51

a
 

  

        (-5.16)   

ΔStress         
-0.77

a
 

 

         (-6.31)  

ΔCongestion          
-0.04

a
 

          (-3.31) 

Adj. R2 22.5% 23.3%   20.0% 25.7% 16.6% 18.9% 18.8% 20.2% 17.2% 
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Table 35: Directional Index with Alternative Commuting Cost Measures and Workforce 

Demographics, Excluding the 5 Largest Urban Areas 

OLS regression results of the directional index (DX) with the unconstrained sample, less the five most 
populous urban areas.  The independent variables are the changes in median income (Δincome), the percent 
of households with at lease one vehicle (ΔVehicles), the percent of commuters using public transportation, 
excluding taxis (ΔTransit), the rental value of agricultural land (ΔAgValue), and the percent of civilian 
labor force that is (Female).  For those urban areas for which Texas A&M Transportation Institute 
commuting costs proxies were available, the additional independent variables are freeway miles drive per 
auto commuter (Freeway), arterial street miles driven per auto commuter (Arterial), annual excess fuel 
consumed due to traffic congestion per auto commuter (Gallons), vehicle hours of delay due to traffic 
congestion per auto commuter (Delay), travel time index (TTI), commuter stress index (Stress), and annual 
vehicle and time congestion costs in dollar (Congestion).  t-statistics are in parentheses.  Statistical 
significance at the 1%, 5%, and 10% levels is denoted by a, b or c, respectively. 

Dependent Variable:  Directional Index 

Variable  N = 2,867  N = 762 

Intercept 38.54
a
 38.43

a
 

 
88.72

a
 74.81

a
 92.73

a
 95.11

a
 95.26

a
 96.34

a
 89.15

a
 

 (19.81) (19.87)  (32.95) (26.22) (23.99) (30.90) (30.77) (31.79) (31.35) 

Δincome*10-4 11.60
a
 7.41

a
 

 
10.10

a
 10.60

a
 10.30

a
 10.80

a
 11.00

a
 10.30

a
 10.30

a
 

 (9.42) (6.32)  (6.55) (7.19) (6.58) (6.98) (7.10) (6.70) (6.58) 

ΔAgValue*10-4 5.08
a
 3.50

b
 

 0.70 1.28 -0.15 -0.29 -0.29 -0.39 -0.33 
 (3.18) (2.18)  (0.68) (1.28) (-0.15) (-0.28) (-0.28) (-0.38) (-0.31) 

Area -0.15
a
 -0.14

a
 

 
-0.11

a
 -0.10

a
 -0.11

a
 -0.12

a
 -0.11

a
 -0.12

a
 -0.11

a
 

 (-22.35) (-21.44)  (-7.43) (-7.14) (-7.45) (-7.69) (-7.69) (-7.84) (-7.41) 

ΔFemale -0.10 -0.15  
-0.51

a
 -0.57

a
 -0.30 -0.48

 b
 -0.50

b
 -0.40

b
 -0.33

c
 

 (-0.70) (-0.99)  (-2.69) (-3.15) (-1.56) (-2.56) (-2.58) (-2.16) (-1.73) 
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Table 35: Directional Index with Alternative Commuting Cost Measures and Workforce 

Demographics, Excluding the 5 Largest Urban Areas 

ΔVehicles  
-1.32

a
 

         

  (-2.93)          

ΔTransit   
3.88

a
 

        

   (6.58)         

ΔFreeway     
-0.93

a
 

      

     (-6.10)       

ΔArterial      
-1.39

a
 

     

      (-9.91)      

ΔGallons       
-0.13

b
 

    

       (-2.13)     

ΔDelay        
-0.54

a
 

   

        (-5.47)    

ΔTTI         
-0.54

a
 

  

         (-5.43)   

ΔStress          
-0.82

a
 

 

          (-6.54)  

ΔCongestion           
-0.03

a
 

           (-2.77) 

Adj. R2   22.6% 23.5%   16.4% 22.4% 12.8% 15.6% 15.6% 17.0% 13.2% 
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APPENDIX: URBAN SPRAWL COMPARATIVE STATICS 
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1. Introduction 

The comparative statics referred to in Equation 3 are derived in this appendix.  I will closely 

follow Turnbull (n.d.), with minor deviations in notation, and exploit the duality between consumer 

utility maximization and expenditure minimization to derive the comparative statics.  There are 

two categories of cities used in urban spatial structure analysis, closed and open, and both 

characterize the trade-off consumers face between the costs of transportation and housing.  

