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ABSTRACT 

 This dissertation investigates the interactive or joint influence of autocorrelative 

processes (autoregressive-AR, moving average-MA, and autoregressive moving average-

ARMA) and sample weights present in a longitudinal panel data set. Specifically, to what extent 

are the sample estimates influenced when autocorrelation (which is usually present in a panel 

data having correlated observations and errors) and sample weights (complex sample design 

feature used in longitudinal data having multi-stage sampling design) are modeled versus when 

they are not modeled or either one of them is taken into account. The current study utilized a 

Monte Carlo simulation design to vary the type and magnitude of autocorrelative processes and 

sample weights as factors incorporated in growth or latent curve models to evaluate the effect on 

sample latent curve estimates (mean intercept, mean slope, intercept variance, slope variance, 

and intercept slope correlation). Various latent curve models with weights or without weights 

were specified with an autocorrelative process and then fitted to data sets having either the AR, 

MA or ARMA process. The relevance and practical importance of the simulation results were 

ascertained by testing the joint influence of autocorrelation and weights on the Early Childhood 

Longitudinal Study for Kindergartens (ECLS-K) data set which is a panel data set having 

complex sample design features.  

The results indicate that autocorrelative processes and weights interact with each other as 

sources of error to a statistically significant degree. Accounting for just the autocorrelative 

process without weights or utilizing weights while ignoring the autocorrelative process may lead 

to bias in the sample estimates particularly in large-scale datasets in which these two sources of 

error are inherently embedded. The mean intercept and mean slope of latent curve models 
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without weights was consistently underestimated when fitted to data sets having AR, MA or 

ARMA process. On the other hand, the intercept variance, intercept slope, and intercept slope 

correlation were overestimated for latent curve models with weights. However, these three 

estimates were not accurate as the standard errors associated with them were high. In addition, fit 

indices, AR and MA estimates, parsimony of the model, behavior of sample latent curve 

estimates, and interaction effects between autocorrelative processes and sample weights should 

be assessed for all the models before a particular model is deemed as most appropriate. If the AR 

estimate is high and MA estimate is low for a LCAR model than the other models that are fitted 

to a data set having sample weights and the fit indices are in the acceptable cut-off range, then 

the data set has a higher likelihood of having an AR process between the observations. If the MA 

estimate is high and AR estimate is low for a LCMA model than the other models that are fitted 

to a data set having sample weights and the fit indices are in the acceptable cut-off range, then 

the data set has a higher likelihood of having an MA process between the observations. If both 

AR and MA estimates are high for a LCARMA model than the other models that are fitted to a 

data set having sample weights and the fit indices are in the acceptable cut-off range, then the 

data set has a higher likelihood of having an ARMA process between the observations. The 

results from the current study recommends that biases from both autocorrelation and sample 

weights needs to be simultaneously modeled to obtain accurate estimates. The type of 

autocorrelation (AR, MA or ARMA), magnitude of autocorrelation, and sample weights 

influences the behavior of estimates and all the three facets should be carefully considered to 

correctly interpret the estimates especially in the context of measuring growth or change in the 

variable(s) of interest over time in large-scale longitudinal panel data sets. 
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CHAPTER ONE: INTRODUCTION 

This chapter will focus on defining the research problem, describing the background, 

purpose, and discussing the significance of the study under investigation.  

Background of the Study 

Large-scale survey data sets are pervasive in the field of social sciences. A number of 

organizations such as the U.S. Department of Education, National Council of Educational 

Statistics (NCES), and Bureau of Labor Statistics collect survey data and publish them in public 

domain for a variety of purposes, one of which includes utilization of the survey data by 

educational researchers.  Some examples are The Early Childhood Longitudinal Study-

Kindergarten Class of 1998-99 (ECLS-K), National Educational Longitudinal Study (NELS), 

National Household Education Surveys Program (NHES), Consumer Price Index (CPI), and 

Employment Cost Index (ECI). These data sets are usually longitudinal in nature and are 

collected at multiple points in time. Because these longitudinal surveys are collected on a 

national level, most of the data collected in these surveys have multi-stage sampling and usually 

employ complex sample designs (Hahs-Vaughn, 2006a, 2006b; Stapleton, 2002).  

There has been extensive research on understanding the difficulties associated with 

analyzing data sets with complex sample designs during the past several decades (Hahs-Vaughn, 

2003, 2005, 2006c; Hahs-Vaughn & Lomax, 2006; Graubard & Korn, 2002; Graubard & Korn, 

1995a; Kish, 1968; Lumley, 2004; Matthew, 2008; Stapleton 2002). In large scale longitudinal 

surveys, some units in the population maybe oversampled (probability proportional to size 
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sampling) in order to ensure that certain subgroups of the population are adequately represented 

in the population.  

It is important to address two issues when a sample has to be analyzed having complex 

design features (Hahs-Vaughn, McWayne, Bulotsky-Shearer, Wen, Faria, 2011a): 

 Non-random sample creates homogeneity between the units (non-independence) 

 Disproportionate sampling to represent certain units in the population result in unequal 

selection probabilities (e.g., oversampling or adjustment for nonresponse) (Brick et al., 

2000; Lee et al., 1989; Skinner et al., 1989).  

This dissertation will focus on disproportionate sampling (which is one of the features of 

complex sample design) and non-independence of observations that is created due to repeated 

measures (feature of autocorrelation) and not due to clustering effects where the units within 

clusters are more similar to each other than units between clusters. Repeated measures is a form 

of data collection at multiple points in time that gives birth to another nuisance condition known 

as “autocorrelation”. Autocorrelation is a stochastic process that is usually present in time-series 

or panel data (also known as longitudinal or cross-sectional time-series data) when there is a 

relationship between successive observations in a sequence, that is, the score of the current 

observation in a sequence depends upon the scores of the previous observations in the same 

sequence (Box & Jenkins, 1976; Marsh, 1993). A stochastic process is a sequence of random 

variables that have some kind of autocorrelation/dependency between them. Time-series data is a 

sequence of observations that usually consist of repeated measures of the same units over 

specified time points (usually equidistant from each other) making the time series data a panel 

data set (Fredericksen & Rotondo, 1979). Hence, auto-correlation is present in time series or 
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panel data that has been derived by some kind of stochastic process (Box & Jenkins, 1976; Glass 

et al., 1975; Rogosa, 1979; Sivo, 1997). Observations that are close together are more highly 

correlated than observations that are further apart in time because the observations are identical 

to each other. The correlation between the observations at different points in time also makes the 

errors associated with the observations correlated (Curran & Bollen, 2001; Harvey, 1981; 

Murphy et al., 2011; Rowley, 1989; Sivo, 1997; Sivo, 2001; Sivo & Willson, 2000). 

Autocorrelation also occurs “when the same measurement instruments are used over two or more 

occasions. Hence, there is a tendency for the measurement errors to correlate” (Schumacker & 

Lomax, 2004, p. 397). From this point onwards, the stochastic process will be referred to as 

autocorrelation or autocorrelative process 

Sample weights are one of the components of complex multi-stage sampling design and 

autocorrelation is usually present in longitudinal survey data due to non-random assignment and 

they need to be properly modeled to obtain accurate estimates. The proposed dissertation will 

address the following two issues: 

(a) Disproportionate sampling is utilized to select certain units that are under-represented in the 

population. This results in unequal selection probabilities where oversampling is usually 

utilized when certain units in the population are sampled at different rates. The proposed 

study is going to focus on oversampling certain units in the population which is a feature of 

disproportionate sampling (Hahs-Vaughn 2005, 2006a, 2006b; Hahs-Vaughn, McWayne, 

Bulotsky-Shearer, Wen, Faria, 2011b; Hahs-Vaughn & Lomax, 2006; Kish, 1974).  
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(b) Dependencies within the serial observations (autocorrelation) in the data that is created due 

to repeated measures data collected at multiple points in time (Marsh, 1993; Rogosa, 1979; 

Sivo et al., 2005; Sivo & Willson, 1997). 

Failure to address and correct these issues results in standard errors and parameters 

estimates that are inaccurate. There is an increased probability of committing a Type I and Type 

II error. Type I error means that statistical significance is achieved when actually it is not 

achieved. Type II error means that statistical significance is not achieved when actually it is 

achieved. It then becomes important for researchers to understand the intricacies of complex 

survey sample designs. Failure to comprehend the details of these survey designs may lead to 

potential problems including biased and inaccurate estimates which then affect the inferences 

and conclusions made for research and practical purposes (Kalton, 1989; Kish, 1968; Kish & 

Frankel, 1973). 

Sample weights have been established as the remedy towards correcting the bias created 

by disproportionate sampling within complex sample designs (Hahs-Vaughn 2005, 2006a; Hahs-

Vaughn & Lomax, 2006; Stapleton, 2002; Stapleton 2006). A weight is simply defined as the 

reciprocal of the probability of selection of a particular unit in the population. The sample weight 

represents the number of units in the population that each unit represents (Kish, 1965). The 

utilization of sample weights helps to balance the problems associated with unequal selection 

probabilities and is often the most convenient method to deal with disproportionate sampling 

(Hahs-Vaughn, 2003, 2005, 2006a, 2011; Korn & Gruabard, 1995b; Kish, 1965, Muthen & 

Satorra, 1995; Stapleton, 2002). 
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On the other hand, researchers in the past have suggested the utilization of autocorrelative 

processes to account for the effects of autocorrelation on estimates (Huitema & McKean, 1991; 

Huitema & McKean, 2007; Huitema, et al., 1996; Sivo, 1997; Sivo & Willson, 2000; Sivo, et al, 

2005). Autocorrelation is usually present in panel data which is collected at multiple points in 

time (on the same units and on same measures) because the values of the current observation and 

the error associated with that observation becomes serially dependent with the values of the 

observation and its error preceding that current observation. Since large-scale survey data (that 

usually have a complex sample design) are collected on a longitudinal basis, it is very likely that 

the condition of autocorrelation enters into the data. Hence, it becomes necessary to model the 

autocorrelation present in the longitudinal data to obtain accurate estimates. (Heitjan & Sharma, 

1997; Murphy et al., 2011) 

An example of an existing data set that has features of both complex sample design and 

autocorrelation is ECLS-K. The ECLS-K is a longitudinal study that follows the same cohort of a 

large, nationally representative and community-based cohort of kindergarten students through 

eighth grade. The fall of 1998 and spring of 1999 formed the baseline year of data collection. 

The final round of data collection was completed in spring 2004 when majority of the children 

went to the fifth grade. The ECLS-K base year data employs a complex sample design. First, the 

multi-purpose sampling frame of Primary sampling units (PSU’s) was created which consisted of 

1,404 geographic areas of counties or groups of counties derived from the 1990 county-level 

population data. Second, within each PSU, schools with less than a minimum number of 

kindergarten students were clustered together before sampling.  Third, oversampling was used 

for children who were Asian and Pacific Islanders (API) to measure the size of PSU for selection 
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purposes. Fourth, schools were selected with probability proportional to size (PPS). Fifth, 

stratification variables were created based on metropolitan statistical area (MSA), race-ethnicity, 

class size, and per-capita income. Sixth, three different kinds of weights (child, teacher, and 

school-level) were calculated to compensate for the unequal selection probabilities at each stage 

of the sampling design. The current dissertation is only concerned with oversampling certain 

units in the population (which is one of the issues associated with disproportionate sampling) and 

the weights associated with it that was utilized in the ECLS-K data (Tourangeau, Le, Sorongon 

& Najarian, 2009). The ECLS-K is a longitudinal panel data set because it has seven waves of 

data collected beyond kindergarten where the students have been followed as a cohort from 1998 

(when they were in kindergarten) to 2007 (when they were in eight grade). Information was 

collected in fall and the spring of kindergarten (1998-99), the fall and spring of 1st grade (1999-

2000), the spring of 3rd grade (2002), the spring of 5th grade (2004), and the spring of 8th grade 

(2007). Data in 2001, 2003, 2005, and 2006 was not collected. The ECLS-K can be assumed to 

have the phenomenon of autocorrelation because of two reasons. First, data has been collected on 

measures such as math, science and reading achievement scores, physical health and growth, 

social development, and emotional well-being of children from their teachers, schools, and 

families by utilizing the same instruments over multiple points in time. Second, data has been 

collected on variables such as mathematics and reading achievement scores by following the 

same cohort of kindergarteners over seven waves or seven time periods (four waves for general 

knowledge scores), thereby making the data a panel data set (Tourangeau et al., 2009). 

Furthermore, Brak and Brak (2011) had observed autocorrelation to a significant degree in the 
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ECLS-K data. They had to use a structural equation model that adjusted for the disturbances 

caused due to autoregressive process present in the observations of ECLS-K data. 

Methodological Significance of the Study 

Unequal selection probabilities influence the estimates and bias the results.  Weights are 

used to correct for unequal selection probabilities (Hahs-Vaughn, 2011a, 2011b; Kish, 1965, 

1968; Pfeffermann, 1993). It has already been established in the literature that autocorrelative 

processes influences the sample estimates, confidence intervals, and standard errors of the 

observations in a longitudinal data set (Bryk & Bryk, 2011; Huitema, 1985; Kutner, Nachtsheim 

& Neter, 2004). However, we do not know to what extent do the sample weights and the correct 

specification of the autocorrelative process present in the data can together correct for the bias 

arising due to oversampling and dependency that is created due to autocorrelation. Taking into 

consideration just the corrective effects of sample weights and neglecting the type of 

autocorrelative process or vice-versa present in the data may not always yield the best sample 

estimates.  

If sample weights are utilized to correct for the bias created by unequal selection 

probabilities in a longitudinal data set, then it also becomes important to model the type of 

autocorrelative process present in the data in order to obtain the best sample estimates. When the 

autocorrelative process is present in the data set but is not correctly specified, then the merit of 

using sample weights can be undermined, resulting in less accurate estimates. Furthermore, it is 

also not known whether the autocorrelative process under-estimates or over-estimates the 

parameters when weights are applied versus when weights are not applied. Hence, the benefit of 
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obtaining correct sample estimates by using sample weights can be improved if the correct type 

of autocorrelative process present in the data can be simultaneously addressed. 

Research has not been located that has demonstrated the multiplicative or interactive 

effects of sample weights and the autocorrelative process on the estimates, standard errors, and 

confidence intervals. The studies that have investigated the effects of sample weights and 

autocorrelation on the estimates, standard errors and confidence intervals have been conducted in 

isolation. Vieira and Skinner (2008) indicated in their paper that “in the mainstream panel data 

modelling literature, there is little consideration of complex design sampling schemes other than 

through extensions of models to capture clustering effects” and they pointed that research on 

panel studies and complex sample designs has usually occurred in isolation. Furthermore, Sivo 

(1997) has recommended that it is important to test for all types of autocorrelative processes 

under investigation because it may happen that two or more processes may fit the same data 

equally well. It then becomes important and worthwhile to understand the extent to which 

sample weights influences the estimates by correcting for unequal selection probabilities in the 

presence of a particular autocorrelative process(s) that is existing in the longitudinal panel data 

set. The proposed dissertation study aims to fill these voids in the literature.  

Research Questions 

The present study is intended to answer the following research questions: 

a) To what extent will the presence or absence of one or more than one autocorrelative 

process influence estimates in a panel data set when sample weights are applied versus 

ignored?  
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b) Is there any interactive or joint effect between the autocorrelative process and sample 

weights on the estimates in a longitudinal panel data set? 

c) What kind of autocorrelative process(s) are present in the ECLS-K data and to what 

extent will the presence or absence of more than one autocorrelative process correct the 

estimates when sample weights are applied versus ignored? 

 

Contributions of the Study 

Over the years, there has been an increase in large-scale data sets that are collected at 

multiple points in time and involve a complex sample design (Rust & Rao, 1996; Saylor, 

Friedmann & Lee, 2012). There are an array of issues associated with longitudinal survey data 

analysis. Extensive work has been done on the application of sample weights to correct for the 

bias that occurs due to disproportionate sampling resulting in unequal selection probabilities 

(Binder, 1983; Hahs-Vaughn, 2003; Kish, 1965; Pfeffermann, Skinner, Holmes, Goldstein & 

Rashash, 1998; Stapleton, 2002).  On the other hand, studies have also been conducted to model 

the type of autocorrelation present in a longitudinal data set and to assess the effect of the type of 

autocorrelative process on the estimates, confidence intervals, and standard errors (Duncan & 

Morgan, 1987; Marsh, 1993; Rogosa, 1979).  

The focus of the proposed dissertation is on disproportionate sampling which arises from 

unequal selection and autocorrelation which arises from repeated measures of the same units 

over time (panel data), both of which are components of a longitudinal data having a complex 

sample design. The phenomenon of disproportionate sampling and autocorrelation can co-exist 

in a complex survey data that is longitudinal in nature. The proposed dissertation investigates the 
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interaction between the two phenomena. Disproportionate sampling & autocorrelation both lead 

to bias in estimates and give erroneous results (Hahs-Vaughn et al., 2011a; Kish, 1968; Marsh, 

1993; Rogosa, 1979; Sivo, 1997; Thomas & Heck, 2001). This dissertation is concerned about 

the joint influence of disproportionate sampling arising from complex sample design and 

autocorrelation arising from repeated measures. 

Both disproportionate sampling and autocorrelation are nuisance conditions that should 

be taken into account to derive unbiased results. Hence, the simultaneous utilization of both over 

sampling and correct specification of the autocorrelative process(s) is pivotal to get the best 

estimates and accurate results. It is important to understand how the weights and the 

autocorrelative processes work in tandem to influence the estimates when it has already been 

established in the literature that both these factors have an important influence on the estimates.  

This dissertation will be primarily a Monte-Carlo simulation based study. In the Monte 

Carlo method “properties of the distributions of random variables are investigated by use of 

simulated random numbers” (Gentle, 1985, p.612). “The Monte Carlo methods is an empirical 

method for evaluating statistics. Usually, the asymptotic properties of an estimator are known, 

but its finite sampling properties are not. Monte Carlo simulations allow researchers to assess 

finite sampling performance of estimators by creating controlled conditions from which 

sampling distributions of parameter estimates are produced. Knowledge of the sampling 

distribution is the key to evaluation of the behavior of a statistic” (Paxton, Curran, Bollen & 

Kirby, 2001, p. 289). In other words, the researcher creates a hypothetical population with 

parameter values already established by the researcher. The researcher then draws N number of 

samples each having n observations from the hypothetical population. The statistics of interest 
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and its associated coefficients are estimated for each sample. A sampling distribution is created 

for each of the population parameters by assembling the sample statistics from each of the 

samples that have been derived from the hypothetical population. This sampling distribution has 

the attributes (e.g. mean, standard deviation, intercept, and slope) of the estimated sampling 

distribution.  The coefficient estimates associated with the particular sample statistic is compared 

to the corresponding true population parameter value to estimate the amount of bias in the 

sample estimate when there is systematic violation of statistical rules. In the context of present 

study, population level parameter estimates (mean intercept, mean slope, intercept variance, 

slope variance, intercept slope correlation) will already be known for the simulated data sets 

specifying either the AR, MA and ARMA processes which would be then compared to the 

sample estimates to assess the change in the estimates when either the autocorrelative process or 

weights were accounted versus when both were accounted. 

One of the advantages of a Monte Carlo study is to estimate the amount (or cut-off point) 

of autocorrelation that can be tolerated in the data before the estimates starts to deteriorate and 

make the results inaccurate and/or violate statistical assumptions (Gentle, 1985). For example: In 

regression analysis, how much multicollinearity can be tolerated before the regression 

coefficients become biased and inaccurate? A Monte Carlo study can be utilized to answer this 

type of question. In the context of the proposed dissertation, the Monte Carlo study can answer 

the following question: “In complex longitudinal, survey data, what is the magnitude of 

autocorrelation that can be tolerated when sample weights are considered before the estimates of 

interest become biased and inaccurate?” 
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 In this simulation study, the estimates calculated after the weights were compared when 

the autocorrelative process had been taken into account with those estimates where the weights 

and/or autocorrelative process have not been taken into account. The comparison between the 

estimates will be done when both factors are modeled versus when either one of the factors is 

absent. The differences in the estimates will help to understand the extent to which weights and 

the autocorrelative process work hand-in-hand to derive the best possible sample estimates that 

are closer to the true population level estimates through the estimation of means, standard errors, 

and confidence intervals at the sample-level than in those situations when one or both the factors 

is ignored. 
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CHAPTER TWO: REVIEW OF LITERATURE 

This chapter reviews the literature on complex survey design, sample weights, probability 

proportional to sampling, panel data, and then the types of autocorrelative processes to be 

utilized for the current study. 

Complex Survey Design  

Longitudinal survey data that is collected using complex survey design do not utilize 

simple random samples. Usually, complex sampling designs are longitudinal and include 

stratified multistage cluster sampling (Feder, Nathan & Pfefferman, 2000; Stapleton, 2002, 2006; 

Steele, 2007) and unequal selection probabilities (Hahs-Vaughn, 2006a, 2007; Kish, 1992; 

Pfefferman, 1993; Pfefferman et al., 1996; Pike, 2008). In addition, longitudinal survey data 

frequently utilize repeated measures where data is collected at multiple points in time on the 

same units.  Disproportionate sampling leads to unequal selection of units and repeated measures 

create dependencies among the data points or observations that need to be modeled in order to 

yield accurate estimates (Bollen & Curran, 2004; Macurdy, 1982; Molenaar & Campbell, 2008; 

Sivo 1997).   

Non-independence or dependencies in the data results when the data from the population 

is sampled using non-random sampling design which is usually employed in collecting complex 

survey data (Hahs-Vaughn & Onwuegbuzie, 2006; Hahs-Vaughn et al., 2011b). The assumption 

for statistical procedures is that the residual values are independent across the observations. Due 

to the utilization of non-random sampling design, the data collected becomes clustered. 

Clustering is separating the population into groups and sampling from a random subset of these 
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groups (e.g. schools, districts). Hence, the level of analysis is the clusters. Clustering improves 

accuracy for a given cost but decreases precision for a given sample size (Lumley, 2004). 

Clustering of data disrupts the assumption of independence between the observations. This 

results in inaccurate estimates because the similarity within the units of a cluster is greater than 

between the clusters (Lee, Forthofer, & Lorimor 1989; Skinner, Holt, & Smith 1989). Ignoring 

the assumption of independence results in inaccurate estimates and leads to inflated Type I errors 

(Hox & Kreft 1994). 

Stratification is another important feature of complex surveys. Stratification divides the 

population under observation into relatively homogenous groups (strata) based on a distinct set 

of characteristic(s). A predetermined number of units from each stratum (e.g. men and women, 

whites and Hispanics) is then sampled. The level of analysis are the units within the strata. The 

sub-populations are formed a priori before analysis. Stratification improves accuracy for a given 

sample size (Lumley, 2004). Stratification improves precision in the estimates by decreasing the 

mean square errors associated with the estimates in linear regression (Kott, 1991). Stratification 

is different from clustering because the former is utilized to segregate on variables at the macro 

level (such as districts, schools) based on the characteristics associated with those variables 

whereas the latter is applied to variables directly related to the features associated with the 

individual, unit or micro level (such as ethnicity, gender).   

Unequal selection probabilities are generally an inherent component in complex surveys 

and usually occur when certain units in the population are sampled at different rates (e.g. females 

sampled more than males). When the sample is selected by simple random sampling, the sample 

is a true representation of population data as each unit in the population has an equal chance of 
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selection. Complex sampling designs usually utilize unequal selection probabilities. Failure to 

account for the sample selection process might inflate the variances of estimated coefficients and 

bias the inference (Kalton, 1983; Pfeffermann, 1993). Disproportionate sampling generally 

occurs when subgroups of the population are oversampled to ensure that the group size of certain 

units in the population are sufficient for estimation, when the sampled units are non-responsive 

and do not participate in the survey and/or when probability proportional to size sampling is 

utilized (Hahs-Vaughn et al., 2011a, 2011b).  

It is vital that researchers take the multi-stage sampling and/or disproportionate sampling 

into account because overlooking either one of them results in biased standard errors (that are 

underestimated), parameter estimates, confidence intervals and inferential test statistics (Diemer, 

2008; Lumley, 2004; Hahs-Vaughn, 2003, 2005, 2006a; Stapleton, 2002). There are a number of 

national data sets that employ complex sample design and are longitudinal in nature. For 

example: The ECLS-K, NELS-88 (National Educational Longitudinal Study of 1988), NPSAS 

(National Postsecondary Student Aid Study), and Beginning Postsecondary Students 

Longitudinal Study (BPS).  

Complex surveys have been widely studied in the past couple of decades. Some of the 

earliest works on complex surveys started with Kish (1965, 1968). In his paper, he calculated and 

applied standard errors, bias effects, ratio estimators, and the coefficient of variation for several 

different relative and index statistics that are important in social and economic surveys involving 

a complex multi-stage sampling design. He found out that the magnitude of sampling variability 

of the items in the surveys varied between the periodic surveys. He also concluded that standard 

errors calculated in accordance with the sample design was greater than the standard error 
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calculated from random sampling because the observations were clustered in the survey. Kish 

and Frankel (1974) expanded the statistical methods and procedures to compute biases and 

design effects in three complex samples by utilizing five types of estimators (ratio means, simple 

correlations, regression coefficients, partial coefficients, and multiple correlations) as a function 

of number of strata in the sample. He also calculated sampling errors by using the Taylor 

expansion method, jackknife repeated replication method and balanced repeated replication 

method.  

By the late 1970’s and early 1980’s, regression-based models and weighted estimators 

(that were design consistent) were developed, modified, and applied to analyze data from 

complex surveys (Binder, 1983; DuMouchel & Duncan, 1983; Hansen, Madow & Tepping, 

1983; Holt, Smith, & Winter, 1980; Kalton, 1983). With the development of sophisticated 

computer program in 1980’s such as SAS, LISREL, and MPlus, advanced statistical procedures 

such as bootstrapping (Kovar, Rao, & Wu, 1988), latent variable modeling (Mislevy & ETS, 

1985), and cluster sampling (Graubard, Fears & Gail, 1989) began to be used.  During the late 

1980’s and early 1990’s, large-scale surveys conducted at multiple points in time that involved 

multi-stage stratification and/or clustering (such as ECLS-K, NELS: 88, CPI) began to 

proliferate which further provided impetus to research on issues related to complex sample 

design such as longitudinal weighting (Corder, Woodbury & Manton, 1990; Crocker, LaVange, 

Woodbury & Manton, 1990), and sampling weights (Pfeffermann, 1993). With the increase in 

complexity of large-scale survey data, different statistical models such as multi-level models 

(Pfeffermann et al. 1998; Stapleton, 2002), mixture-models (Wedel, Hofstede & Steenkamp, 
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1998), and structural equation models (Hahs-Vaughn, 2003, 2006b; Muthen & Satorra, 1995; 

Stapleton, 2006, 2008) began to be used to analyze complex sample data.  

Sample Weights 

Unequal weighting is usually employed when certain units in the population are sampled 

with unequal selection probability. It then becomes important to assign unequal weights to those 

units in the analysis. If 1,000 individuals are sampled from each county in Florida and the 1,000 

people sampled from Orange County represent 1,000,000 people but the 1,000 sampled from 

Seminole County represents only 700,000 people. Therefore, each person from Seminole County 

should be weighted approximately 1.5 times as a person from Orange County in a valid analysis.  

A sample weight is the inverse of the probability that the unit in question was sampled 

(Kish, 1965) and is used to obtain the best possible sample estimates that are close to population 

parameters when units have unequal probabilities of being included in a sample (Kaplan & 

Ferguson, 1999). When the unit of analysis (i.e., a person) is sampled at different rates, the 

sample weight signifies the number of persons in the population that each person represents 

(Korn & Graubard, 1995b). Unequal selection probability occurs when units in the population 

are sampled at different rates in order to select certain units that usually are under-represented in 

the population (Stapleton, 2002). Sample weights correct for the disproportionality of sample 

thereby making it more representative to the population characteristics under investigation. 

Ignoring disproportionate sampling may result in biased parameter estimates and inaccurate 

inferences (Pfeffermann, 1993). Incorporating weights in the sample is required to compensate 

for sampling at different rates (Kalton, 1983) and is usually the appropriate method to correct 
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bias when certain units from the population are selected at unequal rates (Hahs-Vaughn, 2006a; 

Stapleton, 2002).  

There are different kinds of weights utilized to adjust for unequal selection probabilities 

and other complex sample design features but the two most commonly used in the analysis of 

survey data are raw weights and relative (Hahs-Vaughn, 2005) or normalized weights (Kaplan & 

Ferguson, 1999). Raw weight is the inverse of an observations’ likelihood of selection. 

Observations with a higher likelihood of getting selected (oversampling) will have a smaller raw 

weight value. Summing all the raw weights across all observations yield the population N (∑ 𝑌𝑖𝑛𝑖=1 = 𝑁). Complex survey design usually are multi-stage. The raw weight is also 

calculated as the reciprocal of the product of the probabilities of selecting certain units at each 

stage of the sampling design.  For example: If the probability of selection in stage 1 (state) is 1/5, 

and the probability of selection in stage 2 (district) is 1/15, then the final probability of selection 

is 1/75 and the corresponding raw weight is 75. 

            The estimates of interest (such as means, standard errors, confidence intervals, 

proportions) attained by utilizing raw weights is based on the population size and not on the total 

sample size (Kaplan & Ferguson, 1999) because adding all the raw weights across all the 

observations in the sample produces the total population size (West & Rathburn, 2004). Hence, 

any estimate that is directly influenced by sample size (such as test statistics) will be influenced 

when raw weight is used. The statistical test will have a higher likelihood of attaining 

significance because the population rather than sample size is being used for interpretation 

(Thomas & Heck, 2001).  
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In order to reduce the bias and ensure that standard error estimates reflect the actual 

sample size (Thomas & Heck, 2001), the raw weights are converted to relative weights. Relative 

weight is calculated in two ways. The raw weight is divided by its mean which reserves the 

sample size  𝑌i = 𝑌𝑛𝑌      (Peng, 2000). Here, Yi represents the normalized weight, Yn is the raw 

weight for the nth observation and 𝑌 represents the mean weight. Relative weight can be 

calculated by first calculating the ratio of sample size to the population size and then multiplying 

the ratio with the raw weight 𝑌𝑖 = 𝑌𝑛 (𝑛𝑖 )  (West & Rathburn, 2004). The advantage of utilizing 

relative weight is that sample weights are incorporated and the concerns related to sample size 

sensitivity is also addressed simultaneously. The relative weights add up to the sample size n and 

is more accurate than the raw weight which is based on the total population size N. 

 Complex samples usually employ a multistage cluster sampling technique where units 

that are more similar to each other are grouped together. Clustering has a tendency to inflate the 

variance of estimates, because observations are not truly independent. This results in 

underestimation of the true variability in the population (Hox, 1998). If the units within the 

clusters are more similar than units between the clusters, then the estimates of variances and 

standard errors will be biased. In such situations, it becomes important to model the internal 

homogeneity of the cluster by modeling the intra-cluster correlation coefficient which estimates 

the degree of bias (that creeps into the data) created due to correlations present within the 

observations in the clusters. Hence, it is important to also consider the design effects (average 

design effects-DEFF and the average of the square root of the design effects-DEFT) in 

combination with relative weights (Hahs-Vaughn, 2005b; Hahs-Vaughn et al., 2011b). DEFF is 

the ratio between the square of standard error obtained from a complex sample to the square of 
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standard error obtained from simple random sample (Kish, 1965). Both DEFF and DEFT are 

useful for making adjustments prior to hypothesis testing or after the hypothesis tests have been 

implemented. The proposed study is only focusing on oversampling certain units in the 

population and not taking into account the design effects which is generally calculated when 

cluster sampling is utilized (Hahs-Vaughn et al., 2011b). 

Creel (2007) analyzed longitudinal survey data employing a complex, clustered sample 

design. He conducted a simulation study where repeated cross-section data and panel survey data 

was generated. Comparison was made between estimates for the mean and confidence intervals 

between the two data sets. He found estimates for contrast mean were the same but the standard 

error estimates for contrast mean was smaller for panel data than the repeated cross-section data. 

These differences were carried forward to the confidence intervals and t-tests where the panel 

data yielded statistically significant differences but the repeated cross-section data did not. He 

concluded that the type of analytical methodology used can result in making a different 

interpretation of the output. 

The influence of sample weights has been studied in the context of single-level structural 

equation model (SEM) in which sample units have unequal chance of getting selected from the 

population. Kaplan and Ferguson (1999) conducted a simulation based study to investigate the 

effects of inclusion and non-inclusion of sample weights on the standard errors and fit statistics 

in SEM. The results revealed that ignoring sample weights can lead to large bias in the sample 

estimates and that the use of sample weights helps to diminish the bias. Sample weights have 

minimal influence on standard errors of the estimates when compared to the standard deviation 

of the sample when sampling variability is considered. The goodness-of-fit index and the 
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likelihood chi-square statistic also improved with the inclusion of sample weights. The results 

are consistent with the findings of other studies in the literature on sample weights wherein 

ignoring weights can lead to considerable bias in the estimates (Hahs-Vaughn & Lomax, 2006; 

Holt, Smith & Winter, 1980). 

Sample weights have also been studied in the context of multi-level SEM. Stapleton 

(2002) conducted a simulation based study and found out that non-inclusion of weights in the 

calculation of the covariance matrices can lead to biased parameter point estimates. The author 

also suggested that the utilization of an efficient sample size weight will sufficiently provide 

accurate estimates without adjusting the standard error. Sample weights when applied to survey 

data that has utilized multi-stage sampling design, produce meaningful estimates that are 

approximately equal to the population. In other words, application of sample weights to the 

longitudinal data using complex survey design ensures that the estimates obtained on the sample 

are representative of the population from which the sample was derived. If sample weights are 

not utilized, the results will reflect a bunch of observations that do not resemble the intended 

population level characteristics and will not be a true representation of the population (Kalton, 

1989).  

The next section reviews the literature on disproportionate sampling in relation to the 

current proposed study.  

Disproportionate Sampling 

Disproportionate sampling is a type of stratified sampling technique where the number of 

units sampled from each stratum is not proportional to their representation in the total 
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population. This results in unequal selection probabilities because the units in the population are 

not given an equal chance of getting selected in the sample. The strata have different sampling 

segments due to which sample weights need to be applied to compensate for the 

disproportionality in the sample (Daniel, 2011).  

Hansen and Hurwitz (1948) were the first to introduce the probability proportionate to the 

measure of size for lst-stage sampling unit, in their paper entitled "Theory of sampling from finite 

population." This paper explained a sampling scheme, in which the probability of sampling a 

certain number of observations is proportional to the sum of their sizes in the population without 

having any constraints on the number of sampling observations to be included from a single 

stratum. Midzuno (1952) described a sampling system with probability proportionate to the 

measure of size for 2nd-stage sampling unit and also calculated a variance formula.  

Disproportionate sampling is of three types depending on the objective of the allocation. 

The first type is disproportionate allocation for within strata where the investigator conducts 

detailed analyses on the observations within the strata of the sample. Usually, oversampling is 

employed to select observations that have a small number in the population. Although 

oversampling would create a disproportional distribution of the strata in the sample with respect 

to the population but there will be adequate number of units to conduct the within-strata 

analyses. The second type of disproportionate sampling is disproportionate allocation for 

between-strata analyses. In this type of allocation, comparison is made between the different 

strata. Hence, the investigator needs to increase the sample size of each stratum through 

equivalent allocation of observations in each strata. The third type of disproportionate sampling 

is optimum allocation. This type of allocation is used when both costs and precision or either one 
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important. The size of the stratum will depend upon the cost and precision. This type of 

allocation is used when an overall accuracy needs to be achieved which is greater than the 

optimum allocation (Daniel, 2011).  

Disproportionate sampling occurs when the certain groups in the population are 

oversampled in order to obtain sufficient sample size for estimation (Hahs-Vaughn et al., 2011b). 

Units that are oversampled (i.e., have a higher probability of being included in the sample) are 

given a smaller weight. Those oversampled units then have less effect on the sample estimates 

(Thomas, Heck & Bauer 2005). It also occurs when certain adjustments (such as non-response) 

needs to be done after clustering has taken place and probability proportional to size (PPS) 

sampling is utilized (such as sampling doctoral students for a study abroad program) (Pike, 2008, 

Hahs-Vaughn et al., 2011b).  

Disproportionate sampling has been consistently shown to underestimate the standard 

errors and overestimate the test statistics, thereby increasing the chances of committing Type I 

errors (Hahs-Vaughn 2005, 2006a; Hahs-Vaughn & Lomax, 2006; Kish 1992; Korn & Graubard 

1995; Stapleton 2002). The groups that are oversampled can inflate and bias the study results. 

Survey weights needs to be applied to correct for the bias created by disproportionate sampling 

in order to derive meaningful estimates that match to the population. Hence, weights ensures that 

the test statistics calculated from the sample is representative of the target population (Kalton, 

1989). The proposed study is focusing only on oversampling which is one of the aspects of 

disproportionate sampling and not taking cluster sampling into consideration.  

The next section focuses on panel data in the context of longitudinal, complex surveys.  



24 

 

Panel Data 

Longitudinal survey data has four common designs: repeated surveys, panel survey, 

rotating panel survey, and split panel survey (Duncan & Kalton, 1987). This dissertation focuses 

on panel survey data. Panel data is a form of longitudinal data where the population, variable(s), 

people or units of interest are followed over a period of time (usually at specified and uniform 

time intervals). The most important feature of panel data that distinguishes it from longitudinal 

study is it involves repeated measures or observations made on the same units at different points 

in time which are almost equally spaced. A longitudinal study also involves repeated measures 

data observed at different time periods but the data is not necessarily collected on the same set of 

units. Longitudinal surveys are sometimes used interchangeably with “panel surveys” (Box & 

Jenkins, 1976; Forth, 2008; Hedeker & Gibbons, 2006). 

Panel data has several advantages over cross-sectional data. First, the change in an 

individual’s scores can be assessed in an objective manner because repeated measurements are 

made on the same individual over multiple time periods. Second, panel data sets controls for 

individual heterogeneity which are the unmeasured person specific factors and/or effects that can 

bias the estimates. Third, panel data sets are capable of identifying and estimating effects that 

cannot be identified in cross-sectional data because of repeated measures at different time 

intervals. For example: Panel data sets can estimate what proportion of students who were 

dropouts in one time period remain dropouts in another time period. Cross-sectional data can 

only estimate the dropout rate at a specific point in time (Duncan, Juster & Morgan, 1987; Frees, 

2004; Hsiao, 1986). Panel data sets also has limitations such as issues of coverage error (entire 

population of interest is unaccounted), non-response error (certain units and/or groups in the 
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population do not participate in the study), various types of measurement errors that are caused 

due to inaccurate responses (possibly due to vague questions, unaware informants, mistakes in 

recording the responses), and recall issues where participants are not able to recollect historical 

information (Kasprzyk, Duncan, Kalton & Singh, 1989). Several studies in the literature have 

indicated that correlated measurement errors in longitudinal panel data are common (Joreskog, 

1979; Marsh & Grayson, 1994; Rogosa, 1979; Sivo, 1997) 

Panel data sets are pervasive especially in the field of econometrics and social sciences. 

The Panel Study on Income Dynamics (PSID) is a longitudinal survey that commenced in 1968 

and surveyed approximately 4,800 families in U.S. The data set contains information on the 

socio-economic characteristics of each family. The PSID also oversampled poor whites, blacks, 

Hispanics, and youths in the military, thereby infusing a feature of complex sample design into 

the survey (PSID Main Interview User Manual, 2015). The U.S. Current Population Survey 

(CPS) is a monthly national household survey conducted by the Census Bureau which collects 

data on the unemployment rate and statistics on the job and labor market. Examples of panel data 

sets outside of U.S. include German Social Economic Panel, Panel Data for Organization for 

Economic Cooperation & Development (OECD) countries, and British Household Panel Survey. 

Examples of panel data sets in the field of social sciences include the American 

Community Survey, American Time Use Survey, China Health and Nutrition Survey, and 

Cornell National Social Survey. There are a number of panel studies in the field of education 

(mentioned in the introduction chapter). The NELS-88 is a large-scale panel data set that 

surveyed eight graders in 1988 and followed the cohort in 1990, 1992, 1994, and 2000. The data 

contains detailed information on students, parents, teachers, and schools and include five waves 
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of data. The primary purpose of the NELS: 88 was to study an array of interrelated educational 

policies that influence the attributes associated with schools, teachers, parents and students. The 

survey design was different for each year depending on the type and number of surveys, tests, 

and the respondents involved in each wave of data (Curtin, Ingels, Wu & Heuer, 2002). 

Similarly, the ECLS-K is another panel data set that followed a sample of students from 

kindergarten to 5th grade to collect information on early education programs, student’s 

transitions, experiences and growth from kindergarten through 5th grade. It has four waves of 

data starting from 1998 and ending in 2004 (Tourangeau et al., 2009). For the present 

dissertation, ECLS-K would be analyzed because it has a complex sample design (Hahs-Vaughn, 

2003; Stapleton, 2006) and a significant degree of autocorrelation has been found in the data set 

(Brak & Brak, 2011).  

A number of studies have been conducted that have investigated estimations for panel 

data models under complex sample designs. Feder, Nathan, and Pfeffermann (2000) showed that 

the two level linear model (where both the first and second level random effects can develop 

autocorrelative over time) can be used to fit time series models to longitudinal series of short 

length and having missing data. They also found out that this kind of model can be used to 

account for longitudinal measurements obtained from multi-level populations. Sutradhar and 

Kovacevic (2000) crafted a simulation study to develop an estimating equation based on survey 

weights for estimating regression parameters involved in a multivariate polytomous longitudinal 

survey data.  

