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ABSTRACT 

Despite the nearly universal imperative to continuously improve processes, Shewhart-

stable time series are often ignored for improvement because of various generalized assumptions 

and “rules”, many of which are actually very context dependent.  The process control literature 

presents widely divergent views, including the extreme position that stable processes are 

completely random and therefore any further compensation (“tampering”) can only increase 

process variability.  The traditional reductionist approach to process improvement characterizes 

underlying factors using statistical variance measures, which has been very effective for unstable 

processes.  However, this approach, especially when it involves Shewhart control charts, is 

generally much less effective for directing the improvement of stable time series, often resulting 

in a transition to passive monitoring to await a special cause of variation.  A model-free strategy 

founded upon information theoretic quantifiers was researched to instead develop an emergence-

based perspective for stable process improvement.  Jensen-Shannon complexity was mapped 

temporally with permutation entropy to reveal structural patterns of order that could direct 

further improvement, challenging the notion of tampering.  Stable processes disclosed 

informative nonrandom structure corresponding with relative degrees of randomness, also 

challenging the notion of a constant system of “chance causes.”  In the future, similar 

emergence-based methods could provide a useful supplement to reductionist methods during the 

improvement of virtually all types of processes. 

Keywords:  process improvement, Jensen-Shannon complexity, quality control, stable 

process, permutation entropy, emergence 
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CHAPTER ONE:  INTRODUCTION 

This research was designed to address a common problem associated with Shewhart-

stable time series processes.  That is, despite the universal imperative that process improvement 

should be conducted continuously, this guidance is often ignored when a process is Shewhart-

stable.  This happens because of three common interconnected perceptions.  First, the level of 

randomness associated with stable processes is generalized to be completely due to a constant 

system of “chance causes”, which implies that the process can reveal little to no useful 

information.  Second, since a stable process is considered random, any attempt to improve it can 

only make things worse.  Third, since attempted improvements can only make things worse, 

other methods beyond control charts that might proactively guide the continued improvement of 

stable processes are often abandoned.  Standard control charts provide little useful insight into 

the low-dimensional dynamics at play within a process that remains Shewhart-stable (Wheeler, 

2010, May 5&6).  Therefore, a stable process is often simply monitored to await the next unusual 

variance event. 

The statistical process control literature does not help to resolve this problem.  Widely 

divergent views are expressed regarding the improvement of Shewhart-stable processes.  It is 

common to find the extreme position that any additional compensation is “tampering”, which can 

only increase process variability.  Slightly less extreme perspectives offer that some minor 

tweaking may be okay, but nonetheless, any effort short of a “fundamental” change to the 

process will inevitably be uneconomical, a waste of time, and lead to frustration.  A 

“fundamental” change is often characterized as significant re-engineering of the process, to 

include advancements like incorporating new equipment, new procedures, new materials, etc.  
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This decision is not taken lightly because the incorporation of these changes is considered likely 

to set processes back to Shewhart-instability, which can have expensive effects on process 

outcomes. 

One of the perceived shortcomings of Shewhart control charts is the faulty assumption of 

process stationarity.  It is well known that the process mean will continuously wander to some 

degree, even for a stable process (Bisgaard, 2008; Box & Paniagua-Quiñones, 2007).  The effect 

can be mitigated somewhat by various methods, but the central problem involves awareness and 

compensation for dynamics that are constantly changing for a time series.  This problem has 

become especially acute with the ubiquitous incorporation of high-rate in-process sensors, 

causing some practitioners to advocate the abandonment of control charts altogether (Gunter, 

1998).  New insights into process dynamics could advance the state of the process control 

practice. 

Therefore, this research incorporated a review of diverse extant methods that have been 

employed to reveal causal dynamics for stable processes- without focusing on control charts.  

This review revealed that the traditional approach to process improvement usually seeks some 

form of partition for underlying factor dynamics as either signal or noise using measures of 

statistical variance.  This has proven to be very effective for Shewhart-unstable processes.  

However, this approach has generally been much less effective to direct the improvement of 

Shewhart-stable processes, in part because signals are more difficult to discern when processes 

are Shewhart-stable.  Since stable process performance tends to be relatively consistent, further 

improvement can seem challenging and the return on investment for such efforts can sometimes 
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seem trivial.  The result is therefore often a transition from active improvement to passive 

process monitoring with control charts. 

A paper by Georgantzas & Orsini (2003) explored new territory in Shewhart-stable 

process improvement by employing system dynamics fundamentals to evaluate the traditional 

funnel experiment.  Ultimately, the unique insights from this paper helped to define a strategic 

path for the research herein.  Most of the other reviewed methods employed reductionist 

approaches to improve Shewhart-stable processes.  The Georgantzas & Orsini paper instead 

relied on emergence-based insights from system dynamics.  In consequence, a strategy was 

similarly developed for this dissertation to further explore emergence–based process 

improvement for Shewhart-stable processes by applying Shannon information and structural 

complexity measures.  This research used empirical data collected from improved stable 

processes to answer the question:  Can a methodology based on emerging structural complexity 

provide information useful to direct the continued improvement of a Shewhart-stable process? 

To begin to answer this question, model-free permutation entropy methods were applied 

to various types of time series processes.  However, Shewhart-stable processes were especially 

affected by shortcomings associated with identical values within permutation entropy tuples.  

Therefore, methods developed to mitigate this issue were reviewed in the literature.  None of 

these methods were ideal, and so a different approach that incorporates the local effect of each 

tuple was investigated and validated for use in this research.  Named the permutation entropy-

local effect (PE-LE) method, its application provided evidence that all processes, including 

Shewhart-stable processes, are comprised of inconstant systems of chance causes.  Instead of 

continuing to accommodate the blanket assumption of stable process randomness, this research 
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instead determined the varying levels of nonrandom dynamics at play.  Improvements that were 

intended to reduce process variation could thus be evaluated in terms of changing process 

homogeneity and uncertainty.  The assessment of two highly stochastic processes also supported 

the conclusion of the Ramsey theory that no process is absolutely random. 

The application of permutation entropy to evaluate process randomness was an important 

intermediate procedure, but it did not directly characterize emerging structural dynamics to 

answer the research question.  So, the Martin-Plastino-Rosso (MPR)-method was evaluated for 

its provision of insights associated with structural complexity.  The MPR-method applied 

probabilistic assessments of time series using permutation entropy and disequilibrium to arrive at 

measures of Jensen-Shannon complexity.  When coupled with normalized Shannon entropy 

measures, processes could be compared equitably via relative positions on the Complexity-

Entropy Causality Plane developed by Rosso et al. (2007).  Results confirmed that Jensen-

Shannon complexity measures disclose informative structural patterns that can be causally 

correlated with improved Shewhart-stable processes, thus answering the research question. 

Although these results were sufficient to answer the research question, a potentially 

useful extension was also investigated for its capability to provide additional insights into 

continually evolving process dynamics.  Named the Entropy-Complexity Change Diagram, it 

was designed to reveal how the structural complexity of a process changed in time relative to the 

maximum randomness condition for an equivalent time series.  The visualization of decreasing 

relative structural complexity was correlated with the continued improvement of empirical 

Shewhart-stable processes. 
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Future research could further extend these emergence-based methodologies to direct 

continued process improvement.  The PE-LE method could be improved, or may at least 

stimulate similar ideas to mitigate identical values within permutation entropy tuples.  With the 

appropriate automation, algorithms could be developed to track structural complexity in near real 

time for virtually any kind of time series process.  Similar methods could also be applied as a 

supplement to existing reductionist statistical methods to ultimately improve the practice of 

process control. 
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Research Question 

Can a methodology based on emerging structural complexity provide information useful 

to direct the continued improvement of a Shewhart-stable process? 

 

 

Figure 1.  Complexity quote illustration.  From Dan Hamilton Art, http://www.danhamiltonART.com.  
Copyright © 2020 by A.D. Hamilton.  Reprinted with the permission of author.  All rights reserved. 

 

http://www.danhamiltonart.com/
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Research Objectives 

This research was exploratory, quantitative, and applied, and was guided by four 

objectives related to answering the research question.  The first objective was to evaluate 

existing methods that have already been employed to improve Shewhart-stable processes to 

determine how emergence-based improvement might be developed to potentially complement 

these methods.  Results are provided in the first two parts of the Literature Review section. 

The second objective was to gather data from a highly-controlled, Shewhart-stable, 

incrementally-improved process to ensure that methods were tested and developed using 

empirical data applicable to real world process improvement scenarios.  To support this 

objective, four experiments were conducted using vertical translation of a funnel, as described in 

the Methodology section. 

The third research objective was to determine whether an information-theoretic method 

could measure degrees of randomness for Shewhart-stable processes, thereby quantifying 

ongoing nonrandom dynamics.  This research would test the blanket assumption that stable 

processes are comprised a constant system of “chance causes”.  Results are presented in the 

Process Randomness Study section of the Findings. 

The final objective was to determine whether a chosen quantifier of structural complexity 

could direct the improvement of Shewhart-stable time series processes.  While investigating 

permutation entropy as an underlying measure, it became apparent that the method to mitigate 

identical values within tuples was going to be an important consideration for this research.  As a 

consequence, a method based on local effect within tuples was developed, which then created a 
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sub-objective to characterize and validate this method.  The MPR-method was selected to 

develop the structural complexity quantifier, but while investigating the evolution of Jensen-

Shannon complexity, it also became evident that processes change in different ways relative to 

equivalent random time series.  Therefore, a method based on log change calculations was 

explored, yielding another sub-objective to characterize the Entropy-Complexity Change 

Diagram. 

 

Research Problems 

 The problem that motivated this research was the abandonment of Shewhart-stable time 

series for continuous process improvement.  To better characterize the problem, this section 

explores the reasons that process monitoring often takes the place of process improvement.  This 

section will also delve into some of the most questionable and conflicting perceptions that 

perpetuate this problem.  The first assumption to be explored is the characterization of stable 

processes as constant systems of chance causes.  The second is associated with the predictability 

of stable processes.  The third section will explore the ubiquitous rules that are frequently offered 

using absolute terms “always” and “never”, regarding stable processes.  The final section will 

explore differing perceptions about how best to evaluate the dynamics of stable processes. 

In the course of this research, an unanticipated issue motivated the investigation of an 

additional research problem.  That is, permutation entropy was found to suffer from limitations 

associated with identical values in tuples, requiring the determination of a countermeasure.  The 

second part of this section will briefly introduce this additional research problem. 
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Abandonment of Stable Process Improvement 

In the practice of statistical process control, Shewhart-stable time series processes are 

often ignored for improvement, despite the nearly universal mandate that improvement should be 

a continuous effort.  This happens because stable processes are often generalized to be caused by 

a constant system of chance causes, which implies that any additional compensation 

(“tampering”) can only increase process variability.  Since many process owners accept this 

generalization at face value, they simply don’t consider other methods that might proactively 

guide the continued improvement of stable processes.  The common paradigms associated with 

randomness, control limits and predictability can be very context-dependent, which contributes 

to widely divergent perceptions in the process control literature.  The majority of these 

perceptions are useful when actually attributed to specific contexts, but the ubiquitous promotion 

of absolute, generalized rules continues to remain problematic.  Some practitioners have thus 

decided to abandon control charts altogether and instead focus on diagnosis and continuing 

performance improvement by other means.  Examples of these methods and various factors 

contributing to this research problem are presented in more detail in the next four sections. 

 

The Chance Causes Assumption 

The idea that stable processes are characterized by a constant system of chance causes 

probably started when Dr. Walter Shewhart (1931) published Economic Control of Quality of 

Manufactured Product.  His definition of process control required: 
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1. “That a controlled quality must be variable quality”, and 

2. That it must demonstrate, “constant variability within limits” (p.6). 

 

He also stated that, “…any unknown cause of a phenomenon will be termed a chance 

cause” (p.7), and postulated that, “Constant systems of chance causes do exist in nature” (p.12).  

Shewhart offered a distinction between nature and production systems when he stated, “...in the 

majority of cases there are unknown causes of variability in the quality of a product which do not 

belong to a constant system” (p.14), which he called assignable causes.  Many practitioners 

instead call these special causes today, and the remaining “chance causes” are instead called 

common causes.  Following Shewhart, practitioners often consider stable processes, with only 

common causes of variability, to be constant systems of variability or randomness (chance 

causes). 

Practitioners have often embraced these original ideas to further expound the absolute 

randomness of Shewhart-stable processes.  One of the more influential proponents and a close 

associate of Dr. Shewhart was Dr. W. Edwards Deming.  In The Team Handbook, written by 

Scholtes, et al. (2003) Deming stated: 

A stable process, one with no indication of a special cause of variation, is said to be, 

following Shewhart, in statistical control or stable with respect to the quality-

characteristic measured.  It is a random process.  Its behavior in the near future is 

predictable. (p.2-15) 
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Then, a few paragraphs later: 

A system may be stable, yet turn out faulty items and mistakes.  To take action on the 

system in response to production of a faulty item or a mistake is to tamper with the 

system.  The result of tampering is only to increase in the future the production of faulty 

items and mistakes, and to increase costs- exactly the opposite of what we wish to 

accomplish (p.2-15). 

 

In many of Deming’s books and lectures, he repeatedly demonstrated the concepts of 

tampering and randomness in stable processes through two experiments.  For Deming’s (1994) 

red bead experiment, 800 red beads were mixed with 3200 white beads, and blindfolded 

participants withdrew samples of 50 beads with the stated goal to withdraw only white beads.  

Naturally, they failed.  A key objective was to demonstrate the futility and invariably negative 

consequences of trying to manipulate a process that is based completely on randomness (Chapter 

7). 

In Deming’s (1986) traditional funnel experiment, which he attributed to Dr. Lloyd S. 

Nelson (p.327), 50 marbles were dropped through a funnel maintained at a fixed height above a 

point target.  The resting place of each marble was marked.  Then, three different rules for lateral 

translation of the funnel were tried to compensate for the variation around the target.  For all 

three rules, the variation increased compared to leaving the funnel alone.  A key objective was 

again to demonstrate the futility and invariably negative consequences of trying to improve a 

process that is based completely on randomness (Chapter 11).  Unfortunately, the foreseeable 

results of these two experiments have been widely generalized to represent any and all stable 
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processes, regardless of the context.  It is often simply assumed that the factors contributing to 

variance must be essentially random or else the process would not remain stable. 

Dorian Shainin provided essentially the opposite perspective.  In an October, 1994 

interview (ReVelle Solutions LLC, 2015, September 8), Shainin stated, “Nothing happens 

without a reason in this world, and it’s not 10 things at once, or 15 things.  It’s not common 

causes.  It’s not things at random.  It’s a single interaction or main effect.”  He then presented a 

slide with the following phrase:  “Axiom #1:  Nothing in manufacturing is RANDOM (equally 

likely)”.  He followed this by commenting, “In fact, the only thing that’s random in this world is 

a table of random numbers, artificially made that way by humans, in order to have the 

probabilities come out equal” (26:10-27:40).  In agreement with his father’s earlier sentiment, 

Richard Shainin (2012) wrote, “Even when a system meets the Shewhart standard of equilibrium 

(all common cause), there is always one cause-effect relationship whose contribution to variation 

is stronger than the others” (p.174). 

Interestingly, despite Deming’s positions on randomness and tampering, he was also an 

enthusiastic proponent, particularly in Out of the Crisis, for, “…the necessity to reduce 

constantly the variation from common causes” (p.136).  Yet this position was essentially at odds 

with some of Shewhart’s (1931) writings such as, “When a phenomenon has been shown to 

exhibit control, we have likely gone about as far as we can in detecting the existence of 

assignable or discoverable causes by standard tests” (p.159).  This conflict will be addressed in 

greater detail in the Literature Review section.  The Findings section will also reveal evidence 

from this research that is contrary to the common generalizations of randomness for Shewhart-

stable processes. 
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The Predictability Paradigm 

Many, and perhaps most, practitioners also consider Shewhart-stable processes to be 

predictable.  But again, there are context-dependent exceptions.  Shewhart’s (1931) initial 

teachings provide support for this idea:  “A phenomenon will be said to be controlled when, 

through the use of past experience, we can predict, at least within limits, how the phenomenon 

will vary in the future” (p.6).  And: 

…to glean what we can about the workings of unknown chance causes which are 

generally acknowledged to be controlled in the sense that they permit of prediction within 

limits.  Perhaps no better examples could be considered than length of human life and 

molecular motion” (p.8) 

 

Shewhart’s reference to prediction based on perceived natural limits is certainly not a 

new concept.  Ancient astronomers predicted the relative motions of the moon and planets based 

on observations of the limits of travel of these bodies over time (Wright, 2002).  In developing a 

theory of color in the early 1800’s, Johann Wolfgang von Goethe wrote that, “With light poise 

and counterpoise, Nature oscillates within her prescribed limits, yet thus arise all the varieties 

and conditions of the phenomena which are presented to us in space and time” (Matthaei, 1971).  

Problems arise when comparing such natural limits, based upon empirical observation, with 

Shewhart’s (1931) method for determining control limits.  This concern generally arises because 

his criteria for establishing 3-Sigma limits were also based upon a subjective personal view of 

economic correlations.  Since Shewhart’s basis for establishing control limits has repeatedly 
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been questioned, the assessment of process predictability based upon these limits has also been 

questioned.  This will be discussed in greater detail in a different context shortly. 

When authors attempt to associate predictability with absolute randomness, another 

context-dependent problem arises because absolute randomness is physically unachievable 

(Kosko, 2006, p.66), in compliance with the Ramsey theory (Motzkin, 1967; Prömel, 2005; 

Stillwell, 2010).  It is an unrealistic idealization to insist that none of the process components 

(factors) interact, or if they do, that all of their interactions remain perfectly balanced.  Instead, 

accepting that no process is truly random means that nonrandom dynamics will necessarily be 

hidden in the noise, causing some factors and interactions to have more influence than others.  

The assessment of predictability can thus become a problem of understanding the extent and 

influence of nonrandom dynamics. 

Conclusions about nonrandom dynamics and predictability can also depend upon the 

level of process observation.  Contrary to Shewhart’s focus on underlying chance causes, stable 

process predictability can also be characterized from a macro-level perspective in terms of 

emergent process behaviors that are not discernable from lower-level details in isolation.  

According to Waldrop (1992), it is possible to understand emergence-based processes yet not be 

able to make reliable predictions about them (p.306).  Additionally, some chaotic processes are 

stable with macro-level behavior that is deterministic, yet these chaotic processes are 

unpredictable and very sensitive to initial conditions (Boeing, 2016).  Processes can be 

Shewhart-stable, yet represent systems that have been known to reveal chaotic behaviors, 

including machinery (Litak et al., 2009; Priesmeyer, 1992; Redelico et al., 2017), production 
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systems (Deshmukh, 2003; Sajid et al., 2015), and chemical reactions (Eiswirth, 1993; Elnashaie, 

2006). 

Depending upon the research, it is also possible to evaluate process behavior at the 

micro-level view.  In this context, a random process can be considered the least predictable 

process.  For instance, consider the physical analogy wherein the position of one particle is being 

tracked within the volume of an ideal gas:  If the position of all of the particles was perfectly 

random, then the position of the particle of interest would be perfectly unpredictable.  A pdf 

representing all of the particles in this perfectly random system would be a uniform distribution.  

At the opposite extreme, the most predictable process would present only one possible answer, 

such as the position of a particle within an ideal crystal.  Because its position is perfectly fixed 

(zero randomness), its position is perfectly predictable.  A pdf of this system would show one 

state at unity and the remaining states at zero. 

The contrary perspectives and paradigms elucidated in this section provide support for 

the idea that context can make a significant difference when characterizing processes and 

planning for process improvement.  Similar characterizations of varying frames of reference will 

be discussed in the next section, but with a focus on generalized rules. 

 

Rules, Instead of Tools 

When Shewhart-stable processes are discussed in the process control literature, it is often 

in terms of control chart monitoring.  Given this control chart-centric frame of reference, the 

focus often switches from proactive process improvement to specifying limitations.  In general, 
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the presentation often reverts to rules, instead of tools.  If continuous process improvement 

remained the goal, the emphasis could simply shift to alternative techniques, new contexts, and 

new paradigms.  But instead, guidance laden with absolute adverbs usually pervades, sometimes 

beginning to resemble irrefutable laws of science.  Comments similar to those in Figure 2 are 

ubiquitous in the literature. 

 

Figure 2.  “Rules” associated with Shewhart-stable processes. 
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To be sure, each of these pronouncements about stable processes is true in a great many 

contexts, especially when the perspective is artificially restricted to one variety of control chart.  

Yet, none of them is always true, all of the time.  Given this perspective, these rules could be 

considered a deterrent to progress.  Perhaps the only absolute statement that can actually 

withstand the test of time is this:  Absolute statements are always wrong in some context.  

Greater acknowledgement of this reasoning would encourage guidance incorporating specific 

context, instead of absolute rules based on assumptions and sweeping generalizations.  This 

especially includes the pernicious position that improvement of a stable process always 

represents tampering.  It would be more productive to consider the diverse methods that have 

proven effective for improving Shewhart-stable processes, as will be presented in the Literature 

Review section. 

Numerous other problems arise from painting Shewhart-stable processes with such broad 

brushes.  For example, Shewhart’s (1931) basis for establishing the control limit rule of 3-Sigma 

to differentiate unstable from stable process behavior was somewhat subjective.  Although he 

referred extensively to statistical principles and Chebyshev’s theorem to substantiate his logic, he 

essentially determined through experience that, “…3 seems to be an acceptable economic value” 

(p.277).  Decades earlier, Karl Pearson preceded Shewhart (without reference to economics), 

stating, “take 3σ as definitely significant” (Gosset, 1906), perhaps lending some credence to the 

basis for this rule.  Although this 3-Sigma definition for control limits has unquestionably 

facilitated unstable process improvement over the years, its value has also been questioned in 

numerous process control situations (Woodall & Faltin, 2019).  Despite Deming’s (1986) 

creative index entry:  “Modified limits, never” (p.501), a number of authors have advocated 
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context-dependent alternatives, which will be presented in greater detail in the Literature Review 

section. 

 

Evaluating Stable Process Dynamics 

The constant flows of energy, matter, and information in physical systems means the 

relationships between all of the factors operating on the system are constantly changing.  It is 

commonly stated in the process control literature, such as Box & Luceño (1997) and Hindle & 

Wheeler (2017), that processes will not stay stable long, thanks to entropy.  It would be difficult 

to deny such sentiment, since this tendency toward disorder actually is a law of science (the 2nd 

Law of Thermodynamics).  Mechanical parts will wear down over time, human service-providers 

will become tired or complacent, environmental factors will deviate from optimal conditions.  

Wheatley (1999) said, “If we want progress, then we must provide the energy to reverse decay” 

(p.19).  The conundrum in the practice of process control is how to apply energy to most 

effectively leverage this awareness of constant change. 

Process improvement efforts have traditionally taken a reductionist approach, attempting 

to isolate factors from each other statistically so their individual contributions (and interactions) 

to the whole may be better understood.  However, problems can arise when these methods are 

used to evaluate stable processes.  For example: 

 Assumptions about process stationarity are generally wrong, even for stable processes 

(Box & Paniagua-Quiñones, 2007). 
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 Contributions to statistical variance can stem from initial conditions, intrinsic aspects of 

the process, environmental influences, and combinations of all three, which can be 

challenging to isolate and identify. 

 Empirical insight into the underlying process dynamics can be inaccessible for a variety 

of reasons, such as insufficient measurement resolution. 

 The dynamics of an ongoing process can change considerably by the time designed 

experiments are completed, limiting their relevance. 

 

Nevertheless, this research assumed that all process behavior is caused, that it should not 

be generalized away to “randomness”, and that new paradigms can be leveraged to continuously 

pursue process improvement.  In a relevant lecture entitled, There’s No Such Thing as a Common 

Cause, Pyzdek (1990) proclaimed:  “Unexplained variation in a process is really just a measure 

of our level of ignorance about the process” (p.104).  Also, Henri Poincare (1908) dedicated an 

entire book chapter entitled “Chance”, presenting similar sentiment (Chapter 4). 

The solution proposed in this research is that all physical processes possess a varying 

mixture of randomness and nonrandomness at all levels.  Instead of assuming i.i.d. or perfect 

randomness for stable processes, this research evaluated methods to quantify the changing level 

of randomness for each process, to better direct improvement efforts.  Instead of attempting to 

isolate the effects of individual factors for a stable process, the approach embraced in this 

research studied the overall effects of all interactions simultaneously. 

Contrary to the reductionist approaches that attempt to partition signals and noise, this 

emergence-based approach leveraged the enduring constancy of change in processes by mapping 
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the temporal and causal evolution of processes, which concurrently facilitated useful 

comparisons among diverse processes.  It was evident that even stable processes reveal 

constantly changing patterns of order and disorder over time at the system level, which can be 

correlated with process improvements.  Measures of Jensen-Shannon complexity provided 

tracking of nonrandom structural dynamics as process states evolved. 

Additionally, the accumulated flows of process information were measured 

probabilistically over time with permutation entropy.  However, the traditional permutation 

entropy methodology suffered from limitations associated with identical values in tuples.  Thus, 

numerous methods to mitigate this problem were considered, yielding the development and 

validation of a solution.  An overview of this unanticipated research problem is provided next. 

 

Mitigation of Identical Values in Tuples 

In their seminal paper establishing the permutation entropy method, Bandt & Pompe 

(2002) first identified the problem of identical values in tuples.  They believed their method 

would work well as long as the same value did not appear within a tuple (an introductory 

explanation is provided below).  Fortunately, such equal values are relatively rare in continuous 

series.  However, equal values are typical in discrete series data, and discrete series are common 

with the ubiquitous digitization of data streams.  Because Shewhart-stable processes demonstrate 

relatively low variability, they are naturally more affected by this problem than Shewhart-

unstable processes. 
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A simple introduction to the problem is provided here for the unfamiliar reader.  The 

Methodology section provides a more detailed description.  Start by encoding the first group of 

D consecutive numbers in a time series based on their relative amplitudes.  For this example, 

assume the number of values in a tuple (the embedding dimension) is D=3.  Then jump τ 

numbers to the right and start over.  For this example (and all of this research), each jump to the 

right (time lag) was τ = 1.  Continue this process iteratively in real time or to the end of the 

recorded time series. 

Each tuple will represent one of D!=6 possible distinct symbols, as shown graphically in 

Figure 3.  Possible distinct tuples are Ω3 = {(012)(021)(102)(120)(201)(210)}, presented in the 

same order as in the figure.  Note that none of these symbols account for an equal value within a 

tuple, which would look like, for example, (001) or (101), and herein lies the problem.  The 

ultimate question has been, “What is the best way to account for identical values within a tuple 

that will minimize the erroneous representation of emergent process dynamics?” 

 

 

Figure 3.  Distinct permutation tuples for embedding dimension D=3.  From Classifying Cardiac 

Biosignals using Ordinal Pattern Statistics and Symbolic Dynamics by Parlitz et al.  Copyright © 2012 by 
Elsevier.  Reprinted with the permission of Elsevier.  All rights reserved. 
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Bandt & Pompe recommended adding small amplitude noise to break the identical 

values.  This dithering can actually improve the information throughput for some nonlinear time 

series via stochastic resonance (Kosko, 2006, p.149).  However, in a paper published on the topic 

15 years later, Zunino et al. (2017) stated that, in practice, this addition of noise (also known as 

random imputation), “has been rarely implemented” (p.1883).  Additionally, Traversaro et al. 

(2018) pointed out that adding noise may fix one problem but add others:  “Random imputation 

may overestimate the entropy, as it adds random noise to the series, and masks forbidden 

patterns by inducing those missing patterns to appear, concealing this dynamical property 

characteristic of chaotic dynamics” (p.075502-8). 

Many methods have been devised to handle identical values within permutation entropy 

tuples, as presented in the Literature Review section.  However, every method reviewed is 

perceived by other researchers to possess some sort of shortcoming, and there is little agreement 

on the ideal method to address the problem.  Given the diversity of new methods proposed, this 

appears to be a fairly active area of research.  Because the research herein was focused on 

applying permutation entropy to stable processes, the identical value problem was a very 

significant consideration.  As a consequence, a method based on “local effect” within tuples was 

researched, validated, and applied to mitigate identical values for all processes evaluated in this 

research. 

This Permutation Entropy- Local Effect (PE-LE) method is presented in detail in the 

Methodology section.  Briefly, it is based on the local effect of relative amplitudes within tuples 

in concert with an existing method involving “statistically complete” parsing.  This parsing 

removed from the analysis a varying percentage of tuples that were problematic (non-pattern 
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following), based upon unique process characteristics such as measurement resolution and the 

corresponding quantity of distinct values in the series.  Although the PE-LE method presented 

certain improvements, especially for low-dimensional stochastic processes, it was certainly not 

the ultimate fix.  Indeed, two inherent shortcomings were immediately known before even 

starting the validation.  However, PE-LE appeared to be comparable in some ways to existing 

methods, and may provide fertile ground along the path to eventually developing a more perfect 

solution. 

 

Research Gaps 

No literature was discovered that: 

 Applied the vertical funnel experiment to accumulate stable process data. 

 Applied structural complexity to continuously improve Shewhart-stable processes. 

 Applied Jensen-Shannon complexity to continuously improve Shewhart-stable processes. 

 Applied local effect to accommodate identical values in permutation entropy tuples. 

 Simultaneously displayed changing structural complexity and entropy based on log 

change evaluations that were relative to the maximum randomness condition for an 

equivalent time series. 
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Methodology Overview 

The Methodology is presented in six sections.  The first part presents an overview 

including a flowchart and a simplified list of steps used to accomplish the analyses.  The next 

section presents the data collection and validation effort associated with the four vertical 

translation funnel experiments.  Then, the methods used to acquire or develop the data for 18 

other process is presented.  This is followed by the data visualization plan, which consisted of 

four primary display techniques.  The next section provides the detailed theoretical background 

and associated mathematical computations applied in this research for information-theoretic 

quantifiers.  The final section reveals the method developed for log change evaluations. 

 

Findings Overview 

Five interrelated sections of results were presented in the Findings.  First, the results for 

the four vertical translation funnel experiments were presented.  Specifically, the first three 

experiments were identified as Shewhart-stable, improved, and the last as Shewhart-unstable, 

improved.  Next, a brief process randomness study provided evidence for differing levels of 

randomness associated to Shewhart-stable processes and supported the position that absolute 

randomness is an idealized impossibility. 

The third section focused on validation of the PE-LE method.  Three axioms for 

permutation entropy methods were developed and tested using different process types, showing 

promising results.  Comparisons were then made with a published study that applied the time-
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ordered imputation method.  PE-LE appeared to more accurately represent the probability space 

by visual inspection for two stochastic processes in specific situations.  The measurement 

resolution effect was then characterized, with results supporting the assumption that 

measurement resolution could be applied to tailor and fine-tune an analysis based on research 

goals.  In general, at lower measurement resolutions, beneficial trade-offs could be made if the 

quantity of distinct values can be optimized.  Finally, numerous shortcomings were elucidated 

for the PE-LE method. 

The next section provided PE-LE results for all of the processes evaluated in this 

research.  These results consisted of pdfs for the PE-LE tuples at D=4 and counts/ densities based 

on local effect.  This section provided reference support for later sections that made comparisons 

among these processes. 

The fifth section focused on answering the research question by evaluating Jensen-

Shannon complexity in various ways.  Fundamental conclusions were supported by applying the 

Martin-Plastino-Rosso (MPR)-method to PE-LE results to display processes on the Complexity-

Entropy Causality Plane (CECP).  Decreased structural complexity and increased randomness 

corresponded with greater improvement to Shewhart-stable processes.  A number of other 

process types were also displayed simultaneously on the CECP to provide more insight into the 

utility of this technique. 

To explore relative change dynamics, time series results were then compared to 

maximally random equivalent time series.  This normalization procedure was designed to allow 

equitable comparisons between very different processes while providing insight into how levels 

of randomness and complexity change over time.  The log change method was applied to create 
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“change charts” for normalized Shannon information and Jensen-Shannon complexity that 

displayed ongoing changes relative to a theoretical absolute randomness baseline.  The three 

improved Shewhart-stable funnel experiments revealed similar patterns by turning toward 

decreased relative structural complexity corresponding with continued improvement.  Various 

other processes were also evaluated to better characterize this methodology.  Results emphasized 

the importance of applying the appropriate measurement resolution based on research goals 

when PE-LE is the underlying mechanism. 

The results for both change charts were then combined to simultaneously display results 

on the Entropy-Complexity Change Diagram (ECCD).  After plotting numerous process types, 

results suggested that improving processes migrate toward the origin, which represents 

maximum theoretical randomness and decreasing relative structural complexity.  However, it 

was also discovered that many processes require the analysis of many thousands of tuples before 

their values stabilized.  These results might find utility in future research, as discussed in the 

final section in the Findings. 

 

Research Contributions 

This research provided evidence to dispel the assumptions that Shewhart-stable processes 

should be represented as constant systems of chance causes and that improvement of Shewhart-

stable processes always represents tampering.  Evidence was also provided to support the 

conclusion that perfect randomness is an idealized impossibility. 
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However, probably the most significant contribution was associated with answering the 

research question regarding the application of structural complexity to direct the improvement of 

Shewhart-stable processes.  Three techniques based on structural complexity displayed patterns 

corresponding with levels of process improvement:  The Complexity-Entropy Causality Plane, 

the �̃�𝐽𝑆 change chart, and the Entropy-Complexity Change Diagram. 

The Complexity-Entropy Causality Plane provided the most robust characterization of 

stable process improvement.  However, with the appropriate software coding and 

sensing/measuring of process characteristic, the Entropy-Complexity Change Diagram (ECCD) 

could also provide near real time dynamic viewing of simultaneous changes in process 

randomness and structural complexity.  Either diagrammatic technique could be used to monitor 

processes for unanticipated changes or for cause-and-effect analyses associated with intended 

process improvements, even for stable processes.  Numerous processes could also be viewed 

simultaneously on the same plot to explore potential correlations. 

Another research contribution involved the mitigation of identical values in permutation 

entropy tuples.  Depending on the number of distinct values, stable processes can be especially 

prone to the appearance of identical values.  Although imperfect, the PE-LE method employed in 

this research seemed to provide certain advantages when applied with an appropriate 

measurement resolution, in part by including more causal information in the analysis than some 

other methods.  It is hoped that the PE-LE method developed in this research can be improved 

upon, or at least that it might stimulate similar ideas, as experts in this field continue to advance 

mitigations for identical values within tuples. 
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Finally, the vertically translated funnel experiments were applied to study Shewhart-

stable processes.  Perhaps this reliable empirical methodology will find utility beyond this 

research effort.  Although Shewhart-stable processes were the focus of this research, the 

investigated information-theoretic, emergence-based techniques could direct continued process 

improvement in near real time for virtually any kind of ongoing time series process.  Similar 

methods may find utility as a supplement to existing reductionist statistical methods, especially 

for near real time tracking of evolving time series processes. 

 

Caveats and Unique Terminology 

Some of the information theory terminology used in this dissertation is fairly unique, 

especially for a reader accustomed to topics in process control.  Therefore, these terms are 

described up front, to hopefully alleviate confusion.  At the same time, the target audience is a 

reader reasonably aware of SPC fundamentals and it would be inefficient to provide excessive 

background information.  Hence, in addition to terminology clarifications, certain caveats are 

also included below. 

Process Control- It is assumed throughout this manuscript that the reader has an 

intermediate level of SPC knowledge, especially regarding control charts and the lateral funnel 

experiment.  Both of these topics are already well-developed and neither was the focus of this 

research.  However, both are discussed and control charts were applied for a portion of the funnel 

experiment analysis.  As such, the equations for XmR charts have been provided in the 

methodology section and a cursory overview has been provided at the end of this introduction 
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section.  Readers that need to dig deeper will find a great number of accessible resources.  

Popular books include Ott, et al.’s Process Quality Control (2000) and Wheeler’s Understanding 

Variation (2000). 

Stable Process- The notion of a stable process has numerous meanings in various 

contexts.  In probability theory, a stable process is a certain type of stochastic process, defined by 

a family or distribution of random variables.  Brownian motion and the Wiener process are 

examples of such stochastic processes.  This assumption of near perfect randomness is too 

limiting for the research herein, which is intended to be applicable to the kind of high-rate time 

series processes that can be expected in say, chemical production or on a manufacturing line.  A 

stable time series process in this context will have continuously varying degrees of randomness 

to include occasional outliers that momentarily exceed three standard errors of variation from the 

process mean (or median).  Hence, the meaning of “stable” that is intended throughout this 

dissertation is specifically “Shewhart-stable” with respect to control chart applications. 

To avoid overly pedantic and restrictive interpretations of process stability, this research 

assessed Shewhart-stability in terms of a stability ratio presented by Ramirez & Runger (2006). 

According to Ramirez (2017), the benefits of this method include the capability to, “Develop a 

more objective and consistent way to determine if a parameter is in a state of statistical control 

[and] evaluate the process stability in hundreds of a parameter in an efficient manner” (p.3).  

Also important:  Whenever the word “stable” is used alone in this text, Shewhart-stable is still 

implied. 

Process Improvement- For the purposes of this research, process improvement is defined 

herein as actions taken that reduce variation, which also appears as decreasing structural 
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complexity and increasing process randomness over time.  The proportional relevance of these 

three definitions depends upon the technique being applied for process analysis. 

Within Limits- Means that process data is contained within the control limits on a 

Shewhart control chart.  Also referred to as within bounds, in control, stable, predictable. 

Common Causes- A category of variation associated with a Shewhart-stable process, 

which is sometimes referred to as noise, chance cause, non-assignable, natural, or routine 

variation. 

Special Causes- A category of variation associated with a Shewhart-unstable process, 

which is sometimes referred to as signal, assignable, unnatural, or exceptional variation.  It was 

not necessary to apply control chart zone test rules in this research to define special causes. 

Graph Symbology- Some of the graphics were so information dense that the primary 

differentiation between datasets was provided by different coloring.  Descriptive labels were 

included as required, but it is recommended to print copies in color to improve clarity. 

Accent Symbology- Hats such as �̂� represent estimators, bars such as 𝑚𝑅̅̅̅̅̅ represent 

means, twiddles such as �̃� represent normalized data for a time series.  Normalized Hs is 

sometimes presented without an accent, especially in imported graphics.  In these instances, the 

word “normalized” is added in descriptions or the context reveals normalization because the 

value range extends from zero to one. 

Shannon Entropy- Interchangeably referred to as information, homogeneity, randomness, 

or uncertainty throughout the text.  Although thermodynamic entropy is similar in many respects, 
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it is not the same.  In the few instances where thermodynamic entropy was mentioned, an effort 

was made to reduce opportunities for confusion by applying unambiguous context. 

Tuple- This phrase represents a symbolic permutation entropy grouping of adjacent data.  

Tuple length is based on a selectable “embedding dimension”, D.  Tuple is, unfortunately, also 

called motif, window, sliding window, slice, symbolic word, pattern, sequence of symbols, order, 

and vector by various authors. 

Measurement Resolution- The permutation entropy- local effect method is affected 

significantly by measurement resolution.  For processes that are otherwise identical, different 

quantities of distinct values available to permute was found to yield different results.  The 

measurement resolution is specified in terms of, e.g., integers, tenths, hundredths, which would 

correspondingly results in an increasing quantity of distinct values as measurement resolution is 

increased.  The quantity of distinct values can be determined via two methods.  The first method, 

which was employed in this research, would determine the actual number of distinct values that 

resulted for each time series.  An example is a series for which measurement resolution was to 

the thousandths place resulting in 3,021 actual distinct values on the interval [0.000, 345.860].  

The second method would determine the possible or accessible number of distinct values.  The 

previous example to the thousandths place would yield 345,861 possible distinct values on the 

interval [0.000, 345.860].  This distinction if not to be confused with the determination of the 

number of accessible distinct states, K, for permutation entropy calculations, which applied the 

maximum possible number of tuples (K=42 for the PE-LE method at D=4), regardless of how 

many distinct tuples actually appeared. 
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Identical values- The identical numbers within a tuple are also called equal values and 

ties in various places. 

Logarithms- All appearances of “log” are base 2, with units in bits.  As such, the 

subscript 2 was not added to log functions.  Log base e was applied for log change computations 

only, and the “ln” nomenclature therefore appears in those two equations. 

Reductionism vs. Emergence- Reductionist methods assume a process can be comprised 

of no more than a sum of its parts.  Therefore, the underlying dynamics can be better understood 

by reducing a process into its constituent factors.  The better the factors are understood, the better 

the process is understood.  Emergence-based methods assume a process is comprised of complex 

interactions, where the resulting process behavior is greater than the sum of its constituent parts.  

The factors are assumed to not individually possess the properties of the process, but instead 

create those properties through interaction.  Thus, the emerging dynamics can be better 

understood from an organizational or structural perspective.  The better the overarching structure 

is understood, the better the process is understood.  A reductionist often seeks to “provide a 

solution” whereas an emergentist seeks to “generalize from the solution space”.  Neither 

approach is necessarily better than the other, but this research has endeavored to show that both 

perspectives should be considered complimentary. 

Entropic vs. Structural Complexity- Various papers presented in the Literature Review 

section applied the term complexity in reference to changing entropy.  Examples include the 

foundational permutation entropy paper written by Bandt & Pompe (2002).  Some authors also 

discuss complexity based on level of complication.  However, this research focused on Jensen-

Shannon complexity, which is one variety of structural complexity.  Structural complexity 
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transcends entropic considerations.  In this regard, structural complexity is more like applications 

in non-equilibrium statistical thermodynamics, and fits in the category of emergence-based 

quantifiers.  Therefore, when the word complexity is used in this dissertation without another 

descriptor, structural complexity is implied. 

 

Process Control Overview 

Statistical process control (SPC) includes various methods to understand, monitor, and 

improve processes.  Quality practitioners often seek to improve the stability of manufacturing 

and service-related process outputs, to reduce costs and waste while improving profitability and 

customer satisfaction.  SPC techniques can be applied to evaluate the amount of variation present 

in a process of interest and, of the available techniques, Shewhart control charts are probably the 

most popular.  This is because they are comparatively simple and, as an observational method 

(vs. many experimental methods), can provide useful process information in near real time. 

Dr. Walter A. Shewhart invented control charts on May 16, 1924, based on his quality 

improvement work at Bell Laboratories (Juran, 1997, p.13).  His focus was to better understand 

variability in manufactured goods.  He surmised that a source of variability could be most easily 

identified if the measured variation fell outside some limits defined by chance.  If a process 

revealed variation that was not within these limits, it was characterized as “uncontrolled” and 

actions to bring the process into a better state of statistical control could logically be pursued. 

Shewhart’s (1931) control charts are somewhat unique compared to most other methods 

of statistical inference.  Many statistical methods assume an appropriate probability model, 
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establish a desired risk of false alarm (as an alpha value) prior to the study (hopefully), and then 

compare this value to the critical values calculated from the data to assess statistical significance.  

Shewhart control charts employ the opposite perspective in that critical values are fixed, the 

alpha value is allowed to wander, and no assumptions are made about representative probability 

models.  Shewhart opined that probability models can only ever represent statistics of the data 

(not parameters) because there can never be enough data to establish a unique and completely 

accurate model.  His method proposed a way around this problematic assumption of a probability 

model by instead basing the inferential process entirely on the original data themselves (Wheeler, 

1995). 

Pattern recognition enables the inferential analysis made accessible by Shewhart’s control 

charts.  To build a control chart, samples of a quality characteristic of interest are taken over time 

and displayed with respect to a centerline statistic (usually the mean) calculated from 

homogeneous groupings of these data.  Control limits are drawn at three standard errors above 

and below the centerline statistic.  Generally, a process is considered unstable if any data 

samples plot outside the control limits (special cause variation), and stable if they all lie within 

the limits (common cause variation). 

In the traditional application of control charts, indications of high variance are correlating 

temporally with process events suspected of contributing to the excess variability.  Sometimes 

the signal represents a favorable change that should be leveraged to establish a new normal, but 

most of the time, the sudden variation increase signaled by a special cause is detrimental to the 

desired process outcome.  These signals provide time-based clues that hopefully point to root 

causes during subsequent investigation.  As a consequence, analytic relevance is generally 
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greater the closer the data are plotted to real-time.  As causes are mitigated, control charts can be 

updated starting with new data, yielding a continuous cycle of process maintenance.  If 

calculated control limits tighten over time, the process is actually being improved in terms of 

variation reduction. 

However, it is challenging to determine opportunities for process improvement when all 

of the data remain within control limits.  For many practitioners, no signals of high variance 

(special causes) equate to no process problems worth pursuing.  However, this is contrary to the 

spirit of continuous process improvement, and provides some of the basis for continuing 

controversy.  While there is comparatively little disagreement about the need to improve an 

unstable process, there is a great deal of disagreement regarding how or whether a stable process 

should be improved.  Some of the relevant conflicts regarding methods, theoretical 

underpinnings, and the effectiveness of various statistical tools were provided in detailed studies 

by Woodall (2000) and Woodall & Montgomery (1999). 

Numerous varieties of control charts have been developed.  Examples include regression 

control charts, Cumulative Sum (CUSUM) charts, Exponentially Weighted Moving Average 

(EWMA) charts, real-time contrast charts, p-, u-, c-, and np- control charts, XbarR, and XbarS 

charts.  Although only one type of control chart (XmR) was applied in this research, this cursory 

introduction into process control is nevertheless provided because control charts have historically 

been among the most popular tools for pattern-based assessment of process stability and 

improvement, and similar pattern-based assessment is conceptually fundamental to this research. 

This research employed a limited analysis of the vertical funnel data with the individual 

value and moving range (XmR) control chart, an example of which is provided in Figure 4.  The 
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XmR chart was chosen because it is one of the simplest and most flexible control charts, 

providing useful information for virtually any kind of process (Wheeler & Chambers, 2010, 

pp.48-50).  The XmR chart displays every “individual” data point (vice subgrouped data) from a 

continuous stream of process information, facilitating the immediate viewing of micro-level 

process changes. 

 

 

Figure 4.  Example of XmR chart.  Individuals (X) chart on top and moving range (mR) chart on the 
bottom.  The point at marble drop # 37 represents a special cause of variation based on exceeding both 
UCL and URL control limits.  Data represent the 23 inch drop height for vertical funnel experiment #2. 

 

The three control limits (UCL, LCL, and URL) displayed in Figure 4 are typical of many 

control charts, and may be recalculated iteratively as each data point arrives.  Alternatively, for 

stable processes, they may be recalculated only after significant process instability is indicated.  

The moving range (mR) control chart is usually presented directly below the control chart of 

individual run data and displays the calculated delta, or range, between each consecutive data 
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point.  The moving range control chart is considered useful because it provides better awareness 

of ongoing variation through sensitivity to sudden changes in time series data, especially when 

signals only show up on the range chart but not the average chart (Wheeler & Chambers, 2010, 

pp.49-50).  However, some controversy about the usefulness of moving range charts has also 

been published, as detractors claim mR-charts are ineffective to show changes in process 

variability (Rigdon, et al., 1994; Sullivan & Woodall, 1996).  Nevertheless, the challenging 

imperative most relevant to this research is to differentiate among improved-Shewhart-stable 

processes when all of the variation continues to remain within control limits. 

Altogether, the control chart presents a graphic representation of process stability but 

effective implementation requires more background information than has been provided in this 

brief overview.  The equations to calculate various kinds of control limits, tables for bias 

correction factors, and zone test criteria may be found in most textbooks written about statistical 

process control, but are beyond the scope presented here.  Accessible information regarding SPC 

methodologies is available in Moen, et al. (1991), Ott, et al. (2000), and Wheeler (2000). 
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CHAPTER TWO:  LITERATURE REVIEW 

This Literature Review addresses a number of different topic areas that were specifically 

relevant to the research.  First, the inconsistent perspectives regarding the improvement of 

Shewhart-stable processes are explored in some of the foundational continuous process 

improvement literature.  Next, the notion that it is always tampering to try to improve an already 

Shewhart-stable process is challenged by reviewing some of the methods that have been shown 

to be effective for the improvement of stable processes.  Following this section is a review of 

literature specifically relevant to the traditional funnel experiment, which again challenges the 

notion of tampering. 