Costless migration to and from an urban area is possible in the open city, with endogenously 

determined population being the adjustment mechanism that ensures the same level of utility both 

inside or outside the urban area.  Conversely, in the closed city where costless migration is not 

possible, population is exogenous and utility and the spatial area of the city are determined within 

the system.  Parameters that are common to both closed and open cities are income, transportation 

costs, and housing rents.  To remain consistent with the rest of this paper by following Brueckner 

and Fansler (1983), I derive comparative statics for the closed city model only. 

2. Closed City Model 

Urban residents (consumers) commute to a central business district (CBD) at a round-trip 

cost represented by the function 𝑡(𝑥), where 𝑥 is measured in miles from the CBD, and earn 

identical income, 𝑦.32  The consumers’ utility, 𝑢(⋅), is expressed as 

 𝑢(𝑐, 𝑞) = 𝑢, ( 23 ) 

where 𝑢 is the highest level of utility attainable across the urban area, and utility is a regular strictly 

quasi-concave function of a composite non-housing good, 𝑐, and a housing good, 𝑞, measured in 

                                                 
32 Assume the CBD is located at 𝑥 = 0. 
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square feet of floor space.  The composite good is sufficient to represent all consumption other 

than housing, including household saving.  The assumed regular strict quasi-concavity of 𝑢(⋅) has 

three important implications for the present analysis.  The first is that the function is increasing in 

its arguments so that marginal utilities of both goods are positive.  The second is that the bordered 

Hessian matrix of second derivatives is negative semi-definite, which ensures that the second-

order sufficient conditions are met.33  And the third is that there is a diminishing marginal rate of 

substitution between 𝑐 and 𝑞.  Moreover, strict quasi-concavity necessarily implies that 

consumers’ indifference curves between 𝑐 and 𝑞 are strictly convex.34 

Consumer utility theory provides two methods of solving the consumer’s problem of 

choosing the optimal consumption bundle: the direct and duality methods.  In the direct method, 

consumers wish to maximize utility from consumption given available income.  Conversely, 

duality in consumer theory provides the indirect method as an alternative for determining the 

optimal consumption bundle for consumers by minimizing the expenditures necessary to reach a 

given utility level.  Here, I use the indirect method.  Under the assumption that all urban consumers 

achieve the same level of utility, 𝑢, variation in land rent, 𝑟(𝑥), charged by landlords across the 

urban area ensures that this equilibrium holds, as a resident who lives farther from the CBD will 

be compensated for increased commuting costs with lower housing rent.  The price of the non-

housing good is the same everywhere in the city.35  Thus, consumers face the following budget 

constraint that all expenditures must equal all available income: 

                                                 
33 The determinant of the Hessian matrix of a strictly quasi-concave function is positive, but it can be zero at isolated 
points.  With the assumed regular strictly quasi-concave function, the possibility of such points in eliminated. 
34 The importance of strict quasi-concavity of the consumers’ utility function is that the axioms of completeness, 
continuity, strict monotonicity, and strict convexity of consumers’ preferences over 𝑐 and 𝑞 hold. 
35 The price of 𝑐 is assumed to be 1 for the present discussion.  This assumption does not qualitatively alter the results. 
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 𝑦 − 𝑡(𝑥) − 𝑐 − 𝑟(𝑥)𝑞 = 0 ( 24 ) 