Skinner and Holmes (2003) studied two methods for dealing with sampling effects by 

considering either repetitive observations as multivariate outcomes and adopting weighted 
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estimators that explain the correlation structure, or considering a two-level longitudinal model 

and changing the weighting strategy proposed by Pfeffermann et al. (1998). Vieira and Skinner 

(2008) estimated model parameters and variances through a simulation study by analyzing a 

panel data having survey weights incorporated into the variance estimation. Linearization and 

point estimation procedures which included pseudo maximum likelihood (PML) and various 

forms of generalized least squares (GLS) were used. They found that linearization variance 

estimation performed better than the PML and GLS procedures. 

There is a clear link established between time series designs and longitudinal panel 

designs in which the same units are observed at several points in time (Sivo, 2001). Rogosa 

(1979) indicated that “[longitudinal] panel designs are a combination of time-series and cross-

sectional, with measurements obtained on a cross-section (wave) at each time point” (p. 275). 

The literature suggests that several models are available that specify correlated errors (Joreskog, 

1979, 1981; Joreskog & Sorbom, 1977, 1989; Marsh, 1993, Rogosa, 1979). Time series models 

may prove to be appropriate for longitudinal data where the measurement errors are correlated 

across different points in time. Longitudinal data is considered equivalent to time series, when 

(a) the data on the same individuals is collected at multiple points in time thereby making a panel 

data set, (b) the occasions in time are separated at equal intervals, and (c) sufficient measurement 

occasions across several time periods are available (Fredericksen & Rotondo, 1979). 

In the next section, the concepts and issues related to autocorrelation and autocorrelative 

processes is discussed.  
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Non-Independence of Observations (Autocorrelation) 

Longitudinal panel data is often influenced with a condition known as “autocorrelation.” 

Autocorrelation is a problematic condition because it usually occurs in panel time series data 

having serial observations. Autocorrelation in a sequence is generated by probabilistic models 

using random or stochastic processes. Several researchers have found that correlated 

measurement errors exist in longitudinal panel data (Joreskog, 1979, 1981; Joreskog & Sorbom, 

1977, 1989; Marsh, 1993, Rogosa, 1979). It is possible to identify the type of stochastic process 

by examining the characteristics of autocorrelation (Box & Jenkins, 1976). Examples of panel 

data sets are The Panel Study on Income Dynamics, British Household Panel Survey, German 

Social Economic Panel, Panel Data for OECD countries, NELS-88, and ECLS-K. In traditional 

regression analyses, there are certain statistical assumptions. First, it is assumed that the 

observations and the errors associated with them are independent of each other, that is, there is 

serial independence between the observations. Second, it is assumed that there is a constant 

variance, that is, the errors associated with the observations have a common variance. Third, the 

errors associated with the observations are normally distributed.  

In the presence of autocorrelation, the observations are not independent of each other and 

the amount of error in the data is underestimated. The estimated variances of the regression 

coefficients will also be biased and inconsistent. The value of R2 and consequently the reliability 

coefficient would be usually overestimated leading to high value for t-statistics and greater 

chances of committing Type II error. The standard error will be seriously underestimated leading 

to positive autocorrelation and the prediction intervals will be excessively wide thereby biasing 

the other parameters estimates of theoretical interest. (Huitema & McKean, 1991; Johnston, 
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1984; Murphy, Beretvas & Pituch, 2011; Sivo, 2001; Sivo & Willson, 2000; Sivo, Fan & Witta, 

2005; Rowley, 1989). In its simplest form, autocorrelation can be equated to a dependent t-test to 

correct for the sequential dependency between the pre and post-test scores. Ignoring the 

dependency between the pre and post-test scores would result in erroneous estimation of 

differences in means.  

Box and Jenkins (1976) indicated that time series data may be modeled from two discrete 

autocorrelative processes: autoregressive (AR) and moving average (MA). Sivo (1997), Sivo and 

Willson (2000), Sivo et al. (2005), Sivo and Fan (2008) also studied the AR, MA and auto-

regressive moving average (ARMA) models that were used to analyze longitudinal data. The 

need to account for the autoregressive and moving average autocorrelative processes increased 

with the finding of correlated errors in longitudinal panel data (Joreskog, 1979; Rogosa, 1979; 

Marsh & Grayson, 1994; Sivo & Willson, 2000). 

Willson (1995b) explained the use of structural equation modeling (SEM) to test time 

series models against longitudinal panel data. Willson showed that a model specifying a MA 

process has not been tested yet. The MA process exists in the data when the errors associated 

with the observations are correlated with each other. He suggested that the errors may have an 

MA structure if a lag 1 autocorrelation among the errors were to be found, that is the error in a 

sequence at any time period is influenced by error immediately before it in the same sequence. 

Sivo and Willson (2000) investigated whether MA or ARMA models fit two longitudinal data 

sets (previously assumed to have quasi-simplex structures) better than quasi-simplex, one-factor, 

or AR models. They concluded that the fit, propriety, and parsimony of all five models should be 
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considered simultaneously and compared before a particular model is deemed as appropriate for 

a particular panel data set.  

In an autoregressive model, the previous value of an observation in a sequence influences 

the current value of the same variable in the same sequence. Autoregressive refers to models 

where a variable is regressed on itself at an earlier time period (Figure 1 from Sivo & Willson, 

2000). The main feature of the autoregressive model is the regression of a variable on its earlier 

value. In autoregressive models, the variable is an additive function of its immediately preceding 

value plus a random disturbance. Autoregressive models answer the question, “How is the 

consistency of a variable over time influenced by the presence of correlation between the 

observations.”  

 

 Figure 1: Autoregressive model (lag 1) 

Anderson (1960), Bollen and Curran (2004), Box and Jenkins (1976), Humphreys (1960), 

Heise (1969), Wiley and Wiley (1970), Joreskog (1970, 1979), Rogosa (1979), and Werts, 

Joreskog, and Lin (1971) contributed towards the expansion, identification, and estimation of 

autoregressive models. In an autoregressive model, an observation in a particular sequence is an 

additive function of the observation(s) immediately before it in the same sequence plus a random 

error component associated with it (Bollen & Zimmer, 2010). The two important assumptions of 
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autoregressive models are that the current observation in a particular series is correlated and 

influenced by observation(s) immediately preceding it within the same series (also known as 

lagged influence) and that coefficients of effects are same for all observations. The equation for 

the simplest autoregressive model is shown in equation 1.1. 𝑌𝑡 = 𝛽1𝛾,𝑡−1 + 𝛽2𝑦𝑡−2 + ⋯ + 𝛽𝑖𝑦𝑡−𝑖 +  𝜉𝑖𝑡                                                                                   (1.1) 

Where, Yt is observed score on a time point t diverged from initial value of Y0 in the sequence, ξ 

denotes error component associated with a given time point t and β depicts the correlation among 

sequentially ordered scores at a particular time lag (e.g., t-1 = a lag of 1 where error associated 

with current observation is correlated to error associated with observation immediately before the 

current observation; t-2 = a lag of 2 where error associated with current observation is correlated 

to errors associated with two observations immediately preceding the current observation) 

(Bollen & Curran, 2004). Eideh and Nathan (2006) fitted the autoregressive model to 

longitudinal survey data (when the sampling design was informative) by using maximum-

likelihood, pseudo-maximum-likelihood and sample-likelihood- based methods. The simulation 

study showed that the sample-likelihood-based method produces better estimators than the 

pseudo-maximum-likelihood method.  

The Moving Average (MA) model is also a type of latent growth curve model. It answers 

the question, “How is the consistency of a variable over time influenced by the presence of 

correlation between the errors associated with the observations?” (Sivo et al. 2005) (p. 209). The 

MA models are often constructed to allow the present value in a time series sequence to be 

defined as a function of autocorrelated errors belonging to the same sequence. MA process is 

shown in equation 1.2. 
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𝑌𝑡 =  Ϛ𝑡 −  𝛽1𝜉𝑡−1 −  𝛽2𝜉𝑡−2 − ⋯ − 𝛽𝑞𝜉𝑡−𝑞                                               (1.2) 

Where yt represents an observed score taken on a particular time point (t) deviated from the 

initial value of Y0 in the series, ξ represents error component associated with a time point (t), and 

ξt-q represents a correlation among the errors at a particular time lag. MA models suggest that 

errors correlate across occasions at some lag. For example, a lag 1 MA (having minimum of 4 

waves) model would have the error for time period 1 correlate with the error from time period 2, 

and the error from time period 2 correlate with error in time period 3 (as shown in Figure 2 from 

Sivo & Willson, 2000). Usually, the error from time period 1 will not be correlated to error from 

time period 3.  

 The autoregressive and moving average processes can be simultaneously modeled being 

in the same data leading to formation of ARMA models. ARMA models are used to answer the 

following question, “How is the stability of a construct over time affected by autocorrelated 

observed scores and residuals?” (Sivo et al. 2005) (p. 209). ARMA process is shown in equation 

1.3. 

𝑌𝑡 = 𝜃1 𝑌𝑡−1 +  𝜃2 𝑌𝑡−2 + ⋯ +  𝜃𝑝 𝑌𝑡−𝑝 −  𝛽1 𝜉𝑡−1 −  𝜉𝑡−2 − ⋯ −  𝛽𝑞 𝜉𝑡−𝑞 +  𝜉𝑡        (1.3) 
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Figure 2: Moving Average (lag 1) 

  

Latent or Growth Curve Model 

Growth Curve Modeling (GCM) has become a popular alternative to the simplex and 

quasi-simplex, especially within the context of structural equation modeling (SEM).  GCM 

through SEM offers more flexibility in testing various models about patterns in growth or decline 

and is a better alternative than either repeated measures ANOVA or hierarchical linear modeling 

because SEM helps to model measurement error (Duncan, Duncan, Strycker, Li, & Alpert, 1999; 

Fan, 2003; Yuan, Marshall & Bentler, 2003).  The latent or growth trajectory model allows 

separate trajectories over time for variables which have been investigated at multiple points in 

time. The observed repeated measure is used to estimate a distinct growth trajectory for each 

observation across multiple time points. Each observation in the sample can have different time 
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trends as marked by a different intercept or slope when tracked over time. The latent trajectory 

focuses on individual differences in trajectories over time and does not assume that all 

observations would have the same pattern in growth. The latent trajectory model has no impact 

on the lagged values of a variable on itself. The intercept and slope parameters that explain the 

trajectories differ over observations used in the model. The intercept and slope parameters are 

tested in the framework of two components which are vital to a latent curve model: the within-

person sub-model and the between-person sub-model.  The within-person sub-model is 

represented in equation 1.4 (Bollen & Curran, 2004). 

𝑌𝑛𝑡 = ∝𝑡 + Λ12 +  𝛽𝑛 +  𝜖𝑛𝑡                                                                                 (1.4) 

Where, αt is the random intercept for case 1 and βn is the random slope for case n. The Λ12 is a 

constant within time t where Λ12 = 0, Λ22 = 1. The other values of Λ12 allow for the specification 

of linear or non-linear growth trajectories which usually varies for each unit in the model. The εit 

is the error term at time t. The latent trajectory model models each observation (n) to have a 

separate intercept and slope to explain the trajectory of a variable of interest over time (t). Linear 

latent curve models are usually specified for a pattern of growth across four occasions with the 

assumption of base parameters (0, 1, 2, 3).  These base parameters indicate that the change over 

time begins at the first time point followed by steady linear growth at each successive time point. 

Nonlinear latent curve models specify in addition to the linear growth when this makes 

theoretical sense.  A quadratic process may include the following base parameters [0 1 4 9 16 25 

36 49].  The between-person sub-model depicts the basic latent curve model by specifying the 
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starting point (intercepts- ) and the rate of change (slopes-  ) as random variables represented 

by the equations 1.5 and 1.6: 

𝛼𝑖 =  𝜇𝛼 +  ζ∝𝑖                                                                                            (1.5) 

𝛽𝑖 =  𝜇𝛽 +  𝜁𝛽𝑖                                                                                             (1.6) 

The individual model parameters are used to represent the average of all the starting points 

(mean intercept-µα) and average rate of change (mean slope-µβ) plus individual variation which 

is the error component (ζαi, ζβi) for all observations in a particular group (Bollen & Zimmer, 

2010).    

Sivo (2001) added to the previous research on selecting the best model for time series and 

panel data by focusing on the appropriateness and practical benefits of specifying multivariate 

time series models in the context of SEM. This paper suggested that testing multiple indicator, 

latent curve models specifying AR, MA, and ARMA autocorrelative processes that are 

equivalents of each other to panel data is important. Such multiple indicator models can be used 

to utilize one of the major statistical advantages of SEM which is directly modeling and 

estimating the measurement error that exits between the observations. The paper also 

demonstrated the possibility for autocorrelated latent factor errors especially when 

autocorrelation among factor scores has been found to exist in panel data.  

Sivo et al. (2005) combined the latent curve specification with the auto- correlated 

process known as autoregressive moving average (ARMA) resulting in the LCARMA model. 

They demonstrated that when growth curve (GC) models are fitted to longitudinal data, multiple 

competing models should also be considered which includes growth models that also specify 
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AR, MA, and ARMA processes. This simulation study integrated the GC, MA and ARMA 

models. It also demonstrated that the magnitude of autocorrelation in its various forms (AR, MA, 

and ARMA) can bias the growth curve parameter estimates of a GC model. The results of this 

study focus on the issue that GC model estimates become biased when autocorrelations are 

present in the manifest variables and the errors associated with them. The paper suggests that 

researchers using GC models should simultaneously consider different alternative rival models 

that are specified a priori, with AR, MA, or ARMA processes also because not doing so may 

result in biased growth curve estimates and difficulty to detect change over time.  

Sivo and Fan (2008) extended the work done by Sivo et al. (2005). They explained how 

researchers can analyze longitudinal data in which change or growth is modeled to occur over 

time. The researchers showed that it is meaningful for researchers to model competing latent 

curve processes with some consideration of autocorrelative processes as well. This LCARMA 

model was equipped to simultaneously correlate not only the observations but also the associated 

errors over time, which is a common phenomenon with longitudinal data, so that parameter 

estimated were not biased. The latent curve ARMA (p, q) model is specified by combining a 

latent curve and AR and a latent curve MA panel model (Sivo, 2001; Sivo et al., 2005). The 

latent curve ARMA (p, q) model is specified in equation 1.7: 

𝑌𝑡 =∝𝑖+  𝛽𝑖𝜆𝑡 + 𝑌𝑡−1 +  𝛾1 +  𝑌𝑡−2 + ⋯ +  𝛾𝑝 𝑌𝑡−𝑚 −  𝛿1𝜖𝑡−1 −  𝛿2𝜀𝑡−2 − ⋯ −  𝛿𝑞𝑒𝑡−𝑛 +  𝜖𝑡𝑖 
(1.7) 

where Yt is an observed observation (Y) at time point (t) following after the initial value of Y0 at 

time 1 of the series, ßi signifies a correlation among the scores at lag 1 where the current 

observation is influenced by the score immediately before it, and ε denotes residual error 
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component associated with a given observation at a time point (t). In the ARMA model, not only 

the observations are correlated in the sequence but the errors associated with the observations 

also correlate (Figure 3 from Sivo & Willson, 2000).  

 

 Figure 3: Autoregressive Moving Average (lag 1) 

In the next chapter, the methodology for the current dissertation is explained.  
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CHAPTER THREE: METHODOLOGY 

This chapter will focus on the methodology and research design utilized in the proposed 

study. The chapter will provide details of the Monte Carlo study design, the data generation 

process, the features of complex sample design (disproportionate sampling) that would be 

incorporated into the generated data, the sample selection procedure, and the calculation of 

sample weights. The first section of this chapter provides details of the Monte Carlo simulation 

which is a statistical experiment that was designed to investigate the interactive or joint influence 

of sample weights present in large-scale datasets and autocorrelative processes (Autoregressive-

AR, Moving Average-MA; Autoregressive Moving Average-ARMA) by generating fictitious 

population-level data having a particular autocorrelative process. The data generation process is 

described which explains the design of the simulation. It also describes the steps to incorporate 

the varying values of autocorrelative processes and sample weights. The second section of the 

chapter describes the complex sample design aspects of the ECLS-K data set including creation 

of strata and the other components that were modeled in the simulation. The third section of the 

chapter describes the sample size selection from the generated population data by utilizing the 

SURVEY SELECT procedure in SAS. The fourth section focuses on calculation of sample 

weights based on the number of units sampled into each strata from the total population. The last 

section summarizes all the steps involved in the data generation process, complex sample design, 

sample size selection, and calculation of sample weights. 
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Data Generation Process 

The design of Monte Carlo simulation in the present study was similar to the Monte 

Carlo study conducted by Sivo and Willson (2000) for generating the data sets having a 

particular autocorrelative process-AR, MA and ARMA. Sivo and Willson (1998) suggested that 

at least four waves of data is reasonable for fitting autoregressive (lag 1) and moving average 

(lag1) to a large panel data set. At least five or six waves of data is required at a minimum to fit a 

autoregressive moving average (ARMA) model (having lag 1 parameters each for the AR and 

MA portions). The values for latent curve estimates (mean intercept-10.0, mean slope-1.0, 

intercept variance-2.0, slope variance-0.10, and intercept slope correlation-0.05) were selected 

according to the values set by the simulation study conducted by Sivo, Fan, and Witta (2005) 

paper where they fitted latent curve model having AR, MA, and ARMA process to panel data. 

The random seed generated 252,000 data points that yielded similar means and standard 

deviations each time the data was generated in order to have consistency in the population-level 

estimates and to avoid change in these estimates with each iteration.   

The Monte Carlo simulation used in the current dissertation had four conditions which 

were systematically varied to encompass all the possible range of conditions to the best possible 

extent. Three types of autocorrelative processes were examined as the first three conditions of 

the simulation. First, the autoregressive (AR) component varied according to three AR values 

(0.33, 0.67, or 0.85). Second, the moving average (MA) component varied according to three 

MA values (0.33, 0.67, or 0.85). Third, the ARMA values changed according to four values 

(with AR parameter values of 0.00, 0.33, 0.67, 0.85, and MA parameter values of 0.00, 0.30, 

0.60, and 0.80). Finally, the fourth condition encompassed the application of sample weights 
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versus no application of sample weights. The population size and the sample size calculations 

were computed to oversample Asian Pacific Islander students that matched the number of 

students sampled in the ECLS-K data set (which was 24 from each school).  

Three eight-wave latent curve data sets having AR process (one for each AR lag1 values 

set to 0.33, 0.67, and 0.85), three eight-wave latent curve data sets having MA process (one for 

each MA lag1 values set to  0.33, 0.67, and 0.85), and four eight-wave latent curve ARMA data 

sets having ARMA process at lag1 (one for each AR values set to  0.00, 0.33, 0.67 & 0.85 and 

MA values set to 0.00, 0.30, 0.60 & 0.80 respectively) were generated each having 252,000 data 

points (Fan, Felsovalyi, Sivo, & Keenan, 2002) to obtain the population data. The value of 0.00 

represents no autocorrelative process being modeled to observe how the models intended to fit a 

particular data set and the behavior of sample estimates when the respective process was not 

accounted.  The latent curve estimates evaluated for the simulated population and sample data 

were mean intercept, mean slope, intercept variance, slope variance, intercept slope correlation, 

mean intercept standard error (SE), mean slope SE, intercept variance SE, slope variance SE, and 

intercept slope correlation SE. The model fit indices were used to evaluate the fit of a particular 

model(s) to the data. The fit indices consulted were chi-square, AIC, BIC- lower values indicate 

better fit; CFI > 0.95; McDonald Centrality Index > 0.90; RMSEA < 0.05; and RSMR < 0.08 

(Hu & Bentler, 1999; Schumacker & Lomax, 2010; Sivo, Fan, Witta & Willse, 2006). The 

appropriateness of the model was assessed according to several benchmarks which includes the 

behavior of the estimates, model fit indices, and the successful convergence of the iterative 

estimation procedure (which is usually maximum likelihood). 
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Eight models were selected for each of the AR, MA and ARMA values for the sample-

level data. These models are latent curve having sample weights but no ARMA, latent curve 

having no sample weights and no ARMA, latent curve AR with sample weights, latent curve AR 

without sample weights, latent curve MA with sample weights, latent curve MA without sample 

weights, LCARMA with sample weights and LCARMA without sample weights.  All the eight 

models were fitted to each of the ten population data sets. A total of 200 samples were randomly 

selected for each model (1,600 samples from each data set and 16,000 total samples from 10 data 

sets) from each of the population data having an autocorrelative process and corresponding 

value. Each iteration calculated the latent curve estimates and the fit indices. For example: 200 

samples were randomly selected for latent curve with sample weights model from the population 

data having the ARMA process of 0.33 and 0.30. This process was repeated for each population 

data set with a total of 10 runs to randomly select a total of 1,600 samples from each data set. 

The sample-level latent curve statistics were compared to the population-level parameters as a 

function of the eight models and the corresponding autocorrelative values.  

Data having a the AR(1) autocorrelative process was generated to have data points for 

eight waves (or eight sets of scores) in which the observed data point was a function of a 

preceding data point plus a degree of random error with AR process values set at 0.33, 0.67, or 

0.85. Data having the AR(1) autocorrelative process was generated to have data points for the 

eight waves in which the first data point had a direct influence on the second point. The AR(1) 

process means that the data points are at lag 1, that is the current data point is dependent on the 

consecutive data point preceding it. Data possessing the MA(1) autocorrelative process consist of 
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data points for eight waves in which lag 1 measurement errors were correlated according to static 

MA process values set at 0.33, 0.67, or 0.85.  

The MA(1) process means that the errors are at lag 1, that is the current error that is 

associated with the current data point is dependent on the consecutive error associated with the 

data point preceding it. The model suggests that errors were correlated at lag 1. In order to 

achieve a lag 1 error, the adjacent pair of errors should share a distinctive relationship that does 

not occur between the other pairs. Specifically, only errors belonging to adjoining waves were 

correlated in order to achieve a MA(1) autocorrelative process. Hence, an exclusive source of 

error impacts each error at a given wave, and that error is correlated with the next adjacent error 

at a given wave. Finally, the ARMA autocorrelative process was generated so that the data point 

was a function of a previous data point (AR process values set at 0.00, 0.33, 0.67, and 0.85) plus 

a random error portion and a correlated portion (MA process values set at 0.00, 0.30, 0.60, and 

0.80). The autocorrelative values for the AR and MA processes were consistent with the values 

utilized in the simulation study by Sivo and Willson (2000). 

The LINEQS option in the PROC CALIS (proc standing for procedure and CALIS 

representing Covariance Analysis of Linear Structural Equations) procedures in SAS was used to 

analyze the growth curve model estimates of the simulated data under study. The AR program 

was coded in a way so that the first observed data point had direct effect on the second observed 

data point plus a random error component. The phi coefficients for all the eight waves were 

forced to equal the first phi coefficient in the autocorrelative model. The MA program was coded 

so that each of the eight manifest variables of the growth curve model would be equivalent to the 

true score assessed for the first phi coefficient in the model plus some amount of random error. 
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“Hence, the manifest variables was constrained. The errors were correlated and all the error 

correlations were forced to equal to the correlation between the first and second error terms in 

the sequence. The ARMA process was simulated in a manner similar to the AR process, except 

the errors were permitted to correlate at lag 1, with all the error correlations constrained to equal 

the first error correlation in the sequence” (Sivo & Willson, 2000) (p. 180). 

To demonstrate empirical evidence of the simulation results, ECLS-K was selected 

because it has been established from previously published research that ECLS-K data possesses 

autocorrelation (Bryk & Bryk, 2011) but the type of autocorrelative process existing in the data 

set has not yet been investigated. The ECLS-K has data collected over seven waves [(1st wave: 

fall of kindergarten (1998-99); 2nd wave: spring of kindergarten (1998-99); 3rd wave: fall of 1st 

grade (1999-2000); 4th wave: spring of 1st grade (1999-2000); 5th wave: spring of 3rd grade 

(2002); 6th wave: spring of 5th grade (2004); 7th wave: spring of 8th grade (2007)] which 

includes the math and reading achievement scores at seven time points. Hence, all the three types 

of autocorrelative processes (AR, MA, and ARMA) were fitted to the ECLS-K data for two 

reasons. First, it was important to test the competing autocorrelative models under study 

simultaneously in order to identify the best model that fits the data (Sivo & Willson, 1998). 

Second, it was essential to correct for the biasing influence of any autocorrelative process on the 

estimates (Sivo, 1997).  

In order to assess the fit of the model(s) to the ECLS-K data set, fit indices of eight latent 

curve models, latent curve estimates with sample weights and without sample weights and their 

SE, means for math and reading scores, and number of iterations taken for model convergence 

were evaluated. If two models fit the data the ECLS-K data well, then model parsimony were 
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used as a criteria to assess the best fit between the models. Results obtained by fitting each of the 

autocorrelative model to the ECLS-K data set under study were interpreted in light of the 

simulation findings.  

Complex Sample Design 

Complex sample design usually involve a multi-stage sampling design. The units that 

were sampled in the first stage are the primary sampling units (PSU’s). In ECLS-K, the PSU’s 

were counties or groups of counties with PPS sampling.  The PSU size was determined by the 

number of 5-year olds in the population. There were total of 100 PSU’s selected. Out of the 100 

PSU’s, 24 were self-representing (SR) and the remaining 76 PSU’s were designated as non-SR. 

Asians and Pacific Islanders (APIs) were oversampled.  The units that were sampled in the 

second sampling stage are the secondary sampling units (SSU). In ECLS-K, the SSU’s were 

public and private schools. The schools were systematically selected with PPS sampling to a 

weighted measure of size based on the number of kindergartens enrolled (Tourangeau et al., 

2009). “There were total of 1,413 schools selected. Out of the total 1,413 schools, there were 953 

were public schools and 460 were private schools. The units that were sampled in the third-stage 

were children of kindergarten age selected within each sampled school. The objective of the 

child sample design was to achieve a minimum required sample size of APIs who were the only 

group to be oversampled. Equal probability systematic sampling was used to sample the children 

with a higher rate to sample the API children. In general, the number of children sampled at any 

one school was 72. Weight C7CW0 was utilized for calculation purposes because it is a 

longitudinal weight used to estimate the child-level characteristics or assessment scores across 
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seven waves. In addition, the full sample weight, the sample design, and PSU variables are 

required. The full sample weight (C7CW0), the stratum variable (C7TCWSTR), and the PSU 

variable (C7TCWPSU) were utilized to calculate the standard errors and design effects across 

the seven waves of data collection” (Tourangeau et al., 2009) (p.100-160).  

The ECLS-K not only employs a stratified clustered sampling design where the children, 

parents, teachers, and schools have their own design effects (that can be estimated from the 

survey data) but at the same time it also involves PPS sampling to account for oversampling. The 

number of 5-year olds and APIs (who were oversampled) in the first stage were used to select the 

PSU. In the second stage, the number of kindergartens were used to select the schools. 

Stratification and clustering occurred simultaneously not only at the PSU and school level but 

also at the school level. Clustering is inevitable in such kind on multistage design where 

grouping is occurring at each level based on the student’s ethnicity and age.   

The proposed study is only focusing on the complex design aspect with respect to 

oversampling and the dependence created due to repeated measures (not due to the clustering 

effect occurring because of complex multi-stage design).  Design effects are not being 

considered in the present study because the districts and schools are being oversampled based on 

the number of API students and not because APIs students in one school share certain 

characteristics (such as gender, age) that make them different from the characteristic of API 

students in other schools, thereby creating a clustering effect. In other words, the cluster effects 

are not being modeled in the simulated data sets because the stratification is taking place at the 

student level only as a function of unequal selection probabilities arising from disproportionate 

sampling (oversampling) of API students.  



46 

 

As discussed earlier, a total of 100 districts and 1,413 schools were sampled in the ECLS-

K data set.  In order to incorporate the framework of a real-world data set such as ECLS-K into 

the simulation, fictitious districts and schools were created. However, for the current simulation 

study approximately 5.0% of the total number of sampled districts and 25.0% of schools were 

used as parameters to generate the population-level data resulting in 5 districts and 

approximately 350 schools. Each district had 70 schools with each school consisting of 720 

students for a total district population size of 50,400 students and total population size of 

252,000 students. There were ten data sets generated three each for AR, MA, and four for 

ARMA. Each data set had 252,000 data points. In order to incorporate the oversampling of APIs 

from each school, the number of APIs within each school was varied.  In order to vary the 

number of APIs within each school and to create disproportionate number of students based on 

ethnicity, a race variable using a random uniform distribution was created. The variable was then 

divided into three strata-White (64%), Hispanic (20%), and Asian Pacific Islanders (17%) 

(APIs). These proportions were held constant so that each data set had consistency in terms of 

the distribution of units based on race.  

The above parameters were selected to generate the simulated population-level data for 

three reasons. First, the calculations for selecting the number of districts, schools and students 

were made with the ultimate goal of sampling 72 students (as in ECLS-K data) from each school. 

The current study was focused on unequal selection probabilities resulting from disproportionate 

allocation occurring at the student-level variable (which is race) and no PSU, SSU and design 

effects were being modeled either at the district or school level. The weights were calculated 

based on stratification of race variable only. Hence, simulating a humongous data set like the 
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ECLS-K having 100 school districts and approximately 1,400 schools is not a necessary 

condition to demonstrate the interactive effects between autocorrelative processes and sample 

weights. Second, it is important to keep the size of the data set manageable in a simulation study 

because the increase in observations increased the complexity of the data generation process as 

each data point had eight waves of a particular autocorrelative process also being simultaneously 

generated along with the computations of variances and covariances of exogenous variables in 

the latent curve model. Third, the parameter estimate calculations for the latent curve model and 

the convergence process (sometimes leading to non-convergence issues) also become complex as 

the number of data points generated increases. The size of the data set was set to 252,000 data 

points to keep the simulation study under control, to emulate the ECLS-K stratum size of 24 and 

also to simultaneously model the joint influence of autocorrelation and sample weights on the 

estimates.  

Sample size selection 

Random probability sampling was implemented to oversample the APIs students from 

each school. The race variable was created for two reasons. First, this variable is directly related 

to student-level data. Second, the variable would help to incorporate oversampling into the 

generated autocorrelative data sets. The population from each of the ten data sets have fabricated 

districts, schools, students to resemble the data structure of ECLS-K data set. However, multi-

stage sampling design in which PSU’s or districts were used as first-stage sampling design and 

then schools were selected as second stage to sample APIs according to PPS sampling were not 

utilized in the current study. For the current study, the sample size in each school was 72 
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students (10% of total 720 students in each school) which equals to 24 students in each of the 

three race stratum.  

The APIs which had disproportionate numbers in each school were selected using simple 

random sampling technique. “The PROC SURVEYSELECT procedure in SAS was used to 

randomly select APIs directly from each school. “This procedure provides a range of methods 

for selecting probability-based random samples. The procedure can select a simple random 

sample or a sample according to a complex multi-stage sample design that includes stratification, 

clustering, and unequal probabilities of selection. With probability sampling, each unit in the 

survey population has a known, positive probability of selection. This property of probability 

sampling avoids selection bias in order to make valid inferences from the sample estimates to the 

population estimates. The SURVEYSELECT procedure utilizes both equal probability sampling 

and probability proportional to size (PPS) sampling. In equal probability sampling, each unit in 

the stratum, has the same probability of being selected for the sample. In PPS sampling, a unit’s 

selection probability is proportional to its size measure. PPS selection is often used in cluster 

sampling, where certain number of clusters of different size are first selected (based on primary 

sampling unit) in the first sampling stage” (An & Watts, 2011, p.3). This dissertation will only 

utilize the equal probability procedure available in SURVEYSELECT procedure because the 

districts (PSUs) and schools (SSUs) are not being used for the first and second stage sampling 

design respectively to create cluster effects. The number of observations to be randomly sampled 

in each strata was also specified in the procedure which was set to 24. Sample estimates, 

confidence intervals, standard errors and fit indices of the latent curve model were evaluated for 
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each of the eight models. These estimates were the sample-level values of the observations in the 

sample data sets which were varied according to the AR, MA, and ARMA values.  

 

Calculation of Sample Weights   

The sample weights were calculated after randomly selecting the sample from each of the 

population data sets because now the underrepresented units in the population would have been 

oversampled thereby producing the bias in the sample estimates. The application of weights 

would revert back the sample estimates to approximately equal the population-level estimates. 

To reiterate, a weight is simply defined as the reciprocal of the probability of selection of a 

particular unit in the population (Kish, 1965). Three different weights were calculated, one for 

each of the race (White, Hispanic, and APIs) categories for each of the population-level data that 

varied according to the AR, MA and ARMA values. The total number of students in each of the 

three race categories at the population-level were computed. These numbers were constant across 

each iteration and for each AR, MA and ARMA lag values. The total number of students in each 

race was then divided by the total number of units randomly selected using the PROC 

SURVEYSELECT procedure for each stratum (which is 24). For example: If there were 200 

APIs in the population and 72 students were randomly selected, then the sample weight would be 20024  = 8.33. The adjusted weight was then calculated by dividing the weights by 100. The sample 

estimates were again computed after the application of weights and then compared to the 

population-level estimates as well as the sample estimates before the weights were applied. 

For the current study, longitudinal weights in the ECLS-K data set were utilized to 

account for the differences that occured in student-level characteristics across the seven waves of 
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data in the reading and math achievement scores. Longitudinal weights were used because the 

current study focuses on autocorrelative processes that exists in the scores of students observed 

over multiple periods of time. In order to apply and empirically demonstrate the relevance of 

simulation results in a real-world data set, the longitudinal weights present in the ECLS-K data 

set was modeled by accounting and then not accounting for the autocorrelative process present in 

the math and reading achievement scores collected over seven waves. The ECLS-K data was 

collected over seven waves (fall-kindergarten, spring-kindergarten, fall-first grade, spring-first 

grade, spring-third grade, spring-fifth grade, and spring-eight grade). The C7CW0 longitudinal 

weight accounted for the child assessment data from all the seven rounds of data collection and 

was used to model the weights along with the autocorrelative process.  

Summary 

To summarize, ten population-level data latent curve data sets were generated three each 

for autoregressive, moving-average, and four for the autoregressive moving-average 

autocorrelative values (with each data set having different values for AR, MA and ARMA 

processes). Each latent curve data set that specified a particular AR, MA and ARMA 

autocorrelative process was used to calculate the population-level means. These estimates were 

the true population-level means for the 252,000 observations generated in the data set having a 

particular autocorrelative process. A total of 16,000 samples were randomly drawn from the 

population-level data sets using the PROC SURVEYSELECT procedure in SAS which had the 

option of randomly allocating observations in each stratum based on the total sample size (24 in 

each stratum for a total sample size of 72 students). Each model was fitted to data specifying 
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varying levels of AR, MA and ARMA processes. Fit indices, means, standard errors, and 

confidence intervals were calculated for each model fitted to each data set. The weights were 

computed based on the proportion of students sampled for each of the three race stratum in each 

sample from each of the population data sets.   

The next chapter focuses on the results obtained from simulation, general linear model 

and analysis of ECLS-K data. 
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CHAPTER FOUR: RESULTS 

This chapter focuses on the results of the proposed study. The present study intended to 

answer the following questions:  

a) To what extent will the presence or absence of one or more than one autocorrelative 

process and corresponding value influence estimates in a panel data set when sample 

weights are applied versus ignored? 

b) Is there any interactive or joint effect between the autocorrelative process and sample 

weights on the estimates in a longitudinal panel data set? 

c) What kind of autocorrelative process(s) are present in the ECLS-K data and to what 

extent will the presence or absence of more than one autocorrelative process correct the 

estimates when sample weights are applied versus ignored? 

The chapter is organized as follows: First, results are presented to assess the sample-level 

fit indices (χ2, SRMR, RMSEA, AIC, Mc, and CFI) by the autocorrelative process (AR, MA, and 

ARMA) and their corresponding values (AR-0.33, 0.67, 0.85; MA-0.33, 0.67, 0.85, and ARMA 

with AR of 0.00, 0.33, 0.67 & 0.85, and corresponding MA values of 0.00, 0.30, 0.60 & 0.80) by 

eight model types (Latent Curve with sample weight-LC wt; Latent Curve with no ARMA and 

no sample weight-LC no ARMA & wt; Latent Curve AR with sample weight-LCAR wt; Latent 

Curve AR with no sample weight-LCAR no wt; LCARMA with sample weight-LCARMA wt; 

LCARMA with no sample weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve 

MA with no sample weight-LCMA no wt). These fit indices were used to assess the best model 

that fitted the simulated data. These eight models were fitted to data sets specifying an AR, MA 

and ARMA process. 
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The second section focuses on the population-level and sample-level estimates (mean 

slope- starting point; mean intercept- rate of change, intercept variance- average of all the starting 

points, slope variance- average rate of change, intercept slope correlation, mean slope standard 

error (SE), mean intercept SE, intercept variance SE, slope variance SE, and intercept slope 

correlation SE of the latent curve models fitted to each autocorrelative process and 

corresponding values. The sample-level latent curve estimates are presented for each 

autocorrelative process and values with the application of weights and without weights. The 

sample-level estimates were compared to the population-level estimates to evaluate the 

individual as well as interactive effects of autocorrelative processes and weights on the estimates. 

The latent curve estimates for the four models (latent curve-LC, latent curve autoregressive-

LCAR, latent curve moving average-LCMA, and autoregressive moving average-ARMA) with 

weights were also compared to select the model that had the most stable estimates.  

The third section focuses on the results from general linear model (GLM) procedure in 

SAS. The GLM procedure was utilized to evaluate the distributions of the sample-level estimates 

by LCARMA, LCAR, LCMA, and LC models with and without weights, to calculate the effect 

size (R2 and η2), coefficient of variation, mean square error (MSE),  and Tukey comparisons by 

model type, sample weight, and interaction between model type and weight. Box plots and 

interaction plots were also utilized to assess the separate and joint influence of autocorrelative 

process and weights on the sample latent curve estimates. The GLM results are presented by 

each autocorrelative process-overall (combined for all the models), ARMA process (for each set 

of values-AR of 0.33 & MA of 0.30; AR of 0.67 & MA of 0.60; AR of 0.85 & MA of 0.80), AR 

process only, MA process only and finally the latent curve model only having no autocorrelative 
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process. The ARMA process was analyzed by its different values through the GLM because it 

was the best fitting model and it was important to evaluate the influence of different ARMA 

values and sample weights on the sample LC estimates. The fourth section emphasizes on the 

results derived by analyzing the ECLS-K data in light of the simulation findings. The fifth 

section summarizes the results from the simulation study and analysis of ECLS-K data.  

Simulation Results 

This section presents results from the simulation. The fit indices for sample data results 

are presented by the AR, MA and ARMA processes and corresponding values for population 

estimates and then sample estimates.  

 

Fit Indices for Sample Data 

Table 1 provides the fit indices of eight latent curve models fitted to data with no 

autocorrelative process (AR of 0.00 & MA of 0.00). The chi-square values for the LCARMA no 

weight model was the lowest (34.6848) and the highest value was for the latent curve 

autoregressive (LCAR) with weight (175.9837). The SRMR, RMSEA and AIC values were 

lowest for the LCARMA no weight model and highest for LCAR with weight. The Mc Donald 

Centrality Index (Mc) and CFI value was best for the LCARMA no weight model and worst for 

the LCAR with weight. Overall, the best fitting model was the LCARMA no weight (χ2-34.6848, 

SRMR-0.0182, RMSEA-0.0256, AIC-64.6748, Mc-0.9871, CFI-0.9982) followed by LCARMA 

with weight (χ2-56.7465, SRMR-0.1540, RMSEA-0.0654, AIC-86.7465, Mc-0.9380, CFI-

0.9926) model when fitted to data having no autocorrelative process. The worst fitting model 
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was LCAR with weights. The LCARMA without weights model was the best fitting model out 

of all the eight models even after the AR and MA process set to 0.00. This suggests a strong 

ARMA process in the simulated data.  

Table 1: Sample LC Model Fit Indices by No ARMA Process (AR & MA-0.00) 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 44.2032 0.01910 0.03990 70.2032 0.9702 0.9963 

LC- no ARMA & wt 40.5607 0.01987 0.03269 66.5707 0.9784 0.9972 

LCAR-wt 175.9837 0.1904 0.1495 203.9837 0.7148 0.9615 

LCAR- no wt 38.7148 0.0195 0.0322 66.7284 0.9802 0.9975 

LCARMA-wt 56.7465 0.1540 0.0654 86.7465 0.9380 0.9926 

LCARMA- no wt* 34.6848 0.0182 0.0256 64.6748 0.9871 0.9982 

LCMA-wt 39.6333 0.0191 0.0339 67.6333 0.9782 0.9971 

LCMA-no wt 35.9023 0.0189 0.0256 63.9023 0.9866 0.9981 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA 

& wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; LCARMA with 

weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA 

with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean 

Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index; χ2- chi-square; SRMR-Standardized Root Mean Square Residual; RMSEA- Root Mean 

Square Error of Approximation; AIC- Akaike Information Criterion; MC- McDonald’s Non-Centrality Index; CFI-

Comparative Fit Index 

 

 

Table 2 provides the fit indices of eight latent curve models fitted to data having ARMA 

process with AR of 0.33 and MA of 0.30. The best fitting model was LCARMA no weight (χ2-

37.3829, SRMR-0.0149, RMSEA-0.02387, AIC-67.3729, Mc-0.9860, CFI-0.9983) followed by 

LCARMA with weight (χ2-52.3777, SRMR-0.0265, RMSEA-0.0406, AIC-82.3777, Mc-0.9556, 

CFI-0.9960). The worst fitting model was latent curve with no ARMA and no weight followed 

by LCMA no sample weights model. Table 3 provides the fit indices of eight latent curve models 

fitted to data having ARMA process with AR of 0.67 and MA of 0.60 with the LCARMA no 

weight (χ2-40.1927, SRMR-0.0188, RMSEA-0.0286, AIC-70.1827, Mc-0.9805, CFI-0.9983) 

being the best fitting model followed by LCARMA with weight (χ2-42.2662, SRMR-0.0206, 
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RMSEA-0.0358, AIC-72.2662, Mc-0.9714, CFI-0.9980). The latent curve with no ARMA and 

no weight was again deemed the worst fitting model of all the eight models based on the fit 

indices followed by LCMA no sample weights model. 

