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ABSTRACT

This thesis concerns an analytical and numerical study of the Kudryashov Generalized

Korteweg-de Vries (KG KdV) equation. Using a refined perturbation expansion of the

Fermi-Pasta-Ulam (FPU) equations of motion, the KG KdV equation, which arises at

sixth order, and general higher order KdV equations are derived. Special solutions of the

KG KdV equation are derived using the tanh method. A pseudospectral integrator, which

can handle stiff equations, is developed for the higher order KdV equations. The numerical

experiments indicate that although the higher order equations exhibit complex dynamics,

they fail to reach energy equipartition on the time scale considered.
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CHAPTER 1: INTRODUCTION

Classification of systems as ergodic is of significant mathematical and scientific

interest. While ergodic theory is well-established, analytic results tend to handle only

very special cases. Indeed, it was this kind of difficulty from which the Fermi-Pasta-Ulam

(FPU) problem came about.

During Summer 1952 at the Los Alamos National Laboratory, discussions between E.

Fermi and S. Ulam led to an exploration of the long time-scale evolution of a perturbed

Hamiltonian system in order to examine equipartition of energy, in which energy is

approximately uniformly distributed among the modes. The pair of researchers ultimately

settled on modeling the (1+1)-dimensional nonlinear wave equation with Dirichlet

boundary conditions. In the corresponding linear problem with appropriate initial data,

the solution is certainly known to oscillate uniformly in time, i.e. there is a single nonzero

constant mode. In the nonlinear problem, small time-scale computations revealed that

energy in the initial mode decreased and energy in neighboring modes increased. Fermi

generalized results by Poincaire and conjectured that the system would soon become

ergodic, i.e. that the system would reach a state of equipartition of energy.

The following summer, with the aid of J. Pasta and M. Tsingou, a numerical scheme

was implemented on an early digital computer. The results, which have continued to

generate significant interest, experimentation, and analysis, indicated that the ergodic

hypothesis did not hold for small perturbations on computed time scales. Instead, in what

is now dubbed the FPU paradox, periodic recurrence of energy in the modes was observed.

Stimulated by ten years of lingering questions about the FPU problem, work by

N. Zabusky and M. Kruskal in 1965 had a substantial impact by relating the FPU

problem with solitary wave phenomenon in the continuum [22]. Kruskal, in particular,

hypothesized a method of transforming certain features of the FPU problem dynamics into

a problem entirely in the continuum. What resulted was the Korteweg-de Vries (KdV)

equation, which provided a so-called long wavelength model of the FPU lattice. This
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motivated intense interest in infinite-dimensional integrable systems and soliton theory,

which is as related to the original FPU problem as it is intriguing in its own right. The

following year, in work by F. Izrailev and B. Chirikov [8], it was found that equipartition

was achieved in the same problem when energy initially placed in a mode was sufficiently

large. This motivated the conjecture of an energy threshold for the ergodic hypothesis.

In 1982, F. Fucito [7] conjectured that near recurrence of energy in the modes would

eventually transition into exact recurrence of energy in the modes for every perturbation,

although achieved in a time that increases exponentially as energy decreases down toward

the energy threshold.

Within the last decade, N. Kudryashov has considered a higher order expansion

of certain cases of a continuum limit of the FPU problem, using the usual refined

perturbation expansion due to Kruskal [9–11]. Kudryashov found that these equations

fail the Painleve test. A. Volkov also noted some special solutions to these equations [19].

In Chapter 2, we begin this thesis with a review of the Fermi-Pasta-Ulam (FPU)

problem. Although a handful of analytic results have appeared since, we focus primarily

on the original numerical experiment, its interpretation, and its limitations. We also

briefly remark on the formulation of the problem and provide some analysis of the system

and the numerics.

In Chapter 3, a means of passing from the FPU equations of motion to a continuum

limit is provided, using Kruskal’s classic long wavelength assumption. We give a similar

treatment to an expansion of arbitrary order in the appendix. Some analytic results are

then derived from the resulting systems – namely, traveling wave solutions via the tanh

method.

Kudryashov and Volkov elaborated briefly on the numerical methods used for their

higher order equations, noting that a pseudospectral method with mode filtering was

used [9–11, 19]. Numerical results suggesting chaos were demonstrated. In Chapter 4,

we repeat a classic experiment that followed Kruskal’s derivation of the KdV equation

2



from the FPU lattice. With this is hand, a pseudospectral method that does not involve

filtering of modes is implemented. Some indicators of ergodicity are then proposed and

discussed, followed by analysis and interpretation of the results. The numerics suggest that

equipartition is achieved on a long time scale for the higher order equations and some of

its variants.
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CHAPTER 2: THE FERMI PASTA ULAM PROBLEM

2.1 Formulation

Fermi, Pasta, and Ulam [2] considered a chain of N + 2 particles where neighboring

masses are connected by a nonlinear spring, as illustrated in Figure 2.1.

h ∀jFj = 0

x0 x1 x2

q1

x0 x1 x2

∃j : Fj 6= 0

Figure 2.1. In the upper frame, the equilibrium FPU lattice is illustrated with monatomic
circular nodes connected by a (nonlinear) spring force. In the lower frame, a
non-equilibrium FPU lattice is illustrated, wherein the displacement of the jth
node, qj is nonzero.

The particles, restoring forces, and resting spring lengths are assumed to be identical.

The force, F , is assumed to be the sum of forces imposed by the nearest neighbors, i.e.,

Fj = F (xj+1 − xj)− F (xj − xj−1) (2.1)

for the jth mass, with xj being displacement from the mass’s equilibrium position. The

force, F , is weakly nonlinear, dependent upon the relative displacements, δ+xj = xj+1 − xj

1



and δ−xj = xj − xj−1, so that

Fj =
1

h

M
∑

i=1

Ki

(δ+xj)
i − (δ−xj)

i

i!
, ∀j : 1 ≤ j ≤ N, (2.2)

where Ki is the ith order spring constant component. Imposing Dirichlet boundary

conditions, we have the Initial Boundary Value Problem,











































ẍj =
1

mh

M
∑

i=1

Ki

(δ+xj)
i − (δ−xj)

i

i!
, ∀j ∈ {1, 2, ..., N}, (2.3)

xj(0) = fj(0), ∀j ∈ {1, 2, ..., N}, (2.4)

ẋj(0) = 0, ∀j ∈ {1, 2, ..., N}, (2.5)

x0(t) = xN+1(t) = 0, ∀t ≥ 0. (2.6)

In the original FPU experiments, M = 3 and the restoring force, F , is dependent on only

linear, quadratic, and cubic terms. Recasting the spring constants as in [2], one obtains

Fj =
k

h

[

γ(xj+1 − xj) + α(xj+1 − xj)
2 + β(xj+1 − xj)

3− (2.7)

(

γ(xj − xj−1) + α(xj − xj−1)
2 + β(xj − xj−1)

3
)]

=
k

h

[

γ(xj+1 + xj−1 − 2xj) + α((xj+1 − xj)
2 − (xj − xj−1)

2)+ (2.8)

β((xj+1 − xj)
3 − (xj − xj−1)

3).
]

For M = 3 and γ = k = h = m = 1, Equations (2.3)—(2.6) become































































ẍj = xj+1 − 2xj + xj−1 + (2.9)

α((xj+1 − xj)
2 − (xj − xj−1)

2) +

β((xj+1 − xj)
3 − (xj − xj−1)