Expressed in dual-form, the consumer’s problem becomes one of expenditure minimization, and 

its solutions represent the income-compensated demand functions that minimize expenditures, 

subject to the constraint that all consumers attain utility level 𝑢.36 

 {𝑐(𝑟, 𝑢), 𝑞(𝑟, 𝑢)} ≡ 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑟(𝑥)𝑞 + 𝑐  s.t.  𝑢 = 𝑢(𝑐, 𝑞). ( 25 ) 

Since the consumer expenditure function, 𝑒(𝑟(𝑥), 𝑢), defines the amount of money needed 

to attain utility level 𝑢 at distance 𝑥, the identity 𝑒(𝑟(𝑥), 𝑢) = 𝑦 − 𝑡(𝑥) follows.  Further, 

satisfaction of Equation 25 is ensured by construction of 𝑐.  Defined implicitly, the expenditure 

function becomes 𝐹(𝑟, 𝑥, 𝑢, 𝑦) = 𝑒(𝑟, 𝑢) − 𝑦 + 𝑡(𝑥) = 0.  By Shephard’s lemma, the demand for 

housing is the derivative of the expenditure function with respect to 𝑟, or 
𝜕𝐹𝜕𝑟 = 𝑒𝑟 = 𝑞.37  As 𝑞 >0, the derivative of the implicit expenditure function with respect to 𝑟 does not vanish, allowing 

us to invoke the implicit function theorem to solve the identity, 

 𝑒(𝑟(𝑥), 𝑢) ≡ 𝑦 − 𝑡(𝑥), ( 26 ) 

for a differentiable function, 𝑟(𝑥).  Differentiating Equation 26 with respect to 𝑥 yields 

 𝑒𝑟(𝑟(𝑥), 𝑢)𝑟𝑥(𝑥) = −𝑡𝑥(𝑥).38 ( 27 ) 

                                                 
36 Income-compensated demand functions are also known as Hicksian demand functions. 
37 Shephard’s lemma states that the demand functions that minimize expenditures are the derivatives of the expenditure 
function with respect to the price of each good. 
38 Subscripts denote partial derivatives throughout this appendix. 
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Recalling that 𝑒𝑟 = 𝑞 from above and substituting the solution obtained from the implicit 

function theorem, 𝑞(𝑟(𝑥), 𝑢), into Equation 26 yields the rent gradient as the first derivative of the 

rent function with respect to distance, 

 𝑟𝑥(𝑥) = − 𝑡𝑥(𝑥)𝑞(𝑟(𝑥),𝑢) < 0, ( 28 ) 

which suggests that household rent is a declining function of household distance from the CBD.  

Figure 10 illustrates this central tenet of the model: that urban residents face a trade-off between 

commuting costs and rent. 

Moreover, the convex rent function in Figure 10 can ensured by a positive second 

derivative of the rent function with respect to distance.  Differentiating Equation 29 with respect 

to 𝑥 provides 

 𝑟𝑥𝑥(𝑥) = − 𝑡𝑥𝑥(𝑥)𝑞(𝑟(𝑥),𝑢)+𝑞𝑟(𝑟(𝑥),𝑢)𝑟𝑥(𝑥)𝑡𝑥(𝑥)𝑞(𝑟(𝑥),𝑢)2 . ( 29 ) 

In order to determine if 𝑟𝑥𝑥 is indeed positive, we must first determine the signs of 𝑞𝑟 and 𝑡𝑥𝑥.  

That 𝑞𝑟 < 0 follows from standard consumer theory that the demand for a good is a decreasing 

function of the good’s own-price.  Further, as long as the cost of each additional mile of commute 

is non-increasing, 𝑡𝑥𝑥 ≤ 0, combined with the previous result of 𝑟𝑥 < 0, enables us to deduce that 𝑟𝑥𝑥 > 0. 