Table 2: Sample LC Model Fit Indices by ARMA Process (AR-0.33 MA-0.30) 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 1599.949 0.3313 0.4849 1625.549 0.0269 0.7464 

LC- no ARMA & wt 1866.054 0.5502 0.5241 1892.064 0.0166 0.7013 

LCAR-wt 415.9144 0.0678 0.2433 443.9144 0.4159 0.9376 

LCAR- no wt 387.4536 0.0154 0.2347 415.4636 0.4394 0.9418 

LCARMA-wt 52.3777 0.0265 0.0406 82.3777 0.9556 0.9960 

LCARMA- no wt* 37.3829 0.0149 0.02387 67.3729 0.9860 0.9983 

LCMA-wt 835.1201 0.2492 0.3530 863.1201 0.1564 0.8698 

LCMA-no wt 1113.672 0.3011 0.4097 1141.672 0.0819 0.82365 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA 

& wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; LCARMA with 

weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA 

with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean 

Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index 

 

Table 3: Sample LC Model Fit Indices by ARMA Process (AR-0.67 MA-0.60) 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 2148.821 0.1909 0.5634 2174.821 0.0076 0.7148 

LC- no ARMA & wt 2140.085 0.2003 0.5620 2166.095 0.0089 0.7144 

LCAR-wt 618.7014 0.0159 0.3018 646.7014 0.2573 0.9207 

LCAR- no wt 613.6259 0.0160 0.3001 641.6359 0.2618 0.9209 

LCARMA-wt 42.2662 0.0206 0.0358 72.2662 0.9714 0.9980 

LCARMA- no wt* 40.1927 0.0188 0.0286 70.1827 0.9805 0.9983 

LCMA-wt 1024.569 0.1488 0.3923 1052.569 0.1016 0.8662 

LCMA-no wt 1033.975 0.1493 0.3942 1061.975 0.9925 0.8641 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA 

& wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; LCARMA with 

weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA 

with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean 

Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index 
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Table 4 provides the fit indices values of eight latent curve models fitted to data having 

ARMA process with AR of 0.85 and MA of 0.80. The LCARMA no weight (χ2-33.0722, SRMR-

0.0232, RMSEA-0.0216, AIC-63.0722, Mc-0.9908, CFI-0.9992) was the best fitting model 

followed by the LCARMA with weight (χ2-44.4738, SRMR-0.0227, RMSEA-0.0393, AIC-

74.4738, Mc-0.9662, CFI-0.9979).  

Table 4: Sample LC Model Fit Indices by ARMA Process (AR-0.85 MA-0.80) 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 2013.702 0.0694 0.5452 2039.702 0.0103 0.7492 

LC- no ARMA & wt 2422.499 0.1307 0.5988 2448.499 0.0040 0.6957 

LCAR-wt 659.0156 0.0125 0.3120 687.0156 0.2345 0.9204 

LCAR- no wt 660.4773 0.0103 0.3125 688.4733 0.2332 0.9197 

LCARMA-wt 44.4738 0.0227 0.0393 74.4738 0.96625 0.9979 

LCARMA- no wt* 33.0722 0.0232 0.0216 63.0722 0.9908 0.99928 

LCMA-wt 788.8032 0.0793 0.3425 816.8032 0.1752 0.9040 

LCMA-no wt 1256.523 0.0860 0.4358 1284.523 0.05951 0.8440 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA 

& wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; LCARMA with 

weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA 

with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean 

Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index 

 

 

  The latent curve with weight and without weight had the worst fit. An important trend to 

note in the fit indices for the LCARMA no weight and LCARMA with weight is the difference 

between the fit indices for both the models which is more in Table 2 (when the AR and MA 

process was 0.33 and 0.30) than in Table 3 (when the AR and MA process was 0.67 and 0.60). 

Furthermore, the fit indices for the LCARMA no weight and LCARMA with weight in Table 3 

were better than the fit indices of both models in Table 1 and 2. Overall, the fit indices results 

from Tables 1 through 4 indicate that ARMA models fitted the ARMA data better than the other 

models. Although the LCARMA no weight models had the best fit but the fit was slightly better 
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than LCARMA with weight model which could be due to some random noise associated with 

including weights in the latter model.   

Tables 5 through 7 presents the fit indices values of eight latent curve models fitted to 

data having an AR process and no MA process modeled. Table 5 present the fit indices results 

for AR process of 0.33. The best fitting models was LCARMA no weight (χ2-35.7735, SRMR-

0.0096, RMSEA-0.0286, AIC-65.7735, Mc-0.9846, CFI-0.9987) and LCARMA with weight (χ2-

38.0987, SRMR-0.0090, RMSEA-0.0336, AIC-68.0987, Mc-0.9794, CFI-0.9983) with the latter 

fitting slightly better than the former. The worst fitting models were again latent curve with 

weight and latent curve without ARMA no weight models followed by latent curve MA models. 

Table 6 provides the fit indices for AR process of 0.67 with LCARMA with weights (χ2-35.2155, 

SRMR-0.0077, RMSEA-0.0266, AIC-65.2155, Mc-0.9859, CFI-0.9989) and LCARMA without 

weights (χ2-38.2735, SRMR-0.0079, RMSEA-0.0338, AIC-68.2735, Mc-0.9790, CFI-0.9985) 

having the best fit indices.  

Table 5: Sample LC Model Fit Indices by AR Process (AR-0.33, MA-0.00) 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 999.6424 0.3449 0.3810 1025.642 0.1073 0.8360 

LC- no ARMA & wt 1314.952 0.5257 0.4388 1340.952 0.0515 0.7809 

LCAR-wt 68.2863 0.0449 0.0555 96.2863 0.9272 0.9934 

LCAR- no wt 39.4568 0.0099 0.0337 67.4568 0.9786 0.9982 

LCARMA-wt 38.0987 0.0090 0.0336 68.0987 0.9794 0.9983 

LCARMA- no wt* 35.7735 0.0096 0.0286 65.7735 0.9846 0.9987 

LCMA-wt 713.3745 0.2646 0.3252 741.274 0.2070 0.8843 

LCMA-no wt 1016.337 0.3018 0.3909 1044.337 0.1025 0.8317 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA 

& wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; LCARMA with 

weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA 

with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean 

Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index 
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The latent curve MA were the worst fit models followed by LC models. Table 7 had the 

same trend as table 5 and 6 with the LCARMA no weight (χ2-34.5953, SRMR-0.0074, RMSEA-

0.0265, AIC-64.5953, Mc-0.9873, CFI-0.9991) and LCARMA with weight (χ2-36.7912, SRMR-

0.0076, RMSEA-0.0314, AIC-66.7912, Mc-0.9823, CFI-0.9988) having the best fit indices with 

the latter fitting slightly better than the former. The latent curve and LCMA models had the 

worst fit indices. The fit indices for the LCARMA with weight and without weights models had 

similar fit indices and fit the data well irrespective of the AR value in Tables 5 through 7 because 

the LCARMA is a more accommodating model as it specifies both the AR and MA processes. 

Hence, the fit of LCAR and LCARMA models are comparable but the LCAR with weights was 

the best fitting model to the data having AR process because the AR lag1 estimates (ranging 

from 0.5787 to 0.9474) of LCAR with weight models were higher than the LCARMA with 

weight (0.5763 to 0.9414) models. Furthermore, the MA lag1 estimate for LCAR with weights 

model fitted to data having no MA process was also close to zero (Tables 105 and 106). 

Table 6: Sample Level Fit Indices by AR Process (AR-0.67, MA-0.00) 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 1301.718 0.2031 0.4364 1237.718 0.0535 0.8228 

LC- no ARMA & wt 1308.207 0.2059 0.4375 1334.207 0.0526 0.8208 

LCAR-wt 42.5303 0.0084 0.0395 70.5303 0.9717 0.9981 

LCAR- no wt 39.1287 0.0082 0.0323 67.1287 0.9793 0.9986 

LCARMA-wt 38.2735 0.0079 0.0338 68.2735 0.9790 0.9985 

LCARMA- no wt* 35.2155 0.0077 0.0266 65.2155 0.9859 0.9989 

LCMA-wt 910.1646 0.2216 0.3691 938.1646 0.1315 0.8772 

LCMA-no wt 914.8995 0.2235 0.3702 942.8995 0.1299 0.8758 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA 

& wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; LCARMA with 

weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA 

with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean 

Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index 

 



60 

 

 

  Tables 8 through 10 presents the fit indices values of eight latent curve models fitted to 

data having an MA process and no AR process modeled. Table 8 depicts the fit indices with MA 

process of 0.33. The best fitting model was the latent curve moving average (LCMA) no weight 

(χ2-34.5165, SRMR-0.0208, RMSEA-0.0256, AIC-64.5165, Mc-0.9875, CFI-0.9982) and 

LCMA with weight (χ2-122.6257, SRMR-0.1544, RMSEA-0.1216, AIC-152.6257, Mc-0.8062, 

CFI-0.97970) with the latter having better fit indices than the former. The LC and LCAR were 

the worst fitting models because they were being fitted to data having an MA process. The 

LCARMA no weight had similar fit indices as the latent curve MA because it is a more flexible 

model as it also specifies the MA process. The worst fitting models were latent curve with 

weight and latent curve without weights. 

Table 7: Sample LC Model Fit Indices by AR Process (AR-0.85, MA-0.00) 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 1057.168 0.1062 0.3921 1083.168 0.0944 0.8679 

LC- no ARMA & wt 1630.987 0.1248 0.4898 1656.987 0.0249 0.7929 

LCAR-wt 41.3696 0.0079 0.0380 69.3696 0.9743 0.9984 

LCAR- no wt 38.9792 0.0074 0.0338 66.9792 0.9796 0.9987 

LCARMA-wt 36.7912 0.0076 0.0314 66.7912 0.9823 0.9988 

LCARMA- no wt* 34.5953 0.0074 0.0265 64.5953 0.9873 0.9991 

LCMA-wt 703.6092 0.0916 0.3228 731.609 0.2124 0.9133 

LCA-no wt 1199.701 0.1452 0.4257 1227.701 0.0672 0.8486 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA 

& wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; LCARMA with 

weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA 

with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean 

Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index 

 

 

 Table 9 provides the fit indices for MA process of 0.67 with the LCARMA no weight (χ2-

34.8733, SRMR-0.0263, RMSEA-0.0262, AIC-64.8733, Mc-0.9866, CFI-0.9982) being the best 

fitting model followed by LCARMA with weight (χ2-168.2259, SRMR-0.1762, RMSEA-0.1487, 
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AIC-198.2259, Mc-0.7258, CFI-0.9655). Although the fit of LCARMA models were better than 

LCMA no weight (χ2-36.4158, SRMR-0.0288, RMSEA-0.0267, AIC-64.4158, Mc-0.9854, CFI-

0.9981) and LCMA with weight (χ2-40.2370, SRMR-0.0292, RMSEA-0.0343, AIC-68.2370, 

Mc-0.9769, CFI-0.9972) but the fit was better because the LCARMA model had both AR and 

MA processes specified into it.  

Table 8: Sample LC Model Fit Indices by MA Process (AR-0.00, MA-0.33) 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 428.3163 0.02265 0.2438 454.3163 0.4004 0.9027 

LC- no ARMA & wt 424.2022 0.02241 0.2426 450.2022 0.4036 0.9028 

LCAR-wt 162.9182 0.1519 0.1428 190.9182 0.7364 0.9674 

LCAR- no wt 397.5036 0.0317 0.2384 425.5036 0.4283 0.9091 

LCARMA-wt 122.6257 0.1544 0.1216 152.6257 0.8062 0.9770 

LCARMA- no wt* 34.5165 0.0208 0.0256 64.5165 0.9875 0.9982 

LCMA-wt 39.1043 0.02243 0.0325 67.1043 0.9795 0.9974 

LCMA-no wt 35.7210 0.0219 0.0259 63.7210 0.9870 0.9982 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA 

& wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; LCARMA with 

weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA 

with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean 

Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index 

 

 

Table 10 presents the fit indices for the MA process of 0.85 with similar trends as table 9 

with the LCARMA no weight, LCMA no weight, and LCMA with weight having good fit 

indices. An important point to note in all the tables is the large differences in the fit indices of 

LCARMA with weight and LCARMA no weight when only the MA process was modeled which 

was not present when the data had only the AR process or the ARMA process modeled. The 

differences in the fit indices between both the models were marginal for the AR and ARMA 

models. In addition, the fit indices for the latent curve with weight and latent curve without 

ARMA and no weights were better when only the MA process was modeled than the AR and 
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ARMA processes with the worst fit in the ARMA models. The fit of LCMA and LCARMA 

models are comparable but the LCMA was the best fitting the data having MA process because 

the fit indices and MA lag1 estimates (ranging from 18.2172 to 28.5331) of LCAR with weight 

models were better and higher than the LCARMA with sample weight (14.3328 to 34.7541) 

models. Furthermore, the MA lag1 estimate for LCAR with sample weight model fitted to data 

having no MA process was also close to zero (Tables 105 and 106). 

Overall, the trend in all the tables from 1 through 10 suggest a joint or interactive 

influence of both weights and autocorrelative processes on the model fit indices. The joint 

influence justifies the needs to further investigate this interactive effect of sample weights and 

the AR, MA, and ARMA processes on the sample latent curve estimates. The LCAR model with 

sample weight had the best fit indices when fitted to AR data. The LCMA model with sample 

weight had the best fit indices when fitted to MA data. The LCARMA model with sample weight 

had the best fit indices when fitted to AR data. 

 

Table 9: Sample LC Model Fit Indices by MA Process (AR-0.00, MA-0.67) 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 646.8244 0.0276 0.3037 672.8244 0.2417 0.8477 

LC- no ARMA & wt 641.3281 0.0275 0.3024 667.3281 0.24436 0.8475 

LCAR-wt 300.4958 0.1601 0.2043 328.4958 0.5362 0.9330 

LCAR- no wt 609.3995 0.0364 0.2995 637.3995 0.2624 0.8552 

LCARMA-wt 168.2259 0.1762 0.1487 198.2259 0.7258 0.9655 

LCARMA- no wt* 34.8733 0.0263 0.0262 64.8733 0.9866 0.9982 

LCMA-wt 40.2370 0.0292 0.0343 68.2370 0.9769 0.9972 

LCMA-no wt 36.4158 0.0288 0.0267 64.4158 0.9854 0.9981 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA 

& wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; LCARMA with 

weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA 

with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean 

Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index 
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Table 10: Sample LC Model Fit Indices by MA Process (AR-0.00, MA-0.85) 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 660.593 0.0286 0.3071 686.593 0.2341 0.8401 

LC- no ARMA & wt 658.195 0.0288 0.3066 684.1995 0.2349 0.8389 

LCAR-wt 313.5649 0.1668 0.2093 341.5649 0.5202 0.9279 

LCAR- no wt 624.8132 0.0370 0.3035 652.8132 0.2532 0.8473 

LCARMA-wt 175.4033 0.1893 0.1525 205.4033 0.7139 0.9628 

LCARMA- no wt* 32.5624 0.0279 0.0210 62.5624 0.9919 0.9986 

LCMA-wt 37.3533 0.0302 0.0298 65.353 0.9834 0.9978 

LCMA-no wt 33.7951 0.0300 0.0211 61.7951 0.9914 0.9986 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA 

& wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; LCARMA with 

weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA 

with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean 

Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index 

 

 

 

Latent Curve Estimates for Population Data 

Tables 11 through 13 summarizes the population-level latent curve estimates for the AR 

process only (0.33, 0.67, and 0.85 values), MA process only (0.33, 0.67, and 0.85 values), and 

ARMA process (AR-0.00, MA-0.00; AR-0.33, MA-0.30; AR-0.67, MA-0.60; AR-0.85, MA-

0.80 values). The latent curve model was used in the simulation study because it can 

simultaneously model change across time and also specify AR, MA and ARMA processes to 

account for autocorrelation. The latent curve estimates were calculated from the 252,000 data 

points generated through the SAS macro having the PROC CALIS equations. The mean 

intercept, mean slopes, and intercept variance had consistent values across all the processes and 

values. The slope variance was slightly higher for the AR process than the MA and ARMA 

process while the intercept slope correlations were similar in MA and ARMA process but higher 

than the AR process.  
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Table 11: Population LC Estimates for AR Process 

Parameter AR-0.33 AR-0.67 AR-0.85 

Mean Intercept 8.7267 8.7226 8.7393 

Mean Slope 0.9984 0.9693 0.8804 

Intercept Variance 13.3985 13.3549 13.3197 

Slope Variance 0.0527 0.0518 0.0504 

Intercept Slope Correlation 0.0182 -0.0182 -0.1393 
                    AR-Autoregressive 

 

Table 12: Population LC Estimates for MA Process 

Parameter MA-0.33 MA-0.67 MA-0.85 

Mean Intercept 8.7298 8.7224 8.7195 

Mean Slope 1.0033 1.0062 1.0070 

Intercept Variance 13.5607 13.7468 13.8003 

Slope Variance 0.0479 0.0442 0.0432 

Intercept Slope Correlation 0.0215 0.0119 0.0087 
                    MA-Moving Average 

 

Table 13: Population LC Estimates for ARMA Process 

Parameter AR-0.00 

MA-0.00 

AR-0.33 

MA-0.30 

AR-0.67 

MA-0.60 

AR-0.85 

MA-0.80 

Mean Intercept 8.7337 8.7295 8.7286 8.7281 

Mean Slope 1.0023 1.0019 1.0217 1.0494 

Intercept Variance 13.4241 13.5423 13.7297 13.8082 

Slope Variance 0.0529 0.0483 0.0453 0.0446 

Intercept Slope Correlation 0.0218 0.0209 0.0382 0.0767 
          ARMA: Auto regressive moving average  

Latent Curve Estimates for Sample Data with AR Process 

 The sample-level statistics were calculated by running 200 iterations through a SAS 

macro to randomly generate 200 samples (each having a sample size of 72). The results are 

presented for each autocorrelative process and corresponding values with and without weights. 
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Tables 14 and 15 provide results on the sample-level estimates for the LC, LCAR, LCMA, and 

LCARMA models having 0.33 AR value with weight and without weights respectively. All the 

estimates for the AR process having no weights were lower than the AR process having weights. 

The standard errors (SE) were also lower for each of the corresponding statistic. The intercept 

slope correlation for the LCAR had negative values of -3.2609 and -0.0174 for weights and 

without weights respectively. Large differences were observed between the statistic and 

associated standard error for intercept variance, slope variance, and intercept slope correlation in 

Tables 14 and 15. The pattern was similar across all the models with and without weights. The 

LCAR and LCARMA models had lower values than the LC and LCAR models. This trend was 

observed in both the tables. The values for mean intercept with weights for LCAR (8.2911) and 

LCARMA (8.7085) in Table 14 were closer to the population-level estimate of mean intercept 

(8.7267) in Table 11 but the values were lower without weights in Table 15 except for LCMA 

(8.3214). 

Table 14: Sample LC Estimates for AR Process with Weights (AR-0.33, MA-0.00) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 12.2776 8.2911 11.6903 8.7085 

Mean Intercept SE 2.3569 1.4040 2.2139 1.4978 

Mean Slope 3.2083 0.7567 3.2997 0.9938 

Mean Slope SE 0.3006 0.1323 0.3075 0.1297 

Intercept Variance 1181.601 422.57 1024.722 469.9269 

Intercept Variance SE 115.6183 43.0062 101.7673 47.4934 

Slope Variance 18.5712 2.1870 18.6521 1.8843 

Slope Variance SE 1.8827 0.3127 1.9692 0.2837 

Intercept Slope Correlation 88.1064 -3.2669 98.3448 0.2141 

Intercept Slope Correlation SE 11.8909 3.0906 11.8169 3.2957 
     SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 
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Tables 16 and 17 summarizes the statistics and SE of AR process of 0.67 with weights 

and without weights respectively. The latent curve, LCAR and LCARMA with AR of 0.67 with 

weights had lower values for mean intercept, mean slope, intercept variance, slope variance 

(except for the latent curve where the slope variance was higher for AR of 0.67), and intercept 

slope correlation than the AR process of 0.33 with weights. 

Table 15: Sample LC Estimates for AR Process No Weights (AR-0.33, MA-0.00)  

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 9.1511 6.3894 8.3214 6.3981 

Mean Intercept SE 0.4285 0.2523 0.3748 0.2528 

Mean Slope 2.7926 0.9856 2.9468 0.9973 

Mean Slope SE 0.0484 0.0436 0.0515 0.0455 

Intercept Variance 38.9976 13.2118 29.1666 13.2402 

Intercept Variance SE 3.8126 1.3193 2.9177 1.3249 

Slope Variance 0.4763 0.0549 0.5106 0.0532 

Slope Variance SE 0.0487 0.0075 0.0555 0.0076 

Intercept Slope Correlation 1.9535 -0.0174 2.7272 0.0017 

Intercept Slope Correlation SE 0.3296 0.0798 0.3321 0.0815 
      SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

 

Table 16: Sample LC Estimates for AR Process with Weights (AR-0.67, MA-0.00) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 9.8236 8.7141 10.0177 8.7210 

Mean Intercept SE 2.0543 1.4927 2.1361 1.4964 

Mean Slope 7.1301 0.8970 7.0326 0.9340 

Mean Slope SE 0.8028 0.1923 0.7627 0.1964 

Intercept Variance 901.1067 468.2985 947.7205 469.5451 

Intercept Variance SE 87.6414 47.1466 94.7631 47.3677 

Slope Variance 138.2936 1.9464 123.2999 1.9008 

Slope Variance SE 13.3834 0.3252 12.0803 0.3459 

Intercept Slope Correlation 302.3346 -3.4864 302.0606 -1.9033 

Intercept Slope Correlation SE 31.7163 6.2263 31.2495 6.4395 
           SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve  

             Moving Average; LCARMA-Latent Curve Autoregressive Moving Average 



67 

 

Similar trends were seen in the estimates between the models having weights and no 

weights as in Tables 14 and 15 having AR of 0.33. The values for mean intercept with weights 

for LCAR (8.7141) and LCARMA (8.7210) in Table 16 were closer to the population-level 

estimate of mean intercept (8.7226) in Table 11 but the values were lower without weights in 

Table 17. The intercept slope correlation for LCAR and LCARMA had negative values for both 

weights and without weights respectively in Table 16. The LCAR and LCARMA estimates were 

lower than the LC and LCMA estimates irrespective of weights but were similar between each 

other in both tables 16 and 17. 

Table 17: Sample LC Estimates for AR Process No Weights (AR-0.67, MA-0.00) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 6.7153 6.4066 6.7715 6.4086 

Mean Intercept SE 0.3456 0.2507 0.3592 0.2513 

Mean Slope 5.9623 0.9213 5.9345 0.9517 

Mean Slope SE 0.1344 0.1290 0.1277 0.1329 

Intercept Variance 25.5048 13.1907 26.7666 13.2238 

Intercept Variance SE 2.4814 1.3285 2.6793 1.3348 

Slope Variance 3.8788 0.0551 3.4550 0.0538 

Slope Variance SE 0.3754 0.0009 0.3387 0.0096 

Intercept Slope Correlation 8.4747 -0.0987 8.4711 -0.0536 

Intercept Slope Correlation SE 0.8916 0.1737 0.8781 0.1798 
      SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

Tables 18 and 19 provides the estimates and SE for AR process of 0.85 with and without 

weights respectively. The values for mean intercept with weights for LCAR (8.7704), and 

LCARMA (8.7645) in Table 18 were closer to the population-level estimate of mean intercept 

(8.7393) in Table 11 but the values were lower without weights in Table 17.  The trend in the 

estimates was approximately the same for the other tables. The LC models has the highest 
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estimates followed by the LCMA. The estimates of LCAR and LCARMA models were 

comparable with and without weights and lower than the LC and LCAR models. 

Table 18: Sample LC Estimates for AR Process with Weights (AR-0.85, MA-0.00) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 7.9956 8.7704 8.0868 8.7645 

Mean Intercept SE 1.8356 1.4950 1.7906 1.4975 

Mean Slope 9.7633 0.7582 9.7978 0.8154 

Mean Slope SE 1.1718 0.3555 1.1579 0.3669 

Intercept Variance 719.0429 469.6726 668.6531 470.0673 

Intercept Variance SE 69.9586 47.1133 66.8645 47.2906 

Slope Variance 295.0634 2.3364 287.1063 2.2665 

Slope Variance SE 28.5016 0.7671 27.8345 0.8091 

Intercept Slope Correlation 404.8461 -8.6952 402.4392 -6.2129 

Intercept Slope Correlation SE 41.8648 13.1983 40.7309 13.7035 
          SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve  

           Moving Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

Comparisons were made within the statistics for AR process having 0.33, 0.67, and 0.85 

values modeled with weights in tables 14, 16, and 18 respectively. The LC models estimates 

were unstable with increase in the mean slope & SE, mean slope variance & SE, and intercept 

correlation & SE but decrease in the mean intercept & SE, intercept variance & SE as the AR 

value increased from 0.33 to 0.85. The LCAR models estimates increased for mean slope SE, 

intercept variance, intercept slope correlation & SE. The other estimates increased, decreased or 

remained constant with change in AR values from 0.33 to 0.85. The LCMA model estimates 

increased for means slope & SE, slope variance & SE, intercept slope correlation & SE and 

decreased for mean intercept & SE, intercept variance & SE as the AR value increased from 0.33 

to 0.85. The LCARMA values remained fairly constant for all the statistics except for mean 
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slope & SE, slope variance & SE, intercept correlation & SE making it an acceptable and stable 

model amongst all the other models with regards to the latent curve estimates.  

 

Table 19: Sample LC Estimates for AR Process No Weights (AR-0.85, MA-0.00) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 5.3323 6.4260 4.9580 6.4230 

Mean Intercept SE 0.3068 0.02535 0.3200 0.2536 

Mean Slope 7.9840 0.9458 8.1492 0.9617 

Mean Slope SE 0.1975 0.1480 0.1920 0.1527 

Intercept Variance 20.2338 13.3493 20.7814 13.3293 

Intercept Variance SE 1.9564 1.3245 2.1274 1.3264 

Slope Variance 8.4006 0.0566 7.8689 0.0545 

Slope Variance SE 0.8096 0.0099 0.7653 0.0104 

Intercept Slope Correlation 11.2017 -0.0655 11.5495 -0.0357 

Intercept Slope Correlation SE 1.1723 0.2101 1.1862 0.2168 
       SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

Latent Curve Estimates for Sample Data with MA Process 

Tables 20 and 21 provide results on the sample-level estimates for the latent curve, 

LCAR, LCMA, and LCARMA models having 0.33 MA value with weight and without weights 

respectively. The LC and LCMA had similar values with weights and without weights. However, 

the values were lower for all the models without weights than those with weights. The intercept 

variance and SE showed the largest differences between the LC models with higher values 

attributed to the LC having weights. The LCAR models had the smallest estimates for all the 

statistics with weights. The LCAR models have negative values for mean slope, intercept 

variance, and slope variance for weights. Overall, the estimates for LCMA remained fairly stable 

in Tables 20 and 21 except for the intercept variance and intercept variance SE. The LCARMA 
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model with weights had negative values for mean slope and intercept variance. The values for 

mean intercept with weights for LC (8.7264) and LCMA (8.7254) in Table 20 were closer to the 

population-level estimate of mean intercept (8.7298) in Table 12 but the values were lower 

without weights in Table 21.  

Table 20: Sample LC Estimates for MA Process with Weights (AR-0.00, MA-0.33) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 8.7264 1.3959 8.7254 1.4607 

Mean Intercept SE 1.5176 0.2630 1.5133 0.2618 

Mean Slope 0.9976 -0.0902 0.9982 -0.1144 

Mean Slope SE 0.1238 0.0672 0.1118 0.0677 

Intercept Variance 486.2958 -16.8322 476.1705 -35.256 

Intercept Variance SE 47.8128 2.3674 47.6007 3.8887 

Slope Variance 2.7324 -0.7098 1.6204 -1.6169 

Slope Variance SE 0.3213 0.1267 0.2781 0.2010 

Intercept Slope Correlation -2.5922 3.0093 0.4116 6.5294 

Intercept Slope Correlation SE 2.7853 0.49938 2.5275 0.7810 
     SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

Table 21: Sample LC Estimates for MA Process No Weights (AR-0.00, MA-0.33) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 6.4104 6.2082 6.4090 6.4108 

Mean Intercept SE 0.2564 0.2482 0.2538 0.2540 

Mean Slope 0.9982 0.9121 0.9987 1.005 

Mean Slope SE 0.0209 0.0261 0.0188 0.0270 

Intercept Variance 13.6820 12.6392 13.3829 13.3997 

Intercept Variance SE 1.3459 1.2640 1.3393 1.3412 

Slope Variance 0.0779 0.0704 0.0463 0.0468 

Slope Variance SE 0.0091 0.0087 0.0079 0.0079 

Intercept Slope Correlation -0.0825 -0.1308 0.0039 0.0039 

Intercept Slope Correlation SE 0.0791 0.0746 0.0547 0.0719 
      SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 
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Tables 22 and 23 summarizes the estimates of the four models having MA of 0.67 with 

weight and without weights respectively. Huge differences were seen in the mean slope for all 

the models in Tables 22 and 23 across all the models which was not the pattern seen in mean 

slopes for MA of 0.33 in Tables 20 and 21. The LCAR model had the lowest values for all the 

estimates with weights. The values for mean intercept with weights for LC (8.7143) and LCMA 

(8.7181) in Table 22 were closer to the population-level estimate of mean intercept (8.7224) in 

Table 12 but the values were lower without weights in Table 23. Tables 24 and 25 shows the 

statistics for MA process of 0.85 with weights and without weights respectively. Similar trends 

were seen as in the previous tables with the LCAR and LCARMA having the lowest values in 

Tables 24.  

Table 22: Sample LC Estimates for MA Process with Weights (AR-0.00, MA-0.67) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 8.7143 1.3893 8.7181 1.4543 

Mean Intercept SE 1.5236 0.2630 1.5087 0.2576 

Mean Slope 1.0016 -0.1036 1.0008 -0.1400 

Mean Slope SE 0.1280 0.0715 0.1034 0.0725 

Intercept Variance 490.6305 -19.9782 482.2630 -57.4748 

Intercept Variance SE 48.1956 2.5496 47.45353 4.7428 

Slope Variance 2.9300 -0.7979 1.5254 -2.6438 

Slope Variance SE 0.3447 0.1435 0.2786 0.2507 

Intercept Slope Correlation -2.9875 3.4226 0.2186 10.5157 

Intercept Slope Correlation SE 2.8946 0.5462 2.4440 0.9502 
     SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

An important point to note in tables 20 through 25 is that the LCAR and LCARMA models 

had lower estimates with weights but similar estimates without weights among all the four 

models tested without weights. The values for mean intercept with weights for LC and LCMA 
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were close to the population-level mean intercept value for all the MA values of 0.33, 0.67, and 

0.85. There were some large variations in the intercept variance & SE, slope variance & SE, and 

intercept slope correlation & SE when compared within weights and without weights across all 

the models and values. Overall, the LCAR and LCARMA models with weights had lower values 

than the corresponding LC and LCMA models across all the MA values. Comparisons were 

made within the statistics for MA process having 0.33, 0.67, and 0.85 values modeled with 

weights in tables 20, 22, and 24 respectively. The mean slope and intercept slope correlation SE 

estimates increased whereas the intercept variance & SE decreased for the LC model. The mean 

slope SE, intercept variance, and slope variance SE increased whereas mean intercept & SE and 

mean slope decreased for LCAR model. The mean slope increased whereas intercept variance 

and slope variance decreased for LCMA model.  

Table 23: Sample LC Estimates for MA Process No Weights (AR-0.00, MA-0.67) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 6.3988 6.2059 6.4037 6.3947 

Mean Intercept SE 0.2534 0.2492 0.2532 0.2534 

Mean Slope 1.0103 0.8994 0.9992 1.0103 

Mean Slope SE 0.0282 0.0274 0.0175 0.0282 

Intercept Variance 13.5436 12.8201 13.573 13.5436 

Intercept Variance SE 1.3343 1.2793 1.3366 1.3343 

Slope Variance 0.04463 0.0761 0.0437 0.0446 

Slope Variance SE 0.0082 0.0095 0.0080 0.0082 

Intercept Slope Correlation 0.0134 -0.1650 -0.0004 0.0134 

Intercept Slope Correlation SE 0.0754 0.0791 0.0697 0.0754 
      SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 
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Table 24: Sample LC Estimates for MA Process with Weights (AR-0.00, MA-0.85) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 8.7283 1.4069 8.7189 1.4594 

Mean Intercept SE 1.5267 0.2626 1.5082 0.2562 

Mean Slope 0.9967 -0.1181 0.9988 -0.1528 

Mean Slope SE 0.1279 0.0733 0.1002 0.0744 

Intercept Variance 493.2690 -23.2777 485.7283 -64.4611 

Intercept Variance SE 48.3964 2.6920 47.4906 5.1707 

Slope Variance 2.9158 -0.9618 1.4790 -3.0032 

Slope Variance SE 0.3459 0.1536 0.2804 0.2753 

Intercept Slope Correlation -3.0511 4.03327 0.1155 11.8350 

Intercept Slope Correlation SE 2.9026 0.5773 2.4169 1.0354 
          SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve  

            Moving   Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

Table 25: Sample LC Estimates for MA Process No Weights (AR-0.00, MA-0.85) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 6.4116 6.2409 6.4042 6.3959 

Mean Intercept SE 1.5267 0.2502 0.2527 0.2536 

Mean Slope 0.9967 0.8901 0.9977 1.0055 

Mean Slope SE 0.1279 0.0279 0.0170 0.0289 

Intercept Variance 493.2690 12.9832 13.6456 13.6156 

Intercept Variance SE 48.3964 1.2921 1.3341 1.3339 

Slope Variance 2.9158 0.0772 0.0433 0.0439 

Slope Variance SE 0.3459 0.0097 0.0081 0.0083 

Intercept Slope Correlation -3.0511 -0.1837 -0.0056 0.0046 

Intercept Slope Correlation SE 2.9026 0.0809 0.0691 0.0760 
      SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

The intercept variance increased, the mean slope & SE decreased whereas the mean 

intercept & SE, and slope variance remained constant for the LCARMA model. All other 

estimates increased, decreased or remained constant with increase in the MA values from 0.00 to 

0.85. The estimates for all the four models having the MA process did not have stability in the 
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estimates with change in the MA values. Hence, it was difficult to select one model that could be 

deemed better than the other models by evaluating the latent curve estimates. 

 

Latent Curve Estimates for Sample Data with ARMA Process 
 

Tables 26 through 34 summarizes the latent curve estimates for the ARMA process. 

Tables 26 and 27 provides the estimates for AR process of 0.00 and MA process of 0.00 with 

weights and without weights respectively. The LCAR and LCARMA had lower estimates than 

the LC and LCAR model estimates with weights in Table 26 but similar estimates without 

weight in Table 27. The mean slope values for the LC, LCAR and LCMA were higher for the 

weights than without weights. The values for mean intercept with weights for LC (8.7242) and 

LCMA (8.7240) in Table 26 were closer to the population-level estimate of mean intercept 

(8.7337) in Table 13 but the values were lower without weights in Table 27.  

Table 26: Sample LC Estimates with Weights (AR 0.00, MA 0.00) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 8.7242 1.5402 8.7240 1.3464 

Mean Intercept SE 1.4958 0.2375 1.4960 0.2348 

Mean Slope 0.9977 -0.1259 0.9978 -0.0614 

Mean Slope SE 0.1088 0.0581 0.1083 0.0561 

Intercept Variance 472.2738 -36.3606 471.1967 -0.2788 

Intercept Variance SE 46.5938 2.6991 46.6148 3.1301 

Slope Variance 1.9385 -1.8064 1.8509 0.0043 

Slope Variance SE 0.2507 0.1345 0.2526 0.1554 

Intercept Slope Correlation 0.1239 7.2828 0.3829 0.1908 

Intercept Slope Correlation SE 2.4113 0.5422 2.4065 0.6236 
     SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 
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 Tables 28 and 29 presents the ARMA values with AR of 0.33 and MA of 0.30 with 

weights and without weights respectively. The LC and LCMA had higher values than LCAR and 

LCARMA in Table 28 and Table 29. The values for mean intercept with weights for LCARMA 

(8.5034) in Table 28 was closer to the population-level estimate of mean intercept (8.7295) in 

Table 13 but the values were lower without weights in Table 29. The estimates for intercept 

variance and SE for ARMA in Table 28 and Table 29 were lower than the intercept variance 

when AR and MA were modeled individually. Tables 30 and 31 provides the ARMA values with 

AR of 0.67 and MA of 0.60 with weights and without weights respectively.  

Table 27: Sample LC Estimates with No Weights (AR 0.00, MA0.00) 

 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 6.386656 6.370248 6.411404 6.428654 

Mean Intercept SE 0.252065 0.253671 0.252218 0.261509 

Mean Slope 0.992812 0.985544 0.998434 1.001001 

Mean Slope SE 0.018666 0.02495 0.018403 0.026155 

Intercept Variance 13.0901 13.19525 13.33623 15.9516 

Intercept Variance SE 1.327385 1.334915 1.320412 1.58995 

Slope Variance 0.04463 0.05287 0.052749 0.060785 

Slope Variance SE 0.007857 0.00812 0.007251 0.008525 

Intercept Slope Correlation 0.03568 -0.00481 0.001126 0.01136 

Intercept Slope Correlation SE 0.071302 0.072419 0.068694 0.082318 
      SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

The mean intercepts in Table 30 were higher for the LC and LCAR models than the mean 

intercepts in Table 28. The mean slope SE and intercept variance for all models with ARMA of 

0.67 and 0.60 respectively were also higher than the estimates in Table 28 where the AR and MA 

was 0.33 and 0.30 respectively. The values for mean intercept with weights for LCAR (8.6559) 

and LCARMA (8.6766) in Table 30 were to the population-level estimate of mean intercept 

(8.7295) in Table 13 but the values were lower without weights in Table 31. Tables 32 and 33 
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provides the estimates for AR process of 0.85 and MA process of 0.80 with weights and without 

weights respectively. 

Table 28: Sample LC Estimates for ARMA Process with Weights (AR-0.33, MA-0.30) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 11.9870 7.9078 11.4231 8.5034 

Mean Intercept SE 2.3325 1.3332 2.1808 1.4619 

Mean Slope 3.2420 0.4750 3.3454 0.8718 

Mean Slope SE 0.3240 0.1443 0.3244 0.1419 

Intercept Variance 1161.1668 384.6776 987.0616 448.2207 

Intercept Variance SE 113.7372 39.2959 99.3196 45.5090 

Slope Variance 21.7955 2.8546 20.4229 2.0072 

Slope Variance SE 2.1949 0.3635 2.2012 0.3614 

Intercept Slope Correlation 81.2300 -12.2813 98.4192 -1.1760 

Intercept Slope Correlation SE 12.3411 3.2529 12.0951 3.7155 
         SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

Table 29: Sample LC Estimates for ARMA Process No Weights (AR-0.33, MA-0.30) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 9.1211 6.3317 8.2741 6.4172 

Mean Intercept SE 0.4433 0.2571 0.3793 0.2635 

Mean Slope 2.7778 0.8924 2.9544 1.0162 

Mean Slope SE 0.0536 0.0462 0.0544 0.0513 

Intercept Variance 42.6548 15.2504 29.6982 17.9324 

Intercept Variance SE 4.1814 1.52271 2.9908 1.8045 

Slope Variance 0.5919 0.0798 0.5611 0.1548 

Slope Variance SE 0.0601 0.0103 0.0617 0.0200 

Intercept Slope Correlation 1.4596 -0.2016 2.6017 0.4853 

Intercept Slope Correlation SE 0.3709 0.1050 0.3434 0.1501 
         SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve  

          Moving Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

The values for mean intercept with weights for LCAR (8.7696) and LCARMA (8.7685) 

in Table 32 was closer to the population-level estimate of mean intercept (8.7281) in Table 13 

but the values were lower without weights in Table 29. The mean slope estimate for all the 
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models with weights in Table 32 was highest among all the ARMA values when compared to 

Tables 26 and 28 whereas the means slope SE, and intercept variance were highest for the LC 

model only in Table 32 when compared to other ARMA values with weights.  

Table 30: Sample LC Estimates for ARMA Process with Weights (AR-0.67, MA-0.60) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 9.3955 8.6559 8.4414 8.6766 

Mean Intercept SE 1.9037 1.4942 1.3948 1.4951 

Mean Slope 7.2029 0.5656 7.3022 0.8903 

Mean Slope SE 0.8468 0.2184 0.87088 0.21397 

Intercept Variance 797.9542 472.6170 448.1349 472.6359 

Intercept Variance SE 77.5975 47.1064 41.2766 46.9164 

Slope Variance 154.8199 3.1582 162.5529 2.3931 

Slope Variance SE 14.9741 0.51709 15.7990 0.5497 

Intercept Slope Correlation 283.8732 -19.3273 251.0082 -2.7017 

Intercept Slope Correlation SE 30.4655 7.2247 24.7994 7.7134 
         SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve 

          Moving Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

Comparisons were made within the statistics for ARMA process modeled with weights in 

tables 26, 28, 30 and 32 respectively. The LC, LCAR, and LCMA model estimates were unstable 

and had large fluctuations in the estimates with change in the ARMA values. The LCARMA 

model had the most stable estimates of all the four models with all the estimates remaining fairly 

constant with change in the ARMA values. Hence, the LCARMA model was deemed 

appropriate and acceptable for the AR and ARMA processes with weights when the latent curve 

estimates were evaluated. 