The next section reviews applications of complexity theory in process control, which is 

followed by a review of the most relevant permutation entropy (PE) literature.  This section 

includes PE studies that were applied for process control and papers that discussed PE 

modifications to mitigate identical values in tuples.  Next, two prevalent complexity-entropy 

diagrams are reviewed, followed by a literature review summary describing the several gaps that 

were most relevant to this research. 

 

Continuous Improvement of Stable Processes 

This section will present some of the foundational literature associated with the 

continuous improvement of Shewhart-stable processes and common causes of variation.  

Examples of contradictory positions will be provided regarding the randomness of stable 

processes and the notion that improving a stable process is always tampering.  This section will 
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also examine the differing opinions put forth about when to end “continuous” process 

improvement. 

It is easy enough to recite the standard imperative that process improvement should 

continue forever.  But, practically speaking, many practitioners decide how “much” continuous 

improvement they consider reasonable for the given set of circumstances.  The corpus of process 

control literature does not provide consistent answers about how much improvement is prudent 

or when it should end.  Widely divergent views are expressed, especially regarding the 

improvement of Shewhart-stable processes.  Despite evidence to the contrary for a diversity of 

processes, it is still common to find opinions proclaiming that any attempted improvement of a 

stable process is “always” tampering, over-correction, or over-compensation.  Stable processes 

are also frequently described as perfectly random, or constant systems of “chance causes”, again 

despite evidence to the contrary. 

The idea that stable processes are a constant system of chance causes probably started 

with Dr. Walter Shewhart (1931), who invented control charts in 1924.  His definition of process 

control required that a controlled quality must be variable and it must demonstrate constant 

variability within limits.  He stated that, “…any unknown cause of a phenomenon will be termed 

a chance cause” (p.7) and postulated that, “Constant systems of chance causes do exist in nature” 

(p.8).  Shewhart (1939) frequently referred to “constant” systems of chance causes but also 

extensively discussed problems with definitions of randomness and the importance of applying 

experience and empirical results over models to make process improvement decisions (Chapter 

1). 
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Many practitioners have interpreted Shewhart’s original ideas to either proclaim or imply 

the absolute randomness of Shewhart-stable processes.  One of the more influential proponents 

was an acolyte of Dr. Shewhart named Dr. W. Edwards Deming.  The Team Handbook, written 

by Scholtes, et al. (2003) quoted one of Deming’s letters, in which Deming stated: 

A stable process, one with no indication of a special cause of variation, is said to be, 

following Shewhart, in statistical control or stable with respect to the quality-

characteristic measured.  It is a random process.  Its behavior in the near future is 

predictable. (p.2-15) 

 

Then, a few paragraphs later: 

A system may be stable, yet turn out faulty items and mistakes.  To take action on the 

system in response to production of a faulty item or a mistake is to tamper with the 

system.  The result of tampering is only to increase in the future the production of faulty 

items and mistakes, and to increase costs- exactly the opposite of what we wish to 

accomplish (p.2-15). 

 

In many of his books and lectures, Deming demonstrated these concepts of tampering and 

randomness in stable processes through two experiments.  In his famous red bead experiment, 

800 red beads were mixed with 3200 white beads, and blindfolded participants withdrew samples 

of 50 beads with the stated goal to withdraw only white beads.  Naturally, they failed.  A key 
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objective was to demonstrate the futility and invariably negative consequences of trying to 

manipulate a process that is based completely on randomness. 

In the Nelson funnel experiment, 50 marbles were dropped through a funnel maintained 

at a fixed height above a point target.  The resting place of each marble was marked.  Then, three 

different rules were tried that used lateral translation of the funnel to compensate for the 

variation around the target.  For all three rules, the variation increased compared to leaving the 

funnel alone.  A key objective was again to demonstrate the futility and invariably negative 

consequences of trying to manipulate a process that is based completely on randomness.  

Unfortunately, the predictable results of these two experiments have been widely generalized to 

represent any and all stable processes, regardless of the context.  Some quality practitioners often 

simply assume that the factors contributing to common cause variation are perfectly random.  

But numerous interpretations and subtle differences in terminology abound. 

According to Balestracci (2009), “Each source of common cause contributes a random, 

small amount of variation” and, “Common cause just means that the data points cannot be treated 

and reacted to differently” (p.142).  A different view is provided by Hoerl & Snee (2002), who 

opine that it is called common cause variation, “because the causes of this variation tend to be 

common to all data points” (p.44).  According to Juran & Gryna (1980), common causes are 

“random, i.e. due solely to chance” (p.289).  Yet, according to Bart Kosko (2006) in Noise, true 

randomness exists only as a mathematical abstraction and is not physically achievable (p.66).  

Additionally, the mathematical validation of the Ramsey theory proposes that ideal randomness 

is impossible (Motzkin, 1967; Prömel, 2005; Stillwell, 2010). 
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Various opinions also appear in the literature about the appropriate time (if ever) to stop 

improving a process.  Deming (1986) provided 14 points of guidance for the transformation of 

Western management.  His 5th point reads, “Improve constantly and forever the system of 

production and service, to improve quality and productivity, and thus constantly decrease costs” 

(p.23).  Deming expanded this principle, including the following phrases about the continuous 

and comprehensive nature of effort that he advocated:  “Continual reduction of waste”, 

“Continual improvement of quality in every activity of procurement, transportation, engineering, 

methods, maintenance, locations of activities, sales, methods of distribution, supervision, 

retraining, accounting, payroll, service to customers,” “Continual improvement in methods to 

understand better each customer’s needs”, “Continual improvement of materials, of selection of 

new employees, of the skills of people at work on the job, and of repeated operations”, 

“Continual improvement in planning and in operation”, “Continual work with vendors” (pp.49-

52). 

Deming’s (1986) opinion, which he credited to Joseph Juran, was that statistical control 

needs to be achieved and maintained before process improvement can begin (pp.51,321).  

Consequently, his position was that statistical control of a process was not an end in itself, but 

rather the starting point so that the, “…serious work to improve quality and economy of 

production can commence” (p.354).  In other words, Deming did not consider removal of special 

causes to be improvement of the process. 

Deming provided additional defining guidance for the causes of variation based on his 

extensive experience in quality control.  He wrote, “We shall speak of faults of the system as 

common causes of trouble, and faults from fleeting events as special causes.”  Also, “The fact is 
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that most troubles with service and production lie in the system” (p.314).  These statements 

conform with Deming’s position that mitigating special causes is not improving the process itself 

since special causes of variation are not an inherent part of a process. 

Deming (1986) believed special causes represent only about 6% of all troubles.  

Conversely, he believed common causes constitute the remaining 94% of all troubles (p.315).  If 

this estimate is embraced, it is interesting that leaving a stable process alone concurrently means 

that 94% of troubles should be left alone.  But not everyone agrees with Deming’ estimated 94/6 

split.  Davis Balestracci, Jr. (2009) advocated an 80/20 split based on the Pareto principle 

(p.123).  According to Henry Neave (1990), Joseph Juran advocated an 85/15 split and Deming 

was rumored to have updated his estimate to 98/2 (p.69).  Brian L. Joiner (1994) did not identify 

a specific percentage split but acknowledged that “most” of the problems arise from common 

causes (p.137).  Shewhart’s (1931) foundational book also indirectly answered this question 

when he used Chebyshev’s theorem to define the probability that an observed value would lie 

within control limits (p.277).  His choice of σ = 3 yields an 89/11 split when applied to the 

theorem. 

Numerous authors concur with the importance of variation reduction but do not 

acknowledge the demarcation between common/special causes created by Shewhart.  Thomas 

Pyzdek (1990) gave a presentation entitled, There’s no Such Thing as a Common Cause, in 

which he proclaimed:  “The division of variation into these categories is utterly artificial” (p.1).  

His position was that all variation is either visible or hidden, and that we should, “…refuse to 

accept any level of variation as acceptable” (p.1)  Steiner & MacKay (2005) wrote extensively 

about variation reduction in Statistical Engineering, including the detailed elucidation of seven 
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variation reduction approaches, but used the phrase “dominant causes” when discussing process 

improvement throughout the book. 

In Understanding Industrial Experimentation, Dr. Donald Wheeler (1990) advocated 

control charts for analyzing production data but cautioned against using them in experimentation: 

…Control Charts have a potential shortcoming as a tool for analyzing experimental data.  

Industrial experiments will generally involve the exploratory analysis of a limited amount 

of data that is, a priori, thought to contain real differences.  Control Charts are set up for 

the analysis of ongoing streams of data that, hopefully, contain no real differences.  So, 

when a Control Chart is used to analyze experimental data, those differences identified as 

potential signals by the Control Chart are likely to represent real effects, but some real 

differences may be missed. (p.56) 

 

Some experts go so far as to condemn the entire practice of control charting, regardless of 

context.  In his article Farewell Fusillade, Bert Gunter (1998) wrote: 

Control charts have had a long and successful run, but it is time to move beyond these 

now archaic and simplistic tools (and this goes for the endless recent variations like 

EWMA, multi-variate, and robust versions, which are rarely used, of course).  The reality 

of modern production and service processes has simply transcended the relevance and 

utility of this honored but ancient tool (p.3). 
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David Hartshorne (2019) provided a similar perspective among the responses to his 

online article, Big Data, Big Disappointment: 

There is an old joke that goes something like this:  What is the difference between these 

two myths?  There is someone called Santa who visits everyone on the “nice” list in a 

single night.  The things that cause physical events are either “common” or “special”.  

The answer is that one is a harmless story told to those that don’t know the truth, 

perpetuated by those that do know, whilst the other is the work of the devil and has 

caused untold misery for as long as people can remember.  But nobody is sure which is 

which. (8th comment) 

 

Although Deming and Juran believed process improvement does not begin until a process 

reaches Shewhart-stability, the position of various authors is essentially the opposite.  That is, 

they consider process improvement to be almost entirely relevant to Shewhart-unstable 

processes, achieved by removing special causes to establish statistical control.  In an article 

dedicated to the application of control charts, Wheeler (2010, May 5&6) stated that special 

causes will typically be the dominant source of variation in the product stream and that common 

causes will tend to cancel each other out.  To support his position, he provides a theoretical 

system in which four special causes of variation represents 79% of the total variation (p.3).  This 

theoretical system seems to diverge considerably from Deming’s experience that about 2-6% of 

causes are special. 

Wheeler then wrote that it is, “unlikely to be economical” (p.3) to attempt to control any 

of the other causes of variation, all of which are common causes, and that, “looking for root 
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causes of variation in a predictable process will lead to frustration” (p.14).  He does, however, 

estimate that control of the next four most dominant causes- if they could be identified- would 

notionally yield another 9% reduction in variation.  Wheeler further states that, “seeking to 

identify and control common causes is a low-payback strategy” (p.9), and that a process 

operating predictably will have “the minimum amount of variation that is consistent with 

economic production” and “will be operating at full potential” (p.10).  He shows that as long as 

outcomes are satisfactory for a predictable process, there is “no need to improve the process” 

(p.13), which some practitioners might consider contrary to the idea of continuous improvement. 

Wheeler does acknowledge the opportunity to make a fundamental change to a stable 

process by introducing, “new technology, new equipment, new procedures, or new materials” 

(p.10).  He then cautions, however, that this would immediately change the cause-and-effect 

relationships, returning the process to the starting point for improvement- meaning the removal 

of new special causes.  He also states that benign neglect is the result when, “…conventional 

wisdom also tells us to leave things alone as long as the outcomes are satisfactory” (p.12). 

Elsewhere in his voluminous literature, Wheeler (2010) does advocate the improvement 

of stable (“predictable”) processes, qualified by carefully defined “states” of the process in terms 

of specification compliance.  In Six Sigma Practitioners Guide to Data Analysis, he opines that 

practitioners should, “Upgrade or adjust predictable processes in the threshold state [some non-

conforming product produced]; and ignore or tweak the predictable processes in the ideal state 

[100% conforming product produced]” (p.242).  He also defines a system he calls, “The 

Effective Cost of Production & Use” to apply practical economic factors to make such decisions 

(Chapters 14&15). 
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Many authors concur with Wheeler’s position.  In The Trust Factor (2003), Robert 

Whipple states, “If you try to fix common cause variation by going after why it occurred, you are 

stupid” (p.165).  Although Joiner (1994) advocates extensively for the improvement of stable 

processes in Fourth Generation Management, he warns, as did Wheeler above, that trying to find 

out what is different among common causes using a control chart is a “low-yield strategy” 

(p.141).  Instead, Joiner reveals various methods other than control charts to identify common 

causes, which will be reviewed in the next section of this Literature Review.  Regarding process 

improvement however, Joiner’s position about stable processes is unambiguous: 

Discovering that a process is stable does not mean we need be satisfied with its variation 

or its level.  It does not mean we should settle for whatever the process is currently 

delivering.  Leaving the process alone is not improvement. (p.140) 

 

In Statistical Thinking, Hoerl & Snee (2002) discuss how the appearance of a special 

cause can actually by a sign of process improvement.  The example they provide is a sudden 

increase in productivity in manufacturing.  They state that, “Positive special causes must also be 

identified so they can be institutionalized” (p.45). 

In Unlocking Ford Secrets, Sullivan & Manoogian (2009) revealed how practitioners at 

the Tokai Rika plant in Japan used control charts to continually monitor a very stable process 

producing car cigarette lighters (pp.164-175).  The authors provide control chart data for 379 

work days of production in 1980-1982 and narrate the changes made along the way as special 

causes arose.  One of the more advantageous actions that the Tokai Rika personnel exploited 

involved the mitigation of a common cause of variation.  They capitalized on an opportunity 
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from information gathered about the failure dynamics of a part called a positioning collar 

(p.180).  Instead of waiting for the same special cause of variation to arise again as it had 

multiple times before, they conducted preventive maintenance by replacing this part before it 

failed.  Preventive maintenance (PM) is one of the more common methods used in industry to 

proactively maintain an already stable process, and, according to Schrader & Elshennawy 

(2000), “is a needed function that should be integrated into the manufacturing system” (p.733).  

Although the primary purpose of PM is proactive maintenance of process stability, some 

coincidental variation reduction is possible depending upon the nature of the event.  Preventive 

maintenance will also be discussed in the next section of this Literature Review. 

Shewhart (1931) was naturally among the first to address the issue of how “much” 

process control should be pursued.  He stated, “When a phenomenon has been shown to exhibit 

control, we have likely gone about as far as we can in detecting the existence of assignable or 

discoverable causes by standard tests” (p.159).  This comment suggests Shewhart believed it 

would be very difficult to discover the roots of common cause variation (at least in terms of 

“standard tests”- whatever this vague phrase means).  It is interesting that Deming (1986) was 

such an effective advocate of most of Shewhart’s ideas, but came to effectively the opposite 

conclusion about the improvement of common causes with his frequent advocacy for improving 

stable processes “constantly and forever” (p.23). 

Despite Deming’s (1994) “constantly and forever” position, he did eventually relax his 

viewpoint slightly in The New Economics by acknowledging that there can be a limit to 

improvement efforts based on economic considerations.  He stated, “Once statistical control is 

achieved…the next step is improvement of the process, provided the economic advantage hoped 
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for will be a good investment” (p. 177), and, “The cost of improvement may be … outlandish, 

not worth the foreseeable economic gains” (p. 177), and, “Consideration of economics may lead 

to a decision not to make any change at this time” (p. 183). 

However, these types of “outlandish” economic decisions can also be subsumed to more 

important considerations, depending upon the process being managed.  For instance, some 

processes must always be maintained in a state of maximum stability, almost completely without 

regard to cost.  Such processes often involve aspects of human safety and the potential for huge 

financial loss, massive environmental damage, etc.  Specific examples include mission assurance 

processes for space operations, cyber protection of financial markets, fire suppression systems, 

human surgery, or nuclear reactor operations.  A specific example for which economic factors 

probably would not have mattered involved the Space Shuttle Columbia in January and 

February, 2003.  Although all critical processes being monitored seemed stable for 16 days, a 

single insufficiently understood special cause event from the beginning of the mission ultimately 

caused complete mission failure and loss of the crew (www.century-of-flight.net, 2019).  

According to Hollingham (2014), NASA engineer David Baker stated that, had NASA been 

aware of the effects of this special cause, a rescue mission could have been launched using Space 

Shuttle Atlantis, without regard for the outlandish resource implications.  

Another disputed topic related to the improvement of stable processes involves who has 

responsibility for the different phases of an improvement effort.  Deming (1986) believed that 

management is primarily responsible for eliminating the common causes of variation (p.112).  

Arguably, Deming’s central premise in Out of the Crisis is that management, not the workers, are 

responsible for process improvement, specifically because only management has the power to 
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change the system creating the common causes.  Indeed, one key point of his red bead 

experiment was to show that it is a waste of time to ask the workers to improve a stable system if 

only management had the power to change the system (such as removing some of the red beads, 

which represented defects, from the system). 

However, based on implementing a quality program for process improvement, Deming’s 

14th point for management states, “Put everybody in the company to work to accomplish the 

transformation” (p.24).  Juran (1974) had a more refined answer, stating, “Responsibility is not 

clear unless it is stated in terms of decisions or actions.  It is futile to ask, ‘Who is responsible for 

quality?’ since the question does not identify a decision or action” (p.11-4).  In The Team 

Handbook, 3
rd

 Edition, Scholtes, et al. (2003) suggested that, “…at least 85% of problems can 

only be corrected by changing systems (which are largely controlled by management) and fewer 

than 15% are under an employee’s control” (p.XXV). 

In summary, it is evident that the statistical process control literature provides very little 

consistency regarding guidance associated with Shewhart-stable processes.  Naturally, the full 

context associated with every statement in this section is important to understand each author’s 

complete position.  However, at a minimum, this overview revealed that a diversity of 

contradictory opinions are abundant in the literature.  Table 1 succinctly summarizes this 

diversity of opinion. 
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Table 1.  Summary of diverse positions regarding stable processes. 

 

 

Methods for Improving Shewhart-Stable Processes 

“No problem can be solved from the same consciousness that created it.” 

 -Albert Einstein 

 

This section presents a number of methods from the literature that can be relevant to the 

improvement of a Shewhart-stable process.  The assumption that improvement of a stable system 

Question/ Concept Position 1 Position 2 Position 3 Position 4

Stable processes are: Perfectly 

random

Near-random Varying in 

degrees of 

randomness

Not random

Improving a Stable Process is: Tampering A Good Idea It depends on 

the process

Improvement of a process begins 

when:

Special causes 

are mitigated

Common 

causes are 

mitigated

Any negative 

causes are 

mitigated

A positive 

cause is 

amplified

Process improvement should 

continue:

Constantly and 

forever

Before stability 

is achieved

After stability 

is achieved

It depends on 

the process

Process improvement should 

continue:

Constantly and 

forever

Based on 

economic 

considerations

Based on all 

relevant 

considerations

Sometimes 

economic 

considerations 

matter little

Common causes represent what % 

of trouble

96-98% 85-89% 80 Most

Common causes are relevant to 

process improvement

Yes No 

Control charts are relevant to 

process improvement

Yes No 

Improvement of a stable process 

should depend upon whether or 

not non-conforming product is 

being produced

Yes No

Trying to find the root cause of 

stable process variation means:

You are stupid You are smart It depends on 

the process

The responsibility for improving 

common causes lies with:

Management Workers Depends on 

responsibility 

for decisions or 

actions

Everyone
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is always tampering can be challenged by the successful application of these methods.  Indeed, 

many of these methods directly challenge one or more of the “rules” about Shewhart-stable 

processes presented in Figure 2.  Generally, when many reviewed sources actually discussed 

stable processes, it was often couched in some variety of the “wait for trouble paradigm”, instead 

of proactive, continuing pursuit of improvement.  This was often because techniques other than 

control charts were not being considered. 

Shewhart control charts are one of the simplest and most widely used tools for process 

improvement, but using them to improve Shewhart-stable processes is generally considered a 

low-yield strategy (Joiner, 1994; Wheeler, 2010).  Even if improvement of a stable process is not 

pursued and control charts are only passively monitored, process owners are not necessarily 

being complacent.  Rather, they may simply be unaware of the numerous viable techniques that 

are available for consideration and, they may be discouraged by the conventional platitude that 

“fundamental” process redesign is their only recourse.  Also, designed experiments may be seen 

as the next step for dissecting stable processes so they can be improved.  But, when a process is 

already operating in statistical control, the time commitment required to plan experiments, and 

then collect and analyze the data hypothesized to be most relevant can often seem prohibitive.  

Practically speaking, Shewhart-stable processes are often simply ignored for active 

improvement. 

Perhaps it not surprising then that the improvement of Shewhart-stable processes is not a 

widespread topic in the process control literature.  Despite this relatively slight treatment, its 

relevance to this research effort is significant, as can be confirmed by the second half of the 

research question:  Can a methodology based on emergent structural complexity provide 



53 

information useful to direct the continued improvement of a Shewhart-stable process?  Since 

continued improvement of a Shewhart-stable process is the focus of this research, this review 

will provide insights to better comprehend the gap in the state of the practice. 

Ultimately, no books were discovered that were dedicated specifically to improving 

Shewhart-stable processes, although Joiner (1994) dedicated seven pages to the topic (pp.140-

146).  Balestracci provided six papers and two videos focused on identifying common causes, 

and declared that his inspiration came from Juran’s (1981) 16-video series Juran on Quality 

Improvement.  Torbeck (2012) provided a single page summary of relevant ideas while Wu 

(2014) provided numerous relevant ideas in terms of teaching process variation. 

A variety of papers discussed concepts that could be applied to improve stable processes 

that were subsumed under the general category of experimentation techniques.  For instance, 

many papers were found that discussed the identification of common causes in terms of 

statistical disaggregation of variance components (Satterthwaite, 1946; Yashchin, 1994).  

Experimentation is a very relevant, diverse, and encompassing topic, which is already highly 

developed in the literature.  As such, experimentation will only be described briefly and in very 

general terms so that the focus can remain on reviewing the other lesser used and lesser 

understood techniques that can be considered for stable process improvement.  Additionally, a 

few papers will be reviewed in the next section that specifically analyzed the traditional funnel 

experiment.  They were deemed especially relevant for dissecting the tampering assumption, and 

so were discussed separately. 

More can almost always be done to improve a process than to simply monitor a control 

chart to wait for the next special cause.  And, contrary to the platitude, many of the available 
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techniques do not represent a “fundamental” process change.  For instance, some proactive 

problem-avoidance strategies are simpler to implement than control charts, can achieve variation 

reduction, and represent minor, non-fundamental process changes.  Moreover, many of the 

methods presented are based on direct observation (vice time-lagged data transformation 

techniques) which is generally advantageous, especially when it is possible to avoid “assuming a 

model”.  All models are wrong by varying degrees, but many practitioners consider them 

necessary for process characterization strategies.  Shewhart (1939) acknowledged this limitation 

but also claimed models could be useful with his sentiment that, “any model is always an 

incomplete though useful picture of the conceived physical thing…” (p.19).  Shewhart’s 

comment pre-dates similar sentiment about models often attributed to Dr. George Box. 

This section will first present some of the more obvious and simple methods and move 

progressively on to techniques of increasing complication or esotericism.  Starting with the very 

simplest method, practitioners can leverage their knowledge of the system to look for obvious 

improvements.  This could include certain applications of Deming’s (1994) idea of “Profound 

Knowledge of the System” (pp.92-115).  For instance, new insights could be gained by knowing 

which data to focus on, or common sense changes with a very high chance of success could be 

implemented.  Torbeck (2012) called this approach, “Control what can be controlled” (p.32).  

Balestracci (2012, September 19) called these, “obvious ‘no-brainer’ solutions”, but also 

cautioned that the usual problem is, “these ideas needed management support to be 

implemented” (p.1).  Steiner & MacKay (2005) provided eight real-world examples of successful 

obvious solutions in manufacturing but cautioned that it is important to first consider the possible 

side effects and, that the key consideration is usually cost (p.214).  For instance, obvious 
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improvements can often be implemented by replacing troublesome machinery, but this expensive 

solution may not be available in the budget. 

Rudimentary examples of this approach are easily explained with training systems that 

represent stable processes, such as the funnel experiment, quincunx, and red bead experiment.  

For the funnel experiment, Deming (1994) offered up lowering the funnel as a free solution and 

using a fuzzier tablecloth as a cheap solution (p.196).  For the quincunx, Joiner (1994) stated that 

row of central pegs could be removed (p.141), which would allow fewer of the beads to become 

outliers, thereby decreasing kurtosis.  In the red bead experiment, the beads could be optically 

sorted by a machine before sampling, or the sampling paddles could be modified, or the beads 

made magnetic (Hunter, 2014). 

These kinds of solutions often extend to the next method, which Juran (1988) called 

“fool-proofing”.  He included examples of fail-safe designs and automation including robotics 

(p.228).  The equivalent Japanese term for fail-safe designs is poka-yoke, which translates to 

“mistake-proofing” in English.  Examples often include hardware that allows production 

processes to proceed in only one possible way.  By design, these solutions prevent certain special 

causes from appearing in the first place, and they are often very simple applications.  Classical 

examples include a mechanical stop that prevents a drillbit from making a hole that is too deep or 

different colored pages for different paperwork processes (Torbeck, 2012).  It is common to 

witness variation reduction following application of these techniques. 

Another problem avoidance concept is preventive maintenance (PM), which applies 

proactive measures based on historical knowledge of process performance to prevent special 

causes before they are most likely to happen.  PM, according to Schrader & Elshennawy (2000), 
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“is a needed function that should be integrated into the manufacturing system” (p.733).  As will 

be seen in the Tokai Rika analysis, PM addressed a common cause of variation to provide minor 

variation reduction for this Shewhart-stable process on work day 355.  Also, a closely related 

concept is condition-based maintenance (CBM), which tracks the condition of critical 

components to drive preventive maintenance priorities. 

Juran (1964) provided many ideas useful to address common causes, including 

techniques for what he called “Common-Use Tools” including making use of trends, 

comparisons, and summaries that underscore the vital few causes with the “Pareto Matrix” 

(p.317).  Similarly, while presenting the concept of process optimization, Juran (1988) stated, 

“The starting point is to analyze the data on human errors and to apply the Pareto principle” 

(p.226), where he again demonstrated his Pareto Matrix concept.  An example of Juran’s Pareto 

Matrix is provided in Figure 5. 

 

 

Figure 5.  Pareto Matrix.  From Juran on Planning for Quality by Joseph M. Juran (p.177). Copyright © 
1988 by Juran Institute, Inc. Reprinted with the permission of Free Press, a Division of Simon & 
Schuster, Inc. All rights reserved. 
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In this example, Juran made a distinction between process performance (actually does) 

and capability (could do).  For instance, Worker B’s performance was 20 errors, but her 

capability was 4 error types, whereas Worker E’s 36 errors across many error types represented 

both performance and capability (data for error types 7 through 29 were not presented to keep the 

figure simple).  Three focus areas to improve the process immediately become apparent.  First, 

Worker E may not be suited to this type of work, and would probably benefit from reassignment 

to work better aligned with individual skills and abilities.  Second, Worker B may need 

retraining based on error type 3 (it was found that she misunderstood one part of the procedure).  

Lastly, error type 5 had a relatively high rate across all of the workers, suggesting additional 

causal investigation. 

Juran’s Pareto Matrix concept can be extended beyond human error tracking to any kind 

of common cause improvement, as advocated in an online video by Davis Balestracci (2017, 

February 23a).  Balestracci (2012) also augmented many of Juran’s techniques for identifying 

common causes in his insightful five-paper series in Quality Digest.  These techniques, following 

Juran, included exhausting in-house data, studying the current process in more depth, and 

“cutting new windows” (process dissection).  Balestracci employed these concepts to look at data 

differently in terms of stratification and disaggregation, which Brian Joiner also advocated in 

Fourth Generation Management. 

Joiner (1994) defined stratification as, “sort data into groups or categories based on 

different factors; look for patterns in the way the data points cluster or do not cluster”.  In doing 

so, “We end up localizing common cause variation, pinpointing it at its source.”  Further, 
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stratification helps us by, “Revealing patterns in the data that point to the source of trouble” and 

this focusing, “Allows us to identify the leverage points where a little effort brings major 

improvement” (p.143).  According to Hoerl & Snee (2002), “You can never do too much 

stratification.  If the variable you used to stratify turns out not to be important, cross it off the list 

and move on to other variables” (p185). 

In a real-world example revealing the utility of exhausting in-house data via stratification, 

Balestracci (2014, July 28) provides a control chart, Figure 6, representing only common cause 

variation, for which, “the wide limits were discouraging to the point of being ridiculous” (p.1). 

 

Figure 6.  Control chart of Shewhart-stable process with wide control limits.  From More common cause 

subtlety.  You’ve got a chart, and its common cause.  Now what? by Davis Balestracci.  Copyright © 2014 
by author.  Reprinted with the permission of author.  All rights reserved. 

 

The process owner was seeking insights from the control chart in Figure 6 to update 

staffing but couldn’t ascertain any benefit, since all of the variation was well within the wide 

control limits.  Balestracci offered that such wide limits often suggest that questions should be 

asked about the sampling method.  In doing so, he discovered that these data represented 
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consecutive daily counts, excluding weekends.  It was now possible to label the data based on 

day of the week, as presented in Figure 7. 

 

 

Figure 7.  Common cause control chart stratified by day of the week.  From More common cause subtlety.  

You’ve got a chart, and its common cause.  Now what? by Davis Balestracci.  Copyright © 2014 by 
author.  Reprinted with the permission of author.  All rights reserved. 

 

 Based on this stratification, a pattern appeared among the common causes for all of the 

high values and all of the low values, which could be applied to optimize staffing based on day 

of the work week.  However, Balestracci gained the most detailed insight by then applying of 

simultaneous, multi-dimensional viewing of non-variation data, similar to Juran’s Pareto matrix 

concept, in Figure 8. 
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Figure 8.  Stratified histogram based on common cause control chart stratified by day of the week.  From 
More common cause subtlety.  You’ve got a chart, and its common cause.  Now what? by Davis 
Balestracci.  Copyright © 2014 by author.  Reprinted with the permission of author.  All rights reserved. 

 

Note in Figure 8 that Balestracci stratified the y-axis by categories, which is different 

from the typical histogram presentation.  Based on the initial Shewhart-stable control chart, the 

process owner could only comprehend that staffing needed to accommodate 11 to 166 

procedures per day.  By applying Balestracci’s Stratification Histogram, she was empowered 

with data to more precisely conclude that staffing needed to accommodate 50 to 103 procedures 

on Mondays, 40 to 80 procedures on Tuesdays to Thursdays and 23 to 63 procedures on Fridays.  

For more detail about this technique, Balestracci described a similar study in his book, Data 

Sanity (pp.131-135). 

This multi-dimensional concept of stratification can add another dimension by also 

incorporating temporal information associated with the time series.  Numerous methods will be 

reviewed in this section that apply reductionist approaches with simultaneous viewing of 

temporal clues.  For the research herein, important conceptual parallels are apparent, in that new 

insights became discoverable by adding new dimensions of visibility.  This advantage will be 

conspicuous when the Complexity-Entropy Causality Diagram and the Entropy-Complexity 

Change Diagram are introduced. 
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Regarding the specific concept of disaggregation, Joiner (1994) defined the activity as, 

“Divide the process into component pieces and manage the pieces” (p.141).  As an example, 

Joiner presented an order-entry-to-shipping process that had been Shewhart-stable for weeks but 

nonetheless suffered many late shipment complaints.  By beginning to track the performance of 

three sub-processes (order entry, assembly, and packaging/labeling), a time lag due to workspace 

layout was made visible.  Rearranging the workspace provided immediate process improvement 

and provided a concurrent benefit by easing the effort of the workers.  Joiner claimed that 

disaggregation is, “More complex than stratification or experimentation, but is also more 

powerful” (p.146).  However, he also cautioned that, “Disaggregation only works when each 

piece of the process has an aim tied to serving the next step and is consistent with the overall aim 

of the process” (p.146). 

Another broad category of methods for improving Shewhart stable processes focuses on 

factors of practical, instead of statistical significance.  This concept can take a risk/opportunity 

optimization approach, as provided in the following allegory.  Suppose a house is being designed 

by a fictitious architect named Momoko Zoristern.  The design includes a fireplace that opens 

into two rooms and Ms. Zoristern tells the owner that based on her experience, pecuniary 

considerations, and, especially, extensive statistical analysis, brick thresholds extending three-

feet to either side of the fireplace will be optimal in case any sparks fly out.  The house is then 

built to her specifications.  The question is whether occupants should always sleep soundly at 

night, being warmed by the fire, because they have three-foot brick thresholds?  Some would 

argue that the answer depends most on practical risk considerations such as the size of the fire, 

whether the wood has a high resin content, whether flammable debris is in the vicinity of the 
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fireplace, whether open windows or air conditioning creates a draft, whether leaves are being 

burned, etc.  The point of this story is that practical concerns are often more relevant to process 

questions than the results of statistical analyses. 

One source for this emphasis on practical considerations involves the criticisms that have 

been increasingly leveled at statistical hypothesis testing (McShane et al., 2019; Ziliak & 

McCloskey, 2008), including those by the American Statistical Association (Wasserstein & 

Lazar, 2016).  The essential concern is that consistent, statistically significant results do not 

necessarily imply practical significance.  According to Ziliak & McCloskey (2008), “Statistical 

significance is, we argue, a diversion from the proper objects of scientific study.  Significance, 

reduced to its narrow statistical meaning only, has little to do with a defensible notion of 

scientific inference, error analysis, or rational decision making” (p.2).  Ostensibly in jest, they 

also proposed an alternative F-test, where the “F” stands for floccinaucinihilipilification (p.321). 

Advancing this concern back to process control, Juran (1997) characterized Shewhart’s 

control charts as, “A perpetual test of significance” (p.12), implying that control charts inherently 

provide an ongoing hypothesis test of process stability.  But Deming (1986) believed control 

charts had utility specifically because they did not involve tests of significance.  Deming stated, 

“Avoid passages in books that treat confidence intervals and tests of significance, as such 

calculations have no application in analytic problems” (p.369).  In other works, Deming (1938) 

stated “Statistical ‘significance’ is by itself not a rational plan for action” (p.30) and, (1961): 

The standard error of a result does not measure the usefulness thereof.  The standard 

error, however helpful in the use of data from samples, only gives us a measure of the 

variation between repeated samples…It does not mean that the persistent components of 
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the non-sampling errors are small.  It is important, for such reasons, I believe, not to 

focus attention on the standard error alone. (p.55) 

 

Finally, Deming (1961) provided overall support for a practical synthesis of information, 

stating, “Statistical theory shows how mathematics, judgment, and substantive knowledge work 

together to best advantage” (p.v). 

Many authors have provided additional support for a practical synthesis while also 

eschewing what they consider an artificial distinction between cause types based on 3-Sigma of 

variation.  They offer that maintaining the standard distinction between special and common 

causes has become increasingly difficult with the astronomically high volume of data created by 

in-process sensors throughout manufacturing lines (Woodall & Faltin, 2019).  In addition to 

these physical difficulties, numerous conceptual difficulties have also been presented. 

In a presentation entitled, There’s No Such Thing as a Common Cause, Pyzdek (1990) 

described a real-world process that was in dire need of improvement despite being represented 

by only common causes on a control chart.  He stated: 

Some people even mistakenly believe that when variation is from a system of common 

causes that it has no cause.  The belief in common causes has become so established that 

it has become taboo to suggest that they don’t actually exist.  This paper discusses a bold 

new idea:  there is really no such thing as a common cause of variation.  The division of 

variation into these categories is utterly artificial.  By maintaining this artificial 

distinction we often cripple problem solving and process improvement efforts. (p.102) 
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In defining the effects of this 3-Sigma classification scheme, he listed desirable effects, 

which focused on tampering, economic thresholds, simple guidelines, and assigning 

responsibility to management.  He also listed the undesirable effects, which were: 

 People are taught to believe that finding and fixing causes of variation within the control 

limits is difficult and expensive and usually involves making major changes to the 

process.  Because of this belief, simple, elegant, and inexpensive solutions are often 

overlooked. 

 Intelligent thought is replaced by mindless conformance to arbitrary rules. 

 Creative analysis of variation within control limits, which includes most process 

variation, is curtailed. 

 Continuous improvement is inhibited. (p.103) 

 

Pyzdek then discussed his perspective on continuous improvement:  “The result is that 

many companies focus all of their attention on bringing processes into a state of statistical 

control and fail to see that statistical control is just the first step on the path to continuous 

improvement” and, “A new approach is necessary that makes it clear that one never leaves 

variation to chance.  Reduction of variation is continuous” (p.104).  He then described in detail 

the numerous improvements that were made to a Shewhart-stable, real-world process, which 

reduced the defect rate by a factor of 10 (from 50 defects to 5 per 1,000), without making any 

“fundamental” changes to the process and after spending only a few dollars on improvements.  

To better support his imperative for continuous improvement of stable processes, one of 
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Pyzdek’s key recommendations was to change the variation terminology to “visible and hidden” 

to remove the artificial distinction created by the 3-Sigma rule. 

Steiner & MacKay (2005) published an algorithm for variation reduction which focuses 

on finding and verifying “dominant” causes of variation so they can be mitigated.  The methods 

they advocate utilize a combination of practical and statistical techniques, including:  Fix the 

obvious, desensitize the process, apply feedforward control, apply feedback control, make 

processes robust, and 100% inspection.  The authors do not avoid using control charts altogether 

but advocate more diverse applications such as run charts, acceptance control charts, and regular 

calculations of process capability (p.310), stating, “Data summaries such as the average, standard 

deviation, histogram, and box plots do not show how the process output varies over time.  To 

show this behavior, we use a run chart, a simple plot of the output values against the order or 

time of collection” (p.21).  Also, “We do not require the process to be stable, as defined by the 

control chart, to estimate the problem baseline” (p81). 

Other methods have also focused on variation reduction based on practical 

considerations, in this case by repositioning the control limits.  The determination of statistical 

thresholds like control limits involves a standard trade-off between sensitivity and false alarm 

rates.  A false alarm is an inappropriate signal of a special cause when the process is actually in 

control.  Applying a conservative threshold means fewer false alarms, but also that many signals 

of interest can be missed.  Conversely, using an aggressive threshold increases the false alarm 

rate but results in fewer missed signals. 

According to Woodall & Faltin (2019), selecting the appropriate threshold involves 

numerous considerations that balance practical importance with statistical significance.  For 
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instance, when multiple control charts are being monitored simultaneously, the multiple testing 

effect can dramatically increase the overall false alarm rate.  Additionally, numerous small 

process shifts may not be of practical importance, suggesting a rationale for desensitizing the 

threshold.  Moreover, traditional performance metrics are sometimes complicated by covariance 

structures that become increasingly complex.  Ultimately, any performance metric will 

increasingly lose relevance as the false alarm rate approaches unity. 

The authors go on to state that a control chart for a Shewhart-stable process (assuming 

that the in-control parameters are known and that the data are independent over time) can share 

some of the same shortcomings as hypothesis tests.  They emphasize that “acceptable” rates of 

false alarm depends on practical concerns by discussing many real-world process problems.  For 

example, they compare the difference between an errant smoke alarm and an errant heat-

sensitive sprinkler system, wherein the former is a nuisance but the latter can be highly 

destructive. 

Woodall & Faltin then propose adding a zone between the in-control and out-of-control 

zones to provide better flexibility for false alarm rates.  They called this the indifference zone, a 

term they credited to Freund (1960).  They carefully acknowledged that many other authors have 

advocated similar three-region approaches.  They also emphasized that the regions do not have to 

be symmetric about a target value, and that a deadband can be created by combining the in-

control zone and indifference zone.  They provide numerous applications including modified 

control charts and acceptance control charts.  Ultimately, they advocate this approach by 

discussing how Shewhart’s rule of 3-Sigma was founded on dated economic considerations from 

the 1920’s that they believed to have lost relevance in today’s high data rate environments. 



67 

However, Wheeler (2013, May 1) provides another perspective in a paper entitled, 

Contra Two Sigma.  The focus of this paper was to show why using 2-Sigma control limits is not 

the appropriate way to increase sensitivity and he instead advocates adding four Western Electric 

zone test rules to signal special causes.  He compares sensitivity/false-alarm results using power 

function charts, ARL charts, and a chart depicting probability of false alarm vs. number of 

subgroups.  However, he also states that the problem with a 3-Sigma chart is not usually too little 

sensitivity, but rather too much.  He wrote that once people new to control charts learn how to 

use them, comments about too little sensitivity often turn into, “We have too many signals to get 

around them all” (p.1)  Later in the paper, he wrote, 

In practice, most people who use process behavior charts effectively find that they have 

plenty of signals using Detection Rule One [data outlying control limits].  In fact, the 

problem is usually one of needing a procedure that is less sensitive, rather than more 

sensitive. (p.8) 

 

The two comments suggest that 3-Sigma control limits often provide more sensitivity to 

process changes than desired, even if additional zone test rules are abandoned.  Yet, Wheeler 

only offers corrections for the condition of too little sensitivity.  Wheeler instead maintains the 

position that 3-Sigma limits always provide the optimal tradeoff between false alarms and valid 

signals as evidenced by his closing comments:  “…while theory suggests that three-sigma limits 

should work, over 80 years of practice has proven beyond any doubt that they do work as 

expected.  Make no changes and accept no substitutes” (p.9). 
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Some authors believe other factors are more important for the improvement of process 

performance than focusing on gradual variation reduction.  In Diagnosis Performance and 

Reliability (2019), David Hartshorne describes looking for non-random patterns with respect to a 

spatio-temporal framework.  He advocates trying to determine what’s wrong through a 

symptomatic diagnosis and, as needed, to determine what’s happening through a topographic 

diagnosis.  Diagnosis is often accomplished through a process of elimination via a progressive 

search and Matryoshka strategy (nested-doll), dividing the analysis into a stratified hierarchy of 

contrasts to converge upon one of four variation types (elemental, cyclical, structural, or 

temporal) that contributes most to performance (p.110). 

Hartshorne does not find relevance for the traditional common/ special cause designation, 

nor even the normal view of continuous improvement, stating, “Achieving … excellence through 

lots of small incremental improvements is a fallacy, only a step change from controlling the 

Steep X [strongest cause-effect relationship] will get there.” (p.41)  To arrive at a causal 

explanation, his diagnostic methods focus more on the analysis of geometry and physics than 

statistics, while applying thermodynamic conjugate pairs to better understanding the flows of 

entropy, power, and energy through machinery of interest (pp.84-85).  He summarizes this 

energy conversion using a Z-diagram to evaluate inertance, resistance, and compliance.  Ziliak & 

McCloskey (2008) support a similar focus on practical considerations, stating, “…in economics 

and biology and physics, the big ideas come chiefly from nonstatistical sources” (p.147). 

Nevertheless, designed experimentation has been in continuous successful use since the 

original statistical methods were created by Sir Ronald Fisher in the 1920’s.  Experimentation 

has been highly developed in the literature and widely utilized to identify causes of variation.  
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Contrary to the belief that common causes cannot be isolated because they are random, DoE 

routinely identifies the main effects and interactions of process factors associated with stable 

processes (Moen et al., 1991).  Indeed, an advantage of analyzing stable processes is that the 

impact of nuisance variables is generally decreased since processes are already in a state of 

statistical control before starting.  But, according to some authors, this prior state of statistical 

control should not be taken as a requirement, which is contrary to some prevailing guidance 

listed in Figure 2.  Bisgaard (2008) cautioned that, “The need for statistical control as a 

prerequisite for conducting industrial experiments is misconceived” (p.143).  He believed, 

following Box & Luceño (1997), that statistical control is a fiction anyway, so this notional 

prerequisite would imply that experiments could never actually be conducted (p.149). 

Despite experimentation’s wide success in many applications, DoE can also present 

disadvantages in certain situations that can discourage use.  For example, experiments can be 

time-consuming, complicated, and require destructive testing.  Application usually requires 

significant statistical expertise or else the experiments may be inconclusive, or prone to 

mismeasurement or contamination of the data.  Additionally, experiments can be prohibitively 

expensive to conduct, especially if production lines need to be shut down during testing and 

modification.  Results may also lack statistical significance, yield false positives/ negatives, or 

lack replicability (Shuttleworth & Wilson, 2008). 

Nonetheless, for stable processes, designed experiments are generally more effective than 

control charts for separating signals from noise, which explains why the literature generally 

favors designed experimentation as the primary method to identify common causes.  However, 

designed experiments do not usually provide results in as timely a fashion as observation-based 
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methods like control charts.  In consequence, experimental results are sometimes already 

overcome by process changes before they become available for review.  This timeliness 

characteristic often serves as a deterrent to the continued improvement of a stable process. 

In the era when designed experiments were invented, slow and deliberate data collection 

and analysis provided adequate monitoring of the vast majority of processes.  However, most 

production processes have now become fast-moving, generating massive quantities of data 

thanks to the proliferation of computation, automation, and inexpensive in-process sensors.  The 

volume of information available often becomes problematic for effective process monitoring.  

Methods that can accommodate rapid time series are gaining importance, which was a 

consideration when evaluating measures of structural complexity for this research. 

One of these rapid monitoring methods was presented by Dr. George Box in 1957 and is 

called evolutionary operations (EvOp).  With EvOp, the effects of minor experimental 

modifications can be monitored during normal production to determine if they are making things 

better or worse.  These minor changes are still large enough to determine optimum process 

ranges for variables of interest but not large enough to create non-conforming product.  In 

practice, this has proven to be a very powerful technique to continuously optimize stable 

processes, without ever having to make a “fundamental” change. 

Another useful approach incorporates a sequential test of hypothesis, and is called the 

cumulative sum (CUSUM) technique (Page, 1954).  CUSUM acknowledges the inherent non-

stationarity of time series data but also assumes that the underlying distribution is well-defined, 

which is generally advantageous for the improvement of stable processes more than for unstable 

processes.  Similar to techniques employed in this research, CUSUM accumulates information 
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over time to progressively arrive at more precise representations of the time series.  Also similar, 

displays can be tailored to the research, including V-mask charts and Manhattan plots.  CUSUM 

is also more sensitive to process changes than control charts for shifts less than about 2.3 

standard errors of the mean, based on average run length calculations by Wheeler (1995, p.310). 

Another category of methods that can facilitate stable process improvement 

acknowledges the inherent non-stationarity of time series data, but focuses on modeling the serial 

dependence between successive values.  Following Holt (1957) and Muth (1960), Box & Jenkins 

(1963) described an approach called Autoregressive Integrated Moving Average (ARIMA), 

which can be applied flexibly to forecast future points in the time series and extends easily to the 

Exponentially Weighted Moving Average (EWMA) method.  EWMA uses a recursive calculation 

to apply weighting factors that decrease exponentially and achieves a form of controller that is 

insensitive to the choice of initial value.  But according to ARL calculations by Wheeler (1997), 

is no more sensitive to changes than control charts that employ zone test rules (p.322).  Similar 

to methods developed in this research, EWMA accumulates information about stable processes 

over time to refine results. 

Box & Paniagua-Quiñones (2007) extended the serial dependence concept by creating a 

bounded adjustment chart.  They acknowledged Pyzdek’s (1990) observation that the difference 

between common and special causes can be dependent upon the level of residual noise.  They 

then proposed that non-stationarity is a consequence of the accumulation of undetected 

permanent components of noise.  To challenge the assumption that noise is comprised only of 

transitory components, they provided physical examples of permanent components of noise such 

as a tire that is slightly damaged by a sharp stone or a driveline that has developed corrosion. 
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Their bounded adjustment chart incorporates EWMA principles with no assumptions 

required about the mean.  Superficially, the bounded adjustment chart looks like a control chart.  

But, the limits are chosen so that after adjustments are made, the smallest standard deviation is 

applied for a given average adjustment interval.  A variable λ can be modified by the user to 

allocate percentages of new vs. old data into the analysis, providing a flexible means for targeted 

investigations.  The authors recommended monitoring the bounded EWMA with the adjustment 

chart while concurrent monitoring the residuals with a control chart.  They propose that the 

control chart will be more useful for detecting special causes with the misleading non-

stationarity data removed in this manner. 