To continue developing the model, we must also consider the process by which urban 

landlords obtain land to develop and establish the land market equilibrium conditions.  In the 

stylized circular urban area where urban landlords compete for land with rural agricultural users, 



132 
 

landlords must outbid agricultural users for land at the urban-rural boundary, �̅�.39  The profit 

maximizing landlord auctions off his land to the highest bidder, extracting the maximum rent from 

each resident at all 𝑥, and thus operates as a monopsonist over his unique parcel(s) of land.  As 

landlords are profit maximizing, equilibrium is obtained at the zero-profit condition Equation 31, 

where urban land rents equal agricultural land rents, denoted 𝑟𝑎. 

 𝑟(�̅�) = 𝑟𝑎 ( 30 ) 

It then follows that inside the urban area at all distances 𝑥 < �̅�, 𝑟 > 𝑟𝑎, and at all distances 𝑥 > �̅�, 𝑟 < 𝑟𝑎.  The second equilibrium condition constrains the urban population, 𝐿, to an area no larger 

than a circle with radius �̅�, 

 2𝜋 ∫ 𝑥𝑞(𝑟(𝑥),𝑢) 𝑑𝑥�̅�0 = 𝐿. ( 31 ) 

Consistent with the empirical method of this paper, equilibrium condition Equation 31 

measures the urban population by treating the urban area as a series of adjacent rings, each of width 𝑥, emanating from the CBD.    

                                                 
39 The urban-rural boundary separates the urbanized area from its surrounding area. 
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Figure 11 illustrates the equilibrium established by Equation 31.  At all distances 𝑥 to the left of �̅�, residential rents are bound between [𝑟𝑎, 𝑟(0)]. 
3. Comparative Statics 

For transportation cost comparative static derivation, Wheaton (1974) assumed a linear 

cost function.  We will remain consistent with his original paper, such that 𝑡(𝑥) ≝ 𝑡𝑥, resulting in 

transportation costs entering the rent function as a parameter; 𝑟(𝑥; 𝑡, 𝑦, 𝑢) when deriving 

commuting cost comparative statics.  The first step in deriving the comparative static predictions 

of the model is to obtain the Jacobian matrix of first derivatives.  Recalling that in the closed city 

our solutions provide the equilibrium urban spatial area and utility, and that Equations 26, 30, and 

31 fully describe the land market, substitute Equation 30 into Equation 26 at the urban-rural 

boundary, �̅�, to reduce the model to the following system of two equations: 

 𝑒(𝑟𝑎, 𝑢) = 𝑦 − 𝑡(�̅�) ( 32 ) 

 2𝜋 ∫ 𝑥𝑞(𝑟(𝑥),𝑢) 𝑑𝑥�̅�0 = 𝐿 ( 33 ) 

The system immediately above yields the following Jacobian, denoted 𝑱,: 

 𝑱 = [𝑡𝑥(�̅�∗) 𝑒𝑢(𝑟𝑎, 𝑢∗)2𝜋�̅�∗𝑞(𝑟𝑎,𝑢∗) −2𝜋 ∫ (𝑥(𝑞𝑟𝑟𝑢+𝑞𝑢)𝑞(𝑟,𝑢∗)2 )�̅�∗0 𝑑𝑥] ( 34 ) 

and its determinant, 

 |𝑱| = 𝑡𝑥(�̅�∗) (−2𝜋 ∫ (𝑥(𝑞𝑟𝑟𝑢+𝑞𝑢)𝑞(𝑟,𝑢∗)2 )�̅�∗0 𝑑𝑥) − 𝑒𝑢(𝑟𝑎, 𝑢∗) 2𝜋�̅�∗𝑞(𝑟,𝑢∗). ( 35 ) 

Factoring out −2𝜋 and rearranging Equation 35 yields  
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 |𝑱| = −2𝜋 [𝑡𝑥(�̅�∗) ∫ (𝑥(𝑞𝑟𝑟𝑢+𝑞𝑢)𝑞(𝑟,𝑢∗)2 )�̅�∗0 𝑑𝑥 + �̅�∗𝑒𝑢(𝑟𝑎,𝑢∗)𝑞(𝑟,𝑢∗) ]. ( 36 ) 