Table 31: Sample LC Estimates for ARMA Process No Weights (AR-0.67, MA-0.60)  

 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 6.6256 6.3983 6.3277 6.4112 

Mean Intercept SE 0.3358 0.2584 0.2348 0.2594 

Mean Slope 5.9498 0.6489 6.0088 1.0219 
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Statistic LC LCAR LCMA LCARMA 

Mean Slope SE 0.1420 0.1416 0.1465 0.1463 

Intercept Variance 25.9702 15.8852 12.6910 15.8773 

Intercept Variance SE 2.5336 1.5820 1.1675 1.557 

Slope Variance 4.3008 0.0978 4.5828 0.9346 

Slope Variance SE 0.4170 0.0172 0.4455 0.0981 

Intercept Slope Correlation 7.9028 -0.5038 7.0753 1.3608 

Intercept Slope Correlation SE 0.9078 0.2439 0.6996 0.3490 
      SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

Table 32: Sample LC Estimates for ARMA Process with Weights (AR-0.85, MA-0.80) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 8.8336 8.76961 8.9848 8.7685 

Mean Intercept SE 1.4849 1.5133 1.4275 1.4999 

Mean Slope 9.5730 0.2707 9.6149 0.6652 

Mean Slope SE 1.2322 0.4113 1.2135 0.3904 

Intercept Variance 480.9226 483.2602 463.5307 474.7282 

Intercept Variance SE 45.8854 47.9928 42.7227 47.0314 

Slope Variance 326.9094 4.8599 316.0710 5.9125 

Slope Variance SE 31.5132 1.7591 30.5656 1.6280 

Intercept Slope Correlation 372.8015 -32.7827 362.9114 -11.6879 

Intercept Slope Correlation SE 37.0391 15.8700 35.5847 15.7581 
         SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve 

          Moving Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

Table 34 provides information on the number of iteration it took for the maximum 

likelihood procedure for model convergence and to reach at a proper solution. Higher number of 

iterations taken by the procedure to attain model convergence implies a greater probability of 

poor fit. The maximum likelihood procedure took 27 iterations each to converge the latent curve 

model having ARMA processes (AR-0.67, MA-0.60 & AR-0.85, MA-0.80) with 15 iterations 

taken by the procedure to reach a proper solution for the ARMA process of AR-0.33, MA-0.30.  
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Table 33: Sample LC Estimates for ARMA Process No Weights (AR-0.85, MA-0.80) 

Statistic LC LCAR LCMA LCARMA 

Mean Intercept 5.6951 6.4327 6.7231 6.4115 

Mean Intercept SE 0.2997 0.2560 0.2429 0.2535 

Mean Slope 7.8642 0.7557 7.8300 1.0272 

Mean Slope SE 0.2037 0.1664 0.2021 0.1710 

Intercept Variance 19.4915 13.7725 13.6858 13.7059 

Intercept Variance SE 1.8940 1.3577 1.2499 1.3411 

Slope Variance 8.9338 0.0933 8.7554 0.0502 

Slope Variance SE 0.8621 0.0155 0.8484 0.0142 

Intercept Slope Correlation 10.8993 -0.4520 10.3038 0.0312 

Intercept Slope Correlation SE 1.1627 0.2521 1.0076 0.2720 
         SE-Standard Error; LC-Latent Curve; LCAR-Latent Curve Autoregressive; LCMA-Latent Curve Moving 

Average; LCARMA-Latent Curve Autoregressive Moving Average 

 

Table 34: Iterations Taken for Model Convergence in Simulation for Population Data 

Lag Process Number of Iterations 

AR-0.33 14 

AR-0.67 19 

AR-0.85 17 

MA-0.33 11 

MA-0.67 11 

MA-0.85 12 

AR-0.00; MA-0.00 12 

AR-0.33; MA-0.30 15 

AR-0.67; MA-0.60 27 

AR-0.85; MA-0.80 27 
                          AR-Autoregressive; MA-Moving Average 

 

The minimum number of iterations taken for model convergence was with the MA 

processes and then by the AR processes. The number of iterations taken by the maximum 

likelihood procedure to converge latent curve models with MA process and ARMA process of 

0.33 and 0.30 were comparable. A common pattern observed is the number of iterations 

increased as the values for the AR and ARMA processes increased which was not the case for 
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the MA process (as it took 11 iterations each for MA of 0.33 & 0.67 and 12 for MA of 0.85). The 

results in Table 34 were later compared to the number of iterations maximum likelihood took to 

converge the latent curve model having an autocorrelative process to the ECLS-K data. 

 

Overall General Linear Model Results 

This section focuses on the results from the General Linear Model (GLM). The ANOVA 

models were run to measure the effect size, (R2 and η2), coefficient of variation, root mean square 

error (RMSE), and mean. Tukey comparisons were conducted to find out which means were 

statistically different from each other by model type (LC, LCAR, LCMA, and LCARMA) and 

weight. The joint influence of model type and weight on each of the latent curve estimates (Mean 

Intercept, Mean Intercept SE, Mean Slope, Mean Slope SE, Intercept Variance, Intercept 

Variance SE, Slope Variance, Slope Variance SE, Intercept Slope Correlation, and Intercept 

Slope Correlation SE) were also evaluated. The box plots were utilized to assess the distribution 

of latent curve estimates by model type. The interaction plots were consulted to evaluate the joint 

influence of model type and weight on the latent curve estimates.  

A total of 10 ANOVA models were run in SAS PROC GLM procedure, one model for 

each of the latent curve estimate (Mean Intercept, Mean Intercept SE, Mean Slope, Mean Slope 

SE, Intercept Variance, Intercept Variance SE, Slope Variance, Slope Variance SE, Intercept 

Slope Correlation, and Intercept Slope Correlation SE) as the dependent variable with model 

type and weight as the independent variables. The ANOVA models were built by regressing each 

of the latent curve estimates on the model type and use of weight (0-as no weight and 1-as 

weight). GLM was used to test for the joint influence of model type and weight on each of the 
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latent curve estimate and also to estimate the effect size. All the ANOVA models were 

significant including the interaction term between model type and weight.  

Table 35 summarizes the overall fit indices by model type. The LCARMA model was the 

best fit (χ2-56.9968, SRMR-0.0471, RMSEA-0.0477, AIC-85.9967, Mc-0.9447, CFI-0.9937). 

The worst fitting model was the latent curve (χ2-1168.04, SRMR-0.1591, RMSEA-0.3818, AIC-

1194.04, Mc-0.2082, CFI-0.8207) which did not have any autocorrelative process modeled into 

it. Table 36 provides the effect size (R2), coefficient of variation, root mean square error 

(RMSE), and mean for each of the latent curve estimate. Interpreting the effect size in 

conjunction with the CV and RMSE is important to truly evaluate the variation in the latent 

curve estimates by the independent variables (model type and weight) because the residual 

values are smaller relative to the predicted values of the latent curve estimates. The coefficient of 

variation (CV) is obtained by dividing RMSE by the mean. The CV explains the spread or 

dispersion in the dependent variable (which are the latent curve estimates). It explains the model 

fit as a function of the relative size of the squared residuals (difference between the actual and 

predicted values). Lower values for CV indicate a good model fit. The RMSE is a measure to 

assess the goodness of fit of a model to the data because it estimates the closeness of a fitted line 

to the observed data points. Smaller RMSE values implies closer fit of the model to the data. 

Although the CV for mean intercept (27.8739), mean slope (94.1801), mean intercept SE 

(42.2943), and mean slope SE (107.3006) are high but the value of RMSE for these estimates are 

low thereby suggesting a good model fit and better predictability of the estimate by accounting 

for model type and weight as predictors. Hence, 33.9%, 37.6%, 75.5%, and 37.7% of the 

variation in mean intercept, means slope, mean intercept SE, and mean slope SE respectively 
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was explained by model type and weight. Model type and weight together explained 

approximately a significant portion of the variation in each of the latent curve estimate ranging 

from 31.6% to 75.5%.   

Table 35: Overall Fit Indices by Model Type 

Model χ2 SRMR RMSEA AIC Mc CFI 

LC 1168.04 0.1591 0.3818 1194.04 0.2082 0.8207 

LCAR 312.6501 0.0509 0.1760 340.6501 0.6039 0.9473 

LCMA 590.3385 0.1231 0.2380 618.3385 0.4697 0.9193 

LCARMA 55.9968 0.0471 0.0477 85.9967 0.9447 0.9937 
         χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of 

Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 

 

Table 36: Overall Effect Size for LC Estimates 

 

Statistic 

 

R2 

Coefficient 

of 

Variation 

 

Root 

MSE 

 

Mean  

Mean Intercept 0.3394 27.8739 1.9729 7.0782 

Mean Slope 0.3756 94.1801 2.2423 2.3808 

Intercept Variance 0.6928 74.1536 181.6728 244.9951 

Slope Variance 0.3171 241.257 59.6694 24.7327 

Intercept Slope Correlation 0.4073 206.8394 79.3926 38.3837 

Mean Intercept SE 0.7549 42.2943 0.3496 0.8267 

Mean Slope SE 0.3768 107.3006 0.2275 0.2121 

Intercept Variance SE 0.7108 68.8873 17.1165 24.8472 

Slope Variance SE 0.3161 229.8854 5.7545 2.5032 

Intercept Slope Correlation SE 0.4335 136.7207 7.8695 5.7559 
         SE-Standard Error; MSE-Mean Square Error 

 

Overall ANOVA Results 

Effect size is commonly utilized to tell us how strongly two or more variables are related, or how 

large the difference between groups is. According to SPSS for Windows, 9.0 (1998), eta squared 

is interpreted as the proportion of the total variability in the dependent variable that is accounted 
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for by variation in the independent variable(s) (Levine & Hullett, 2002). It is the ratio of the 

between groups sum of squares to the total sum of squares. Semi-partial η2 is used as a measure 

of effect size and it contains variance associated with treatment and the interaction between 

treatment and error. Partial η2 is also a measure of effect size but only contains variance 

associated with interaction between treatment and error. The semi-partial η2 was interpreted for 

the ANOVA models because it is a conservative measure of effect size than partial η2. The 

partial η2 is also reported in the ANOVA tables. Tables 37 and 38 provides the ANOVA results 

for each of the latent curve estimates and corresponding SE respectively. All the models were 

significant at p<0.001. The semi-partial η2 was also reported in the ANOVA tables. The semi-

partial η2 values were higher for all the SE estimates whereas the η2 values ranged from 1% to 

1.7% for the latent curve estimates. 

 

Table 37: Overall ANOVA Results for LC Estimates 

 

Dependent 

Variable+ 

Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

Model_Type 16837.743* 46910.916* 18554874* 9335068* 2542629* 

Wt 4158.800* 15.8329* 83236387* 8747813* 21103403* 

Model_type X Wt 10996.677* 1459.365* 17289611* 8364121* 22743534* 

Semi-Partial η2 0.1167 0.0113 0.1006 0.1003 0.1337 

Partial η2 0.1501 0.0178 0.2467 0.1281 0.1841 
       +-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect  

        between Model_type & weight; Wt-Weight 

 

  

  

 

 



84 

 

Table 38: Overall ANOVA Results for SE Estimates 

 

Dependent 

Variable+ 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

Model_Type 690.849* 119.957* 1515257* 81856.51 150454* 

Wt 4806.733* 269.462* 8595122* 89829.89 474135* 

Model_type X Wt 525.3649* 111.547* 1406008* 73127.05 133353* 

Semi-Partial η2 0.0659 0.0839 0.0935 0.0944 0.0763 

Partial  η2 0.2118 0.1187 0.2444 0.1213 0.1187 
            +-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect 

between Model_type & weight; Wt-Weight 

 

 

Overall Tukey Comparisons 

Table 39 provides results of Tukey comparisons between the means of latent curve 

estimates by model type. The letters in the Tukey grouping column are different only when the 

means between two models are different from each other to a statistically significant degree. The 

means are significantly different between the LC, LCMA & LCARMA models for mean 

intercept, LC & LCARMA models for mean slope, and LC, LCMA, and LCARMA for intercept 

variance. With regards to the SE, the means are significantly different between the LC, LCMA & 

LCARMA models for intercept variance SE, LCMA & LCARMA for slope variance SE, and 

LC, LCMA & LCARMA models for intercept slope correlation SE. Overall, the LCAR and 

LCARMA had lower means than LC and LCMA for all the latent curve estimates. 

 

 

 



85 

 

Table 39: Overall Tukey Comparisons by Model Type 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

 

Mean Intercept 

LC  8.1759 A 

LCMA 8.0287 B 

LCARMA 6.0957 C 

LCAR 6.0125 C 

 

Mean Slope 

 

LCMA 4.1108 A 

LCMA 4.0742 A 

LCARMA 0.7325 B 

LCAR 0.6059 B 

 

Intercept Variance 

LC 371.068 A 

LCMA 332.565 B 

LCARMA 139.326 C 

LCAR 137.021 C 

 

Slope Variance 

LC 49.687 A 

LCMA 48.074 A 

LCAR 0.689 B 

LCARMA 0.481 B 

 

Intercept Slope  

Correlation 

LC 78.415 A 

LCMA 78.042 A 

LCARMA 0.281 B 

LCAR -3.203 B 

 

Mean Intercept SE 

LC 1.0613 A 

LCMA 1.0057 B 

LCARMA 0.6253 C 

LCAR 0.6144 C 

 

Mean Slope SE 

LC 0.3017 A 

LCMA 0.2956 A 

LCARMA 0.1257 A 

LCAR 0.1253 A 

 

Intercept Variance SE 

LC 36.2302 A 

LCMA 32.7632 B 

LCARMA 15.6185 C 

LCAR 14.7769 C 

 

Slope Variance SE 

LC 4.8204 A 

LCMA 4.7091 A 

LCARMA 0.2480 B 

LCAR 0.2354 B 

 LC 9.0823 A 

LCMA 8.5500 B 
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Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Intercept Slope 

Correlation SE 

LCARMA 2.7716 C 

LCAR 2.6198 C 
                        SE-Standard Error; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 

 

Table 40 provides results of Tukey comparisons by weight with 1 and 0 signifying the 

presence and absence of weights respectively. The means are significantly different between all 

the latent curve estimates except mean slope. The means were higher for the estimates with 

weights than without weights with wide differences between the means for intercept variance, 

slope variance, intercept slope correlation, intercept variance, and intercept slope correlation SE.  

Table 40: Overall Tukey Comparisons by Weight 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Mean Intercept 1 7.5880 A 

0 6.5684 B 

Mean Slope 1 2.4123 A 

0 2.3494 A 

Intercept Variance 1 473.080 A 

0 16.910 B 

Slope Variance 1 48.1151 A 

0 1.3502 B 

Intercept Slope 

Correlation 

1 74.701 A 

0 2.066 B 

Mean Intercept SE 1 1.3748 A 

0 0.2786 B 

Mean Slope SE 1 0.3418 A 

0 0.0823 B 

Intercept Variance SE 1 48.0247 A 

0 1.6697 B 

Slope Variance SE 1 4.8727 A 

0 0.1338 B 

Intercept Slope 

Correlation SE 

1 11.1996 A 

0 0.3123 B 
                                 SE-Standard Error; 0-With Weight; 1-Without Weight 
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This trend was also seen in the simulation results. Tables 41 and 42 summarizes the 

ANOVA results for the interactive effect between model type and weight on the means of LC 

estimates. In general, the means were lower for the LC, LCAR, and LCMA, and LCARMA 

models without weights than for models with weights. In general, the means for the LC estimates 

are closer to the population-level estimates when the weights are not applied even in the presence 

of the autocorrelative process as compared to the estimates with weights and autocorrelative 

process as they are further away from the population-level estimates. 

A wide fluctuation is observed in the intercept variance and slope variance between the 

models that have weights versus those that do not have weights especially in mean intercept 

variance and slope variance for the models with weights than without weights which is similar to 

the simulation results. The standard errors were compared to quantify the degree of precision in 

estimating the true mean of the population for the various latent curve estimates. The highest 

values for SE was for the LC with weight model followed by LCMA with weight models. The 

lowest SE was for the LCARMA and LCAR no weight model. The low SE for the LCAR and 

LCARMA models without weights as compared to the LCAR and LCARMA models with 

weights may be due to random noise because of the ARMA process that is present in the data 

that biases the latent curve estimates. This pattern was clearly evident in the simulation results 

also. 
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Table 41: Overall LC Estimates by Model_Type*Weights 

    Model Weight    Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

LCARMA 0 6.4053 0.9954 13.4357 0.0500 -0.0022 

1 5.78016 0.4696 265.2172 0.9118 0.5644 

LCAR 0 6.3411 0.8839 13.1773 0.0700 -0.1870 

1 5.6838 0.3278 260.8642 1.3080 -6.2196 

LCMA 0 6.7004 3.7819 18.6728 2.5922 4.2796 

1 9.3569 4.4397 646.4573 93.5550 151.8115 

LC 0 6.8265 3.7363 22.3546 2.6885 4.1809 

1 9.5252 4.4121 719.7812 96.6855 152.6485 
          0-With Weight; 1-Without Weight; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 

Table 42: Overall SE Estimates by Model_Type*Weights 

     

Model 

 

Weight 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

LCARMA 0 0.2535 0.0804 1.3356 0.0095 0.1353 

1 0.9972 0.1711 29.9014 0.4865 5.4078 

LCAR 0 0.2517 0.0786 1.3131 0.0100 0.1310 

1 0.9770 0.1725 28.2406 0.4607 5.1085 

LCMA 0 0.2923 0.0846 1.8463 0.2547 0.4727 

1 1.7191 0.5065 63.6799 9.1635 16.6273 

LC 0 0.3168 0.0861 2.1837 0.2608 0.5099 

1 1.8058 0.5172 70.2766 9.3799 17.6547 
           0-With Weight; 1-Without Weight; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 

 

Box Plots for Latent Curve Estimates by Model Type 

This section utilizes the box plots for each of the latent curve estimates to assess their 

distribution as a function of model type and weight. Figures 4 through 13 shows the box plots for 

each latent curve estimate by model type. Figures 14 through 18 shows the distribution of fit 

indices by model type. The box plots were consulted to evaluate the variability in the data as a 
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function of model type. Figures 18 through 28 shows the box plots by both model type and 

weight. Figure 4 displays the distribution of mean-intercept by model and it can be seen that the 

upper and lower quartile spread in mean intercept values were approximately equal as the width 

of each box plot was similar for each model. However, the range for minimum and maximum 

observations were higher within the LCMA and LC models than LCARMA and LCAR models. 

Figure 5 displays the mean slope distribution by model. The width of the plots for LCARMA and 

LCAR models was narrower than the LCMA and LC models suggesting lesser variation in the 

mean slopes estimates.  

Figure 6 depicts the intercept variance distribution by model. The ranges for the 

maximum observation was highest for the LC model followed by LCMA model. However, the 

ranges for minimum observation were higher within the LCARMA and LCAR models than the 

LCMA and LC models. Figure 7 illustrates the distribution in slope variance by model with a 

vast range for the maximum observations in the LCMA and LC model. There was a minimal 

difference in the upper and lower quartiles within the LCARMA and LCAR models. The means 

for the LCMA and LC models were above the maximum observation suggesting it an outlier. 

Figure 8 displays the distribution of intercept slope correlation by model with a high number of 

data points lying outside the minimum and maximum observations. The highest number of data 

points were lying outside the maximum observations for the LCMA and LC models. The 

LCARMA and LCAR models were cluttered together with more outliers lying below the 

minimum observation. Figure 9 provides the distribution of mean intercept SE with the box plots 

of approximately the same size indication equal spread of data points within each model. The 

means for LCMA and LC models were higher than the median. The maximum observation was 
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higher for the LCMA and LC models and the minimum observation were similar for each model. 

Figure 10 displays the box plot for mean slope SE with high number of outliers outside the 

maximum observation for the LCMA and LC models. The width of box plots for the LCMA and 

LC model was wider (indicating more spread) than the LCARMA and LCAR models but the 

width were similar. Figure 11 illustrates the distribution in the intercept variance SE with equal 

spread in the data across all the four models. However, the maximum observation was higher for 

the LCMA and LC models with high number of outlier lying outside the maximum value for the 

LC model. There were no outliers for the LCARMA and LCAR models.  

The mean was higher than median for LCMA and LC. Figure 12 shows the slope 

variance SE with large number of outliers for the LCMA and LC models. The mean for both the 

models were higher than the maximum observations. The outliers in the LCARMA and LCAR 

models were lower than the other two models with minimal differences in the upper and lower 

bounds. Figure 13 shows the intercept slope correlation SE with more variability in the data for 

the LCMA and LC models than the LCARMA and LCAR models. The means were also higher 

for the former two models with high number of outliers. Figure 14 through 18 shows the box 

plots for the fit indices in order to evaluate the variability within the data as a function of model. 
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     Figure 4 : Mean Intercept by Model 

 

 
Figure 5: Mean Slope by Model 

 

                               

 Figure 6: Intercept Variance by Model 
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Figure 7: Slope Variance by Model 

 

 
Figure 8: Intercept Slope Correlation by Model 

 

 

Figure 9: Mean Intercept SE by Model 
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Figure 10: Mean Slope SE by Model 

 

 
Figure 11: Intercept Variance SE by Model 

 

 
Figure 12: Slope Variance SE by Model 
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Higher variability in the fit indices indicate instability and a higher likelihood of the fit 

indices to fall above or below the established cut-off values. It can be seen from all the figures 

that the width of box plots is smallest for the LCARMA model followed by the LCAR models. 

The outliers were more for the SRMR and Mc in LCARMA model. The LCMA model has the 

largest width for all the fit indices followed by the LC model. Overall, the results from the box 

plots indicate that the LCARMA and LCAR models fitted the data better than the LCMA and LC 

models. Tables 1 through 10 on the fit indices by model further add support to the better fit of 

LCARMA and LCAR models. Figures 19 through 28 presents the overall distributions of latent 

curve estimates by model type*weight. The distributions of all the LC estimates were lower for 

the LCARMA model and LCAR model (both with weights and without weights) than the LCMA 

and LC models suggesting lesser variability in the data for the first two models. The box plots 

also indicate that the LCARMA and LCAR models were lower and closer to the population-level 

estimates. 

 
              Figure 13: Intercept Slope Correlation SE by Model 
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Figure 14: SRMR by Model 

 

 
      Figure 15: RMSEA by Model 

 

 
          Figure 16: AIC by Model 
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  Figure 17: Mc by Model 

 

 
Figure 18: CFI by Model  

 

 

                                         Figure 19: Mean Intercept by Model*Weight 
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Figure 20: Mean Slope by Model*Weight 

 

 

Figure 21: Intercept Variance by Model*Weight 

 

 

Figure 22: Slope Variance by Model*Weight 
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                                Figure 23: Intercept Slope Correlation by Model*Weight 

 

 

Figure 24: Mean Intercept SE by Model*Weight 

 

 

Figure 25: Mean Slope SE by Model*Weight 
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Figure 26: Intercept Variance SE by Model*Weight 

 

 

Figure 27: Slope Variance SE by Model*Weight 
 

 

 

    Figure 28: Intercept Slope Correlation SE by Model*Weight 
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The results in next section focuses on General Linear Model (GLM) with the data having 

an ARMA process only where both the AR and MA processes were modeled simultaneously. 

The fit indices, effect sizes, ANOVA results, means, tukey results, interaction plots for LC 

estimates of LCARMA model were compared with the other models because it was the best 

fitting model. Furthermore, the GLM was run for each of the AR and MA process values (AR = 

0.33, MA = 0.30; AR = 0.67, MA = 0.60; AR = 0.85, MA = 0.80) because it was important to 

assess the behavior of fit indices, effect sizes, ANOVA results, means, tukey results and plots for 

LC estimates in relation to the change in AR and MA values and weights. 

 

General Linear Model Results with ARMA Process (AR 0.33 & MA 0.30) 

Table 43 provides the fit indices for the ARMA process with the LCARMA model 

having a much better fit (χ2-42.8673, SRMR-0.0201, RMSEA-0.0314, AIC-72.8673, Mc-0.9729, 

CFI-0.9975) than the other models. Table 44 provides a summary of the effect size with ARMA 

process (AR 0.33 & MA 0.30). As indicated earlier, lower values for CV indicate a good model 

fit.  

Table 43: Fit Indices with ARMA Process (AR 0.33 & MA 0.30) 

Model χ2 SRMR RMSEA AIC Mc CFI 

LC 1735.98 0.4420 0.5052 1761.98 0.0205 0.7233 

LCAR 402.3876 0.0416 0.2394 430.3876 0.4265 0.9396 

LCMA 973.7137 0.2751 0.3813 1001.71 0.1193 0.8468 

LCARMA 42.8673 0.0201 0.0314 72.8673 0.9729 0.9975 
         χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of 

Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 
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The RMSE for all the estimates were low except for intercept variance, intercept slope 

correlation and intercept variance SE suggesting a good model fit and better predictability of the 

estimate by accounting for model type and weight as predictors. Hence, 92.4%, 94.3%, 97.3%, 

97.4%, 98.7%, 97.3%, and 99.3% of the variation in mean intercept, means slope, slope variance, 

mean intercept SE, mean slope SE, slope variance SE, and intercept slope correlation SE 

respectively was explained by model type and weight.  

Table 44: Effect Size for LC Estimates with ARMA Process (AR 0.33 & MA 0.30) 

 

Statistic 

 

R2 

Coefficient 

of 

Variation 

 

Root 

MSE 

 

Mean  

Mean Intercept 0.9241 6.4002 0.5599 8.7483 

Mean Slope 0.9431 14.6105 0.2844 1.9470 

Intercept Variance 0.9585 23.3802 90.4017 386.660 

Slope Variance 0.9734 23.9702 1.4552 6.0712 

Intercept Slope Correlation 0.9705 32.8951 7.0232 21.3503 

Mean Intercept SE 0.9743 12.2487 0.1326 1.0828 

Mean Slope SE 0.9868 9.1080 0.0130 0.1427 

Intercept Variance SE 0.9620 22.1724 8.5643 38.6262 

Slope Variance SE 0.9728 22.9172 0.1513 0.6604 

Intercept Slope Correlation SE 0.9931 10.1665 0.4121 4.0543 
           SE-Standard Error; MSE-Mean Square Error 

 

ANOVA Results with ARMA Process (AR 0.33 & MA 0.30) 

Tables 45 and 46 summarizes the ANOVA results with ARMA process (AR 0.33 & MA 

0.30). All the models were significant at p<.001 including the interaction between model type 

and weight. The semi-partial η2 values for the slope variance (0.2632), intercept slope correlation 

(0.3444), and slope variance SE (0.2392) were high as compared to the η2 values for other 
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estimates and thereby greater variation in these LC estimates was explained by model type and 

weight.  

 

Table 45: ANOVA Results for LC Estimates with ARMA Process (AR 0.33 & MA 0.30) 

Dependent 

Variable+ 

Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

Model_Type 3542.77* 2083.32* 486286* 37315* 1005888* 

Wt 2383.71* 2.17* 2101361* 52995* 663344* 

Model_type X Wt 153.20* 53.22* 4241465* 33465* 918137* 

Semi-Partial η2 0.0233 0.0235 0.1350 0.2632 0.3444 

Partial η2 0.2349 0.2923 0.7653 0.9085 0.9212 
       

+-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect between 

Model_type & weight; Wt-Weight 

 

Table 46: ANOVA Results for SE Estimates with ARMA Process (AR 0.33 & MA 0.30) 

Dependent 

Variable+ 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

Model_Type 106.98* 3.53* 458159* 359.64* 8180.36* 

Wt 904.97* 13.50* 209971* 626.87* 23525.90* 

Model_type X Wt 51.15* 3.10* 399302* 321.55* 7264.47* 

Semi-Partial η2 0.0469 0.1520 0.1299 0.2392 0.1851 

Partial  η2 0.6462 0.9202 0.7737 0.8981 0.9641 
            

+-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect 

between Model_type & weight; Wt-Weight 

 

Tukey Comparisons with ARMA Process (AR 0.33 & MA 0.30) 

Tables 47 and 48 provides the Tukey comparisons between the means of LC estimates 

with ARMA process (AR 0.33 & MA 0.30) by model type and weight respectively. A different 

letter implies that means between any two models is different from each other to a statistically 
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significant degree. The means of each model were significantly different from each other for all 

the LC estimates except mean slope SE and slope variance SE. The means of LC estimates for 

the LCARMA and LCAR model were lower than the LC and LCMA models. The means were 

significantly different between the models with weight and without weights in Table 48 with the 

former having higher means.  

Table 47: Tukey Comparisons by Model Type with ARMA Process (AR 0.33 & MA 0.30) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

 

Mean Intercept 

LC  10.5647 A 

LCMA 9.8559 B 

LCARMA 7.4537 C 

LCAR 7.1189 D 

 

Mean Slope 

 

LCMA 3.1509 A 

LC 3.0161 B 

LCARMA 0.9378 C 

LCAR 0.6831 D 

 

Intercept Variance 

LC 604.280 A 

LCMA 510.616 B 

LCARMA 231.851 C 

LCAR 199.893 D 

 

Slope Variance 

LC 11.2396 A 

LCMA 10.5440 B 

LCAR 1.4697 C 

LCARMA 1.0317 D 

 

Intercept Slope  

Correlation 

LCMA 50.7419 A 

LC 41.5174 B 

LCARMA -0.5908 C 

LCAR -6.2674 D 

 

Mean Intercept SE 

LC 1.3907 A 

LCMA 1.2844 B 

LCARMA 0.8610 C 

LCAR 0.7950 D 

 

Mean Slope SE 

LCMA 0.1901 A 

LC 0.1893 A 

LCARMA 0.0961 B 

LCAR 0.0953 B 
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Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

 

Intercept Variance SE 

LC 59.1878 A 

LCMA 51.3817 B 

LCARMA 23.5332 C 

LCAR 20.4021 D 

 

Slope Variance SE 

LCMA 1.1371 A 

LC 1.1320 A 

LCAR 0.1869 B 

LCARMA 0.1857 B 

 

Intercept Slope 

Correlation SE 

LC 6.3786 A 

LCMA 6.2483 B 

LCARMA 1.9121 C 

LCAR 1.6782 D 
                            SE-Standard Error; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 

 

Table 48: Tukey Comparisons by Weight with ARMA Process (AR 0.33 & MA 0.30) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Mean Intercept 1 9.9688 A 

0 7.5277 B 

Mean Slope 1 1.9838 A 

0 1.9102 B 

Intercept Variance 1 749.062 A 

0 24.258 B 

Slope Variance 1 11.8264 A 

0 0.3161 B 

Intercept Slope 

Correlation 

1 41.7118 A 

0 0.9888 B 

Mean Intercept SE 1 1.8349 A 

0 0.3307 B 

Mean Slope SE 1 0.2346 A 

0 0.0508 B 

Intercept Variance SE 1 74.8435 A 

0 2.4089 B 

Slope Variance SE 1 1.2863 A 

0 0.0345 B 

Intercept Slope 

Correlation SE 

1 7.8891 A 

0 0.2195 B 
                                 0-With Weight; 1-Without Weight; SE-Standard Error 
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Tables 49 and 50 provides the means for LC estimates with ARMA process (AR 0.33 & 

MA 0.30) when both model and weights were together accounted along with the confidence 

intervals (CI). The CI for the mean intercept and mean slope were narrower and tighter 

indicating more precision in both the estimate when the interaction between weights and 

autocorrelation is accounted than the other three estimates (intercept variance, slope variance, 

and intercept slope correlation). It can be seen that the means of the latent curve estimates and 

associated SE for the models are higher for the estimates having weights than those not having 

weights. This suggests an upward bias in the LC estimates when the autocorrelative ARMA 

process (AR 0.33 & MA 0.30) is modeled with weights. The bias is more pronounced for the 

LCMA and LC models. The only latent curve sample estimate for the models with weights that 

were closer to population estimate was mean intercept (8.5141 versus 8.7295 respectively). The 

differences between the SE of the LCMA and LC models with weighs and without weights was 

also more than the differences between the LCARMA and LCAR models. Larger differences 

were observed in the intercept variance estimate and SE between models with weights and 

without weights.  

Table 49: Means for LC Estimates with ARMA Process  

by Model_Type*Weights (AR 0.33 & MA 0.30)  

    Model Weight    Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

LCARMA 0 6.3932 1.0045 13.3732 0.0484 0.0097 

1 8.5141 0.8711 450.3282 2.0149 -1.1912 

LCAR 0 6.3202 0.8926 13.1421 0.0722 -0.1875 

1 7.9176 0.4736 386.6436 2.8671 -12.3471 

LCMA 0 8.2733 2.9546 29.6872 0.5614 2.6006 

1 11.4384 3.3473 991.5446 20.5265 98.8831 

LC 0 9.1241 2.7889 40.8298 0.5821 1.5324 
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    Model Weight    Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

1 12.0052 3.2433 1167.730 21.8971 81.5023 
         0-With Weight; 1-Without Weight; LC-Latent Curve; AR-Auto regressive; MA-Moving Average. 

Table 50: Means for SE Estimates with ARMA Process  

by Model_Type*Weights (AR 0.33 & MA 0.30) 

     

Model 

 

Weight 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

 

LCARMA 

0 0.2541 0.0499 1.3428 0.0085 0.0909 

1 1.4680 0.1423 45.7236 0.3629 3.7332 

0 (C.I) 6.8912 

5.8952 

1.1023 

0.9067 

16.0051 

10.7413 

0.0651 

0.0317 

0.1879 

-0.1685 

1 (C.I) 11.3914 

5.6368 

1.1500 

0.5922 

539.9465 

360.7099 

2.7262 

1.3036 

6.1259 

-8.5083 

 

LCAR 

0 0.2511 0.0458 1.3080 0.0088 0.0874 

1 1.3390 0.1448 39.4960 0.3650 3.2690 

0 (C.I) 6.8124 

5.8280 

0.9824 

0.8028 

15.7058 

10.5784 

0.0894 

0.0550 

-0.0162 

-0.3588 

1 (C.I) 10.5420 

5.2932 

0.7574 

0.1898 

464.0558 

309.2314 

3.5825 

2.1517 

-5.9399 

-18.7543 

 

LCMA 

0 0.3792 0.0544 2.9897 0.0617 0.3434 

1 2.1896 0.3258 99.7736 2.2124 12.1531 

0 (C.I) 9.0165 

7.5301 

3.0612 

2.8480 

35.5470 

23.8274 

0.6823 

0.4405 

3.2737 

1.9275 

1 (C.I) 15.7300 

7.1468 

3.9859 

2.7087 

1187.1009 

795.9883 

24.8628 

16.1902 

122.7032 

75.0630 

 

 LC 

0 0.4385 0.0531 3.9949 0.0588 0.3562 

1 2.3429 0.3253 114.3806 2.2052 12.4010 

0 (C.I) 9.9836 

8.2646 

2.8930 

2.6848 

48.6598 

32.9998 

0.6973 

0.4669 

2.2306 

0.8342 

1 (C.I) 16.5973 

7.4131 

3.8809 

2.6057 

1391.9160 

943.5440 

26.2193 

17.5749 

105.8083 

57.1963 
           0-With Weight; 1-Without Weight; SE-Standard Error; C.I.-Confidence Interval; LC-Latent Curve;  

           AR-Autoregressive; MA-Moving Average; SE-Standard Error 
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Interaction Plots with ARMA Process*Weight (AR 0.33 & MA 0.30) 
 

 Figures 29 through 38 presents the interaction plots between model type and weights for 

each of the LC estimates and associated SE for models that were fitted to the LCARMA data. An 

examination of how the four models (LCARMA, LCAR, LCMA, and Latent Curve models fitted 

the LCARMA (0.33, 0.30) data revealed that the mean intercept (Figure 29) were consistently 

underestimated for all four models when sample weights were not incorporated (mean intercept 

for population was 8.7295).  While the LCAR model’s mean intercept was approximately equal 

to that of the LCARMA model, the plot clearly depicts the Mean Intercept as underestimated for 

both the LCMA and Latent Curve models.  This finding suggest that ignoring the AR component 

of the ARMA process downwardly biases the mean intercept growth parameter.  

Figure 30 for mean slope had mixed results when weights were present versus not present 

in the models. The means were slightly overestimated for all the four models with weights than 

without weights because the population estimate for intercept variance was 1.0019. Figure 31 for 

intercept variance (population value of 13.5423) had similar trends as mean intercept with the 

means being overestimated for the models with weights with variability in the estimates within 

the models. The means for slope variances (Figure 32) (population value of 0.0483) were almost 

constant for all the models without weights. However, the overestimation was less in the 

LCARMA and LCAR models with weights than the LCMA and MC models. Figure 33 shows 

the intercept slope correlation being overestimated for the LCMA and LC models with weights 

and slight underestimation for LCAR model with weights. There were minimal differences in the 

intercept slope correlation means between the LCARMA models with weights and without 

weights.  
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Figure 29: Interaction Plot of Mean Intercept with ARMA (AR 0.33 & MA 0.30) 

 

 

Figure 30: Interaction Plot of Mean Slope with ARMA (AR 0.33 & MA 0.30) 

 

 

Figure 31: Interaction Plot of Intercept Variance with ARMA (AR 0.33 & MA 0.30) 



109 

 

 

Figure 32: Interaction Plot of Slope Variance with ARMA (AR 0.33 & MA 0.30) 

 

 

Figure 33: Interaction Plot of Intercept Slope Correlation with ARMA (AR 0.33 & MA 0.30) 

 

 

Figure 34: Interaction Plot of Mean Intercept SE with ARMA (AR 0.33 & MA 0.30) 



110 

 

 

Figure 35: Interaction Plot of Mean Slope SE with ARMA (AR 0.33 & MA 0.30) 

 

 

Figure 36: Interaction Plot of Intercept Variance SE with ARMA (AR 0.33 & MA 0.30) 

 

 

Figure 37: Interaction Plot of Slope Variance SE with ARMA (AR 0.33 & MA 0.30) 
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Figure 38: Interaction Plot of Intercept Slope Correlation SE with ARMA (AR 0.33 & MA 0.30) 

 

Similar trends were seen as in Figure 29 for mean intercept SE (population value of 

0.0075) (Figure 34), mean slope SE (population value of 0.0013) (Figure 35), intercept variance 

SE (population value of 13.5423) (Figure 36), slope variance SE (population value of 0.0483) 

(Figure 37), and intercept slope correlation SE (population value of 0.0030) (Figure 38). Overall, 

the highest latent curve estimates within the models with weights were for the LCMA and LC 

models. The overestimation in latent curve estimates for the LCARMA and LCAR models with 

weights was less as compared to the LCMA and LC models with weights implying that the 

sample latent curve estimates for the first two models were closer to the population latent curve 

estimates. Further support is added to this trend by the lower SE values of LCARMA and LCAR 

models than the other two in Table 49. The CI for the mean intercept and mean slope were 

narrower and tighter indicating more precision in both the estimate when the interaction between 

weights and autocorrelation is accounted than the other three estimates (intercept variance, slope 

variance, and intercept slope correlation). The CI for mean intercept and mean slope were also 

different from each other to a statistically significant degree when model with weights and 

without weights were compared.  
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General Linear Model Results with ARMA Process (AR 0.67 & MA 0.60) 

The results in this section focuses on the data having an ARMA process only where both 

the AR and MA processes were modeled (AR = 0.67, MA = 0.60). The fit indices, effect sizes, 

ANOVA results, means, tukey results and plots for LC estimates of LCARMA model were 

compared with the other models because it was the best fitting model. Table 51 provides the fit 

indices for the ARMA process with the LCARMA model having a much better fit (χ2-39.0791, 

SRMR-0.0195, RMSEA-0.0314, AIC-69.0791, Mc-0.0.9780, CFI-0.9984) than the other models. 

Table 52 provides a summary of the effect size of LC estimates with ARMA process (AR 0.33 & 

MA 0.30). The RMSE for all the estimates were low except for intercept variance, slope 

variance, intercept slope correlation, and intercept variance SE suggesting a good model fit and 

better predictability of the estimate by accounting for model type and weight as predictors. 

Hence, 95.8%, 99.2%, 96.9%, 99.4%, 98.7%, and 98.6% of the variation in mean intercept, mean 

slope, slope variance, mean intercept SE, mean slope SE, slope variance SE, and intercept slope 

correlation SE respectively was explained by model type and weight.  

Table 51: Fit Indices with ARMA Process (AR 0.67 & MA 0.60) 

Model χ2 SRMR RMSEA AIC Mc CFI 

LC 2148.14 0.1961 0.5634 2174.14 0.0076 0.7141 

LCAR 617.5599 0.0159 0.3016 645.5599 0.2579 0.9206 

LCMA 1028.96 0.1490 0.3932 1056.96 0.1005 0.8651 

LCARMA 39.0791 0.0195 0.0314 69.0791 0.9780 0.9984 
           χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of  

Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI-  

           Comparative Fit Index 

 

 

Tables 53 and 54 summarizes the ANOVA results with ARMA process (AR 0.67 & MA 

0.60). All the models were significant at p<.001 including the interaction between model type 
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and weight. The semi-partial η2 values for the slope variance (0.3096), intercept slope correlation 

(0.3444), mean slope SE (0.2816), and slope variance SE (0.3023) were high as compared to the 

η2 values for other estimates and thereby greater variation in these LC estimates was explained 

by model type and weight. 