The next method encompasses a wide-variety of techniques and will therefore be 

reviewed here in fairly general terms.  Simulation has been applied in the context of stable 

process improvement to test and compare preconceived improvement alternatives without having 

to commit physical resources to experimentation.  Adams et al. (1999) provided two case studies 

where simulation was used to successfully improve stable processes by focusing on reducing 

work in process (WIP), improving operator utilization, reducing cycle time at certain stations, 

and improving part handling and routing.  One of their conclusions revealed the specificity of 

improvement that can be targeted: 

To be most effective, simulation models should be developed that apply continuous 

improvement concepts.  For example, rather than merely modeling the total cycle time 

for each machine, much more insight can be gained by separating run time, setup and 

changeover times, downtime, break times, defect rates, and material handling into and out 

of the machine. (p.772) 
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For process control, simulations are often be applied to spatio-temporal work and 

information flow scenarios, similar to the traveling salesman problem or the piano mover’s 

problem, where the measured factors can facilitate continuous optimization and redesign.  Some 

authors state that predictable processes benefit more from applications of simulation than 

unpredictable processes, in part because the models tend to more accurately represent the actual 

processes (Balakirsky, 2009). 

Predictive analytics also encompass a wide diversity of techniques that can facilitate 

stable process improvement.  Computational techniques include “knowledge discovery in 

databases” and “machine learning algorithms”.  Crowdsourcing techniques include prediction 

markets and applications of the Delphi method.  Methods from decision theory also include risk 

analysis and Applied Information Economics.  Some of the more promising methods will be 

presented here. 

Machine “learning” algorithms apply families of classification techniques that can be 

tailored to develop novel insights about datasets.  A few categories of classifiers will be 

summarized to reveal the extent of analytic flexibility available.  Linear Regression is a 

relatively simple technique that is already familiar to many statistically-minded quality 

practitioners, which can quickly reveal output variables worthy of further investigation.  Logistic 

Regression provides the probability that data belong to one of two classes, but when more than 

two classes are useful to the study, Linear Discriminant Analysis reveals the mean of each class 

and the variance across all classes.  Decision Trees output class values for decision nodes of 
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interest while the Random Forest technique introduces randomness into these decision trees and 

aggregates statistical methods to improve predictive outputs. 

Naïve Bayes Analysis provides probabilities for each class along with conditional 

probabilities given each input (after assuming inputs are independent).  K Nearest Neighbor 

determines the similarity between the K data instances considered relevant to predicting the 

desired output for a training dataset.  Learning Vector Quantization is very similar, but 

summarizes the training dataset into vectors (which uses less memory).  Support Vector 

Machines are popular for discriminating between data classes by specifying a hyperplane to 

separate them.  Finally, Boosting is a technique designed to improve the overall predictive output 

by correcting errors in a number of weaker classifiers. 

Although they can be effective to glean novel insights from large datasets, probably the 

biggest concern common to these classifiers is the concept of garbage in, garbage in (GIGO).  

For instance, if the dataset applied to train an algorithm isn’t “clean,” outputs may be inaccurate 

and misleading.  According to CIKLUM.com (2019, January 11), problematic examples include 

when the dataset: 

 Is incomplete, to include missing values 

 Is inaccurate 

 Contains samples and examples in addition to real data 

 Mixes nominal, ordinal, interval, and continuous data 

 Includes unnecessary data 

 Includes data missing the necessary attributes 

 Includes misaligned components 
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 Inappropriately mixes measured and unmeasured values 

 Is excessively difficult to process 

 Includes duplicated categories, attributes, or values 

 Mixes standard and non-standard formatting 

 

The next methods for consideration to improve stable processes are prediction markets, 

which are a type of crowdsourcing technique that exchanges information instead of physical 

goods.  This technique can find applicability in virtually any industry to include service, 

software, and manufacturing.  Prediction markets can be exploited by allowing the people 

directly involved with a stable process to anonymously exchange online value tokens based on 

their perceptions of the likely outcome of events.  The purpose is to elicit aggregate beliefs about 

an unknown future outcome, motivated by a confidential financial (or other) reward for being 

right.  Usually, a prediction market provides a binary option that will expire at the price of either 

0 or 100%.  Market equilibrium prices ultimately indicate what the crowd thinks about the 

probabilities of outcomes, which can leveraged to modify the appropriate influencers associated 

with those outcomes. 

The accuracy of various prediction markets has been favorably described.  According to 

Kamp & Koen (2009), the reported accuracy of prediction markets is 94-99%, whereas 

preference markers are 70-85% accurate and idea markets are 10-46% accurate.  Berg et al. 

(2008) conducted a study comparing prediction market results to 964 polls over the five U.S. 

Presidential elections since 1988, determining that market results were closer to the eventual 
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outcome 74% of the time.  They also concluded that when prediction markets were started more 

than 100 days in advance of a Presidential election, they consistently outperformed the polls. 

The Delphi method has certain potential advantages over the prediction market approach.  

The Delphi method uses anonymous forecasts from a more structured group of individuals to 

develop predictions.  Also called the Estimate-Talk-Estimate (ETE) approach, the Delphi method 

asks experts to answer questionnaires in two or more rounds.  After each round, a facilitation 

team provides an anonymized summary of the experts' forecasts from the previous round, and 

includes their reasoning.  Participants are thus encouraged to incorporate the replies of other 

members to ultimately revise and improve their own earlier answers.  A goal is often to ease the 

communication process among experts by shifting a significant portion of the overall effort to the 

facilitation team.  The desired outcome is that the group will eventually converge towards the 

most "correct" answer, which could be applied to identify optimal stable process improvements. 

Khorramshahgol (1999) merged the Delphi technique with Shewhart control charts to 

reduce the subjectivity associated with the Goal Programming (GP) multiple criteria decision 

making process.  The author provided an illustrative example of a bank focusing on four 

objectives:  To increase net profit, reduce operating cost, increase savings deposits, and increase 

community services.  Experts provided numerical aspiration level rankings associated with these 

goals over three rounds.  Then means and control limits were calculated to build control charts.  

Any outliers could then easily be identified, which the experts could focus on to help establish 

consensus and improve a stable process.  Solutions to the corresponding GP functions 

determined funding allocation among the four objectives, with control charts helping to establish 

target levels and upper and lower limits. 
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Parente & Anderson-Parente (2011) conducted a long term study of Delphi accuracy.  In 

1981, 600 participants were polled twice about 18 mental health scenarios that could possibly 

occur in the next 30 years.  In 2011, the accuracy of the group predictions was assessed.  

Participants correctly predicted the occurrence of 14 of 18 scenarios and, for the scenarios that 

did occur, the predictions were temporally accurate to within approximately 1-5 years.  These 

results suggest that the Delphi technique tends to provide accuracy sufficient for useful 

predictions. 

Another potentially useful decision analysis technique that can be applied to improve 

stable processes is Applied Information Economics (AIE), presented by Hubbard (2010) in How 

to Measure Anything.  The overarching assumption is that if something is causing an effect, it 

must be observable and therefore measurable.  AIE incorporates: 

1. Calibrated assessment by estimators trained to generate probabilities that are neither 

overconfident nor underconfident.  Some important factors may still be missed and some 

assessors may still introduce biases, but at least the factors included are calibrated so that 

further reduction of uncertainty is optimized by applied measurement efforts to the right 

factors. 

2. Information value calculations (similar to this research) for uncertain variables to reveal 

where to focus efforts for further uncertainty reduction.  When starting with little 

uncertainty (such as a Shewhart-stable process), a lot of new data is required to reduce 

uncertainty a little.  Conversely, when starting with a lot of uncertainty (Shewhart-

unstable), little new data is required to reduce uncertainty a lot.  Also, no information is 

conveyed when the outcome is already known. 
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3. Monte Carlo modeling including additional measurements with empirical methods 

according to the information value of measurements.  However, if unknown covariance is 

present between factors of interest, the Monte Carlo distribution may not fit reality. 

4. Optimization methods to determine ideal risk/ return positions for a set of alternatives. 

Few articles about AIE are available in the academic literature.  Many other decision and 

risk methods have also received little research regarding long term benefits (Hubbard, 2020).  

However, the components of AIE have a well-developed theoretical basis including information 

value calculations from decision theory, empirical methods for scientific measurement, Monte 

Carlo simulation, and calibration training. 

The next applicable method is system dynamics (SD), created in the 1950’s by Dr. Jay 

Forrester (1971), which applies stocks, flows, feedback loops, table functions and time delays to 

better understand the behavior of complex systems.  The basic premise is that the many 

interconnected and time-delayed relationships among structural components are often just as 

important in determining process behavior as the individual components themselves.  This 

method is similar to the research herein, in that both are founded on emergence-based analysis.  

More specifically, in applying SD, important properties of the whole often emerge, which cannot 

be discovered by dissecting the properties of the components.  One of the studies reviewed in the 

next section applied SD to the traditional funnel experiment, with results that were very relevant 

to this research (Georgantzas & Orsini, 2003). 

 In her landmark SD publication Thinking in Systems, Donella Meadows (2008) defined 

12 different leverage points as “points of power” for SD, but cautioned, following Forrester, that, 

“Although people deeply involved in a system often know intuitively where to find leverage 
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points, more often than not they push the change in the wrong direction” (p.145).  She offered 

that, “Leverage points frequently are not intuitive”, especially since the most significant 

problems are associated with complex and dynamic systems.  Especially relevant to this 

research, she defined the sixth most important of these leverage points as Information Flows, 

stating, 

It’s not a parameter adjustment, not a strengthening or weakening of an existing feedback 

loop.  It’s a new loop, delivering feedback to a place where it wasn’t going before.  

Missing information flows is one of the most common causes of system malfunction 

(p.157). 

  

Importantly, Meadows also considered information to be a highly variable stock, “From 

which to select possible patterns- and a means for experimentation, for selecting and testing new 

patterns” (p.160).  Furthermore: 

Any system, biological, economic, or social, that gets so encrusted that it cannot self-

evolve, a system that systematically scorns experimentation and wipes out the raw 

material of innovation, is doomed over the long term on this highly variable planet 

(p.160). 

 

Finally, she focused on defining the purposes or functions of the entire system, stating 

that they are, “Larger, less obvious, and higher-leverage” (p.161) than lower-level factors.  Her 

sentiments provide support for not only continuing to improve stable systems but also for 
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considering emergence-based insights alongside reductionist methods.  This idea is also relevant 

in light of Meadows’ two most powerful leverage points:  Paradigms and the Power to Transcend 

Paradigms. 

 Nobel laureate Ilya Prigogine (1997) discussed new paradigms in terms of dissipative 

structures in chapter two of The End of Certainty.  Paradigm transcendence is sometimes 

required to embrace his ideas about how disorder is the source of new order and therefore some 

level of disequilibrium is necessary for new growth.  These ideas, based in thermodynamics, are 

relevant to this research regarding stable process improvement.  Finally, while contemplating 

new paradigms for predicting change, a paragraph by Wheatley (1999) offers an appropriate 

conclusion to this section: 

The challenge for us is to see past the innumerable fragments to the whole, stepping back 

far enough to appreciate how things move and change as a coherent entity.  We live in a 

very fuzzy world, where boundaries have an elusive nature and seldom mean what we 

expect them to mean.  The illusory quality of the boundaries will continue to drive us 

crazy as long as we focus on trying to specify them in more detail, or to decipher clear 

lines of cause and effect between concepts that we treat as separate but aren’t. (p.43) 
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Table 2.  Summary of methods presented to facilitate Shewhart-stable process improvement. 

 

 

Traditional Funnel Experiment Analyses 

The traditional lateral translation funnel experiment is often used to demonstrate that 

compensation for variation, when a process is already stable, will always increase variation 

compared to just leaving the funnel alone.  However, as will be seen, this conclusion is 

controversial and based on assumptions that are not always valid.  This section will present 

critical literature reviews of the funnel experiment for three purposes.  One, to justify the use in 

this research of the vertical translation funnel experiment to represent an improving stable 

process.  Two, to elucidate the assumptions underlying the traditional funnel experiment that 

prevent extension of the experiment’s lessons to many real-world applications.  And most 

importantly, to support the case for the continuous improvement of Shewhart-stable processes in 

actual practice. 

Method Variations Presented

Obvious Improvements System of Profound Knowledge

Fail-Safe Designs Poka-Yoke, Automation

Preventive Maintenance Condition-Based Maintenance

Stratification Pareto Matrix, Stratified Control Chart, Stratified Histogram

Disaggregation Sub-Process Analysis

Practical over Statistical Significance

Risk/Opportunity Optimization, Hidden/Visible Variation, Dominant 

Variation Reduction via "Statistical Engineering", Hartshorne Strategies, 

Modified Control Charts

Designed Experiments Evolutionary Operations

Sequential Test of Hypothesis CUSUM

Assumes Non-Stationarity ARIMA, EWMA, Bounded Adjustment Chart

Simulation Spatio-Temporal, Information Flow

Predictive Analytics
Machine Learning Algorithms, Prediction Markets, Delphi Method, Applied 

Information Economics

System Dynamics Emergence-based

New Paradigms Information and Disequilibrium-based
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The conduct of the funnel experiment, to include descriptions of the four rules, and 

application of the data to control charts is well described in the literature, such as Deming (1986, 

Chapter 11).  Therefore, the standard experimental setup will not be described here.  It is also 

assumed that the reader has an intermediate understanding of how SPC fundamentals relate to 

the funnel experiment.  Readers requiring more background information are encouraged to 

review any of the numerous explanatory videos available on the internet, such as Crostic (2015), 

and consider critically the desired learning outcomes. 

Sparks & Field (2000) discussed the assumptions that underlie Shewhart control charts, 

and how they are violated when charting the funnel experiment.  For example, they stated that it 

is assumed for the �̅� chart, that the observations are independent and that the means of the 

observations are approximately normally distributed with constant variance.  Also, for the R 

(range) chart, that the observations are independent and, “…that the observations themselves (not 

just the means) are approximately normally distributed with constant variance” (p.295). 

The authors then use Q-Q plots, developed by Wilk & Gnanadesikan (1968), to 

demonstrate that the data are approximately normal with homogeneous variance for rules 1 and 

2, but either non-normal or with heterogeneous variance for rules 3 and 4.  Additionally, they 

evaluate autocorrelation functions to determine that the observations are not independent for 

rules 2, 3, and 4.  Their conclusion is that the funnel experiment does not meet the assumptions 

of use for Shewhart control charts under rules 2, 3, and 4.  They then decry the blind use of 

Shewhart charts for this purpose and thus advocate the need to always check that the 

assumptions are not violated in the process data before using Shewhart charts in any application.  

The authors also recommend avoiding the use of generic examples when training because 
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trainees often have trouble extending these examples to an application in their own setting 

(p.300). 

Another perspective was provided by MacGregor (1990).  He makes the case that 

adjustments to a stable process will increase the variance in certain situations, but that, “these 

situations do not often occur in the continuous process industries where active process control 

has been applied with excellent results for decades” (p.255).  He states that his paper is only 

relevant to rules 1 (hands-off policy) and 2 (active control policy), because the other rules are not 

used in practice.  His application of rule 2 is based on proportional compensation instead of full 

compensation. 

He identifies that the problem with applying the funnel experiment to practical situations 

is the assumption that the true process mean stays fixed.  He states, “A much more general 

situation in the process control industries is that the process mean is not a constant, but is varying 

in time due to stochastic disturbances” (p.256).  He does some evaluations using performance 

ratios and compares rule 2 deviation with and without control actions, concluding that: 

By taking corrective action every time (rule 2), the performance is never worse than that 

of rule 1 (no action) and it gets progressively better in situations where the random 

measurement error is a reduced percentage of the total variance, and where the 

disturbances are more autocorrelated or drifting in nature… (p.258) 

 

MacGregor characterizes the funnel experiment as “idealized” by the assumption of 

purely random measurement errors.  In concluding, he states, “A policy which actively controls 

the process to target will often result in substantial reduction of the output variance” (p.259). 
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The final paper, written by Georgantzas & Orsini (2003), uses systems dynamics 

modeling to evaluate the funnel experiment causally.  This is unique from the other approaches, 

which look at measures that are coincidental, relative to randomness.  Also, instead of the typical 

two dimensional plots, they add the probability of marble location (Pml) to create three 

dimensional plots for each rule, based on simulated data. 

 

 

Figure 9.  Three-dimensional plots of probable marble location based on simulated data.  From 
Tampering Dynamics by Nicholas Georgantzas & Joyce Orsini.  Copyright © 2003 by author.  Reprinted 
with permission of author.  All rights reserved. 

 

Applying Theil’s (1966) inequality statistic (TIS), they focus on analyzing the residual 

errors to decompose the mean squared error into its three components:  bias, unequal variation, 

and unequal covariation.  This helps them detect and describe the nonstationarity of the mean.  

They then compare the TIS results for rule 1 with the other 3 rules to specifically verify five 

conclusions made in the Sparks & Field (2000) paper described above. 
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Figure 10.  Theil’s inequality statistic applied to the traditional funnel experiment.  From Tampering 

Dynamics by Nicholas Georgantzas & Joyce Orsini.  Copyright © 2003 by author.  Reprinted with 
permission of author.  All rights reserved. 

 

Their next analysis compares each of the rules in terms of Shannon information, 

revealing significantly higher values for rules 2, 3, and 4 than for rule 1.  This confirms what 

logic would suggest about the level of uncertainty or surprisal associated with the three variance-

generating rules. 
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Figure 11.  Shannon information plots for the four funnel rules.  From Tampering Dynamics by Nicholas 
Georgantzas & Joyce Orsini.  Copyright © 2003 by author.  Reprinted with permission of author.  All 
rights reserved. 

 

Most importantly, they dedicate many pages to decomposing the structural dynamics that 

were revealed for each funnel rule in their simulation.  They advocate the merging of complexity 

theory with simulation modeling to help examine the, “Multiple, nonlinear, generative 

mechanism embedded in the processes…” (p.24).  The authors also advocate using system 

dynamics modeling to help, “Detect, explain, and prevent tampering” (p.24).  Their final 

comment advocates the integration of emergence-based analysis with contemporary reductionist 

methods:  “Complementing statistics with system dynamics can help managers sequester the 

entropy (uncertainty) of the processes they must manage” (p.24). 

This paper was probably the most relevant source found in relation to the research 

question in that it discussed complexity theory and the kinds of emergent structural dynamics 

that can be leveraged to gradually improve a time series process.  The key differences were their 

use of simulated data instead of empirical, and their use of systems dynamics modeling instead 
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of permutation entropy and Jensen-Shannon complexity measures.  Nevertheless, this paper 

provided the initial inspiration for the direction of this research. 

 

Research Gap 

Table 3.  Research gap in funnel experiment literature. 

Author 

Uses 

Empirical 

Data 

Counters 

Randomness, 

Tampering 

Assumptions 

Applies 

Information 

Theory 

Applies 

Emergence-

Based 

Analysis 

Tests 

Vertical 

Translations 

Sparks & Field   X       

MacGregor X X       

Georgantzas & Orsini   X X X   

Lorimer X X X X X 

 

Complexity Theory Applications for Industrial Process Control 

This section provides a review of the literature applying complexity theory to process 

control.  However, the word “complexity” possesses many different meanings depending upon 

the context.  An incomplete list of different meanings and concepts is provided in Appendix E.  

To improve the applicability of this review toward relevant research, these meanings will first be 

winnowed into three categories:  Complicated Complexity, Entropic Complexity, and Structural 

Complexity.  Complicated complexity measures processes in terms of how cumbersome or 

convoluted they are, as caused by many intricate, interconnected constituent parts.  Entropic 

complexity measures processes in terms of the variability of entropic measures such as Shannon 

information, which generally corresponds with the heterogeneity or randomness of a process.  
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Structural complexity measures processes in terms of emergence-based dynamics, which may 

not be directly discerned from the constituent parts. 

The general concept of complexity has been applied to many process control 

applications.  However, of the three categories, only emergence-based structural complexity in 

the form of Jensen-Shannon complexity (CJS) was directly applicable to this research.  To better 

characterize structural complexity, Feldman et al. (2008) state, 

Measures of randomness do not capture the property of organization.  This led to the 

recent efforts to develop measures that are, on the one hand, as generally applicable as 

the randomness measures but which, on the other, capture a system’s complexity—its 

organization, structure, memory, regularity, symmetry, and pattern” (p.1). 

 

This paper is reviewed more fully in the section of this Literature Review entitled, 

“Complexity-Entropy Diagrams”.  Another helpful characterization was provided by Crutchfield 

& Young (1989), when they applied statistical mechanics to infer statistical [structural] 

complexity.  The resulting definition for structural complexity correlated physical structure with 

system randomness. 

Complicated Complexity.  Examples of papers applying complicated complexity to 

process control topics include The Role of Variation, Mistakes, and Complexity in Producing 

Nonconformities by Hinckley & Barkan (1995), Finding a Complexity Measure for Business 

Process Models by Latva-Koivisto (2001), and Management and Control of Complexity in 

Manufacturing by Wiendahl & Scholtissek (1994).  However, complicated complexity was not 
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relevant to this research so papers applying this type of complexity measure were not reviewed 

critically or for research gaps. 

Entropic Complexity.  Although Shannon entropy was certainly relevant to this research, 

it was derived in the application of permutation entropy methods, which in turn partially 

supported the assessment regimen for Jensen-Shannon (structural) complexity.  Since measures 

of Shannon entropy provided a supporting role, entropic complexity was not a fundamental 

measure in this research.  Therefore, papers discussing this type of complexity also were not 

reviewed.  However, Assessing the Structural Complexity of Manufacturing Systems 

Configurations by Kuzgunkaya & ElMaraghy (2006) was interesting because the authors used 

the phrase “structural complexity” in the title, described manufacturing in terms of complicated 

complexity but applied entropic complexity as a reference measurement. 

Structural Complexity.  In the literature, structural complexity quantifiers were often 

applied to characterize time series processes.  A number of papers were also discovered that 

applied complexity principles to various aspects of quality control.  For instance, Dooley et al. 

(1995) advocated applying emergence-based complexity concepts to Total Quality Management 

(TQM) to improve the performance of complex organizations.  Hutchinson (1994) advocated 

applying complexity theory and chaos theory principles to reduce errors in health care quality 

management when SPC is inadequate.  Stroebel et al. (2005) advocated the improvement of 

primary health care service processes using a theoretical framework called Multimethod 

Assessment Process/Reflective Adaptive Process, which was informed by complexity science 

principles.  The authors included a case study, which demonstrated improvements over 

Continuous Quality Improvement (CQI) for communication and training concepts such as, 



90 

“Adaptive practices, increased capacity for learning, improved systems, richer connections and 

relationships, improved patient outcomes” (p.443).  These studies were applying complexity 

principles to improve activities such as training, organizational performance, learning, etc., 

which can be contrasted with the focus of this research on applying ongoing measurements of 

Jensen-Shannon complexity to seek empirical evidence of improvement for verified Shewhart-

stable time series. 

 Some literature applied the phrase “structural complexity” but with a much different 

definition of structural complexity in mind.  In Linking Service Structural Complexity to 

Customer Satisfaction, Martínez‐Tur (2001) defined structural complexity as, “The diversity of 

services offered by an organization” (p.1).  Lindemann, et al. (2008) published a book entitled, 

Structural Complexity Management:  An Approach for the Field of Product Design but used the 

word “structural” in reference to product structures, which the authors analyzed in terms of 

complicated complexity.  In The Structural Complexity of Software an Experimental Test, Darcy 

et al (2005) contrasted algorithmic complexity with structural complexity, providing a definition 

for the structural complexity of a program as, “The organization of program elements within a 

program”.  The paper specifically examines, “The potential interaction of the two dominant 

dimensions of structural complexity, coupling and cohesion” (p.1).  Finally, in Structural 

Complexity Evolution in Free Software Projects: A Case Study, Terceiro (2009) similarly 

defined structural complexity as, “The product of average module coupling and average module 

lack of cohesion” (p.4). These alternative conceptions of structural complexity were not relevant 

to this research. 
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 Many sources were also discovered that applied the same definition of structural 

complexity that was used in this research.  In general, the most relevant of this literature was 

associated with the MPR-Method or Computational Mechanics.  After reviewing many papers 

based on these methods, none were found that measured changing structural complexity of an 

empirical time series to continuously inform the improvement of that time series as might be 

seen in an industrial engineering process control application.  Continuous improvement is 

defined herein as actions taken that reduce variation, which also appears as decreasing structural 

complexity and increasing process randomness over time.  Instead, the majority of these papers 

were focused on process characterization. 

 Numerous process characterization studies applied permutation entropy for fault 

detection and diagnosis, especially regarding rotary components like bearings, but very few of 

these also calculated changing structural complexity to facilitate new insights for process 

monitoring.  The research presented by Radhakrishnan & Kamarthi (2016, December) and 

Radhakrishnan et al. (2019) did actually take the next step by applying the Complexity-Entropy 

Causality Plane for industrial component health monitoring to inform preventive maintenance.  

Of the literature reviewed, these studies were the closest in theme to this dissertation’s research, 

but a minor distinction remains.  Although both research efforts addressed common causes of 

variation, the distinction lies in the purpose of the research.  That is, this dissertation’s research 

was focused on informing the continued improvement (such as continuous complexity reduction) 

of a stable process, whereas the reviewed studies were instead focused on characterizing faults 

to inform actions that can better maintain the status quo by preventing special causes.  Similar to 

the Tokai Rika process evaluated elsewhere in this research, preventive maintenance can achieve 
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generally minor variation reduction, but its ultimate purpose is prevention, not improvement.  An 

analogue that makes a similar distinction is the difference between risk monitoring/ prevention 

versus opportunity analysis. 

 

Research Gap 

 No literature was discovered that measured changing structural complexity (such as 

Jensen-Shannon complexity) for an empirical time series to specifically inform the continuous 

improvement of that time series. 

 

Permutation Entropy 

This section will briefly introduce the foundational paper for permutation entropy, 

provide some of the resource literature, and list some of the diverse applications.  The focus will 

then shift to three primary topics of interest.  The first topic will cover permutation entropy’s use 

in process control.  The second will cover modifications that have been made to traditional 

permutation entropy methods, with emphasis on the mitigation of identical values within tuples.  

The final section will briefly introduce the foundational literature that established the 

Complexity-Entropy Causality Plane and provide a few of the resources that were referenced to 

seek more detailed explanations. 

Before reviewing the literature, a brief overview of PE will first be provided to establish 

some basic familiarity.  PE uses an ordinal scheme to extract a probability distribution associated 
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with an input, which yields an information entropy quantifier.  The ordinal symbolic method 

arises naturally from the time series based on the relative amplitude of adjacent values and 

therefore requires no model assumptions.  Permutation entropy inherits the causal information 

that stems from the temporal structure of the system, revealing complex, nonrandom dynamic 

content.  A more detailed discussion of the advantages and disadvantages of PE is provided in 

the Methodology section. 

In 2002, Bandt and Pompe published the seminal paper entitled, Permutation Entropy:  A 

Natural Complexity Measure for Time Series, which initiated a new field of information theory 

research.  An online Google Scholar review on April 12, 2020, revealed 2,537 citations for this 

paper.  Permutation entropy has been applied to many fields that traditionally monitor time series 

data.  However, as will be revealed shortly, there have been relatively few instances of 

researchers applying this method to traditional industrial engineering problems for process 

control. 

Bandt and Pompe (2002) introduced permutation entropy as, “Complexity parameters for 

time series based on neighboring values”, which they claimed is, “Particularly useful in the 

presence of dynamical or observational noise.”  They stated advantages of, “Simplicity, 

extremely fast calculation, robustness, and invariance with respect to nonlinear monotonous 

transformations” (p.174102-1).  They then introduce the procedures and basis for their method, 

which will be presented in the Methodology section.  Finally, they provided some examples that 

validated permutation entropy’s advantages. 

The first example was a speech signal, which they compared with the traditional zero 

crossing rate (ZCR) parameter.  PE was more robust to noise perturbations, choice of tuple 



94 

length, and sampling frequency.  PE also sometimes indicated voice transitions better.  The 

chaotic time series of the logistics map was the second example, which they compared with the 

Lyapunov exponent.  In the presence of significant dynamical and observation noise, PE 

demonstrated its invariance to nonlinear monotonic transformations.  They claim this advantage 

is, “In contrast to all known complexity parameters”.  They close by stating that this method, 

“Seems preferable when there are huge data sets and no time for preprocessing and fine-tuning 

of parameters” (p.174102-4). 

Numerous overviews and advancements have been published since Bandt and Pompe’s 

seminal paper.  Detailed theoretical background information can be found in Amigo (2010) and 

Martin, Plastino & Rosso (2006).  A practical tutorial providing an overview of applications is 

provided by Riedl, Müller & Wessel (2013) based on, “Exhaustive literature research 

summarizing and classifying the experiences of experts” (p.250).  Foundational concepts 

underlying PE are provided in Lopez-Ruiz, Sañudo, Romera, & Calbet (2012) and in Kowalski, 

Martin, Plastino, Rosso, and Casas (2011). 

As a tool for characterizing complex time series, PE has been applied in a wide range of 

scientific areas and for diverse purposes.  The following list briefly demonstrates the 

heterogeneity of application without being exhaustive: 

 Rotary Machines.  Redelico et al. (2017), Yan et al. (2012) 

 Vehicle Behavior.  Aquino et al. (2015) 

 Electric Load.  Aquino et al. (2017) 

 EEG Neuronal Activity.  Cao et al. (2004), Li et al (2007), Liang et al. (2015), Montani et 

al. (2015), Morabito et al. (2012), Azami & Escudero (2016a) 
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 EKG Heart Activity.  Bian et al. (2012) 

 Optical Semiconductor Laser Chaos.  Liu et al. (2016), Toomey et al. (2014), Zunino et 

al. (2011), Soriano et al. (2011) 

 Biometrics.  Rosso et al. (2016), Zunino et al. (2017) 

 Geophysics.  Sippel et al. (2016), Saco et al. (2010), Consolini et al. (2014) 

 Econophysics.  Zunino et al. (2009), Bariviera et al. (2015)[22–25] 

 Hydrology.  Serinaldi et al. (2014), Lange et al. (2013), Stosic et al. (2016) 

 

Permutation Entropy for Industrial Process Control 

Many permutation entropy papers were discovered representing fields that conduct 

process monitoring, such as medicine (e.g. EKG, EEG processes) or finance (e.g., stock market 

inefficiency, gold pricing).  In addition, numerous process characterization studies applied 

permutation entropy for fault detection and diagnosis, especially regarding rotary components 

like bearings.  In general, the focus of most of the papers surveyed was process characterization 

and monitoring.  A smaller subset applied the results to make adjustments relevant to process 

performance, such as mitigating special causes.  Ultimately, no papers were discovered that 

applied permutation entropy to improve stable process performance through continuous 

improvement, resulting in ongoing variation reduction.  Since some applications attempted to at 

least maintain a stable process, three papers will be reviewed that applied permutation entropy 

results to control theory to assess and modify complex industrial process performance.  Control 

charts were only discussed in one of these three papers. 
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The first relevant paper, written by Martinez & de Prada (2007) discusses control loops in 

process plants, to include real-time optimizers, model predictive controllers, proportional integral 

derivative controllers, and inferential loops.  The authors lament the normal degradation of 

process operation that occurs over time and advocate permutation entropy as a method to reveal, 

“Predictability patterns in the error time series” (p.2) to supplement other process improvement 

efforts.  Their focus was on the ordinal relationships between error values instead of between the 

values themselves.  They refer to two other papers that will be mentioned here because they are 

closely related to the topic, but do not meet review criteria.  The first, by Bandt (2005), discussed 

permutation entropy techniques for error time series but did not address application to process 

control.  The other, by Ghraizi, et al. (2007) also discussed error time series analysis, but did not 

address the application of permutation entropy. 

Martinez & de Prada go on to discuss the method and merits of permutation entropy.  

They consider the state when all the permutations have equal probability (random error disclosed 

via a uniform probability distribution) as the ideal for any controller that is providing process 

stability over the control horizon.  With this as the reference, they then propose a performance 

index, which is the normalization of the current Shannon information measure.  They conclude 

with promotion of ordinal methods for other process supervision tasks, to include batch 

processes and hybrid control systems.  The authors did not extend their presentation beyond 

permutation entropy into structural complexity research. 

The second paper was written by Wu, et al. (2019), which also discusses control loop 

performance supervision.  However, these authors advocate a modified version of permutation 

entropy that introduces data amplitude weighting (wPE) to establish a performance index.  This 
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method was designed to facilitate closed loop performance monitoring using Shewhart and 

EWMA control charts.  The wPE technique was devised by Fadlallah, et al. (2013), in part to 

better detect spiky processes, and will be discussed in greater detail in the next section of this 

Literature Review. 

This paper by Wu, et al. creates numerous opportunities for confusion, which should be 

explained up front.  First, they refer numerous times to a paper by “Rachid” which is actually the 

paper by Ghraizi, et al. (2007) mentioned above.  This occurred because they confused first and 

last names in their reference #15.  However, their point was to show that “Rachid” contributed to 

the analysis of time series predictability, to include proposing a performance index.  Second, 

they referred to Ghraizi correctly elsewhere, but this time referencing a symposium presentation 

two years after the “Rachid” paper which did apply permutation entropy (Ghraizi, et al., 2009).  

This is their reference #18, and it will be reviewed shortly in this section.  Finally, they refer to a 

paper by Zhang, et al. (2014) which proposed a performance assessment benchmark based on 

minimum information entropy.  Although this paper applied entropy techniques, it did not 

specifically apply the permutation entropy methodology. 

Wu, et al. established control chart control limits for their processes and used simulated 

data to evaluate whether the Shewhart control chart would capture two abrupt changes in the 

process data using both PE and wPE-derived performance indices.  Both spikes were captured 

with wPE and neither for PE.  They then used EWMA to assess changing pressure for natural gas 

pipeline control loop data.  Only wPE was evaluated, but it demonstrated the ability to correctly 

track pressure performance changes.  Their research verified that a version of permutation 

entropy could accurately track process performance with a control chart.  Although these authors 
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referred to complexity many times, their context was either to describe permutation entropy as a 

measure of entropic complexity or to describe complicated complexity.  As such, Wu et al. did 

not expand their presentation from PE into the emergence-based structural complexity relevant to 

this research. 

The third and final source, Ghraizi et al. (2009), looked at the predictability of error 

patterns for control loop performance.  They established a performance index by dividing the 

variance of the residuals by the variance of the controller errors.  They acknowledged that a large 

confidence interval is generated when the loop performance degrades based on t-distribution 

assumptions, limiting its usefulness.  Therefore, their tests used ordinal patterns for the residuals 

to relax the statistical assumptions.  This allowed them to compute a new performance index 

based on permutation entropy.  They compared the performance of the new index with the old 

one using three industrial case studies.  The PE-based performance index provided better and 

more consistent results, even when the control loop was in saturation.  They closed by 

advocating their method to automatically supervise all process plant control loops in real time.  

They mentioned the term dynamic complexity, which was a reference to entropic complexity, 

and not to the structural complexity relevant to this research. 
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Research Gap 

Table 4.  Research gap in permutation entropy literature for process control. 

Author 

SPC 

Related 

Process 

Improvement 

Beyond 

Feedback 

Control 

Use 

Permutation 

Entropy 

Generally 

Use 

Modified 

Permutation 

Entropy 

Apply 

Structural 

Complexity 

Theory 

Martinez & de Prada X   X     

Wu, et al. X   X X   

Ghraizi, et al. X   X     

Lorimer X X X X X 

 

Mitigation of Identical Values within Tuples 

 In their seminal paper, Bandt & Pompe (2002) identified a potential problem with their 

permutation entropy method.  They believed their method would work well as long as identical 

values did not appear within a tuple.  Fortunately, such equal values are relatively rare in 

continuous series.  However, equal values are much more common for discrete series data.  With 

the ubiquitous digitization of data streams, this problem has become more significant.  When a 

discrete time series represents a Shewhart-stable process, equal values are even more likely. 

Bandt & Pompe recommended for discrete series to, “Numerically break equalities by 

adding small random perturbations” (p.174102-1).  Their assumption was that the varying noise 

would map with more or less equal probability to each suitable symbol.  However, in a paper 

published on the topic 15 years later, Zunino et al. (2017) stated that, in practice, this addition of 

a small amount of noise, “Has been rarely implemented” (p.1883).  Additionally, Traversaro et 

al. (2018) pointed out that adding noise fixes one problem but creates another:  “Random 
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imputation may overestimate the entropy, as it adds random noise to the series, and masks 

forbidden patterns by inducing those missing patterns to appear, concealing this dynamical 

property characteristic of chaotic dynamics” (p.075502-8).  It should be noted that having equal 

values within a tuple is not the same problem as “forbidden” patterns, which are non-

deterministic patterns within chaotic processes (Rosso et al., 2012).  Nor are they “missing” 

patterns, which are unobserved patterns in stochastic time series resulting from finite sample size 

(Borges et al., 2019). 

Identical values are especially a problem for discrete processes with low amplitude or 

low dimensionality data.  Not only do Shewhart-stable processes typically fall in this category, 

but also highly repetitive processes such as EKG, and periodic processes such as data from 

oscillatory machines.  This could be problematic in process control when evaluating the effect of 

intended process improvements.  The concept of equal values within a tuple may seem nebulous 

at this point so a very brief introduction to the problem will be provided here.  The Methodology 

section will provide more detail. 

Encoding each group of D consecutive numbers based on their relative amplitudes.  In 

this case, assume a tuple length (embedding dimension) of D=3.  Each tuple will represent one of 

D!=6 possible distinct symbols, as shown graphically in Figure 12.  Possible distinct tuples are 

Ω3 = {(012)(021)(102)(120)(201)(210)}, presented in the same order as in the figure.  Note that 

none of these symbols account for an equal value within the tuple, which would look like, for 

example, (001) or (101).  Also note that some authors prefer to use the numbers (123) instead of, 

equivalently, (012).  So the most relevant question is:  “What is the best way to account for 
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identical values within a tuple that would minimize the erroneous representation of emergent 

process dynamics?” 

 

 

Figure 12.  Distinct permutations for embedding dimension, D=3.  From Classifying Cardiac Biosignals 

using Ordinal Pattern Statistics and Symbolic Dynamics by U. Parlitz et al.  Copyright © 2012 by 
Elsevier.  Reprinted with the permission of Elsevier.  All rights reserved. 

 

Zunino et al. (2017) stated that, “Equal values in the time series are very usually ranked 

according to their temporal order” (p.1883).  This method is also called time-ordered imputation.  

Returning to the example above, if the pre-coded data were {6.0, 6.1, 6.0} the equivalent coded 

symbol using this temporal ordering scheme would become (021), creating a viable symbol.  

Although this simple and popular method of time-ordering mitigates all identical values, Zunino 

et al. conducted a comprehensive empirical analysis, which revealed that, “This way of dealing 

with ties introduces non-negligible spurious temporal correlations that can potentially lead to 

erroneous conclusions about the true underlying dynamic nature” (p.1890).  The results of this 

paper are very relevant to the research herein, and are studied in more detail in the section of the 

Methodology discussing permutation entropy local effect validation. 

The next method to mitigate identical values is to simply remove tuples that contain 

identical values, since they are not “statistically complete.”  This method is analogous to a 
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“complete case analysis” in statistics.  According to Traversaro (2018, Table II), the statistically 

complete method preserves the missing or forbidden patterns but creates problems because 

throwing out some of the data will likely bias the presentation of the emerging dynamics.  The 

statistically complete method is embraced for the research herein, to handle non-pattern 

following tuple types (Red & Wizard), and will be discussed further in the Methodology section. 

Bian, et al. (2012) presented a method called modified permutation entropy (mPE) to 

better characterize heart rate variability signals in empirical studies.  They employed three 

groups of heart rate data to evaluate their method.  Equal values within tuples were mapped to 

the same symbol, considerably increasing the number of possible tuples.  According to Zunino et 

al. (2017), one problem with mPE is that it, “Does not reach its maximum value for … totally 

random signals (white noise) as this actually happens for the standard PE” (p.1884).  In other 

words, mPE is not generalizable to existing permutation entropy analysis.  Another perspective 

regarding mPE was provided by Azami & Escudero (2016a), who recognized that mPE has an 

advantage for long signals.  However, they offered that mPE would be unreliable in the case of 

short signals because of the number of potential tuples created. 

Olofsen et al. (2008) developed a Composite PE Index (CPEI) to measure anesthetic drug 

effect for EEGs.  They recognized that PE’s sensitivity to high frequencies makes it a poor 

measure for drug effects.  Since their focus was on low frequency process behaviors, they 

created a tie tuple to use when the difference between any two of the data values within a tuple 

was less than 0.5 mV.  Since D=3 has 6 nominal tuples, they created a seventh tuple for ties.  

They also recognized that tie tuples evaluated at τ = 1 could distinguish periods of delta waves 

and those at τ = 2 could distinguish mid-frequency from slow waves.  Both of these features 
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were considered useful to measure drug effect, so they took advantage of the natural summation 

of entropies to create their composite index.  To normalize their index, they used the typical 

logarithm of the maximum possible quantity of distinct symbols, which in their case was 7x7= 

49.  This feature made CPEI ungeneralizable to existing permutation entropy analysis with WGN 

not equal to unity.  After evaluating their method using real EEG signals, they determined that 

their index was better than spectral entropy and approximate entropy methods.  They closed by 

claiming that CPEI, “Allows the graded differentiation of different anaesthesia-induced EEG 

patterns, and the handling of low-amplitude measurement noise” (p.820). 

Chen et al. (2019) proposed improved PE (iPE) and multiscale improved PE (miPE) to 

incorporate amplitude information, mitigate equal values within a tuple, and perform better under 

noisy conditions.  The method they identified for multiscale iPE (miPE) was to organize the time 

series under any multiscale course graining method, then feed the result into their iPE algorithm.  

Their iPE algorithm was composed of two parts, definition of pattern and entropy estimation.  

They considered their method for definition of pattern an improvement upon the integrated 

approach based on uniform quantization (IAUQ) of Porta et al. (2007), previous used to evaluate 

heart period variability.  Their iPE algorithm accommodates potentially useful amplitude 

information, which the normal PE coding scheme misses and many other methods ignore.  Their 

figure, presented below, reveals the problem graphically. 
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Figure 13.  Possible Permutation Amplitude Situations.  From Improved Permutation Entropy for 

Measuring Complexity of Time Series under Noisy Conditions by Zhe Chen et al.  Copyright © 2019. 
Reprinted under Creative Commons Attribution License v4.0.  
https://creativecommons.org/licenses/by/4.0/ 

 

Chen et al (2019) identified four improvements that their method makes over the normal 

PE method.  First, the same symbol is assigned to equal values.  They stated that the way iPE 

processes repeated values, “Will not cause overestimating of permutation patterns thus a more 

precise complexity measure can be obtained” (p.3).  Second, iPE provides better accommodation 

of amplitude and fluctuation information.  Third, iPE provides more robustness to noise 

interference.  And fourth, better information is provided by LD possible tuples instead of just D!, 

where L denotes the discretization level.  They claim the selection of L involves a trade-off 

between accurate entropy estimation and high noise immunity.  After analysis, they established 

L=4 as optimal for subsequent study. 

The authors acknowledged some weaknesses of iPE.  For example, iPE provides 

unreliable entropy estimation for short time series with N < 4L
D, where N = total number of data.  

Also, the extra distinct tuples means iPE does not reach the maximum entropy value for WGN.  

https://creativecommons.org/licenses/by/4.0/
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They dismiss this problem by stating that iPE, “Obtains large enough entropy measurements 

(>0.93) when 𝐿 ≥ 4, which is generally identical to the fact” (p.4).  The fact they reference is �̃�max = 1 for WGN. 

To validate their algorithm, they analyzed spiky data, heart rate variability data, an 

autoregressive model, and ship noise.  For all four time series, they compared the results of iPE 

with the results from five other methods, numerically demonstrating the advantages of their 

algorithm.  Using abbreviated terminology, the other five methods were PE, wPE, aaPE, mPE, 

and IAUQ.  It should be noted that each of these methods is described elsewhere in this literature 

review, and any of these methods that do not directly address identical values within tuples are 

presented in the next section.  Chen et al. (2019) close by recommending the application of iPE 

in future work such as, fault diagnosis, acoustic signal processing, and stock market analysis. 

The paper by Porta et al (2007) was mentioned in the previous review of Chen et al. 

(2019) with respect to the IAUQ method.  Although IAUQ did not focus on permutation entropy 

per se, the ordinal analytic methods described in Porta for handling identical values within an 

entropy sample “family” merit comment.  Porta et al (2001) preceded Bandt and Pompe (2002) 

in a line of thought about entropy analysis that is similar with respect to the symbolic 

discretization of time series data.  The IAUQ method that Porta et al (2001) developed created a 

large number of possible distinct entropy samples, which they recognized could make sample 

classification unmanageable.  They therefore developed a scheme to group such patterns into a 

smaller number of “families”, to ease the monitoring effort. 

For D=3, the pattern “families” that Porta et al (2001) created were:  (1) Patterns with no 

variation, all the symbols are equal; (2) Patterns with one variation, two consecutive symbols are 
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equal and the remaining one is different; (3) Patterns with two like variations, the three symbols 

form an ascending or descending ramp; (4) Patterns with two unlike variations, the three symbols 

form a peak or a valley (p.1285).  Their methodology to reduce tuple redundancy was exploited 

in future studies, including Guzetti et al. (2005) and Porta et al (2007).  However, the only paper 

discovered that applied their IAUQ signal quantization methodology to advance permutation 

entropy was Chen et al. (2019), reviewed above. 

Another method, which is based on data-driven imputation, was proposed by Traversaro 

et al. (2018).  The authors started by assuming that the visible discrete data are a corrupted 

version of an underlying, unobserved continuous time series with, by definition, no ties.  Their 

method determines a probability distribution using the information available from the observed, 

corrupted data to estimate the “true” patterns.  An elaborate scheme of symbol weighting is 

introduced and then the data-driven method is compared to three other methods.  These methods 

were the statistically complete, time-ordered, and random imputation methods.  Analysis was 

accomplished using decimal expansion of three irrational numbers, the logistic map, and a 

delayed logistic map.  Their conclusion was that random imputation and statistically complete 

methods should not be used at all, and that the data driven method outperforms the time-ordered 

method in some cases.  They also recommended that none of the imputation versions should be 

applied when 35% or more of the vectors have ties, due to the misleading estimates they generate 

(p.075502-13).  For the research herein, some of the processes had greater than 35% ties in 

vectors (such as V4), which limited the applicability of this otherwise promising method. 

Xiao-Feng & Yue (2009) introduced fine-grained PE (fgPE).  This method takes into 

account the magnitude of the difference between neighboring values when symbolizing the time 
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series.  Their method represents certain advancements from two other entropy modification 

techniques developed before PE was introduced in 2002.  The first was approximate entropy 

(ApEn) (Pincus, 1991) and the second was sample entropy (SaEn) (Richman & Moorman, 2000).  

They proposed that their fgPE algorithm, based on the Lyapunov exponent (λ), could overcome 

the equal value problem.  They also suggested that their technique, “Improves the performance 

for detecting the dynamical change of time series and approximates more closely to the 

Lyapunov exponent for the chaotic time series” (p.2691).  Azami & Escudero (2016a) 

acknowledged that fgPE can improve the performance of PE, but found the precision regulation 

factor (α) that Xiao-Feng & Yue created to be too sensitive (p.4). 

The method that Azami & Escudero (2016a) instead proposed is called amplitude aware 

permutation entropy (aaPE).  Their focus was signal segmentation and spike detection for EEG 

data, but the mitigation of equal values was also addressed by their method.  They acknowledged 

that wPE (Fadlallah et al., 2013) is a powerful tool but suffers from two weaknesses.  First, wPE 

cannot distinguish when a constant value is added to the original signal because variance would 

not change.  Second, wPE does not allow customization of the importance given to the amplitude 

information, based on the purpose of the analysis. 

Largely to address these shortcomings, Azami & Escudero built an algorithm that 

considers the mean value in each tuple, the difference between consecutive samples, and adds a 

customizable variable for the amplitude.  Customization can be made depending upon whether 

the mean is more relevant to a study or instead the differences between consecutive samples.  

However, they also warned against using a time lag greater than unity (τ >1), without 

considering the characteristics of the signal.  They thought this could lead to aliasing, which is 
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when different signals become indistinguishable.  They also recommended using methods other 

than aaPE when evaluating series with multiple temporal scales (multiscale series). 