3), ∀j ∈ {1, 2, ..., N},

xj(0) = fj(0), ∀j ∈ {1, 2, ..., N}, (2.10)

ẋj(0) = 0, ∀j ∈ {1, 2, ..., N}, (2.11)

x0(t) = xN+1(t) = 0, ∀t ≥ 0. (2.12)

To simplify the analysis of the nonlinear dynamics, we consider two cases. In particular,

the system that arises when α is nonzero and β = 0 is referred to as the FPU-α problem.
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Similarly, α = 0 and β nonzero gives the FPU-β problem. To formulate the problem in

Equations (2.9)—(2.12) as a 2N dimensional system of first order ordinary differential

equations, we define the new variables qj(t) = xj(t) and pj(t) = ẋj(t), yielding















































































q̇j = pj, ∀j ∈ {1, 2, ..., N}, (2.13)

ṗj = (qj+1 + qj−1 − 2qj) + (2.14)

α((qj+1 − qj)
2 − (qj − qj−1)

2) +

β((qj+1 − qj)
3 − (qj − qj−1)

3), ∀j ∈ {1, 2, ..., N},

qj(0) = fj(0), ∀j ∈ {1, 2, ..., N}, (2.15)

pj(0) = 0, ∀j ∈ {1, 2, ..., N}, (2.16)

q0(t) = qN+1(t) = 0, ∀t ≥ 0. (2.17)

Letting q = (q1, ..., qN)
T , p = (p1, ..., pN)

T , and z = (q,p)T , Equations (2.13)—(2.17) can

be written in Hamiltonian form,

{

ż = J∇H, (2.18)

z(0) = (f(0),0)T ∈ R
2N , (2.19)

where J =







0 IN×N

−IN×N 0






and H : R2N → R by

H(q,p) =
N
∑

i=1

p2i
2

+
N
∑

i=1

(qi+1 − qi)
2

2
+ α

(qi+1 − qi)
3

3
+ β

(qi+1 − qi)
4

4
. (2.20)
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Note that Equations (2.18)—(2.19) imply Equation (2.17) due to the linear dependence of

the boundary conditions. This Hamiltonian is readily verified:

∂H

∂pj
=

∂

∂pj

N
∑

i=1

p2i
2

+
∂

∂pj

N
∑

i=1

(qi+1 − qi)
2

2
+ α

(qi+1 − qi)
3

3
+ β

(qi+1 − qi)
4

4
, (2.21)

=
∂

∂pj

N
∑

i=1

p2i
2

+ 0, (2.22)

=
2pi
2
δi,j, (2.23)

= pj, (2.24)

= q̇j, (2.25)

and

∂H

∂qj
=

∂

∂qj

N
∑

i=1

p2i
2

+
∂

∂qj

N
∑

i=1

(qi+1 − qi)
2

2
+ α

(qi+1 − qi)
3

3
+ β

(qi+1 − qi)
4

4
, (2.26)

= 0 +
∂

∂qj

N
∑

i=1

(qi+1 − qi)
2

2
+ α

(qi+1 − qi)
3

3
+ β

(qi+1 − qi)
4

4
, (2.27)

=
∂

∂qj

N
∑

i=1

q2i+1 − 2qi+1qi + q2i
2

+ α
q3i+1 − 3q2i+1qi + 3qi+1q

2
i − q3i

3
+ (2.28)

β
q4i+1 − 4q3i+1qi + 6q2i+1q

2
i − 4qi+1q

3
i + q4i

4
,

= −qj+1 + 2qj − qj−1 − α(q2j+1 − 2qj+1qj + 2qjqj−1 − q2j−1)− (2.29)

β(q3i+1 − 3q2i+1qi + 3qi+1q
2
i − 2q3i + 3q2i qi−1 − 3qiq

2
i−1 + q3i−1), (2.30)

= −(qj+1 + qj−1 − 2qj)− α((qj+1 − qj)
2 − (qj − qj−1)

2) (2.31)

− β((qj+1 − qj)
3 − (qj − qj−1)

3),

= −ṗj. (2.32)
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2.2 Diagonalization of the Linear Regime

In Equations (2.13)—(2.17), the linear regime is governed by q̈ = Lq where

L =

























−2 1 0 0 0 · · · 0 0

1 −2 1 0 0 · · · 0 0

0 1 −2 1 0 · · · 0 0

. . . . . . . . .

0 0 0 0 · · · 0 1 −2

























N×N

. (2.33)

Notice that L is a 1-bandwidth symmetric Topelitz matrix (with a main diagonal of -2 and

an off-diagonal of 1.) To address the question of the partitioning of the ‘energy’, H, we

introduce the Fourier normal modes by seeking x ∈ C
N , dependent upon λ, such that

(L− λIN×N)x = 0. (2.34)

This produces the system of equations

xj+1 + (−2− λ)xj + xj−1 = 0, 1 ≤ j ≤ N (2.35)

where x0 = xN+1 = 0. Using finite difference methods, suppose xj = zj. Then the

characteristic polynomial is of the form z2 + (−2 − λ)z + 1 whose zeros are given by z±.

But this requires z+z− = 1, so we define z0 = z+ = 1
z
−

. The general solution to Equation

(2.35) is an arbitrary linear combination of z±, i.e. xj = c1z
j
0 + c2z

−j
0 . The first boundary

condition, x0 = 0, implies 0 = c1 + c2. So we let c = c1 = −c2. The second boundary

condition, xN+1 = 0, implies z
2(N+1)
0 = 1. So, in fact, z0 are the 2(N + 1)th roots of unity.

Namely,

z0(λ) = e
2kπi

2(N+1) = e
kπi
N+1 , 1 ≤ k ≤ 2(N + 1). (2.36)
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Using the characteristic polynomial and Equation (2.36),

1 + (−2− λ)z + z2 = (z − z0(λ))(z − z−1
0 (λ)), (2.37)

=
(

z − e
kπi
N+1

)(

z − e−
kπi
N+1

)

, (2.38)

= z2 − 2z cos

(

kπ

N + 1

)

+ 1. (2.39)

By equating coefficients of the left hand side of (2.37) and the right hand side of (2.39),

λ = 2 cos

(

kπ

N + 1

)

− 2 = −
(

2 sin

(

kπ

2N + 2

))2

. (2.40)

Define λk to be the kth λ satisfying Equation (2.40) and let xjk ∈ C be the jth element of

the kth vector, xk, satisfying Equation (2.34). Then

xjk = cz0(λk)− cz−1
0 (λk) (2.41)

= ce
jkπi

N+1 − ce
−jkπi

N+1 (2.42)

= −2ic sin

(

jkπ

N + 1

)

. (2.43)

Since c is arbitrary, we let c = −
√

2
N+1

2i
so that

xjk =

√

2

N + 1
sin

(

jkπ

N + 1

)

. (2.44)

Consequently, we define a transformation to normal modes (q,p) 7→ (u,v) by

uj =

√

2

N + 1

N
∑

k=1

qk sin

(

πjk

N + 1

)

, (2.45)

vj =

√

2

N + 1

N
∑

k=1

pk sin

(

πjk

N + 1

)

. (2.46)
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The closed form Hamiltonian in normal mode coordinates has been derived [15], in which

H(u,v) =
N
∑

j=1

1

2

(

v2j + λju
2
j

)

+
α

3
√
2N + 2

N
∑

j,k,l=1

S3(j, k, l)
√

λjλkλlujukul (2.47)

+
β

8(N + 1)

N
∑

j,k,l,m=1

S4(j, k, l,m)
√

λjλkλlλmujukulum.

where

S3(j, k, l) = δj+k,l + δj+l,k + δk+k,j − δj+k+l,2N+2, (2.48)

S4(j, k, l) = δj+k+l,m + δk+l+m,j + δl+m+j,k + δm+j+k,l + δj+k,l+m (2.49)

+ δj+l,k+m + δj+m,k+l − δj+k+l+m,2N+2 − δj+k+l,m+2N+2 − δk+l+m,j+2N+2

− δl+m+j,k+2N+2 − δm+j+k,l+2N+2,

δn,m =















0, n ̸= m,

1, otherwise.