Table 52: Effect Size for LC Estimates with ARMA Process (AR 0.67 & MA 0.60) 

 

Statistic 

 

R2 

Coefficient 

of 

Variation 

 

Root 

MSE 

 

Mean  

Mean Intercept 0.9584 3.3330 0.2539 7.6187 

Mean Slope 0.9929 6.7776 0.2507 3.6996 

Intercept Variance 0.9121 31.4825 89.183 283.2791 

Slope Variance 0.9875 18.3668 7.6593 41.7019 

Intercept Slope Correlation 0.9897 18.1174 12.0078 66.2772 

Mean Intercept SE 0.9690 13.0076 0.1200 0.9232 

Mean Slope SE 0.9940 6.9036 0.0235 0.3412 

Intercept Variance SE 0.9104 31.8703 8.7713 27.5219 

Slope Variance SE 0.9872 18.1677 0.7470 4.1116 

Intercept Slope Correlation SE 0.9868 14.3636 1.3029 9.0710 
          SE-Standard Error; MSE-Mean Square Error 

 

ANOVA Results with ARMA Process (AR 0.67 & MA 0.60) 

Table 53: ANOVA Results for LC Estimates with ARMA Process (AR 0.67 & MA 0.60) 

 

Dependent 

Variable+ 

Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

Model_Type 88.61* 13728.17* 9023100* 2598479* 8351870* 

Wt 2251.46* 138.22* 1144419* 2489109* 6278338* 

Model_type X Wt 25.62* 183.88* 7959125* 2323635* 7466304* 

Semi-Partial η2 0.0104 0.0130 0.0552 0.3096 0.3344 

Partial η2 0.1997 0.6475 0.3860 0.9614 0.9702 

       
+-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect between 

Model_type & weight; Wt-Weight 
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Table 54: ANOVA Results for SE Estimates with ARMA Process (AR 0.67 & MA 0.60) 

 

Dependent 

Variable+ 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

Model_Type 21.833* 42.0540 87653* 23593* 45202.64* 

Wt 687.777* 62.8948 1080255* 24201* 117598.90* 

Model_type X Wt 10.2463* 41.4787 77297* 21092* 40322.33* 

Semi-Partial η2 0.0138 0.2816 0.0565 0.3023 0.1959 

Partial  η2 0.3086 0.9791 0.3869 0.9596 0.9372 
            +-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect 

between Model_type & weight; Wt-Weight; SE-Standard Error 

 

Tukey Comparisons with ARMA Process (AR 0.67 & MA 0.60) 

 

Tables 55 and 56 provides the Tukey comparisons between the means of LC estimates 

with ARMA process (AR 0.67 & MA 0.60) by model type and weight respectively. A different 

letter implies that means between any two models is different from each other to a statistically 

significant degree. The means of each model were significantly different from each other for 

mean slope, intercept slope correlation, and intercept slope correlation SE latent curve estimates 

but not for mean intercept, intercept variance, slope variance, intercept slope correlation, mean 

intercept SE, mean slope SE, intercept variance SE, and slope variance SE latent curve estimates. 

Overall, the LC and LCMA models had higher means than the LCARMA and LCAR models. 

The means were significantly different between the models with weights and without weights in 

Table 56 with the former having higher means. There were striking differences between the 

means of intercept variance, slope variance, intercept slope correlation, intercept variance SE, 
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slope variance SE, and intercept slope correlation SE for models with weights and without 

weights. 

Table 55: Tukey Comparisons by Model Type with ARMA Process (AR 0.67 & MA 0.60) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

 

Mean Intercept 

LC  8.0131 A 

LCARMA 7.5445 B 

LCAR 7.5267 B 

LCMA 7.3905 C 

 

Mean Slope 

 

LCMA 6.6593 A 

LC 6.5934 B 

LCARMA 0.9403 C 

LCAR 0.6056 D 

 

Intercept 

Variance 

LC  413.041 A 

LCARMA 244.351 B 

LCAR 244.145 B 

LCMA 231.579 B 

 

Slope Variance 

LCMA 83.9979 A 

LC 79.9537 B 

LCAR 1.6301 C 

LCARMA 1.2261 C 

 

Intercept Slope  

Correlation 

LC  146.7125 A 

LCMA 129.7089 B 

LCARMA -1.3295 C 

LCAR -9.9829 D 

 

Mean Intercept 

SE 

LC  1.1212 A 

LCARMA 0.8776 B 

LCAR 0.8762 B 

LCMA 0.8179 C 

 

Mean Slope SE 

LCMA 0.5106 A 

LC 0.4960 B 

LCAR 0.1800 C 

LCARMA 0.1784 C 

 

Intercept 

Variance SE 

LC  40.1693 A 

LCAR 24.3346 B 

LCARMA 24.2531 B 

LCMA 21.3307 C 

 LCMA  8.1640 A 

LC 7.7333 B 
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Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Slope Variance 

SE 

LCARMA 0.2825 C 

LCAR 0.2667 C 

 

Intercept Slope 

Correlation SE 

LC  15.7512 A 

LCMA 12.8152 B 

LCARMA 3.9848 C 

LCAR 3.7330 D 
                           SE-Standard Error; LC-Latent Curve; AR-Auto regressive; MA-Moving  

                                Average 

 

Table 56: Tukey Comparisons by Weight with ARMA Process (AR 0.67 & MA 0.60) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Mean Intercept 1 8.8049 A 

0 6.4325 B 

Mean Slope 1 3.9936 A 

0 3.4058 B 

Intercept Variance 1 550.723 A 

0 15.835 B 

Slope Variance 1 81.1443 A 

0 2.2597 B 

Intercept Slope 

Correlation 

1 128.9188 A 

0 3.6357 B 

Mean Intercept SE 1 1.5788 A 

0 0.2675 B 

Mean Slope SE 1 0.5395 A 

0 0.1430 B 

Intercept Variance SE 1 53.5057 A 

0 1.5381 B 

Slope Variance SE 1 8.0085 A 

0 0.2225 B 

Intercept Slope 

Correlation SE 

1 17.6442 A 

0 0.4979 B 
                           0-With Weight; 1-Without Weight; SE-Standard Error 

  

 Tables 57 and 58 provides the means for LC estimates with ARMA process (AR 0.67 & 

MA 0.60) when both model and weights were together accounted along with the confidence 
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intervals. It can be seen that the means of the latent curve estimates and associated SE for the 

models are higher for the estimates having weights than those not having weights. 

 Table 57: Means for LC Estimates with ARMA Process  

by Model_Type*Weights (AR 0.67 & MA 0.60) 

    Model Weight    Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

LCARMA 0 6.4003 0.9897 13.5532 0.0515 -0.0078 

1 8.6887 0.8909 475.1495 2.4007 -2.6511 

LCAR 0 6.3859 0.6459 13.3667 0.0904 -0.5578 

1 8.6674 0.5653 474.9237 3.1697 -19.4079 

LCMA 0 6.3284 6.0096 12.6953 4.5850 7.0786 

1 8.4526 7.3090 450.4631 163.4108 252.3391 

LC 0 6.6151 5.9777 23.7259 4.3118 8.0298 

1 9.4109 7.2091 802.3553 155.5956 285.3950 
           0-With Weight; 1-Without Weight; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 

Table 58: Means for SE Estimates with ARMA Process  

by Model_Type*Weights (AR 0.67 & MA 0.60) 

     

Model 

 

Weight 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

 

LCARMA 

0 0.2535 0.1425 1.3411 0.0125 0.2154 

1 1.5016 0.2143 47.1649 0.5525 7.7543 

0 (C.I) 6.8972 

5.9034 

1.2690 

0.7104 

16.1818 

10.9246 

0.0760 

0.0270 

0.4144 

-0.4300 

1 (C.I) 11.6318 

5.7456 

1.3109 

0.4709 

567.5927 

382.7063 

3.4836 

1.3178 

12.5473 

-17.8495 

 

LCAR 

0 0.2518 0.1413 1.3330 0.0144 0.2030 

1 1.5005 0.2187 47.3361 0.5190 7.2630 

0 (C.I) 6.8794 

5.8924 

0.9228 

0.3690 

15.9794 

10.7540 

0.1186 

0.0622 

-0.1599 

-0.9557 

1 (C.I) 11.6084 

5.7264 

0.9940 

0.1366 

567.7025 

382.1449 

4.1869 

2.1525 

-5.1724 

-33.6434 

 

LCMA 

0 0.2349 0.1465 1.1680 0.4457 0.6999 

1 1.4009 0.8746 41.4932 15.8823 24.9304 

0 (C.I) 6.7888 

5.8680 

6.2967 

5.7225 

14.9846 

10.4060 

5.4586 

3.7114 

8.4504 

5.7068 
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Model 

 

Weight 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

1 (C.I) 11.1984 

5.7068 

9.0232 

5.5948 

531.7898 

369.1364 

194.5401 

132.2815 

301.2027 

203.4755 

 

LC 

0 0.3300 0.1416 2.3100 0.4173 0.8732 

1 1.9123 0.8504 78.0286 15.0495 30.6292 

0 (C.I) 7.2619 

5.9683 

6.2552 

5.7002 

28.2535 

19.1983 

5.1297 

3.4939 

9.7413 

6.3183 

1 (C.I) 13.1590 

5.6628 

8.8759 

5.5423 

955.2914 

649.4192 

185.0926 

126.0986 

345.4282 

225.3618 
         0-With Weight; 1-Without Weight; SE-Standard Error; C.I.-Confidence Interval; LC-Latent Curve;  

           AR-Autoregressive; MA-Moving Average 

 

This suggests an upward bias in the LC estimates when the autocorrelative ARMA process (AR 

0.67 & MA 0.60) is modeled with weights. The bias is more pronounced for the LCMA and LC 

models. The only latent curve sample estimate closer to population estimate was mean intercept 

(8.6887 versus 8.7286 respectively). The differences between the SE of the LCMA and LC 

models with weighs and without weights was also more than the differences between the 

LCARMA and LCAR models. Larger differences were observed in the intercept variance 

estimate and SE and intercept slope correlation SE between models with weights and without 

weights. 

Interaction Plots with ARMA Process*Weight (AR 0.67 & MA 0.60) 
 

Figures 39 through 48 presents the interaction plots between model type and weights for 

each of the LC estimates and associated SE for models that were fitted to the LCARMA data. An 

examination of how the four models (LCARMA, LCAR, LCMA, and Latent Curve models fitted 

the LCARMA (0.67, 0.60) data revealed that the mean intercept (Figure 39) were consistently  
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Figure 39: Interaction Plot of Mean Intercept with ARMA (AR 0.67 & MA 0.60) 

 

 

Figure 40: Interaction Plot of Mean Slope with ARMA (AR 0.67 & MA 0.60) 

 

 
Figure 41: Interaction Plot of Intercept Variance with ARMA (AR 0.67 & MA 0.60) 
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underestimated for all four models when sample weights were not incorporated (mean intercept 

for population was 8.7286).  The mean intercept were approximately equal within all the models  

with weights and without weights except for the LC model with weights where the means were 

higher than the other three models having weights. This finding suggest that ignoring the AR 

component of the ARMA process downwardly biases the mean intercept growth parameter. 

Figure 40 shows that the mean slope (population value of 1.0217) were overestimated for LCMA 

and LC models with weights but the difference between the mean slopes was minimal for the 

LCARMA and LCAR models with weights and no weights. 

Figure 41 for intercept variance (population value of 13.7297) shows that the mean was 

overestimated when weights were present versus when they were not present in the four models. 

The means were constant for intercept variance of all models without weights. Figure 41 for 

intercept variance (population value of 13.5423) had similar trends as mean intercept with the 

means being overestimated for the models with weights. Similar estimates were observed within 

the models except for LC model with weights which had higher estimates than the other three 

models with weights. The means for intercept variances were almost constant for all the models 

without weights. Figure 42 shows the slope variance (population value of 0.0453) being 

overestimated for the LCMA and LC models with weights and slight underestimation for 

LCARMA and LCAR model with weights. Figure 43 shows the intercept slope correlation 

(population value of 0.0382) interaction plot with LCMA and LCAR means with weights being 

overestimated and the LCAR mean slightly underestimated.  There were minimal differences in 

the intercept slope correlation means between the LCARMA models with weights and without 

weights. 
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The sample latent curve values for mean intercept SE (population value of 0.0075) 

(Figure 44), mean slope SE (population value of 0.0042) (Figure 45), intercept variance SE 

(population value of 0.0397) (Figure 46), slope variance SE (population value of 0.0002) (Figure 

47), and intercept slope correlation SE (population value of 0.0065) (Figure 48) having ARMA 

process (0.67, 0.60) were overestimated for models with weights. However, the overestimation 

in models with weights was less for mean slope SE and intercept slope SE.  Minimal differences  

 

Figure 42: Interaction Plot of Slope Variance with ARMA (AR 0.67 & MA 0.60) 

 

 

Figure 43: Interaction Plot of Intercept Slope Correlation with ARMA (AR 0.67 & MA 0.60) 
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Figure 44: Interaction Plot of Mean Intercept SE with ARMA (AR 0.67 & MA 0.60) 

 

Figure 45: Interaction Plot of Mean Slope SE with ARMA (AR 0.67 & MA 0.60) 

 

 

Figure 46: Interaction Plot of Intercept Variance SE with ARMA (AR 0.67 & MA 0.60) 
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Figure 47: Interaction Plot of Slope Variance SE with ARMA (AR 0.67 & MA 0.60) 

 

Figure 48: Interaction Plot of Intercept Slope Correlation SE with ARMA (AR 0.67 & MA 0.60) 

 

were present in the slope variance SE estimates between the LCARMA and LCAR models with 

weighs and without weights. Overall, the highest latent curve estimates within the models with 

weights were for the LCMA model. The overestimation in latent curve estimates for the 

LCARMA and LCAR models with weights was less as compared to the LCMA and LC models 

implying that the sample latent curve estimates for these models were closer to the population 

latent curve estimates. The differences in the estimates between the LCARMA and LCAR 

models with and without weights were less for the slope variance, intercept slope correlation, 
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mean slope SE, slope variance SE, and intercept slope correlation SE. The CI for the mean 

intercept and mean slope were narrower and tighter indicating more precision in both the 

estimate when the interaction between weights and autocorrelation is accounted than the other 

three estimates (intercept variance, slope variance, and intercept slope correlation). The CI for 

mean intercept and mean slope were also different from each other to a statistically significant 

degree when model with weights and without weights were compared. 

 

General Linear Model Results with ARMA Process (AR 0.85 & MA 0.80) 

The results in this section focuses on the data having an ARMA process only where both 

the AR and MA processes were modeled (AR = 0.85, MA = 0.80). The fit indices, effect sizes, 

ANOVA results, means, tukey results and plots for LC estimates of LCARMA model were 

compared with the other models because it was the best fitting model. Table 59 provides the fit 

indices for the ARMA process with the LCARMA model having a much better fit (χ2-38.7730, 

SRMR-0.0230, RMSEA-0.0305, AIC-68.77, Mc-0.0.9785, CFI-0.9985) than the other models. 

Table 60 provides a summary of the effect size of LC estimates with ARMA process (AR 0.33 & 

MA 0.30). The RMSE for all the estimates were low except for intercept variance, slope 

variance, and intercept slope correlation suggesting a good model fit and better predictability of 

the estimate by accounting for model type and weight as predictors. Hence, 96.6%, 98.7%, 

99.6%, 99.6%, 99.1%, 99.1%, and 99.3% of the variation in mean intercept, mean slope, mean 

intercept SE, mean slope SE, intercept variance SE, slope variance SE, and intercept slope 

correlation SE respectively is explained by model type and weight.  
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Tables 59 and 60 summarizes the ANOVA results with ARMA process (AR 0.85 & MA 

0.80). All the models were significant at p<.001 including the interaction between model type 

and weight. The semi-partial η2 values for the slope variance (0.2632), intercept slope 

correlation (0.3444), and slope variance SE (0.2392) were high as compared to the η2 values for 

other estimates and thereby greater variation in these LC estimates was explained by model type 

and weight. Tables 61 and 62 summarizes the ANOVA results with ARMA process (AR 0.85 & 

MA 0.80). All the models were significant at p<.001 including the interaction between model 

type and weight. The semi-partial η2 values for the slope variance (0.3119), intercept slope 

correlation (0.3405), and slope variance SE (0.2941) were high as compared to the η2 values for 

other estimates and thereby greater variation in these LC estimates was explained by model type 

and weight. 

Table 59: Fit Indices with ARMA Process (AR 0.85 & MA 0.80) 

Model χ2 SRMR RMSEA AIC Mc CFI 

LC 2218.10 0.1001 0.5720 2244.10 0.0072 0.7224 

LCAR 659.7465 0.0114 0.3122 687.7465 0.2339 0.9201 

LCMA 1022.66 0.0827 0.3892 1050.66 0.1174 0.8740 

LCARMA 38.7730 0.0230 0.0305 68.7730 0.9785 0.9985 
          χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of 

Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 

 

Table 60: Effect Size for LC Estimates with ARMA Process (AR 0.85 & MA 0.80) 

 

Statistic 

 

R2 

Coefficient 

of 

Variation 

 

Root 

MSE 

 

Mean  

Mean Intercept 0.9660 3.2050 0.2428 7.5774 

Mean Slope 0.9886 9.3068 0.4374 4.7001 

Intercept Variance 0.9896 9.6069 23.5742 245.3872 

Slope Variance 0.9941 12.5809 10.5614 83.9482 

Intercept Slope Correlation 0.9864 21.3533 19.0051 89.0031 
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Statistic 

 

R2 

Coefficient 

of 

Variation 

 

Root 

MSE 

 

Mean  

Mean Intercept SE 0.9964 4.1624 0.0363 0.8722 

Mean Slope SE 0.9957 5.5856 0.0278 0.4988 

Intercept Variance SE 0.9914 8.7292 2.0674 23.6844 

Slope Variance SE 0.9913 14.6282 1.2288 8.4008 

Intercept Slope Correlation SE 0.9926 9.4167 1.2588 13.3683 
           SE-Standard Error; MSE-Mean Square Error 

ANOVA Results with ARMA Process (AR 0.85 & MA 0.80) 
 

Table 61: ANOVA Results for LC Estimates with ARMA Process (AR 0.85 & MA 0.80) 

Dependent 

Variable+ 

Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

Model_Type 70.08* 25883.86* 32138.25* 1056062* 16101166* 

Wt 2547.26* 175.12* 8480441* 1010986* 11237911* 

Model_type X Wt 50.94* 472.07* 19544.31* 9450988* 14410885* 

Semi-Partial η2 0.0184 0.176 0.003 0.3119 0.3405 

Partial η2 0.3517 0.6078 0.0216 0.9816 0.9616 
       +-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect between 

Model_type & weight; Wt-Weight 

 

Table 62: ANOVA Results for SE Estimates with ARMA Process (AR 0.85 & MA 0.80) 

 

Dependent 

Variable+ 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

Model_Type 0.7783 73.32* 1663.70* 91167.8* 45588.27* 

Wt 593.7997 156.75* 790229* 101523* 257848.61* 

Model_type X Wt 0.4548 62.10* 1538.72* 81300.8* 38794.89* 

Semi-Partial η2 0.0008 0.2116 0.0019 0.2941 0.1125 

Partial  η2 0.1781 0.9805 0.1844 0.9713 0.9389 
            +-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect 

between Model_type & weight; Wt-Weight; SE-Standard Error 
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Tukey Comparisons with ARMA Process (AR 0.85 & MA 0.80) 
 

Tables 63 and 64 provides the Tukey comparisons between the means of LC estimates 

with ARMA process (AR 0.85 & MA 0.80) by model type and weight respectively. A different 

letter implies that means between any two models is different from each other to a statistically 

significant degree. The means of each model were not significantly different from each other for 

all the LC estimates except intercept slope correlation, mean intercept SE, and mean slope SE. 

Overall, the means of LC estimates for the LCARMA and LCAR model were lower than the LC 

and LCMA models. The means were significantly different between the models with weights and 

without weights in Table 64 with the former having higher means. There were striking 

differences between the means of intercept variance, slope variance, intercept slope correlation, 

intercept variance SE, slope variance SE, and intercept slope correlation SE for models with 

weights and without weights. 

 

Table 63: Tukey Comparisons by Model Type with ARMA Process (AR 0.85 & MA 0.80) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

 

Mean Intercept 

LCMA  7.8540 A 

LCAR 7.6012 B 

LCARMA 7.5900 B 

LC 7.2644 C 

 

Mean Slope 

 

LCMA 8.7225 A 

LC 8.7186 A 

LCARMA 0.8462 B 

LCAR 0.5134 C 

 

Intercept Variance 

LC  250.207 A 

LCAR 248.516 A 

LCARMA 244.217 B 

LCMA 238.608 C 

 LC 167.9217 A 
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Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Slope Variance LCMA 162.4133 B 

LCARMA 2.9814 C 

LCAR 2.4766 C 

 

Intercept Slope  

Correlation 

LC  191.85 A 

LCMA 186.608 B 

LCARMA -5.828 C 

LCAR -16.617 D 

 

Mean Intercept SE 

LC  0.8923 A 

LCAR 0.8846 B 

LCARMA 0.8767 C 

LCMA 0.8352 D 

 

Mean Slope SE 

LC 0.7179 A 

LCMA 0.7078 B 

LCAR 0.2889 C 

LCARMA 0.2807 D 

 

Intercept Variance SE 

LCAR  24.6753 A 

LCARMA 24.1863 B 

LC 23.8898 B 

LCMA 21.9864 C 

 

Slope Variance SE 

LC  16.1877 A 

LCMA 15.7070 B 

LCAR 0.8873 C 

LCARMA 0.8211 C 

 

Intercept Slope 

Correlation SE 

LC  19.1009 A 

LCMA 18.2962 B 

LCAR 8.0611 C 

LCARMA 8.0151 C 
                                 SE-Standard Error; LC-Latent Curve, AR-Autoregressive, MA-Moving Average 

 

Table 64: Tukey Comparisons by Weight for ARMA Process (AR 0.85 & MA 0.80) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Mean Intercept 1 8.8392 A 

0 6.3156 B 

Mean Slope 1 5.0310 A 

0 4.3693 B 

Intercept Variance 1 475.610 A 

0 15.164 B 

Slope Variance 1 163.4382 A 
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Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

0 4.4582 B 

Intercept Slope 

Correlation 

1 172.8106 A 

0 5.1956 B 

Mean Intercept SE 1 1.4814 A 

0 0.2630 B 

Mean Slope SE 1 0.8118 A 

0 0.1858 B 

Intercept Variance SE 1 45.9081 A 

0 1.4607 B 

Slope Variance SE 1 16.3665 A 

0 0.4351 B 

Intercept Slope 

Correlation SE 

1 26.0630 A 

1 0.6736 B 
                           0-With Weight; 1-Without Weight; SE-Standard Error 

 Tables 65 and 67 provides the means for LC estimates with ARMA process (AR 0.85 & 

MA 0.80) when both model and weights were together accounted. It can be seen that the means 

of the latent curve estimates and associated SE for the models are higher for the estimates having 

weights than those not having weights. This suggests an upward bias in the LC estimates when 

the autocorrelative ARMA process (AR 0.85 & MA 0.80) is modeled with weights. The bias is 

more pronounced for the LCMA and LC models. The only latent curve sample estimate for the 

models with weights that were closer to population estimate was mean intercept (8.7685 versus 

8.7281 respectively). The differences between the SE of the LCMA and LC models with weighs 

and without weights was also more than the differences between the LCARMA and LCAR 

models. Larger differences were observed in the intercept variance estimate & SE, slope 

variance, and intercept slope correlation & SE between models with weights and without 

weights. The CI for the mean intercept and mean slope are narrower and tighter indicating more 

precision in both the estimate when the interaction between weights and autocorrelation is 



130 

 

accounted than the other three estimates (intercept variance, slope variance, and intercept slope 

correlation). The CI for mean intercept and mean slope were also different from each other to a 

statistically significant degree when model with weights and without weights were compared. 

Table 65: Means for LC Estimates with ARMA Process  

by Model_Type*Weights (AR 0.85 & MA 0.80) 

    Model Weight    Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

LCARMA 0 6.4115 1.0272 13.7057 0.0502 0.0312 

1 8.7685 0.6652 474.7282 5.9124 -11.6879 

LCAR 0 6.4327 0.7557 13.7725 0.0933 -0.4520 

1 8.7696 0.2707 483.2601 4.8599 -32.7827 

LCMA 0 6.7231 7.8300 13.6860 8.7554 10.3038 

1 8.9848 9.6149 463.5306 316.0710 362.9114 

LC 0 5.6951 7.8642 19.4913 8.9338 10.8993 

1 8.8336 9.5730 480.9229 326.9094 372.8015 
         0-With Weight; 1-Without Weight; LC-Latent Curve, AR-Autoregressive, MA-Moving Average 

Table 66: Means for SE Estimates with ARMA Process  

by Model_Type*Weights (AR 0.85 & MA 0.80) 

     

Model 

 

Weight 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

 

LCARMA 

0 0.2535 0.1710 1.3411 0.0143 0.2720 

1 1.4999 0.3904 47.0314 1.6280 15.7581 

0 (C.I) 6.9084 

5.9146 

1.3624 

0.6920 

16.3343 

11.0771 

0.0782 

0.0222 

0.5643 

-0.5019 

1 (C.I) 11.7083 

5.8287 

1.4304 

-0.1000 

566.9097 

382.5467 

9.1033 

2.7215 

19.1980 

-42.5738 

 

LCAR 

0 0.2560 0.1664 1.3577 0.0155 0.2521 

1 1.5133 0.4114 47.9928 1.7591 15.8700 

0 (C.I) 6.9345 

5.9309 

1.0818 

0.4296 

16.4336 

11.1114 

0.1237 

0.0629 

0.0421 

-0.9461 

1 (C.I) 11.7357 

5.8035 

1.0770 

-0.5356 

577.3260 

389.1942 

8.3077 

1.4121 

-1.6775 

-63.8879 

 0 0.2429 0.2022 1.2499 0.8484 1.0076 

1 1.4276 1.2135 42.7227 30.5656 35.5847 
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Model 

 

Weight 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

LCMA 0 (C.I) 7.1992 

6.2470 

8.2263 

7.4337 

16.1358 

11.2362 

10.4183 

7.0925 

12.2787 

8.3289 

1 (C.I) 11.7829 

6.1867 

11.9934 

7.2364 

547.2671 

379.7941 

375.9796 

256.1624 

432.6574 

293.1654 

 

LC 

0 0.2998 0.2037 1.8940 0.8621 1.1627 

1 1.4849 1.2321 45.8854 31.5132 37.0391 

0 (C.I) 6.2827 

5.1075 

8.2635 

7.4649 

23.2035 

15.7791 

10.6235 

7.2441 

13.1782 

8.6204 

1 (C.I) 11.7440 

5.9232 

11.9879 

7.1581 

570.8583 

390.9875 

388.6753 

265.1435 

445.3981 

300.2049 
          0-With Weight; 1-Without Weight; SE-Standard Error; C.I.-Confidence Interval; LC-Latent Curve, AR-

Autoregressive; MA-Moving Average;  

 

Interaction Plots with ARMA Process*Weight (AR 0.85 & MA 0.80) 
 

Figures 49 through 58 presents the interaction plots between model type and weights for each of 

the LC estimates and associated SE for models that were fitted to the LCARMA data. An 

examination of how the four models (LCARMA, LCAR, LCMA, and Latent Curve models fitted 

the LCARMA (0.85, 0.80) data reveals that the Mean Intercept (population value of 8.7281) 

(Figure 49) were consistently underestimated for all four models when sample weights were not 

incorporated.  This finding suggest that ignoring the AR component of the ARMA process 

downwardly biases the mean intercept growth parameter. Figure 50 shows that the mean slope 

(population value of 1.0494) were underestimated for all the models with weights but the 

difference between the mean slopes was less between the LCARMA and LCAR model with 

weights and no weights. 
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Figure 49: Interaction Plot of Mean Intercept for ARMA (AR 0.85 & MA 0.80) 

           

   Figure 50: Interaction Plot of Mean Slope for ARMA (AR 0.85 & MA 0.80) 

 

           

       Figure 51: Interaction Plot of Intercept Variance for ARMA (AR 0.85 & MA 0.80) 
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Figure 51 for intercept variance (population value of 13.8082) for models with weights 

were overestimated for all the models. The means for intercept variance for models without 

weights were constant across all the models and were closer to the population latent curve 

estimate. The plot for slope variance (population value of 1.0446) in Figure 52 shows the means 

were overestimated between all the models having weights and no weights. However, the 

differences in the means between the LCARMA and LCAR models with and without weights 

were minimal. Figure 53 again shows the intercept slope correlation being overestimated for the 

LCMA and LC models and underestimated for LCAR models with weights. There was not much 

difference in the estimate within the LCARMA models with weights and no weights. Similar 

trends were seen as in Figure 49 for mean intercept SE (population value of 0.0074) (Figure 54), 

mean slope SE (population value of 0.0081) (Figure 55), intercept variance SE (population value 

of 0.03949) (Figure 56), slope variance SE (population value of 0.004) (Figure 57), and intercept 

slope correlation SE (population value of 0.0127) (Figure 58). The means for all the estimates 

were almost constant for all the models without weights. Overall, the highest latent curve 

estimates within the models with weights were for the LCMA and LC models. The 

overestimation in latent curve estimates for the LCARMA and LCAR models with weights was 

less as compared to the LCMA and LC models implying that the sample latent curve estimates 

for these models were closer to the population latent curve estimates. The differences in the 

estimates between the LCARMA and LCAR models with and without weights were less for the  
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Figure 52: Interaction Plot of Slope Variance for ARMA (AR 0.85 & MA 0.80) 

 

 

Figure 53: Interaction Plot of Intercept Slope Correlation for ARMA (AR 0.85 & MA 0.80) 

 

 

Figure 54: Interaction Plot of Mean Intercept SE for ARMA (AR 0.85 & MA 0.80) 
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Figure 55: Interaction Plot of Mean Slope SE for ARMA (AR 0.85 & MA 0.80) 

 

 

Figure 56: Interaction Plot of Intercept Variance SE for ARMA (AR 0.85 & MA 0.80) 

 

 

Figure 57: Interaction Plot of Slope Variance SE for ARMA (AR 0.85 & MA 0.80) 
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Figure 58: Interaction Plot of Intercept Slope Correlation SE for ARMA (AR 0.85 & MA 0.80) 

 

mean slope, intercept slope correlation, mean slope SE, and slope variance SE with minimal 

differences in slope variance. 

 

General Linear Model Results with AR Process (MA 0.00) 

The results in this section focuses on the data having AR process only where the MA 

process was set to 0.00. The fit indices, effect sizes, ANOVA results, means, tukey results and 

plots for LC estimates of LCARMA model were compared with the other models because it was 

the best fitting model. Table 67 provides the fit indices for the ARMA process with the 

LCARMA model having a much better fit (χ2-36.4579, SRMR-0.0082, RMSEA-0.0301, AIC-

66.4579, Mc-0.9831, CFI-0.9985) than the other models. Table 68 provides a summary of the 

effect size of LC estimates with AR process (MA 0.00). The RMSE for all the estimates were 

low except for intercept variance, slope variance, and intercept slope correlation suggesting a 

good model fit and better predictability of the estimate by accounting for model type and weight 

as predictors. Hence, 61.1%, 70.3%, 97.3%, and 66.2%, of the variation in mean intercept, mean 
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slope, mean intercept SE, and mean slope SE respectively is explained by model type and 

weight.  

Table 67: Overall Fit Indices with AR Process (MA 0.00) 

Model χ2 SRMR RMSEA AIC Mc CFI 

LC 1268.78 0.2518 0.4293 1294.78 0.0640 0.8202 

LCAR 44.9584 0.0145 0.0388 72.9584 0.9684 0.9976 

LCMA 909.6643 0.2080 0.3673 937.6643 0.1418 0.8718 

LCARMA 36.4579 0.0082 0.0301 66.4579 0.9831 0.9987 
           χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of 

Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 

 

 

Table 68: Effect Size for LC Estimates with AR Process (MA 0.00) 

 

Statistic 

 

R2 

Coefficient 

of 

Variation 

 

Root 

MSE 

 

Mean  

Mean Intercept 0.6144 14.2267 1.1335 7.9818 

Mean Slope 0.7038 48.7329 1.7243 3.5383 

Intercept Variance 0.9306 28.5381 100.5248 352.2472 

Slope Variance 0.5540 147.1632 56.3161 38.2678 

Intercept Slope Correlation 0.7548 97.1534 65.5336 67.4537 

Mean Intercept SE 0.9738 12.0531 0.1251 1.0383 

Mean Slope SE 0.6621 61.8339 0.1875 0.3033 

Intercept Variance SE 0.9315 28.1717 9.8597 34.9985 

Slope Variance SE 0.5552 143.2268 5.4273 3.7893 

Intercept Slope Correlation SE 0.7500 71.3048 6.5646 9.2064 
           SE-Standard Error; MSE-Mean Square Error 

 

ANOVA Results with AR Process (MA 0.00) 
 

Tables 69 and 70 summarizes the ANOVA results with AR process (MA 0.00). All the 

models were significant at p<.001 including the interaction between model type and weight. The 

semi-partial η2 values for the slope variance (0.1745), intercept slope correlation (0.2468), mean 

slope SE (0.1534), slope variance SE (0.1702), and intercept slope correlation SE (0.1441) were 
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high as compared to the η2 values for other estimates and thereby greater variation in these LC 

estimates was explained by model type and weight. 

Table 69: ANOVA Results for LC Estimates with AR Process (MA 0.00) 

 

Dependent 

Variable+ 

Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

Model_Type 995.693* 33166.153* 63748894* 6650776* 23132464* 

Wt 8618.668* 285.580* 52959857* 6287058* 19524648* 

Model_type X Wt 233.526* 419.036* 56365801* 5947020* 20721704* 

Semi-Partial η2 0.0146 0.0087 0.0807 0.1745 0.2468 

Partial η2 0.0364 0.0286 0.5379 0.2813 0.5017 
       +-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect between 

Model_type & weight; Wt-Weight 

 

Table 70: ANOVA Results for SE Estimates with AR Process (MA 0.00) 

 

Dependent 

Variable+ 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

Model_Type 142.2280 87.0278 588328* 60480.9* 134815.7* 

Wt 2587.7559 166.7738 5228488* 61702.6* 365723.6* 

Model_type X Wt 69.5390 76.5378 519255* 54015* 118997.8* 

Semi-Partial η2 0.0242 0.1534 0.0763 0.1702 0.1441 

Partial  η2 0.4809 0.3122 0.5271 0.2768 0.3656 
            

+-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect 

between Model_type & weight; Wt-Weight; SE-Standard Error 

 

Tukey Comparisons with AR Process (MA 0.00) 
 

 Tables 71 and 72 provides the Tukey comparisons between the means of LC estimates 

with AR process (MA 0.00) by model type and weight respectively. A different letter implies 

that means between any two models is different from each other to a statistically significant 
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degree. The means of each model were not significantly different from each other for all the LC 

estimates except mean intercept SE. The means of LC estimates for the LCARMA and LCAR 

model were lower than the LC and LCMA models. The means were significantly different 

between the models with weight and without weights in Table 72 with the former having higher 

means. 

Table 71: Tukey Comparisons by Model Type with AR Process (MA 0.00) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

 

Mean Intercept 

LC  8.5493 A 

LCMA 8.3073 B 

LCARMA 7.5707 C 

LCAR 7.4996 C 

 

Mean Slope 

 

LCMA 6.1935 A 

LC 6.1401 A 

LCARMA 0.9424 B 

LCAR 0.8775 B 

 

Intercept Variance 

LC 481.081 A 

LCMA 452.968 B 

LCARMA 241.556 C 

LCAR 233.384 C 

 

Slope Variance 

LC 77.447 A 

LCMA 73.482 A 

LCAR 1.106 B 

LCARMA 1.036 B 

 

Intercept Slope  

Correlation 

LCMA 137.599 A 

LC 136.153 A 

LCARMA -1.332 B 

LCAR -2.605 B 

 

Mean Intercept SE 

LC 1.2213 A 

LCMA 1.1991 B 

LCARMA 0.8749 C 

LCAR 0.8580 D 

 

Mean Slope SE 

LC 0.4426 A 

LCMA 0.4332 A 

LCARMA 0.1706 B 

LCAR 0.1668 B 

 LC 46.9115 A 
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Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Intercept Variance SE LCMA 45.1866 B 

LCARMA 24.3563 C 

LCAR 23.5398 C 

 

Slope Variance SE 

LC 7.5003 A 

LCMA 7.1740 A 

LCARMA 0.2444 B 

LCAR 0.2386 B 

 

Intercept Slope 

Correlation SE 

LC 14.6443 A 

LCMA 14.3657 A 

LCARMA 3.9862 B 

LCAR 3.8299 B 
                                  SE-Standard Error; LC-Latent Curve, AR-Autoregressive, MA-Moving Average 

 

 

Table 72: Tukey Comparisons by Weight with AR Process (MA 0.00) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Mean Intercept 1 9.3218 A 

0 6.6418 B 

Mean Slope 1 3.7823 A 

0 3.2944 B 

Intercept Variance 1 684.411 A 

0 20.083 B 

Slope Variance 1 74.459 A 

0 2.077 B 

Intercept Slope 

Correlation 

1 131.232 A 

0 3.676 B 

Mean Intercept SE 1 1.7726 A 

0 0.3041 B 

Mean Slope SE 1 0.4897 A 

0 01169 B 

Intercept Variance SE 1 68.0026 A 

0 1.9945 B 

Slope Variance SE 1 7.3747 A 

0 0.2040 B 

Intercept Slope 

Correlation SE 

1 13.9353 A 

0 0.4777 B 
                            0-With Weight; 1-Without Weight; SE-Standard Error 



141 

 

Tables 73 and 74 provides the means for LC estimates with AR process (MA 0.00) when both 

model and weights were together accounted. It can be seen that the means for the models are 

lower for the estimates without weights than those with weights. This suggests an under 

estimation in the LC estimates when the autocorrelative AR process (MA 0.00) is present along 

with the incorporation of weights. The only latent curve sample estimates for the models with 

weights that were closer to population estimate was mean intercept (8.7267, 8.7226, and 8.7393 

for 0.33, 0.67, and 0.85 AR values respectively) and mean slope (0.9984, 0.9693, and 0.8804 for 

0.33, 0.67, and 0.85 AR values respectively). The differences between the SE of the LCMA and 

LC models with weighs and without weights was also more than the differences between the 

LCARMA and LCAR models. Larger differences were observed in the intercept variance 

estimate & SE between models with weights and without weights. The CI for the mean intercept 

and mean slope are narrower and tighter indicating more precision in both the estimate when the 

interaction between weights and autocorrelation is accounted than the other three estimates 

(intercept variance, slope variance, and intercept slope correlation). The CI for mean intercept 

and mean slope were also different from each other to a statistically significant degree when 

model with weights and without weights were compared. The CI for the mean intercept and 

mean slope are narrower and tighter indicating more precision in both the estimate when the 

interaction between weights and autocorrelation is accounted than the other three estimates 

(intercept variance, slope variance, and intercept slope correlation). The CI for mean intercept 

and mean slope were also different from each other to a statistically significant degree when 

model with weights and without weights were compared. 
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Table 73: Means for LC Estimates with AR Process by Model_Type*Weights (MA 0.00) 

    Model Weight    Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

LCARMA 0 6.4099 0.9702 13.2647 0.0539 -0.0291 

1 8.7314 0.9144 469.8465 2.0172 -2.6340 

LCAR 0 6.4073 0.9509 13.2505 0.0556 -0.0605 

1 8.5918 0.8040 453.5169 2.1566 -5.1495 

LCMA 0 6.6836 5.6768 25.5715 3.9448 7.5826 

1 9.9316 6.7100 880.3651 143.0194 267.6148 

LC 0 7.0662 5.5796 28.2453 4.2519 7.2100 

1 10.0322 6.7006 933.9169 150.6426 265.0957 
         0-With Weight; 1-Without Weight; LC-Latent Curve, AR-Autoregressive, MA-Moving Average 

Table 74: Means for SE Estimates with AR Process by Model_Type*Weights (MA 0.00) 

     

Model 

 

Weight 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

 

LCARMA 

0 0.2526 0.1102 1.3287 0.0092 0.1593 

1 1.4972 0.2310 47.3839 0.4795 7.8129 

0 (C.I) 6.9050 

5.9148 

1.1862 

0.7542 

15.8690 

10.6604 

0.0719 

0.0359 

0.2831 

-0.3413 

1 (C.I) 11.6659 

5.7969 

1.3672 

0.4616 

562.7189 

376.9741 

2.9570 

1.0774 

12.6793 

-17.9473 

 

LCAR 

0 0.2521 0.1069 1.3241 0.0088 0.1545 

1 1.4639 0.2267 45.7554 0.4684 7.5051 

0 (C.I) 6.9014 

5.9132 

1.1604 

0.7414 

15.8457 

10.6553 

0.0728 

0.0384 

0.2423 

-0.3633 

1 (C.I) 11.4610 

5.7226 

1.2483 

0.3597 

543.1975 

363.8363 

3.0747 

1.2385 

9.5605 

-19.8595 

 

LCMA 

0 0.3513 0.1237 2.5748 0.3865 0.7988 

1 2.0468 0.7427 87.7983 13.9613 27.9324 

0 (C.I) 7.3721 

5.9951 

5.9193 

5.4343 

30.6181 

20.5249 

4.7023 

3.1873 

9.1482 

6.0170 

1 (C.I) 13.9433 

5.9199 

8.1657 

5.2543 

1052.449 

708.280 

170.3835 

115.6553 

322.3623 

212.8673 

LC 0 0.3603 0.1267 2.7501 0.4112 0.7978 

1 2.0823 0.7584 91.0728 14.5892 28.4907 

0 (C.I) 7.7724 

6.3600 

5.8279 

5.3313 

33.6355 

22.8551 

5.0579 

3.4459 

8.7737 

5.6463 
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Model 

 

Weight 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

1 (C.I) 14.1135 

5.9509 

8.1871 

5.2141 

1112.419 

755.4142 

179.2374 

122.0478 

320.9375 

209.2539 
           0-With Weight; 1-Without Weight; LC-Latent Curve, AR-Autoregressive, MA-Moving Average; C.I.-

Confidence Interval; SE-Standard Error 

 

Interaction Plots with AR Process*Weight (MA 0.00) 

 

Figures 59 through 68 presents the interaction plots between model type and weights for 

each of the LC estimates and associated SE for models that were fitted to the LCAR data (MA 

0.00). An examination of how the four models (LCARMA, LCAR, LCMA, and Latent Curve 

models fitted the LCAR data reveals that the Mean Intercept (population values of 8.7267, 

8.7226, and 8.7393 for AR processes of 0.33, 0.67, and 0.85 respectively) were consistently 

underestimated for all four models when sample weights were not incorporated (Figure 59).  