The authors provide an example for using aaPE to mitigate identical values, based on half 

contributions by adjoining values and a combination of two algorithms.  They stated that this 

method can discriminate between types of ascending and descending sequences.  They closed by 

claiming that aaPE is, “A powerful tool to segment signals and detect spikes.  It can be applied in 

different applications where the mean values of neighboring samples and changes in amplitude 

values are important” (p.30).  For mitigating identical values within a tuple, both of these 

considerations can be relevant. 

The final paper reviewed was significant not only because the authors evaluated 

numerous processes that would be considered Shewhart-stable, but also because their viewpoint 

contradicted a substantial body of analytical work regarding identical values within tuples.  

Specifically, Cuesta-Frau et al. (2018) researched whether identical values within a tuple are 

really even an issue.  They evaluated four different biomedical datasets:  EEG, Body 

Temperature (Temp), interval distance between heartbeats (RR), and continuous glucose 

monitoring (CGM) data.  These four were selected because they, “Often include ties due to the 

intrinsic nature of the records (RR records), lack of resolution of the measuring devices (CGM), 

slow variations in the underlying signal (Temp), or just by chance (EEG)” (p.13).  They counted 

up the percent of tuples containing equal values for embedding dimensions ranging from D=3 to 

9 in these datasets.  Their results are presented in Table 5. 
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Table 5.  Percent of tuples containing equal values for four stable datasets.  From Patterns with Equal 

Values in Permutation Entropy:  Do They Really Matter for Biosignal Classification? by Cuesta-Frau et 
al.  Copyright © 2018 by author.  CC0 1.0 license, https://creativecommons.org/publicdomain/zero/1.0/ 

 

 

The authors condemned random imputation, mPE, and aaPE methods because, “All the 

methods try to account for ties from a mathematical perspective, but not from a conceptual 

perspective:  What ties really represent in a time series, since equal values may be an intrinsic 

part of the dynamics of the records” (p.1)  They also took issue with the use of, “Synthetic or 

very specific types of records, which do not provide a complete picture of the real influence of 

ties in PE” (p.2). 

They thought the questions that should instead be considered are (p.2): 

 Is there a correlation with the percentage of ties and PE performance? 

 Is it preferable to account for ties in the PE algorithm or try to remove them in advance? 

 Is the time series location of ties making any difference on their influence? 

 

Cuesta-Frau et al. (2018) pointed out that only one study has attempted to answer these 

questions:  Zunino et al. (2017).  They acknowledged that Zunino et al. concluded that equal 

values introduce a PE bias.  However: 

https://creativecommons.org/publicdomain/zero/1.0/
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…this study [Zunino et al.] was focused on assessing the changes in the results of PE 

compared to those obtained with no ties, in absolute terms.  In signal classification tasks, 

the main driver of PE performance is not the specific PE value, but its intra- and 

interclass distribution (p.2). 

 

Similarly, Cuesta-Frau et al. claimed the main objective of their study was, “To assess the 

influence of ties in relative terms, not to propose a signal classification scheme” (p.2).  They 

thought the continuing problem was: 

PE bias may be distributed more or less uniformly among all the classes, and therefore, 

the differences may still remain apparent.  Based on this hypothesis, the present study 

aims to gain a more practical insight into the real influence of equal values in PE. (p.2) 

 

Cuesta-Frau et al. then intentionally corrupted each experimental dataset by inserting 

synthetic equal and independent values.  They specifically increased the percentage of ties in the 

EEG and CGM datasets up to 50% to, “Obtain PE as a function of the level of ties and plot the 

results to visually determine the degree of variation that such changes entail” (p.6).  Their results 

showed that adding random perturbations to break ties improved results by only about 1%.  Also, 

that mPE improved the baseline case by about 2%, and aaPE was worse than no mitigation at all.  

They hypothesized that stochastic resonance may be involved, which they defined as, “An effect 

by which an external disturbance and the internal dynamics of a signal have a positive 

collaborative interaction that results in enhanced signal detection” (p.13). 
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They concluded that ties are not all equal.  More specifically, “Those due to consecutive 

values seem to exert a lower influence than those due to unconnected equal values in the same 

pattern” (p.14).  And a final suggestion: 

When ties are involved, if PE had to be applied to a classification task and the results 

were poor, we would suggest maximising [the embedding dimension, D] in accordance 

with the computational resources available (memory and time cost) and the classification 

performance achieved, using the standard PE algorithm. (p.14) 

 

Although Cuesta-Frau et al. focused on stochastic effects, chaotic influences were not 

provided in their analysis, which could be a significant concern depending upon the nature of the 

process.  For all four types of data series that Cuesta-Frau tested, other authors have provided 

insights regarding chaotic process behaviors.  Some relevant studies that could be contemplated 

to address this research gap are listed in Appendix D. 
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Research Gap 

Table 6.  Research gap for mitigation of equal values within tuples. 

Author 

Proposal 

reaches 

Hmax for 

WGN 

Assumes 

Equal 

Values are 

Problematic 

Applies 

Statistically 

Complete 

Method 

Applies 

Local Effect 

Bandt & Pompe (2002) X X     

Zunino et al (2017) X X     

Traversaro et al. (2018) X X X   

Bian et al. (2012)   X     

Olosen et al. (2008)   X     

Chen et al. (2019)   X     

Porta et al. (2001)   X     

Xiao-Feng & Yue (2009) X X     

Azami & Escudero (2016a) X X     

Cuesta-Frau et al. (2018)         

Lorimer (2020)   X X X 

 

Modifications to Permutation Entropy 

The literature for traditional permutation entropy, including the seminal paper by Bandt 

& Pompe (2002), describes weaknesses in certain applications.  However, one of PE’s strengths- 

the ubiquity of application to diverse time series- can be an additional weakness when processes 

possess certain characteristics such as spikiness.  The previous section reviewed methods devised 

to mitigate various problems associated with equal values in tuples.  This section will look more 

broadly at other relevant aspects of permutation entropy that suggest the need for modifications.  

Topics include mitigating tuple redundancy, incorporating spatio-temporal information, dealing 

with spiky processes, incorporating amplitude information, and handling multiscale applications. 
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Many variations to the original method were discovered in the permutation entropy 

literature.  An attempt was made in this section to review the most salient of PE modifications, 

since it was impractical to review every possible variation.  An illuminating paper, written by 

Zanin et al. (2012), provides a similar review of alternative PE methods, but is focused 

specifically on biomedical and econophysics applications.  For readers that would like more 

detail, this paper is recommended as a supplement to this section of the dissertation. 

Fadlallah et al. (2013) proposed the weighted PE (wPE) method.  They thought it was 

important to, “Differentiate between distinct patterns of a certain motif and the sensitivity of 

patterns close to the noise floor” because patterns may be too disparate in amplitudes and 

variances (p.022911-1).  They conducted simulations which showed, “Better robustness and 

stability in the presence of higher levels of noise”, and the capability to, “Extract complexity 

information from data with spiky features or having abrupt changes in magnitude” (p.022911-1).  

However, according to Azami & Escudero (2016a), wPE cannot distinguish the case where a 

constant value is added to the original signal, because its variance would not change.  They also 

opined that wPE could be better if the amplitude information could be customizable, depending 

upon the application.  The previous section of this Literature Review presented Azami & 

Escudero’s amplitude aware Permutation Entropy (aaPE) methodology. 

 Berger et al. (2017) introduced the centroid of a weighted power spectrum to represent an 

epoch of EEG for redundancy reduction.  This centroid was based on the ordinal patterns of three 

consecutive samples, which they thought could, “Aid the interpretation of PeEn [permutation 

entropy] in EEG, and may increase its comparability with other techniques of EEG analysis” 
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(p.1).  Their proposal was specific to EEG, but their weighting scheme could ostensibly be 

applied to many other applications. 

 Schlemmer et al. (2018) introduced spatial PE (sPE) and Spatio-Temporal PE (stPE) to 

extract three-dimensional order patterns from images of EKG video.  The purpose was to capture 

the entropic complexity of spatial and temporal structures at the same time.  They claim that, 

“SPE and STPE are robust against noise”, and usefulness for, “Extracting complexity features at 

different spatial scales” (p.1). 

 Porta et al. (2007) proposed the integrated approach based on uniform quantization 

(IAUQ) method, to improve analysis under noisy conditions and reduce redundancy when there 

are many distinct types of symbols.  The work of Porta et al. in 2001 was described in the 

previous section, as it pertained to identical values within a tuple.  This later work in 2007 

continued to use methods that differ from traditional permutation entropy but nonetheless applied 

entropy estimation via analysis of symbolic dynamics.  Application of the IAUQ method to 

human heart data in their 2007 study allowed differentiation between normal subjects and heart 

failure patients. 

 Rostaghi & Azami (2016) introduced dispersion entropy (DispEn) as an improvement 

over sample entropy (SaEn) and traditional permutation entropy.  They opined that SaEn is not 

fast enough, and PE has numerous shortcomings that can be addressed by their method.  Instead 

of permutation patterns, DispEn uses patterns based on the dispersion of the data.  They analyzed 

synthetic signals, EEG, blood pressure, and roller bearing data.  They then compared their results 

to analyses of the data accomplished with SaEn and PE.  The authors claimed that DispEn, 

unlike PE, can detect the noise bandwidth and simultaneous frequency and amplitude change.  
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Also, that it can quantify the “regularity” of time series, and outperform PE in both signal 

discriminatory power and computation time. 

 Azami & Escudero (2018) further advanced the dispersion entropy method.  They 

investigated the effect of linear and nonlinear mapping approaches, evaluated DispEn’s 

sensitivity to noise, and developed a new measure that deals only with the fluctuations of time 

series (FDispEn).  FDispEn was promoted as a method to discriminate deterministic from 

stochastic time series.  Using two physiological datasets, they compared the performance of 

DispEn, FDispEn, permutation entropy, sample entropy, and Lempel–Ziv (LZ) complexity.  

Based on their results, they opined that DispEn is, “The most consistent technique to distinguish 

various dynamics of the biomedical signals” (p.1). 

 Numerous methods have been developed to analyze multiscale processes, likely because 

many physical and biological systems reveal structure on multiple spatio-temporal scales.  Of the 

relevant papers found, the first to address the topic was Costa, Goldberger & Peng (2002a), but 

without using permutation entropy methods.  They created a multiscale entropy (MSE) method 

that used sample entropy (SaEn) to quantify the complexity of time series.  Three other papers by 

this same group of authors (2002b; 2003; 2005), applied MSE but did not incorporate 

permutation entropy. 

The first paper found that examined multiscale permutation entropy (MPE) was Aziz & 

Arif (2005).  They proposed advancing multiscale research with the permutation entropy method 

because of its robustness in the presence of dynamical and observational noise.  They assessed a 

number of coarse-grained sequences representing different temporal scales in terms of 

permutation entropy.  Their first step was to make multiple successive coarse-grained versions 
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by averaging the time data points within non-overlapping windows of increasing length.  This 

created a scale factor.  The second step was to calculate the PE for each coarse-grained time 

series and plot them as a function of the scale factor. 

Aziz & Arif compared their results to the MSE method for heart RR interval data.  They 

determined that MPE was better able to handle nonstationarity, outliers, and artifacts than MSE.  

They also noted that MPE’s analysis of heart data allowed the authors to distinguish the between 

healthy and pathological groups.  Morabito et al. (2012) used MPE for a new biomedical 

application.  Specifically, they evaluated EEG recordings for Alzheimer’s disease research.  But 

they did not make any significant modifications to the MPE method. 

Azami & Escudero (2016b), on the other hand, noticed some improvements that could be 

made.  The authors offered that the “stability” may be compromised for short time series when 

applying conventional MPE techniques.  More specifically, when the scale factor is high, the 

number of samples in the coarse-graining sequence decreases, which may result in an unstable 

entropy measurement.  They also noted that MPE is not symmetric, in that tuples artificially 

separate adjacent values, forming an inconsistent analysis.  As a result of these deficiencies, they 

proposed the improved MPE (IMPE) method to, “Reduce the variability of entropy measures 

over long temporal scales, leading to more reliable and stable results” (p.28). 

Azami & Escudero used synthetic signals and EEG data to compare results between MPE 

and IMPE.  Using the synthetic signals, both methods were investigated to better understand 

their behavior in terms of signal processing concepts.  These concepts included frequency, 

amplitude, noise power, and signal bandwidth.  The results showed that, “A signal with noise, 

larger bandwidth and/or higher frequency would generally lead to higher values of entropy.  
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[However,] MPE and IMPE results were not sensitive to slow changes in amplitude” (p.40).  

They closed by claiming that the results from both synthetic and EEG processes, “Support the 

idea that IMPE has a better performance than MPE, although both are useful and informative 

tools to calculate the complexity of a time series” (p.40). 

Zunino et al. (2012) also focused on the problem of multiscaled time series.  However, 

their approach extended beyond characterizing the permutation entropy.  They also estimated 

Jensen-Shannon complexity as a function of the embedding time lag (τ), and explicitly 

determined the scale by changing this embedding delay.  In so doing, they were able to infer the 

emerging dynamics of the complex time series and, importantly, “Identify the range of scales 

where deterministic or noisy behaviors dominate the system’s dynamics” (p.046210-9).  Their 

method advanced the applicability of a representational diagram developed in 2007, called the 

Complexity-Entropy Causality Plane, which is the next topic in this Literature Review. 

 

Table 7.  Summary of modification methods reviewed for permutation entropy. 

Author Method Abbreviation 

Fadlallah et al. (2013) Weighted PE wPE 

Berger et al. (2017) Centroid of Weighted Power Spectrum   

Schlemmer et al. (2018) Spatial and Spatio-Temporal PE sPE / stPE 

Porta et al. (2007) Integrated Approach on Uniform Quantization IAUQ 

Rostaghi & Azami (2016) Dispersion Entropy DispEn 

Azami & Escudero (2018) Fluctuation Dispersion Entropy FDispEn 

Aziz & Arif (2005) Multiscale PE MPE 

Morabito et al. (2012) Applied MPE to EEG   

Azami & Escudero (2016b) Improved MPE IMPE 

Zunino et al. (2012) Applied CJS to Complexity-Entropy Causality Plane   

Lorimer PE Local Effect PE-LE 
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Complexity-Entropy Diagrams 

Numerous varieties of complexity-entropy diagram concepts were discovered in the 

literature.  No sources were discovered that applied log change calculations similar to the 

Entropy-Complexity Change Diagram (ECCD) developed in this research.  The ECCD will be 

described in the Methodology section.  The Complexity-Entropy Causality Plane (CECP) was 

used extensively to evaluate research data.  Therefore, this section will review the CECP along 

with another relevant idea to facilitate research gap comparisons.  This review will also present 

some of the key literature associated with the CECP, since it was integral to this research.  Both 

of the concepts in this review have unique strengths and it seems evident that either could have 

been applied productively to the research herein.  However, in the interest of assuming a 

reasonable scope of research, only the CECP was chosen to evaluate research data.  It should be 

noted that different measures of both complexity and entropy were applied in the two 

diagrammatic concepts reviewed. 

 

The hμ vs. E Approach 

The first complexity-entropy diagram to be reviewed was proposed by Feldman, 

McTague, & Crutchfield (2018) in a paper entitled, The Organization of Intrinsic Computation:  

Complexity-Entropy Diagrams and the Diversity of Natural Information Processing.  One of this 

paper’s authors (Crutchfield) co-wrote a seminal paper entitled, Inferring Statistical Complexity 

(Crutchfield & Young, 1989), which introduced the first similar complexity-entropy concept. 
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The authors acknowledged the diversity of these diagrams, writing, “there is not a 

universal complexity-entropy curve, there is not a general complexity-entropy transition, nor is it 

[the] case that complexity-entropy diagrams for different systems are even qualitatively similar” 

(p.3).  They acknowledge that a single complexity-entropy diagram concept can portray different 

processes in substantially different ways, and that some researchers may see this as a detriment 

given the perceived “inconsistency” in presentation.  However, the authors instead argue this is 

an asset because it better demonstrates the, “Genuine diversity of distinct kinds of intrinsic 

computation” (p. 1), and the, “Richness in nature’s organization” (p.3). 

The authors present one of the key advantages of these diagrams by stating, “Since 

complexity-entropy diagrams are a function only of observed configurations, they can be used to 

compare systems without reference to system coordinates or parameters” (p.1).  They then justify 

structural complexity as a unique measure by mentioning that process behaviors cannot be 

meaningfully summarized by the entropy rate or by the fractal dimension, alone.  This is likely 

mentioned because entropy measures the changing randomness of a process and fractal 

dimension provides the level of complication associated with certain self-similar structures.  

Instead, to truly understand a process, they advocate adding structural complexity, a measure that 

reveals the, “Organization, structure, memory, regularity, symmetry, and pattern” (p.1). 

They then apply two bins to distinguish between all the various conceptions of 

complexity.  The first bin includes “deterministic complexities”, which capture only randomness.  

These measures include the Shannon entropy rate, Lyapunov characteristic exponents, and 

Kolmogorov-Chaitin complexity.  See Appendix E for more detail about these and other 

information-theoretic complexity concepts.  The other bin includes, “statistical or structural 
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complexities”, which capture a property distinct from, and complementary to randomness.  Their 

paper focuses exclusively on complexity of the structural and statistical sort, as does the research 

in this dissertation. 

For the entropy term to be represented on the x-axis, the authors chose the entropy rate 

(hμ), in bits per symbol (not per second), which exists for all stationary sequences.  They then 

connect this term with other similar variables, stating, “The entropy rate is also known as the 

metric entropy in dynamical systems theory and is equivalent to the thermodynamic entropy 

density familiar from equilibrium statistical mechanics” (p.4). 

Regarding the complexity term to be represented on the y-axis, the authors state that they 

do not prescribe how complexity depends upon entropy, and instead define complexity by 

function.  They state, “A useful complexity measure should have an unambiguous interpretation 

that accounts in some direct way for how correlations are organized in a system” (p. 2).  They 

then chose excess entropy (E) as their measure of complexity which, by its name, may sound like 

it contradicts the authors’ statement about the distinction between structural complexity and 

entropy.  However, they write: 

The excess entropy tells us how much information must be gained before it is possible to 

infer the actual per-symbol randomness (hμ).  It is large if the system possesses many 

regularities or correlations that manifest themselves only at large scales.  As such, the 

excess entropy can serve as a measure of global structure or correlation present in the 

system. (p.5) 
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The authors also relate this term to other known variables, stating excess entropy, “Goes 

by a number of different names, including ‘stored information’; ‘effective measure complexity’; 

‘complexity’; ‘predictive information’; and ‘reduced Renyi entropy of order 1’ (p.5).  They also 

present a definition for the word process, which is, “The distribution over all possible sequences 

generated by a system” (p4). 

They then examined excess entropy’s relationship to entropy for a wide assortment of 

process types, including, “A broad array of deterministic nonlinear and linear stochastic 

processes, including maps of the interval, cellular automata and Ising spin systems in one and 

two dimensions, Markov chains, and probabilistic minimal finite-state machines” (p.1).  For 

some of these processes, they estimated the various information-theoretic quantities by 

simulation.  In several, measures were estimated from sequences generated by the temporal or 

spatial process.   They claim: 

…the entropy rate and excess entropy can be reliably estimated via simulation, given 

access to a reasonably large amount of data.  Moreover, this estimation is purely 

inductive—one does not need to use knowledge of the underlying equations of motion or 

the hidden states that produced the sequence. (p.6) 

 

Ten revealing figures were presented based on their analyses of each process.  It is 

beyond the scope of this review to present them all, and interested readers are encouraged to 

examine the paper.  However, one figure will be discussed here because it represents, very 

simply, some of the advantages that are inherent to complexity-entropy diagrams.  Figure 14 

displays the tent map, which is defined by: 
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   𝑓𝜇  ∶=  𝜇 𝑚𝑖𝑛 {𝑥, 1 − 𝑥}    ( 1 ) 

where := means that the left side is defined by the right side and μ is a positive real 
constant. 

 

When changed, μ yields a wide range of dynamical behavior for the tent map.  Note that 

Feldman et al. (2018) used the symbol a in their paper to represent μ in this equation. 

 

 

Figure 14.  Complexity entropy diagram for tent map.  From The Organization of Intrinsic Computation:  

Complexity-Entropy Diagrams and the Diversity of Natural Information Processing by David Feldman et 
al.  Copyright © 2018 by American Institute of Physics.  Reprinted with permission of AIP Publishing.  
All rights reserved. 

 

It is useful to note that although the tent map can represent an astonishing diversity of 

dynamical behaviors, the complexity-entropy relationship for band mergings based on this 

plotting method revealed a simple representation via the expression: 
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𝐸 = −𝑙𝑜𝑔2 ℎ𝜇              ( 2 )  

 

The other point of interest is that a great richness of organizational structure is revealed in 

the vicinity of this simple approximation, perhaps presenting fertile grounds for additional 

research to better understand the natural processes associated with the tent map.  Given the 

adaptable complexity-entropy landscape, it seems the authors have revealed new insights by 

establishing a new viewpoint on existing knowledge.  It is worth mentioning that the basis for 

this methodology is analytic and inductive, which is also the basis for Wheeler’s (1995) 

interpretation of a distinguishing attribute of Shewhart control charts.  That is, in contrast to the 

various deductive statistical methods used for enumeration of process characteristics. 

The authors close by discussing some perceptions of their research.  First, the exploration 

of each class of process caused the adjustment of very different parameters and yielded very 

different effects, dramatically illustrating that the complexity-entropy diagram, “Allows for a 

common comparison across rather varied systems” (p.15).  Next, the diagram revealed some of 

the fundamental differences between processes in terms of structure/ intrinsic computation/ 

organization, which could be exploited to reveal even more by simply changing input 

assumptions.  They provided the example of a topological Є-machine, which they intentionally 

biased to reveal certain structural characteristics.  The authors also determined that mapping of 

process characteristics could be used to provide clues about the appropriate representative model 

class, and to classify process behaviors within a model class.  Their concluding comment was 

that the large diversity of representation provided by complexity-entropy diagrams, 
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“Optimistically points to the richness of information processing available in the mathematical 

and natural worlds” (p.15). 

 

The Hs vs CJS Approach 

This review will discuss the foundational paper that synthesized numerous information-

theoretic concepts to create the Complexity-Entropy Causality Plane (CECP).  The CECP was 

applied extensively to this dissertation’s research, as evident in the Findings section.  The CECP 

was selected because it provided graphically illuminating depictions of the dynamics associated 

with different Shewhart-stable time series processes.  This review will provide some conceptual 

depth from the literature, but leave much of the theoretical and mathematical exposition for the 

Methodology section.  A multitude of diverse process characterizations have benefited from this 

analytic tool since its inception in 2007, and a number of process characterizations via the CECP 

are displayed in the Methodology section to reveal the utility of this display format.  These 

sources will not be reviewed here because no studies were discovered that applied the CECP for 

continuous stable process improvement as would be useful in industrial process control. 

Rosso, Larrondo, Martin, Plastino, and Fuentes (2007) published the foundational paper 

for the CECP, entitled Distinguishing Noise from Chaos.  As the title suggests, their motivation 

for developing this new graphical representation space was to create a tool to clearly distinguish 

between chaotic and stochastic processes.  They declared that chaotic and stochastic processes 

share several properties that make them almost indistinguishable, and that most of the existing 

methods provided little relief.  The authors started by reviewing some of the fundamental 
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characteristics of time series data.  They stated that real data, “always possess a stochastic 

component due to omnipresent dynamical noise” (p.154102-1).  They then referenced key 

lessons from Wold’s landmark 1938 paper entitled, A Study in the Analysis of Stationary Time 

Series: 

Indeed, Wold proved that any (stationary) time series can be decomposed into two 

different parts.  The first (deterministic) part can be exactly described by a linear 

combination of its own past; the second part is a moving average component of a finite 

order.  Hence it may seem superfluous to ask whether a time series generated by ‘‘natural 

processes’’ is either deterministic, chaotic, or stochastic.  However, having in mind 

Wold’s theorem [Kurths & Herzel (1987), Cambanis et al. (1987)] it makes sense to ask, 

with respect to the deterministic part (predictable from the past), whether (i) it is 

dominant vis-a-vis the unpredictable stochastic part or (ii) it is of a regular or chaotic 

nature. (p.154102-1) 

 

The authors then claim that chaotic systems always produce time series with a physical 

structure, and that several statistical complexity measures based on disequilibrium have been 

introduced to define process structure.  They point to Lamberti et al. (2004) for a superior 

definition of complexity measure.  It is, “(i) able to grasp essential details of the dynamics, (ii) an 

intensive quantity, and (iii) capable of discerning among different degrees of periodicity and 

chaos” (p.154102-1). 

Jensen-Shannon complexity (CJS) was put forth as the superior measure, and as a 

“functional” of the probability distribution associated with the time series.  The functional 
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components they discussed include Jensen disequilibrium (QJ), which specifically uses Jensen-

Shannon divergence to calculate the true metric distance between distributions.  The technical 

reasons precipitating their abandonment of the popular Kullback-Leibler divergence method will 

be presented in the Methodology section. 

Rosso et al. made six more critical points regarding their proposed CECP methodology.  

For improved clarity, a simplified reasoning has also been added to each of their six points: 

1. The probability distribution is calculated in terms of permutation entropy.  This is 

because PE is perhaps the only entropy measure that incorporates the temporal structure 

of the emerging physical process. 

2. For any chaotic system, permutation entropy yields a positive, finite Kolmogorov-Sinai 

(KS) entropy.  This is important because KS entropy reveals how the information in a 

process evolves in time or, for a chaotic map, under iteration. 

3. The progression of the iteratively calculated normalized Shannon entropy can be 

regarded as an arrow of time.  This is because the second law of thermodynamics 

generally specifies that entropy grows monotonically. 

4. Jensen-Shannon complexity (CJS) is not a trivial function of the Shannon entropy (HS).  

This is because CJS is based on the interplay of normalized entropy and normalized 

disequilibrium, yielding variability between a range of possible values defined by Cmin 

and Cmax (which are also variable). 

5. Jensen disequilibrium (QJ) is a quantity different from zero only if there exist more likely 

states among those that are accessible.  This is because QJ provides a measure of Jensen 
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divergence as the distance between the current pdf and the uniform reference distribution 

(perfect randomness). 

6. As an information complexity quantifier, CJS provides greater insight than QJ alone.  This 

is because it provides maximum values for hidden structural dynamics that would 

otherwise be lost.  Also, CJS provides a zero reference value at completely random and 

completely deterministic systems. 

 

To demonstrate the functionality of the CECP, Rosso et al. selected five kinds of chaotic 

maps, and two kinds of stochastic processes to analyze.  The results of those plots are displayed 

in Figure 15. 

 

 

Figure 15.  Complexity-Entropy Causality Plane.  The lower curved line is Cmin and the upper curved line 
is Cmax.  From Distinguishing Noise from Chaos by Rosso et al.  Copyright © 2007 by The American 
Physical Society.  Reprinted with the permission of The American Physical Society.  All rights reserved. 
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 The authors then summarized their perceptions.  They noted that the CECP 

accommodates noise and chaos at different planar locations.  Stochastic processes tended toward 

Cmin and chaotic processes toward Cmax.  Also, because real data always contain a stochastic 

component due to omnipresent dynamical noise, the CECP helped classify different degrees of 

what they called “stochasticness”.  They also noticed that the CECP distinguishes Gaussian from 

non-Gaussian processes and different degrees of correlations (colored noise).  Consequently, 

“This representation plane is an effective tool for revealing the sometimes subtle difference 

between noise and chaos” (p.154102-4). 

 

Research Gap 

Table 8.  Research gap for complexity-entropy diagrams. 

 

 

Literature Review Summary 

This review began by establishing the contested basis for the continuous improvement of 

Shewhart-stable processes.  Positions were provided from some of the foundational literature 

Author

Applied 

Structural 

Complexity

Applied 

Shannon 

Information

Applied 

Log 

Change

Feldman et al (2018) X

Rosso et al. (2007) X X

Lorimer X X X
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regarding the absolute randomness of stable processes and whether improving a stable process is 

always tampering.  The next section challenged the notion of tampering by providing numerous 

methods from the literature that have indeed been used to improve Shewhart-stable processes.  

Next, papers were reviewed that statistically analyzed the traditional funnel experiment.  The 

purpose was two-fold:  To provide additional insight into the tampering assumption, but also to 

review concepts potentially relevant to the vertical funnel experiment used to gather empirical 

data for this research. 

In the next section, studies that have applied complexity concepts for process control 

were reviewed.  None were discovered that applied Jensen-Shannon complexity.  The next part 

focused on literature relevant to permutation entropy (PE).  A few studies applied PE methods 

for process control applications but only one used modifications to the traditional PE method and 

control charts and none applied structural complexity measures.  Next, methods were reviewed 

that modified PE to mitigate identical values within tuples.  Various shortcomings were evident 

for all reviewed methods and none applied the concept of local effect. 

The next section reviewed two prevalent diagrams that simultaneously display structural 

complexity vs. entropy for various processes.  The hμ vs. E diagram introduced some 

fundamental concepts and advantages.  The Complexity-Entropy Causality Plane provided a 

different perspective, based on similar underlying concepts.  Neither paper applied the relative 

change methodology developed for the Entropy-Complexity Change Diagram.  To recap the 

most relevant research gaps, no literature was discovered that: 

 Applied the vertical funnel experiment 

 Applied structural complexity to continuously improve Shewhart-stable processes 
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 Applied Jensen-Shannon complexity to continuously improve Shewhart-stable processes 

 Modified permutation entropy based on local effect 

 Simultaneously displayed changing structural complexity and entropy based on log 

change evaluations relative to the maximum randomness condition for an equivalent 

time series. 
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CHAPTER THREE:  METHODOLOGY 

The Methodology section is presented in five parts.  The first presents the data collection 

and validation effort associated with the four vertical translation funnel experiments.  The second 

presents methodological information for the other 18 processes that were evaluated in this 

research.  The third presents the four basic data visualizations applied in this research.  The 

fourth progressively builds upon underlying information-theoretic methodologies whose 

synthesis yielded the Complexity-Entropy Causality Plane.  The final section provides the log 

change methodologies used to evaluate processes in terms of changing entropy and complexity 

relative to the maximum randomness condition for equivalent time series. 

 

Overview 

Numerous methods were synthesized to ultimately answer the research question:  Can a 

methodology based on emerging structural complexity provide information useful to direct the 

continued improvement of a Shewhart-stable process?  The flowchart in Figure 16 provides a 

high-level overview of the analytic methodology applied in this research. 
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Figure 16.  Methodology Flowchart.  Green boxes represent primary outputs. 

 

 In addition, the essential methodology used to answer the research question can also be 

distilled into the following six steps.  As the time series data progresses: 

1. Use permutation entropy- local effect method to establish tuple allocations.  (Red & 

Wizard tuple sets were parsed for this research.  If the parsing policy had been 
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established at the outset, the analytic method could have ignored them, obviating the need 

for proactive parsing after the fact.) 

2. Calculate updated probability densities for PE-LE tuple set (using 42 tuples for D=4 

without Red or Wizard tuple sets). 

3. Follow traditional permutation entropy method to calculate Shannon entropies. 

4. Follow MPR-method to calculate �̃�𝑆 and CJS as time series progresses (except that Hmax 

and Pe are different due to PE-LE’s extra tuples).  View structural complexity results on 

Complexity-Entropy Causality Plane. 

5. Use log change to calculate �̃̃�𝑆 and �̃�𝐽𝑆 relative to equivalent random series. 

6. Use �̃�𝐽𝑆 change chart and Entropy-Complexity Change Diagram to observe emerging 

complexity dynamics as time series progresses. 

 

Vertical Translation Funnel Experiment 

The four vertical translation funnel experiments were considered central to this research 

because they were empirically-derived time series instead of idealized synthetic models, and 

because they represented Shewhart-stable processes that were progressively improved.  

Moreover, process improvement over the course of each experiment could be deemed reliable.  

Also, the corresponding decreasing trend for variation could be verified for each time series. 
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Participants 

The experimental setup was custom built and modified by the author.  The execution of 

the experimental process and associated data recording was fairly simple and repetitive, with 

>7,500 drops recorded in seven months, and was also accomplished by the author. 

 

Experimental Design 

The design of this experiment was based on two requirements.  First, the experiment 

needed to faithfully represent a process that was generally Shewhart-stable.  To accomplish this, 

the design attempted to control conditions that could introduce biases in the data.  The second 

requirement was that the stable process could be improved in a consistent and verifiable manner 

so that the analytic method could be evaluated for its capability to answer the research question. 

The design of the experimental apparatus is shown in the figure below. 
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Figure 17.  Funnel experiment apparatus concept. 

 

Equipment 

The basic equipment consisted of a marble, a funnel, a vertically adjustable stand for the 

funnel, a 4 ft x 6 ft panelboard landing surface (mounted atop an adjustable-level table made 

from lumber), a target consisting of concentric one-inch wide circles, and sheets of packing 

paper for marking results- one sheet for each drop height.  The packing paper was marked to 

create a permanent record to allow review and facilitate further research.  A six-foot carpenter’s 

level was used to determine level for the table.  A funnel was used for the first experiment but 

this was replaced with a vacuum pump and hose for the remaining experiments (ostensibly to 

improve consistency by reducing potential marble spin and vibration effects).  The short length 

of the vacuum hose required mounting a tray table for the pump to rest upon. 
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Experimental Laboratory Setup 

The experiment was conducted inside an air-conditioned house.  The effects of 

temperature and airflow changes were considered negligible. 

 

 

Figure 18.  Experimental laboratory setup.  Left picture shows the configuration for experiment 1 (55 to 
22 inch heights).  Right picture shows the configuration used for 38 inch heights and lower. 
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Variables 

Dependent Variable 

The dependent variable was the resting spot of each marble, measured in integer inches 

from the center of the target. 

 

Independent Variable 

The independent variable was the drop height above target, in integer inches. 

 

Experimental Procedure 

The traditional funnel experiment was modified to approximate a Shewhart-stable 

process.  Rule one was maintained (no horizontal translations) and only vertical translations that 

incrementally changed the drop height directly above the target were permitted.  Four 

experiments were conducted using a varying range of heights above the target and with different 

conditions in place that were intended to minimize bias and variability in the data.  Data 

chunkiness standards were used to determine the minimum acceptable drop height.  XmR charts 

and Stability Ratio calculations were used to assess process stability. 

The target consisted of concentric one-inch rings from 1 to 11 inches.  For marbles 

coming to rest beyond 11 inches, a tape measure centered on the target was used to record the 
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distance (in integer inches).  Similar to shooting sports, any marble coming to rest on a dividing 

line was considered to be at the interior distance, not the exterior distance. 

The process that was repeated for each experiment was: 

1. Leveled the drop table using the four adjustable jackscrews mounted to the base of the 

table.  Level was determined in both horizontal dimensions and diagonally using a six-

foot carpentry level. 

2. Taped one sheet of thin packing paper over the centered, taped down target for each drop 

height.  The resting position of each marble was recorded in pencil on these sheets. 

3. Conducted 50 marble drops using the funnel/ vacuum pump from each drop height. 

4. For each drop, recorded the resting place of the marble in the following ways: 

 On packing paper as a pencil dot. One sheet of paper per drop height, per 

experiment. (This yielded 143 sheets total). 

 Hand-written in research journal, along with any observations deemed potentially 

relevant. 

 As data in Microsoft Excel.  This software was used for computational analysis 

and to create related charts. 

The experiments were modified based on progressive learning.  Many changes were 

intended to reduce the variability of the process studied.  The relevant procedures for each 

experiment are described as follows. 
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Funnel Experiment #1 

 Started at 55 inches drop height and progressed down to 22 inches. 

 Reconfigured drop tower and reestablished table level and target center. 

 Collected drop data from 21 inches down to 5 inches.  Configuration of drop tower would 

not physically allow drop heights lower than 5 inches. 

 Conducted data chunkiness calculations, thus determining the lowest practical height as 7 

inches above target.  This calculation nullified any concerns for mitigating the physical 

limitation at 5 inches.  The lower limit of 7 inches was used for the remainder of 

experimentation. 

 XmR charts for heights greater than 38 inches revealed Shewhart-instability, meaning 

that the heights from 38-55 inches did not add information useful to addressing the 

research question.  This also meant that the drop tower did not need to be reconfigured to 

achieve these greater drop heights for the next three experiments. 

 

Funnel Experiment #2 

 To mitigate variation before collecting data: 

o Replaced funnel with vacuum pump 

o Secured vacuum pump orifice with tape to keep it pointed straight down for each 

height 

o Affixed the panelboard on the tabletop surface better with contact cement and 

more screws. 
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o Straightened the drop tower to vertical with base shims and by reconfiguring both 

side ropes. 

o Changed the recording papers to thinner sheets of packing paper. 

 Started at 7 inches and progressed upward to 24 inches.  After finishing drops at 24 

inches, relocated the vacuum pump tray table to the edge of the landing platform table 

after noting that the marble occasionally touched the vacuum pump platform legs.  This 

prevented future interference with marble roll. 

 Continued from 25 inches upward to 38 inches drop height. 

 

Funnel Experiment #3 

 To mitigate variation before data collection: 

o Added 7 sheets of packing paper under the target to reduce marble bounce.  The 

tradeoff was that some outlier marbles would experience a small gravity assist if 

they rolled off the edge of the paper stack. 

o Conducted 30 test drops to assess the likelihood that outliers would reach the edge 

of the paper stack.  Three marbles from 38 inches rolled off the edge, so another 4 

sheets of packing paper were added under the target for a total of 12 including the 

target sheet.  Conducted another 30 test drops from 38 inch height.  No marbles 

rolled off the edge. 

 Started at 38 inches and progressed down to 27 inches.  

 Noted that the drops were slowly developing a consistent bias off-center as drop height 

was reduced.  Therefore, after finishing drops for 27 inch height, moved the target stack 
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by 0.5 inches to re-center.  This compensation appeared to arrest the perceived bias in the 

drops at lower heights. Later, presumed that much of the directional bias may have been 

caused by dimpling of the paper as the marble repeatedly hit the same spot when dropped 

from upper heights. 

 Continued marble drops from 26 inches down to 7 inches. 

 

Funnel Experiment #4 

 To mitigate variation before data collection: 

o Based upon the paper dimpling presumption, removed the top 3 sheets of packing 

paper and replaced them with 10 unused sheets. Including the target sheet, there 

were now 18 sheets of packing paper in the stack.  Also, to mitigate future 

dimpling, conducted remaining experimentation from low to high heights. 

o Used the results of test drops from low heights to level the table instead of relying 

on carpentry level. 

 Started at 7 inches and progressed up to 9 inches.  These data were recorded in the 

research journal, but not deemed useful on the packing paper because almost all marble 

drops came to rest within the 1 inch circle. 

 Continued recording drops on packing paper from 10 inches up to 37 inches.  Noted that 

the marble occasionally deviated from its roll path slightly for a ridge or valley in the 

paper stack.  Although the 18-sheet stack reduced marble bounce considerably, the 

tradeoff was that the paper stack was also less flat than before. 

 Concluded experimentation by disassembling the drop table and experimental apparatus. 
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Analytic Methodology 

` This section will present three analytic methodologies for the funnel experiment.  The 

first is the use of data chunkiness standards to determine measurement limits.  The second is 

analysis of process stability using XmR charts.  The third is analysis of process stability using 

the Stability Ratio (SR) test. 

 

Measurement Limits 

The measurement limits were assessed in terms of data chunkiness standards.  Data 

chunkiness becomes a problem when the measurement resolution increment (which was one inch 

for all four funnel experiments at all heights) gets too large for the data.  When this chunkiness is 

relevant, many of the data outlying the Upper Range Limit on a moving range control chart will 

be false alarms, which can make a Shewhart-stable process appear Shewhart-unstable. 

When control charts are based on individual values, as with this research, the detection 

standard for data chunkiness requires that a minimum of four possible values appear within the 

URL of the moving range chart.  In this research, the measurement limit was assessed based on 

the results of the first experiment, which also determined the lowest usable height for the three 

remaining funnel experiments.  All four experiments were considered equivalent with respect to 

data chunkiness results. 
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Figure 19 helps clarify the data chunkiness problem.  The chart happens to represent 

results from the 6-inch drop height for experiment #1, which will be discussed further in the 

Findings section.  Notice that only three of the five distinct values remain within the URL, which 

violates the rule requiring four or more values within the URL.  In addition to not meeting the 

chunkiness standards, these results bring the values associated with the 32nd and 33rd marble 

drops into question as probable false alarms of process instability. 

 

 

Figure 19.  Sample moving range (mR) chart to demonstrate data chunkiness.  Three of five distinct mR 
values remained within the URL.  From vertical funnel experiment #1, 6 inch drop height. 

 

Shewhart-Stability of Process  

XmR charts were used to conduct ongoing, high level assessments of process stability for 

marble drops at each height.  These assessments, during the conduct of the experiment, provided 

feedback for process performance in terms of variability.  This feedback was used to modify the 

experimental setup between experiments with the intention to reduce process variability.  
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Standard equations were used to create the XmR charts, based on the average (not median), 

which were: 

 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐿𝑖𝑚𝑖𝑡𝑠 = �̅� ± (2.66𝑚𝑅̅̅̅̅̅) ( 3 ) 𝑈𝑝𝑝𝑒𝑟 𝑅𝑎𝑛𝑔𝑒 𝐿𝑖𝑚𝑖𝑡 = 3.27𝑚𝑅̅̅̅̅̅ ( 4 ) 

where �̅� equals the average of process data and 𝑚𝑅̅̅̅̅̅ equals the average moving range of 
process data.  The lower range limit for the mR chart rested at zero. 

 

Stability Ratio Test 

 The stability ratio test was the primary method to assess process Shewhart-stability for 

the vertically-translated funnel experiments.  This was accomplished by comparing the global 

standard deviation statistic to a within-subgroup measure of dispersion, σ(x) for the set of 50 data 

for each height.  The equation used for the SR test was: 

 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜 =  𝑠2[𝜎(𝑥)]2  , where   𝑠 = ∑  (𝑥𝑖𝑖 −�̅�)2(𝑥𝑘−1)  𝑎𝑛𝑑 𝜎(𝑥) =  𝑚𝑅̅̅ ̅̅ ̅𝑑2     ( 5 ) 

 

For this application i = 1 to 50 and k=50 because 50 measurements were conducted at 

each height, and d2 is a bias correction factor for measures of dispersion, required due to 

nonlinear manipulations of the data (e.g., exponential squaring).  Bias correction factors are 

found in tables, such as Wheeler (1995, p.416), where d2 = 1.128 for XmR charts.  Further 

derivation of d2 is provided later in this section. 
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The stability ratio test is based on a pseudo F-statistic described by Ramirez & Runger 

(2006).  It is called a “pseudo” F-statistic because it violates the typical assumption for an F-test 

that random samples are selected in an independent manner from two populations.  It further 

assumes that the relative frequency distribution of the sample will be approximately normal.  The 

basic assumption for the SR test is that any two estimators of process variance should be similar 

when a process is stable (SR ≈ 1).  For instance, the authors provided an example (p.55) for 

which SR can be defined as any of the following: 

 

  𝑆𝑅 =   𝒔𝟐𝒔𝑹,𝑺,𝒎𝑹𝟐    or   
𝒔𝒈𝒍𝒐𝒃𝒂𝒍𝟐𝒔𝒍𝒐𝒄𝒂𝒍𝟐    or   

𝒔𝒍𝒐𝒏𝒈 𝒕𝒆𝒓𝒎𝟐𝒔𝒔𝒉𝒐𝒓𝒕 𝒕𝒆𝒓𝒎𝟐             ( 6 ) 

 

Ramirez and Runger (2006) recommend using enough data such that df1 and df2 are both 

greater than 50.  The degrees of freedom for the funnel data were df1 = 49 and df2 = 30.  The 

consequence of not fully meeting this recommendation was that the SR-test was not as sensitive 

to departures from stability as it could be.  The equations for calculating the degrees of freedom 

were: 

 

𝑑𝑓1 = (𝑘 − 1) 𝑎𝑛𝑑 𝑑𝑓2 = 0.62(𝑘 − 1)       , 𝑤ℎ𝑒𝑟𝑒 𝑘 = # 𝑜𝑓 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑠      ( 7 ) 

 

For the funnel experiments, the critical value assuming a 1% level of significance was a 

table lookup in Wheeler (2019).  For N=50, the SR critical value was SR ≤ 1.59.  Although df1 

and df2 remained the same throughout the experiment, a new SR value was calculated for each 
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height using equation (6).  Applying each SR value and both df values to the F-tables yielded an 

F-statistic for each height that could be compared to the critical value above.  Any p-values 

above the 1% level of significance failed to provide strong evidence of process instability.  The 

critical value, depicted in the typical statistical nomenclature was H0 : SR ≤ 1.59 (Stable) and H1 

: SR > 1.59 (Unstable). 

The bias correction factor d2 may also be calculated using the following equation: 

 

   𝒅𝟐 =   ∫ 𝒘 𝒇(𝒘)𝒅𝒘 ,         𝒘𝒉𝒆𝒓𝒆 𝒇(𝒘) =  𝒏(𝒏−𝟏)[ √𝟐𝝅]𝒏  ∫ [ ∫ 𝒆−(𝒖𝟐𝟐 )𝒙+𝒘𝒙  𝒅𝒖 ]𝒏−𝟐∞−∞   𝒆−((𝒙+𝒘)𝟐𝟐 )  𝒆−(𝒙𝟐/𝟐) 𝒅𝒙    ∞𝟎    ( 8 ) 

  

For n=2, applicable to XmR charts and SR tests in this research, this equation can be 

simplified to: 

  𝒅𝟐 =  𝟐√𝝅                ( 9 ) 

 

Comparative Time Series 

 The vertical translation funnel experiments were considered central to this research 

because they were empirically-derived time series instead of idealized models, and because they 

represented Shewhart-stable processes that were progressively improved.  More specifically, 

process improvement could be considered reliable because variation repetitively decreased 

throughout the time series.  However, data from other process types were also desired to validate 

the PE-LE methodology and to evaluate complexity-entropy diagram results.  Most importantly, 
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these other processes were needed for pattern comparisons, to help define how Jensen-Shannon 

complexity may or may not provide indications of process improvement for Shewhart-stable 

processes.  The other process categories used in this research were Shewhart-stable (maintained 

with minor improvement), Shewhart-unstable, chaotic, periodic, quasi-random (Pi), and 

pseudorandom (PRNG).  This section will focus on the methodology associated with the 

generation and identification of the different process datasets. 

 

Tokai Rika Time Series 

In March 1982, a group of executives from Ford Motor Company visited the Tokai Rika 

manufacturing plant in Japan.  Tokai Rika had been focused for years on controlling the 

variability of manufactured cigarette lighters.  This was because a critical safety problem had 

been identified years earlier when a lighter popped out of its socket and burned a car driver’s leg 

(Sullivan & Manoogian, 2009).  During their visit, the Ford team received translated copies of 

control charts representing 18 months of data, which represented production of nearly 6.5 million 

lighters.  The leader of the Ford team, Lawrence P. Sullivan (2009), analyzed these charts and 

wrote about them in his book, Unlocking Ford Secrets.  These charts represented a process that 

was Shewhart-stable, such that it was only considered necessary to collect one subgroup of four 

measurements daily, even though about 17,000 lighters were produced each day. 

The dataset represents one subgroup mean for each of 379 consecutive work-days of 

production.  This time series process was evaluated because it was Shewhart-stable, and because 

seven significant process events were documented that could potentially be correlated with 
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structural complexity results.  A run chart for this process is presented in Figure 20.  The larger 

colored data points represent the seven significant events, which are identified in Table 9. 

 

 

Figure 20.  Tokai Rika run chart for production of cigarette lighters from August 1980 to March 1982.  
Trendline is 2nd order polynomial fit.  Colored dots represent significant process events.  Data reused with 
the permission of the Tokai Rika intellectual property division.  All rights reserved. 

 

Table 9.  Significant events for Tokai Rika lighter manufacturing process.  Data reused with the 
permission of the Tokai Rika intellectual property division.  All rights reserved. 