(2.50)

Fermi and colleagues noted that the nonlinearity is weak by design, rendering small the

normed difference between the normalized Hamiltonian of the system (2.13)—(2.17) and

its linear counterpart. Consequently, in the numerical experiments, we track H̄ : R2N → R

by

H̄(u,v) =
1

2

N
∑

i=1

v2i +

(

2 sin

(

kπ

2N + 2

))2

u2
i +O(α + β). (2.51)

Notice that the jth term of the sum in (2.51) gives the approximate energy in the jth

normal mode of the system (2.13)—(2.17). So ∀j : 1 ≤ j ≤ N , we define Ej : R → R by

Ej(t) =
1

2
v2j (t) + 4 sin2

(

kπ

2N + 2

)

u2
j(t). (2.52)
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2.3 Numerics

To proceed experimentally, we notice that the ordinary differential equations in

(2.13)—(2.14) are of the form

{

q̇ = p, (2.53)

ṗ = f(q). (2.54)

We note the Taylor expansions

q(t+∆t) = q(t) + ∆tq̇(t) +O((∆t)2), (2.55)

p(t+∆t) = p(t) + ∆tṗ(t) +O((∆t)2). (2.56)

Then by solving Equations (2.55) and (2.56) for the first derivative and substituting the

result into (2.53) and (2.54),

q(t+∆t) = q(t) + ∆tp(t) +O((∆t)2), (2.57)

p(t+∆t) = p(t) + ∆tf(q(t)) +O((∆t)2). (2.58)

We let tn = t0 + n∆t = n∆t and we define

q̄(tn) = q̄(tn−1) + ∆tp̄(tn−1), (2.59)

p̄(tn) = p̄(tn−1) + ∆tf(q̄(tn)). (2.60)

Hence we have a first order approximation of the system in (2.53)—(2.54). This is the

so-called symplectic Euler method. We implement this algorithm by taking f to be the

corresponding function in Equations (2.13)—(2.17).

2.4 Results and Discussion

The results of our computations appear to uphold Fermi’s original conclusions. Since

Fermi’s paper did not elaborate on the finite difference scheme employed, the results

may differ slightly. In particular, the dynamical system defined by the numerical method

8



introduces oscillations in the Hamiltonian that were not present in Fermi’s work, as they

were likely manually filtered via hand-drawing of the data.

The computation is executed as follows: given initial data, the system was started

from rest at time t = 0. A time-step, say τ , is used to implement the numerical scheme so

that t = jτ . Note that the linear problem, where α = β = 0, oscillates temporally with

approximate period δt := 2N
τ

. So for comparative purposes, we map t 7→ tτ
2N

to emphasize

the relative propagation of the nonlinear string. We refer to this scaled temporal domain

as the “computational oscillations.” The distribution of energy in the Fourier modes was

computed as a discrete function of time. The graphs show the behavior of the energy,

Ej, residing in various modes as a function of scaled time; for example, in Figure 2.2 the

energy content of each of the first five modes is plotted. Unless otherwise stated, the

abscissa is the discrete scaled time parameter and the ordinate is the modal energy Ej of

the approximate solution to the system.

As is illustrated in Figure 2.2, we first consider the quadratic forcing, α = 1
4

and

β = 0, and a sine wave as the initial position of the string, i.e. qj = sin
(

jπ

N

)

. Initially,

a gradual increase of energy in the higher modes is shown – mode two starts increasing

first, followed by mode three, and so on. After about six-thousand time-steps, however,

this gradual sharing of energy among successive modes ceases and a mode dominates. For

example, note how mode two is seen to increase quickly at the cost of all other modes,

having, at one time, more energy than all the others put together. Then mode three

behaves similarly, and so on. Finally, at a later time, mode one comes back to within one

per cent of its initial value so that the system appears quasi-periodic. Figure 2.3 illustrates

not the energy but the actual shapes, i.e., the displacement of the string at various times.

Displacement quantities are mapped onto the second dimension for ease of graphical

interpretation, unlike the more intuitive construction in Figure 2.1.
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Figure 2.2. The quantity plotted is the energy, Ej, in the first five modes.
N = 32, α = 1

4
,∆t = 1/16. The initial form of the string was a qj = sin

(

jπ

N

)

.

In Figure 2.4, the quadratic force is increased to α = 1. Notice that, by δt = 15,

more energy is present in mode five than in the fifth mode of the α = 1
4

case in Figure

2.2. Several more modes, which are not plotted for clarity, were also excited more than

mode one by this time. Moreover, the energy in mode one recovers to within 1
10

of the

energy initially in mode one. While it was not initially clear in the FPU experiment that

the case of a larger perturbation would lead to equipartition, extending the computations

out roughly ten-fold readily reveals that near recurrence is not achieved again. It should

be noted that large perturbations were, in general, expected to lead to equipartition.
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Figure 2.3. This drawing shows not the energy but the actual shapes, i.e., the
displacement of the string at various times as indicated in the legend. The
conditions are N = 32, α = 1

4
,∆t = 1/16. The initial form of the string was a

qj = sin
(

jπ

N

)

.

Figure 2.5 provides the results for the same initial data as in the preceeding figures,

i.e. qj = sin
(

jπ

N

)

, but with cubic forcing where α = 0 and β ̸= 0. Similar quasi-period

dynamics are exhibited. This is unexpected since the perturbation, β = 8, is large. But

the cubic restoring force is acting on symmetric initial data.
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Figure 2.4. Same conditions as Figure 2.2 but the quadratic term in the force was
stronger. α = 1.
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In Figure 2.6, the nature of these special cases is seen more clearly – all the energy is

initially placed in two modes, namely two thirds in mode five and one third in mode seven

and β = 1
16

. We find that ∀t ≤ 10560

sup
j:j ̸=5∨7

∥Ej(t)∥2 ≤ 8× 10−3. (2.61)

Moreover, E5(t) and E7(t) are approximately constant. This strongly suggests that energy

in modes j : j ̸= 5 ∨ 7 is negligible and that the string oscillates with nearly perfect

recurrence.
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Mode 9

Figure 2.5. The quantity plotted is the energy, Ej, in the first five modes.
N = 32, β = 8,∆t = 1/16. The initial form of the string was qj = sin

(

jπ

N

)

.
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Figure 2.6. The quantity plotted is the energy, Ej, in the first five modes.
N = 32, β = 1

16
,∆t = 1/64. The initial form of the string was determined by

placing two thirds of the energy in mode five and one third in mode seven.