This finding suggest that ignoring the AR component of the ARMA process downwardly biases 

the mean intercept growth parameter. Figure 60 shows that the mean slope (population values of 

0.9984, 0.9693, and 0.8804 for AR processes of 0.33, 0.67, and 0.85 respectively) was slightly 

overestimated for LCMA and LC models with weights but the difference between the mean 

slopes was minimal for the LCARMA and LCMA models with weights and no weights. 

Intercept variance (population value of 13.3985, 13.3549, and 13.3197 for 0.33, 0.67, and 0.85 

AR values respectively) for models with weights were overestimated for all the models (Figure 

61). However, the overestimation was less for the LCARMA and LCAR models with weights. 

The means for intercept variance for models without weights were constant across all the models 
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and were closer to the population latent curve estimate respectively).  The means being 

overestimated between all the models having weights and no weights. Figure 62 shows the slope 

variance (population value of 0.0527, 0.0518, and 0.0504 for 0.33, 0.67, and 0.85 AR values 

respectively) being overestimated between the LCMA and LC models having weights. However, 

the differences in the means between the LCARMA and LCAR models with and without weights 

were minimal.  

The means for slope variance for models without weights were constant across all the 

models. Figure 63 again shows the intercept slope correlation being overestimated for the LCMA 

and LC models with almost no difference between the LCARMA and LCAR models with and 

without weights. The means were constant within all the models with no weights for all the latent 

curve estimates except mean slope. Similar trends were seen as in Figure 59 for mean intercept 

SE (population value of 0.0074) (Figure 64), mean slope SE (population value of 0.0012, 0.0037, 

and 0.0073 for 0.33, 0.67, and 0.85 AR values respectively) (Figure 65), intercept variance SE 

(population value of 0.0389, 0.0391, and 0.0389 for 0.33, 0.67, and 0.85 AR values respectively) 

(Figure 66), slope variance SE (population value of 0.0002, 0.0024, and 0.0002 for 0.33, 0.67, 

and 0.85 AR values respectively) (Figure 67), and intercept slope correlation SE (population 

value of 0.0026, 0.0052, and 0.0101 for 0.33, 0.67, and 0.85 AR values respectively) (Figure 68).  

Overall, the highest latent curve estimates within the models with weights were for the 

LCMA and LC models. The overestimation in latent curve estimates for the LCARMA and 

LCAR models with weights was less as compared to the LCMA and LC models with weights 

implying that the sample latent curve estimates for the models with weights were closer to the 

population latent curve estimates. The differences in the estimates between the LCARMA and 
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LCAR models with and without weights were approximately similar for all the estimates except 

mean intercept, intercept variance, mean intercept SE, intercept variance SE, and intercept slope 

correlation SE.  

 

 

        Figure 59: Interaction Plot of Mean Intercept for AR (MA 0.00) 

 

            

Figure 60: Interaction Plot of Mean Slope for AR (MA 0.00) 
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   Figure 61: Interaction Plot of Intercept Variance for AR (MA 0.00) 

 

Figure 62: Interaction Plot of Slope Variance for AR (MA 0.00) 

 

 

Figure 63: Interaction Plot for Intercept Slope Correlation for AR (MA 0.00) 
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Figure 64: Interaction Plot for Mean Intercept SE for AR (MA 0.00) 

 

Figure 65: Interaction Plot for Mean Slope SE for AR (MA 0.00) 

 

 

Figure 66: Interaction Plot for Intercept Variance SE for AR (MA 0.00) 
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Figure 67: Interaction Plot for Slope Variance SE for AR (MA 0.00) 

 

Figure 68: Interaction Plot for Intercept Slope Correlation SE for AR (MA 0.00) 

 

General Linear Model Results with MA Process (AR 0.00) 

The results in this section focuses on the data having MA process only where the AR 

process was set to 0.00. The fit indices, effect sizes, ANOVA results, means, tukey results and 

plots for LC estimates of LCMA model were compared with the other models because it was the 

best fitting model. Table 75 provides the fit indices for the MA process with the LCMA model 

having a much better fit (χ2-37.1044, SRMR-0.0271, RMSEA-0.0284, AIC-65.1044, Mc-0.9839, 

CFI-0.9979) than the other models. A closer examination of the LCARMA model fit indices (χ2-
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94.7012, SRMR-0.0992, RMSEA-0.0826, AIC-124.7012, Mc-0.8687, CFI-0.9834) revealed that 

it fitted the data fairly well with the RMSEA and Mc values slightly away from the cut-off 

values. Table 76 provides a summary of the effect size of LC estimates with MA process (AR 

0.00). The RMSE for all the estimates were low except for intercept variance suggesting a good 

model fit and better predictability of the estimate by accounting for model type and weight as 

predictors. Hence, 99.8%, 99.7%, 95.8%, 80.9%, 99.8%, 98.6%, 99.5%, 97.4%, and 99.0%, of 

the variation in mean intercept, mean slope, slope variance, intercept slope correlation, mean 

intercept SE, mean slope SE, intercept variance SE, slope variance SE, and intercept slope 

correlation SE respectively is explained by model type and weight. 

Table 75: Overall Fit Indices with MA Process (AR 0.00) 

Model χ2 SRMR RMSEA AIC Mc CFI 

LC 576.5773 0.0263 0.2844 602.5772 0.2931 0.8633 

LCAR 401.4493 0.0973 0.2330 429.4493 0.4561 0.9067 

LCMA 37.1044 0.0271 0.0284 65.1044 0.9839 0.9979 

LCARMA 94.7012 0.09918 0.0826 124.7012 0.8687 0.9834 
          χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of 

Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 

 

Table 76: Effect Size for LC Estimates with MA Process (AR 0.00) 

 

Statistic 

 

R2 

Coefficient 

of 

Variation 

 

Root 

MSE 

 

Mean  

Mean Intercept 0.9984 1.8289 0.1045 5.7163 

Mean Slope 0.9973 3.4771 0.0246 0.7078 

Intercept Variance 0.9946 13.1739 15.6883 119.0861 

Slope Variance 0.9579 173.6869 0.3045 0.1753 

Intercept Slope Correlation 0.8092 134.2498 1.7190 1.2804 

Mean Intercept SE 0.9980 4.2420 0.0242 0.5707 

Mean Slope SE 0.9862 7.8343 0.0045 0.0585 

Intercept Variance SE 0.9948 10.5343 1.4233 13.5118 
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Statistic 

 

R2 

Coefficient 

of 

Variation 

 

Root 

MSE 

 

Mean  

Slope Variance SE 0.9743 16.3997 0.0212 0.1294 

Intercept Slope Correlation SE 0.9905 11.8048 0.1046 0.8865 
         SE-Standard Error; MSE-Mean Square Error 

 

ANOVA Results with MA Process 

 

Tables 77 and 78 summarizes the ANOVA results with MA process (AR 0.00). All the 

models were significant at p<.001 including the interaction between model type and weight. The 

semi-partial η2 values for the mean intercept (0.4576), mean slope (0.3160), intercept variance 

(0.3740), slope variance (0.4725), intercept slope correlation (0.3429), mean intercept SE 

(0.3284), intercept variance SE (0.3092), and intercept slope correlation SE (0.2104) were high 

as compared to the η2 values for mean slope SE and slope variance SE and thereby greater 

variation in these LC estimates was explained by model type and weight. 

 

Table 77: ANOVA Results for LC Estimates with MA Process (AR 0.00) 

 

Dependent 

Variable+ 

Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

Model_Type 16397.04* 407.04* 82044593* 5065.39* 25972.94* 

Wt 1975.47* 345.47* 53597921* 62.12* 8634.55* 

Model_type X Wt 15542.30* 349.05* 81745108* 4990.80* 25451.83* 

Semi-Partial η2 0.4576 0.3160 0.3740 0.4725 0.3429 

Partial η2 0.9966 0.9918 0.9858 0.9182 0.6425 
       +-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect between 

Model_type & weight; Wt-Weight 

 

Table 78: ANOVA Results for SE Estimates with MA Process (AR 0.00) 
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Dependent 

Variable+ 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

Model_Type 475.243* 0.5005* 589353* 6.108* 1163.274* 

Wt 484.840* 5.851* 712671* 69.809* 3150.533* 

Model_type X Wt 470.822* 0.878* 587217* 6.101* 1163.429* 

Semi-Partial η2 0.3284 0.1198 0.3092 0.0725 0.2104 

Partial  η2 0.9941 0.8970 0.9837 0.7387 0.9568 
            +-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect 

between Model_type & weight; Wt-Weight; SE-Standard Error 

 

Tukey Comparisons with MA Process 
 

 Tables 79 and 80 provides the Tukey comparisons between the means of LC estimates 

with MA process (AR 0.00) by model type and weight respectively. A different letter implies 

that means between any two models is different from each other to a statistically significant 

degree. The means of each model were significantly different from each other for all the LC 

estimates except mean intercept, mean slope and mean intercept SE. The means of LC estimates 

for the LCARMA and LCAR model were lower than the LC and LCMA models. The means 

were significantly different between the models with weight and without weights in Table 80 

with the former having higher means. 

Table 79: Tukey Comparisons by Model Type with MA Process (AR 0.00) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

 

Mean Intercept 

LC  7.5649 A 

LCMA 7.5632 A 

LCARMA 3.9293 B 

LCAR 3.8078 C 

 

Mean Slope 

 

LCMA 0.9989 A 

LC 0.9985 A 

LCARMA 0.4355 B 
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Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

LCAR 0.3982 C 

 

Intercept Variance 

LCMA 251.9303 A 

LCMA 247.4606 B 

LCARMA -3.6077 C 

LCAR -19.4387 D 

 

Slope Variance 

LC 1.4708 A 

LCMA 0.7930 B 

LCAR -0.3744 C 

LCARMA -1.1881 D 

 

Intercept Slope  

Correlation 

LCARMA 4.8181 A 

LCAR 1.6643 B 

LCMA 0.1239 C 

LC -1.4844 D 

 

Mean Intercept SE 

LC 0.8891 A 

LCMA 0.8817 B 

LCARMA 0.2561 C 

LCAR 0.2560 C 

 

Mean Slope SE 

LC 0.0740 A 

LCMA 0.0614 B 

LCARMA 0.0498 C 

LCAR 0.0489 D 

 

Intercept Variance SE 

LC 24.7453 A 

LCMA 24.4258 B 

LCARMA 2.9686 C 

LCAR 1.9074 D 

 

Slope Variance SE 

LC 0.1735 A 

LCMA 0.1435 B 

LCARMA 0.1253 C 

LCAR 0.0753 D 

 

Intercept Slope 

Correlation SE 

LC 1.4712 A 

LCMA 1.2665 B 

LCARMA 0.4988 C 

LCAR 0.3096 D 
                                  SE-Standard Error; LC-Latent Curve, AR-Autoregressive, MA-Moving Average 

 

Table 80: Tukey Comparisons by Weight with MA Process (AR 0.00) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Mean Intercept 1 6.3578 A 
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Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

0 5.0748 B 

Mean Slope 1 0.9761 A 

0 0.4395 B 

Intercept Variance 1 224.7565 A 

0 13.4157 B 

Slope Variance 1 0.2891 A 

0 0.0616 B 

Intercept Slope 

Correlation 

1 2.6217 A 

0 -0.0607 B 

Mean Intercept SE 1 0.8885 A 

0 0.2529 B 

Mean Slope SE 1 0.0934 A 

0 0.0236 B 

Intercept Variance SE 1 25.6968 A 

0 1.3268 B 

Slope Variance SE 1 0.2500 A 

0 0.0083 B 

Intercept Slope 

Correlation SE 

1 1.6967 A 

0 0.0764 B 
                           0-With Weight; 1-Without Weight; SE-Standard Error 

  

 Tables 81 and 82 provides the means for LC estimates with MA process (AR 0.00) when 

both model and weights were together accounted. It can be seen that the means for the 

LCARMA and LCAR models in Table 81 were lower for the estimates with weights (except for 

intercept slope correlation) than those with weights. This suggests an overestimation in the LC 

estimates when the autocorrelative MA process (AR 0.00) is present but weights are absent. This 

trend was not observed in Table 82. The values for latent curve estimates for the models being 

fitted to the data having MA process are in contrast to the latent curve estimates for the models 

being fitted to the data having AR and ARMA processes because the estimates were lower in the 

latter two models with no weights. The LCMA and LC model estimates with weight for mean 
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intercept (population values of 8.7298, 8.7224, and 8.7195 for MA values of 0.33, 0.67, and 0.85 

respectively) and mean slope (population values of 1.033, 1.0062, and 1.0070 for MA values of 

0.33, 0.67, and 0.85 respectively) was close to the population estimate. There were minimal 

differences in the SE of latent curve estimates in Table 82 across all the models with weights and 

without weights (except for intercept variance SE with larger differences observed between the 

LCMA and LC models). The CI for the mean intercept and mean slope are narrower and tighter 

indicating more precision in both the estimate when the interaction between weights and 

autocorrelation is accounted than the other three estimates (intercept variance, slope variance, 

and intercept slope correlation). The CI for mean intercept and mean slope were also different 

from each other to a statistically significant degree when model with weights and without 

weights were compared. 

 

Table 81: Means for LC Estimates with MA Process by Model_Type*Weights 

    Model Weight    Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

LCARMA 0 6.4005 1.0069 13.5195 0.0451 0.0094 

1 8.7249 -0.1357 -52.3969 -2.4213 9.6267 

LCAR 0 6.2184 0.9005 12.8140 0.0744 -0.1598 

1 8.7164 -0.1040 -20.0294 -0.8232 3.4884 

LCMA 0 6.4057 0.9985 13.5337 0.0444 -0.0007 

1 8.7208 0.9993 481.3875 1.5416 0.2486 

LC 0 6.4069 0.9983 13.7956 0.0823 -0.0918 

1 8.7230 0.9987 490.0659 2.8594 -2.8769 
         0-With Weight; 1-Without Weight; LC-Latent Curve, AR-Autoregressive, MA-Moving Average 
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Table 82: Means for SE Estimates with MA Process by Model_Type*Weights (AR 0.00) 

     

Model 

 

Weight 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

 

LCARMA 

0 0.2537 0.0281 1.3365 0.0082 0.0755 

1 0.2585 0.0716 4.6007 0.2424 0.9222 

0 (C.I) 6.8978 

5.9032 

1.0620 

0.9518 

16.1390 

10.9000 

0.0612 

0.0290 

0.1574 

-0.1386 

1 (C.I) 1.9648 

0.9514 

0.0046 

-0.2760 

-43.3795 

-61.4143 

-1.9462 

-2.8964 

11.4342 

7.8192 

 

LCAR 

0 0.2492 0.0271 1.2784 0.0093 0.0782 

1 0.2629 0.0707 2.5364 0.1412 0.5409 

0 (C.I) 6.7068 

5.7300 

0.9536 

0.8474 

15.3197 

10.3083 

0.0926 

0.0562 

-0.0065 

-0.3131 

1 (C.I) 1.9127 

0.8821 

0.0346 

-0.2426 

-15.0581 

-25.0007 

-0.5464 

-1.1000 

4.5486 

2.4282 

 

LCMA 

0 0.2532 0.0178 1.3367 0.0080 0.0703 

1 1.5101 0.1049 47.5149 0.2791 2.4628 

0 (C.I) 6.9020 

5.9094 

1.0334 

0.9636 

16.1536 

10.9138 

0.0601 

0.0287 

0.1371 

-0.1385 

1 (C.I) 11.6806 

5.7610 

1.2049 

0.7937 

574.5167 

388.2583 

2.0886 

0.9946 

5.0757 

-4.5785 

LC 0 0.2555 0.0215 1.3557 0.0097 0.0816 

1 1.5227 0.1266 48.1349 0.3373 2.8608 

0 (C.I) 6.9077 

5.9061 

1.0404 

0.9562 

16.4528 

11.1384 

0.1013 

0.0633 

0.0681 

-0.2517 

1 (C.I) 11.7075 

5.7385 

1.2468 

0.7506 

584.4103 

395.7215 

3.5205 

2.1983 

2.7303 

-8.4841 
           0-With Weight; 1-Without Weight; C.I.-Confidence Interval; SE-Standard Error; LC-Latent Curve, AR-

Autoregressive, MA-Moving Average; 

 

Interaction Plots for MA Process*Weight (AR 0.00) 
 

Figures 69 through 78 presents the interaction plots between model type and weights for each of 

the LC estimates. An examination of how the four models (LCARMA, LCAR, LCMA, and 
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Latent Curve models fitted the LCMA (AR 0.00) data reveals that the mean intercept (population 

values of 8.7298, 8.7224, and 8.7195 for MA processes of 0.33, 0.67, and 0.85 respectively) was 

overestimated for the LCARMA and LCAR models and underestimated for the LCMA and LC 

models when sample weights were not incorporated (Figure 69).  This finding suggest that 

ignoring the MA process downwardly biases the mean intercept growth parameter in the ARMA 

and AR process. Figure 70 shows that the mean slope (population values of 1.0033, 1.0062, and 

1.0070 for MA processes of 0.33, 0.67, and 0.85 respectively) were underestimated for 

LCARMA and LCAR models with weights but the difference between the mean slopes was 

minimal for the LCMA and LC models with weights and no weights. Figure 71 for intercept 

variance (population value of 13.5607, 13.7468, and 13.8003 for MA values of 0.33, 0.67, and 

0.85 MA values respectively) for models with weights were underestimated for the LCARMA 

and LCAR models but overestimated for the LCMA and LC models. The means for intercept 

variance for models without weights were constant across all the models and were closer to the 

population latent curve estimate. Figure 72 displays the interaction plot of slope variance 

(population value of 0.0479, 0.0442, and 0.0432 for MA values of 0.33, 0.67, and 0.85 MA 

values respectively) with underestimated values for the LCARMA and LCAR models with 

weights and overestimated values for the LCMA and LC models with weights. Figure 73 shows 

the intercept slope correlation being overestimated for the LCARMA and LCAR models with 

weights and underestimated for the LC models. The LCMA model estimate was similar between 

the models with and without weights. Mean intercept SE (population value of 0.0075) was 

similar for LCARMA and LCMAR models with weights and without weights (Figure 73). 
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Figure 69: Interaction Plot for Mean Intercept for MA (AR 0.00) 

 

 

Figure 70: Interaction Plot for Mean Slope for MA (AR 0.00) 

 

 

Figure 71: Interaction Plot for Intercept Variance for MA (AR 0.00) 
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Mean intercept SE was overestimated for LCMA and LC models with weights. Mean slope SE 

(population value of 0.0007for MA values of 0.33 MA values) (Figure 74), intercept variance SE 

(population value of 0.0396, 0.0396, and 0.0432 for MA values of 0.33, 0.67, and 0.85 MA 

values respectively) (Figure 75) (means similar for LCARMA and LCAR models with weights 

and without weights), slope variance SE (population value of 0.0002) (Figure 76), and intercept 

slope correlation SE (population value of 0.0027, 0.0028, and 0.0028 for MA values of 0.33, 

0.67, and 0.85 MA values respectively) (Figure 77) estimates were overestimated for all the 

models with weights. 

 

Figure 72: Interaction Plot for Slope Variance for MA (AR 0.00) 

 

 

Figure 73: Interaction Plot for Intercept Slope Correlation for MA (AR 0.00) 
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Figure 74: Interaction Plot for Mean Intercept SE for MA (AR 0.00) 

 

Figure 75: Interaction Plot for Mean Slope SE for MA (AR 0.00) 

 

 

Figure 76: Interaction Plot for Intercept Variance SE for MA (AR 0.00) 
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Figure 77: Interaction Plot for Slope Variance SE for MA (AR 0.00) 

 

Figure 78: Interaction Plot for Intercept Slope Correlation SE for MA (AR 0.00) 
 

The mean estimate values in Figure 75, 76 and 77 were similar between models without weights. 

Large differences were observed in mean SE between models with weights and without weights 

except for intercept variance SE (Figure 75). 

 

General Linear Model Results for LC Model (AR 0.00 & MA 0.00) 

The results in this section focuses on the data having no AR and MA process where the 

both AR process and MA process was set to 0.00. Table 83 provides the fit indices with the 
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LCMA model having a much better fit (χ2-37.7466, SRMR-0.0190, RMSEA-0.0297, AIC-

65.7466, Mc-0.9825, CFI-0.9976) than the other models. A closer examination of the LC model 

fit indices (χ2-42.1125, SRMR-0.0189, RMSEA-0.0360, AIC-68.1125, Mc-0.9749, CFI-0.9968) 

and LCARMA model (χ2-45.7685, SRMR-0.0864, RMSEA-0.0457, AIC-75.7685, Mc-0.9624, 

CFI-0.9954) revealed that it fitted the data well and were within the cut-of values. Table 84 

provides a summary of the effect size of LC estimates without AR and MA process (AR 0.00 & 

MA 0.00).  

Table 83: Overall Fit Indices of LC Model (AR 0.00 & MA 0.00) 

Model χ2 SRMR RMSEA AIC Mc CFI 

LC 42.1125 0.0189 0.0360 68.1125 0.9749 0.9968 

LCAR 107.5840 0.1051 0.0910 135.5840 0.8471 0.9794 

LCMA 37.7466 0.0190 0.0297 65.7466 0.9825 0.9976 

LCARMA 45.7685 0.0864 0.0457 75.7685 0.9624 0.9954 
         χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of 

Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-Centrality Index; CFI- 

Comparative Fit Index; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 

 

Table 84: Effect Size for LC Estimates of LC Model (AR 0.00 & MA 0.00) 

 

Statistic 

 

R2 

Coefficient 

of 

Variation 

 

Root 

MSE 

 

Mean  

Mean Intercept 0.9987 1.6342 0.0938 5.7430 

Mean Slope 0.9978 3.0388 0.0219 0.7232 

Intercept Variance 0.9960 10.7460 12.9623 120.6245 

Slope Variance 0.9739 66.2312 0.1827 0.2758 

Intercept Slope Correlation 0.7505 137.7635 1.3828 1.0037 

Mean Intercept SE 0.9984 3.8310 0.0215 0.5613 

Mean Slope SE 0.9889 7.2339 0.0037 0.0525 

Intercept Variance SE 0.9960 9.4205 1.2348 13.1082 

Slope Variance SE 0.9779 15.0604 0.0155 0.1032 

Intercept Slope Correlation SE 0.9930 10.3529 0.0814 0.7863 
           SE-Standard Error; MSE-Mean Square Error 
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The RMSE for all the estimates were low except for intercept variance suggesting a good 

model fit and better predictability of the estimate by accounting for model type and weight as 

predictors. Hence, 99.9%, 99.8%, 97.4%, 75.0%, 99.8%, 98.9%, 99.6%, 97.8%, and 99.3%, of 

the variation in mean intercept, mean slope, slope variance, intercept slope correlation, mean 

intercept SE, mean slope SE, intercept variance SE, slope variance SE, and intercept slope 

correlation SE respectively was explained by model type and weight. 

ANOVA Results of LC Model (AR 0.00 & MA 0.00) 

Tables 85 and 86 summarizes the ANOVA results with no AR and MA process (AR 0.00 

& MA 0.00). All the models were significant at p<.001 including the interaction between model 

type and weight. The semi-partial η2 values for the mean intercept (0.4578), mean slope 

(0.3314), intercept variance (0.3614), slope variance (0.4678), intercept slope correlation 

(0.3097), mean intercept SE (0.3401), intercept variance SE (0.3163), and intercept slope 

correlation SE (0.2239) were high as compared to the η2 values for mean slope SE and slope 

variance SE and thereby greater variation in these LC estimates was explained by model type 

and weight. 

Table 85: ANOVA Results for LC Estimates of LC Model (AR 0.00 & MA 0.00) 

 

Dependent 

Variable+ 

Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

Model_Type 5364.90* 121.16* 2435694* 955.48* 3757.72* 

Wt 708.98* 120.07* 1841331* 78.83* 1622.67* 

Model_type X Wt 5350.17* 119.97* 243514* 955.83* 3780.58* 

Semi-Partial η2 0.4678 0.3314 0.3614 0.4678 0.3097 

Partial η2 0.9974 0.9936 0.9891 0.9473 0.5539 
       +-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect between 

Model_type & weight; Wt-Weight 
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Table 86: ANOVA Results for SE Estimates of LC Model (AR 0.00 & MA 0.00) 

 

Dependent 

Variable+ 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

Model_Type 159.8835 0.2016* 192969* 1.1668 336.7458* 

Wt 151.7502 1.5035* 222134* 14.7479 822.5981* 

Model_type X Wt 160.9613 0.3437* 193129* 1.1712 337.5377* 

Semi-Partial η2 0.3401 0.1659 0.3163 0.0670 0.2239 

Partial  η2 0.9954 0.9374 0.9876 0.7525 0.9697 
            +-Sum of Squares reported; *Significant at p < .001; η2-Eta Square reported only for interaction effect 

between Model_type & weight; Wt-Weight; SE-Standard Error 

            

Tukey Comparisons of LC Model (AR 0.00 & MA 0.00) 
 

Tables 87 and 88 provides the Tukey comparisons between the means of LC estimates 

with no AR and MA process (AR 0.00 & MA 0.00) by model type and weight respectively. A 

different letter implies that means between any two models is different from each other to a 

statistically significant degree. The means of each model were not significantly different from 

each other for all the LC estimates except for slope variance. The means of LC estimates for the 

LCARMA and LCAR model were lower than the LC and LCMA models. The means were 

significantly different between the models with weight and without weights in Table 88 with the 

former having higher means. 

Tables 89 and 90 provides the means for LC estimates with no AR and MA process (AR 

0.00 & MA 0.00) when both model and weights were together accounted. It can be seen that the 

means for LCARMA and LCAR models in Table 89 were higher for the estimates without 

weights (except for intercept slope correlation) than those with weights. This suggests an 

overestimation in the LC estimates when both the autocorrelative process (AR 0.00 & MA 0.00) 
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and weights are absent. This trend was not observed in Table 90. The SE for latent curve models 

with weights were mostly higher than the models without weights (except for mean intercept SE 

for LCARMA and LCAR with weights). The values for latent curve estimates for the models 

being fitted to the data having no autocorrelative process are in contrast to the latent curve 

estimates for the models being fitted to the data having AR, MA and ARMA processes because 

the estimates were lower in the AR and ARMA models with no weights. The CI for the mean 

intercept and mean slope are narrower and tighter indicating more precision in both the estimate 

when the interaction between weights and autocorrelation is accounted than the other three 

estimates (intercept variance, slope variance, and intercept slope correlation). The CI for mean 

intercept and mean slope were also different from each other to a statistically significant degree 

when model with weights and without weights were compared. 

 

Table 87: Tukey Comparisons by Model (AR 0.00 & MA 0.00) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

 

Mean Intercept 

LC  7.5739 A 

LCMA 7.5739 A 

LCAR 3.9556 B 

LCARMA 3.8686 C 

 

Mean Slope 

 

LC 0.9980 A 

LCMA 0.9980 A 

LCARMA 0.4670 B 

LCAR 0.4296 C 

 

Intercept Variance 

LC 244.1173 A 

LCMA 243.5605 A 

LCARMA 6.495 B 

LCAR -11.6747 C 

 

Slope Variance 

LC 1.0017 A 

LCMA 0.9557 B 

LCARMA 0.0277 C 

LCAR -0.8812 D 
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Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

 

Intercept Slope  

Correlation 

LCAR 3.6568 A 

LCMA 0.1961 B 

LCARMA 0.1004 B 

LCAR 0.0618 B 

 

Mean Intercept SE 

LCMA 0.8774 A 

LC 0.8773 A 

LCAR 0.2456 B 

LCARMA 0.2448 B 

 

Mean Slope SE 

LC 0.0638 A 

LCMA 0.0636 A 

LCAR 0.0415 B 

LCARMA 0.0410 B 

 

Intercept Variance SE 

LCMA 24.0955 A 

LC 24.0844 A 

LCARMA 2.2374 B 

LCAR 2.0154 B 

 

Slope Variance SE 

LCMA 0.1305 A 

LC 0.1295 A 

LCARMA 0.0818 B 

LCAR 0.0712 C 

 

Intercept Slope 

Correlation SE 

LC 1.2460 A 

LCMA 1.2436 A 

LCARMA 0.3485 B 

LCAR 0.3073 C 
                                 SE-Standard Error; LC-Latent Curve; AR-Auto regressive; MA-Moving  

                                 Average 

 

Table 88: Tukey Comparisons by Weight (AR 0.00 & MA 0.00) 

 

Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Mean Intercept 1 6.4086 A 

0 5.0773 B 

Mean Slope 1 0.9971 A 

0 0.4492 B 

Intercept Variance 1 227.9014 A 

0 13.3477 B 

Slope Variance 1 0.4978 A 

0 0.0538 B 

Intercept Slope 

Correlation 

1 2.0108 A 

0 -0.0033 B 
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Statistic 

 

Model 

 

Mean 

Tukey 

Grouping 

Mean Intercept SE 1 0.8692 A 

0 0.2533 B 

Mean Slope SE 1 0.0831 A 

0 0.0218 B 

Intercept Variance SE 1 24.8910 A 

0 1.3254 B 

Slope Variance SE 1 0.1992 A 

0 0.0073 B 

Intercept Slope 

Correlation SE 

1 1.5033 A 

0 0.0693 B 
                            0-With Weight; 1-Without Weight; SE-Standard Error 

 

Table 89: Means for LC Estimates of LC Model  

 by Model_Type*Weights (AR 0.00 & MA 0.00) 

    Model Weight    Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

LCARMA 0   6.4164                  1.001 13.3722 0.0529 0.0035 

1 8.7158 -0.0669 -0.3823 0.0025 0.1973 

LCAR 0 6.3956 0.9908 13.2978 0.0546 -0.0114 

1 8.7072 -0.1316 -36.6471 -1.817 7.3251 

LCMA 0 6.4114 0.9983 13.3440 0.0527 0.0012 

1 8.7364 0.9978 473.7770 1.8588 0.3909 

LC 0 6.4112 0.9984 13.3767 0.0552 -0.0064 

1 8.7365 0.9977 474.8578 1.9470 0.1300 
           0-With Weight; 1-Without Weight; LC-Latent Curve; AR-Auto regressive; MA-Moving Average 

Table 90: Means for SE Estimates of LC Model  

 by Model_Type*Weights (AR 0.00 & MA 0.00) 

     

Model 

 

Weight 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

LCARMA 0 0.2549 0.0257 1.3349 0.0074 0.0703 

1 0.2346 0.0563 3.1399 0.1563 0.6267 

0 (C.I) 6.9160 1.0514 15.9886 0.0674 0.1413 
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Model 

 

Weight 

Mean 

Intercept 

SE 

Mean 

Slope 

SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

5.9168 0.9506 10.7558 0.0384 -0.1343 

1 (C.I) 1.7806 

0.8610 

0.0434 

-0.1772 

5.7719 

-6.5365 

0.3088 

-0.3038 

1.4256 

-1.0310 

LCAR 0 0.2538 0.0248 1.3250 0.0073 0.0693 

1 0.2373 0.0583 2.7057 0.1352 0.5447 

0 (C.I) 6.8930 

5.8982 

1.0394 

0.9422 

15.8948 

10.7008 

0.0689 

0.0403 

0.1244 

-0.1472 

1 (C.I) 1.9807 

1.0505 

-0.0173 

-0.2459 

-31.3439 

-41.9503 

-1.5520 

-2.0820 

8.3927 

6.2575 

LCMA 0 0.2522 0.0184 1.3211 0.0072 0.0686 

1 1.5026 0.1088 46.8700 0.2537 2.4185 

0 (C.I) 6.9057 

5.9171 

1.0344 

0.9622 

15.9334 

10.7546 

0.0668 

0.0386 

0.1357 

-0.1333 

1 (C.I) 11.6815 

5.7913 

1.2110 

0.7846 

565.6422 

381.9118 

2.3561 

1.3615 

5.1312 

-4.3494 

LC 0 0.2522 0.0185 1.3205 0.0072 0.0688 

1 1.5024 0.109 46.8482 0.2518 2.4233 

0 (C.I) 6.9055 

5.9169 

1.0347 

0.9621 

15.9649 

10.7885 

0.0693 

0.0411 

0.1284 

-0.1412 

1 (C.I) 11.6812 

5.7918 

1.2113 

0.7841 

566.6803 

383.0353 

2.4405 

1.4535 

4.8797 

-4.6197 
           0-With Weight; 1-Without Weight; SE-Standard Error; C.I.-Confidence Interval; LC-Latent Curve;  

          AR-Autoregressive; MA-Moving Average 

Interaction Plots of LC Model (AR 0.00 & MA 0.00) 
 

Figures 79 through 88 presents the interaction plots between model type and weights for 

each of the LC estimates. An examination of how the four models (LCARMA, LCAR, LCMA, 

and Latent Curve models fitted the LCMA (AR 0.00 & MA 0.00) data reveals that the mean 

intercept (population value of 8.7337) was overestimated for the LCARMA and LCAR models 

when sample weights were not incorporated (Figure 79).  The mean intercept was 

underestimated for LCMA and LC models with no weights. This finding suggest that ignoring 
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the AR and MA process upwardly biases the mean intercept growth parameter for LCARMA and 

LCAR models. Figure 80 shows that the mean slope (population value of 1.0023) was 

underestimated for LCARMA and LCAR models with weights but the difference between the 

mean slopes was minimal for the LCMA and LC models with weights and no weights. 

 Figure 81 and Figure 82 for intercept variance (population value of 13.4241) and slope 

variance (population value of 0.0529) also had the same trends as mean intercept with the means 

having an downward bias when weights were present for the LCARMA and LCAR models and 

upward bias for the LCMA and LC models. The difference between the LCARMA and LCAR 

model intercept variance with weights and without weights was less as compared to the 

difference between the LCMA and LC models. The means for intercept variances and slope 

(population value of 0.0529) variances were almost constant for all the models without weights. 

Figure 83 again shows the intercept slope correlation (population value of 0.0218) being slightly 

biased for the LCARMA model with weights and having upward bias for the LCAR model with 

weights. Similar means for the LCMA and LC models were observed with weights and without 

weights. Mean intercept SE (population value of 0.0075) was similar between the LCARMA and 

LCAR models with and without weights and upwardly biased for the LCMA and LCAR models 

with weights (Figure 84). Mean slope SE (population value of 0.0071) (Figure 85), intercept 

variance SE (population value of 0.0390) (Figure 86), slope variance SE (population value of 

0.0002) (constant for all models with no weights) (Figure 87), and intercept slope correlation SE 

(population value of 0.0024) (Figure 88) mean estimates were overestimated for all the models 

with weights. 
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Figure 79: Interaction Plot for Mean Intercept (AR 0.00 & MA 0.00) 

 

 

Figure 80: Interaction Plot for Mean Slope (AR 0.00 & MA 0.00) 

 

 

Figure 81: Interaction Plot for Intercept Variance (AR 0.00 & MA 0.00) 
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Figure 82: Interaction Plot for Slope Variance (AR 0.00 & MA 0.00) 

 

 

Figure 83: Interaction for Intercept Slope Correlation (AR 0.00 & MA 0.00) 

 

 
Figure 84: Interaction Plot for Mean Intercept SE (AR 0.00 & MA 0.00) 
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Figure 85: Interaction Plot for Mean Slope SE (AR 0.00 & MA 0.00) 

 

 
Figure 86: Interaction Plot for Intercept Variance SE (AR 0.00 & MA 0.00) 

 

 

Figure 87: Interaction Plot for Slope Variance SE (AR 0.00 & MA 0.00) 
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Figure 88: Interaction Plot for Intercept Slope Correlation SE (AR 0.00 & MA 0.00) 

 

 

ECLS-K Data Results 

This section focuses on the analysis of math and reading achievement scores from ECLS-

K data which were collected over seven time periods with each time period representing one 

wave of data. Table 90 provides the fit indices for Math achievement scores. The best fitting 

model was LCARMA with weights (χ2-424.8563, SRMR-13964.98 RMSEA-0.0902, AIC-

452.856, Mc-0.9182, CFI-0.9762). All the fit indices except SRMR and RMSEA (lowest for all 

the models) were within the cut-offs. The worst fitting model was LC with no ARMA and no 

weights (χ2-11705.91, SRMR-0.1119 RMSEA-0.4635 AIC-11729.91, Mc-0.0846, CFI-0.2919). 

None of the models were even close to the cut-offs for the fit indices except for the LCARMA 

with weight. The models with weights had a better fit to the data than the models without 

weights. This is in contrast to the fit indices for the simulation data where the values were lower 

for the models without weights. 

 

 



173 

 

Table 91: Fit Indices for Math Achievement Scores 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 1632.899 0.1119 0.1721 1656.899 0.7115 0.9052 

LC- no ARMA & wt 11705.91 0.4258 0.4635 11729.91 0.0846 0.2919 

LCAR-wt 717.9572 0.0961 0.1157 743.9572 0.8632 0.9590 

LCAR- no wt 7685.973 0.6199 0.3839 7711.973 0.1978 0.5374 

LCMA-wt 1274.380 0.1081 0.1552 1300.380 0.7674 0.9263 

LCMA- no wt 8845.795 0.3448 0.4119 8871.795 0.1548 0.4674 

LCARMA-wt* 424.8563 13964.98 0.0902 452.856 0.9182 0.9762 

LCARMA- no wt 7659.724 0.5070 0.3923 7687.724 0.1989 0.5390 
    * Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no   

ARMA & wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; 

LCARMA with weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA 

wt; Latent Curve MA with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean square 

residual; RMSEA-Root Mean Square Error of Approximation; AIC-Akaike Information Criterion; MC-

McDonald’s Non-Centrality Index; CFI- Comparative Fit Index 

 

 

Table 92 provides the means and standard deviations for the Math achievement scores. 

C1R4MSCL, C2R4MSCL, C3R4MSCL, C4R4MSCL, C5R4MSCL, C6R4MSCL, and, 

C7R4MSCL represents the Math scores collected in time period 1, 2, 3, 4, 5, 6, and 7 

respectively. The means and S.D. for the models having weights were similar to each other and 

so were the means and S.D for models without weights. The means and S.D. increased with each 

wave of Math achievement scores. Furthermore, the means and SE for the models without 

autocorrelative process modeled and with weights were higher than the models without 

autocorrelative process modeled and no weights. This trend was observed in all the seven waves 

of math scores. This might be because the C7CW0 longitudinal weight in the ECLS-K data set 

that accounted for the child assessment data from all the seven rounds of data collection probably 

did not account for the ARMA process that exists in the data due to correlation between the math 

observations.  
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Table 92: Means for Math Achievement Scores for LC Model 

 

 

Variable 

LC: Weights without 

Autocorrelative Process 

LC: No Weights & Without 

Autocorrelative Process 

Mean  S.D. S.E. Mean  S.D. S.E 

C1R4MSCL 25.7563 181.1658 3.7252 26.5068 10.3428 0.2126 

C2R4MSCL 35.8954 234.5063 4.8221 37.8271 12.9477 0.2662 

C3R4MSCL 43.0983 273.8815 5.6317 45.0142 14.9377 0.3071 

C4R4MSCL 60.9937 336.2459 6.9141 63.5411 18.2721 0.3757 

C5R4MSCL 98.3602 471.1405 9.6880 101.4520 24.5601 0.5050 

C6R4MSCL 122.5117 487.1483 10.0171 126.0263 24.4390 0.5025 

C7R4MSCL 138.8994 454.1151 9.3379 142.5513 23.0986 0.4749 
       C1R4MSCL-Math Score for 1st time period, C2R4MSCL-Math Score for 2nd time period, C3R4MSCL- 

       Math Score for 3rd time period, C4R4MSCL-Math Score for 4th time period, C5R4MSCL-Math Score for  

       5th time period, C6R4MSCL--6th Score for 6th time period, and, C7R4MSCL-Math Score for 7th time  

       period; SD-Standard Deviation; SE-Standard Error; LC-Latent Curve 

Table 93 provides the results of fit indices for reading achievement scores. The best 

fitting model was again LCARMA with weights (χ2-479.474, SRMR-0.0590, RMSEA-0.0961, 

AIC-507.474, Mc-0.9076, CFI-0.9705). The chi-square and AIC values were higher whereas the 

SRMR value was lower than the Math scores. The worst fitting model was LC with no ARMA 

and no weights (χ2-11822.439, SRMR-0.4508, RMSEA-0.4658, AIC-11846.458, Mc-0.0.0825, 

CFI-0.2609). Similar trends were seen in the fit indices for reading where the models with 

weights fitted better than models without weights which is in contrast to the simulation fit 

indices. The fit indices were worse for the LC no ARMA and no weight model for the reading 

scores than the math scores. The chi-square, SRMR, RMSEA and AIC fit indices for the reading 

scores were higher than the math scores indicating a poor fit. In addition, the MC and CFI values 

for the reading scores were lower than the math scores again implying a poor fit of the models to 

the data. Table 94 provides the means and standard deviations for the reading achievement 

scores. C1R4RSCL, C2R4RSCL, C3R4RSCL, C4R4RSCL, C5R4RSCL, C6R4RSCL, and, 
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C7R4RSCL represents the reading scores collected in time period 1, 2, 3, 4, 5, 6, and 7 

respectively. 