 

 

The variation was calculated for each phase between significant process events using the 

equation for the standard error of the mean: 
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  𝑆𝐸 =  𝑠√𝑛  ,    ( 10 ) 

 where s is the standard deviation and n is the sample size. 

 

One standard error was calculated for each phase to determine whether the event caused 

variation reduction (process improvement) or simply mitigated a special cause.  The overall 

variation trend was portrayed with a 2nd order polynomial fit trendline in Figure 21. 

 

 

Figure 21.  Variation for phases between significant process events.  Trendline is 2nd order polynomial fit, 
suggesting minor overall variation reduction (process improvement).  Data reused with the permission of 
the Tokai Rika intellectual property division.  All rights reserved. 

 

 In addition to this variation study, a moving range (mR) chart is provided in Figure 22.  

The mR chart displays the range variability from measurement to measurement in the time 

series.  The displayed average moving range (mR-bar) and the upper range limit (URL) is 

computed for the entire dataset and is provided to view the overall trend for process dispersion.  
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Many of the high variability values directly correspond with significant process events, when an 

improvement or mitigation immediately caused considerable change to variability. 

 

 

Figure 22.  Tokai Rika moving range chart.  Colored dots represent significant process events.  Data 
reused with the permission of the Tokai Rika intellectual property division.  All rights reserved. 

 

This research was designed to seek complexity correlations associated with physical 

process changes.  Therefore, for the purposes of this research, an improvement is specifically 

defined herein as actions taken that reduce variation (which can also appear as decreasing 

structural complexity and increasing process randomness over time).  In contrast, a response to a 

special cause that results in little change to downstream variation is considered a mitigation, not 

an improvement.  This differs from the state of the practice, in which process improvement has 

many valid meanings, even including events external to the process such as re-centering the 

process according to specifications.  Also, unlike many quality engineering studies, the decision 

about when to redraw control limits was not relevant to this research. 
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These points are emphasized here because all but one (355) of the seven significant 

events in the Tokai Rika dataset were responses to special causes, focused on bringing the 

variation back into control.  However, some of the events (37, 126, & 301) did yield some 

variation reduction.  Overall, Figure 20 displays a process that is Shewhart-stable the vast 

majority of the time and, like any real-world process, experiences occasional variation events 

that require mitigation. 

For a manufacturing line producing 17,000 lighters per day, maintaining this level of 

variation control for such an extended period represents a significant accomplishment.  Beyond 

the simple monitoring and process maintenance that typically accompanies most Shewhart-stable 

processes, it was also laudable that Tokai Rika personnel proactively conducted a preventive 

maintenance event, even though the process was performing well within specifications.  

However, Tokai Rika’s Shewhart-stable process differs from the vertical funnel experiments in 

that the process was not continuously and progressively improved through iterative variation 

reduction events.  Nonetheless, the Tokai Rika dataset provided utility as a real-world 

comparison for the results developed in this research. 

 

Distillate Flowrate Time Series 

The distillate flowrate time series represents a Shewhart-unstable process.  These data 

were downloaded from an open-source dataset provided by Kevin Dunn (2020) at 

www.openmv.net with no restrictions on use.  The distillate dataset contained over 40,000 data.  

Since the column limit for Microsoft Excel is slightly above 16,000, the final 16,000 data of the 
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time series were selected for this research.  However, as other analyses were eventually 

conducted, many of the processes were evaluated for only 10,000 data.  Thus, for consistency, 

the first 10,000 of the final 16,000 distillate data were therefore chosen for evaluation, as 

presented in Figure 23.  Many of the data in the second half of the time series were at 0.0, which 

ostensibly represents shutdown of the distillation process.  A few outliers were also present 

including the 5,320th point (value ≈ 346), which is above the frame of the figure.  This outlier 

was not included in the figure to allow better visibility of process characteristics. 

 

 

Figure 23.  Distillate flowrate data.  Measurement resolution was to the thousandths place resulting in 
3,021 distinct values within the interval [0.000, 345.860].  Trendline is 2nd order polynomial fit.  From 
www.openmv.net by Kevin Dunn (2020).  Dataset provided open source with no restrictions on use. 

 

Electrical Usage Time Series 

The electrical usage time series represents a Shewhart-unstable process.  These data were 

downloaded from an open-source dataset provided by Kevin Dunn (2020) at www.openmv.net 
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with no restrictions on use.  The dataset contained 2,712 measurements, as presented in Figure 

24. 

 

Figure 24.  Electrical usage data.  Consecutive hourly measurements.  Measurement resolution was to the 
hundredths place resulting in 164 distinct values within the interval [0.12, 5.45].  Trendline is 2nd order 
polynomial fit.  From www.openmv.net by Kevin Dunn (2020).  Dataset provided open source with no 
restrictions on use. 

 

Logistic Map Time Series 

A chaotic process was desired for comparing results with Shewhart-stable processes and 

to help validate the utility of the PE-LE method.  A chaotic region of the logistic map was 

selected with rate of growth r=3.888 and initial population xn =0.02.  The first 10,000 data values 

were tested but only the first 1,500 data values are shown in Figure 25 for clarity.  The equation 

for the logistic map is: 

 

  𝑥𝑛+1 = 𝑟𝑥𝑛 (1 − 𝑥𝑛)  ,  ( 11 ) 

 where xn is a number between zero and one that represents the ratio of the current 
population to the maximum possible population and r is the growth rate. 
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Figure 25.  Logistic map for r=3.888 and initial population xn=0.02.  Measurement resolution was to the 
thousandths place resulting in 866 distinct values on the interval [0.020, 0.972]. 

 

Sine Wave Time Series 

A periodic process was desired for comparing results with Shewhart-stable processes and 

to help validate the utility of the PE-LE method.  The wave was discretized every 7.5 degrees 

and then degrees were converted into radians.  The first 1,500 values are presented to maintain 

clarity in Figure 26, although 10,000 values were used for research. 

 

 

Figure 26.  Sine wave discretized every 7.5 degrees with values in radians.  Measurement resolution was 
to the thousandths place resulting in 25 distinct values on the interval [-1.000, +1.000]. 
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Pi as Quasi-Random Time Series 

A quasi-random process was desired to compare to other series generated by Microsoft 

Excel’s pseudorandom number generator and to help validate the utility of the PE-LE method.  

The first 1,500 values of Pi are presented to maintain clarity in Figure 27, although 10,000 values 

were used for research. 

 

 

Figure 27.  Pi.  The first 1,500 values presented for clarity.  Measurement resolution was to the integer 
place resulting in 10 distinct values on the interval [0,9]. 

 

Pseudorandom Time Series 

Numerous pseudorandom series were desired to evaluate measurement resolution effects, 

to help validate the utility of the PE-LE method, and to develop a complexity-entropy diagram 

based on log change computations.  All pseudorandom series were generated by Microsoft 

Excel’s Mersenne Twister pseudorandom number generator (Matsumoto and Nishimura, 1998).  

Unimproved random processes were represented by R#, where R meant random and the # 

indicated the quantity of distinct values.  Example included R10, R25, R50, R100, R500, and 
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R1000.  Graphs for these processes, being random, would not add value and are therefore not 

presented here.  The decreasing variation pseudorandom series (Decr#) are presented in Figure 

28 and the single increasing variation series (Incr#) in Figure 29. 

 

 

Figure 28.  Pseudorandom generated improved processes, Decr #, where # represents the quantity of 

distinct values in the first iteration.  From top to bottom:  Decr25, Decr40, Decr100, Decr10K. 

 

 

Figure 29.  Incr10K pseudorandom generated series. 
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Data Visualization Plan 

 Four data visualizations were central to this research, and each is described along with its 

purpose.  The descriptions of each data visualization include a sample figure. 

 

PE-LE Probability Density Function 

 The Permutation Entropy- Local Effect pdf visualization includes the pdf for the 42 

distinct tuples, a numerical summary of the counts for tuple categories and local effects, and a 

pdf for the local effect results.  This visualization served numerous purposes concurrently.  First, 

it provided a visual indication of process homogeneity/randomness.  Second, it revealed the 

prevalence of tuples containing identical values (green tuples).  Third, it revealed local effect 

results.  Fourth, it provided the degree of local effect balance associated with a time series.  Fifth, 

it facilitated comparisons among processes with different characteristics or at different points in 

a time series to reveal distinctive information content.  Finally, it facilitated the characterization 

and validation of the PE-LE method. 
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Figure 30.  Sample PE-LE pdf data visualization. 

 

Complexity-Entropy Causality Plane 

The primary purpose of the CECP was to define and compare processes in terms of �̃�𝑆 

and CJS simultaneously.  The CECP was devised using the MPR-method, which includes 

application of the traditional permutation entropy method.  However, the PE-LE method was 

applied to this research to mitigate identical values within tuples, and necessarily yields different 

results from the traditional method based on a differing number of distinct tuples.  The �̃�𝑆 plot 

was an extraction from results establishing the CECP visualization.  The Cmin and Cmax lines 

define the possible region for the data plot.  For this research, Cmax was displayed based on the 

traditional 24 tuples but would be slightly higher for PE-LE’s 42 tuples.  The next standard basis 

for Cmax would be based on 5! = 120 tuples, so the 24 tuple line was retained instead.  Also, 

close-ups are provided for the lower-right region of interest in the CECP diagram. 
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Figure 31.  Sample CECP data visualization. 

 

�̃�𝐽𝑆 Change Chart 

The �̃�𝐽𝑆 change chart had two purposes.  First, to reveal how the structural complexity of 

a process changed in time relative to the maximum randomness condition for an equivalent time 

series.  Second, to allow equitable comparisons of changing structural complexity for numerous 

processes when plotted on the same chart. 

 

 

Figure 32.  Sample CJS change chart for data visualization. 
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Entropy-Complexity Change Diagram 

The primary purpose of the ECCD was to compare different processes in terms of 

simultaneously changing randomness and structural complexity to evaluate the effects of process 

improvements.  Both �̃̃�𝑆 and �̃�𝐽𝑆, were evaluated relative to the maximum randomness condition 

for an equivalent time series, and both were naturally linked to temporal causal dynamics. 

 

 

Figure 33. Sample Entropy Complexity Change Diagram (ECCD) data visualization. 

 

Information Theoretic Quantifiers 

“We inhabit a world that co-evolves as we interact with it.” 

 -Margaret J. Wheatley 
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A vast array of quantifiers are associated with the concept of information, with only 

certain ones selected for this research effort.  This section will progressively discuss the 

mathematical theory that defines the quantifier elements, to ultimately build up to the 

Complexity-Entropy Causality Plane.  The first section will briefly describe Shannon 

information- the methodological foundation upon which everything else was built.  The second 

will define the permutation entropy methodology in detail.  Part of this section will also discuss 

the PE-LE method, developed to mitigate identical values within permutation entropy tuples.  

The third section will present the MPR-method for Jensen-Shannon complexity.  Finally, all of 

the methodologies will be tied together to reveal the Complexity-Entropy Causality Plane. 

Information-theoretic quantifiers are often based on observational studies, which attempt 

to infer the properties of a process by analyzing a measured time record of process behavior.  

Even the simplest processes evolve in time, demonstrating dynamic behaviors that can be 

quantified.  The underlying dynamics for a scalar time series X(t) can often be described as a 

function of variables V= {v1, v2, …, vk}, where dV/dt = f(V).  The problem is to decide which 

analytic method for X(t) is most likely to reveal the dynamics of the process.  To help make this 

decision, a relevant first question is:  How much information is this observable time series 

encoding about the dynamics of the process? 

These perceptions about the observable time series and the objectives of the research 

allow a researcher to better choose from a diverse family of information-theoretic quantifiers.  

For example, the Fisher information measure (FIM) is based on the asymptotic theory of 

maximum likelihood estimation, which determines an expected value for the observed 

information.  FIM is considered asymptotic because it is not based on prior information.  This 
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measure represents the curvature of the log-likelihood support curve, and as such can be a useful 

element for “relative entropy” quantification. 

However, if a precisely defined prior is more relevant to the study, the principle of 

maximum entropy developed by Jaynes (1957) can be used to determine the probability 

distribution that best encodes process behavior, based on the relative information content of 

every possible distribution.  Algorithmic entropy is yet another measure, which is often used to 

assess the information attributes of computer programs.  The list could go one, with the 

interested reader directed to Appendix E for more details. 

Unfortunately, most information-theoretic quantifiers suffer from the same fundamental 

problem:  The loss of causal information associated with both the time scaling and the order 

relations of the data.  Usually, a “noncausal coarse-grained” description of the time series is 

generated by creating a symbolic sequence.  Specifically, a symbol from a finite alphabet A is 

assigned to each time point of the series X(t).  However, the inextricable linkage between the 

probability density function (P) and the sample space Ω complicates the determination of the pdf 

that most appropriately encodes process behavior. 

For instance, consider the histogram, and the loss of time and ordering information that 

corresponds with its generation.  Indeed, many other commonly used analytic methods are of this 

noncausal coarse-grained type, and each establishes an appropriate probability space (Ω, P) in a 

different way.  Common examples include Fourier analysis (Powell & Percival, 1979), binary 

symbolic dynamics (Mischaikow et al., 1999), frequency counting (Rosso et al., 2009), 

amplitude statistics procedures (De Micco et al., 2008), and wavelet transforms (Rosso, et al., 

2001).  All these different approaches capture the global process dynamics, but they are not 



163 

equivalent in their ability to discern relevant physical details or the emerging dynamics (Zanin et 

al., 2012).  Because each method establishes an appropriate probability space (Ω, P) in a 

different way, the relevant characteristics of the data can suggest the choice of method that will 

best optimize the probability space.  Such characteristics include variation, noise contamination, 

stationarity, and length of the series. 

As such, the data from the vertically translated funnel experiment was assessed to have 

low variation, low dynamical error, medium observational error, medium stationarity, and low 

quantity of time series data.  This assessment was accomplished in subjective terms, based on 

previous experience with other time series processes.  However, the researcher’s experience with 

the diversity of information-theoretic quantifiers was insufficient to suggest an obvious choice 

that would optimize the probability space.  Therefore, the initial analysis of time series data 

consisted of applying the most basic and foundational of the information-theoretic quantifiers- 

Shannon information. 

 

Shannon Information 

In 1948, Claude Shannon published A Mathematical Theory of Communication, which 

initiated the age of information theory.  Shannon initially created information entropy to measure 

the limits associated with data compression and signal processing.  However, researchers quickly 

found other uses in a multitude of fields beyond communications and computation.  For virtually 

any process, Shannon information can be used at its most basic level to quantify the uncertainty, 

homogeneity, or randomness of that process.  However, more than the information content of the 
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process can be quantified.  Additionally, the flows of information can be quantified- spatially, 

temporally, and symbolically.  Comparisons can thus be made among and within processes.  

Areas of research for Shannon information also include the transmission, processing, extraction, 

and utilization of information. 

As an analytic concept, entropy got its start in thermodynamic applications.  For instance, 

Gibbs Entropy is often used to characterize the macroscopic state of a system using the 

probability distribution of a set of distinct “microstates”.  According to the 2nd Law of 

Thermodynamics, entropy is often considered an unrelenting trend toward “disorder”.  In the 

field of process quality control, undesired increases in statistical variance are often attributed to 

“entropy”, such as Box & Luceño (1997) and Hindle & Wheeler (2017).  Although they are not 

strictly identical, many close parallels exist between the thermodynamic and informational 

conceptions of entropy.  In statistical thermodynamics, Gibbs entropy (S) measures heat 

capacity.  In statistical complexity analysis, Shannon entropy (Hs) measures information flows 

and content.  Nonetheless, the fundamental form is identical for both measures of entropy: 

 

  𝐻 =  −𝑘 ∑ 𝑃(𝑥𝑖) 𝑙𝑜𝑔𝑏 𝑃(𝑥𝑖)𝑖  ,        ( 12 ) 

where k is a constant (k = 1 in this research), P(x) are measured probabilities for each 
state, and b is the chosen logarithmic base (b = 2 for this research with all units in bits) 

 

Shannon information can measure the average rate at which information is “produced” by 

a process.  Low probability events are more surprising and therefore carry more information than 

high probability events.  The changing probabilities associated with the “states” of a process can 

be measured over time.  By measuring the Shannon information immediately before and after a 
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process event, an increase in process randomness can provide a measure corresponding with 

improved process stability. 

Ongoing probability measurements will eventually cause Hs to approximately stabilize in 

the vicinity of an information quantity that is representative of a stable process.  For example, in 

this research with vertical funnel data, it took the first 20 or so measurements before Hs started to 

stabilize around a value, with the representative value assessed after the full 50 measurements.  

A typical progression for each measurement height is provided in Figure 34, whose form follows 

the curve of information accumulation. 

 

 

Figure 34.  Shannon information accumulation.  Experiment 2, 31 inch drop height. 

 

As drop heights decreased, less uncertainty or surprise was expected for each data 

measurement.  It was therefore reasonable to expect generally lower Shannon information values 

for lower heights.  This was indeed the case, as displayed later in Figure 60.  Interestingly, if the 

funnel was lowered until it rested on the target, and the distance recorded for each marble drop 



166 

was 0.0 inches, an information calculation of Hs = 0 bits would not be accurate.  Zero Shannon 

entropy (Hmin = 0) is theoretically unachievable because this would imply that a measured 

process has no information content.  Instead, some uncertainty about a process is introduced with 

the act of measurement, even if a process is in (theoretically) perfect equilibrium.  This statement 

is considered true for two reasons.  First, all measurements possess some level of error.  Second, 

the act of measurement always changes the system being measured (the observer effect). 

Interesting parallels exists with reference to statistical process control literature.  Deming 

(1986) repeatedly opined that there can never be a “true” measurement of anything (pp.279-285).  

Similarly, Shewhart (1931) discussed how there can never be perfect certainty about any 

measured system or process, such as the speed of light (p.62).  Both of these influential 

researchers deferred repeatedly to the writings of C.I. Lewis (1929), especially Lewis’ chapters 5 

& 6, for the foundational philosophical support of these conclusions. 

Similar to the discussion above about Hmin, Shannon information can approach, but never 

quite reach its theoretical maximum Hmax.  This is because the data would have to be perfectly 

random (an impossibility), creating a perfectly uniform distribution to represent all states of the 

process.  This impossibility is discussed elsewhere in this dissertation in terms of the Ramsey 

Theory, with supporting evidence provided in Figure 61.  However, Hmax does provide a useful 

reference value to allow a common measurement basis.  Hmax is calculated with the following 

equation: 

 

  𝐻𝑚𝑎𝑥  =  𝑙𝑜𝑔 (# 𝑜𝑓 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑆𝑡𝑎𝑡𝑒𝑠)    ( 13 ) 
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Shannon information measurements are often normalized to allow for equitable 

comparisons, in which case �̃�𝑚𝑎𝑥 is defined to equal unity, although theoretically unachievable.  

The normalized Shannon entropy �̃�𝑆 was used as a benchmark throughout this research to 

quantify the changing randomness associated with processes and to better understand the effects 

of improvements.  This measure is calculated by dividing the measured Shannon information Hs 

by Hmax, as follows: 

 

    �̃�𝑺 =  𝑯𝑺𝑯𝒎𝒂𝒙  =   − ∑ 𝑷(𝒙𝒊) 𝒍𝒐𝒈 𝑷(𝒙𝒊)𝒊  𝒍𝒐𝒈 (𝐾)    ,          ( 14 ) 

where K = # of distinct states. 

 

As seen in the numerator, the information encoded in a process is defined by the relative 

probabilities of the states that make up that process, mathematically revealing how the pdf P and 

the sample space Ω are inextricably linked.  This feature has made Hs a powerful tool for the 

analysis of time series data since its inception in 1948.  However, Hs is not without certain 

shortcomings.  Methods based on Shannon entropy often poorly describe highly nonlinear and 

chaotic processes (Zanin et al., 2012).  Although they are better at describing linear processes, it 

is often difficult to truly know how linear or chaotic a process is until the structural complexity 

of the system is understood.  Also, as was mentioned in the introduction to this section of the 

Methodology, almost all of the methods for developing the probability density function cause the 

abandonment of the structural causal information that is encoded in the temporal, ordered 

dynamics during construction.  Fortunately, a method was developed that can overcome these 

shortcomings, as follows in the next section. 
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Permutation Entropy 

In 2002, Bandt and Pompe published a new method that accounts for temporal dynamics, 

more faithfully describes nonlinear processes, and alleviates many concerns about how to 

describe the probability space for time series.  They called this method permutation entropy.  

Their idea was to analyze permutation patterns that were based on an ordering relationship 

among adjacent values. 

 

Methodological Advantages 

Of the numerous methods suitable for this research, the advantages of permutation 

entropy determined its selection.  Permutation entropy can harness any of a variety of 

information measures during an ongoing observational study while preserving the scalar 

dynamics associated with data order.  The method is simple and robust to both dynamic and 

observational noise, yielding slight computational overhead compared with many similar 

methods.  Causal information is retained by including the past dynamics of the system as ordinal 

symbolic sequences, which arise naturally from the time series.  This makes it possible to 

empirically reconstruct the underlying phase-space, even though noise may be present.  No 

model-based assumptions are required and, for the traditional method, data amplitudes need not 

be considered.  Also, the ready evaluation of a wide variety of time series process types is easily 

extended to various measures of disequilibrium and complexity. 

Permutation entropy is considered a “causal coarse-grained method”.  Causal information 

is incorporated into the analysis by including the past dynamics of the system in the symbolic 
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sequencing.  Probabilities can be worked with directly without consideration for any interference 

terms.  Further, nonlinear drifts or scaling induced by measurement will not modify the 

estimation of quantifiers, which is a helpful feature when analyzing experimental data.  This 

robustness is achieved because the ordinal patterns are invariant with respect to nonlinear 

monotonous transformations.  Instead of being limited to low dimensional dynamical processes, 

permutation entropy has utility for any type of time series (stochastic, chaotic, regular, periodic, 

etc.).  It is also not necessary to assume the existence of an attractor in chaotic phase space, as is 

required of other methods. 

 

General Methodology 

To introduce the method, the simple methodological example provided by Bandt & 

Pompe (2002) is a suitable starting point here as well.  Assume a time series of seven values, x = 

(4, 7, 9, 10, 6, 11, 3).  Then organize the six pairs of neighboring values in accordance with their 

relative amplitudes: 

 

Table 10.  Permutation pattern example, D=2. 

Time 

Series Pair 

Permutation 

Pattern 

(4,7) 01 

(7,9) 01 

(9,10) 01 

(10,6) 10 

(6,11) 01 

(11,3) 10 
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The permutation entropy based on this embedding dimension D = 2 is a measure of the 

probabilities of the permutations 01 and 10. 

 

   𝐻(2) =  − 46 𝑙𝑜𝑔 46   − 26 𝑙𝑜𝑔 26 = 0.918 𝑏𝑖𝑡𝑠        
 

For D = 3, the permutations for this same time series would be: 

 

Table 11.  Permutation pattern example, D=3. 

Time 

Series Pair 

Permutation 

Pattern 

(4,7,9) 012 

(7,9,10) 012 

(9,10,6) 120 

(10,6,11) 102 

(6,11,3) 120 

 

And the probability computation: 

 

    𝐻(3) =  −2 ( 25  𝑙𝑜𝑔 25 ) −  15 𝑙𝑜𝑔 15  =   1.522  𝑏𝑖𝑡𝑠        
 

For the previous example with D=3, the following figure reveals all of the possible D!=6 

permutation patterns.  Following this figure, similar visualizations are presented for D=4 and 

D=5.  These figures are presented to clarify the pattern apportionment, but also because these 
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specific ordering schemes, from Parlitz et al. (2012), were treated as the convention in this 

dissertation for the presentation of results. 

 

 

Figure 35.  Distinct permutations for embedding dimension, D=3.  From Classifying Cardiac Biosignals 

using Ordinal Pattern Statistics and Symbolic Dynamics by U. Parlitz et al.  Copyright © 2012 by 
Elsevier.  Reprinted with the permission of Elsevier.  All rights reserved. 

 

 

Figure 36.  Distinct permutations for embedding dimension, D=4.  Total number of possible distinct 
patterns is D! = 24.  From Classifying Cardiac Biosignals using Ordinal Pattern Statistics and Symbolic 

Dynamics by U. Parlitz et al.  Copyright © 2012 by Elsevier.  Reprinted with the permission of Elsevier.  
All rights reserved. 
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Figure 37.  Distinct permutations for embedding dimension, D=5.  Total number of possible distinct 
patterns is D! = 120.  From Classifying Cardiac Biosignals using Ordinal Pattern Statistics and Symbolic 

Dynamics by U. Parlitz et al.  Copyright © 2012 by Elsevier.  Reprinted with the permission of Elsevier.  
All rights reserved. 

 

DEFINITION:  Consider a time series {xt}t=1,…,N .  Study all possible D! permutations π of order 

D.  For each π, determine the relative frequency: 

 

   𝒑(𝝅) =  #{𝒕 |𝒕 ≤𝑵−𝑫,(𝒙𝒕+𝟏,…,𝒙𝒕+𝑫)𝒉𝒂𝒔 𝒕𝒚𝒑𝒆 𝝅}𝑵−𝑫+𝟏       ,  ( 15 ) 

where N is the cardinal number (# of data). 

 

M is the number of tuples in a string, defined in the denominator above, M=N-D+1.  This 

equation estimates the frequency of π for a finite series of values.  To determine p(π) exactly, 
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assume an infinite time series and take the limit as N→ ꝏ in the above equation.  This limit 

exists with p(π) =1 when the underlying stochastic process fulfills the stationarity condition:  For 

k ≤ D the probability for xt < xt+k should not depend on t. 

The permutation entropy of order D ≥ 2 is defined as, 

 

    𝑯(𝑫) =  − ∑ 𝒑(𝝅) 𝐥𝐨𝐠 𝒑(𝝅) ,      ( 16 ) 

where the sum runs over all D! permutations π of order D. 

 

H(D) is the information contained in comparing D consecutive values of the time series.  

For 0 ≤ H(D) ≤ log D! the lower bound is attained for a strictly increasing or decreasing 

sequence of values, and the upper bound for a completely random sequence where all D! 

possible distinct permutations appear with the same probability.  Hmax is used to normalize the 

permutation entropy calculation of Shannon entropy and is based on the logarithm of the 

maximum number of possible distinct states (which are distinct tuple types). 

Graphical insight regarding maximum Shannon entropy calculations is provided in Figure 

38.  Some of the values provided are associated with different PE embedding dimensions (D!). 
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Figure 38.  Some common Hmax values for PE.  The number of distinct states (K) corresponds with 
embedding dimensions (D).  The yellow highlighted cell is the value for 42 distinct tuples, used for the 
PE-LE method at D=4. 

 

Bandt and Pompe (2002) recommended using only embedding dimensions ranging from 

D={3,…,7} (p.174102-1).  D ≥ 8 rapidly gets unwieldy with the number of possible distinct 

permutation types, D!  They also recommended N>>D! to facilitate differentiation between 

stochastic and chaotic processes.  Finally, they recommended using τ =1, which is the “time lag” 

or “embedding delay”.  This represents how many values to skip before encoding the next tuple.  

The research in this dissertation only used τ =1, but some authors have discovered that applying 

different time lags can provide additional information about processes, as related to intrinsic time 

scaling (Soriano et al., 2011; Zunino et al., 2010).  In addition, larger time lags can be used to 

mitigate certain digitization-induced errors such oversampling, where states are measured in 

multiple successive repetitions for time series (Daw et al., 2003). 

Another variable δ corresponds to how much time is encompassed by each tuple.  This 

variable can be modified to search for corresponding process dynamics or to mitigate 

digitization-induced errors.  However, for the research in this dissertation, and for most of the 

research literature that was reviewed, this variable was ignored.  The following figure from 
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Zunino et al. (2011) provides a graphical example of the interplay between D, τ, and δ, as applied 

to permutation assignments. 

 

 

Figure 39.  Procedure to identify ordinal patterns from a time series.  Embedding dimension D = 4, 
embedding delay τ = 3 and time δ = 20.  From Commodity Predictability Analysis with a Permutation 

Information Theory Approach by Zunino et al.  Copyright © 2011 by Elsevier B.V.  Reprinted with the 
permission of Elsevier.  All rights reserved. 

 

Evaluation of Process Randomness 

 The stability of a process generally increases as its randomness increases.  In statistics, 

this randomness is sometimes based on the assumption that factors are independent and 

identically distributed (i.i.d.).  An assumption of perfect randomness requires two impossibilities:  

That none of the factors interact and that the factors contribute equally to process behaviors.  

This impossibility could be represented by a perfect uniform probability distribution.  In reality, 

all processes possess varying degrees of randomness, based on their relative magnitudes of 

departure from the assumption of perfect randomness. 



176 

Normalization of Shannon entropy allows an “equitable” assessment of degrees of 

randomness or relative stability for different processes.  What’s more, the change in process 

randomness after an intended process improvement can provide a measure of the impact the 

improvement made to process stability.  In this research, the assessment of the degree of 

randomness was calculated as follows.  First permutation entropy was applied to characterize the 

probability space (Ω, P).  The resulting pdf was used to calculate Shannon information Hs.  Then 

Shannon information was normalized to �̃�𝑆 based on the number of possible distinct states that 

made up the process.   

 

    �̃�𝑺 =  𝑯𝑺𝑯𝒎𝒂𝒙  =   − ∑ 𝑷(𝝅) 𝒍𝒐𝒈 𝑷(𝝅) 𝒍𝒐𝒈 (K)    ,          ( 17 ) 

 where K = # of distinct states. 

 

The equation repeated here is identical in form to the normalization equation (14) 

presented in the Methodology section for Shannon information, with one key difference.  The 

ongoing calculation of probabilities is now based specifically on permutation entropy tuples P(π) 

instead of some other definition of process states.  For traditional permutation entropy, the 

number of possible distinct states is usually just D! based on the embedding dimension chosen.  

However, in this research, the PE-LE method was used to mitigate identical values within tuples.  

As a consequence, the number of possible distinct tuples for D=4 was actually 42, not 4! = 24, as 

will be discussed in the next section of the Methodology. 
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Methodological Disadvantages 

The traditional permutation entropy methodology loses the actual amplitude information 

from the original series.  Although relative magnitudes within tuples are maintained, the 

amplitude information could help detect certain process characteristics including abrupt changes 

in magnitude and spiky features (Fadlallah et al., 2013).  The incorporation of amplitude 

information could also provide better robustness in the presence of noise.  Numerous methods 

have been devised to incorporate amplitude information, as presented in the Literature Review 

section.  Concurrent observation of the process amplitude data with a control chart could also 

help to mitigate some of these time series monitoring issues. 

Another disadvantage is the impact of identical values within tuples, which are not 

accommodated in the traditional permutation symbology scheme.  Numerous methods for 

handling identical values by modifying the traditional permutation entropy methodology were 

presented in the Literature Review.  It was revealed there the sort of undesirable effects that were 

caused by each method.  Because identical values within tuples are naturally more likely for 

stable processes, which was the focus of this research, an alternative method was investigated 

that added distinct permutations based on the “local effect” within tuples.  That methodology is 

described in the next section. 

 

Permutation Entropy- Local Effect 

The standard permutation entropy symbology does not account for equal values within 

tuples.  For example, there are no equal value configurations of tuples in Figure 35, Figure 36, or 
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Figure 37.  Unfortunately, equal values are common for discrete series data, which are 

increasingly prevalent with the ubiquitous digitization of data streams.  Parsing tuples from the 

analysis that do not meet the symbology scheme equates to throwing away information that may 

help to reveal process dynamics (Traversaro et al., 2018, Table II).  Worse, various mitigation 

strategies may skew the probability distributions of process states, thereby promoting the wrong 

conclusions about process behavior (Zunino et al., 2017).  Although at least one paper disagrees 

(Cuesta-Frau et al., 2018), this problem is widely seen to be a significant limitation of the 

permutation entropy methodology. 

This problem was assessed to have a significant impact on this dissertation’s research 

effort.  Because Shewhart-stable processes demonstrate less variability, they are naturally more 

likely to be affected by this problem than Shewhart-unstable processes.  As such, it was 

important to select a method to mitigate identical values.  In the Literature Review section, 

numerous methods were examined but each one presented a shortcoming.  While considering the 

pros and cons of the various methods, it became apparent that a slightly different approach, 

based on measuring the “local effect” in each tuple, might have merit.  When this Permutation 

Entropy-Local Effect (PE-LE) method was tested against axiomatic validation standards, it 

appeared to perform at least as well as some of the other methods, and perhaps better for low 

dimensional stochastic processes.  It was therefore decided to embrace this method for the 

analyses conducted herein.  This section will identify the PE-LE methodology, and present the 

validation approach. 

Assume D=3 and τ = 1.  According to traditional permutation entropy convention, there 

are D!=6 possible distinct symbols, Ω3 = {(012)(021)(102)(120)(201)(210)}.  Note that none of 
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these symbols account for an equal value within a tuple, which would be represented 

symbolically as, for example, (001) or (101), and herein lies the problem.  The ultimate question 

has been, “What is the best way to account for identical values within a tuple that will minimize 

the erroneous representation of emerging process dynamics?” 

 Other methods have been developed to mitigate identical values, each possessing various 

pros and cons.  After review, some desirable attributes were contemplated to guide the 

development of a new method: 

1. Retain the causal influences associated with temporal ordering 

2. Retain the causal influences associated with magnitude ordering 

3. Minimize the parsing of problematic tuples via statistically complete rules/ complete case 

analysis 

4. Define rules for distinct tuple types so that exceptionally long data series would not be 

required to: 

a. See all possible distinct tuples types 

b. Achieve balance among probability densities for among all possible distinct tuple 

types for stochastic series 

c. Achieve imbalance among probability densities for all possible distinct tuple 

types for complex nonlinear series 

5. Approximate Hmax such that �̃�𝑆 is nearly unity for WGN. 

6. Allow equitable comparisons between processes when they are analyzed similarly. 
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A simple example will introduce the local effect concept.  Consider the D=4 permutation 

tuple (0212).  Maintaining the temporal ordering from left to right, the difference between the 

first two values (02) is +2, between the second two values (21) is -1, and between the final two 

values (12) is +1.  The local effect for the tuple is the sum of these three differences: 

LE=+2-1+1= 2 

The following table provides a few more examples for tuples with identical values. 

 

Table 12.  Local effect calculation examples. 

Tuple 

1st 

Difference 

2nd 

Difference 

3rd 

Difference 

Local 

Effect 

0212 2 -1 1 2 

0121 1 1 -1 1 

0110 1 0 -1 0 

2001 -2 0 1 -1 

2100 -1 -1 0 -2 

 

The next step was to determine all of the possible tuples, assuming that identical values 

were permitted.  Note that PE-LE was developed in this research for D=4 only, but the basic 

methodology could be extended to any embedding dimension.  The easiest starting point was to 

list all of the possible permutations for the values (0,1,2,3) with repetition allowed, and order 

matters.  The total number of such permutations is given by: 

 

  𝒏𝒓 =   𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏𝒔 𝒘𝒊𝒕𝒉 𝒓𝒆𝒑𝒆𝒕𝒊𝒕𝒊𝒐𝒏, 𝒐𝒓𝒅𝒆𝒓 𝒎𝒂𝒕𝒕𝒆𝒓𝒔 ,     ( 18 ) 

where n= values to choose from, and r= # values chosen. 
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For n=4 and r=4, there are 256 permutations, listed in Table 13. 

Table 13.  All 256 permutations for the values (0,1,2,3).  Generated at www.mathisfun.com.  Website 
maintained by Pierce (2020). 

 

 

Many of these permutations can be simplified.  For instance, the permutation patterns 

(0000), (1111), (2222), and (3333) all represent the same magnitude situation for the underlying 

data.  Therefore, all four tuples simplify to the lowest common tuple (0000).  Similarly, (0101), 

(0202), (0303), (1212), (1313), and (2323), all simplify to the lowest common tuple (0101).  

Carrying on this simplification scheme results in 75 distinct lowest common tuples. 

 

Table 14.  The 75 distinct lowest common tuples for D=4, allowing identical values. 

 

 

0000 0001 0010 0011 0012 0021 0100 0101 0102 0110 0111 0112 0120 0121 0122

0123 0132 0201 0210 0211 0212 0213 0221 0231 0312 0321 1000 1001 1002 1010

1011 1012 1020 1021 1022 1023 1032 1100 1101 1102 1110 1120 1200 1201 1202

1203 1210 1220 1230 1302 1320 2001 2010 2011 2012 2013 2021 2031 2100 2101

2102 2103 2110 2120 2130 2201 2210 2301 2310 3012 3021 3102 3120 3201 3210
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 The local effect was then calculated for each of these 75 distinct tuples.  Three 

observations were made about the results, as will be presented in the tables and figures to follow. 

1. The range of local effect was from -3 to +3 for all of the D=4 tuples. 

2. Every tuple other than 0000 had an “opposite twin”.  In other words, a mirror effect was 

observed for the sign of the deltas between adjacent values, which also yielded opposite 

signs for the resulting calculated local effect. 

3. Probability density functions for “mirror sets” were perfectly balanced. 

 

The 24 tuples used in traditional D=4 permutation entropy do not have any identical values 

within the tuples.  They are displayed in local effect mirror set configuration in Table 15. 

 

Table 15.  Local effect mirror sets for the 24 tuples used in traditional D=4 permutation entropy. 

 

 

 Extracting these traditional 24 tuples from the original set of 75 distinct lowest common 

tuples leaves the 51 tuples with identical values.  Table 16 summarizes the local effect for these 

remaining tuples in mirror set configuration. 

Tuple Δ1 Δ2 Δ3 LE Tuple Δ1 Δ2 Δ3 LE

0231 2 1 -2 1 3102 -2 -1 2 -1

0321 3 -1 -1 1 3012 -3 1 1 -1

1032 -1 3 -1 1 2301 1 -3 1 -1

1302 2 -3 2 1 2031 -2 3 -2 -1

2103 -1 -1 3 1 1230 1 1 -3 -1

2013 -2 1 2 1 1320 2 -1 -2 -1

0132 1 2 -1 2 3201 -1 -2 1 -2

0312 3 -2 1 2 3021 -3 2 -1 -2

1023 -1 2 1 2 2310 1 -2 -1 -2

1203 1 -2 3 2 2130 -1 2 -3 -2

0123 1 1 1 3 3210 -1 -1 -1 -3

0213 2 -1 2 3 3120 -2 1 -2 -3
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Table 16.  Local effect mirror sets for the 51 tuples that contain identical values. 

 

 

 The probability densities of the local effects for the various sets of tuples were then 

computed.  Results in Table 17 show that all sets are balanced around zero local effect. 

 

 

 

 

 

 

Tuple Δ1 Δ2 Δ3 LE Tuple Δ1 Δ2 Δ3 LE

0000 0 0 0 0

0010 0 1 -1 0 1101 0 -1 1 0

0100 1 -1 0 0 1011 -1 1 0 0

0110 1 0 -1 0 1001 -1 0 1 0

0120 1 1 -2 0 2102 -1 -1 2 0

0210 2 -1 -1 0 2012 -2 1 1 0

1021 -1 2 -1 0 1201 1 -2 1 0

0001 0 0 1 1 1110 0 0 -1 -1

0011 0 1 0 1 1100 0 -1 0 -1

0101 1 -1 1 1 1010 -1 1 -1 -1

0111 1 0 0 1 1000 -1 0 0 -1

0021 0 2 -1 1 2201 0 -2 1 -1

0121 1 1 -1 1 2101 -1 -1 1 -1

0201 2 -2 1 1 2021 -2 2 -1 -1

0211 2 -1 0 1 2011 -2 1 0 -1

0221 2 0 -1 1 2001 -2 0 1 -1

1002 -1 0 2 1 1220 1 0 -2 -1

1012 -1 1 1 1 1210 1 -1 -1 -1

1022 -1 2 0 1 1200 1 -2 0 -1

1102 0 -1 2 1 1120 0 1 -2 -1

1202 1 -2 2 1 1020 -1 2 -2 -1

0012 0 1 1 2 2210 0 -1 -1 -2

0102 1 -1 2 2 2120 -1 1 -2 -2

0112 1 0 1 2 2110 -1 0 -1 -2

0122 1 1 0 2 2100 -1 -1 0 -2

0212 2 -1 1 2 2010 -2 1 -1 -2



184 

Table 17.  Probability densities for tuple sets based on local effect. 

 

 

Figure 40.  Probability densities based on local effect for various tuple sets. 

 

Since balance around zero local effect was demonstrated, the next question was:  Could 

the tuples with zero local effect be abandoned with little change to the analytic results?  To 

answer this question, it was assumed that the needed insight would be revealed by the 

distribution of probability densities among the 75 tuples.  Since the focus of this research was the 

improvement of Shewhart-stable processes, a highly stochastic process was analyzed using the 

PE-LE methodology.  The first 10,000 digits of Pi were considered a suitable quasi-random 

process, which would serve as the stochastic baseline for evaluating PE-LE.  The resulting 

distribution of the 9,997 tuples was divided between the traditional 24 tuples in Table 18 and the 

remaining 51 identical value tuples in Table 19. 

 

 

LE count density count density count density

-3 2 0.08 0 0.00 2 0.03

-2 4 0.17 5 0.10 9 0.12

-1 6 0.25 14 0.27 20 0.27

0 0 0.00 13 0.25 13 0.17

1 6 0.25 14 0.27 20 0.27

2 4 0.17 5 0.10 9 0.12

3 2 0.08 0 0.00 2 0.03

24 tuples 51 tuples 75 tuples
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Table 18.  Distribution of tuple counts for 24 traditional tuples based on 10,000 digits of Pi and PE-LE 
method.  Total tuple count out of 9997  = 5095. 

 

 

Table 19.  Distribution of tuple counts for 51 identical value tuples based on 10,000 digits of Pi and PE-
LE method.  Total tuple count out of 9997  = 4902.  The far right column represents the sum for each pair 
of “opposite twins”. 

 

 

 

Tuple LE Count Tuple LE Count

0231 1 202 3102 -1 221

0321 1 247 3012 -1 205

1032 1 205 2301 -1 213

1302 1 217 2031 -1 220

2103 1 194 1230 -1 224

2013 1 215 1320 -1 198

0132 2 216 3201 -2 208

0312 2 216 3021 -2 221

1023 2 202 2310 -2 210

1203 2 212 2130 -2 206

0123 3 210 3210 -3 206

0213 3 210 3120 -3 217

Tuple LE Count Tuple LE Count Σpair
0000 0 10 10

0010 0 39 1101 0 46 85

0100 0 46 1011 0 48 94

0110 0 47 1001 0 47 94

0120 0 126 2102 0 135 261

0210 0 122 2012 0 138 260

1021 0 126 1201 0 120 246

0001 1 42 1110 -1 37 79

0011 1 40 1100 -1 38 78

0101 1 49 1010 -1 42 91

0111 1 33 1000 -1 46 79

0021 1 108 2201 -1 125 233

0121 1 123 2101 -1 119 242

0201 1 136 2021 -1 126 262

0211 1 115 2011 -1 114 229

0221 1 110 2001 -1 102 212

1002 1 117 1220 -1 116 233

1012 1 115 1210 -1 103 218

1022 1 119 1200 -1 119 238

1102 1 110 1120 -1 119 229

1202 1 133 1020 -1 123 256

0012 2 127 2210 -2 104 231

0102 2 118 2120 -2 130 248

0112 2 125 2110 -2 113 238

0122 2 110 2100 -2 107 217

0212 2 114 2010 -2 125 239
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 In this evaluation of 10,000 quasi-random values, some interesting characteristics became 

apparent for the 51 tuples containing identical values.  First, the distribution of tuple counts for 

non-highlighted cells was generally about half what it was for the 24 traditional tuples.  More 

specifically, the mean count for the 24 tuples was 212.3 and the mean count for the 36 identical 

value tuples of interest (non-highlighted) was 119.2.  Therefore, when the counts for each pair of 

opposite twins were summed, the results were approximately consistent with the counts for 

individual tuple types in the traditional set of 24. 

 

ASSUMPTION:  “Approximately consistent” is assumed to mean that the tuple count for 

opposite twins is within about ± 15% of the traditional tuples for a stochastic process with low 

measurement resolution. 

This inconsistency was probably caused by the abandonment of the highlighted cells 

from the calculations.  To further evaluate the overall balance of local effect, which could be 

extended to any process, the “centerpoint” equation was devised, as follows: 

 

 𝐿𝐸 𝐶𝑒𝑛𝑡𝑒𝑟𝑝𝑜𝑖𝑛𝑡𝐷=4 =  −3(𝐶𝑜𝑢𝑛𝑡) − 2(𝐶𝑜𝑢𝑛𝑡) − 1(𝐶𝑜𝑢𝑛𝑡) + 1(𝐶𝑜𝑢𝑛𝑡) + 2(𝐶𝑜𝑢𝑛𝑡) + 3(𝐶𝑜𝑢𝑛𝑡)   ( 19 ) 

 

The LE centerpoint result including all 75 tuples for this process was: 

-3(423)-2(1424)-2610+2630+2(1440)+3(420) = 43 
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This answer represents less than 0.5% of the 10,000 values in the time series.  Based on 

these results, the decision was made to continue the investigation with each pair of opposite 

twins combined to become a new, distinct tuple type comprised of the pair. 

The second observation was that the highlighted tuples do not follow the observed 

pattern.  Summing certain sets of highlighted tuples with the same LE does achieve values within 

about 15% of the mean for the traditional tuples for this specific stochastic process.  For instance, 

Zero LE Tuples:  (0000)+(0100)+(0110)+(1011)+(1001) = 198 

±1 LE Tuples:  (0001)+(0011)+(0111)+(1110)+(1100)+(1000) = 236 

 

However, these relationships are currently unclear.  Therefore, the results for all of the 

non-pattern-following zero LE and ±1 LE tuple groupings were summed to allow this pattern-

based investigation to continue.  The results were: 

Zero LE Tuples:  (0000)+(0010)+(0100)+(0110)+(1101)+(1011)+(1001) = 283 

±1 LE Tuples:  (0001)+(0011)+(0101)+(0111)+(1110)+(1100)+(1010)+(1000) = 327 

  

The difficulty in labeling these two groupings of 7 and 8 tuples quickly became apparent.  

It was too unwieldy to type all 7 and 8 tuples each time they were referenced, especially when 

displayed in figures.  Same for calling them something like, “Zero LE non-pattern-following 

tuple group” and, “±1 LE non-pattern-following tuple group”.  Short names were therefore 

chosen, more or less at random, as labels for these two groups.  The ±1 LE non-pattern following 
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tuple group was labeled, “Red” and the zero LE non-pattern following group was labeled 

“Wizard”. 

While working with all of the original set of 75 tuples in various analyses, it became 

apparent that it was also somewhat unwieldy to refer to the remaining 51-15= 36, 36/2= 18 pairs 

of, “Pattern-following opposite twin LE tuple pairs”, so the label “Forest” was chosen for these 

18 pairs.  Finally, the, “24 traditional D=4 tuples” were assigned the short label “Parlitz” in 

deference to the paper written by Parlitz et al., (2012) in which the authors had the foresight to 

publish a logical, graphical ordering standard that could ease comparisons among different PE 

studies.  As such, for the remainder of this research, these 24 traditional tuple types are presented 

in the “Parlitz-order”.  This short label naming convention for PE-LE is summarized below. 

 

Table 20.  Short label assignments for PE-LE tuple categories. 

 

 

The evaluation of 10,000 digits of Pi is displayed in the following pdf, assuming 44 

tuples for the PE-LE method. 

 

 

Label Long Title # Tuples

Red ±1 LE non pattern-following tuple group 1

Wizard 0 LE non pattern-following tuple group 1

Forest Pattern-following opposite twin LE tuple pairs 18

Parlitz Traditional D=4 tuples 24

Total 44
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Figure 41.  PDF for first 10,000 digits of Pi assuming 44 tuples for the PE-LE method. 

 

Given the stochastic nature of the digits of Pi, the distribution is expected to appear 

approximately uniform.  However the Red and Wizard types are clearly not following the pattern 

expected for a highly stochastic process.  Next, to continue to assess the Red and Wizard tuples, 

a Shewhart-unstable process type was selected.  The goal was to assess whether the PE-LE 

method could be generalized to any process type while considering the six desirable features 

delineated above.  In Figure 42, the PE-LE method was applied to the first 10,000 data of the 

final 16,000 values of the Distillate Flowrate dataset available open-source without restriction at 

www.openmv.net (Dunn, 2020). 
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Figure 42.  PDF for 10,000 Distillate Flowrate measurements assuming 44 tuples for the PE-LE method.  
From www.openmv.net by Kevin Dunn (2020).  Dataset provided open source with no restrictions on use. 