For several years following the original FPU experiments, there were concerns about

the possibility of numerical artifacts effecting the recurrence phenomenon. In 1972,

J. Tuck and M. Menzel [18] reexamined the original FPU experiment, in which they

evolved the sine wave initial data over a much longer time frame. In Figure 2.7, we do

this by executing the same computation as in Figure 2.2, but for about one hundred

times the number of time-steps. The results confirm the original FPU experiment and

illustrate further recurrence phenomenon, which Tuck called super-recurrence. It should be

noted that this qualitative behavior remains intact even after many tens of thousands of

computational oscillations.
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On the whole, what is suggested by the numerical experiment is that in certain

problems which are nearly linear, there exist quasi-states characterized by, for instance,

the recurrence phenomenon seen in the FPU lattice.
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FPU recurrence

Super-recurrence

Figure 2.7. The quantity plotted is the energy, Ej, in the first two modes.
N = 32, α = 1

4
,∆t = 1/16. The initial form of the string was a qj = sin

(

jπ

N

)

.
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CHAPTER 3: ON A CONTINUUM LIMIT OF THE FPU LATTICE

3.1 Introduction

In a celebrated result [22] due to Zabusky and Kruskal, the Korteweg-de Vries

equation, which was expected to model long wavelength modes in the FPU-α lattice,

revealed via the traveling wave assumption the existence of waves that pass through

one another, interact in a nonlinear way, and then remain unchanged after collision.

Such structures, which were initially observed by J. Russell as early as 1834 and coined

solitary waves, were renamed solitons in the Zabusky paper and, thereafter, gave way to

intense interest in soliton theory for several decades. A derivation of the KdV equation

and a larger class of related problems was first reported by a collaborators of Zabusky

and Kruskal, C. Su and C. Gardner [17]. Shortly thereafter, M. Wadati illustrated a

means of passing strictly from the FPU lattice to the Korteweg-de Vries equation and

modified Korteweg-de Vries equation [20]. Kruskal appears to have originally proposed the

procedure in unpublished conference proceedings shortly before Zabusky and Kruskal’s

seminal work [22]. The higher order expansion that is derived was first reported by

Kudryashov [9].

3.2 From FPU to KdV

Recall from the previous chapter the description of a nearest neighbor force with

nonlinear perturbation on a jth particle, say yj, in an infinite one dimensional monatomic

lattice in which

ÿi =
κ

m

N
∑

j=1

Kj

(

(yi+1 − yi)
j − (yi − yi−1)

j
)

(3.1)

with particle mass m and spring constant κ. The case where K1 = γ, K2 = α,

K3 = β and Kn = 0, n ≥ 4 corresponds to the FPU equations of motion. In the interest of

adopting a continuum approximation for smooth waves, i.e., waves with a long wavelength
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relative to the particle spacing, we define a function y : D ⊂ R× R → R by

y(X,T ) := yj(T ) (3.2)

where X = jh and y ∈ C∞(D). Note the Mth order Taylor expansion of yi±1, wherein

yi±1 − yi =
M
∑

j=1

(±h)j

j!

∂j

∂Xj
y +O(hM+1). (3.3)

Since y is smooth, its partial derivatives can be interchanged. Therefore, for convenience,

we define

∂jzy =
∂jy

∂zj
. (3.4)

3.2.1 Order Four Expansion: Korteweg-de Vries Equation

Consider the FPU-α case (κ = 1, β = 0) and a 4th order Taylor expansion of y so that

Equation (3.1) becomes

m∂TTy = γ((yi+1 − yi)− (yi − yi−1)) + α((yi+1 − yi)
2 − (yi − yi−1)

2), (3.5)

= γ((yi+1 − yi) + (yi−1 − yi)) + α((yi+1 − yi)
2 − (yi−1 − yi)

2), (3.6)

= γ

(

4
∑

j=1

hj

j!
∂jXy +

4
∑

j=1

(−h)j

j!
∂jXy +O(h5)

)

(3.7)

+ α





(

4
∑

j=1

hj

j!
∂jXy +O(h5)

)2

−
(

4
∑

j=1

(−h)j

j!
∂jXy +O(h5)

)2


 ,

= γ

(

h2yXX +
1

12
h4yXXXX

)

(3.8)

+ α

(

h2y2X + h3yXyXX +
h4

4
y2XX +

h4

3
yXyXXX

−
(

h2y2X − h3yXyXX +
h4

4
y2XX +

h4

3
yXyXXX

))

+O(h5),

= γh2yXX + 2h3αyXyXX + γ
h4

12
yXXXX +O(h5). (3.9)
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Therefore,

0 = −m∂TTy + γh2yXX + 2h3αyXyXX + γ
h4

12
yXXXX +O(h5). (3.10)

In a manner similar to [9], we transform the truncation of Equation (3.10) according to































y(X,T ) =
γ

2αh
v(x, τ), (3.11)

x = X − h

√

γ

m
T, (3.12)

τ =
ϵh

2

√

γ

m
T. (3.13)

Equations (3.11)—(3.13) have frequently been used to transform interpolations of the FPU

lattice into KdV-type equations [9, 11, 14, 17, 20, 22]. There are alternative constructions

of note, namely in a series of papers [3–6] by G. Friesecke and R. Pego. We now apply

Equations (3.11)—(3.13) to Equation (3.10) so that

0 = −m

(

−h

√

γ

m

)2

∂xx

[ γ

2αh
v
]

+ 2

(

−h

√

γ

m

)(

ϵh

2

√

γ

m

)

∂xτ

[ γ

2αh
v
]

(3.14)

+

(

ϵh

2

√

γ

m

)2

∂ττ

[ γ

2αh
v
]

)

+ γh2∂xx

[ γ

2αh
v
]

+ 2h3α∂x

[ γ

2αh
v
]

∂xx

[ γ

2αh
v
]

+ γ
h4

12
∂xxxx

[ γ

2αh
v
]

,

= −hγ2

2α

(

vxx − ϵvxτ +
ϵ2

4
vττ

)

(3.15)

+
hγ2

2α

(

vxx + vxvxx +
h2

12
vxxxx

)

.

After multiplying Equation (3.15) by 2α
hγ2 ,

0 = −vxx + ϵvxτ −
ϵ2

4
vττ + vxx + 2vxvxx +

h2

12
vxxxx, (3.16)

= ϵvxτ + vxvxx +
h2

12
vxxxx +O(ϵ2). (3.17)
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As in [9, 11, 14, 20, 22], the order O(ϵ2) terms in Equation (3.17) are truncated using the

assumption that 0 < ϵ << 1. Thus,

0 = ϵvxτ + vxvxx +
h2

12
vxxxx. (3.18)

Now transform Equation (3.18) according to







∂xv(x, τ) = u(x, t), (3.19)

t =
τ

ϵ
. (3.20)

Notice that treatment of the Taylor expansion via the previous two transformations and

truncations is analogous to the assertion that |vττ | ↓ 0. It is for this reason that Kruskal’s

method is referred to as a long wavelength model. So, taking δ = h√
12

, we have

0 = ut + uux + δ2uxxx. (3.21)

Equation (3.21) was considered in [17,22].
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3.2.2 Order Six Expansion: Kudryashov Generalized Korteweg-de Vries

Equation

Now consider the FPU-α case (κ = 1, β = 0) and a 6th order Taylor expansion of y so

that Equation (3.1) becomes

myTT = γ((yi+1 − yi)− (yi − yi−1)) + α((yi+1 − yi)
2 − (yi − yi−1)