Table 93: Fit Indices for Reading Achievement Scores 

Model χ2 SRMR RMSEA AIC MC CFI 

LC-wt 2575.776 0.114 0.2167 2599.776 0.5829 0.8356 

LC-no ARMA & wt 11822.439 0.4508 0.4658 11846.458 0.0825 0.2609 

LCAR-wt 526.649 0.0622 0.0985 552.6491 0.8988 0.9675 

LCAR- no wt 7935.763 0.5926 0.3901 7961.763 0.1877 0.5043 

LCARMA-wt* 479.474 0.0590 0.0961 507.474 0.9076 0.9705 

LCARMA- no wt 7527.338 0.3592 0.3888 7555.338 0.2045 0.5298 

LCMA-wt 1456.857 0.1015 0.1661 1482.857 0.7383 0.9076 

LCMA-no wt 8402.532 0.3020 0.4014 8428.532 0.1700 0.4571 
        * Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no 

ARMA & wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR with no weight-LCAR no wt; 

LCARMA with weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA- 

     LCMA wt; Latent Curve MA with no weight-LCMA no wt; χ2- chi square; SRMR-Standardized root mean 

square residual; RMSEA-Root Mean Square Error of Approximation; AIC-Akaike Information Criterion; MC-

McDonald’s Non-Centrality Index; CFI- Comparative Fit Index 

 

Table 94: Means for Reading Achievement Scores for LC Model 

 

Variable 

LC: Weight without 

Autocorrelative Process  

LC: No Weights & Without 

Autocorrelative Process 

Mean  S.D. S.E Mean  S.D. S.E. 

C1R4RSCL 32.3504 252.9221 5.200813 33.5307 14.2613 0.2932 

C2R4RSCL 43.9753 314.0529 6.457839 46.0254 17.6871 0.3636 

C3R4RSCL 50.2749 357.7382 7.356136 52.7937 20.4414 0.4203 

C4R4RSCL 74.8831 488.4879 10.04473 78.7133 26.7198 0.5494 

C5R4RSCL 124.3871 590.0493 12.13313 239.1312 29.9782 0.6164 

C6R4RSCL 148.0300 538.5375 11.07389 152.4926 27.8692 0.5730 

C7R4RSCL 165.4558 634.8422 13.0542 170.9667 30.9805 0.6370 
          C1R4MSCL-Reading Score for 1st time period, C2R4MSCL- Reading Score for 2nd time period,     

C3R4MSCL- Reading Score for 3rd time period, C4R4MSCL- Reading Score for 4th time period, 

C5R4MSCL- Reading Score for 5th time period, C6R4MSCL-Reading Score for 6th time period, 

          C7R4MSCL-Math Score for 7th time period, SD-Standard Deviation; SE-Standard Error; LC-Latent  

          Curve; SD-Standard Deviation; SE-Standard Error; LC-Latent Curve 

 

The means and S.D. for the models having weights were similar to each other and so 

were the means and S.D for models without weights. The means and S.E. increased with each 
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wave of reading achievement scores (except between C5R4RSCL and C6R4RSCL). 

Furthermore, the means and SE for the models without autocorrelative process modeled and 

weights were higher than the models without autocorrelative process modeled and no weights. 

This trend was observed in all the seven waves of reading scores. This might be because the 

C7CW0 longitudinal weight in the ECLS-K data set that accounted for the child assessment data 

from all the seven rounds of data collection probably did not account for the ARMA process that 

exists in the data due to correlation between the reading observations. 

Table 95 presents the results for the number of iterations it toll for the maximum 

likelihood procedure to converge a model. For the ECLS-K data the highest number of iterations 

taken for model convergence were for the LCARMA no weight, both for the math and reading 

scores followed by the LCAR no weight model (with less iteration required for the reading 

scores). The iteration results from the simulation study also had less number of iterations for the 

ARMA model of 0.33 and 0.30. The moving average models also took less iterations for model 

convergence which was similar to the MA models in Table 34. 

Table 95: Iterations Taken for Model Convergence in ECLS-K Data 

Model ECLS-K (Math) ECLS-K (Reading) 

LC-wt 9 8 

LC-no ARMA & wt 48 45 

LCAR-wt 17 13 

LCAR- no wt 114 98 

LCARMA-wt 12 10 

LCARMA- no wt 188 73 

LCMA-wt 11 6 

LCMA-no wt 34 30 
                         LC-Latent Curve; AR-Auto regressive; MA-Moving Average; Wt-Weight 
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Table 96 provides the latent curve estimates for the four models (LC, LCAR, and LCMA 

and LCARMA) with weights and without weights respectively that were fitted to the ECLS-K 

math scores. A general comparison between the latent curve estimates reveals that estimates and 

their standard errors were lower for models without weights than models with weights. It is not 

possible to ascertain which model had accurate latent curve estimate because population level 

latent curve parameter values were not available. The SE were not high for the estimates except 

for intercept variance and slope variance for all models with weights and without weights. Table 

97 provides summary information on the standard errors associated with the latent curve 

estimates. The confidence intervals for the latent curve models fitted to math scores were 

narrower for mean intercept and mean slope estimates indicating more precision in the estimates 

than the intercept variance, slope variance, and intercept slope correlation. The means itself were 

not included in the confidence intervals indicating that they were different from each other 

between the models with weights and without weights to a statistically significant degree. The 

confidence intervals were wider for mean intercept and mean slope in the LCMA and LC models 

with weights and no weights. 

Table 98 provides the latent curve estimates for the four models (LC, LCAR, and LCMA 

and LCARMA) with weights and without weights respectively that were fitted to the ECLS-K 

reading scores. A general comparison between the latent curve estimates reveals that estimates 

and their standard errors were lower for models without weights than models with weights 

especially for intercept variance, slope variance, and intercept slope correlation. It is not possible 

to ascertain which model had accurate latent curve estimate because population level latent curve 

parameter values were not available. 
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Table 96: LC Estimates for Math Scores 

Model Weight Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

 

LCARMA  

1 12.0317 2.9150 13689 189.5616 -1.27709 

0 12.9255 3.4243 -48.2914 -6.0282 14.0625 

 

LCAR  

1 18.0598 10.3240 20356 713.1644 0.2311 

0 11.8710 3.1818 -30.4346 -4.6181 9.6648 

 

LCMA 

1 21.1953 17.9744 27627 3559 0.4427 

0 18.9666 20.0324 -1.5164 1.7827 31.1479 

 

LC 

1 21.2483 17.5422 30123 3764 0.3847 

0 17.7016 70.7202 119.3329 10.2705 0.1309 
           0-With Weight; 1-Without Weight; LC-Latent Curve; AR-Auto regressive; MA- Moving Average 

            

Table 97: Standard Errors & Confidence Intervals-LC Estimates of Math Scores 

 

Model 

 

 

Weight 

 

Mean 

Intercept 

SE 

 

Mean 

Slope 

SE 

 

Intercept 

Variance 

SE 

 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

 

LCARMA 

1 2.5030 0.6893 13.3134 27.5858 0.0578 

0 0.1523 0.1509 3.9582 0.2883 0.8676 

1 (C.I) 16.9376, 

7.1258 

4.2660, 

1.5639 

13715.09, 

13662.91 

243.6298, 

135.4934 

-1.1638,      

-1.3904 

0 (C.I) 13.2240, 

12.6270 

3.7200, 

3.1285 

-40.5333, 

-56.0495 

-5.4631,  

-6.5933 

15.763, 

12.362 

 

LCAR 

1 3.3543 0.8721 1.0505 61.9201 0.0405 

0 0.1490 0.1229 2.5212 0.1919 0.5696 

1 (C.I) 24.6342, 

11.4854 

12.0332, 

8.6146 

20358.94, 

20353.94 

834.5278, 

591.801 

0.3105, 

0.1517 

0 (C.I) 12.1630, 

11.5789 

3.4227, 

2.9409 

-25.493,  

-35.3762  

-4.2419,  

-4.9942 

10.7812, 

8.5483 

 

LCMA 

1 3.8178 1.3827 22.7413 132.0405 0.0216 

0 0.2360 0.0708 4.7583 0.4056 1.0226 

1 (C.I) 28.6782, 

13.7124 

20.6845, 

15.2643 

27671.57, 

27582.43 

3817.799, 

3300.201 

0.4850, 

0.4003 

0 (C.I) 19.4292, 

18.5040 

20.1712, 

19.8936 

7.8098,   

-10.8427 

2.5776, 

0.9877 

33.1522, 

29.1436 

 1 3.7816 1.3833 24.3293 131.8392 0.0194 

0 0.2503 0.0756 4.5321 0.4024 0.0284 
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Model 

 

 

Weight 

 

Mean 

Intercept 

SE 

 

Mean 

Slope 

SE 

 

Intercept 

Variance 

SE 

 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

LC 1 (C.I) 28.6602, 

13.8364 

20.2535, 

14.8309 

30170.69, 

30075.31 

4022.405. 

3505.595 

0.4223, 

0.3466    

0 (C.I) 18.1922, 

17.2110 

70.8684, 

70.5720 

128.2158, 

110.45 

11.0592, 

9.4818 

0.1865, 

0.0752 
         0-With Weight; 1-Without Weight; SE-Standard Error; C.I.-Confidence Interval; LC-Latent Curve; AR-   

Autoregressive; MA-Moving Average 

 

 

The SE were not high for the estimates except for intercept variance, slope variance, and 

intercept slope correlation for all models with weights and without weights. Table 99 provides 

summary information on the standard errors associated with the latent curve estimates of models 

fitted to reading scores. The confidence intervals for the latent curve models fitted to reading 

scores were narrower for mean intercept and mean slope estimates indicating more precision in 

the estimates than the intercept variance, slope variance, and intercept slope correlation. The 

means itself were not included in the confidence intervals indicating that they were different 

from each other between the models with weights and without weights to a statistically 

significant degree.  

Table 98: LC Estimates for Reading Scores 

Model Weight Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

 

LCARMA  

1 15.2422 5.8291 21634 -65.0592 -1689 

0 19.6076 8.7083 -72.2639 -11.2485 30.8025 

 

LCAR  

1 16.8361 7.0974 21386 -172.868 -744.3113 

0 14.6486 5.6880 1.6518 -4.3015 6.2119 

 

LCMA 

1 23.8549 22.3442 52354 5825 3582 

0 24.0149 24.0655 43.8504 12.1992 1.7172 

 

LC 

1 23.4579 22.0070 65579 6377 1905 

0 21.0010 25.2179 316.8679 21.4435 -23.3488 
         0-With Weight; 1-Without Weight; LC-Latent Curve; AR-Auto regressive; MA- Moving Average 
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The results in Tables 96 and 98 are quite similar to the simulation results where the latent 

curve estimates for the models with no weights were lower than the estimates for models having 

weights. Larger differences were observed within the estimates for models with weights and 

without weights. The LCARMA model with weights had the lowest latent curve estimates and 

associated SE when compared to the other three models with weights. The fit indices and the 

number of iterations taken by maximum likelihood procedure for model convergence lend 

support to the stability of the model and also to the latent curve estimates. One possible reason 

for high standard errors in models with weights for math and reading scores can be due to 

increase in sample size which might be inflating the standard errors.  

 

Table 99: Standard Errors & Confidence Intervals-LC Estimates of Reading Scores 

 

 

Model 

 

 

Weight 

 

Mean 

Intercept 

SE 

 

Mean 

Slope 

SE 

 

Intercept 

Variance 

SE 

 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

 

 

LCARMA  

1 3.8326 1.0361 24.4763 62.5425 170.5982 

0 0.2477 0.2604 7.4541 0.5147 1.4754 

1 (C.I) 22.7541 

7.7303 

7.8599 

3.7983 

21681.973 

21586.026 

57.524 

-187.642 

-1354.6275 

-2023.3725 

0 (C.I) 20.0931 

19.1221 

9.2187 

8.1979 

-57.6539 

-86.8739 

-10.2397 

-12.2573 

33.6943 

27.9107 

 

 

LCAR  

1 4.0313 1.0598 23.8830 68.9416 195.5641 

0 0.2257 0.1728 5.1382 0.3655 1.0912 

1 (C.I) 24.7374 

8.9348 

9.1746 

5.0202 

21432.810 

21339.189 

-37.742 

-307.993 

-361.0057 

-1127.6169 

0 (C.I) 15.0910 

14.2062 

6.0267 

5.3493 

11.7227 

-8.4191 

-3.5851 

-5.0179 

8.3507 

4.0731 

 

 

LCMA 

1 5.4776 1.8596 0.4731 236.5962 8.7730 

0 0.3258 0.0947 1.9271 9.0758 0.7257 

1 (C.I) 34.5910 

13.1188 

25.9890 

18.6994 

52354.927 

52353.072 

6288.728 

5361.271 

3599.1951 

3564.8049 
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Model 

 

 

Weight 

 

Mean 

Intercept 

SE 

 

Mean 

Slope 

SE 

 

Intercept 

Variance 

SE 

 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

0 (C.I) 24.6535 

23.3763 

24.2511 

23.8799 

47.6275 

40.0733 

29.9878 

-5.5894 

3.1396 

0.2948 

 

 

LC 

1 5.6283 1.8522 0.0795 235.1663 7.0918 

0 0.3792 0.1060 10.6132 0.7929 0.4452 

1 (C.I) 34.4894 

12.4264 

25.6373 

18.3767 

65579.155 

65578.844 

6837.925 

5916.074 

1905.0380 

1904.9620 

0 (C.I) 21.7442 

20.2578 

25.4257 

25.0101 

337.6698 

296.0660 

22.9976 

19.8894 

-22.4762 

-24.2214 
        0-With Weight; 1-Without Weight; SE-Standard Error; C.I.-Confidence Interval; LC-Latent Curve; AR-     

Autoregressive; MA-Moving Average 

 

Summary 

Tables 100, 101 and 102 provides information on the fit indices, growth curve estimates 

and their associated standard errors of the eight models for ARMA process of 0.33, 0.30; 0.85, 

0.80; 0.00, 0.00 respectively. Tables 103 and 104 provides the summary information on models 

fitted to data sets having MA process of 0.33 and 0.85 respectively. Tables 105 and 106 provides 

the summary information on models fitted to data sets having AR process of 0.33 and 0.85 

respectively. The tables would help to compare the change in the model fit and behavior of the 

estimates when a particular model with weights versus no weights is fitted to a data set having 

different ARMA values. The AR and MA estimates are also reported for each model. Overall, 

the LCARMA no weight was the best fitting model but the fit was slightly better when the model 

was fitted to data having ARMA process of 0.67, 0.60 than 0.33, 0.30. The LCARMA model 

with weights was the second best fitting model but the fit was marginally less than LCARMA 

with weights. The chi-square statistic was lowest for the LCARMA no weight models when 

fitted to data having MA of 0.33 and highest for LC model (AR 0.00, MA 0.00) fitted to ARMA 
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data (AR 0.85, MA 0.80). The SRMR had lowest values for LCARMA models fitted to data 

having AR process of 0.85 and ARMA of 0.85, 0.80. RMSEA values were lowest for the 

LCARMA models and highest for the LC models. RMSEA values were high for LC models 

fitted to MA and AR data sets.  RMSEA values was highest when the LCARMA models were 

fitted to MA data than when they were fitted to AR and MA data. Similar pattern was observed 

with the AIC values where LCARMA models had high values when fitted to MA data. The Mc 

Donald non-centrality index fit statistic was highest when the AR, MA and ARMA models were 

fitted to AR, MA and ARMA data sets respectively. The fit statistic was also good for LCARMA 

model fitted to AR data. The CFI fit index was highest for LCAR and LCARMA models fitted to 

AR and ARMA data sets respectively. Latent curve models performed poorly when fitted to AR, 

MA and ARMA data sets. Overall, the MA estimates for the LCMA model with weights were 

high when fitted to MA data sets whereas the AR estimates for LCAR models with weights were 

high when fitted to AR data sets. Similarly, both the AR and MA estimates were high for ARMA 

models with weights fitted to ARMA data sets.  

The LCARMA model with weight having the ARMA process of 0.85 and 0.80 (8.7685) 

had the mean intercept estimate closest to the population estimate of 8.7281 and also had a SE of 

0.6653 associated with it. All LCARMA and LCAR models with weights having different values 

for AR and MA processes had mean intercept values closest to the population value amongst all 

the models.  The LC model with weight having just the AR process of 0.85 also had the mean 

intercept latent curve estimate (8.7242) closest to the population value (8.7393) with a SE of 

0.9978. The LCMA and LC models with weights had higher mean intercept estimates than the 

population values irrespective of the autocorrelative values and weights when fitted to AR and 



183 

 

ARMA data sets. These models with weights also had a higher SE. The mean slope values were 

consistently underestimated for the LCARMA models with weights and the underestimation was 

higher for the LC model with no AR and MA processes. Wider differences were observed in the 

mean slope values within the latent curve models with weights and no weights fitted to AR, MA 

and ARMA data sets (except in the latent curve models fitted to MA process).     

The intercept variance, slope variance, and intercept slope correlation estimates were 

consistently being overestimated with models having weights but the associated SE with these 

estimates were lower for the LCARMA and LCAR models than the LCMA and LC models. An 

important trend noted in these three estimates was an increase in SE with increase in the AR and 

MA processes from 0.33 & 0.30 to 0.85 & 0.80. The SE was lowest for 0.33 & 0.30 processes 

and highest for 0.85 and 0.80 processes suggesting an increase in the level of multicollinearity 

between the observations which might be creating the masking effects and preventing the true 

interactive, linear effects between autocorrelative processes and weights to blossom in the latent 

curve models with weights. Furthermore, the box plots for mean intercept and mean slope had 

less number of outliers than the intercept variance, slope variance, and intercept slope correlation 

estimates again suggesting greater variability in the observations and less precision in the 

estimates. The slope variance was underestimated in LCARMA and LCAR models with weights 

and overestimated in all the LCMA and LC models fitted to data sets having MA values of 0.33, 

0.67, and 0.85. Although the values of intercept variance were overestimated for the LCMA and 

LC models with weights, the values remained fairly constant with change in the MA values. The 

intercept slope correlation was overestimated in the LCARMA models with weights and the 

magnitude of overestimation increased as the MA values increased from 0.33 to 0.85. All the 
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latent curve models without weights had downward bias in mean intercept and upward bias in 

the slope variance, and intercept slope correlation estimates for latent curve models having 

weights.  

The preliminary results obtained by analyzing the ECLS-K data showed that just 

correctly applying the weights is not sufficient to obtain the most accurate estimates because the 

fit indices for the latent curve model having an ARMA process without weights had poor fit 

indices. All the eight models (latent curve having weights but no ARMA, latent curve having no 

weights and no ARMA, latent curve AR with weights, latent curve AR without weights, latent 

curve MA with weights, latent curve MA without weights, LCARMA with weights and 

LCARMA without weights) were fitted to the math and reading scores in the ECLS-K data set. 

The fit indices for the LCARMA model with weights fitted to the math and reading achievement 

scores were the best out of all the eight models. The standard deviations and associated standard 

errors were high for the latent curve models with weights than without weights because the 

C7CW0 weights that was constructed in the ECLS-K data set to account for all the child-level 

characteristics across seven waves of data most likely did not take the ARMA process into 

consideration. The latent curve estimates of the models without weights were lower than the 

models with weights which was similar to the simulation results. Wider differences were 

observed in the mean slope values within the latent curve models with weights and no weights 

fitted to AR, MA and ARMA data sets (except in the latent curve models fitted to MA process). 

The number of iterations taken for model convergence should be used as a secondary measure 

for assessing model fit.     
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Table 100: Summary for ARMA Process (AR-0.33, MA-0.30) 

Model          

(AR-0.33;     

MA-0.30) 

ARlag1 
Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Int. Slope 

Corr. 
MA1 χ2 SRMR RMSEA AIC Mc CFI 

LC-wt   

11.9870 

(2.3325) 

3.2420 

(0.3240) 

1161.167 

(113.7372) 

21.7955 

(2.1949) 

81.2300 

(12.3211)   1599.5485 0.3314 0.4850 1625.5485 0.0269 0.7464 

LC-nowt 0.66896 

9.1211 

(0.4434) 

2.7778 

(0.0536) 

42.6548 

(4.1814) 

0.5919 

(0.0601) 

1.4596 

(0.3709)   1866.0536 0.5503 0.5242 1892.0636 0.0167 0.7013 

LCAR-wt 0.7107723 

7.9078 

(1.3332) 

0.4750 

(0.1443) 

384.6776 

(39.2959) 

2.8546 

(0.3635) 

-12.2813 

(3.2529)   415.9144 0.0678 0.2434 443.9144 0.4159 0.9376 

LCAR-nowt 0.6050821 

6.3317 

(0.2571) 

0.8924 

(0.0462) 

15.2540 

(1.5227) 
0.0549 

(0.0103) 
-0.0174 

(0.1050) 17.3366 387.4536 0.0155 0.2347 415.4636 0.4395 0.9418 

LCARMA_wt 0.6083922 
8.7085 

(1.4619) 
0.9938 

(0.1419) 

448.2208 

(45.5090) 

2.0072 

(0.3614) 

-1.1760 

(3.7155) 18.3760 52.3778 0.0266 0.0406 82.3778 0.9557 0.9960 

LCARMA_nowt* 0.5737523 

6.4172 

(0.2635) 
0.9973 

(0.0513) 

17.9324 

(1.8045) 
0.0532 

(0.0200) 

     0.4853 

(0.1501) 0.6411 37.3830 0.0149 0.0239 67.3730 0.9860 0.9984 

LCMA_wt   

11.4231 

(2.1808) 

3.3454 

(0.3244) 

987.0616 

(99.3196) 

20.4229 

(2.2012) 

98.4192 

(12.0951) 26.0313 835.1201 0.2493 0.3531 863.1201 0.1564 0.8699 

LCMA_nowt   

8.2741 

(0.3793) 

2.9544 

(0.0544) 

29.6982 

(2.9908) 

0.5611 

(0.0617) 

2.6017 

(0.3434) 0.8827 1113.6719 0.3012 0.4098 1141.6719 0.0819 0.8236 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA & wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR 

with no weight-LCAR no wt; LCARMA with weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA with no weight-LCMA 

no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-

Centrality Index; CFI- Comparative Fit Index. Int. Slope Corr.-Intercept Slope Correlation. Numbers in brackets are standard errors associated with that LC estimate. Bold numbers are 

values close to population estimates. Population Value of Mean Intercept: 8.7295; Population Value of Mean Slope: 1.0019; Population Value of Intercept Variance: 13.5423; 

Population Value of Slope Variance: 0.0483; Population Value of Intercept Slope Correlation: 0.0209; ARlag1-Autoregressive estimate at lag 1; MA-Moving average estimate at lag 1.  
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Table 101: Summary for ARMA Process (AR-0.85, MA-0.80) 

Model          

(AR-0.85;     

MA-0.80) 

ARlag1 
Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Int. 

Slope 

Corr. 

MA1 χ2 SRMR RMSEA AIC Mc CFI 

LC-wt   

8.8337 

(9.5730) 

9.5730 

(1.2321) 

480.9227 

(45.8854) 

326.9095 

(37.0391) 

372.8016 

(37.0392)   2013.7021 0.0695 0.5453 2039.7021 0.0104 0.7492 

LC-nowt   

5.6951 

(7.8642) 

7.8642 

(0.2037) 

19.4915 

(1.8940) 

8.9338 

(0.8621) 

110.8993 

(1.1627)   2422.4987 0.1307 0.5988 2448.4987 0.0041 0.6958 

LCAR-wt 0.9989764 
8.7696 

(0.2708) 

0.2707 

(0.4113) 

483.2603 

(47.9928) 

4.8599 

(1.7591) 

-32.7828 

(15.8700)   659.0156 0.0125 0.3121 687.0156 0.2346 0.9204 

LCAR-nowt 0.954429 

6.4327 

(0.7558) 

0.7557 

(0.2560) 

13.7725 

(1.3577) 

0.0933 

(0.0155) 

0.0155 

(0.2521)   660.4773 0.0104 0.3125 688.4773 0.2333 0.9198 

LCARMA_wt 0.9568346 
8.7685 

(0.6653) 

0.6652 

(0.3904) 

474.7283 

(47.0315) 

5.9125 

(1.6280) 

-11.688 

(15.7581) 28.824903 44.4739 0.0228 0.0394 74.4739 0.9663 0.9979 

LCARMA_nowt* 0.9185099 

6.4116 

(1.0273) 

 1.0272 

(0.1710) 

13.7059 

(1.3411) 

0.0502 

(0.0142) 
0.0143 

(0.2720) 0.800269 33.0722 0.0233 0.0216 63.0722 0.9908 0.9993 

LCMA_wt   

8.9849 

(9.6149) 

9.6149 

(1.4275) 

463.5308 

(42.7227) 

316.071 

(30.5656) 

362.9114 

(35.5847) 41.557471 788.8032 0.0794 0.3426 816.8032 0.1753 0.9040 

LCMA_nowt   

6.7232 

(7.8301) 

7.8300 

(0.2429) 

13.6858 

(1.2499) 

8.7555 

(0.8484) 

10.6038 

(1.0076) 1.74895 1256.5226 0.0860 0.4358 1284.5226 0.0595 0.8440 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA & wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR 

with no weight-LCAR no wt; LCARMA with weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA with no weight-LCMA 

no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-

Centrality Index; CFI- Comparative Fit Index. Int. Slope Corr.-Intercept Slope Correlation. Numbers in brackets are standard errors associated with that LC estimate. Bold numbers are 

values close to population estimates. Population Value of Mean Intercept: 8.7281; Population Value of Mean Slope: 1.0494; Population Value of Intercept Variance- AR 0.85, MA 0.80: 

13.8082; Population Value of Slope Variance: 0.0446; Population Value of Intercept Slope Correlation: 0.0767; ARlag1-Autoregressive estimate at lag 1; MA-Moving average estimate at 

lag 1. 
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Table 102: Summary for ARMA Process (AR-0.00, MA-0.00) 

Model          

(AR-0.85;     

MA-0.80) 

ARlag1 
Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Int. 

Slope 

Corr. 

MA1 χ2 SRMR RMSEA AIC Mc CFI 

LC-wt   
8.7242 

(1.4958) 

0.9977 

(0.1088) 

472.2739 

(46.5938) 

1.9385 

(0.2507) 

0.1239 

(2.4113)  44.20325 0.019106 0.039905 70.20325 0.970291 0.99635 

LC-nowt 1.0118 

6.3866 

(0.2520) 

0.9928 

(0.0186) 

13.0901 

(1.3273) 

0.0446 

(0.0078) 

0.0356 

(0.0713)  40.56075 0.019874 0.032698 66.57075 0.978471 0.99729 

LCAR-wt 1.0047 

1.5402 

(0.2375) 

-0.1259 

(0.0581) 

-36.3607 

(2.6991) 

-1.8064 

(0.1345) 

7.2828 

(0.5422)  175.9837 0.190479 0.149529 203.9837 0.71488 0.961546 

LCAR-nowt 0.0101 

6.3702 

(0.2536) 

0.9855 

(0.0249) 

13.19525 

(1.3349) 
0.0528 

(0.0081) 

-0.0048 

(0.0724) -24.285 38.71485 0.019522 0.032201 66.72485 0.980249 0.997501 

LCARMA_wt 0.9945 

1.3464 

(0.2348) 

-0.0615 

(0.0561) 

-0.2788 

(3.1301) 

0.0043 

(0.1554) 

0.1908 

(0.6236) -24.0263 56.7465 0.154076 0.065426 86.7465 0.938071 0.992687 

LCARMA_nowt* -0.0017 

6.4286 

(0.2615) 
1.0010 

(0.0261) 

15.9516 

(1.5899) 

0.0607 

(0.0085) 

0.0113 

(0.0823) 0.068129 34.6848 0.018253 0.025655 64.6748 0.987142 0.998202 

LCMA_wt   
8.7240 

(1.4960) 

0.9978 

(0.1083) 

471.1968 

(46.6148) 

1.8509 

(0.2526) 

0.3829 

(2.4065) 1.751712 39.6333 0.019174 0.033902 67.6333 0.978286 0.997199 

LCMA_nowt   

6.4114 

(0.2522) 

0.9984 

(0.0184) 

13.3362 

(1.3204) 
0.0527 

(0.0072) 

0.0011 

(0.0686) 0.051551 35.90236 0.018935 0.025635 63.90236 0.986651 0.998139 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA & wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR 

with no weight-LCAR no wt; LCARMA with weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA with no weight-LCMA 

no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-

Centrality Index; CFI- Comparative Fit Index. Int. Slope Corr.-Intercept Slope Correlation. Numbers in brackets are standard errors associated with that LC estimate. Bold numbers are 

values close to population estimates. Population Values of Mean Intercept: 8.7337; Population Values of Mean Slope: 1.0023; Population Values of Intercept Variance: 13.4241; 

Population Values of Slope Variance: 0.0529; Population Values of Intercept Slope Correlation: 0.0218; ARlag1-Autoregressive estimate at lag 1; MA-Moving average estimate at lag 1. 
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Table 103: Summary for MA Process (AR-0.00, MA-0.33) 

* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA & wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR 

with no weight-LCAR no wt; LCARMA with weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA with no weight-LCMA 

no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-

Centrality Index; CFI- Comparative Fit Index. Int. Slope Corr.-Intercept Slope Correlation. Numbers in brackets are standard errors associated with that LC estimate. Bold numbers are 

values close to population estimates. Population Values of Mean Intercept: 8.7298; Population Values of Mean Slope: 1.0033; Population Values of Intercept Variance: 13.5607; 

Population Values of Slope Variance: 0.0479; Population Values of Intercept Slope Correlation: 0.0215; ARlag1-Autoregressive estimate at lag 1; MA-Moving average estimate at lag 1. 

 

 

 

 

 

Model          

(AR-0.00;     

MA-0.33) 

ARlag1 
Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Int. 

Slope 

Corr. 

MA1 χ2 SRMR RMSEA AIC Mc CFI 

LC-wt   
8.7264 

(1.5176) 
0.9976 

0.1238 

486.2958 

(47.8128) 

2.7324 

(0.3213) 

-2.5922 

(2.7853)   428.3163 0.0227 0.2438 454.3163 0.4004 0.9028 

LC-nowt   

6.4104 

(0.2564) 
0.9982 

0.0209 

13.6820 

(1.3459) 

0.0779 

(0.0091) 

-0.0825 

(0.0791)   424.2022 0.0224 0.2427 450.2022 0.4036 0.9028 

LCAR-wt 1.0037079 

1.3959 

(0.2630) 

-0.0902 

0.0672 

-16.8322 

(2.3674) 

-0.7098 

(0.1267) 

3.0093 

(0.4993)   162.9182 0.1519 0.1429 190.9182 0.7365 0.9675 

LCAR-nowt 0.0608429 

6.2082 

(0.2482) 

0.9121 

0.0261 

12.6392 

(1.264) 

0.0704 

(0.0087) 

-0.1308 

(0.0746)   397.5036 0.0317 0.2385 425.5036 0.4283 0.9092 

LCARMA_wt 1.0082169 

1.4607 

(0.2618) 

-0.1144 

(0.0677) 

-35.256 

(0.0678) 

-1.6169 

(0.2010) 

6.5294 

(0.7810) 14.332835 122.6257 0.1545 0.1216 152.6257 0.8062 0.9771 

LCARMA_nowt* -0.003139 

6.4108 

(0.2540) 

1.005 

(0.0270) 
13.3997 

(1.3412) 
0.0468 

(0.0081) 

0.0103 

(0.0751) 0.5245855 34.5165 0.0208 0.0257 64.5165 0.9875 0.9983 

LCMA_wt   
8.7254 

(1.5133) 
0.9982 

(0.1111) 

476.1705 

(47.6007) 

1.6204 

(0.2781) 

0.4116 

(2.5275) 18.217294 39.1043 0.0224 0.0326 67.1043 0.9795 0.9975 

LCMA_nowt   

6.409 

(0.2538) 
0.9987 

(0.0188) 
13.3829 

(1.3393) 
0.0463 

(0.0079) 

0.0039 

(0.0719) 0.523461 35.7211 0.0220 0.0259 63.7211 0.9871 0.9982 
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Table 104: Summary for MA Process (AR-0.00, MA-0.85) 

* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA & wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR 

with no weight-LCAR no wt; LCARMA with weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA with no weight-LCMA 

no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-

Centrality Index; CFI- Comparative Fit Index. Int. Slope Corr.-Intercept Slope Correlation. Numbers in brackets are standard errors associated with that LC estimate. Bold numbers are 

values close to population estimates. Population Values of Mean Intercept: 8.7195; Population Values of Mean Slope: 1.0070; Population Values of Intercept Variance: 13.8003; 

Population Values of Slope Variance: 0.0432; Population Values of Intercept Slope Correlation: 0.00087; ARlag1-Autoregressive estimate at lag 1; MA-Moving average estimate at lag 1. 

 

 

 

 

 

Model          

(AR-0.00;     

MA-0.85) 

ARlag1 
Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Int. 

Slope 

Corr. 

MA1 χ2 SRMR RMSEA AIC Mc CFI 

LC-wt   
8.7283 

(1.5267) 

0.9967 

(0.1279) 

493.2691 

(48.3964) 

2.9158 

(0.3459) 

-3.0512 

(2.9026)   660.5930 0.0287 0.3072 686.5930 0.2341 0.8401 

LC-nowt   

6.4116 

(0.2561) 

0.9964 

(0.0218) 

13.8762 

(1.3622) 

0.0849 

(0.0100) 
0.0101 

(0.0832)   658.1995 0.0289 0.3066 684.1995 0.2349 0.8390 

LCAR-wt 1.0131261 

1.4069 

(0.2626) 

-0.1181 

(0.0733) 

-23.2777 

(2.6920) 

-0.9618 

(0.1536) 

4.0332 

(0.5773)   313.5649 0.1669 0.2093 341.5649 0.5202 0.9280 

LCAR-nowt 0.0676297 

6.2409 

(0.2502) 

0.8901 

(0.0279) 

12.9832 

(1.2921) 

0.0772 

(0.0097) 

-0.1837 

(0.0809)   624.8132 0.0370 0.3035 652.8132 0.2532 0.8473 

LCARMA_wt 1.0223313 

1.4594 

(0.2562) 

-0.1528 

(0.0744) 

-64.4612 

(5.1707) 

-3.0032 

(0.2753) 

11.8350 

(1.0354) 34.754179 175.4033 0.1893 0.1526 205.4033 0.7139 0.9628 

LCARMA_nowt* -0.002994 

6.3959 

(0.2536) 

1.0055 

(0.0289) 

13.6156 

(0.2528) 

0.0439 

(0.0083) 

0.0046 

(0.0692) 0.82356 32.5625 0.0279 0.0210 62.5625 0.9920 0.9986 

LCMA_wt   
8.7188 

(1.5082) 

0.9988 

(0.1002) 

485.7284 

(47.4906) 

1.479 

(0.2804) 

0.1155 

(2.417) 28.533112 37.3530 0.0303 0.0299 65.3530 0.9834 0.9978 

LCMA_nowt   

6.4042 

(0.2527) 

0.9977 

(0.0170) 

13.6456 

(1.3341) 

0.0433 

(0.0081) 

-0.0056 

(0.0761) 0.82316 33.7951 0.0300 0.0211 61.7951 0.9915 0.9986 
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Table 105: Summary for AR Process (AR-0.33, MA-0.00) 

Model          

(AR-0.33;     

MA-0.00) 

ARlag1 
Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Int. 

Slope 

Corr. 

MA1 χ2 SRMR RMSEA AIC Mc CFI 

LC-wt   

12.2776 

(2.3569) 

3.2083 

(0.3006) 

1181.601 

(115.6183) 

18.5712 

(1.8827) 

88.1064 

(11.8909)   999.6424 0.3450 0.3810 1025.6424 0.1074 0.8360 

LC-nowt   

9.1511 

(0.4285) 

2.7926 

(0.0484) 

38.9976 

(3.8126) 

0.4763 

(0.0487) 

1.9535 

(0.3296)   1314.9521 0.5257 0.4388 1340.9521 0.0516 0.7809 

LCAR-wt 0.6401133 

8.2911 

(1.404) 

0.7567 

(0.1323) 

422.57 

(43.0062) 

2.187 

(0.3127) 

-3.2669 

(3.0906)   68.2863 0.0450 0.0556 96.2863 0.9272 0.9934 

LCAR-nowt 0.5787549 

6.3894 

(0.2523) 

0.9856 

(0.0436) 

13.2118 

(1.3193) 
0.0549 

(0.0075) 
-0.0174 

(0.0798)   39.4569 0.0099 0.0337 67.4569 0.9786 0.9983 

LCARMA_wt 0.5763265 
8.7085 

(1.4978) 
0.9938 

(0.1297) 

469.9269 

(47.4934) 

1.8843 

(0.2837) 

0.2141 

(3.2957) 1.700285 38.0987 0.0090 0.0336 68.0987 0.9794 0.9983 

LCARMA_nowt* 0.5754653 

6.3981 

(0.2528) 
0.9973 

(0.0455) 

13.2402 

(1.3249) 
0.0532 

(0.0076) 

0.0017 

(0.0815) 0.048684 35.7735 0.0097 0.0286 65.7735 0.9846 0.9987 

LCMA_wt   

11.6903 

(2.2139) 

3.2997 

(0.3075) 

1024.722 

(101.7673) 

18.6521 

(1.9692) 

98.3448 

(11.8169) 16.755748 713.2745 0.2646 0.3252 741.2745 0.2071 0.8843 

LCMA_nowt   

8.3214 

(0.3748) 

2.9468 

(0.0515) 

29.1666 

(2.9177) 

0.5106 

(0.0555) 

2.7272 

(0.3321) 0.65675 1016.3370 0.3018 0.3909 1044.3370 0.1025 0.8317 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA & wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR 

with no weight-LCAR no wt; LCARMA with weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA with no weight-LCMA 

no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-

Centrality Index; CFI- Comparative Fit Index. Int. Slope Corr.-Intercept Slope Correlation. Numbers in brackets are standard errors associated with that LC estimate. Bold numbers are 

values close to population estimates. Population Values of Mean Intercept: 8.7267; Population Values of Mean Slope: 0.9984; Population Values of Intercept Variance: 13.3985; 

Population Values of Slope Variance: 0.0527; Population Values of Intercept Slope Correlation: 0.0182; ARlag1-Autoregressive estimate at lag 1; MA-Moving average estimate at lag 1. 
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Table 106: Summary for AR Process (AR-0.85, MA-0.00) 

Model          

(AR-0.85;     

MA-0.00) 

ARlag1 
Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Int. 

Slope 

Corr. 

MA1 χ2 SRMR RMSEA AIC Mc CFI 

LC-wt   

7.9956 

(1.8356) 

9.7633 

(1.1718) 

719.0429 

(69.9586) 

295.0634 

(28.5016) 

404.8461 

(41.8648)   1057.1684 0.1062 0.3921 1083.1684 0.0945 0.8679 

LC-nowt   

5.3323 

(0.3068) 

7.984 

(0.1975) 

20.2338 

(1.9564) 

8.4006 

(0.8096) 

11.2017 

(1.1723)   1630.9869 0.1248 0.4899 1656.9869 0.0249 0.7930 

LCAR-wt 0.9474406 
8.7704 

(1.4950) 

0.7582 

(0.3555) 

469.6726 

(47.1133) 

2.3364 

(0.7671) 

-8.6952 

(13.1983)   41.3696 0.0079 0.0380 69.3696 0.9743 0.9985 

LCAR-nowt 0.929092 

6.426 

(0.0253) 

0.9458 

(0.148) 
13.3493 

(1.3245) 
0.0566 

(0.0099) 

-0.0655 

(0.2101)   38.9792 0.0075 0.0339 66.9792 0.9796 0.9987 

LCARMA_wt 0.9414791 
8.7645 

(1.4975) 

0.8154 

(0.3669) 

470.0673 

(47.2906) 

2.2665 

(0.8091) 

-6.2129 

(13.7035) 1.854138 36.7912 0.0077 0.0314 66.7912 0.9824 0.9989 

LCARMA_nowt* 0.9270263 

6.423 

(0.2536) 

0.9617 

(0.1527) 
13.3293 
(1.3264) 

0.0545 
(0.0104) 

-0.0357 

(0.2168) 0.0538595 34.5953 0.0075 0.0265 64.5953 0.9873 0.9991 

LCMA_wt   

8.0868 

(1.7906) 

9.7978 

(1.1579) 

668.6531 

(66.8645) 

287.1063 

(27.8345) 

402.4392 

(40.7309) 18.733275 703.6092 0.0916 0.3228 731.6092 0.2125 0.9133 

LCMA_nowt   

4.958 

(0.3200) 

8.1492 

(0.1920) 

20.7814 

(2.1274) 

7.8689 

(0.7653) 

11.5495 

(1.1862) 0.783224 1199.7009 0.1452 0.4257 1227.7009 0.0673 0.8486 
* Best Fitting Model; Latent Curve with weight-LC wt; Latent Curve with no ARMA and no weight-LC no ARMA & wt; Latent Curve AR with weights-LCAR wt; Latent Curve AR 

with no weight-LCAR no wt; LCARMA with weight-LCARMA wt; LCARMA with no weight-LCARMA no wt; Latent Curve MA-LCMA wt; Latent Curve MA with no weight-LCMA 

no wt; χ2- chi square; SRMR-Standardized root mean square residual; RMSEA-Root Mean Square Error of Approximation; AIC-Akaike Information Criterion; MC-McDonald’s Non-

Centrality Index; CFI- Comparative Fit Index. Int. Slope Corr.-Intercept Slope Correlation. Numbers in brackets are standard errors associated with that LC estimate. Bold numbers are 

values close to population estimates. Population Values of Mean Intercept: 8.7393; Population Values of Mean Slope: 0.8804; Population Values of Intercept Variance: 13.3197; 

Population Values of Slope Variance: 0.0504; Population Values of Intercept Slope Correlation: -0.1393; ARlag1-Autoregressive estimate at lag 1; MA-Moving average estimate at lag 1. 
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Tables 107 and 108 provides information on the semi-partial eta square for latent curve 

estimates and associated standard errors respectively. The SE for the MA and LC models were 

higher than the SE of ARMA and AR models with the ARMA models having lowest SE. The 

eta-square was more reliable for the mean intercept and mean slope latent curve estimates 

because the SE were lowest for these two estimates when compared to SE of intercept variance, 

slope variance and intercept slope correlation.  