 

Inspection of the dataset in Figure 23 reveals instances where the distillate process 

appeared to be shutting down, settling out at zero flowrate for a time, and then starting again.  

This would likely explain the high relative density of the Wizard tuples.  To continue the 

assessment of the Red and Wizard tuples, a Shewhart-stable process type was selected for 

evaluation.  The pdf in Figure 43 represents the 1,600 time series measurements for the second 

vertical-translation funnel experiment.  During this experiment, the funnel was incrementally 

raised above the target by one inch following every 50 measurements.  At the lower funnel 

heights, the measurements tended to vary much less, which likely explains the prevalence of the 

Red and Wizard tuples. 
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Figure 43.  PDF for 1,600 measurements from the second vertical translation funnel experiment, 
assuming 44 tuples for the PE-LE method. 

 

 These insights from evaluating these three processes supported a decision for how to 

handle the Red and Wizard tuple types, as provided in the next section. 

 

Red & Wizard Tuple Decision 

To advance the PE-LE methodology, a decision was required for whether to retain or to 

eliminate the Red and Wizard tuples.  Decision criteria were available from the six desirable 

attributes defined above: 

1. Retain the causal influences associated with temporal ordering 

Yes.  True whether or not they are retained. 

2. Retain the causal influences associated with magnitude ordering 

Yes.  The Red and Wizard tuples added information associated with magnitude ordering 

in terms of categories of local effect within tuples. 
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3. Minimize the parsing of problematic tuples via “statistically complete” rules/ “complete 

case analysis” 

Retaining Red and Wizard tuples would require no parsing.  Eliminating them would 

require some parsing, the amount depending upon the likelihood of identical values 

within the time series. 

4. Define rules for distinct tuple types so that exceptionally long data series would not be 

required to: 

a. See all possible distinct tuples types 

Longer data series would be required to see the Red & Wizard tuple types. 

b. Achieve balance among probability densities for all possible distinct tuple types 

for stochastic series 

The densities of the Red & Wizard tuples were contrary to achieving balance for 

stochastic processes. 

c. Achieve imbalance among probability densities for all possible distinct tuple 

types for complex nonlinear series. 

The densities of the Red & Wizard tuples added to the tuple imbalance present for 

nonlinear series as witnessed with the Distillate Flowrate data. 

5. Approximate Hmax such that �̃�𝑆 is nearly unity for WGN. 

Eliminating two of 44 tuples via statistically complete parsing would move �̃�𝑆 further 

away from unity for WGN. 
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6. Allow equitable comparisons between processes when they are analyzed similarly. 

The Red & Wizard tuples may provide undue influence over the results to allow equitable 

comparisons between diverse process types. 

 

Based on these criteria, the decision was made to eliminate the Red & Wizard tuples from 

the PE-LE methodology for this research.  The consideration of stochastic processes in criterion 

4b was a primary determinant since this research was focused on Shewhart-stable processes.  

This decision meant that the 15 tuples represented by Red & Wizard would be parsed from any 

analysis before starting entropy calculations. 

Justification:  For a highly stochastic process (10,000 digits of Pi), the Red & Wizard 

tuple groups did not follow the pattern of density distribution evidenced by the rest of the tuples.  

These pattern differences were ultimately not understood, and could potentially provide 

inequitable influence on the results.  Furthermore, grouping seven tuples together because they 

were all zero LE and didn’t follow the pattern of the other zero LE tuples would be arbitrary 

without a better understanding of the dynamics.  Similarly so for grouping eight tuples together 

because they were all ±1  LE and didn’t follow the pattern of the other ±1 LE tuples. 

This decision was significant both in terms of the negative effects associated with 

statistically complete parsing and because the decision would impact how the probability space 

(Ω, P) would be defined for the entire research effort.  Before the decision to eliminate the Red 

and Wizard tuple sets was considered final, the new PE methodology required validation to 

better characterize its applicability for answering the research question.  The results of this effort 

are provided in the Findings section. 
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Structural Complexity 

Permutation entropy measures the uncertainty of a process.  Although this can provide a 

feel for process randomness, the underlying process mechanisms often remain opaque, especially 

for Shewhart-stable processes.  If the complex interactions among the components that make up 

the process are understood, process knowledge increases.  The quest for process knowledge lies 

at the intersection of uncertainty, opacity, and complexity. 

 

 

Figure 44.  The bubble of process knowledge.  Adapted from a figure attributed to Dr. Myron Tribus in 
Understanding Industrial Experimentation (p.x) by Donald Wheeler.  Copyright © 1990 by SPC Press, 
Inc.  All rights reserved. 
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A typical approach to building process knowledge is to first address the “Complexity” 

arrow, above, which is defined by many parts interacting in different ways.  It is thought that 

breaking a process apart statistically will allow the component parts to reveal their contribution 

to the greater whole.  By comparing these varying contributions, the researcher can then bin 

some of them as “signals”, and the rest as “noise”.  This is typical of the reductionist approach, 

and it has worked effectively since the 19th century.  However, there is another approach, which 

is, in many ways, the opposite of the reductionist approach.  The emergence-based approach 

examines problems from the perspective that some overall process behaviors cannot be 

understood through analysis at the component level.  A simple example is the pressure of a 

system, which cannot be understood by attempting to measure attributes of each component 

particle.  This example would suggest the question:  What is the pressure of a particle?  

Conceptually, the emergence-based approach is much more recent than the reductionist 

approach, beginning in the 1940’s, due in part to Bertalanffy’s (1945) General Systems Theory 

and Wiener’s (1948) Cybernetics. 

It may seem somewhat contradictory for this research effort to focus concurrently on 

stable processes and complexity.  Shouldn’t a stable process be among the least complex of all 

processes?  This question demonstrates the important distinction between the words complicated 

and complex.  It is true that a stable process is usually less complicated than other processes.  In 

fact, a stable process may seem relatively simple.  But in terms of structural complexity, the 

analysis of an apparently simple process may reveal interesting and unexpected intrinsic 

dynamics.  The logistic map is an example of a seemingly simple process with amazing emergent 
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structural complexity, with ties to not only population dynamics but also to chaos theory and 

fractal dynamics. 

 

Nonlinearity Paradigm 

The next logical comment might be, “But the logistic map is largely nonlinear, whereas a 

Shewhart-stable process is most likely a linear phenomenon since the variation remains within 

such tight limits for so long”.  However, as supported below, it turns out that underlying 

nonlinear dynamics are actually overwhelming prevalent, even for stable systems.  For a process 

to be approximately linear implies that the sum of all of the inputs produces a consistent and 

proportional response in the output.  This is usually a rare and passing phenomenon in our 

dynamic world.  According to De Canete et al. (2011): 

Nearly all systems are inherently nonlinear in nature, since most of the relationships in 

physics are nonlinear.  Moreover, most of the linear systems are a special case of 

nonlinear systems in limited ranges of operation.  Besides this, the nonlinear nature of the 

physical elements constituting the system may be an essential feature of the system, 

causing the overall system behavior to be nonlinear… (p. 46). 

 

It also turns out that even distinguishing a linear phenomenon is problematic.  According 

to Bickel & Bühlmann (1996), although linear processes can be approximated, “Given any 

infinitely long data sequence, it is impossible (with any test statistic) to distinguish perfectly 

between linear and nonlinear processes (including slightly noisy chaotic processes)” (p.12128).  
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Another pertinent perspective regarding nonlinear chaotic processes is provided by Rosso et al. 

(2012): 

The concept of low-dimensional deterministic chaos, derived from the modern theory of 

nonlinear dynamical systems, has changed our way of understanding and analyzing 

observational data S(t) (time series), leading to a paradigm-change from linear to 

nonlinear approaches.  Linear methods interpret observational signals from an underlying 

dynamical system that is regarded as being governed by a linear regime under which 

small perturbations lead to small effects.  Consequently, all irregular behavior must be 

attributed to random external inputs [Kantz & Schreiber, 2002].  However, chaos theory 

has shown that random inputs are not the only possible source of irregularities in a 

system’s outputs. (p.42) 

 

Dooley et al. (1995) provided additional insights into chaotic nonlinearity for quality 

control, focusing on the potential impacts to statistical hypothesis testing: 

Statistical tests of hypotheses look at signal to noise ratios; they question if the magnitude 

of an observed signal is significantly larger than the "background noise", or experimental 

error.  If it is not, then the effect is not statistically significant, because it may have arisen 

from other random and unpredictable causes.  If, however, the system being measured is 

actually deterministically chaotic (or at least a majority of the observed variance is from 

deterministic chaos), then the statistical test is not comparing the effect (usually linear) to 

background noise, but rather to other nonlinear effects. Thus the presence of statistical 

significance could in some situations only mean that the observed linear effect is bigger 
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than the unpredictable nonlinear effect. If this indeed were the case, it may change the 

way decisions are made on the basis of statistical hypothesis testing. (p.20) 

 

Simple-appearing processes, including stable processes based on machinery or chemical 

reactions can be extremely information-rich.  Also, signals with the same degree of statistical 

variability can possess very different complexity properties (Goldberger et al., 2012).  Some 

simple processes have also been studied that generate complex dynamics in particular parameter 

regimes.  Amaral et al. (2004) found that, “under general conditions, complex dynamics can be 

generated by [simple] systems fulfilling the following two requirements, (i) a ‘‘small-world’’ 

topology and (ii) the presence of noise” (p.15551).  Given these perspectives about the varying 

nature of simple processes, methods that provide insight into nonlinear process dynamics can 

still be useful to direct the improvement of stable processes.  Such methods can assist with the 

recognition of changing patterns to estimate future process performance, even when reductionist 

statistical methods like control charts suggest predictable performance.  The dilemma is which 

emergence-based method to choose for this insight.  To assist with selection, it is useful to first 

review more detailed characterizations of the two broad categories:  Reductionism vs. 

Emergentism. 

 

Reductionism vs. Emergentism 

Reductionist methods assume a process can be comprised of no more than the sum of its 

parts.  Therefore, the underlying dynamics can be better understood by reducing a process into 
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its constituent factors.  The better the factors are understood, the better the process is understood.  

For a nonlinear process example, a complex waveform can be decomposed into individual 

signals through Fourier analysis. 

Emergence-based methods assume a process is comprised of complex interactions, where 

the resulting process behavior is greater than the sum of its constituent parts.  The factors are not 

assumed to necessarily possess the properties of the process, but instead create those properties 

through interaction.  Therefore, underlying dynamics are understood from a higher-level 

perspective where information storage can be reviewed to determine structural and 

organizational characteristics of processes.  The better the overarching structure is understood, 

the better the process behavior is understood.  For a nonlinear process example, by expanding the 

2-D Mandelbrot set in one more dimension, the logistic map comes into view from the side. 

More relevant to this research, assume that the goal is to iteratively assess process 

predictability, which will change naturally and as process improvements are made.  A 

reductionist might seek to “provide a solution” through data manipulations that separate active 

factors (signals) from inert factors (noise).  An emergentist might seek to “generalize from the 

solution space” in terms of how the dynamic structure of the process changes coincident with the 

changing uncertainty.  Generalizing from the solution space is not necessarily better or worse 

than providing a solution, with such optimization decisions being context-dependent.  However, 

this research has endeavored to show that both perspectives should be considered 

complimentary. 

Various emergence-based quantifiers provide insights into the structural dynamics of 

processes.  In this research, Jensen-Shannon complexity (CJS) has successfully revealed emergent 
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organizational content that can be exploited for process awareness and process improvement.  

CJS was chosen because of specific strengths, including a natural correspondence with 

permutation entropy and the Complexity-Entropy Causality Plane.  These correspondences will 

be elucidated momentarily.  However, other quantifiers similar to CJS have been discussed in the 

literature.  Quantifiers from computational mechanics (Crutchfield, 2017; Crutchfield & Young, 

1989) and other structural complexity research could have undoubtedly provided useful and 

relevant insights. 

Methods associated with the emergence approach often begin the analysis by quantifying 

flows of information entropy (HS) via the changing probability distributions for applicable 

“states”.  In this way, Hs measures the randomness of the process.  Unfortunately, many 

researchers equate measures of varying entropy with the “complexity” of the process.  This 

confuses things because structural complexity transcends entropy conceptually.  This dissertation 

does not uses the phrase “complexity” in the first sense, and the expression structural complexity 

is applied frequently to help alleviate this confusion. 

Moreover, the research herein applied a specific complexity calculation method called the 

MPR-method to measure CJS.  The MPR-method is distinctive in that it provides important 

additional insights about the probability distribution not already detected by the entropy.  This 

method was defined by Martin, Plastino, and Rosso (2006), in a paper entitled, Generalized 

Statistical Complexity Measures:  Geometrical and Analytical Properties.  The authors used the 

expression statistical complexity in the same sense that structural complexity is used in this 

research.  This foundational paper provides detailed computational derivations surpassing the 

summary provided in this Methodology section. 
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Jensen Disequilibrium 

To understand Jensen-Shannon complexity (CJS) first requires an understanding of the 

concept of Jensen disequilibrium (QJ).  A uniform probability distribution represents a 

theoretical system with no disequilibrium (QJmin).  All distinct factors that comprise the system 

are equally likely and represent perfectly randomness.  The Shannon entropy is maximized but 

the disequilibrium is minimized.  A theoretical physical analogy is an ideal gas comprised of a 

finite number of point particles moving randomly via perfectly elastic collisions. 

The opposite theoretical extreme is maximum disequilibrium (QJmax), which is 

represented by a probability distribution with one factor maximized and all of the other factors at 

zero.  Because only one distinct factor is likely, there is no randomness.  The Shannon entropy in 

this situation would be zero.  A theoretical physical analogy is the position of a particle within an 

ideal crystal.  Its position is perfectly fixed with zero randomness.  There is no chance that the 

particle is anywhere else in the crystal other than its known position. 

This application of “dis”-equilibrium may seem odd instead of just measuring 

“equilibrium”.  This is so because all processes have some level of disequilibrium, but no 

processes are in true equilibrium.  Equilibrium (minimum disequilibrium) is a theoretically 

abstraction and reality is therefore represented by the deviation from this abstraction.  Given this 

logic, QJmin serves as the baseline reference from which to measure disequilibrium. 

To measure the Jensen disequilibrium (QJ) associated with each process, it is necessary to 

compute the distance between the reference uniform distribution at QJmin and the current 
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probability distribution.  Quality professionals are familiar with statistical variance, especially as 

applied to process control.  Statistical variance is a true metric distance measure, satisfying the 

triangle inequality.  However, many emergence-based methods instead use Kullback- Leibler (K-

L) divergence to calculate the distance between probability distributions, which is asymmetric 

and does not satisfy the triangle inequality.  Yet, K-L divergence remains popular because it 

satisfies some properties that are canonical extensions to characterizations of Shannon 

information such as redundancy, additivity, maximality, and continuity (Hobson, 1971). 

Jensen disequilibrium uses neither statistical variance nor K-L divergence, but rather 

Jensen divergence, the square root of which is a true metric distance measure.  Jensen divergence 

can be applied to different forms of entropy calculation, including Shannon, Renyi, and Tsallis.  

For this reason, the selected form of entropy measure is often applied after the word Jensen, such 

as Jensen-Shannon divergence.  Only Shannon entropy was used as the reference entropy in this 

research. 

Computation of QJ is a two part process.  First, the Jensen-Shannon divergence J[P, Pe] 

is calculated between the probability distribution P and the reference uniform distribution Pe: 

 

   𝐽[𝑃, 𝑃𝑒] = 𝐻 [𝑃+𝑃𝑒 2 ] − 𝐻[𝑃]2 −  𝐻[𝑃𝑒]2          ( 20 ) 

 

Pe can represent an infinite number of uniform distributions, depending upon the number 

of distinct states (K) that comprise the probability distribution.  The form for Pe is: 
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   𝑃𝑒 =  1𝐾  𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 {1𝐾 , … 1𝐾}    ,   ( 21 ) 

where K = # of distinct states. 

 

Next, QJmin is calculated, which is inverse of the maximum possible value of J[P, Pe].  

This value is the normalization constant, obtained when one of the states of P is equal to one and 

the remaining states are equal to zero. 

 

   𝑄𝐽𝑚𝑖𝑛 =  −2  { (𝐾+1𝐾 ) log(𝐾 + 1) − 2 log(2𝐾) + 𝑙𝑜𝑔𝐾 }−1       ,   ( 22 ) 

where K = # of distinct states. 

 

Finally, �̃�J is calculated by multiplying the normalizing constant by the Jensen-Shannon 

divergence, as follows: 

 

    �̃�𝐽[𝑃, 𝑃𝑒] = 𝑄𝐽𝑚𝑖𝑛 ∙  𝐽[𝑃, 𝑃𝑒]    ( 23 ) 

 

Jensen-Shannon Complexity 

So far, �̃�𝑆 and �̃�𝐽 have been defined in different parts of this Methodology section.  The 

next step is to develop an intuitive understanding of how these variables relate to CJS.  In 1995, 

Lopez-Ruiz, Mancini, and Calbet published a seminal paper entitled, A Statistical Measure of 

Complexity, in which they related the three concepts of entropy, disequilibrium, and complexity. 
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The authors began by presenting these three concepts in physical terms.  They state, “The 

notion of ‘complexity’ in physics [Anderson, 1991; Parisi, 1993] starts by considering the perfect 

crystal and the isolated ideal gas as examples of simple models and therefore as systems with 

zero ‘complexity’” (p.321).  They then make the case that complexity cannot be defined just in 

terms of order and information.  A crystal represents maximum order, which can be perfectly 

described by minimum information.  An ideal gas, on the other hand, represents maximum 

disorder but, “The system can be found in any of its accessible states with the same probability.  

All of them contribute in equal measure to the ‘information’ stored in the ideal gas.  It has 

therefore a maximum ‘information’” (p.321).  Zero complexity would therefore be defined by 

extrema, as either maximum or minimum information and as either minimum or maximum 

disorder, which they found unsatisfactory. 

The authors then discussed the idea of defining complexity in direct correspondence with 

disequilibrium.  They established that, “Disequilibrium would be different from zero if there are 

privileged, or more probable, states among those accessible” (p.321).  But they said a direct 

correspondence would not work because an ideal gas is at minimum disequilibrium and a crystal 

is concurrently at maximum disequilibrium, yet both represent zero complexity.  Having thus 

eliminated this option, they then propose that complexity should be defined as the product of 

disequilibrium and information.  They provided a sketch, reproduced in Figure 45, to represent 

an intuitive notion of the relative magnitudes of these three quantities.  Lopez-Ruiz et al. (1995) 

then developed equations for their intuitive arguments and provided analytic support for this 

definition of complexity by plotting two complex processes out of equilibrium- the Lorenz map 

and the logistic map. 
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Figure 45.  Information disequilibrium complexity diagram.  From Statistical Complexity and Fisher-

Shannon Information.  Applications by Lopez-Ruiz et al.  Copyright © 2011 by Springer Nature.  
Reprinted with the permission of Springer Nature.  All rights reserved. 

 

Based on the seminal insights provided by Lopez-Ruiz et al. (1995), Martin, Plastino, and 

Rosso (2006) developed the MPR-method to compute Jensen-Shannon complexity CJS, as 

follows: 

 

   𝐶𝐽𝑆 [𝑃] = �̃�𝐽 [𝑃, 𝑃𝑒]  ∙  �̃�𝑆 [𝑃]        ( 24 ) 

 

 As an information-theoretic complexity quantifier, CJS reveals the hidden structural 

dynamics of processes via stored information.  These are insights that would otherwise be lost if 

only viewing QJ and Hs alone.  This equation also reveals why CJS is not a trivial function of the 
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entropy.  CJS is clearly based concurrently upon normalized entropy and normalized 

disequilibrium, and the interplay of these interactions results in a higher order of emergence. 

CJS quantifies emerging dynamics between a range of possible complexity values.  This 

range of complexity is dependent upon the number of accessible states K that make up the 

probability distribution.  In Figure 46, a complexity diagram depicts the minimum complexity 

(Cmin) and maximum complexity (Cmax) in terms of normalized Hs and the number of accessible 

states (using N in place of K). 

 

 

Figure 46.  Complexity-entropy diagram.  Cmin for N=2, Cmax for N= (3,…,10), where N is the number of 
accessible states.  From Statistical Complexity and Fisher-Shannon Information.  Applications by Lopez-
Ruiz et al.  Copyright © 2011 by Springer Nature.  Reprinted with the permission of Springer Nature.  All 
rights reserved. 

 

The methodology for calculating Cmin and Cmax will be summarized succinctly here.  

More detailed mathematical foundations can be found in Martin et al. (2006).  Cmin is obtained 

when one state has a probability Pa and all other states have equal probabilities with Pb = (1 - 
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Pa)(N - 1), where N is the number of tuples.  Cmax is calculated from a set of K - 1 probability 

distributions.  In this probability set, one state has a probability Pa, where 0 ≤ Pa ≤ 1 / (K - l + 1); 

l takes values l = 1, … ,K - 1.  Other K − l states have equal probabilities Pb = (1 - Pa )(K - l). 

Given the number of states, an entropy-complexity diagram can be drawn with Cmin and 

Cmax appropriately plotted.  Then, the iteratively calculated (�̃�𝑆, CJS) points may be plotted 

within the complexity bounds.  As the plot is developed, a pattern will emerge with temporal 

dependence.  This is because the 2nd Law of Thermodynamics specifies that entropy grows 

monotonically.  As such, the progression of the iteratively calculated normalized Shannon 

entropy can be regarded as an arrow of time.  As a process evolves in time toward equilibrium 

(as �̃�𝑆 tends to stabilize), the system tends to approach its maximum complexity path.  Figure 47 

depicts this evolutionary progression of complexity. 

 

 

Figure 47.  Complexity-entropy diagram.  Time evolution of the system for three different initial 
conditions starting at t = 0.  The system tends to approach the maximum complexity path as it evolves in 
time toward equilibrium.  Cmin for N=2, Cmax for N= (3,…,10).  From Statistical Complexity and Fisher-

Shannon Information.  Applications by Lopez-Ruiz et al.  Copyright © 2011 by Springer Nature.  
Reprinted with the permission of Springer Nature.  All rights reserved. 
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For the MPR-method, the probability distributions [P] and [Pe] are calculated in terms of 

permutation entropy.  This is the chosen technique because PE has the advantage of being 

perhaps the only entropy measure that incorporates the temporal structure of the underlying 

physical process.  The probability distributions are constructed based upon the number of distinct 

states.  For traditional PE, this is the number of accessible tuple types defined by the factorial of 

the embedding dimension (D!). 

 

Complexity Entropy Causality Plane 

The same three authors that established the MPR-method in 2006 were also contributing 

authors for another foundational paper a year later.  In 2007, Rosso, Larrondo, Martin, Plastino, 

and Fuentes published Distinguishing Noise from Chaos.  Their motivation for this paper was to 

develop the graphic representational space, since called the Complexity-Entropy Causality Plane 

(CECP), to clearly distinguish between chaotic and stochastic processes.  They perceived that 

chaotic and stochastic processes share several properties that make them almost 

indistinguishable, and that most of the existing methods provided little relief. 

More specifically, they referred to Wold (1938), who proved that any (stationary) time 

series can be decomposed into two different parts:  The first (deterministic) part can be exactly 

described by a linear combination of its own past; the second part is a moving average 

component of a finite order.  The authors stated that real data, “always possess a stochastic 

component due to omnipresent dynamical noise” and that, “it makes sense to ask, with respect to 
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the deterministic part (predictable from the past), whether (i) it is dominant vis-a-vis the 

unpredictable stochastic part or (ii) it is of a regular or chaotic nature” (p.154102-1). 

One of the distinct advantages of the MPR-method, and the associated application of 

permutation entropy, involves chaotic processes.  PE yields a positive Kolmogorov-Sinai (KS) 

entropy value for chaotic processes, but zero for regular dynamics, and infinity for stochastic 

processes.  KS entropy reveals how the information in a process evolves in time.  In 

consequence, dynamical processes can be reliably categorized as deterministic-chaotic if they 

exhibit at least one positive Lyapunov exponent and a finite positive KS entropy (Rosso et al, 

2007). 

To further develop their CECP plots, the authors analyzed five kinds of chaotic maps, and 

two kinds of stochastic processes.  They noted that the CECP accommodates noise and chaos at 

different planar locations.  Stochastic processes tended toward Cmin and chaotic processes toward 

Cmax.  Also, because real data always contain a stochastic component due to omnipresent 

dynamical noise, the CECP helped classify different degrees of what they called 

“stochasticness”.  They also noted that the CECP distinguishes different degrees of correlations 

(colored noise) and distinguishes Gaussian from non-Gaussian processes.  Consequently, “this 

representation plane is an effective tool for revealing the sometimes subtle difference between 

noise and chaos” (p.154102-4).  The results of those plots are displayed in Figure 48 and Figure 

49. 
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Figure 48.  Complexity-Entropy Causality Plane.  From Distinguishing Noise from Chaos by Rosso et al.  
Copyright © 2007 by American Physical Society.  Reprinted with the permission of American Physical 
Society.  All rights reserved. 

 

 

Figure 49.  CECP close up.  From Distinguishing Noise from Chaos by Rosso et al.  Copyright © 2007 by 
American Physical Society.  Reprinted with the permission of American Physical Society.  All rights 
reserved. 

 

Since then, permutation entropy and the MPR-method have been applied to a wide 

variety of process types with results plotted on CECP diagrams.  Definite trends have emerged, 



211 

as certain process types tend to plot in certain regions of the CECP diagram.  Generally, CJS and �̃�𝑆 often stabilize approximately over time, helping to define process behaviors and 

characteristics. 

The capability of the CECP to distinguish stochastic from chaotic processes can be 

beneficial to process control applications.  It is possible for processes to be Shewhart-stable, yet 

associated with systems that have been known to reveal chaotic behaviors, such as machinery 

(Litak et al., 2009; Priesmeyer (1992); Redelico et al., 2017), production systems (Deshmukh, 

2003; Sajid et al., 2015), and chemical reactions (Elnashaie, 2006; Eiswirth, 1993).  In these 

instances, the CECP could be applied to provide insight into the emerging nature of process 

behaviors.  Over time, the CECP regions associated with stochastic and chaotic processes have 

been refined, as Figure 50 reveals. 

 

 

Figure 50.  Complexity-entropy diagram.  Stochastic and chaotic regions.  fBm is fractional Brownian 
motion.  The permutation entropy embedding dimension used to plot the logistic map is D=5.  From 
Permutation Entropy Analysis of Temperature Fluctuations from a Basic Electron Heat Transport 

Experiment by Maggs & Morales.  Copyright © 2013 by IOP Publishing Ltd.  Reprinted with permission 
of IOP Publishing Ltd.  All rights reserved. 
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The MPR-method and the associated CECP provide illuminating projections of the 

emerging dynamics associated with different types of time series processes.  Because the time-

evolution of processes is depicted, the CECP can be harnessed to track changing Jensen-Shannon 

complexity in near real-time.  As processes are improved or changed, the resulting effects can be 

monitored with the CECP.  Figure 51 reveals the time evolution of a van der Pol’s oscillator at 

four different levels of noise. 

 

 

Figure 51.  CECP.  Time evolution of van der Pol’s Oscillator at different noise levels.  Embedding 
dimension D=6.  From Distinguishing Chaotic and Stochastic Dynamics from Time Series by Using a 

Multiscale Symbolic Approach by Zunino et al.  Copyright © 2012 by American Physical Society.  
Reprinted with permission of American Physical Society.  All rights reserved. 

 

 The MPR-method can also be applied to understand the complexity dynamics associated 

with different varieties of the same process.  In this research, this idea was applied to 

pseudorandom number-generated processes at different measurement resolutions, to better 
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characterize the measurement resolution effect.  For SPC applications, processes could be 

evaluated in terms of different materials, or methods, personnel, machines, measurements, 

environmental conditions, etc.  An illuminating example of an analysis comparing process 

complexity characteristics is provided in the next two figures, as different varieties of music 

were evaluated in terms of amplitude and intensity.  The first figure, Figure 52, reveals 

probability density functions and the second, Figure 53, provides CECP results. 

 

 

Figure 52.  Permutation entropy probability density functions for a variety of music types.  Top- 
amplitude series.  Bottom- intensity series.  D=5.  From Complexity-Entropy Causality Plane:  A Useful 

Approach for Distinguishing Songs by Ribeiro et al.  Copyright © 2011 by Elsevier B.V.  Reprinted with 
the permission of Elsevier.  All rights reserved. 
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Figure 53.  CECPs for music.  (a) amplitude series (b) intensity series (c) mean values amplitude (d) mean 
values intensity.  D=5.  From Complexity-Entropy Causality Plane:  A Useful Approach for 

Distinguishing Songs by Ribeiro et al.  Copyright © 2011 by Elsevier B.V.  Reprinted with the permission 
of Elsevier.  All rights reserved. 

 

 Many other studies based on Jensen-Shannon complexity and the MPR-method were 

discovered that similarly characterized processes, some of which could even be considered 

Shewhart-stable, as discussed in the Literature Review section.  Of the process characterizations 

reviewed, none were discovered that applied the MPR-method for the purpose of continuously 

improving an industrial engineering type of process.  Various information-theoretic methods are 

presented in Appendix E, which could be applied similarly to extend structural complexity 

research. 

For readers desiring additional insight, some extensions to the MPR-method are 

described in the Future Research part of the Conclusion section.  Additionally, practical 

application summaries can be found in Riedl et al. (2013).  Other studies of potential interest to 
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industrial engineering applications include research correlating noise interference to different 

embedding dimensions D, in Borges, et al. (2019).  Also, studies applying the Hurst exponent H 

to measure the long term memory of a time series are found in Bariviera et al. (2019), and studies 

of subtle measurement shifts at high sampling rates in Zunino et al. (2012). 

 

Log Change Evaluations 

During research, the various process types were evaluated extensively using Jensen-

Shannon complexity measures.  In particular, the results for the improved processes (vertical 

funnel experiments) were compared with unimproved processes to seek exploitable pattern 

differences.  However, as will be seen in the Findings section, measurement resolution definitely 

affected results associated with the PE-LE method.  To explore compensation for some of these 

effects, CJS and �̃�𝑆 for each measured process were compared to the CJS and 𝐻𝑆 results for a 

pseudorandom series generated with the same number of data and at the same measurement 

resolution. 

Various methods were initially evaluated to quantify the relative change, but the log 

change method provided three distinct advantages.  First, the results for a series of changes can 

be summed to yield a precise (not approximate like percentages) total change.  Second, 

normalization with the factor 100 aligns with the definition for percentage change for very small 

changes, which is often the situation for Shewhart-stable series compared with random series.  

Third, the magnitude of change is consistent regardless of which comparator is chosen as the 

reference.  The equations used for this research were: 
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   �̃�𝐽𝑆 =  −100 ∗ 𝑙𝑛 𝐶𝐽𝑆 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑠𝑒𝑟𝑖𝑒𝑠𝐶𝐽𝑆 𝑓𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑟𝑖𝑒𝑠       ( 25 ) 

 

   �̃̃�𝑆 =  100 ∗ 𝑙𝑛 �̃�𝑆 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑠𝑒𝑟𝑖𝑒𝑠�̃�𝑆 𝑓𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑟𝑖𝑒𝑠     ( 26 ) 

 

In both of these equations, the word “equivalent” specifically means for the same number 

of data and at the same measurement resolution. 

 

�̃̃�𝑆 Change Chart 

 This chart was not used directly to answer the research question.  However, �̃̃�𝑆 is used for 

one axis of the Entropy-Complexity Change Diagram (ECCD) so this chart reveals how this 

variable is operating independently.  In effect, �̃̃�𝑆 has been normalized in two independent and 

complementary ways.  The first normalization method was associated with permutation entropy 

(PE-LE) as the Shannon entropies were divided by Hmax = log K, where K is the available 

number of distinct tuple types.  This was considered a “static” normalization in that the 

normalizing factor does not change throughout the entire analysis.  Specifically, for all of this 

research, this normalization factor was log(42) = 5.3923 bits.  The second normalization method 

made a relative comparison of these �̃�𝑆 values in time series to the equivalent randomly 

generated time series by applying the log change calculation.  This can be considered a 

“dynamic” normalization in that the normalizing factor continues to change equivalently 
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throughout the entire time series, based on how many measurements have accumulated thus far 

in the series. 

 

�̃�𝐽𝑆 Change Chart 

Jensen-Shannon complexity leverages the interplay between normalized Jensen 

disequilibrium and normalized Shannon entropy to reveal emerging structural dynamics for 

processes.  For the MPR-method, which is based on permutation entropy, the Shannon 

information was normalized based on the maximum number of distinct tuples comprising the 

process.  This was one component of the CJS calculation, in tandem with the normalized Jensen 

disequilibrium.  However, the overall result for CJS can itself be “dynamically” normalized by 

quantifying the relative change between process results and another equivalent series 

representing maximum randomness.  This is accomplished with the log change equation.  This 

effect allows processes to be compared equivalently, although the maximum randomness 

possible for each process differs due to unique characteristics such as time series run lengths.  In 

the case of the PE-LE method, this normalization procedure also allowed equitable comparisons 

among processes with differing measurement resolutions. 

A process plotted on a �̃�𝐽𝑆 run chart reveals how structural complexity changes in time 

relative to the maximum randomness condition for an equivalent time series.  Numerous 

processes can also be plotted on the same chart to allow equitable comparisons of changing 

normalized structural complexity.  A sample of this chart is provided in Figure 32. 
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Entropy-Complexity Change Diagram 

Since the calculations of both �̃̃�𝑆 and �̃�𝐽𝑆 just described were linked to temporal causal 

dynamics, different processes could be compared in terms of simultaneous changes in both 

randomness and structural complexity on a Entropy-Complexity Change Diagram.  A sample of 

this diagram is provided in Figure 33. 
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CHAPTER FOUR:  FINDINGS 

Six interrelated sections of results are presented.  First, the four vertical translation funnel 

experiments are characterized, and their intended applicability to this research was confirmed.  

Specifically, the first three experiments were identified as Shewhart-stable, improved and the last 

as Shewhart-unstable, improved.  Next, a brief process randomness study provided evidence for 

differing levels of randomness associated with different Shewhart-stable processes.  Results for 

the first 10,000 digits of Pi and 10,000 pseudorandomly generated digits also supported the 

position that absolute randomness is an idealized impossibility. 

The third section focused on validation of the PE-LE method.  Three axioms for 

permutation entropy methods were developed and tested using different process types.  Two 

specific comparisons were made with a study that evaluated a commonly-applied method called 

time-ordered imputation, revealing advantages in this specific case.  The measurement resolution 

effect was then characterized for the PE-LE method, with results supporting the assumptions that 

measurement resolution could be misused, but also applied to tailor and fine-tune analyses based 

on research goals.  Finally, numerous shortcomings of the PE-LE method were elucidated. 

The next section provided PE-LE results for all of the 22 processes evaluated in this 

research.  These results consisted of pdfs for the PE-LE tuples at D=4 and counts/ densities based 

on local effect.  This section was intended as a reference for later sections that made comparisons 

among these processes.  The fifth section focused on answering the research question by 

evaluating Jensen-Shannon complexity in various ways.  Fundamental conclusions were 

supported by applying the Martin-Plastino-Rosso (MPR)-method with PE-LE results, to display 

processes on the Complexity-Entropy Causality Plane (CECP).  Decreased structural complexity 
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and increased randomness corresponded with the gradual improvement of Shewhart-stable 

processes, answering the research question.  A number of other process types were also 

displayed simultaneously on the CECP to provide more insight into the utility of this technique. 

Time series results were then compared to maximally random equivalent time series to 

explore relative change dynamics for entropy and structural complexity.  This normalization 

procedure provided different insights into how levels of randomness and complexity change over 

time and facilitated comparisons between different processes.  Results emphasized the 

importance of determining the appropriate measurement resolution based on research goals when 

PE-LE is the underlying mechanism.  Both change charts were then combined to evaluate the 

simultaneous display of changing results in two dimensions on the Entropy-Complexity Change 

Diagram (ECCD).  After plotting numerous process types, results suggested that improving 

processes migrate toward the origin, which represents maximum theoretical randomness and 

increasingly random structural complexity. 

 

Vertical Translation Funnel Experiments 

The four vertical translation funnel experiments provided the primary data for this 

research because they were empirically-derived time series instead of idealized models, and 

because they represented Shewhart-stable processes that were progressively improved.  

Moreover, process improvement over the course of each experiment could be deemed reliable as 

the corresponding decreasing trend for location and variation was verified for each time series, as 

provided in Figure 54-Figure 59.  Each funnel experiment is presented as a complete time series 
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in Figure 54.  Drop heights changed after every 50th measurement.  Measurements were the 

distance at which the marble came to rest from the center of the target in integer inches.  All 

trendlines represent 2nd order polynomial fits and all y-axes are represented at the same scale. 

 

 

Figure 54.  Complete time series for each of the four funnel experiments.  Presented in order with V1 at 
the top and V4 at the bottom.  Trendlines are 2nd order polynomial fit. 
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 In Figure 55, by removing the trendlines and the lines between data points, the discrete 

integer nature of the time series is made more visible. 

 

Figure 55.  Complete time series for each of the four funnel experiments.  Presented in order with V1 at 
the top and V4 at the bottom. 

 

At the conclusion of each experiment, the data were analyzed using XmR charts to assess 

process variability.  The mean (X-bar) was calculated for drops at each height, Figure 56, as was 
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the mean moving range (mR-bar), Figure 57.  Data values are presented in Appendix A in Table 

34. 

 

 

Figure 56.  X-bar for each drop height for four vertical funnel experiments. 

 

 

Figure 57.  mR-bar for each drop height for four vertical funnel experiments. 
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Between each iteration of funnel experiments 1-4, changes to experimental apparatus 

were made that were deemed likely to reduce variability before the experiment was repeated.  In 

an ideal situation, there would be no special causes, and the variation would get progressively 

smaller in magnitude each time the funnel was lowered.  In the actual conduct of these 

experiments, there were outliers and the variation sometimes increased temporarily at a lower 

drop height.  Table 21 summarizes the results of the XmR charts based on the number of special 

causes that were counted at each drop height for heights from 37 to 7 inches above the target.  

No additional control chart zone test rules were applied in the determination of special causes. 

 

Table 21.  XmR chart outlier counts for the four funnel experiments.  Green highlighted cells represent 
drop heights in which no special causes were indicated for both the Individual values (X) and the moving 
Range (mR) chart. 
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In terms of XmR chart performance, experiment 1 provided the best pass rate at 58% and the 

remaining three experiments had pass rates below 40%.  Next, in Figure 58, the mean values for 

each drop height are presented. 

 

 

Figure 58.  Mean value for each drop height.  Statistic presented for funnel experiments 1 through 4 from 
top to bottom, respectively.  Trendlines are 2nd order polynomial fit. 

 

 All four experiments revealed an overall decreasing trend for the mean distance from 

target as the drop heights decreased.  The changing standard deviation was also tracked with �̂� 

values presented in Figure 59.  The equation used for sigma-hat was: 
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  �̂� =  �̅�𝑑2  ,   ( 27 ) 

 where �̅� is the  average range and d2 is a bias correction factor for measures of 
dispersion. 

 

 

Figure 59.  Sigma hat for each drop height presented for funnel experiments 1 through 4 from top to 
bottom, respectively.  Trendlines are 2nd order polynomial fit. 

 

In Figure 59, the trendlines for experiments 2-4 show a consistent decreasing trend.  

However, the trendline for experiment 1 displayed a slight increase for approximately the first 

third of the experiment before a decreasing trend began in the vicinity of drop height 38 inches.  

The data were also analyzed using the stability ratio (SR) test method, with results presented in 

Table 22. 
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Table 22.  Stability ratio test results for all four funnel experiments.  Red highlighted cells failed the test. 

 

 

 The first three experiments each exhibited pass rates at or above 90%, and were 

considered Shewhart-stable for the purposes of this research.  Experiment 4 was not considered 

stable, although its decreasing variation suggests that the process was improving over time.  

Nonetheless, experiment 4 still provided utility for various comparisons with the other three 

experiments during exploratory research.  Also, some of the data collected for experiment 1 were 

above and below the drop heights evaluated for the SR test.  Nonetheless, all of experiment 1’s 

data was used for permutation entropy analyses, again to support the exploratory nature of this 

research. 
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 Shannon information was continuously calculated for all drop heights in all funnel 

experiments.  With the decision to embrace the permutation entropy method, these calculations 

were not actually used to develop an answer to the research question.  However, since these 

results were available, Figure 60 is included to reveal the (non-normalized) Shannon entropy 

measurements for the funnel experiments.  Corresponding data are provided in Appendix A. 

 

 

Figure 60.  Shannon information at the final (50th) drop for each height.  Funnel experiments 1-4. 

 

 Although each of these results was based on a relatively low quantity of data, they 

revealed a generally decreasing trend for randomness/ uncertainty as the funnel was lowered 

toward the target.  In conclusion, the funnel experiments were deemed to represent improving 

processes in terms of decreasing location, dispersion, and randomness over time, with all but V4 

representing a Shewhart-stable process. 



229 

Process Randomness Study 

Normalized Shannon Entropy �̃�𝑆 was calculated for various processes using the PE-LE 

method, with results presented in Figure 61.  Due to normalization, this plot reveals the relative 

degree of randomness associated with each process.  Three of the funnel experiments (V1, V2, 

and V3) were Shewhart-stable, but each demonstrated varying degrees of randomness relative to 

idealized absolute randomness, �̃�𝑆 = 1.  Consequently, none of these three stable time series 

could be considered completely due to “chance causes”.  Moreover, the highly stochastic process 

based on the first 10,000 digits of π also did not achieve perfect randomness (the blue diamond 

labeled Pi10), nor did 10,000 pseudorandom digits on the interval [0,9] generated by Excel’s 

Mersenne Twister (the orange dash labeled R10).  These results suggest that there are always 

emergent nonrandom dynamics at play in processes that could potentially be exploited if only 

these dynamics were visible and understood. 

 

 

Figure 61.  Normalized Shannon information plot based on PE-LE method. 
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Figure 61 is based on the mean value of normalized Shannon entropy for the final ~10% 

of �̃�𝑆values in each of the time series, as provided in Table 23. 

 

Table 23.  Mean and one standard error for the final ~10% of Hs normalized values in process time series. 

 

 

Additionally, �̃�𝑆 calculations from the V2 and V3 time series are presented in Figure 62.  

Temporally, they tend to build from lesser to greater values (left to right) based on two 

contributions:  The accumulation of information, and any improvement to the process as 

increasing process randomness corresponds with ongoing variation reduction.  This plot suggests 

that Shewhart-stable processes are perhaps better represented as, “Inconstant systems of mostly 

chance causes”. 
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Figure 62.  Progression of normalized Hs from left to right for two Shewhart-stable processes (V2 and 
V3) as improvements were made to the processes.  The normalized Hs values are presented for each time 
series starting with the 45th tuple. 

 

PE-Local Effect Validation 

 Numerous modifications have been devised by various authors to address shortcomings 

associated with the traditional permutation entropy (PE) method.  Many of these were assessed 

in the Literature Review section.  In the Methodology section, the traditional PE method was 

introduced in detail, as was the PE-LE methodology, devised to mitigate identical values within 

tuples by focusing on local effects.  This section will now reveal validation results provided by 

the PE-LE method.  The purpose of this validation was to assess PE-LE’s strengths and 

weaknesses to ultimately determine appropriateness for this research. 

Validation of a methodology generally requires formal requirements, instead of merely 

stating desires.  As such, three axioms were developed to provide validation standards for the 

PE-LE method.  An axiom is a proposition considered self-evidently true.  Mathematicians might 

instead say an axiom is a proposition upon which an abstractly defined structure is based.  It is 
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assumed that these axioms could be applied to validate any other technique that has modified the 

traditional permutation entropy methodology to mitigate identical values. 

 

AXIOM ONE:  Although non-traditional ordinal patterns may vary, every traditional 

permutation entropy ordinal pattern will appear with the same probability for sufficiently large 

time series representing unconstrained, uncorrelated stochastic processes. 

AXIOM TWO:  The sum of local effects for all tuple types will balance near zero for sufficiently 

large time series representing unconstrained, uncorrelated stochastic processes. 

AXIOM THREE:  Any permutation entropy method meeting the requirements of the first two 

axioms will faithfully represent the probability space for any process type, given sufficiently 

large time series. 

 

Two tests were conducted to objectively validate the PE-LE method with respect to Axioms 

One and Two: 

1. The first 10,000 digits of Pi.  Measurement resolution was integers resulting in 10 distinct 

values on the interval [0,9]. 

2. 10,000 random digits provided by Microsoft Excel’s pseudorandom generator. 

Measurement resolution was integers resulting in 10 distinct values on the interval [0,9]. 

 

Axiom Three was subjectively assessed for extension to “any” process type by evaluating a 

representative sample from three other process categories. 
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ASSUMPTION:  The strategy for Axiom Three was to assume concurrence until proven 

otherwise, as assessment of additional process types grows over time. 

 

Three different categories of processes were selected to initially assess Axiom Three.  All 

were tested with 10,000 measurements in the time series. 

1. Periodic.  A sine wave was discretized every 7.5 degrees and converted to radians.  

Measurement resolution was to the thousandths place resulting in 25 distinct values on 

the interval [-1.000, 1.000]. 

2. Shewhart-Unstable.  Distillate flowrate data was tested.  Measurement resolution was to 

the thousandths place resulting in 3,021 distinct values within the interval [0.000, 

345.860]. 

3. Chaotic.  The logistic map was tested with rate of growth r=3.888 and initial population 

xn=0.02.  Measurement resolution was to the thousandths place resulting in 866 distinct 

values on the interval [0.020, 0.972].  The equation for the logistic map is: 

 

   𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛)         ,     ( 28 ) 

 where xn is a number between zero and one that represents the ratio of the current 
population to the maximum possible population and r is the growth rate. 

 

 The results for the first two stochastic processes are presented in Figure 63 and Figure 64, 

and both facilitated the evaluation of Axioms One and Two. 
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Figure 63.  PDF for first 10,000 values of Pi using PE-LE.  Measurement resolution was integers resulting 
in 10 distinct values on the interval [0,9]. 

 

 

Figure 64.  PDF for 10,000 random values generated with Microsoft Excel’s pseudorandom generator 
using PE-LE.  Measurement resolution was integers resulting in 10 distinct values on the interval [0,9]. 

 

 Axiom One requires that every traditional permutation entropy ordinal pattern will appear 

with the same probability for sufficiently large time series representing unconstrained, 

uncorrelated stochastic processes.  In both studies, the Parlitz tuples appeared to have an 

approximately uniform distribution, meeting this requirement. 
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Coincidentally, in both studies, the Parlitz tuples had slightly lower densities than the 

Forest tuples.  Comparing the density means, the Parlitz sets both came out to �̅�= 0.021 and the 

Forest sets both came out to �̅� = 0.024.  The Red & Wizard sets also represented about 6% of the 

tuple count data in both studies.  In combination, these results suggest that there were more 

identical value tuples than traditional tuples for both stochastic processes, which a complete case 

analysis would have discarded. 

Axiom Two required the sum of local effects for all tuple types to balance near zero for 

sufficiently large time series representing unconstrained, uncorrelated stochastic processes. 

 

ASSUMPTION:  “Near zero” cannot be precisely defined until numerous evaluations of 

different stochastic processes are conducted.  Therefore, for the purposes of this exploratory 

research, a notional limit of ±1% of the time series length will be assumed based on the LE 

centerpoint calculation method. 

 

For 10,000 data, this notional limit equates to a count of ±100 tuples.  An approximate 

assessment of local effect balance is made by visually examining both purple Local Effect pdfs.  

To get a more precise answer, the LE centerpoint was calculated for both studies by multiplying 

the counts and local effect values. 