2), (3.22)

= γ((yi+1 − yi) + (yi−1 − yi)) + α((yi+1 − yi)
2 − (yi−1 − yi)

2), (3.23)

= γ

(

6
∑

j=1

hj

j!
∂jXy +

6
∑

j=1

(−h)j

j!
∂jXy +O(h7)

)

(3.24)

+ α





(

6
∑

j=1

hj

j!
∂jXy +O(h7)

)2

−
(

6
∑

j=1

(−h)j

j!
∂jXy +O(h7)

)2


 ,

= γ

(

h2yXX +
1

12
h4yXXXX ++

1

360
h6y6X

)

(3.25)

+ α

(

h2y2X + h3yXyXX +
h4

4
y2XX +

h4

3
yXyXXX +

h5

6
yXXyXXX +

h5

12
yXyXXXX

+
h6

36
y2XXX +

h6

24
yXXyXXXX +

h6

60
yXyXXXXX

−
(

h2y2X − h3yXyXX +
h4

4
y2XX +

h4

3
yXyXXX − h5

6
yXXyXXX − h5

12
yXyXXXX

+
h6

36
y2XXX +

h6

24
yXXyXXXX +

h6

60
yXyXXXXX

))

+O(h7),

= γ

(

h2yXX +
1

12
h4yXXXX +

1

360
h6y6X

)

(3.26)

+ α

(

2h3yXyXX +
h5

3
yXXyXXX +

h5

6
yXyXXXX

)

+O(h7).

Therefore, upon truncation of higher order terms,

0 = −myTT + γh2yXX + 2h3αyXyXX + γ
h4

12
yXXXX (3.27)

+
h5

3
αyXXyXXX +

h5

6
αyXyXXXX +

h6

360
γy6X .

20



We use Equations (3.11)—(3.13), namely































y(X,T ) =
γ

2αh
v(x, τ), (3.28)

x = X − h

√

γ

m
T, (3.29)

τ =
ϵh

2

√

γ

m
T. (3.30)

to transform Equation (3.27). Equation (3.10) is identical to Equation (3.27), save for the

higher order terms. Thus, the transformation yields

0 = −hγ2

2α

(

vxx − ϵvxτ +
ϵ2

4
vττ

)

(3.31)

+
hγ2

2α

(

vxx + vxvxx +
h2

12
vxxxx

)

+
h5

3
α∂xx

[ γ

2αh
v
]

∂xxx

[ γ

2αh
v
]

+
h5

6
α∂x

[ γ

2αh
v
]

∂xxxx

[ γ

2αh
v
]

+
h6

360
γ∂6x

[ γ

2αh
v
]

,

= −hγ2

2α

(

vxx − ϵvxτ +
ϵ2

4
vττ

)

(3.32)

+
hγ2

2α

(

vxx + vxvxx +
h2

12
vxxxx +

h2

6
vxxvxxx +

h2

12
vxvxxxx +

h4

360
v6x

)

.

After multiplying Equation (3.32) by 2α
hγ2 ,

0 = ϵvxτ + vxvxx +
h2

12
vxxxx +

h2

6
vxxvxxx +

h2

12
vxvxxxx +

h4

360
v6x +O(ϵ2). (3.33)

As in Subsection 3.2.1, the order O(ϵ2) terms in Equation (3.33) are truncated using the

assumption that 0 < ϵ << 1. Thus,

0 = ϵvxτ + vxvxx +
h2

12
vxxxx +

h2

6
vxxvxxx +

h2

12
vxvxxxx +

h4

360
v6x, (3.34)

which is then transformed according to







∂xv(x, τ) = u(x, t), (3.35)

t =
τ

ϵ
. (3.36)
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So, taking δ = h√
12

, we have

0 = ut + uux + 2δ2uxuxx + δ2uxxx + δ2uuxxx +
2

5
δ4u5x. (3.37)

Equation (3.37) was studied in [9, 19] and, with β ̸= 0, in [11]. We will refer to Equation

(3.37) as the Kudryashov Generalized KdV (KG KdV) equation. Dissipative modifications

to KG KdV have also been investigated [10].

3.3 Tanh Method Solutions

The tanh method, developed by W. Malfliet and W. Hereman [13], provides for

a structured means of seeking a solution to a given one-dimensional nonlinear wave

equation. In particular, an equation of the form

ut = F (u, ux, uxx, ...) (3.38)

is transformed according to the traveling wave assumption

{

u(x, t) = v(ξ), (3.39)

ξ = k(x− ct). (3.40)

This transformation renders the nonlinear wave equation as an ordinary differential

equation of the form

−ckvξ = F (v, kvξ, k
2vξξ, ...). (3.41)

Then, upon letting Y = tanh ξ, solutions in the form of a finite power series in Y , i.e.

S(Y ) =
M
∑

j=0

ajY
j, (3.42)

are assumed to satisfy Equation (3.41) by computing the change in derivatives. Indeed,

all derivatives of tanh can be represented in terms of tanh in a closed form [1], yielding a
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straightforward method for finding solutions. In particular, notice that

d

dξ
= (1− Y 2)

d

dY
, (3.43)

d2

dξ2
= (1− Y 2)

(

−2Y
d

dY
+ (1− Y 2)

d2

dY 2

)

, (3.44)

and so on. For problems similar to the KG KdV equation, an extension of the tanh

method has been used [21] where the finite power series solution is of the form

S(Y ) =
M
∑

j=−M

ajY
j. (3.45)

The result of the change of derivatives, as in Equations (3.43) (3.44), are substituted in

Equation (3.41). This substitution yields an equation of the form

0 = G(S, SY , SY Y , ...). (3.46)

The highest order linear term, say l, and the highest order nonlinear term, say n, are

identified and M is fixed by finding the M that satisfies M + l = nM . Finally, G is

computed, resulting in an equation of the form

P (Y ) = 0, (3.47)

where P is a polynomial in Y with variable coefficients aj, c, and k. Coefficients of powers

of Y in Equation (3.47) are then equated to the RHS, in which a system of nonlinear

equations is produced. Solving the system yields

v =
M
∑

j=−M

aj tanh
j(k(x− ct)). (3.48)

Note that, in the interest of finding one solution of a special type for our problems, we

make the assumption that

S(Y ) = a0 + a2Y
2. (3.49)
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3.3.1 KdV Equation

Transform

0 = ut + uux + δ2u3x (3.50)

according to

{

u(x, t) = v(ξ) (3.51)

ξ = x− ct (3.52)

where c ∈ R. Then,

0 = −cvξ + vvξ + δ2v3ξ. (3.53)

Now, we let u′ = v and we suppress the apostrophe notation. Then Equation (3.53) is

integrated in ξ to obtain

C = −cu+
1

2
u2 + δ2uξξ, (3.54)

where C ∈ R. Let k ∈ R and suppose

u(kξ) = a1 + a2 tanh
2(kξ). (3.55)

Therefore,

du

dξ
= 2ka2Y − 2ka2Y

3, (3.56)

d2u

dξ2
= 2k2a2 − 8k2a2Y

2 + 6k2a2Y
4, (3.57)

where Y = tanh(kξ). Substitute Equations (3.55)—(3.57) with Y = tanh(kξ) into

Equation (3.54) so that

C = −c(a1 + a2Y
2) +

1

2
(a1 + a2Y

2)2 + δ2(2k2a2 − 8k2a2Y
2 + 6k2a2Y

4), (3.58)