Table 107: Summary of Semi-Partial Eta square (η2) for Latent Curve Estimates 

 

Model 

Mean 

Intercept 

Mean 

Slope 

Intercept 

Variance 

Slope 

Variance 

Intercept 

Slope 

Correlation 

Overall ANOVA  0.1167 0.0113 0.1006 0.1003 0.1337 

ARMA (0.33, 0.30) 0.0233 0.0235 0.1350 0.2632 0.3444 

ARMA (0.67, 0.60) 0.0104 0.0130 0.0552 0.3096 0.3344 

ARMA (0.85, 0.80) 0.0184 0.176 0.003 0.3119 0.3405 

AR (MA 0.00) 0.0146 0.0087 0.0807 0.1745 0.2468 

MA (AR 0.00) 0.4576 0.3160 0.3740 0.4725 0.3429 

LC (AR 0.00, MA 0.00) 0.4678 0.3314 0.3614 0.4678 0.3097 
     Note: η2 reported for only interaction effects between model*weight 

Table 108: Summary of Semi-Partial Eta square (η2) for SE Estimates 

 

Model 

Mean 

Intercept 

SE 

Mean 

Slope SE 

Intercept 

Variance 

SE 

Slope 

Variance 

SE 

Intercept 

Slope 

Correlation 

SE 

Overall ANOVA  0.0659 0.0839 0.0935 0.0944 0.0763 

ARMA (0.33, 0.30) 0.0469 0.1520 0.1299 0.2392 0.1851 

ARMA (0.67, 0.60) 0.0138 0.2816 0.0565 0.3023 0.1959 

ARMA (0.85, 0.80) 0.0008 0.2116 0.0019 0.2941 0.1125 

AR (MA 0.00) 0.0242 0.1534 0.0763 0.1702 0.1441 

MA (AR 0.00) 0.3284 0.1198 0.3092 0.0725 0.2104 

LC (AR 0.00, MA 0.00) 0.3401 0.1659 0.3163 0.0670 0.2239 
          Note: η2 reported for only interaction effects between model*weight 
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CHAPTER FIVE: CONCLUSIONS, DISCUSSION & FUTURE WORK 

 

Over the past several decades, there has been an increase in the availability of large-scale, 

longitudinal data sets that have been collected across multiple time periods (Duncan & Kalton, 

1987) in the field of social sciences (such as NHES, PSID, NPSAS, HSFCES, NELS-88, and 

ECLS-K). There has also been growth in research related to the issues of multi-stage sample 

design (clustering, stratification and sample weights) which is an inherent part of these data sets 

(Hahs-Vaughn, 2005, 2011a). An important aspect of these data sets that has not been widely 

researched is examining the sample weights in context of time series processes and 

autocorrelation which is a common characteristic of panel data sets (Eideh & Nathan, 2006). 

Researchers analyzing the ECLS-K data set have come across issues related to autocorrelation 

(correlated errors) (Kaplan, 2002; Bryk & Bryk, 2011). Swankoski (2011) noted that the error 

terms for each child across time were correlated since ECLS-K is a panel data set and a standard 

ordinary least square regression model cannot be used for data having covariances between the 

data points and the errors attached to it. Rogosa (1979) indicated that “longitudinal panel designs 

are a combination of time-series and cross-sectional data, with measurements obtained on a wave 

at each time point” (p.275). It becomes important to simultaneously examine the influence of 

sample weights and multiple competing time series models (having a particular autocorrelative 

process) because assessing the behavior of estimates as a function of sample weights alone and 

ignoring time series models specifying AR, MA and ARMA processes or vice-versa does not 

provide accurate estimates. There has been extensive research to examine the autocorrelative 

processes underlying in panel data sets in the field of econometrics. However, there has been 

limited research that explore the autocorrelative processes existing between the observations in 
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large-scale survey panel data sets in the field of education. More specifically, no research has 

been cited in the field of education which investigates the fit of multiple competing latent curve 

models having varying autocorrelative processes and weights (that have been specified a priori) 

to a survey panel data set and how the latent curve estimates are influenced by the interaction 

between autocorrelative processes and sample weights. The present dissertation aims to fill this 

void in the literature. 

The current study was planned to achieve two objectives. The first objective was to 

ascertain the autocorrelative processes (auto-regressive-AR, moving average-MA, and 

autoregressive moving average-ARMA) underlying in ECLS-K data.  Four facts supported the 

need for conducting research on the first objective. First, autocorrelation is present in 

longitudinal panel data that have correlated errors (Rogosa, 1979; Jӧreskog, 1979; Marsh, 1993; 

Marsh & Grayson, 1994; Huitema & McKean, 2007). Second, Brak and Brak (2011) found AR 

process in the reading achievement scores of ECLS-K data set. They found the observations to 

be correlated and they had to make certain adjustments to the AR disturbances in order to obtain 

accurate growth estimates. This article adds support to the need for correctly modeling the type 

of autocorrelative process existing in the ECLS-K data set because it is a longitudinal panel data 

set (collected at seven time periods) and can be considered similar to time series because “the 

same group of individuals over seven occasions or time points are measured (i.e. panel study), 

the occasions for repeated measurements are equidistant in time, and enough measurement 

occasions over time are included” (p.603) (Sivo, 2001). Third, since ECLS-K is a panel data set 

where data has been collected on the same individuals at seven points in time (such as for math 

and reading achievement scores), it is ideal to model growth curve models (Kaplan, 2002) that 
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specify AR, MA and ARMA processes because failure to account for autocorrelative processes 

results in biased growth or latent curve estimates. Sivo, Fan and Witta (2005) stated that "In 

practice, growth curve models are fitted to longitudinal data, alternative rival hypotheses to 

consider would include growth models that also specify autoregressive (AR), moving average 

(MA), and autoregressive moving average (ARMA) processes. AR (i.e., simplex) processes are 

commonly found in longitudinal data and may diminish the ability of a researcher to detect 

growth if not explicitly modeled leading to bias in the estimates. MA and ARMA processes do 

not affect the fit of growth models, but do notably bias some of the parameters" (p. 215). Fourth, 

Sivo and Willson (1998) indicated that at least five or six occasions are recommended when 

testing ARMA (1,1) models. It was found in the current study that the full ARMA process is 

expressing itself in the ECLS-K data set when the latent curve models were fitted to the math 

and reading scores.  

The second objective was to investigate the joint or interactive effects of sample weights 

and autocorrelation. Sample weights are commonly applied in large-scale panel survey data that 

have been usually collected at multiple points in time on the same individuals and have complex 

multi-stage sample design features. Two types of bias are usually introduced in such a data set. 

First, the complex sample design features leads to unequal selection probabilities where each unit 

in the population does not have an equal chance of selection and are sampled at different rates 

(DuMochel & Ducan, 1983; Stapleton, 2002; Hahs-Vaughn, 2006). The sample then is not a true 

representation of the population. The second source of bias occurs due to the dependencies that is 

created in the data. To be clear, the scope of this dissertation is to model stratification as a feature 

of complex sample design and not the dependency that is created due to clustering (as the units 
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within the clusters are similar to each other when compared to between clusters). In order to 

model the dependencies between the observations, autocorrelation was considered in the current 

study that occurs when data is collected on the same individuals over multiple occasions in time 

(Macurdy, 1982; Rowley, 1989; Sivo, 1997). Both disproportionate sampling and autocorrelation 

leads to bias in the estimates (Pfeffermann, 1993; Hahs-Vaughn, 20011b; Rogosa, 1979; Sivo, 

2005). However, there are very few studies that have examined the influence of both these 

aspects simultaneously on the estimates. Specifically, no study has been located that evaluates 

how the presence or absence of one or both of these aspects biases the estimates.  

Based on the objectives of the present study, the following three research questions were 

formulated: 

a) To what extent will the presence or absence of one or more than one autocorrelative process 

and corresponding value influence the estimates in a longitudinal panel data set when sample 

weights are applied versus ignored?  

b) Is there any interactive or joint effect between the autocorrelative process and sample weights 

on the estimates in a longitudinal panel data set? 

c) What kind of autocorrelative process(s) is present in the ECLS-K data and to what extent will 

the presence or absence of more than one autocorrelative process correct the estimates when 

sample weights are applied versus ignored?  

In order to answer the above research questions, a Monte Carlo simulation study was 

conducted in which the autocorrelative processes (AR-0.33, 0.67 & 0.85; MA-0.33, 0.67 & 0.85 

and ARMA-0.33 & 0.30; 0.67 & 0.60; 0.85 & 0.80) were varied to create ten population data 

sets in which each observation had eight waves. Three disproportionate stratums were created so 
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that unequal selection could be applied.  PROC SURVEYSELECT procedure in SAS was 

utilized to randomly select 16,000 samples (each sample size of 72) after the disproportionate 

allocation. Sample weights were then applied to the sample data to account for the unequal 

selection probabilities that occurred due to disproportionate sampling. Eight competing models 

were specified a priori and fitted to a data having AR, MA and ARMA process with varying 

values. General linear models were constructed for each of the latent curve estimates (mean 

slope, mean intercept, intercept variance, slope variance, intercept slope correlation) to account 

for the variance explained by the individual and joint influence of autocorrelative process and 

weights on the estimates. The propriety of a latent curve model for each sample was assessed by 

consulting the model fit indices (AIC, BIC, CFI, RMSEA and Mc Donald Non-Centrality Index), 

the closeness (overestimation or underestimation) of the sample level latent curve estimates to 

population level population parameters, and the AR, MA and ARMA estimate values. The 

ECLS-K data set was interpreted in light of the simulation results. 

The model that had the best fit indices was the LCARMA model without weights for all 

the three AR (0.33, 0.67, and 0.85), MA (0.33, 0.67, and 0.85) and ARMA (0.33 & 0.30; 0.67 & 

0.60; 0.85 & 0.80) values. The LCARMA model without sample weights was the best fitting 

model than the one with sample weights but the fit was slightly better. The mean intercept was 

consistently underestimated for all the LC models having sample weights but no autocorrelative 

process fitted to data having ARMA process. The mean slope was closer to the population value 

for all the latent curve models having MA process for both with sample weight and without 

sample weights. However, the values were generally biased for the LCMA and LC models for 

the AR, MA and ARMA processes. The intercept variance, slope variance and intercept slope 
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correlation latent curve estimate was overestimated biased for LCARMA models with sample 

weights for all the three processes. All the ANOVA models were significant at the 0.001 level 

including the interaction term of model type and weight. The root MSE (RMSE) associated with 

R2 was smallest for mean intercept and mean slope. There was a high degree of variability 

observed in intercept variance, slope variance, and intercept slope correlation estimates and their 

associated standard errors (Table 36). Consequently, the coefficient of variation (CV) for these 

three latent curve estimates were also high. One possible reason for intercept variance, slope 

variance, and intercept slope correlation estimates not being close to population level latent curve 

values maybe due to the high RMSE and CV values as a significant portion of the variation in 

the estimates (which were regressed against model type and weights) was consumed by the error 

component in the general linear model and little variation was left to explain the unique 

interactive influence of ARMA process and weights on these three estimates. All the eight 

models were fitted to the math and reading scores in the ECLS-K data set. The fit indices for the 

LCARMA model with sample weights fitted to the math achievement scores were the best out of 

all the eight models. The standard deviations and associated standard errors were high for the 

latent curve models with sample weights than without sample weights. 

 

Discussion 
 

The discussion is arranged around the insights derived from the simulation study, general 

linear model results and ECLS-K data set. The fit indices and latent curve estimates for the eight 

models has been summarized for the lowest and highest AR (0.33 & 0.85), MA (0.33 & 0.85) 

and ARMA (0.33, 0.30 & 0.85, 0.80) values only. Sivo and Willson (2000) stated that “whenever 
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evaluating longitudinal panel data are evaluated, the fit, propriety, and parsimony of all models 

should be considered jointly and compared before a particular model is endorsed as most 

suitable” (p.174). The insight gained from the fit indices results is that it is important to 

assess the interplay between type and magnitude of autocorrelative processes and weights 

in longitudinal panel data sets having complex sample design by utilizing model fit indices 

in conjunction to AR and MA estimates of the models having weights versus no weights. 

Researchers who analyze such data sets should always investigate the autocorrelative 

process underlying the data and fit multiple competing models (modeling AR, MA and 

ARMA components) that have been specified a priori to the data set. In addition, the fit 

indices alone should not be the only criterion to judge the fit of the model. The fit indices, 

AR and MA estimates, propriety and parsimony of the model should be assessed together 

along with the presence or absence of weights for all the models before a particular model 

is deemed as most appropriate. 

The LCARMA model without sample weights was the best fitting model than the one 

with sample weights when fitted to AR data but the fit was slightly better. Although the ARMA 

model (with sample weights and without sample weights) was a slightly better fitting model 

when it was fitted to data having AR process than the LCAR model (with sample weights and 

without weights) but it is important to consider the MA estimate for both the models in 

conjunction with the fit indices. The LCARMA is a more accommodating model because it has 

both the AR and MA components specified into it. The MA estimate was close to zero (MA 

estimate of 0.048684-no weight & 1.70028-with weight when fitted to data having AR process of 

0.33 and MA estimate of 0.05386-no weight & 1.854138-with weight when fitted to data having 
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AR process of 0.85) for the LCARMA model indicating that the LCAR model is a better fit to 

the data having AR process. In addition, the AR estimates for the LCAR model with sample 

weights were higher than the LCAR model without sample weights and LCARMA models when 

fitted to data sets having AR process of 0.33 and 0.85 making the LCAR model with sample 

weights to be the best fitting model for the data having AR process.  

Similarly, the ARMA model without sample weights was the best fitting model to the 

MA data when compared to the LCMA model. The AR estimates were close to zero (AR 

estimate of 1.00821685-no weight & -0.0031385-with sample weight when fitted to data having 

MA process of 0.33 and AR estimate of 1.02233125-no sample weight & -0.0029936-with 

sample weight when fitted to data having MA process of 0.85) for the LCARMA model 

indicating that the LCMA model with sample weights is a better fit to the data having MA 

process as the MA estimates for this model is highest among all the models after the AR 

estimates were considered. A model having the ARMA component in it and fitted to data having 

AR or MA processes will have better fit indices than the LCAR and LCMA models because the 

LCARMA is an all-encompassing model. The MA estimates for LCMA model with sample 

weights were higher than LCMA model without sample weights and LCARMA models when 

fitted to data set having MA process of 0.33 but not for data having 0.85 MA suggesting that fit 

indices of LCMA model with sample weights can be more deceptive when used alone to 

evaluate the fit to a data when the MA process is high (MA 0.85). Although the AR estimates 

for the LCAR model with sample weights were high as compared to the LCARMA model with 

sample weights but there was not much difference between the estimates especially when the AR 

process was high (AR 0.85). For practical purposes, weights, fit indices, AR and MA 
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estimates of a particular model should be consulted more intuitively when the AR and MA 

process is high in a panel data set in order to declare a model to be the best fit. The 

LCARMA model had the best fit indices when fitted to data having ARMA process. Although 

the LCARMA model without sample weights had a slightly better fit than LCARMA with 

sample weights but the AR and MA processes were high for the latter making it the best fitting 

model. Sivo and Willson (2000) evaluated the quasi-simplex, one-factor, AR, MA, and ARMA 

models in terms of adequate fit, propriety, and parsimony. They noted that “In most cases, the 

models matching the generated data types fit better than any of the four remaining models" (p. 

180). The simulation results of the current study is consistent with Sivo and Willson (2000) 

results because AR, MA and LCARMA models with sample weights fitted well to the data 

having AR, AR and ARMA processes respectively. 

The LCARMA models with sample weights had the best fit indices out of all the eight 

models for the math (χ2-424.8563, SRMR-13964.98 RMSEA-0.0902, AIC-452.856, Mc-0.9182, 

CFI-0.9762) and reading (χ2-479.474, SRMR-0.0590, RMSEA-0.0961, AIC-507.474, Mc-

0.9076, CFI-0.9705) achievement scores in the ECLS-K data. However, SAS PROC CALIS 

procedure used the Moore-Penrose matrix pseudoinverse for model convergence which is a type 

of inverse matrix used in linear algebra to calculate the best fit solution for a set of linear 

equations that has difficulty attaining a proper solution indicating a lack of sufficient fit to some 

degree even though the fit indices were the best for LCARMA model (Barata & Hussein, 2012). 

In addition, the MA estimates were enormously negative, large and statistically significant and 

that alternative competing models might be a better fit to the ECLS-K data than the LCARMA 

model.  
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The second insight from this study focuses on the type of autocorrelative processes 

which should be considered as an important criterion along with the standard errors and 

confidence intervals when interpreting growth curve estimates in the context of complex 

sample weights. Furthermore, autocorrelative processes and sample weights interact with 

each other as sources of error to a statistically significant degree. Sivo and Willson (2000) 

stated that “The propriety of a solution generated for a model should be evaluated according to 

several criteria, including the behavior of the parameter estimates and associated standard errors, 

model identification, and the iterative estimation procedure’s attainment of successful 

convergence” (p.180). In the current simulation study, the mean intercept for the LCARMA 

model and LCAR model with sample weights was close to the population mean values (AR .33-

8.7267; AR .67-8.7226; AR .85-8.7393; MA .33-8.7298; MA .67-8.7224; MA .85-8.7195) when 

fitted to the AR data. The mean intercept was overestimated for the LC model with sample 

weights when fitted to the AR data. The magnitude of overestimation decreased when the LC 

model with sample weight was fitted to data having AR process of 0.85. However, the mean 

intercept was underestimated when the LC model with no sample weights was fitted to the AR 

data (except when it was overestimated when LC model fitted to data having AR of 0.33). The 

mean intercept was overestimated for LCMA model with sample weights and underestimated for 

LCMA model without sample weights when fitted to AR data (except when it was overestimated 

when LCMA model without sample weights was fitted to data having AR process of 0.33 and 

0.67). The estimate for mean intercept was closest to population values for LCARMA model 

with sample weights when it was fitted to ARMA data having AR 0.85, MA 0.80. The mean 

intercept was overestimated for LCMA and LC models with sample weights fitted to ARMA 
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data having AR 0.33, MA 0.30 and AR 0.85, MA 0.80. However, it was underestimated for 

LCMA and LC models with no sample weights when fitted to ARMA data (except for LC model 

with no sample weights where it was overestimated). All the models had biased mean intercept 

values when fitted to data where no autocorrelative process was specified (except for LCMA and 

LC models with sample weights). The magnitude of bias was more for LCARMA and LCAR 

models with sample weights than without sample weights when fitted to data having no 

autocorrelative process. The mean intercept values were close to population values when the 

LCMA and LC models with sample weights were fitted to data having MA process but the 

values were underestimated for both models without sample weights. Overall, the mean intercept 

was underestimated when the LCARMA and LCAR models were fitted to MA data. It was 

upwardly biased when LCMA and LC models with weights were fitted to AR data and 

downwardly biased for LCMA and LC models without sample weights. Hence, it can be 

inferred that sample level latent curve estimate for mean intercept is more influenced when 

LCAR and LCARMA models with sample weights are fitted to data having AR process. 

The mean intercept is closer to population estimate only when LC and LCMA models with 

sample weights is fitted to data having MA process. High levels of ARMA process in the 

data has some influence on mean intercept of LCAR and LCARMA models with sample 

weights. 

The mean slope was overestimated for the LCMA and LC models irrespective of sample 

weights when fitted to data having AR process. This trend was visible in all the LC models fitted 

to data having AR processes of 0.67 and 0.85. Although the mean slope was underestimated for 

LCARMA and LCAR models but the values were close to the population value (1.0033, 1.0062, 
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and 1.0070 for MA processes of 0.33, 0.67, and 0.85 respectively) only for the LCARMA model 

with sample weights when fitted to data having AR process of 0.33. The magnitude of 

underestimation was more in the LCMA and LC models fitted to AR of 0.33 than with AR of 

0.85. The mean slope was overestimated for all the models when fitted to ARMA data. This 

suggests that mean slope is overestimated when the data has an ARMA process probably because 

the mean slope has almost equal values for the estimate as well as RMSE resulting in high 

coefficient of variation (CV). The root mean square error (RMSE) and CV for mean intercept 

(Mean, 7.0782, RMSE-1.9729, CV-27.8739) was low when compared to the intercept variance, 

slope variance, and intercept slope correlation latent curve estimates suggesting precision and 

more reliability in the estimates. Furthermore, examination of confidence intervals for means of 

mean intercept show that they were tighter than the intervals for other latent curve estimates and 

that means for these two estimates were not present within the confidence intervals itself. This 

suggests statistical significance and accuracy in the estimates between the means of both these 

estimates with sample weights and without sample weights. Although the RMSE values for mean 

slope were also low, the high CV values for the estimate might be a possible reason for the 

upward bias in all the latent curve models and the data they were fitted to irrespective of sample 

weights. Hence, it can be inferred that sample level latent curve estimate for mean slope is 

more influenced by MA process than the AR or ARMA processes. The mean slope in 

LCMA and LC models having sample weights would have a higher likelihood of 

approximating to population level value when they are fitted to data having a low MA 

process. The mean slope can be influenced to some degree when the LCARMA model is 

fitted to data having a low AR process. 
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Sivo, Fan and Witta (2005) conducted a Monte Carlo simulation study to investigate the 

effects of unmodeled ARMA processes on growth curve (GC) parameter estimates. They found 

that the fit indices of GC model was poor as compared to the lag 1 GC autoregressive (GCAR) 

model. GC estimates were biased when the GC model was fitted to data having ARMA process. 

The intercept variance was upwardly biased that was due to the downward bias in the intercept 

slope correlation, a trend that was similar in the current simulation study. Sivo and Fan (2008) 

applied the simulation findings from Sivo, Fan and Witta (2005) paper to provide guidelines to 

researchers analyzing longitudinal data in which the change is occurring over time. They found 

that not utilizing the correct model underlying the data can underestimate or overestimate the 

true rate of change in reading scores of students based on a reading intervention. The intercept 

slope correlation was underestimated for the latent curve AR model and overestimated for the 

latent curve MA model.  They also compared the fit of GC model and the GC moving average 

(GCMA) model to data having an MA process. The mean intercept, mean slope, and slope 

variance were all unbiased and the estimates were approximately same for the GC model and the 

GCMA model. The intercept variance was biased upward. The intercept slope correlation was 

modestly underestimated in the presence of an MA process. The intercept variance increased 

slightly, the slope variance was not affected, and consequently the intercept slope correlation 

decreased in the latent curve models fitted to data having an MA process.  

In the current simulation study, the mean intercept variance was upwardly biased for all 

the latent curve models with sample weights when fitted to AR data. The magnitude of 

overestimation was higher for the LC, LCAR, and LCARMA models than the LCAR model 

thereby adding support to the better fit of LCAR model to AR data. The mean intercept variance 
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of latent curve models without sample weights were also overestimated for the LC and LCMA 

models fitted to AR data. The mean intercept variance was closest to population estimate having 

AR process (13.3985-AR 0.33, 13.3549-AR 0.67, 13.3197-AR 0.85) for the LCAR (13.3493) 

and LCARMA (13.3293) models without sample weights fitted to AR data of 0.85. The best 

fitting model to AR data was LCAR with sample weights after evaluating the fit indices, AR and 

MA estimates followed by the LCARMA model. On the other hand, similar trends were 

observed where the mean intercept variance was closest to population estimate having MA 

process (13.5607- MA 0.33, 13.7468-MA 0.67, 13.8003-MA 0.85) when the LCMA (13.3829) 

and LCARMA (13.3997) models fitted to MA data of 0.33. The mean intercept variance was 

generally overestimated for LC and LCMA models with sample weights and underestimated for 

all LC models (AR 0.00, MA 0.00) without sample weights when fitted to ARMA data. None of 

the sample estimates for any model were close to the population estimate. Intercept variance is 

close to population estimate in the presence of AR process and almost equal when AR process is 

high in the data but it is near population estimate only when the MA process is low in the data. 

Although the intercept variance is underestimated for LCAR and LCARMA no sample weights 

models fitted to AR data but it is closer to the population estimate. Hence, it can be inferred 

that sample level latent curve estimate for mean intercept variance is more influenced 

when LCAR and LCARMA models with no sample weights are fitted to data having high 

AR process whereas when LCMA and LCARMA models with no sample weights are fitted 

to data having low MA process.   

The mean slope variance was overestimated for the LC and LCAR models with sample 

weights fitted to data having AR, MA and ARMA processes (except for LCAR and LCARMA 
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models with sample weights fitted to data having no autocorrelative process). The mean slope 

variance was closest to population estimate having AR process (0.0527-AR 0.33, 0.0518-AR 

0.67, and 0.0504-AR 0.85) for the LCAR and LCARMA models without sample weights fitted 

to AR data. The mean slope variance was close to population level data (0.0479- MA 0.33, 

0.0442-MA 0.67, 0.0432-MA 0.85) having MA process for LCMA and LCARMA models fitted 

to data having MA process of 0.33. The mean slope variance was biased upwardly for all the 

models with sample weights fitted to ARMA data with the magnitude of bias increasing from 

ARMA (0.33, 0.30) to ARMA (0.85, 0.80). The estimate was close to population level estimates 

(0.0483- ARMA 0.33, 0.30; 0.0453-AR 0.67, MA 0.60; 0.0446-AR 0.85, MA 0.80) all the latent 

curve no sample weight models fitted to ARMA (0.33, 0.30). None of the latent curve models 

had mean slope variance close to population values when fitted to ARMA of 0.67, 0.60 and 0.85, 

0.80. Hence, it can be inferred that sample level latent curve estimate for slope variance is 

more influenced by the AR process than the MA or ARMA processes. The intercept 

variance in LCAR and LCARMA models without sample weights would have a higher 

likelihood of approximating to population level value when they are fitted to data having 

an AR process than the data having an MA or ARMA processes. Slope variance can be 

influenced to some degree when the ARMA process is low in the data and have a higher 

chance of being closer to population-level estimate.  

The mean intercept slope correlation had mixed results when the latent curve models with 

sample weights and without sample weights were fitted to data having varying levels of AR, MA 

and ARMA processes. In general, the population level estimates of mean intercept slope 

correlation for AR (0.0182 -AR 0.33, -0.0182 -AR 0.67, and -0.1393 -AR 0.85), MA (0.0215 - 
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MA 0.33, 0.0119 -MA 0.67, 0.0087 -MA 0.85) and ARMA (0.0209- ARMA 0.33, 0.30; 0.0382 -

AR 0.67, MA 0.60; 0.0767-AR 0.85, MA 0.80) data sets were not close to the sample level 

estimate of mean intercept slope correlation and were mostly overestimated when the latent 

curve models were fitted to the data specifying a autocorrelative process. An important point to 

note in the intercept variance, slope variance and intercept slope correlation estimates is that the 

bias is higher in models with weights than no sample weights irrespective of the type of data 

specifying AR, MA or ARMA process. The RMSE and CV for these estimates were high which 

indicates a large error component which might be a possible cause for masking the true 

interactive effects between the autocorrelative and weights, as noted in Chapter 4 summary 

results section. This could also be a reason for the population-level estimate to be close to sample 

level estimates of latent curve models without sample weights.  

The results of the present study are consistent with the results reported by Sivo, Fan and 

Witta (2005) where they noted that “certain GC parameters are closely related to AR parameters, 

whereas others are more closely related to MA parameters as the degree of bias for given GC 

parameters depends on which process is at hand. Interpretation of the GC parameters without 

recognizing and modeling AR or MA processes will lead to a misunderstanding of the GC 

results. (p. 229). Examination of mean intercept estimates in the ECLS-K data set indicated that 

models with sample weights had higher values than models without sample weights (except for 

LCARMA model without weights where the estimate was higher than with weights). The mean 

slope estimate was higher for all models without sample weights (except for LCAR model where 

estimate with weights was higher). The intercept variance had negative values for all models 

without sample weights except LC model. The slope variance was higher in all models with 
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sample weights with negative values for LCARMA and LCAR models without sample weights. 

The intercept slope correlation was higher for all models without sample weights except for LC 

model. The standard errors associated with the estimates were statistically significant between 

the models with sample weights and no sample weights as reflected in the confidence intervals. 

However, the standard errors were narrower for the latent curve estimates of models with no 

weights. Generally, the variance associated with the error terms increased with each wave of 

Math scores. The MA estimates for the LCARMA model with sample weights was extremely 

high and negative. On the other hand, LCARMA model with no sample weights had positive 

MA estimates having low values for standard errors when compared to LCARMA model with 

weights. The MA estimates and associated standard errors for the LCMA models with sample 

weights were also high when compared to the LCMA model with no sample weights a trend 

similar with the LCARMA models. The standard error of the means for math (Table 92) and 

reading (Table 94) variables having sample weights and no autocorrelative processes modeled 

were high than the latent curve model having no sample weights and no autocorrelation 

indicating lesser precision in the mean estimates when sample weights are accounted but the 

appropriate autocorrelative process is not modeled. One possible reason for high standard errors 

in the models with sample weights maybe be due to modeling the C7CW0 longitudinal sample 

weight which might not be accounting for the ARMA process between the math scores and also 

because the weighting increased the sample size and consequently the standard error. Similar 

trends were seen in the reading scores also where the MA estimates for LCARMA model with 

sample weights were very large and negative as compared to LCARMA no sample weights 

model. The confidence intervals for mean intercept and mean slope were narrower than the 
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confidence intervals for intercept variance, slope variance and intercept slope correlation in both 

math and reading scores, a trend similar to the simulation results.  

In the ECLS-K data, the standard errors associated with the means of reading and math 

achievement scores at each time point was higher for the latent curve model with sample weights 

and not accounting for the autocorrelative process than the standard errors of latent curve having 

no sample weights and no autocorrelative process. The standard error of latent curve estimates 

with sample weights were higher without sample weights (except for intercept slope correlation 

SE of models with weights) probably because the C7CW0 weight in ECLS-K data set did not 

account for the ARMA process underlying in the data. Out of all the LC estimates, the 

LCARMA model had the lowest values for SE out of all the other models whereas the LC had 

the highest values for standard errors. This trend was true for latent curve models with weights 

and without sample weights which further adds support to the presence of ARMA process in the 

ECLS-K data.  

The fourth insight from this study centers around the effect sizes associated with 

latent curve estimates due to the interactive effects between the autocorrelative processes 

and sample weights. The effect sizes should be interpreted in light of the SE associated with 

the estimates, type and magnitude of autocorrelative process. The general linear models were 

significant (including the interaction effects between latent curve model type and weights) for 

each latent curve estimate. It is important to assess the ANOVA results in tandem with the effect 

sizes, root mean square error (RMSE), and coefficient of variation (CV) values. Although the 

semi-partial eta square (η2) for latent curve estimates for mean intercept and mean slope had low 

values but the estimates could be considered accurate based on the low values of SE and their 
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proximity to the population-level estimates as noted in the simulation results. Examination of the 

Tukey results also indicate that the means of mean intercept and mean slope differed to a 

statistically significant degree when only models and sample weights were separately considered. 

Assessment of confidence intervals derived from the standard errors and means of estimates 

associated with data having AR, MA and ARMA processes also show that means of mean 

intercept and mean slope were different to a statistically significant degree when the interaction 

between the type of model and sample weights were considered. The interaction plots add 

support to the results obtained from simulation and general linear model. In addition, it is 

difficult to account for the influence of interaction between model type and sample weight when 

the RMSE and CV values are high which was true for intercept variance, slope variance and 

intercept slope correlation.  

Recommendations 
 

The following entails some guidelines for researchers analyzing large-scale panel data 

sets:  

1. The literature on time series processes suggests that fitting multiple competing models that 

have been specified a priori is essential to understand the true autocorrelative process 

underlying in the data in order to correct for the bias originating due to non-independent 

observations and to obtain accurate estimates. Identifying and modeling the correct type of 

dependency in the data is as important as recognizing dependency. The results from the 

current study recommends that biases from both autocorrelation and weights needs to be 

simultaneously modeled to obtain the accurate estimates. Accounting for just the 

autocorrelative process without weights or utilizing sample weights while ignoring the 
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autocorrelative process may lead to bias in the sample estimates particularly in large-scale 

datasets in which these two sources of error are inherently embedded.  

2. The type of autocorrelation, magnitude of autocorrelation, and weights influences the behavior 

of certain estimates and all the three facets should be carefully considered to correctly 

interpret these estimates especially in the context of measuring growth or change in the 

variable of interest over time. The simulation results show that all growth curve estimates 

especially mean intercept (starting point) and mean slope (rate of change) are influenced by 

the interactive effects of AR, MA and ARMA processes of different magnitudes and when 

sample weights were considered.  

3. The AR and MA estimates for the models should be used in conjunction with the fit indices, 

the consideration of sample weights versus no sample weights and the data to which the 

model(s) are fitted before a model can be declared appropriate for a data set. If the AR 

estimate is high and MA estimate is low for a LCAR model than the other models that are 

fitted to a data set having sample weights and the fit indices are in the acceptable cut-off 

range, then the data set has a higher likelihood of having an AR process between the 

observations. If the MA estimate is high and AR estimate is low for a LCMA model than the 

other models that are fitted to a data set having sample weights and the fit indices are in the 

acceptable cut-off range, then the data set has a higher likelihood of having an MA process 

between the observations. If both AR and MA estimates are high for a LCARMA model than 

the other models that are fitted to a data set having sample weights and the fit indices are in 

the acceptable cut-off range, then the data set has a higher likelihood of having an ARMA 

process between the observations.  



213 

 

4. Longitudinal weights in ECLS-K needs refinement to account for ARMA processes or a better 

fitting model. The sample weights in the simulation results were built from the population 

data after correctly accounting for the ARMA process. The C7CW0 longitudinal sample 

weight in the ECLS-K data set that accounted for the child assessment data from all the seven 

rounds of data collection most likely did not account for the ARMA process. It is not clear 

whether the appropriate autocorrelative process was accounted during the construction of 

C7CW0 longitudinal sample weight in the ECLS-K data set. There is a need to refine the 

C7CW0 weight that takes into account time series processes in order to account for the 

autocorrelative effects existing between reading and math achievement scores of students 

collected at seven time points. This would help researchers to model the correct nature of 

dependency when this longitudinal sample weight is utilized.  

 

Delimitations & Future Research 
 

The current simulation study was designed to incorporate only the stratification aspect of 

complex sample design and not the clustering effects. In the literature, research has been 

conducted on complex sample design by investigating the clustering effects on sample estimates. 

Pfeffermann et al. (1998) studied the influence of various weighting procedures on the standard 

estimators obtained from level 1 and level 2 units of sample data derived from a survey having 

multi-stage and multi-level survey design. Stapleton (2002) analyzed the clustering effects and 

sample weights in the context of multi-level structural equation modeling. Although the presence 

of clusters is an important feature of real-world data sets such as ECLS-K, it was not investigated 

in the current study because it is not a necessary condition to test for the interactive effects 
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between the AR, MA and ARMA processes and weights. The LINEQS in SAS PROC CALIS 

which were used to build latent curve models specifying a particular autocorrelative process did 

not take the clustering effects into account which might be a reason for the high standard errors 

in the latent curve estimates when sample weights were applied with autocorrelation than when 

no autocorrelation and no sample weights were considered.  In ECLS-K data sets, the design 

effects were incorporated to account for the clusters that first occurred at the primary sampling 

unit (PSU) level (district) and then at secondary sampling unit (SSU) (school). The stratification 

usually occurred on the variable that is directly related to the individual. One possible area of 

future research is to consider the clustering effects in order to understand the interactive effects 

of autocorrelation and sample weights from a multi-level model context. Future research should 

also consider investigating the effects of increased levels of multicollinearity that creates 

masking effects and prevents the true variation between the interaction of time series processes 

and sample weights to be displayed on the sample estimates. A certain level of correlation is 

desired to obtain interactive effects. However, multicollinearity subdues the unique variation in 

the estimates explained by the predictor variables when the correlations between them are 

extremely high.  

The current simulation study was modeled with an assumption of lag 1 process existing 

between the observations wherein the value of current observation and associated error term is 

dependent on the observation immediately preceding it. A third possible area of future research 

is to fit latent curve models specifying AR, MA and ARMA processes at lag2 to the ECLS-K 

data as the data set has seven waves as it might be possible that the current observation and 

associated error term is dependent on the last two observations and their error terms immediately 
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preceding it. A third promising area of research is to fit additional and multiple competing 

models to the ECLS-K data because the LCARMA model had an inverse matrix and enormously 

high MA values even though it had best fit indices than the other models.  

A fourth promising area of research is to construct a bias parameter in the simulation 

study. Sivo, Fan and Witta (2005) had calculated percent parameter bias for the mean intercept, 

mean slope, intercept variance, slope variance, and intercept slope correlation. They found that 

percent parameter bias on average increased by 77% for mean intercept, and the mean slope 

increased by more than 200% when the AR lag 1 process was not modeled. The intercept 

variance increased by more than 300% while intercept variance and intercept slope correlation 

was greater than 300% and 200% respectively. In future simulation research, the percentage of 

bias can be calculated by taking the population-level true parameter values and subtracting it 

from the estimated value obtained from the sample data and then dividing by the true population 

level values to estimate the amount of bias when both the stochastic process and sample weights 

were properly modeled versus when either the stochastic process or weight is modeled. In other 

words, the parameters of interest can be compared when the AR, MA and/or ARMA process is 

modeled and sample weights are applied versus when the processes are not modeled and weights 

are applied. Similar effects can be investigated when the processes are modeled and sample 

weights are not applied versus when processes are not modeled and sample weights are applied.  

Lastly, research can also be conducted to estimate the effects of missing values and 

different imputation techniques in the ECLS-K data set in the context of growth curve and 

autocorrelation. The ECLS-K data had approximately 21,400 observations across seven waves 

for the math and reading achievement scores. However, only about 2,360 observations were 
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taken into account for modeling purposes because the remaining observations did not have 

complete data across all the seven time points. 
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APPENDIX A: SAS ARMA PROGRAM 
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       LINEQS 

       Var_X1 = 0 * Intercept + 1 F_INT + 0 F_SLP + E1, 

       Var_X2 = 0 * Intercept + 1 F_INT + 1 F_SLP + ARlag1 Var_X1 + E2, 

       Var_X3 = 0 * Intercept + 1 F_INT + 2 F_SLP + ARlag1 Var_X2 + E3, 

       Var_X4 = 0 * Intercept + 1 F_INT + 3 F_SLP + ARlag1 Var_X3 + E4, 

       Var_X5 = 0 * Intercept + 1 F_INT + 4 F_SLP + ARlag1 Var_X4 + E5, 

       Var_X6 = 0 * Intercept + 1 F_INT + 5 F_SLP + ARlag1 Var_X5 + E6, 

       Var_X7 = 0 * Intercept + 1 F_INT + 6 F_SLP + ARlag1 Var_X6 + E7, 

       Var_X8 = 0 * Intercept + 1 F_INT + 7 F_SLP + ARlag1 Var_X7 + E8, 

        F_INT = Mean_INT INTERCEPT + D1, 

        F_SLP = Mean_SLP INTERCEPT + D2; 
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APPENDIX B: SAS MA PROGRAM 
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       LINEQS 

       Var_X1 = 0 * Intercept + 1 F_INT + 0 F_SLP + E1, 

       Var_X2 = 0 * Intercept + 1 F_INT + 1 F_SLP + E2, 

       Var_X3 = 0 * Intercept + 1 F_INT + 2 F_SLP + E3, 

       Var_X4 = 0 * Intercept + 1 F_INT + 3 F_SLP + E4, 

       Var_X5 = 0 * Intercept + 1 F_INT + 4 F_SLP + E5, 

       Var_X6 = 0 * Intercept + 1 F_INT + 5 F_SLP + E6, 

       Var_X7 = 0 * Intercept + 1 F_INT + 6 F_SLP + E7, 

        F_INT = Mean_INT INTERCEPT + D1, 

        F_SLP = Mean_SLP INTERCEPT + D2; 
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