To invoke the implicit function theorem to solve Equations 32 and 33 for �̅�∗ and 𝑢∗, |𝑱| ≠ 0.  We 

can conclude that |𝑱| < 0 from examination of both bracketed terms.  The notion that positive 

urban spatial area (the integral in Equation 33 is positive) necessarily leads to positive marginal 

commuting costs (𝑡𝑥 > 0 at the boundary) from the urban periphery, causes the first bracketed 

term to be positive.  As (�̅�∗, 𝑞(𝑟, 𝑢∗)) > (0,0), and 𝑒𝑢(𝑟𝑎, 𝑢∗) > 0 as expenditure must rise if the 

consumer attains a higher indifference curve, the second bracketed term is likewise zero.  Thus, 

we use the implicit function theorem to solve for �̅�∗(𝑦, 𝐿, 𝑟𝑎, 𝑡) and 𝑢∗(𝑦, 𝐿, 𝑟𝑎, 𝑡).  Total 

differentiation of the system yields: 

 𝑱 [𝑑�̅�∗𝑑𝑢∗] = [ 1 0 −𝑞(𝑟𝑎 , 𝑢∗) −�̅�∫ 2𝜋𝑥𝑞𝑟𝑟𝑦𝑞2�̅�∗0 𝑑𝑥 1 0 ∫ 2𝜋𝑥𝑞𝑟𝑟𝑡𝑞2 𝑑𝑥�̅�∗0 ] [ 𝑑𝑦𝑑𝐿𝑑𝑟𝑎𝑑𝑡 ] ( 37 ) 

We employ Cramer’s rule below to solve Equation 37 for the comparative statics 𝜕�̅�∗ 𝜕𝑦⁄ , 𝜕�̅�∗ 𝜕𝐿⁄ , 𝜕�̅�∗ 𝜕𝑟𝑎⁄ , and 𝜕�̅�∗ 𝜕𝑡⁄ . 

3.1 Consumer Incomes 

As consumer incomes rise, urban residents are able to attain a higher level of utility.  Thus, 

the model predicts that residents will prefer more housing space as incomes rise, moving outward 

from the CBD and expanding the urban area footprint.  Solving Equation 37 for the partial 

derivative of �̅� with respect to 𝑦 yields 

 𝜕�̅�∗ 𝜕𝑦⁄ = | 1 𝑒𝑢(𝑟𝑎,𝑢∗)∫ 2𝜋𝑥𝑞𝑟𝑟𝑦𝑞2�̅�∗0 𝑑𝑥 −2𝜋 ∫ (𝑥(𝑞𝑟𝑟𝑢+𝑞𝑢)𝑞2 )�̅�∗0 𝑑𝑥||𝑱| , ( 38 ) 
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which reduces to 

 𝜕�̅�∗ 𝜕𝑦⁄ = − 2𝜋|𝑱| (∫ (𝑥(𝑞𝑟𝑟𝑢+𝑞𝑢)𝑞2 )�̅�∗0 𝑑𝑥 + 𝑒𝑢(𝑟𝑎, 𝑢∗) ∫ 𝑥𝑞𝑟𝑟𝑦𝑞2�̅�∗0 𝑑𝑥) ( 39 ) 

 To determine the sign of 𝜕�̅�∗ 𝜕𝑦⁄ , we must examine the signs of the terms in parentheses, but as 

the first term is positive and the second is negative, the sign is ambiguous at this point.  Substituting 

the land rent function, 𝑟(𝑥; 𝑡, 𝑦, 𝑢), into Equation 26 yields the following identity: 

 𝑒( 𝑟(𝑥; 𝑡, 𝑦, 𝑢), 𝑢) ≡ 𝑦 − 𝑡𝑥 ( 40 ) 

Differentiating Equation 40 provides the following derivatives:40 

 𝑒𝑟𝑟𝑦 = 1    ⇒     𝑟𝑦 = 1𝑞 > 0 ( 41 ) 

 𝑒𝑟𝑟𝑢 + 𝑒𝑢 = 0     ⇒      𝑟𝑢 = − 𝑒𝑢𝑞 < 0 ( 42 ) 

 𝑒𝑟𝑟𝑡 = −𝑥    ⇒     𝑟𝑡 = − 𝑥𝑞 < 0. ( 43 ) 

Substituting 𝑟𝑦 and 𝑟𝑢 into Equation 39 yields. 