Pi:  -3(423)-2(1424)-2447+2466+2(1440)+3(420) = 42 

Pseudorandom Values:  -3(421)-2(1397)-2507+2476+2(1425)+3(409) = -11 
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 Based on these results, the requirement of Axiom Two was met for both processes.  The 

next three studies will address Axiom Three. 

 

 

Figure 65.  Periodic process type.  A sine wave was discretized every 7.5 degrees and converted to 
radians.  Measurement resolution was to the thousandths place resulting in 25 distinct values on the 
interval [-1.000, 1.000]. 

 

Figure 66.  Shewhart-unstable process type:  Distillate flowrate data 10,000 values.  Measurement 
resolution was to the thousandths place resulting in 3021 distinct values on the interval [0.000, 345.860].  
From www.openmv.net by Kevin Dunn (2020).  Dataset provided open source with no restrictions. 
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Figure 67.  Chaotic process type.  The logistic map was tested with r=3.888 from xn=0.02.  Measurement 
resolution was to the thousandths place resulting in 866 distinct values on the interval [0.020, 0.972]. 

 

Axiom Three requires that any permutation entropy method meeting the requirements of 

the first two axioms will faithfully represent the probability space for any process type, given 

sufficiently large time series.  The pdf for the sine wave was appropriate and added beneficial 

peak and trough information not typically seen in methods that discard or corrupt identical 

values.  The pdf for the distillate data faithfully represented a Shewhart-unstable process.  The 

Wizard set alone would have represented ~32% of the data if included, probably because the 

distillation process was at zero value for long periods.  Information apparently associated with 

distillation startup (0123) and shut down (3210) was also evident.  The pdf for the logistic map 

was appropriate for a chaotic process and this was the first (purple) local effect pdf seen that was 

not approximately balanced.  Since this was not a stochastic process, this result was not deemed 

problematic. 

In summary, the PE-LE method met the requirements of Axioms One and Two 

objectively.  The PE-LE method also subjectively met the requirements of Axiom Three for five 
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processes representing four process types.  Consequently, the PE-LE method was selected to 

represent the probability space (Ω, P) for all of this research effort. 

 

PE-LE Performance Comparison 

 One paper discussed in the Literature Review (Zunino et al., 2017) was especially 

relevant to the assessment of the PE-LE methodology for this research effort.  Some of the 

results from this study were compared to the results herein.  The authors summarized their 

purpose:  “In this work, we carefully study the effect that the presence of equalities has on 

permutation entropy estimated values when these ties are symbolized, as it is commonly done, 

according to their order of appearance” (p.1883).  This is also called the time-imputation method.  

Two of their figures were used to compare results between the time-imputation method and the 

PE-LE method. 

 Figure 68 displays pdf results for the first 10,000 values of Pi.  The top figure is based on 

the time-imputation method from Zunino et al. and the bottom is based on the PE-LE method.  

The relevant comparison is between the pdfs for the 24 traditional tuples, which are blue in both 

figures.  For both studies, measurement resolution was integers resulting in 10 distinct values on 

the interval [0,9]. 
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Figure 68.  Top) PDF for first 10,000 digits of π evaluated traditionally with Parlitz-ordered D! = 24 
tuples and time-ordered imputation to mitigate identical values.  Measurement resolution was integers 
resulting in 10 distinct values on the interval [0,9].  From Permutation Entropy Based Time Series 

Analysis:  Equalities in the Input Signal Can Lead to False Conclusions by Zunino et al.  Copyright © 
2017 by Elsevier B.V.  Reprinted with the permission of Elsevier.  All rights reserved.  Bottom) PDF for 
first 10,000 digits of π evaluated with PE-LE to mitigate identical values.  D=4, τ=1.  The first 24 tuples 
(in blue) are Parlitz-ordered.  Measurement resolution was integers resulting in 10 distinct values on the 
interval [0,9]. 

 

 Figure 69 provides pdf results for 10,000 pseudorandomly-generated values.  The top 

figure is based on the time-imputation method from Zunino et al. and the bottom is based on the 

PE-LE method.  The relevant comparison is again between the pdfs for the 24 traditional tuples, 

which are blue in both figures.  For all four pdfs, measurement resolution was integers resulting 

in 10 distinct values on the interval [0,9]. 
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Figure 69.  Top) PDF for 10,000 pseudorandom digits evaluated traditionally with Parlitz-ordered D! = 24 
tuples and time-ordered imputation to mitigate identical values.  Measurement resolution was integers 
resulting in 10 distinct values on the interval [0,9].  From Permutation Entropy Based Time Series 

Analysis:  Equalities in the Input Signal Can Lead to False Conclusions by Zunino et al.  Copyright © 
2017 by Elsevier B.V.  Reprinted with the permission of Elsevier.  All rights reserved.  Bottom)  PDF for 
10,000 pseudorandom digits evaluated with PE-LE to mitigate identical values.  D=4, τ=1.  The first 24 
tuples (in blue) are Parlitz-ordered.  Measurement resolution was integers resulting in 10 distinct values 
on the interval [0,9]. 

 

 For both of these highly stochastic processes, the pdf should approximate a uniform 

distribution.  By visual inspection, and ONLY for these two specific comparisons with D = 4, τ = 

1, PE-LE appears to more accurately represent the probability space than time-ordered 

imputation.  Zunino et al. (2017) presented these pdfs for the purpose of showing that the time-

imputation method can lead to false conclusions. 

PE-LE’s inclusion of the pattern-following opposite twin local effect tuple pairs (“Forest” 

tuples) appears to add useful causal information in many cases, but also brings disadvantages.  

Perhaps the most significant issue noted is associated with measurement resolution effects, 

which will be discussed in the next section. 
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Measurement Resolution Effects 

Some initial research attention was focused on strategies for preventing identical values 

in the first place.  A brief example will clarify the thought process.  To make this example seem 

less artificial, assume these data were actually collected at increased resolution, but rounded to a 

lower resolution for the first permutation entropy pdf analysis.  Then, recognizing the identical 

value problem, the analysis (not the data collection) was repeated, but using the fully available 

resolution. 

For the first round, at D=3, assume pre-coded data were {6.0, 6.1, 6.0} with equivalent 

coded symbol (010) for identical values.  By removing the artificial truncation to realize the 

available measurement resolution, these pre-coded data were now actually {6.01,6.11,6.04} with 

equivalent coded symbol (021).  This is now a viable symbol under the traditional PE 

methodology so the problem would be resolved for this tuple, and ostensibly for many others in 

the time series. 

This example explained the concept, but a realistic scenario would be the repetitive 

evaluation of an ongoing process:  When numerous identical values are evident, the 

measurement resolution could be progressively increased until identical values mostly fall 

outside, not inside tuples.  Additionally, as measurement resolution increases, the number of 

distinct numbers available to permute increases, and therefore the likelihood of equal values 

decreases.  The assumption was that selection of a fine enough measurement resolution before 

starting an analysis could largely obviate the need to mitigate equal values in tuples. 
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This assumption is related to a comment in the seminal PE paper by Bandt & Pompe 

(2002).  They specified that their definitions were justified if values, “have a continuous 

distribution so that equal values are very rare.  Otherwise, we can numerically break equalities 

by adding small random perturbations” (p.174102-1).  The limit associated with continuously 

increasing a discretized measurement resolution would be the continuous distribution that Bandt 

& Pompe recommend.  The value of increased measurement resolution could also naturally 

depend upon other process characteristics, such as the statistical variance of the time series, any 

periodic or chaotic tendencies, etc. 

To test the idea using the PE-LE methodology, 10,000 pseudorandom digits were 

generated on the interval [0, 999] instead of [0,9].  An increase in the quantity of distinct values 

is a natural consequence of increasing the measurement resolution, which yields fewer identical 

values in tuples.  Results are provided in Figure 70, which can be compared with Figure 64. 

 

 

Figure 70.  PDF for 10,000 pseudorandom digits evaluated with PE-LE to mitigate identical values.  D=4, 
τ=1.  The first 24 tuples (in blue) are Parlitz-ordered.  Measurement resolution was integers resulting in 
1000 distinct values on the interval [0,999]. 
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As expected, most of the identical value problem went away.  The probability densities 

for the Forest tuples disappeared and the Parlitz tuples saw a corresponding increase in 

probability densities.  Also, the requirements of all three Axioms still appear to be met.  For 

Axiom Two, a slight imbalance in the LE pdf is apparent but the centerpoint calculation comes 

out to 52, which is within the notional ±1% assumption. 

It’s apparent that measurement resolution influences PE-LE’s probability space 

characterization more significantly than it does for traditional PE because of the extra identical 

value (Forest) tuples.  Perhaps application of the measurement resolution effect could be used to 

tailor and fine-tune a PE-LE analysis, benefitting the goals of the research.  To determine 

whether this effect could be used to advantage, another test was conducted.  For this test the 

previous logistic map evaluation was presented at two different measurement resolutions.  One 

resolution produced 866 distinct values and the other produced 11, as presented in Figure 71 and 

Figure 72. 

 

Figure 71.  PDFs for the logistic map with r=3.888, xo=0.02.  Top) Measurement resolution to the 
thousandths place resulted in 866 distinct values on the interval [0.020, 0.972].  Bottom) Measurement 
resolution to the tenths place, resulting in 11 distinct values on the interval [0.0, 1.0]. 
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Figure 72.  Local effect statistics corresponding with the Logistic Map pdfs in Figure 71. 

 

Obvious differences are evident when comparing the results from both measurement 

resolutions.  Comparing the top pdf to the lower pdf, the Parlitz set saw decreased tuple 

densities, but (2301) stayed about the same and (2013) disappeared altogether.  On the contrary, 

in the Forest set, new tuples appeared and old tuples grew.  The case could be made, at least for 

this instance of the logistic map, that fine-tuning the measurement resolution can provide access 

to a richer understanding of causal dynamics for the same time series. 

 

PE-LE Shortcomings 

At least three significant shortcomings were realized for the PE-LE methodology during 

research.  First, the addition of extra tuples (at total of 42 instead of 24 for D=4) skews the 

measurement of Shannon entropy.  This means that a theoretically absolute random process 
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(such as white Gaussian noise), would not be represented correctly at �̃�𝑆 = 1, but rather at a 

somewhat lesser value. 

The second shortcoming includes numerous potential problems associated with the 

measurement resolution effect.  Although fine-tuning the resolution might provide certain 

advantages, the appropriate measurement resolution may not be physically achievable with the 

available measurement devices.  And some studies simply cannot be repeated to establish a basis 

for adjustment.  Also, if a finer measurement resolution is required, many studies in the field 

probably wouldn’t have “wasted” any available measurement resolution in the first place. 

Worse, it is foreseeable that results could be dramatically altered, intentionally or 

unintentionally, by the choice of measurement resolution.  Without enough investigation, use of 

the improper measurement resolution could inadvertently skew results, potentially leading to the 

wrong conclusions.  Similar to flawed hypothesis testing and data dredging (McShane et al., 

2019; Wasserstein & Lazar, 2016; Ziliak & McCloskey, 2008), the measurement resolution 

could potentially be abused by modifying an analysis iteratively until the desired, but knowingly 

incorrect, results are achieved. 

 The final disadvantage is related to the first.  By choosing to parse the Red & Wizard 

tuples from the analysis before computing �̃�𝑆 the overall results are necessarily changed.  The 

Red & Wizard tuples are more likely to appear at lower measurement resolutions and less likely 

at higher resolutions.  In some tests with 1,000 distinct values, they did not appear at all. 

A corresponding study evaluated the trend between the number of discrete random 

numbers and �̃�𝑆 for otherwise comparable time series with 10,000 values generated by Excel’s 

PRNG.  After the Red & Wizard tuples were parsed, as necessary, the mean was calculated for 
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the final 1,000 �̃�𝑆 values.  Since CJS is partially dependent upon �̃�𝑆, the mean was also 

calculated for the final 1,000 values of CJS.  Results are presented in Figure 73. 

 

 

Figure 73.  Mean normalized Hs (left) and CJS (right) versus the number of discrete numbers available in 
a pseudorandom series.  Each series started with 10,000 values and mean calculations were made for the 
final 1,000 values after the Red & Wizard tuples were parsed using the PE-LE methodology. 

 

Both trends appear logarithmic.  It was not deemed necessary to build in algorithmic 

compensation for this effect to accomplish the objectives of the research.  As such, this finding is 

presented here for informational purposes, in case another researcher is interested in pursuing 

this further. 

 

Summary of PE-LE Results for Processes 

The primary time series of interest for this research were the funnel experiments (V1-

V4), and the Tokai Rika (TR) series.  V1, V2, and V3 represented Shewhart-stable processes that 

were being improved, V4 represented a Shewhart-unstable process that was being improved 

(V4), and TR represented a Shewhart-stable process that experienced minor improvements but 
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overall variation was essentially in stasis.  The distillate flowrate and electrical usage series were 

included to represent Shewhart-unstable processes.  The supplementary time series were the 

logistic map at two measurement resolutions, sine wave, and Pi, which were useful for various 

comparisons with the processes of interest.  Additionally, different pseudorandom series 

generated by Excel’s PRNG were used as comparative baselines to evaluate the changing 

dynamics of entropy and complexity in processes. 

 

Table 24.  Data summary for time series processes. 
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Primary Time Series 

 

 

Figure 74.  Funnel Experiment 1 (V1) pdfs and local effect data. 

 

 

Figure 75.  Funnel Experiment 2 (V2) pdfs and local effect data. 
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Figure 76.  Funnel Experiment 3 (V3) pdfs and local effect data. 

 

 

Figure 77.  Funnel Experiment 4 (V4) pdfs and local effect data. 
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Figure 78.  Tokai Rika pdfs and local effect data.  Data reused with the permission of the Tokai Rika 
intellectual property division.  All rights reserved. 

 

Distillate pdfs and local effect data are provided in Figure 66. 

Electrical usage pdfs and local effect data are provided in Figure 79. 

 

 

Figure 79.  Electrical usage pdfs and local effect data.  From www.openmv.net by Kevin Dunn (2020).  
Dataset provided open source with no restrictions on use. 
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Supplementary Time Series 

Logistic map (866 and 11 distinct values) pdfs are provided in Figure 71 and associated local 

effect data is provided in Figure 72. 

Sine wave pdfs and local effect data is provided in Figure 65. 

Pi pdfs and local effect data is provided in Figure 63. 

 

Pseudorandom Time Series 

 Microsoft Excel’s Mersenne Twister Pseudorandom Number Generator was used to build 

the random series used in this research for comparison with other time series.  These random 

series facilitated the evaluation of the PE-LE method, were especially useful for the log change 

evaluations when an equivalent random series with the same number of distinct values was 

required.  They were also used to approximate Shewhart-stable processes.  Two types of 

pseudorandom series were generated- unchanging (R#) and changing (Decr#/Incr#), where the 

number sign represents the number of distinct values in each series.  The data summary for 

unchanged pseudorandom series is provided in Table 25 and associated pdfs follow in Figure 80. 

 

 

 



252 

Table 25.  Data summary for unimproved pseudorandom processes. 

 

 

 

Figure 80.  PDFs for baseline pseudorandom series based on numbers of distinct values using PE-LE 
method.  From top to bottom:  R10, R25, R50, R100, R500, R1000.  Each series started with 10,000 
values.  Probability densities represent allocation after Red & Wizard tuple parsing.  See Table 25 for 
details. 
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Data summary for changing pseudorandom series is provided in Table 25.  Variation 

calculations and associated pdfs follow. 

 

Table 26.  Data summary for improved pseudorandom processes (Decr#) plus one increasing 
pseudorandom process (Incr10K) for comparison. Decr is short for decreasing variability and Incr is short 
for increasing variability. 

 

 

Table 27.  Variation calculations for five pseudorandom processes. 

 

 

 Since Decr25 most resembled the characteristics of experiments V1-V3, its data were 

subjected to a stability ratio (SR) test to characterize the level of stability of this pseudorandom 

process.  Results for each integer value range passed the test, as presented in Table 28.  Since all 

Pseudo-

Random 

Process

Starting 

Amount 

of Data

Tuples 

after 

Parse

Forest 

Tuples

Qty of 

Distinct 

#s

Decr25 2,200 1,940 778 25

Decr40 2,200 2,074 715 40

Decr100 2,200 2,192 115 99

Decr10K 10,000 9,997 23 5,252

Incr10K 10,000 9,997 8 5,221
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ranges were pseudorandomly generated, it was assumed that all other Mersenne Twister 

processes would also pass the SR test. 

 

Table 28.  SR test results for Decr25 pseudorandom process. 

 

 

 Each of the processes were evaluated using the PE-LE method, as presented in the 

following figures. 

 

 

Figure 81.  Decr25 pdfs and local effect data. 

Integer 

Values Xbar mR-bar

SR ≤ 
1.59?

SR 

Stable?      

p >0.05

1-25 13.40 7.75 1.08 0.305

1-23 12.52 7.28 1.15 0.184

1-20 9.46 6.57 0.98 0.565

1-18 9.69 6.22 0.89 0.771

1-15 8.05 4.82 0.99 0.540

1-13 6.83 4.47 0.96 0.599

1-10 5.65 3.25 1.06 0.353

1-8 4.46 2.62 0.97 0.571

1-5 2.92 1.57 1.00 0.506

1-3 1.96 0.88 1.17 0.160
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Figure 82.  Decr40 pdfs and local effect data. 

 

 

Figure 83.  Decr100 pdfs and local effect data. 
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Figure 84.  Decr10K pdfs and local effect data. 

 

 To allow further comparison of the four pseudorandom processes with decreasing 

variation, one pseudorandom series was created with increasing variation, as presented in Figure 

85. 

 

 

Figure 85.  Incr10K pdfs and local effect data. 

 



257 

 

Characterizations of Improved Processes 

Given that the previous sections of the Findings characterized the process data for the 22 

time series evaluated in this research, to include PE-LE results, this section is now focused on 

answering the research question:  Can a methodology based on emerging structural complexity 

provide information useful to direct the continued improvement of a Shewhart-stable process?  

Three techniques based on the temporal plotting of Jensen-Shannon complexity were researched 

for their capability to display patterns corresponding with varying levels of process 

improvement:  The Complexity-Entropy Causality Plane, the �̃�𝐽𝑆 change chart, and the Entropy-

Complexity Change Diagram. 

 

Complexity-Entropy Causality Plane 

 Results to support the generation of CECP plots for all 22 processes are displayed in 

Table 29.  These time series had varying run lengths due to starting conditions and statistically 

complete parsing.  Therefore, the two columns of mean values were based on the final ~10% of 

calculations for each time series.  Values were presented to nine decimal places because (1) 

Some of the standard errors were quite small, and (2) For some comparisons, differences in mean 

values did not appear until the 5th decimal place. 
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Table 29.  Results that supported generation of CECP plots for all 22 processes.   

 

 

All 22 processes are plotted concurrently on the CECP presented in Figure 86.  As 

expected, the sine wave displayed the least randomness, followed by both versions of the 

(deterministic) logistic map.  The logistic map also displayed the greatest structural complexity, 

with 11 distinct values providing greater complexity than the identical logistic map at 866 

distinct values.  Cmax is plotted based on the standard 24 tuples for D=4 instead of the non-

standard 42, causing it to appear slightly lower than it should.  This artifact caused Logistic11 to 

incorrectly appear out of bounds. 
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Figure 86. CECP for all 22 evaluated processes.  Cmax is based on 24 distinct tuples instead of 42 causing 
it to appear slightly lower than it should. 

 

 Abandoning the sine wave and both logistic map plots allowed better visibility of the 

relative positions of the remaining 19 time series, as depicted in the CECP close-up in Figure 87. 
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Figure 87.  CECP close-up for all processes evaluated except sine and both logistic map plots. 

 

 Additional focusing and dissection in the CECP close up facilitated comparative 

evaluations.  The plot in Figure 88 includes only those processes that were pseudorandomly 

generated.  The observation that Decr10K and Incr10K appear in almost the identical position 

highlights an important characteristic of CJS when PE-LE is the underlying method.  That is, 

instead of directly considering the changing variance, the more important consideration appears 

to be the effect that process characteristics are having on process homogeneity, which will be 

reflected in effect of the 42-tuple pdf on entropy measurements.  This is relevant because the CJS 

calculation applies the changing pdf to measure process homogeneity via entropy and to measure 

the metric probability distance from perfect theoretical equilibrium. 

Momentarily reviewing definitions may be useful.  Variance defines the magnitude of 

spread among process outcomes by calculating the expectation of the squared deviation from the 
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mean for a random variable of interest.  Entropy instead defines the homogeneity/ uncertainty/ 

randomness of the process based on the probabilities of the distinct states Ω required to 

characterize the process.  For a Gaussian distribution, variance and entropy can have similar 

meanings.  However, as the probability distribution progressively deviates further from the 

Gaussian, variance begins to obfuscate the structural information, whereas entropy more 

accurately reflects the changing structural dynamics. 

So, Decr10K and Incr10K probably plot in the same �̃�𝑆, CJS space because their nearly 

identical probability distributions under the PE-LE methodology establish their equivalent 

homogeneity and their equivalent distances from ideal equilibrium as calculated by Jensen-

Shannon divergence.  More specifically, given that both processes have more than 5,200 distinct 

values, inspection of Figure 84 and Figure 85 confirms they both have almost no identical value 

tuples and the remaining Parlitz tuples are in a nearly uniform distribution.  This effect suggests 

that the PE-LE methodology may provide less utility for informing process improvement when 

there are a high number of distinct values and that this utility progressively increases as the 

number of distinct values decreases. 
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Figure 88.  CECP close up for only pseudorandom processes. 

 

Given the dependence of PE-LE’s calculation methodology upon measurement resolution 

and corresponding distinct values, a trend can be observed in Figure 88 showing that a 

decreasing number of distinct values corresponds with increasing �̃�𝑆 and decreasing CJS.  It 

follows logically that the most equitable comparisons can be made among processes possessing a 

similar number of distinct values.  For instance, the results for Decr25 can be most reliably 

compared with R25 and, similarly, Decr100 can be most reliably compared with R100.  In both 

cases, the Decr# processes plotted significantly closer to (1,0) than the equivalent R# processes. 

 The pdfs for Decr25 and R25 are simultaneously displayed in Figure 59.  Decr25 was 

based on 2,200 measurements to facilitate comparison with the funnel experiments, whereas R25 

was based on 10,000 measurements to facilitate comparison with other R# processes.  However, 
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the probability densities still provide useful comparisons.  Decr25 had higher densities of Forest 

Wizard and Red tuple groups, as might be expected, and therefore the 42-tuple pdf displays 

greater homogeneity than the 42-tuple pdf for R25.  This would explain why Decr25 is closer to 

(1,0) in the CECP than R25.  Contrary to the comparison results for Incr10K and Decr10K, at 

this lower quantity of distinct numbers (25), Jensen-Shannon complexity would better inform 

process improvement efforts, as also revealed on the CECP. 

 

 

Figure 89.  Comparison of two pseudorandom processes, Decr25 on top and R25 on bottom. 

 

 The next plot in Figure 90 examines the seven remaining empirical processes.  The 

previous correlation with the number of distinct values now appears attenuated in that the 
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Distillate process with 3,021 distinct values is actually closer to (1,0) than V4 with only 15 

distinct values.  However, reviewing pdfs for these two Shewhart-unstable processes in Figure 

66 and Figure 77 reveals that the Distillate process had more homogeneity than V4.  The V4 pdf 

displays mostly identical value tuples and few Parlitz tuples.  This comparison is useful because 

V4 demonstrated that the PE-LE method also loses utility to inform process improvement when 

there is little diversity in the data.  A similar problem also limited control chart utility based on 

chunky data, as was displayed in Figure 19. 

 

 

Figure 90.  CECP close up for the empirical processes of interest. 

 

Switching to V1, V2, and V3 displayed in Figure 90, these processes were fairly 

equivalent in terms of quantity of distinct tuples (23, 29, and 24 respectively).  Comparing their 
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pdfs in Figure 91 reveals that homogeneity was greatest for V2, then V1, then V3.  As expected, 

this order corresponded with their increasing distance from (1,0) on the CECP. 

 

 

Figure 91.  PDFs for V1, V2, and V3, in order top to bottom. 

 

 Observing V1, V2, and V3, the trend for quantity of distinct tuples was the opposite of 

the general trend seen overall.  This observation, in coordination with the similar observation 

previously made about V4, suggests that PE-LE’s utility to inform process improvement is based 

more on homogeneity than quantity of distinct tuples.  Nonetheless, these results suggest that the 

quantity of distinct tuples could be tailored to the goals of the analysis when the measurement 

resolution can be chosen or modified. 
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 The results described above provide evidence to support the conclusion that a 

methodology based on emerging structural complexity can provide information useful to direct 

the continued improvement of a Shewhart-stable process.  The greater the process homogeneity, 

the greater the process improvement, and the closer the Jensen-Shannon complexity plot will 

appear to point (1,0) on the CECP.  Processes plotted on the CECP can demonstrate time 

evolution corresponding with intended improvements and to facilitate comparisons among 

different processes.  For example, the time evolution of various time series are presented in 

Figure 92 and Figure 93. 

 

 

Figure 92.  Example of CJS time evolution plotted on CECP for V2, V3, and Tokai Rika time series from 
left to right, respectively. 
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Figure 93.  Example of CJS time evolution plotted on CECP for V4, Electrical, and Distillate time series 
from left to right, respectively. 

 

 The Complexity-Entropy Causality Plane was considered the primary tool for generating 

results in this research and displayed process patterns providing the answer to the research 

question.  However, an extension to the MPR-method was also explored to seek different 

insights for the same processes.  The initial motivation was to seek compensation for some of the 

measurement resolution effect.  This extended methodology was based on calculating relative 

changes for �̃�𝑆 and CJS relative to maximally random equivalent time series. 

 

Log Change Evaluations 

 This section provides results using three visualizations based on relative change 

evaluations.  More specifically, log change equations were used to compare time series 

information relative to the maximum randomness condition for an equivalent time series.  The 

word “equivalent” specifically means for the same number of measurements in the series and 

using the same quantity of distinct numbers. 
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Four points will assist with chart interpretation.  First, since each time series is being 

compared to a random equivalent time series, a process that plots on the centerline would be as 

random as the comparator series.  Thus, the further from the centerline, the less random the 

series.  Second, the computation of Shannon entropy involves an accumulation of probability 

information, so the results naturally present no useful trends at the start of the accumulation but 

continue to gain relevance over time.  Third, the foundation for the entropy calculations remains 

the permutation entropy- local effect (PE-LE) method, which means the changing probability 

distributions include the Forest tuples that contain identical values.  Finally, because the 

underlying relative change calculation applies log change, the magnitude of change is consistent 

regardless of which side of the centerline the results appear. 

The first visualization is the �̃̃�𝑆 change chart, which does not possess direct utility for 

answering the research question.  However, �̃̃�𝑆 is used for one axis of the Entropy-Complexity 

Change Diagram (ECCD), so the �̃̃�𝑆 change chart is presented to reveal how 𝐻𝑆 is operating 

independently.  The second visualization is the �̃�𝐽𝑆 change chart, which was evaluated via pattern 

recognition for its potential to directly answer the research question.  The final visualization is 

the ECCD, which was designed to compare the ongoing behavior of one or more time series in 

terms of entropy and structural complexity simultaneously. 

 

�̃̃�𝑆 Change Chart 

 This chart depicts the changing �̃̃�𝑆, which has been normalized in two independent and 

different ways.  The first normalization method was associated with permutation entropy (PE-
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LE) when the Shannon entropy values were divided by Hmax = log K, where K is the available 

number of distinct tuple types.  This was considered a “static” normalization in that the 

normalizing factor did not change throughout the entire analysis.  Specifically, for all of this 

research, the normalization factor was log(42) = 5.3923 bits.  The second normalization method 

made a relative comparison of these �̃�𝑆 values in time series to the equivalent randomly 

generated time series using the log change calculation.  This was considered a “dynamic” 

normalization in that the normalizing factor continues to change equivalently throughout the 

entire time series, based on a continuing accumulation of measurements in the series. 

Figure 94 simultaneously depicts many of the processes evaluated during this research.  

The sine wave, being a periodic process with relatively little randomness, resides at a 

comparatively large distance from the centerline.  The logistic map is a chaotic process, which is 

more random than sine and so resides closer to the zero line.  The distillate series was unstable 

and, reviewing Figure 66, its pdf was not especially close to uniform, comprised of higher Parlitz 

tuples than Forest tuples along with two exceptionally high Parlitz tuples.  The remaining series 

appear close together in this view, because depicting the sine wave yielded a wide y-axis.  This is 

suboptimal for viewing, so Figure 95 focuses more closely on these remaining processes. 
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Figure 94.  �̃̃�𝑆 change chart for various time series processes. 

 

 

Figure 95.  �̃̃�𝑆 change chart for various time series processes. 

 

Figure 95 is too busy to facilitate much pattern recognition and so further focusing will 

be accomplished in the next few figures.  However, it is evident that at least 500 tuple 
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calculations were necessary before many series accumulated enough information to begin to 

settle around a relative magnitude value.  In Figure 96, the focus will shift to the four Decr# 

pseudorandom time series. 

 

 

Figure 96.  �̃̃�𝑆 change chart for pseudorandom Decr# time series. 

 

 Figure 96 was built to focus on the behavior of Decr25, Decr40, and Decr100 because 

they were similar in having run lengths of 2,200 values and decreasing value ranges every 220 

iterations, as presented in Table 27.  These three series do not appear to have settled into a value 

range yet and are probably still “seeking” their representative relative magnitude value.  This 

observation suggests that run lengths greater than 2,200 are desired when the quantity of distinct 

values is relatively low (~100 or less) and the process is changing considerably.  Decr10K 

quickly settled into the vicinity of maximal randomness at the centerline, which is logical 
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because the first 1000 values were based on a random value range of 1-10,000 and the next 1000 

values were based on a random value range of 1-9,000.  The small step changes are of unknown 

origin. 

The four funnel experiments and the Tokai Rika (TR) series are presented in Figure 97.  

TR appears to have insufficient accumulation of probability information to achieve a stabilized 

value.  Funnel experiments 1, 2 and 3 all appear to have stabilized after the first 500 or so 

calculations and in the same region near two magnitudes of relative change.  The actual 

difference in magnitude between processes was minor enough that no distinguishing 

characteristics were evident. 

Experiment 4 is clearly different from the others.  Referring to Figure 77, V4’s pdf was 

the only pdf evaluated during this research that had much higher probability densities for the 

identical value tuples (Forest, Red & Wizard) than the traditional Parlitz tuples.  Additionally, 

reviewing Figure 54, although V4 was Shewhart-unstable, it’s run chart reveals many identical 

values, especially in the second half of the experiment at lower drop heights.  Although the 

progression in this change chart is steadily away from maximum randomness, it would not be 

prudent to offer any conclusions about V4.  This is because the analysis is based on fewer than 

800 tuples, and because V4 was such a unique series compared to the others. 
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Figure 97.  �̃̃�𝑆 change chart for funnel and TR series. 

 

�̃�𝐽𝑆 Change Chart 

 Unlike the �̃̃�𝑆 change chart, the �̃�𝐽𝑆 change chart provides information that could be 

directly relevant for answering the research question.  The normalized structural complexity that 

this chart plots also provides one dimension for the dynamic Entropy-Complexity Change 

Diagram.  Three considerations will aid interpretation of this chart.  First, the zero reference line 

represents maximally random Jensen-Shannon complexity, not entropic randomness as seen in 

the �̃̃�𝑆 change charts.  This may be difficult to conceptualize because CJS presents emerging 

process dynamics based on the interplay between randomness and disequilibrium, both of which 

have been normalized using alternate methods.  At the micro level, the bumpiness of the series 

plot can be considered an indication of changing local structural complexity.  At the macro level, 
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the overall progression of the series can be considered an indication of the evolving process 

complexity.  The second point:  Since CJS is still partially dependent upon the computation of 

Shannon entropy, the results naturally present no useful trends at the start but continuously gain 

relevance over time.  Third is a point that bears repeating:  The underlying relative change 

calculation applies log change, which means the magnitude of change is consistent regardless of 

which side of the centerline the results appear. 

Five charts are presented in this section.  The first chart simultaneously depicts all of the 

processes evaluated.  The next two charts home in on Tokai Rika’s structural complexity, to seek 

patterns that can be correlated with known process events.  The fourth chart depicts four 

comparator processes that were not improved, to look for common patterns of behavior.  The last 

chart depicts the four funnel experiments, which were improved, to again look for common 

patterns of behavior. 
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Figure 98.  �̃�𝐽𝑆 change chart for various processes except Decr#. 

 

 The global view in Figure 98 reveals how differently these processes evolved in terms of 

normalized structural complexity.  Perhaps some additional knowledge could be gleaned from 

this plot, but the processes are difficult to discern individually in this overlay.  As such, other 

figures in this section will focus on certain process types to ease the analysis.  Figure 99 and 

Figure 100 focus on analysis of the Tokai Rika process. 

 



276 

 

Figure 99.  �̃�𝐽𝑆 change chart to facilitate the Tokai Rika investigation. 

 

 In Figure 99, a maximum run length of only 380 calculations is presented since, per 

Table 24, the Tokai Rika series presented only 337 tuples for analysis following parsing.  The 

first 380 points for V2 and V4 were included to facilitate comparison.  Seeking pattern 

correlations, there probably isn’t much to be gleaned from this plot.  Previously, in Figure 97, the 

TR processes did not start to stabilize until about 350 tuples.  Nonetheless, the investigation will 

continue in Figure 100 since Tokai Rika included well-documented process events that could 

facilitate correlational analysis. 
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Figure 100.   �̃�𝐽𝑆 change chart of the Tokai Rika process.  Larger colored dots correspond to significant 

process events listed in the included table.  Events are correct sequentially and based on the color coding, 
although event numbers no longer match up exactly due to tuple parsing.  Data reused with the 
permission of the Tokai Rika intellectual property division.  All rights reserved. 

 

 The larger, colored data points in Figure 100 correspond with the process events 

described in the inset table.  The focus is to correlate improvements, or even just significant 

events in general, with the behavior of the emerging structural complexity.  No consistent 

patterns are noted.  Globally, it appears that the complexity is diverging from the maximally 

random complexity baseline, but the run length is too short to put much credence into any trend 

observed.  Overall, although Tokai Rika is a very stable and well-documented process, 

investigation of these data did not help to answer the research question.  The next evaluation in 

Figure 101 will considered comparator processes that contributed considerably more tuples for 

analysis. 
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Figure 101.   �̃�𝐽𝑆 change chart for comparator processes. 

 

 All of the processes depicted in Figure 101 were not being improved (in terms of 

variation), except Decr10K.  Additionally, all but Electrical started with 10,000 measurements 

before parsing.  Most of these series settled out at a gross distance from random equivalent 

complexity within about 1,000 tuples, except Pi and Logistic11.  Logistic 11 continuously 

trended away from the baseline until potentially settling out at about 7,000 tuples.  This behavior 

is consistent with the results from Figure 86, which revealed that Logistic 11 demonstrated the 

most Jensen-Shannon complexity of any of the 22 processes evaluated.  Also, Incr10K plotted 

almost identically coincident with the Decr10K series, which is consistent with the results from 

Figure 88.  The consistent pattern for all of these processes, save perhaps Electrical, is that they 

eventually settled out in a region of representative magnitude.  More specifically, they settled out 

at a distance that represents the magnitude of relative change with respect to an equivalent 
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random time series.  In the case of Electrical, the plot seemed to still be rising and it’s useful to 

also consider that a total of only 2,566 tuples were presented for analysis. 

 Regarding Pi, on the macro level it remained in the vicinity of the baseline as expected, 

since it is quasi-random.  However, on the micro level, it exhibited significantly more relative 

complexity than might be expected.  No explanation for this behavior is offered, but the CECP 

plot of Pi is presented in Figure 102 to compare both of these display methods in terms of the 

detail revealed by the time evolution of the process. 

 

 

Figure 102.  CECP plot for Pi. 

 

Next, Figure 103 will present the results for the funnel experiments and some of the 

pseudorandom comparator processes. 
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Figure 103.  �̃�𝐽𝑆 change chart for vertical funnel experiments and pseudorandom comparator processes. 

 

Figure 103 presents run lengths of 2,200 calculations or less and facilitates three 

observations.  First, V4 is very different from the other processes, ostensibly due to the 

exceptional prevalence of identical value tuples.  Second, V1, V2, and V3 all follow a trend in 

the later stages of process evolution toward the maximum random complexity baseline.  Third, 

Decr25, Decr40, and Decr100 all follow a trend of process evolution away from the maximum 

random complexity baseline. 

Although V1, V2, V3, Decr25, Decr40, and Decr100 all demonstrated decreasing 

variation in their original, unmanipulated time series, the opposite trends in Figure 103 between 

empirical and pseudorandom processes suggest further investigation.  Clearly, the funnel 

processes V1-V3 are all decreasing in relative complexity whereas the pseudorandom Decr# 
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processes are all increasing in relative complexity.  When all six of their 42-tuple pdfs are 

compared, it is apparent that the three funnel experiment pdfs present greater density among the 

Forest tuples than the Parlitz tuples, whereas the three Decr# processes present the opposite 

density prevalence.  This result seems to confirm that variation is no longer the primary 

consideration when the PE-LE method is employed to evaluate CJS.  Instead, the interplay 

between randomness and disequilibrium is at least partially explained by the relative density 

prevalence between Forest and Parlitz tuple types.  Ultimately, it seems that the quantity of 

distinct values is a significant consideration for the PE-LE method.  Therefore, the most 

equivalent comparison between processes types appears to be when compared processes employ 

approximately the same quantity of distinct values.  For the processes displayed in Figure 103, 

V1, V2, V3, and Decr25 all had comparable quantities of distinct values.  Next, Figure 104 

focuses on characterizing the funnel experiments. 

 



282 

 

Figure 104.  �̃�𝐽𝑆 Change Chart for vertical funnel experiments.  V1, V2, and V3 represent improved 

Shewhart-stable processes.  V4 is an improved Shewhart-unstable process. 

 

In Figure 104, V1, V2, and V3 represent Shewhart-stable processes that were improved 

repeatedly over the course of the time series.  V4 represents a Shewhart-unstable process that 

was also improved repeatedly over the course of the time series, but also suffered from 

significantly more parsing of Red & Wizard tuple types.  “Repeatedly” means that every 50th 

data point, an event occurred that usually (but not always) resulted in progression of the mean 

value toward the “less is better” target value of 1 inch, and a decrease of statistical variation 

about the mean.  These statistics were presented in Figure 57.  These variation reduction results 

appeared to correspond with the eventually decreasing relative structural complexity observed in 

the vicinity of ~900 tuples for V1-V3.  If the pdfs were observed ab inito and continuously for 
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V1, V2, and V3, they would initially have higher Parlitz tuple densities which would gradually 

be traded for higher Forest tuple densities as process improvement continued. 

It is possible to be more specific about the observed decreasing progression toward the 

random complexity baseline.  That is, V1 started around 600, V3 started around 900, and V2 

started around 1,000.  Naturally, the next question is why these three processes took differing 

amounts of time to progress toward the baseline when they were so similar.  Reviewing their 

pdfs and local effect data, they each had similar density allocations among the four tuple 

categories of Parlitz, Forest, Red & Wizard.  Also, their tuple and local effect pdfs all looked 

similar.  However, a serial correlation was evident between the inflection point tuple and the 

measurement resolution.  Regarding the quantity of distinct numbers, V1 had 23, V3 had 24, and 

V2 had 29.  The correlation between trend start and distinct numbers is weak with R-sq(adj) = 

27%, as depicted in the linear regression plot in Figure 105.  It therefore remains undetermined 

why these three processes took varying times to turn toward the baseline. 

 

 

Figure 105.  Linear regression analysis to correlate decreased relative complexity trend with quantity of 
distinct tuples for V1, V3, and V2, from left to right. 
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Overall, results provided mixed evidence that the �̃�𝐽𝑆 change chart methodology can 

present information useful to direct the continued improvement of a Shewhart-stable process.  

The best results seem to be correlated with 1) Smaller quantities of distinct values except that 

fewer than ~10 distinct values for D=4 may yield excessive statistically complete parsing (as 

demonstrated for the V4 series).  2) Longer runs to allow sufficient accumulation of probability 

density information for the 42-tuple pdf at D=4.  V1, V2, and V3 demonstrated that the lower 

practical limit seems to be around 1000 tuples.  Electrical, Decr25, Decr40, and Decr100 all 

demonstrated that even 2000 tuples can be insufficient depending upon process characteristics.  

Logistic11 demonstrated that about 7,000 tuples were required before the relative change 

potentially settled out near a gross magnitude value.  These results in combination suggest a 

minimum of approximately 5,000 tuples would be desirable for non-chaotic process types.  The 

next section combines the results of the previous two sections to demonstrate a simultaneous 

graphical presentation of both change chart results. 

 

Entropy-Complexity Change Diagram 

 In the previous two sections, the relative change calculations for both �̃̃�𝑆 and �̃�𝐽𝑆 were 

linked to temporal causal dynamics.  These results can be displayed simultaneously on the 

Entropy-Complexity Change Diagram.  This depiction can be used to graphically track the 

changing randomness and structural complexity for a process, and to facilitate comparisons 

among the different processes.  Approximately the first 10-30% of calculations were abandoned 
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for each process to facilitate depictions of the parts of the time series where values began to 

settle out at their gross relative magnitudes.  The most random processes naturally plotted very 

close to the origin.  Therefore, all of the R# processes appeared as a small dot at the origin and 

hence are not plotted.  The remaining 16 of the original 22 processes are plotted together in 

Figure 106. 

 

 

Figure 106.  Entropy-Complexity Change Diagram for all processes except R#. 

 

Figure 106 reveals the relative positions of these 16 processes.  Of note, the identical 

logistic map with different quantities of distinct numbers (11 vs. 866) retained the same relative 

entropy value in either case but demonstrated dramatically different relative structural 

complexity values.  The different quantities of distinct numbers naturally yielded many more 
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Forest tuple types for Logistic11 than Logistic866 (3007 vs. 43) and parsed Red/Wizard tuples 

(364 vs. 0). 

 Sine demonstrated highly non-random relative entropy, as might be expected given its 

periodic nature.  Finally, Incr10K appears at the origin given its random nature.  Removing these 

four processes from the depiction facilitates closer inspection of the remaining 12 processes in 

Figure 107. 

 

 

Figure 107.  Entropy-Complexity Change Diagram for processes of interest. 

 

In Figure 107, the following processes all demonstrated a progression away from the 

origin as the calculations were plotted:  V4, TR, Decr25, Decr40, and Decr100.  Electrical and 

Distillate settled approximately in place over time.  The following processes demonstrated a 
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progression toward the origin as the calculations were plotted: V1, V2, V3, Pi and Decr10K.  For 

the random processes Pi and Decr10K, this progression was considered correlated to the 

accumulation of information to achieve maximum random complexity.  For V1, V2, and V3, this 

progression was correlated to process improvement in terms of a pattern of decreasing relative 

structural complexity.  Overall, the results for the ECCD provided evidence that the �̃�𝐽𝑆 change 

chart methodology can present information useful to direct the continued improvement of a 

Shewhart-stable process.  
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CHAPTER FIVE:  CONCLUSION 

Three conclusions are presented for this research.  First, the application of structural 

complexity CJS is discussed as it was applied to answer the research question.  Next, challenges 

to prevailing assumptions about absolute randomness are reviewed.  Finally, the utility of the PE-

LE method is presented. 

 

Conclusion One- The Research Question 

The most significant contribution of this research was associated with answering the 

research question:  Can a methodology based on emerging structural complexity provide 

information useful to direct the continued improvement of a Shewhart-stable process?  Three 

pattern discovery techniques based on the temporal plotting of Jensen-Shannon complexity 

provided evidence that corresponded with varying levels of process improvement:  The 

Complexity-Entropy Causality Plane, the �̃�𝐽𝑆 change chart, and the Entropy-Complexity Change 

Diagram. 

The Complexity-Entropy Causality Plane (CECP) has been rigorously tested with a 

multitude of time series processes since its creation by Rosso, et al. in 2007.  Therefore, 

Shewhart-stable processes such as V1, V2, and V3 that migrated concurrently toward increasing 

randomness and decreasing structural complexity were considered to be providing evidence of 

improvement in accordance with a reasonably well-established methodology.  Furthermore, 

Shewhart-stable processes that settled out closer to the lower right corner of the CECP provided 

evidence corresponding with being more improved than processes that were further away.  This 
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provided a visual pattern correlation between decreasing variation, decreasing structural 

complexity and increasing randomness. 

A number of processes were also plotted on the �̃�𝐽𝑆 change chart, but vertical funnel 

experiments V1, V2, and V3 were the only empirical processes that demonstrated a decreasing 

trend toward the maximally random structural complexity baseline.  Although this was 

encouraging because it appeared to follow a logical pattern of behavior, it could not be 

considered reliable evidence corresponding with process improvement for at least three reasons.  

First, other comparable Shewhart-stable processes that were improving in terms of variation 

reduction (Decr25 and Decr40) did not display the same pattern over time.  Yet, these two 

processes were also fundamentally different in that they were pseudorandomly generated.  

Second, V1, V2, and V3 were very similar in terms of measurement resolution and length of 

time series, whereas the same results for highly dissimilar time series would support a more 

confident conclusion.   Finally, V1, V2, and V3 presented a relatively low number of 

permutation entropy tuples for analysis (around 2,000 each), whereas greater confidence could 

be lent to the results had these processes presented say, 10,000 or 15,000 tuples each.  Overall, 

the evidence from the �̃�𝐽𝑆 change chart was not supported sufficiently to draw any reliable 

conclusions. 

Although the �̃�𝐽𝑆 change chart comprises one of the two axes of the Entropy-Complexity 

Change Diagram, results from this pattern discovery technique were slightly more encouraging.  

This is because the concurrent incorporation of �̃̃�𝑆 log change information caused improved 

processes to appear closer to the origin than unimproved processes. 
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However, the plot for the first 10,000 digits of Pi was curious.  Being highly stochastic, 

the first 10,000 digits of Pi plotted close to the origin, as expected, but also demonstrated more 

overall �̃�𝐽𝑆 log change variability in the first ~2500 calculations than in the remaining ~7500 

calculations.  Each process demonstrated unique run lengths before stabilizing around a general 

magnitude, but it was not discerned why Pi would take so long.  The reason behind this behavior 

might be worthy of additional investigation. 

Moreover, processes identical in all respects other than measurement resolution plotted in 

significantly different regions, suggesting that measurement resolution could be optimized in 

conjunction with this technique to support a specific research goal, such as the continued 

improvement of a Shewhart-stable process. 

 

Conclusion Two- Stable Process Randomness 

The more Shewhart-stable a process was, the closer it plotted to �̃�𝑆=1.0.  These 

normalized Shannon entropy calculations provided evidence for varying levels of randomness, 

which consequently implies a correspondence with nonrandom dynamics.  That is, the higher the �̃�𝑆 value, the higher the level of randomness, and the lesser the influence of nonrandom 

dynamics.  These results challenged the prevailing assumption that a Shewhart-stable process 

should be represented as a constant system of chance causes.  Instead, Shewhart-stable processes 

could be more accurately characterized as inconstant systems of mostly chance causes. 

Additionally, the values for �̃�𝑆 gradually increased as various Shewhart-stable processes 

were improved, demonstrating increasing homogeneity and challenging the assumption that 
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improvement of Shewhart-stable processes always represents tampering.  Finally, �̃�𝑆 

measurements for two highly stochastic processes (10,000 digits of Pi and 10,000 digits of a 

pseudorandom generated process) provided evidence to support the conclusion of the Ramsey 

theory that perfect randomness (�̃�𝑆=1.0) is an idealized impossibility. 

 

Conclusion Three- The PE-LE Method 

 The final research contribution is focused on the PE-LE method, which was devised to 

mitigate identical values in permutation entropy tuples by allocating tuple types in accordance 

with the local effect empirically observed in tuples.  The PE-LE method was axiomatically 

validated based on the assumption that appropriate results for stochastic processes implies that 

results will be appropriate for all process types, by extension.  However, relatively few diverse 

processes were actually tested since this research was focused on Shewhart-stable processes 

(which naturally tend to be stochastic).  Complexity-Entropy Causality Plane (CECP) plots for 

processes evaluated with PE-LE plotted comparably to CECP plots in the literature for similar 

processes evaluated with traditional permutation entropy methods.  Furthermore, resulting �̃�𝑆 

and CJS calculations did not demonstrate significant divergence from similar processes described 

in the literature. 