= −ca1 +
1

2
a21 + 2k2δ2a2 + Y 2(−ca2 − 8k2δ2a2 + a1a2) + Y 4(6k2δ2a2 +

1

2
a22). (3.59)
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This implies the system of equations



























C = −ca1 +
1

2
a21 + 2k2δ2a2, (3.60)

0 = −ca2 − 8k2δ2a2 + a1a2, (3.61)

0 = 6k2δ2a2 +
1

2
a22. (3.62)

We are interested in cases where a2 is nonzero, so Equations (3.60)—(3.62) become



























C = −ca1 +
1

2
a21 + 2k2δ2a2, (3.63)

0 = −c− 8k2δ2 + a1, (3.64)

0 = 6k2δ2 +
1

2
a2. (3.65)

Notice that Equation (3.65) implies

a2 = −12k2δ2. (3.66)

Equation (3.66) is substituted into Equation (3.64) so that

a1 = c+ 8k2δ2. (3.67)

Now Equations (3.66) and (3.67) are substituted into Equation (3.63) to obtain

c2 = 16k4δ4 − 2C. (3.68)

Since C is arbitrary, c is arbitrary. For our purposes, we fix C = 0 and, therefore,

c = ±4k2δ2. The solutions of Equations (3.60)—(3.62) are substituted into Equation

(3.55), in which two solutions arise:

u1(x, t) = 12k2δ2 − 12k2δ2 tanh2
(

k(x− 4k2δ2t)
)

, (3.69)

= 12k2δ2 sech2(k(x− 4k2δ2t)), (3.70)

u2(x, t) = 4k2δ2 − 12k2δ2 tanh2
(

k(x+ 4k2δ2t)
)

. (3.71)
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If we let k′ = k
2

and C0 = −(k′)2δ2, then, after suppressing the apostrophe notation,

u2(x, t) = C0 + 2δ2k2 − 3δ2k2 tanh2

(

kz

2

)

, z = x− C0t, (3.72)

as in [19].

3.3.2 KG KdV Equation

We repeat the above Tanh Method for Equation (3.37),

0 = ut + uux + 2δ2uxuxx + δ2uxxx + δ2uuxxx +
2

5
δ4u5x. (3.73)

So the transformations,

{

u(x, t) = v(ξ), (3.74)

ξ = x− ct, (3.75)

imply, after suppressing the apostrophe notation in u′ and after integrating the equation in

ξ,

C = −cu+ δ2uxx +
2

5
δ4u4x +

1

2
u2 +

1

2
δ2u2

x + δ2uuxx, (3.76)

where C ∈ R. Let k ∈ R and suppose

u(kξ) = a1 + a2 tanh
2(kξ). (3.77)

Recall that Equation (3.77) implies

du

dξ
= 2ka2Y − 2ka2Y

3, (3.78)

d2u

dξ2
= 2k2a2 − 8k2a2Y

2 + 6k2a2Y
4, (3.79)

d3u

dξ3
= −16k3a2Y + 40k3a2Y

3 − 24k3a2Y
5, (3.80)

d4u

dξ4
= −16k4a2 + 136k4a2Y

2 − 240k4a2Y
4 + 120k4a2Y

6, (3.81)
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where Y = tanh(kξ). Now substitute Equations (3.77)—(3.81) with Y = tanh(kξ) into

Equation (3.76) so that

C = c(a1 + a2Y
2) +

1

2
(a1 + a2Y

2)2 +
δ2

2
(2ka2Y − 2ka2Y

3)2 (3.82)

+ δ2(2k2a2 − 8k2Y 2a2 + 6k2Y 4a2) + δ2(a1 + Y 2a2)(2k
2a2 − 8k2Y 2a2 + 6k2Y 4a2)

+
2

5
δ4(−16k4a2 + 136k4a2Y

2 − 240k4a2Y
4 + 120k4a2Y

6),

= −ca1 +
1

2
a21 + 2k2δ2a2 −

32

5
k4δ4a2 + 2k2δ2a1a2 (3.83)

+ Y 2(−ca2 − 8k2δ2a2 +
272

5
k4δ4a2 + a1a2 − 8k2δ2a1a2 + 4k2δ2a22),

+ Y 4(6k2δ2a2 − 96k4δ4a2 + 6k2δ2a1a2 +
1

2
a22 − 12k2δ2a22)

+ Y 6(48k4δ4a2 + 8k2δ2a22).

This implies the system of equations







































C = −ca1 +
1

2
a21 + 2k2δ2a2 −

32

5
k4δ4a2 + 2k2δ2a1a2, (3.84)

0 = −ca2 − 8k2δ2a2 +
272

5
k4δ4a2 + a1a2 − 8k2δ2a1a2 + 4k2δ2a22, (3.85)

0 = 6k2δ2a2 − 96k4δ4a2 + 6k2δ2a1a2 +
1

2
a22 − 12k2δ2a22, (3.86)

0 = 48k4δ4a2 + 8k2δ2a22. (3.87)

We are interested in cases where a2 is nonzero, so Equations (3.84)—(3.87) become







































C = −ca1 +
1

2
a21 + 2k2δ2a2 −

32

5
k4δ4a2 + 2k2δ2a1a2, (3.88)

0 = −c− 8k2δ2 +
272

5
k4δ4 + a1 − 8k2δ2a1 + 4k2δ2a2, (3.89)

0 = 6k2δ2 − 96k4δ4 + 6k2δ2a1 +
1

2
a2 − 12k2δ2a2, (3.90)

0 = 48k4δ4 + 8k2δ2a2. (3.91)

Notice that Equation (3.91) implies

a2 = −6k2δ2. (3.92)
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Substitution of Equation (3.92) into Equation (3.90) gives

a1 = 4k2δ2 − 1

2
. (3.93)

Substitution of Equations (3.92) and (3.93) into Equation (3.89) gives

c =
−16k4δ4 − 5

10
. (3.94)

Note that c is no longer arbitrary, as was the case for the tanh solution of the KdV

equation. Finally, substitution of Equations (3.92)—(3.94) into Equation (3.88) implies

C =
2

5
k4δ4(3− 8k2δ2)− 1

8
. (3.95)

Since C is arbitrary, Equation (3.95) is satisfied for all k, δ. The solution of Equations

(3.88)—(3.91), provided by Equations (3.92)—(3.94), are then substituted into Equation

(3.77), in which

u(x, t) = 4k2δ2 − 1

2
− 6k2δ2 tanh2

(

k

(

x+

(

8

5
k4δ4 +

1

2

)

t

))

. (3.96)

If we let k′ = k
2
, then, after suppressing the apostrophe notation,

u(x, t) = k2δ2 − 1

2
− 3k2δ2

2
tanh2

(

kz

2

)

, z = x+

(

δ4k4

10
+

1

2

)

t, (3.97)

as in [19].