 𝜕�̅�∗ 𝜕𝑦⁄ = − 2𝜋|𝑱| (∫ − 𝑥𝑞3 (𝑞𝑟𝑒𝑢(𝑟, 𝑢) + 𝑞𝑢)𝑑𝑥�̅�0 + ∫ 𝑥𝑞3�̅�0 𝑞𝑟𝑑𝑥𝑒𝑢(𝑟𝑎, 𝑢)) ( 44 ) 

Noting that 𝑑𝑒𝑢 𝑑𝑥 = 𝑒𝑢𝑟𝑟𝑥 = 𝑞𝑢𝑟𝑥 < 0⁄  as rent declines with increased distance from the 

CBD, shows that 𝑒𝑢 is declining in 𝑥.  Therefore, after combining integrals below, 𝑞𝑟(𝑒𝑢(𝑟𝑎, 𝑢∗) − 𝑒𝑢(𝑟, 𝑢∗)) > 0, as 𝑒𝑢(𝑟𝑎, 𝑢∗) − 𝑒𝑢(𝑟, 𝑢∗) < 0 at all distances within the urban-

                                                 
40 Recall that 𝑒𝑟 = 𝑞 by Shephard’s lemma. 
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rural boundary.  With housing as a normal good, 𝑞𝑞𝑢 > 0 allows us to determine the sign of 𝜕�̅�∗ 𝜕𝑦⁄ , and we conclude that increases in residents’ incomes causes the city size to expand, or 

 𝜕�̅�∗ 𝜕𝑦⁄ = − 2𝜋|𝑱| (∫ 𝑥𝑞3 (𝑞𝑟(𝑒𝑢(𝑟𝑎, 𝑢∗) − 𝑒𝑢(𝑟, 𝑢∗)) + 𝑞𝑞𝑢)𝑑𝑥�̅�∗0 ) > 0. ( 45 ) 

3.2 Urban Population 

Along with increases income, it follows from Equation 33 that increases in population will 

increase the spatial area of the city, as well.  Solving Equation 37 for 𝜕�̅�∗ 𝜕𝐿⁄  yields 

 𝜕�̅�∗ 𝜕𝐿⁄ = |0 𝑒𝑢(𝑟𝑎,𝑢∗)1 −2𝜋 ∫ (𝑥(𝑞𝑟𝑟𝑢+𝑞𝑢)𝑞2 )�̅�∗0 𝑑𝑥||𝑱| = − 𝑒𝑢(𝑟𝑎,𝑢∗)|𝑱| > 0 ( 46 ) 

As shown above when determining the sign of Equation 36, 𝑒𝑢 > 0 and |𝑱| < 0.  Therefore, 𝜕�̅�∗ 𝜕𝐿⁄ > 0. 

3.3 Agricultural Land Rent 

As agricultural land rents increase, land developers face greater competition and will 

substitute taller building heights toward the city center for larger residential dwellings.  The model 

predicts that this substitution will cause the urban area footprint to contract.  We solve Equation 

38 for the partial derivative of 𝜕�̅�∗ 𝜕𝑟𝑎⁄ to obtain 

 𝜕�̅�∗ 𝜕𝑟𝑎⁄ = |−𝑞(𝑟𝑎,𝑢∗) 𝑒𝑢(𝑟𝑎,𝑢∗)0 −2𝜋 ∫ (𝑥(𝑞𝑟𝑟𝑢+𝑞𝑢)𝑞2 )�̅�∗0 𝑑𝑥||𝑱| , ( 47 ) 

which, with rearranging, becomes 
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 𝜕�̅�∗ 𝜕𝑟𝑎⁄ = 2𝜋 𝑞(𝑟𝑎,𝑢∗)|𝑱| ∫ (𝑥(𝑞𝑟𝑟𝑢+𝑞𝑢)𝑞2 )�̅�∗0 𝑑𝑥 < 0. ( 48 ) 

An increase in agricultural rents leads to a reduction in the urban spatial area as both the integrand 

and numerator outside the integral are positive and |𝑱| < 0. 