Nonetheless, the PE-LE method was unquestionably imperfect.  The addition of tuple 

types (e.g., 42 instead of 24 for D=4) changed the resulting �̃�𝑆 and CJS calculations compared 

with the traditional permutation entropy methodology.  These variations in calculation results 

corresponded with the prevalence of identical value tuples, the quantity of distinct values made 
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available for analysis (measurement resolution), and the number of Red & Wizard tuple types 

parsed from the analysis.  In general, a review of �̃�𝑆 and CJS calculations suggested that the most 

relevant comparisons were among processes with similar measurement resolutions. 

PE-LE’s inclusion of identical value tuples appeared to include more causal information 

in the analysis than some other methods, especially for highly stochastic processes at low 

dimensionality.  Additionally, it appeared that measurement resolution could be tailored when 

using PE-LE to better support research goals.  For instance, lower measurement resolution 

appeared to increase the sensitivity of the analysis to changing structural complexity in part by 

including more identical value tuple information that would otherwise be hidden or abandoned.  

It is hoped that the PE-LE method developed in this research can be improved upon, or at least 

that it might stimulate similar ideas, as experts in this field continue to advance mitigations for 

identical values within tuples. 

 

Limitations 

Researcher Experience Concern- The author of this exploratory research had no prior 

experience applying permutation entropy, the MPR-method, or structural complexity 

calculations.  Therefore, it is possible that an experienced scholar would find faults within some 

of the associated analyses and conclusions. 

Previous Research Concern- No studies were discovered that measured changing 

structural complexity (such as Jensen-Shannon complexity) to inform the continuous 

improvement of an empirical time series, as is commonly pursued in industrial engineering 
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process control applications.  A sizeable body of research is available in the literature despite the 

relatively recent introduction of permutation entropy in 2002 and the MPR-method in 2006.  

Although a few studies were discussed in the Literature Review that used permutation entropy 

methods for process control applications, the next steps were not taken to also evaluate structural 

complexity.  Because no directly comparable research was discovered, it is difficult to ascertain 

whether the results of this exploratory research will have much merit in the field of quality 

control. 

Sampling Concern- The four vertical funnel experiment time series datasets were most 

relevant to this research, but were comprised of only 1,550 to 2,550 measurements.  After 

applying the methodologies to analyze structural complexity, it became apparent that many of 

the processes (to include even Pi) displayed higher variability in the structural complexity values 

within the first ~2500 calculations before “settling out”.  Ostensibly, this effect is related to the 

accumulation of probability information needed to build a stable pdf comprised of 42 distinct 

states.  Similarly, the initial hope was that the Tokai Rika dataset, being well-documented, would 

facilitate the discovery of correlations between complexity patterns and known improvement 

events.  However, 379 measurements were ultimately considered an insufficient analytic basis 

for this research methodology. 

Selection Bias/Diversity Concerns- Only 11 empirical and 11 pseudorandom processes 

were evaluated in this research.  Of these, only three empirical processes (V1-V3) were 

improved-Shewhart-stable- the type most relevant to the research question- and all three were 

fairly similar to each other in terms of data variability and number of measurements.  Also, there 
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was little diversity in the comparator processes.  For example, only one process was periodic and 

only one was chaotic.  Thus, a more comprehensive study may yield contrary conclusions. 

 Data Collection Concerns- The vertical funnel experiments demonstrated some excess 

variability and were not perfectly Shewhart-stable.  Based on the stability ratio (SR) test results, 

they were deemed sufficiently Shewhart-stable for the purposes of this research (except V4).  

Other processes that are more stable might yield different results. 

Complication of Methodology Concern- The calculation methodology to achieve the 

Complexity-Entropy Causality Diagram plot was significantly more involved than developing a 

control chart.  The �̃�𝐽𝑆 change chart and Entropy-Complexity Change Diagram were more 

elaborate still.  This complication may limit their utility in some applications. 

PE-LE Validation Concern- The PE-LE validation methodology was not sufficiently 

encompassing of other application scenarios to be universally applicable.  For example, the PE-

LE method was only researched for embedding dimension D=4 & time lag τ=1.  Also, only six 

processes were examined relative to the validation.  Thus, PE-LE method may yield different 

results in other scenarios or when applying other parameters. 

Statistical Parsing Concern- The decision to parse Red & Wizard tuples was based on a 

pattern-following scheme for local effect results.  Another researcher might find cause to retain 

some or all of these tuples in the PE-LE analytic method. 
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Future Research 

Follow-on research could be designed to overcome some of the limitations defined above 

while simultaneously attempting to replicate results.  For instance, improved-Shewhart-stable 

processes that have a larger number of measurements in the time series (such as >5,000 values) 

could be evaluated.  Also, a greater diversity of process types could be evaluated.  Additionally, 

results achieved using different methods to mitigate identical values in tuples could be compared 

with PE-LE results and with results achieved using the traditional permutation entropy method 

with no mitigations in place.  Finally, the PE-LE method could be validated more thoroughly 

with inclusion of some or all of the Red & Wizard tuple types. 

Ultimately, future researchers might apply certain aspects of the PE-LE method to 

develop a more perfect solution to the problems associated with identical values in permutation 

entropy tuples.  Additionally, researchers might explore the concurrent use of emergence-based 

complexity measures alongside traditional reductionist methods to gain greater awareness of 

process behaviors, including for Shewhart-stable processes. 

 

Near Real-Time Analysis Research 

With the appropriate computer coding and sensing/measuring equipment, the 

methodology applied in this research could incorporate near real time process analysis.  As each 

new value was included in the analysis, the pdf for the tuples would update, causing the entropy 

calculations to update, causing the Jensen-Shannon complexity calculations to update, ultimately 
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causing the plots on diagrams to update.  Process data projected in near real time onto the 

Entropy-Complexity Change Diagram (ECCD) would provide dynamic viewing of simultaneous 

changes in randomness and structural complexity, which could be used to monitor processes for 

unanticipated changes or for cause-and-effect analyses associated with intended process 

improvements. 

Also, numerous processes could be viewed simultaneously on the same plot to explore 

potential correlations between processes.  Zunino et al. (2012) provided a similar correlational 

study on the price evolution of commodities using the Complexity-Entropy Causality Plane, 

Figure 108.  In the center window of the figure, the co-evolution of both variables was tracked 

iteratively as each time series value was incorporated, helping to define potential temporal 

correlations in commodity pricing.  The Entropy-Complexity Change Diagram could evaluate 

the same data on a different basis (relative to the maximum randomness condition for an 

equivalent time series), potentially providing complementary insights. 
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Figure 108.  Correlation study between two variables based on commodity pricing.  From Distinguishing 

Chaotic and Stochastic Dynamics from Time Series by Using a Multiscale Symbolic Approach by Zunino 
et al.  Copyright © 2012 by American Physical Society.  Reprinted with the permission of American 
Physical Society.  All rights reserved. 

 

Ordinal Network Research 

Ordinal network diagrams could be applied to time series processes to gain insights 

associated with the successions of permutations, which could be correlated with process 

improvements.  An example of this basic methodology is provided in Figure 109. 
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Figure 109.  Ordinal network mapping of time series xt = {8, 1, 6, 4, 2, 3, 7, 0, 5} (a) Illustration of the 
time series.  For D = 2, the corresponding symbolic sequence is {(10)(01)(10)(10)(01)(01)(10)(01)}. (b) 
Ordinal network associated with the time series xt.  Arrows represent temporal succession of permutations 
in the symbolic sequence, and line weighting reflects the relative frequency of each possible succession.  
Self-loops appear when a permutation is followed by itself in the symbolic sequence.  From 
Characterizing Stochastic Time Series with Ordinal Networks by Pesse & Ribeiro.  Copyright (c)  2019 
by American Physical Society.  Reprinted with the permission of American Physical Society.  All rights 
reserved. 

 

Improvements could be network mapped for virtually any kind of process to include 

stochastic processes like those that are Shewhart-stable or idealized White Gaussian Noise 

(WGN).  Furthermore, results from different embedding dimensions could provide different 

insights into process behaviors.  Figure 110 displays ordinal network maps for two processes at 

various embedding dimensions, D. 
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Figure 110.  Ordinal networks of periodic and random time series. (a) Illustration of the mapping of a 
periodic signal into ordinal networks with different embedding dimensions d. (b) Mapping of white 
Gaussian noise into ordinal networks with different embedding dimensions d.  Dark black arrows indicate 
transitions that occurred twice as often as those represented by light black arrows.  From Characterizing 

Stochastic Time Series with Ordinal Networks by Pesse & Ribeiro.  Copyright (c) 2019 by American 
Physical Society.  Reprinted with the permission of American Physical Society.  All rights reserved. 

 

Embedding Delay Research 

The research herein was accomplished using only time lag τ=1.  However, some authors 

have discovered that applying different time lags can provide additional information about 

processes, as related to intrinsic time scaling (Soriano et al., 2011; Zunino et al., 2010).  Figure 

111 provides results for simulated geometric Brownian motion for (1 ≤ τ ≤ 500).  Similar 

research could be accomplished to reveal potential intrinsic time scaling for processes of interest 

to quality control applications. 
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Figure 111.  Permutation entropy HS and structural complexity CJS of geometric Brownian motion 
simulations as a function of the time lag τ (1 ≤ τ ≤ 500) for embedding dimension D = 6. Top: Mean and 
standard deviation of both permutation quantifiers for 100 independent realizations of length N = 4673. 
Bottom: Estimated quantifiers for simulations with N = 5000, 50 000 and 500 000 data points.  From 
Commodity Predictability Analysis with a Permutation Information Theory Approach by Zunino et al.  
Copyright © 2011 by Elsevier.  Reprinted with the permission of Elsevier.  All rights reserved. 

 

High Sample-Rate Research 

In-process sensors installed throughout manufacturing lines are producing astronomically 

large volumes of data at high sampling rates.  Permutation entropy could be employed in 

methods similar to Figure 112 to gain insights into process performance and to evaluate the 

effects corresponding with process improvements. 
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Figure 112.  Postural sway measurements of high sample-rate data.  Subtle shifts can be made visible for 
analysis of a complex multiscale time series.  Permutation quantifiers (HS and CJS) presented as a 
function of time lag τ with embedding dimensions D = 5.  Mean and standard deviation of the 
permutation quantifiers for ten independent trials associated to the same volunteer are depicted. Curve 
described by the symbolic quantifiers in the CECP is shown in the inset. The dashed lines represent the 
maximum and minimum complexity values for a fixed value of the entropy.  From Distinguishing 

Chaotic and Stochastic Dynamics from Time Series by Using a Multiscale Symbolic Approach by Zunino 
et al.  Copyright © 2012 by American Physical Society.  Reprinted with the permission of American 
Physical Society.  All rights reserved. 
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APPENDIX A:  DATA 

  



303 

Table 30.  Vertical Funnel Experiment 1 Data. 
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Table 31.  Vertical Funnel Experiment 2 Data. 

 

Table 32.  Vertical Funnel Experiment 3 Data. 
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Table 33.  Vertical Funnel Experiment 4 Data. 
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Table 34.  X-bar and mR-bar for each drop height of vertical funnel experiments. 

 

  

Height V1 V2 V3 V4 Height V1 V2 V3 V4

55 5.56 55 3.45

54 4.96 54 2.96

53 5.10 53 3.14

52 5.28 52 3.29

51 5.58 51 3.63

50 5.80 50 3.55

49 5.92 49 4.00

48 5.72 48 3.94

47 4.78 47 3.29

46 4.48 46 2.73

45 4.68 45 3.59

44 5.28 44 3.65

43 4.56 43 3.69

42 4.64 42 3.35

41 4.88 41 3.29

40 4.58 40 3.69

39 4.98 39 3.22

38 4.34 6.84 6.52 38 3.39 5.47 5.63

37 4.84 9.08 7.90 4.24 37 3.33 6.04 5.82 3.22

36 4.36 5.68 6.76 3.32 36 3.06 5.06 4.51 2.51

35 3.70 7.28 8.36 4.64 35 2.76 4.90 4.27 3.35

34 4.76 5.64 4.18 3.46 34 3.24 3.61 3.29 3.00

33 4.70 6.44 3.84 2.62 33 3.08 4.61 2.82 2.35

32 5.24 7.98 4.16 3.00 32 3.73 6.29 2.22 2.00

31 3.94 5.84 5.12 3.00 31 2.65 4.10 3.12 2.20

30 4.22 7.76 5.68 2.06 30 3.02 5.73 3.41 1.22

29 3.62 5.66 4.04 2.78 29 2.69 4.69 2.94 1.43

28 5.84 8.64 6.52 2.92 28 3.65 6.33 3.63 2.06

27 4.54 6.24 5.26 2.76 27 4.18 5.22 3.39 1.84

26 4.88 5.90 3.26 2.14 26 3.61 4.04 2.22 1.55

25 4.80 3.70 3.20 2.38 25 4.02 2.41 2.98 1.61

24 4.24 5.34 4.12 2.52 24 3.41 4.06 2.73 1.31

23 4.36 5.30 3.96 2.66 23 2.82 2.84 2.86 1.59

22 4.00 3.56 6.36 2.40 22 3.12 1.90 2.92 1.82

21 2.88 3.76 3.80 1.82 21 2.27 2.53 2.49 0.80

20 2.94 3.54 3.82 2.02 20 2.51 2.59 2.73 1.22

19 3.28 3.42 3.08 2.10 19 2.92 2.61 2.51 1.65

18 3.02 2.74 3.62 2.46 18 2.55 2.02 2.29 1.16

17 3.06 3.04 5.96 1.96 17 1.98 1.47 4.08 0.88

16 2.40 3.04 5.08 1.76 16 1.82 2.12 2.59 0.84

15 2.80 2.56 5.50 1.40 15 2.12 1.71 2.51 0.71

14 3.86 2.56 2.56 1.58 14 3.39 1.73 1.47 0.69

13 2.42 2.40 4.04 1.56 13 2.20 1.63 3.71 0.82

12 3.06 2.30 4.64 1.26 12 2.51 1.51 2.16 0.41

11 2.70 2.44 4.32 1.36 11 2.82 1.47 1.61 0.53

10 2.50 2.02 2.86 1.10 10 1.88 1.24 1.67 0.20

9 2.74 1.72 4.44 1.02 9 2.27 0.90 1.39 0.04

8 2.10 1.62 2.68 1.00 8 1.76 0.90 1.31 0.00

7 2.10 1.42 3.02 1.00 7 1.22 0.57 1.12 0.00

mR-barX-bar
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Table 35.  Shannon Information in bits (non-normalized, non-permutation entropy) for funnel 
experiments.  Values recorded at final (50th) drop for each drop height.  Height in inches. 

 

  

Height V1 V2 V3 V4

55 3.29

54 3.20

53 3.23

52 3.32

51 3.39

50 3.46

49 3.52

48 3.31

47 3.23

46 3.06

45 3.15

44 3.16

43 3.04

42 3.06

41 3.36

40 3.29

39 3.28

38 3.00 3.68 3.55

37 3.35 3.79 3.60 3.05

36 3.16 3.21 3.72 2.80

35 2.94 3.65 3.43 3.26

34 3.24 3.51 3.08 2.72

33 3.24 3.40 2.99 2.33

32 3.26 3.58 2.91 2.63

31 3.01 3.36 3.30 2.40

30 3.15 3.83 3.32 2.00

29 2.81 3.61 2.94 2.30

28 3.25 3.64 3.44 2.51

27 3.29 3.69 3.37 2.48

26 3.16 3.46 2.70 2.07

25 3.29 2.83 2.66 2.22

24 3.09 3.45 3.02 2.12

23 3.15 3.25 3.38 2.19

22 3.07 2.77 3.51 1.68

21 2.51 2.81 2.93 1.56

20 2.58 2.79 3.05 1.87

19 2.68 2.66 2.60 2.00

18 2.45 2.40 2.78 1.71

17 2.62 2.43 3.38 1.68

16 2.27 2.68 2.97 1.30

15 2.46 2.30 3.06 1.09

14 2.84 2.25 2.29 1.38

13 2.10 2.18 2.76 1.42

12 2.58 2.07 2.93 0.91

11 2.29 2.25 2.33 1.08

10 2.27 1.97 2.34 0.38

9 2.39 1.62 2.03 0.14

8 1.92 1.51 2.20 0.00

7 1.94 1.19 2.00 0.00

6 1.47

5 1.95
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Table 36.  Tokai Rika Data.  Reused with the permission of the Tokai Rika intellectual property division.  
All rights reserved. 
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e. Licensed Material means the artistic or literary work, database, or other material to which 
the Licensor applied this Public License. 

f. Licensed Rights means the rights granted to You subject to the terms and conditions of 
this Public License, which are limited to all Copyright and Similar Rights that apply to 
Your use of the Licensed Material and that the Licensor has authority to license. 

g. Licensor means the individual(s) or entity(ies) granting rights under this Public License. 
h. NonCommercial means not primarily intended for or directed towards commercial 

advantage or monetary compensation. For purposes of this Public License, the exchange 
of the Licensed Material for other material subject to Copyright and Similar Rights by 
digital file-sharing or similar means is NonCommercial provided there is no payment of 
monetary compensation in connection with the exchange. 

i. Share means to provide material to the public by any means or process that requires 
permission under the Licensed Rights, such as reproduction, public display, public 
performance, distribution, dissemination, communication, or importation, and to make 
material available to the public including in ways that members of the public may access 
the material from a place and at a time individually chosen by them. 

j. Sui Generis Database Rights means rights other than copyright resulting from Directive 
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal 
protection of databases, as amended and/or succeeded, as well as other essentially 
equivalent rights anywhere in the world. 

k. You means the individual or entity exercising the Licensed Rights under this Public 
License. Your has a corresponding meaning. 

Section 2 – Scope. 
a. License grant. 

1. Subject to the terms and conditions of this Public License, the Licensor hereby 
grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, 
irrevocable license to exercise the Licensed Rights in the Licensed Material to: 

A. reproduce and Share the Licensed Material, in whole or in part, for 
NonCommercial purposes only; and 

B. produce and reproduce, but not Share, Adapted Material for 
NonCommercial purposes only. 

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and 
Limitations apply to Your use, this Public License does not apply, and You do not 
need to comply with its terms and conditions. 

3. Term. The term of this Public License is specified in Section 6(a). 
4. Media and formats; technical modifications allowed. The Licensor authorizes You 

to exercise the Licensed Rights in all media and formats whether now known or 
hereafter created, and to make technical modifications necessary to do so. The 
Licensor waives and/or agrees not to assert any right or authority to forbid You 
from making technical modifications necessary to exercise the Licensed Rights, 
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including technical modifications necessary to circumvent Effective 
Technological Measures. For purposes of this Public License, simply making 
modifications authorized by this Section 2(a)(4) never produces Adapted 
Material. 

5. Downstream recipients. 
A. Offer from the Licensor – Licensed Material. Every recipient of the 

Licensed Material automatically receives an offer from the Licensor to 
exercise the Licensed Rights under the terms and conditions of this Public 
License. 

B. No downstream restrictions. You may not offer or impose any additional 
or different terms or conditions on, or apply any Effective Technological 
Measures to, the Licensed Material if doing so restricts exercise of the 
Licensed Rights by any recipient of the Licensed Material. 

6. No endorsement. Nothing in this Public License constitutes or may be construed 
as permission to assert or imply that You are, or that Your use of the Licensed 
Material is, connected with, or sponsored, endorsed, or granted official status by, 
the Licensor or others designated to receive attribution as provided in 
Section 3(a)(1)(A)(i). 

b. Other rights. 
1. Moral rights, such as the right of integrity, are not licensed under this Public 

License, nor are publicity, privacy, and/or other similar personality rights; 
however, to the extent possible, the Licensor waives and/or agrees not to assert 
any such rights held by the Licensor to the limited extent necessary to allow You 
to exercise the Licensed Rights, but not otherwise. 

2. Patent and trademark rights are not licensed under this Public License. 
3. To the extent possible, the Licensor waives any right to collect royalties from You 

for the exercise of the Licensed Rights, whether directly or through a collecting 
society under any voluntary or waivable statutory or compulsory licensing 
scheme. In all other cases the Licensor expressly reserves any right to collect such 
royalties, including when the Licensed Material is used other than for 
NonCommercial purposes. 

Section 3 – License Conditions. 
Your exercise of the Licensed Rights is expressly made subject to the following conditions. 

a. Attribution. 
1. If You Share the Licensed Material, You must: 

A. retain the following if it is supplied by the Licensor with the Licensed 
Material: 

i. identification of the creator(s) of the Licensed Material and any 
others designated to receive attribution, in any reasonable manner 
requested by the Licensor (including by pseudonym if designated); 

ii. a copyright notice; 
iii. a notice that refers to this Public License; 
iv. a notice that refers to the disclaimer of warranties; 
v. a URI or hyperlink to the Licensed Material to the extent 

reasonably practicable; 
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B. indicate if You modified the Licensed Material and retain an indication of 
any previous modifications; and 

C. indicate the Licensed Material is licensed under this Public License, and 
include the text of, or the URI or hyperlink to, this Public License. 

For the avoidance of doubt, You do not have permission under this Public License to Share 
Adapted Material. 

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based 
on the medium, means, and context in which You Share the Licensed Material. 
For example, it may be reasonable to satisfy the conditions by providing a URI or 
hyperlink to a resource that includes the required information. 

3. If requested by the Licensor, You must remove any of the information required by 
Section 3(a)(1)(A) to the extent reasonably practicable. 

Section 4 – Sui Generis Database Rights. 
Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the 
Licensed Material: 

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, 
reproduce, and Share all or a substantial portion of the contents of the database for 
NonCommercial purposes only and provided You do not Share Adapted Material; 

b. if You include all or a substantial portion of the database contents in a database in which 
You have Sui Generis Database Rights, then the database in which You have Sui Generis 
Database Rights (but not its individual contents) is Adapted Material; and 

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial 
portion of the contents of the database. 

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations 
under this Public License where the Licensed Rights include other Copyright and Similar Rights. 
Section 5 – Disclaimer of Warranties and Limitation of Liability. 

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the 
Licensor offers the Licensed Material as-is and as-available, and makes no 
representations or warranties of any kind concerning the Licensed Material, whether 
express, implied, statutory, or other. This includes, without limitation, warranties of title, 
merchantability, fitness for a particular purpose, non-infringement, absence of latent or 
other defects, accuracy, or the presence or absence of errors, whether or not known or 
discoverable. Where disclaimers of warranties are not allowed in full or in part, this 
disclaimer may not apply to You. 

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory 
(including, without limitation, negligence) or otherwise for any direct, special, indirect, 
incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or 
damages arising out of this Public License or use of the Licensed Material, even if the 
Licensor has been advised of the possibility of such losses, costs, expenses, or damages. 
Where a limitation of liability is not allowed in full or in part, this limitation may not 
apply to You. 

c. The disclaimer of warranties and limitation of liability provided above shall be 
interpreted in a manner that, to the extent possible, most closely approximates an absolute 
disclaimer and waiver of all liability. 

Section 6 – Term and Termination. 
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a. This Public License applies for the term of the Copyright and Similar Rights licensed 
here. However, if You fail to comply with this Public License, then Your rights under this 
Public License terminate automatically. 

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it 
reinstates: 

1. automatically as of the date the violation is cured, provided it is cured within 30 
days of Your discovery of the violation; or 

2. upon express reinstatement by the Licensor. 
For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to 
seek remedies for Your violations of this Public License. 

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under 
separate terms or conditions or stop distributing the Licensed Material at any time; 
however, doing so will not terminate this Public License. 

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License. 
Section 7 – Other Terms and Conditions. 

a. The Licensor shall not be bound by any additional or different terms or conditions 
communicated by You unless expressly agreed. 

b. Any arrangements, understandings, or agreements regarding the Licensed Material not 
stated herein are separate from and independent of the terms and conditions of this Public 
License. 

Section 8 – Interpretation. 
a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, 

reduce, limit, restrict, or impose conditions on any use of the Licensed Material that 
could lawfully be made without permission under this Public License. 

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it 
shall be automatically reformed to the minimum extent necessary to make it enforceable. 
If the provision cannot be reformed, it shall be severed from this Public License without 
affecting the enforceability of the remaining terms and conditions. 

c. No term or condition of this Public License will be waived and no failure to comply 
consented to unless expressly agreed to by the Licensor. 

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or 
waiver of, any privileges and immunities that apply to the Licensor or You, including 
from the legal processes of any jurisdiction or authority. 
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Creative Commons Attribution 4.0 International Public License 
By exercising the Licensed Rights (defined below), You accept and agree to be bound by the 
terms and conditions of this Creative Commons Attribution 4.0 International Public License 
("Public License"). To the extent this Public License may be interpreted as a contract, You are 
granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, 
and the Licensor grants You such rights in consideration of benefits the Licensor receives from 
making the Licensed Material available under these terms and conditions. 
Section 1 – Definitions. 

a. Adapted Material means material subject to Copyright and Similar Rights that is derived 
from or based upon the Licensed Material and in which the Licensed Material is 
translated, altered, arranged, transformed, or otherwise modified in a manner requiring 
permission under the Copyright and Similar Rights held by the Licensor. For purposes of 
this Public License, where the Licensed Material is a musical work, performance, or 
sound recording, Adapted Material is always produced where the Licensed Material is 
synched in timed relation with a moving image. 

b. Adapter's License means the license You apply to Your Copyright and Similar Rights in 
Your contributions to Adapted Material in accordance with the terms and conditions of 
this Public License. 

c. Copyright and Similar Rights means copyright and/or similar rights closely related to 
copyright including, without limitation, performance, broadcast, sound recording, and Sui 
Generis Database Rights, without regard to how the rights are labeled or categorized. For 
purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not 
Copyright and Similar Rights. 

d. Effective Technological Measures means those measures that, in the absence of proper 
authority, may not be circumvented under laws fulfilling obligations under Article 11 of 
the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international 
agreements. 

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or 
limitation to Copyright and Similar Rights that applies to Your use of the Licensed 
Material. 

f. Licensed Material means the artistic or literary work, database, or other material to which 
the Licensor applied this Public License. 

g. Licensed Rights means the rights granted to You subject to the terms and conditions of 
this Public License, which are limited to all Copyright and Similar Rights that apply to 
Your use of the Licensed Material and that the Licensor has authority to license. 
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i. Share means to provide material to the public by any means or process that requires 
permission under the Licensed Rights, such as reproduction, public display, public 
performance, distribution, dissemination, communication, or importation, and to make 
material available to the public including in ways that members of the public may access 
the material from a place and at a time individually chosen by them. 
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3. Term. The term of this Public License is specified in Section 6(a). 
4. Media and formats; technical modifications allowed. The Licensor authorizes You 

to exercise the Licensed Rights in all media and formats whether now known or 
hereafter created, and to make technical modifications necessary to do so. The 
Licensor waives and/or agrees not to assert any right or authority to forbid You 
from making technical modifications necessary to exercise the Licensed Rights, 
including technical modifications necessary to circumvent Effective 
Technological Measures. For purposes of this Public License, simply making 
modifications authorized by this Section 2(a)(4) never produces Adapted 
Material. 

5. Downstream recipients. 
A. Offer from the Licensor – Licensed Material. Every recipient of the 

Licensed Material automatically receives an offer from the Licensor to 
exercise the Licensed Rights under the terms and conditions of this Public 
License. 
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Licensed Rights by any recipient of the Licensed Material. 

6. No endorsement. Nothing in this Public License constitutes or may be construed 
as permission to assert or imply that You are, or that Your use of the Licensed 
Material is, connected with, or sponsored, endorsed, or granted official status by, 
the Licensor or others designated to receive attribution as provided in 
Section 3(a)(1)(A)(i). 



349 

b. Other rights. 
1. Moral rights, such as the right of integrity, are not licensed under this Public 

License, nor are publicity, privacy, and/or other similar personality rights; 
however, to the extent possible, the Licensor waives and/or agrees not to assert 
any such rights held by the Licensor to the limited extent necessary to allow You 
to exercise the Licensed Rights, but not otherwise. 

2. Patent and trademark rights are not licensed under this Public License. 
3. To the extent possible, the Licensor waives any right to collect royalties from You 

for the exercise of the Licensed Rights, whether directly or through a collecting 
society under any voluntary or waivable statutory or compulsory licensing 
scheme. In all other cases the Licensor expressly reserves any right to collect such 
royalties. 

Section 3 – License Conditions. 
Your exercise of the Licensed Rights is expressly made subject to the following conditions. 

a. Attribution. 
1. If You Share the Licensed Material (including in modified form), You must: 

A. retain the following if it is supplied by the Licensor with the Licensed 
Material: 

i. identification of the creator(s) of the Licensed Material and any 
others designated to receive attribution, in any reasonable manner 
requested by the Licensor (including by pseudonym if designated); 

ii. a copyright notice; 
iii. a notice that refers to this Public License; 
iv. a notice that refers to the disclaimer of warranties; 
v. a URI or hyperlink to the Licensed Material to the extent 

reasonably practicable; 
B. indicate if You modified the Licensed Material and retain an indication of 

any previous modifications; and 
C. indicate the Licensed Material is licensed under this Public License, and 

include the text of, or the URI or hyperlink to, this Public License. 
2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based 

on the medium, means, and context in which You Share the Licensed Material. 
For example, it may be reasonable to satisfy the conditions by providing a URI or 
hyperlink to a resource that includes the required information. 

3. If requested by the Licensor, You must remove any of the information required by 
Section 3(a)(1)(A) to the extent reasonably practicable. 

4. If You Share Adapted Material You produce, the Adapter's License You apply 
must not prevent recipients of the Adapted Material from complying with this 
Public License. 

Section 4 – Sui Generis Database Rights. 
Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the 
Licensed Material: 

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, 
reproduce, and Share all or a substantial portion of the contents of the database; 



350 

b. if You include all or a substantial portion of the database contents in a database in which 
You have Sui Generis Database Rights, then the database in which You have Sui Generis 
Database Rights (but not its individual contents) is Adapted Material; and 

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial 
portion of the contents of the database. 

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations 
under this Public License where the Licensed Rights include other Copyright and Similar Rights. 
Section 5 – Disclaimer of Warranties and Limitation of Liability. 

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the 
Licensor offers the Licensed Material as-is and as-available, and makes no 
representations or warranties of any kind concerning the Licensed Material, whether 
express, implied, statutory, or other. This includes, without limitation, warranties of title, 
merchantability, fitness for a particular purpose, non-infringement, absence of latent or 
other defects, accuracy, or the presence or absence of errors, whether or not known or 
discoverable. Where disclaimers of warranties are not allowed in full or in part, this 
disclaimer may not apply to You. 

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory 
(including, without limitation, negligence) or otherwise for any direct, special, indirect, 
incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or 
damages arising out of this Public License or use of the Licensed Material, even if the 
Licensor has been advised of the possibility of such losses, costs, expenses, or damages. 
Where a limitation of liability is not allowed in full or in part, this limitation may not 
apply to You. 

c. The disclaimer of warranties and limitation of liability provided above shall be 
interpreted in a manner that, to the extent possible, most closely approximates an absolute 
disclaimer and waiver of all liability. 

Section 6 – Term and Termination. 
a. This Public License applies for the term of the Copyright and Similar Rights licensed 

here. However, if You fail to comply with this Public License, then Your rights under this 
Public License terminate automatically. 

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it 
reinstates: 

1. automatically as of the date the violation is cured, provided it is cured within 30 
days of Your discovery of the violation; or 

2. upon express reinstatement by the Licensor. 
For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to 
seek remedies for Your violations of this Public License. 

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under 
separate terms or conditions or stop distributing the Licensed Material at any time; 
however, doing so will not terminate this Public License. 

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License. 
Section 7 – Other Terms and Conditions. 

a. The Licensor shall not be bound by any additional or different terms or conditions 
communicated by You unless expressly agreed. 
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b. Any arrangements, understandings, or agreements regarding the Licensed Material not 
stated herein are separate from and independent of the terms and conditions of this Public 
License. 

Section 8 – Interpretation. 
a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, 

reduce, limit, restrict, or impose conditions on any use of the Licensed Material that 
could lawfully be made without permission under this Public License. 

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it 
shall be automatically reformed to the minimum extent necessary to make it enforceable. 
If the provision cannot be reformed, it shall be severed from this Public License without 
affecting the enforceability of the remaining terms and conditions. 

c. No term or condition of this Public License will be waived and no failure to comply 
consented to unless expressly agreed to by the Licensor. 

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or 
waiver of, any privileges and immunities that apply to the Licensor or You, including 
from the legal processes of any jurisdiction or authority. 

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may 
elect to apply one of its public licenses to material it publishes and in those instances will be 
considered the “Licensor.” The text of the Creative Commons public licenses is dedicated to the 
public domain under the CC0 Public Domain Dedication. Except for the limited purpose of 
indicating that material is shared under a Creative Commons public license or as otherwise 
permitted by the Creative Commons policies published at creativecommons.org/policies, 
Creative Commons does not authorize the use of the trademark “Creative Commons” or any 
other trademark or logo of Creative Commons without its prior written consent including, 
without limitation, in connection with any unauthorized modifications to any of its public 
licenses or any other arrangements, understandings, or agreements concerning use of licensed 
material. For the avoidance of doubt, this paragraph does not form part of the public licenses. 
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Wed 4/29/2020 3:55 PM 
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In reply to your request, you have our permission to use Figure 9-2 on page 177 as specified in 
your request from the book “JURAN ON PLANNING FOR QUALITY” by Joseph M. Juran in 
your Doctoral degree dissertation. New permission is required for all subsequent uses. 
The following acknowledgment is to be reprinted in all copies of your dissertation: 
From JURAN ON PLANNING FOR QUALITY by Joseph M. Juran. Copyright © 1988 by Juan 
Institute, Inc. Reprinted with the permission of Free Press, a Division of Simon & Schuster, Inc. 
All rights reserved. 
This permission applies to all copies of your thesis made to meet the Doctoral degree 
requirements at University of Central Florida. 
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Please re-apply to this department if your dissertation is later accepted for commercial 
publication and you wish to retain our material at which time there will be a fee. 
Best wishes for the successful completion of your work. 
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Laura Milunic 
Assistant Permissions Manager 
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…(Stratified histogram) : (continuous data) = (Pareto analysis) : (count data) 
BRAVO! on your dissertation.  Please let me know if I can answer any more questions. 
Best wishes and kind regards, Davis 
--------- 
Blaine Lorimer 
Sun 5/17/2020 3:33 PM 
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I want to congratulate you on your numerous insightful articles about common causes! 
I am writing my doctoral dissertation on the continuous improvement of stable processes and am 
requesting permission to reprint the three figures you provided in: More common cause 
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these figures represent great examples of practical application and, more specifically, I have 



357 

never seen your histogram approach before, which seems to be an interesting extension upon the 
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Image Request from Dan Hamilton Art (2020) 
Dan Hamilton <danhamiltonca@gmail.com> 
Wed 6/3/2020 3:31 PM 
To:You 
Looks good to me kind sir! 
 
On Wed, Jun 3, 2020 at 11:22 AM Blaine Lorimer wrote: 
Hi Dan, 
May I have your permission to use your Complexity Quote Illustration in my dissertation?  The 
following citation will be included. 
 
Hamilton, A.D. (2020) Complexity quote illustration [Digital Artwork] Dan Hamilton Art, 
Glendale, CA, United States. http://www.danhamiltonART.com/ 
 
Additionally, I will list the following information under the figure: 
Complexity quote illustration.  From Dan Hamilton 
Art, http://www.danhamiltonART.com.  Copyright © 2020 by A.D. Hamilton.  Reprinted with 
the permission of author.  All rights reserved. 
 
Please let me know if you would prefer any changes. 

http://www.danhamiltonart.com/
http://www.danhamiltonart.com/
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My university expects me to include the following verbiage with this request: 
 
This request is for permission to include the above content on my university’s course 
management system, here at the University of Central Florida. The materials are currently hosted 
on a “cloud” server, and they are accessible only to registered students with username and 
password access to the system. 

I believe that you Dan Hamilton, are currently the holder of the copyright, because my 
research indicates that you created this artwork and therefore hold the copyright.  If you do not 
currently hold the rights, please provide me with any information that can help me contact the 
proper rights holder. Otherwise, your permission confirms that you hold the right to grant this 
permission. 

This request is for a non-exclusive, irrevocable, and royalty-free permission, and it is not 
intended to interfere with other uses of the same work by you. I hope that you will support our 
educational programs by granting this permission.  
Thank you, Blaine 
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Software Code From 
Classifying Cardiac Biosignals Using Ordinal Pattern Statistics and Symbolic Dynamics by 
Parlitz et al.  Copyright © 2012 by Elsevier.  Reprinted with the permission of Elsevier.  All 
rights reserved. 
 
Available at https://doi.org/10.1016/j.compbiomed.2011.03.017 
 
 
The following Python and MATLAB (TheMathWorks,Inc.) functions perm_indices compute the 
sequence indcs of permutation indices from a time series ts for a given word length wl and a 
given lag lag 
 
Python function perm_indices for computing permutation indices. 
 
  import numpy asnp 
  def perm_indices(ts, wl=4, lag=1): 
  m = len(ts)-(wl-1)*lag 
  indcs = np.zeros(m, dtype=int) 
  for i in xrange(1,wl): 
    st = ts[(i-1)*lag : m+((i-1)*lag0] 
    for j in xrange (i,wl): 
         indcs + =st>ts[j*lag : m+ j*lag] 
    indcs*= wl-i 
  return indcs + 1 
 
 
Listing 2. MatlabTM function perm_indices.m for computing permutation indices. 
 
function indcs = perm_indices(ts, wl,lag) ; 
m = length(ts)-(wl-1)*lag ; 
  indcs = zeros(m,1) ; 
for i = 1: wl-1 ; 
    st = ts(1+(i-1)*lag : m+(i-1)*lag) ; 
    for j = i:wl-1 ; 
       indcs= indcs+(st>ts(1+j*lag : m+j*lag)) ; 
    end 
    indcs = indcs*(wl-i) ; 
end 
indcs=indcs + 1 ; 
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 Some literature is listed related to the application of chaos theory for biological processes 

that might frequently be considered Shewhart-stable.  Some of these references could be useful 

in follow-on research for mitigating identical values in permutation entropy tuples but were not 

directly applicable to the research herein.  They were therefore not specifically discussed in the 

Literature Review, nor included in the List of References. 

 

Bowker, R. G., Wright, C. L., & Bowker, G. E. (2010). Patterns of body temperatures: Is lizard 
thermoregulation chaotic? Journal of Thermal Biology, 35(1), 1-5. 

Denton, T. A., Diamond, G. A., Helfant, R. H., Khan, S., & Karagueuzian, H. (1990). Fascinating 
rhythm: a primer on chaos theory and its application to cardiology. American Heart 

Journal, 120(6), 1419-1440. 

Goldberger, A. L. (1991). Is the normal heartbeat chaotic or homeostatic? Physiology, 6(2), 87-91. 

Goldberger, A. L. & West, B. J., (1992) Chaos and order in the human body. Chance 5, no. 1-2: 47-55. 

Holt, T. A. (2002). A chaotic model for tight diabetes control. Diabetic Medicine, 19(4), 274-278. 

Katayama, T., Sato, T., & Minato, K. (2004, September). A blood glucose prediction system by chaos 
approach. In The 26th Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society (Vol. 1, pp. 750-753). IEEE. 

Pijn, J. P., Van Neerven, J., Noest, A., & da Silva, F. H. L. (1991). Chaos or noise in EEG signals; 
dependence on state and brain site. Electroencephalography and Clinical Neurophysiology, 79(5), 
371-381. 

Pritchard, W. S., Duke, D. W., & Krieble, K. K. (1995). Dimensional analysis of resting human EEG II: 
Surrogate‐data testing indicates nonlinearity but not low‐dimensional chaos. Psychophysiology, 
32(5), 486-491. 

Varela, M., Jimenez, L., & Fariña, R. (2003). Complexity analysis of the temperature curve: new 
information from body temperature. European Journal of Applied Physiology, 89(3-4), 230-237. 

Varela, M., Ruiz-Esteban, R., & De Juan, M. J. M. (2010). Chaos, fractals, and our concept of disease. 
Perspectives in Biology and Medicine, 53(4), 584-595. 

Wang, X., Meng, J., Tan, G., & Zou, L. (2010). Research on the relation of EEG signal chaos 
characteristics with high-level intelligence activity of human brain. Nonlinear Biomedical 

Physics, 4(1), 2. 
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Numerous information theoretic quantifiers have been developed since Claude Shannon 

published his seminal paper in 1948.  Many of these apply entropy as a measure of uncertainty or 

randomness in a process.  Also, many researchers view the dynamics associated with changing 

entropy to be a measure of complexity.  However, so-called “structural” or “statistical” 

complexity extends beyond simple measures of entropy by incorporating physical structural 

correlations and can be used to quantify relationships between past information and future 

predictions (Crutchfield & Young, 1989).  Many authors also discuss complexity in terms of 

complications associated with a process.  Clearly, complexity has many meanings, depending 

upon the context.  This appendix is not an attempt to exhaustively survey all possible 

information-theoretic measures.  Some authors have already contributed to compilation efforts, 

and are listed below.  Instead, this section is intended to summarize some of the salient literature 

associated with prevalent measures, to provide a more comprehensive list of resources for the 

interested reader, who might well be a quality engineer with little background in information and 

complexity theory. 

 

 Statistical Complexity.  Another name for the structural complexity determined by the 

MPR-method, which was discussed at length in this research. 

Martin, M. T., Plastino, A., & Rosso, O. A. (2006). Generalized statistical complexity measures: 
Geometrical and analytical properties. Physica A: Statistical Mechanics and its 

Applications, 369(2), 439-462. 

 

 Complexity Compilations.  A few authors have compiled various definitions and 

measures of complexity. 
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Bennett, C. H. (1990). How to define complexity in physics, and why. In From complexity to life: On the 

emergence of life and meaning; Gregersen, N.H., Ed.; Oxford University Press: Oxford, UK, 2003; 
pp. 34–47. 

Feldman, D. P., & Crutchfield, J. (1998). A survey of complexity measures. Santa Fe Institute, USA, 11. 

Feldman, D. P., & Crutchfield, J. P. (1998). Measures of statistical complexity: Why?. Physics Letters-

Section A, 238(4), 244-252. 

 

 Computational Mechanics. 

Ay, N., & Crutchfield, J. P. (2005). Reductions of hidden information sources. Journal of Statistical 

Physics, 120(3-4), 659-684. 

Clarke, R. W., Freeman, M. P., & Watkins, N. W. (2003). Application of computational mechanics to the 
analysis of natural data: an example in geomagnetism. Physical Review E, 67(1), 016203. 

Crutchfield, J. P., & Young, K. (1989). Inferring statistical complexity. Physical Review Letters, 63(2), 
105. 

Shalizi, C. R., & Crutchfield, J. P. (2001). Computational mechanics: Pattern and prediction, structure and 
simplicity. Journal of Statistical Physics, 104(3-4), 817-879. 

 

 Logical Depth.  Based on algorithmic information and computational time complexity. 

Bennett, C. H. (1986). On the nature and origin of complexity in discrete, homogeneous, locally-
interacting systems. Foundations of physics, 16(6), 585-592. 

 

 Basic Entropy Measures. 

Rényi, A. (1961). On measures of entropy and information. In Proceedings of the Fourth Berkeley 

Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of 

Statistics. The Regents of the University of California. 

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3). 
379–423. doi:10.1002/j.1538-7305.1948.tb01338.x 

Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics. 

52(1–2). 479–487.  
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 Relative entropies- Well-developed in thermodynamics and quantum information theory, 

provides a reference for “available work”.  Also related to measuring differences for the 

Fisher Information Metric.  

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical 

Statistics, 22(1), 79-86. 

Scalassara, P. R., Dajer, M. E., Maciel, C. D., Guido, R. C., & Pereira, J. C. (2009). Relative entropy 
measures applied to healthy and pathological voice characterization. Applied Mathematics and 

Computation, 207(1), 95-108. 

 

 Mutual Information. 

Gu, F., Meng, X., Shen, E., & Cai, Z. (2003). Can we measure consciousness with EEG complexities? 
International Journal of Bifurcation and Chaos, 13(03), 733-742. 

 

 Fractal dimension.  Quantifies fractal patterns or sets by their complexity as a ratio of the 

change in detail to the change in scale. 

Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional 
dimension. Science, 156(3775), 636-638. 

Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: WH Freeman. 

 

 Cross-Correlation Sum Analysis.  A method to quantify the closeness of fractal measures. 

Kantz, H. (1994). Quantifying the closeness of fractal measures. Physical Review E, 49(6), 5091. 

 

 Lyapunov exponents.  The rate of separation for two chaotic trajectories in phase space.  

The largest of these on the spectrum of exponents determines the predictability of the 

dynamical process. 
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Lyapunov, A. M. (1892). The general problem of the stability of motion. Probleme Géneral de la Stabilité 
de Mouvement. Annales de la Faculté des Sciences de Toulouse, 9, 203-474. English Translation 
(1992). 

Pesin, Y. B. (1977). Characteristic Lyapunov exponents and smooth ergodic theory. Uspekhi 

Matematicheskikh Nauk, 32(4), 55-112. 

 

 Algorithmic Complexity.  The complexity of a particular string of data, in terms of all 

possible algorithms that can generate it. 

Chaitin, G. J. (1975). A theory of program size formally identical to information theory. Journal of the 

ACM, 22(3), 329-340. 

Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of 

Information Transmission, 1(1), 1-7. 

Solomonoff, R. (1978). Complexity-based induction systems: comparisons and convergence theorems. 
IEEE Transactions on Information Theory, 24(4), 422-432. 

 

 Lempel–Ziv (L-Z) Complexity.  Represents a lossless data compression algorithm 

usually associated with individual sequences, as opposed to probabilistic distributions.  

This is relevant in part because complexity is considered in many contexts to represent 

the “compressibility” of the data and because the purpose of much scientific research is to 

reduce the arbitrariness associated with an observed process.  No regularity in process 

data would mean it has minimal redundancy and minimal predictability.  Such a process 

could not be represented by any rules which, through algorithmic computation, allow its 

arbitrariness to be reduced.  The Lempel-Ziv algorithm can measure the amount of data 

compression possible, thereby providing a measure of complexity.  Similar to 

permutation entropy, L-Z often applies a sliding window concept to evaluate the data. 

Amigó, J. M., Szczepański, J., Wajnryb, E., & Sanchez-Vives, M. V. (2004). Estimating the entropy rate 
of spike trains via Lempel-Ziv complexity. Neural Computation, 16(4), 717-736. 
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Szczepański, J., Amigó, J. M., Wajnryb, E., & Sanchez-Vives, M. V. (2003). Application of Lempel–Ziv 
complexity to the analysis of neural discharges. Network: Computation in Neural Systems, 14(2), 
335-350. 

 

 Nonlinear Cross-Prediction Analysis. 

Schreiber, T. (1997). Detecting and analyzing nonstationarity in a time series using nonlinear cross 
predictions. Physical Review Letters, 78(5), 843. 

 

 Recurrence Plots. 

Eckmann, J. P., Kamphorst, S. O., & Ruelle, D. (1995). Recurrence plots of dynamical systems. World 

Scientific Series on Nonlinear Science Series A, 16, 441-446. 

Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex 
systems. Physics Reports, 438(5-6), 237-329. 

Vasconcelos, D. B., Lopes, S. R., Viana, R. L., & Kurths, J. (2006). Spatial recurrence plots. Physical 

Review E, 73(5), 056207. 

 

 Recurrence Quantification Analysis. 

Gao, J., & Cai, H. (2000). On the structures and quantification of recurrence plots. Physics Letters A, 

270(1-2), 75-87. 

 

 Statistical Testing in Reconstructed Phase Space. 

Kennel, M. B. (1997). Statistical test for dynamical nonstationarity in observed time-series data. Physical 

Review E, 56(1), 316. 

 

 Topological Methods. 

Zhang, J., & Small, M. (2006). Complex network from pseudoperiodic time series: Topology versus 
dynamics. Physical Review Letters, 96(23), 238701. 
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