3.4 Sech Solutions

Using Equation (3.21), if we let ν = x − ct and we impose the condition that

u(x, t) = f(ν), our solution will be a traveling wave solution with velocity c. So, noting

that

ut =
∂f

∂t
=

∂f

∂ν

∂ν

∂t
= −cf ′ (3.98)

ux =
∂f

∂x
=

∂f

∂ν

∂ν

∂x
= f ′ (3.99)

uxxx =
∂f

∂xxx
=

(

∂f

∂ν

∂ν

∂x

)3

= f ′′′ (3.100)
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We then have, by substitution, a third order nonlinear ordinary differential equation,

which we shall integrate:

−cf ′ + ff ′ + δ2f ′′′ = 0 (3.101)
∫

(−cf ′ + ff ′ + δ2f ′′′)δν = c1 (3.102)

−cf +
1

2
f 2 + δ2f ′′ = c1 (3.103)

−cff ′ +
1

2
f 2f ′ + δ2f ′′f ′ − c1f

′ = 0 (3.104)
∫

(−cff ′ +
1

2
f 2f ′ + δ2f ′′f ′ − c1f

′)δν = c0 (3.105)

− c

2
f 2 +

1

6
f 3 +

δ2

2
(f ′)2 − c1f = c0. (3.106)

Considering zero integration constants, this relation is reduced to

δ2(f ′)2 = cf 2 − 1

3
f 3 (3.107)

(δf ′)2 = f 2

(

c− 1

3
f

)

(3.108)

which implies

δ
df

dν
= f

(

c− 1

3
f

) 1
2

(3.109)

δ

∫

df

f(c− 1
3
f)

1
2

=

∫

dν (3.110)

− 2δ√
c
tanh−1

(
√

1− f

3c

)

= ν +K (3.111)

f = 3c sech2

(

−
√
c

2δ
(ν +K)

)

. (3.112)

And, therefore,

u(x, t) = 3c sech2

(

−
√
c

2δ
(x− ct+K)

)

(3.113)

is a solution to Equation (3.21).
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CHAPTER 4: ANALYSIS OF GENERALIZED MODIFIED KDV EQUATIONS

4.1 Zabusky and Kruskal’s Scheme for the KdV Equation

Recall the KdV equation, Equation (3.21),

0 = ut + uux + δ2uxxx. (4.1)

In Zabusky and Kruskal’s seminal paper [22], the KdV equation was investigated

numerically with the finite difference scheme:



























un+1
j = un−1

j − k

3h
(un

j+1 + un
j + un

j−1)(u
n
j+1 − un

j−1) j = 1, ..., N, n ∈ N (4.2)

− δ2k

h3
(un

j+2 − 2un
j+1 + 2un

j−1 − un
j−2),

un
j = un

j+2N , j = 1, ..., N, n ∈ N. (4.3)

In executing the scheme, δ = .022, initial data was of the form u(jh, 0) = cos(πjh), and

the scheme was initialized with lower order schemes for the first two time steps.

4.1.1 Results

In Figure 4.1, the solution of the scheme in Equations (4.2)—(4.3) is plotted for

three values of t. Notice that the initial wave form moving to the left is joined by waves

traveling in the opposite direction as the initial wave. At a later time, waves traveling in

the same direction as the initial wave also appear. By t = 1.14, eight such rightward and

leftward traveling waves, deemed solitions, have appeared. They are labeled in order of

appearance. In Figure 4.2, the surface u(x, t) is provided. Notice that solution becomes

unbounded by t ≈ 4.53, as in [22]. In Figure 4.3, a contour plot of the surface u(x, t) is

provided. Level sets are colored according to the gradient of the surface, which gives an

alternative perspective on the propagation of the traveling waves. These level sets also

illustrate the complicated nonlinear interactions that ensue when the traveling waves

collide, as seen in the blue and green-colored contours at t = 3.5 and x = .75 or x = 1.4.

In the next section, we develop an alternative scheme using pseudospectral methods.
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Figure 4.1. Projection of solution of the finite difference scheme, (4.2), with δ = .022,
N = 26, h = N−1, k = N−2, and u(jh, 0) = cos(πjh). Solitary waves are
identified as the eight wave forms all having appeared by t = 1.14.
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Figure 4.2. Solution of the finite difference scheme, (4.2), with δ = .022, N = 26, h = N−1,
k = N−2, and u(jh, 0) = cos(πjh). Points, (x, t, u(x, t)), are colored
corresponding to a logarithmic scaling of ∇u.
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Figure 4.3. Projection of solution of the finite difference scheme, (4.2), with δ = .022,
N = 26, h = N−1, and k = N−2, and u(jh, 0) = cos(πjh). Neighborhoods
where 0 < ∇u << 1 are colored corresponding to ∇u. Solitons are identified as
the nine the wave forms appearing near t = 1, each propagating with an
approximately constant velocity.
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4.2 Numerical Experiments

Recall the Kudryashov-Generalized KdV equation, Equation (4.4), in which

0 = ut + δ2uxxx +
2

5
δ4uxxxxx + uux − 2δ2uxuxx + δ2uuxxx. (4.4)

In the following numerical studies, to better understand the contributions of the higher

order nonlinear terms, we consider variants of the Kudryashov-Generalized KdV equation

of the form

0 = ut + uux + δ2uxxx + s12δ
2uxuxx + s2δ

2uuxxx + s3
2

5
δ4uxxxxx. (4.5)

In the case where s1 = s2 = s3 = 0, Equation (4.5) reduces to the KdV equation. In the

case where s1 = s2 = s3 = 1, Equation (4.5) reduces to the Kudryashov-Generalized KdV

(KG KdV) equation. There are two other cases of interest. Namely, KG KdV Variant 1

(KG KdV-1), where s1 = s2 = 0 and s3 = 1 and KG KdV Variant 2 (KG KdV-2), where

s1 = 1 and s2 = s3 = 0.

4.2.1 Indicators of Equipartition

Assume u ∈ (L2(R) ∩ C∞(R))× R and suppose u(x, t0) has compact support for every

t0. As in [19], consider the Fourier transform of u in the spatial dimension denoted by û.

Then the Initial Value Problem consisting of Equation (4.4) and an initial condition is of

the form

{

0 = G(ût, û, ω), G ∈ C (4.6)

û(ω, 0) = f̂(x), ω ∈ C. (4.7)

The linear part of the resulting problem in Equation (4.6) is stiff. The numerical scheme

implemented in [19] involved filtering of modes using the two-thirds rule. Here, we

implement a pseudospectral method that handles the stiffness of the equation and uses

a 4th order Runge-Kutta method in time, which we will denote PS-RK4 [16]. This

method does not filter the modes, which makes it possible to address the question of

equipartition. PS-RK4 yields a numerical solution, U ∈ MN×M(R), where Un
j is the
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element in the jth row and nth column of U and where Un is the nth column vector of

U . Let V n ∈ MN×1(C) be the discrete Fourier transform of Un, and let V n
j be the jth

element of V n. Since solutions, Un
j , of PS-RK4 are periodic, i.e. Un

j = Un
j+N , Un

j has N
2

independent Fourier modes at every n. To address the energy in the modes, we introduce

the function

P (j, n) = |V n
j |2. (4.8)

P (j, n) provides the power of jth Fourier mode at the nth time-step for the data, U . For

fixed n0, P (j, n0) is referred to as the power spectrum. The relative normalized power of a

nontrivial power spectrum is given by the function

P(j, n) =
P (j, n)

∑

N
2
k=1 P (k, n)

. (4.9)

The spectral entropy at the nth time step of the system is defined as

S(n) =

N
2
∑

j=1

P(j, n) ln

(

1

P(j, n)

)

. (4.10)

Given P at a certain time step, S assigns a weight, ln
(

1
P

)

∈ [0,∞], to P. If only a single

Fourier mode is excited, i.e. ∃j0 : P(j0, n0) ̸= 0,P(j, n0) = 0∀j ̸= j0, then S(n0) = 0.