3.4 Transportation Costs 

As with agricultural rents, the model predicts that increases in transportation costs induce 

residents to favor smaller dwellings closer to the CBD over larger dwellings and longer commute 

times.  Finally, solving Equation 38 for the partial derivative of spatial area with respect to 

transportation costs yields 

 𝜕�̅�∗ 𝜕𝑡⁄ = | −�̅� 𝑒𝑢(𝑟𝑎,𝑢∗)∫ 2𝜋𝑥𝑞𝑟𝑟𝑡𝑞2 𝑑𝑥�̅�∗0 −2𝜋 ∫ (𝑥(𝑞𝑟𝑟𝑢+𝑞𝑢)𝑞2 )�̅�∗0 𝑑𝑥||𝑱| . ( 49 ) 

After rearranging, Equation 49 becomes 

 𝜕�̅�∗ 𝜕𝑡⁄ = − 2𝜋�̅�|𝐽| (∫ (𝑥(𝑞𝑟𝑟𝑢+𝑞𝑢)𝑞2 )�̅�∗0 𝑑𝑥 + ∫ (𝑞𝑟𝑟𝑡𝑞2 ) 𝑑𝑥�̅�∗0 𝑒𝑢(𝑟𝑎, 𝑢∗)). ( 50 ) 

To determine the sign of 𝜕�̅�∗ 𝜕𝑡⁄ , we follow a similar procedure to that which we used for 𝜕�̅�∗ 𝜕𝑦⁄ .  

Substituting 𝑟𝑡 and 𝑟𝑢 into Equation 50 yields 

 𝜕�̅�∗ 𝜕𝑡⁄ = − 2𝜋�̅�|𝑱| (∫ (𝑥(𝑞𝑟𝑒𝑢(𝑟,𝑢)+𝑞𝑢)𝑞3 )�̅�∗0 𝑑𝑥 − ∫ (𝑞𝑟𝑥𝑞3 ) 𝑑𝑥�̅�∗0 𝑒𝑢(𝑟𝑎, 𝑢∗)), ( 51 ) 

and rearranging provides 

 𝜕�̅�∗ 𝜕𝑡⁄ = − 2𝜋�̅�|𝑱| (∫ 𝑥𝑞3 (𝑞𝑟(𝑒𝑢(𝑟𝑎, 𝑢∗) − 𝑒𝑢(𝑟, 𝑢∗)))�̅�∗0 𝑑𝑥 + 𝑞𝑢) 𝑑𝑥 < 0. ( 52 ) 
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Twice differentiating the expenditure function with respect to 𝑢 and 𝑡 yields 𝑑𝑒𝑢 𝑑𝑡 = 𝑒𝑢𝑡𝑟𝑡 = 𝑞𝑢𝑟𝑡 < 0⁄ .  Because rent declines with increased commuting costs to the CBD, 

we determine that that 𝑒𝑢 is declining in 𝑡, which allows us to determine the sign in Equation 52, 

or that 𝜕�̅�∗ 𝜕𝑡⁄ < 0.
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Figures 

Figure 10: Graph of the Rent Function 

This figure graphs rent as a function of distance.  Rent, r, and distance, x, are represented on the vertical 
and horizontal axes, respectively. 
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𝑟 𝑟(0) 
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Figure 11: Graph of the Rent Function 

This figure graphs rent as a function of distance.  Rent, r, and distance, x, are represented on the vertical 
and horizontal axes, respectively.  The urban-rural boundary is denoted �̅�. 
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