On the other hand, the maximum of S(n0), subject to the constraint
∑

N
2
j=1 P(j, n0) = 1,

can be obtained using Lagrange multipliers and is achieved when P(j, n0) = P(k, n0)∀j, k.

So, maxS =
∑

N
2
j=0

2
N
ln(N

2
) = ln N

2
. Indeed, spectral entropy is maximal when there is

equipartition of energy among the modes. The functions P,P, and S were introduced

in [12], and they are designed to provide an indicator of the extent of equipartition.

Since t = nh, we will express power and spectral entropy as functions of t by mapping

n 7→ nh = t.
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4.2.2 Remarks on Error

For the KG KdV equation, the only exact solutions available are the tanh solutions

derived in the Section 3.3. We are interested in propagating initial data in the form of a

cosine wave, as was done in [22]. With this limitation in mind, we estimate the error in

PS-RK4 corresponding to the analytic solutions found in Section 3.3. We choose δ = 1 for

these experiments and we vary N . We define maximum relative error as

Emax(t) = max
x

∣

∣

∣

∣

uexact(x, t)− unumerical(x, t)

uexact(x, t)

∣

∣

∣

∣

. (4.11)

Figures 4.4 and 4.5 show the error results for the KdV equation and KG KdV equation,

respectively. Notice that Emax(t) decreases as N increases in both cases.
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Figure 4.4. KdV equation, δ = 1: Comparison of the exact traveling wave solution, (3.71),
and the PS-RK4 solution obtained with h = .1 ·N−2 and N = 128. The lower
right graph plots Emax(t).
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Figure 4.5. KG KdV equation, δ = 1: Comparison of the exact traveling wave solution,
(3.71), and the PS-RK4 solution obtained with h = .1 ·N−2 and N = 128. The
lower right graph plots Emax(t).
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For the experiments with the KG KdV equation, we use small δ. In Figures 4.6 and

4.7, we show the error results for the KdV equation and KG KdV equation with δ = 0.022.

Notice that maximum relative error is no worse than O(10−4) at t = 10. However, we

emphasize that the KdV and KG KdV equations are near Burgers’ equation in the regime

where δ is small. Solutions to Burgers’ equation have large bounded variation in the case

of cosine initial data, so the errors observed in Figures 4.4—4.7 are likely liberal estimates.
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Figure 4.6. KdV equation, δ = 0.022: Comparison of the exact traveling wave solution,
(3.71), and the PS-RK4 solution obtained with h = .1 ·N−2 and N = 128. The
lower right graph plots Emax(t).
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Figure 4.7. KG KdV equation, δ = 0.022: Comparison of the exact traveling wave
solution, (3.71), and the PS-RK4 solution obtained with h = .1 ·N−2 and
N = 128. The lower right graph plots Emax(t).
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4.2.3 Results on Equipartition

For the remaining figures, the data used to initialize PS-RK4 is:



































N = 128, (4.12)

L = 2, (4.13)

l = 0, (4.14)

U0
j = cos(πj∆x), j = 1, ..., N. (4.15)

The intent of these experiments is to study the KdV equation, the KG KdV equation, and

the individual contributions of the higher order terms. To illustrate these comparisons,

we display four graphs per figure. In particular, the upper left graph of each figure

corresponds to the KdV equation; the upper right graph, KG KdV-1; the lower left graph,

KG KdV-2; and, the lower right graph, KG KdV equation. Moreover, the figure types

are repeated four times, each time involving a different δ. For example, in Figure 4.8,

δ = 0.018; in Figure 4.9, δ = 0.021; in Figure 4.10, δ = 0.022; and, in Figure 4.11,

δ = 0.023.

In Figures 4.8—4.11, we provide a projection of solutions of PS-RK4. See Appendix

A for alternative projections of the surfaces in Figures 4.8—4.11. Points, u(x, t) ∈ R,

are colored with a linear mapping of an RGB three-tuple, as in Figure 4.2. Also, note

that the yellow lines in each figure are, roughly, the crests of the rightward-traveling

waves – their amplitude dominates in the KdV case. The green lines in each figure are,

roughly, the crests of the leftward-traveling waves. Complicated nonlinear interactions

ensue when these traveling waves collide, as is particularly evident for KG KdV-1 in

Figure 4.8, in which there are many high frequency oscillations. Also note that the path of

the low frequency modes in this graph wander more than in the other graphs. For KdV,

KG KdV-2 and KG KdV in Figure 4.8, the solutions share the same general features,

varying primarily in the number of modes present. In fact, as δ is increased in Figures

4.9—4.11, notice that these general features remain intact for KdV, KG KdV-2 and KG

KdV. The paths of the rightward traveling waves for KG KdV-1, on the other hand, vary
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considerably. Finally, after reviewing Figures 4.8—4.11, it is suggested that the reader

revisit KG KdV-1 in Figure 4.8 and make note of the sudden low frequency mode collapse

that occurs in space near x = .75 and 3 < t < 4. This is soon followed by significant

deterioration of all but one low frequency mode, which seemingly jumps in space near

t = 8.
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Figure 4.8. Projection of solutions of PS-RK4, with N = 27, h = .1 ·N−2, δ = 0.018,
u(x, 0) = cos(πx).
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Figure 4.9. Projection of solutions of PS-RK4, with N = 27, h = .1 ·N−2, δ = 0.021,
u(x, 0) = cos(πx).
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Figure 4.10. Projection of solutions of PS-RK4, with N = 27, h = .1 ·N−2, δ = 0.022,
u(x, 0) = cos(πx).
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Figure 4.11. Projection of solutions of PS-RK4, with N = 27, h = .1 ·N−2, δ = 0.023,
u(x, 0) = cos(πx).
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In Figures 4.12—4.15, a plot of the power spectrum at t = tfinal = 10 is provided for

δ = 0.018, 0.021, 0.022, and 0.023, respectively. The configuration of the graphs relative to

their equations is the same as in Figures 4.8—4.11. It is evident that equipartition is not

achieved to O(10−4) at tfinal. Notice that this quantity is less than error in the scheme per

the experiments in Section 4.2.2.

Unfortunately, the distribution of energy in the power spectrum can change rapidly

at times, rendering illustrations of the spectrum at tfinal = 10 merely instructive.

So, in Figures 4.16—4.19, a surface plot of the power spectrum is provided for δ =

0.018, 0.021, 0.022, and 0.023, respectively. Points, P (j, t) ∈ R, are colored with a logarith-

mic mapping. The configuration of the graphs relative to their equations is the same as

in Figures 4.8—4.11. For all graphs in Figures 4.16—4.19, observe that energy is quickly

pumped out of the initial mode (mode two) and distributed to all modes by about t = 1
10

.

Notice, also, that the sharing of energy among the modes with the highest energy can

be observed in KdV and KG KdV-2 for all δ. In fact, for KdV in Figure 4.19, notice that

the high-energy modes propagate along several arcs in mode-time, starting at t = 1
5

and

ending at t = 9. As the energy exits this arc, it flows primarily into mode two – where the

energy was initially placed. This is seemingly analogous to the observation of recurrence

(say, at t = 5) and super-recurrence (say, at t = 9) in the FPU-α problem, as illustrated in

Figure 2.7. Also notice that, for KG KdV-1 in Figures 4.16—4.19, energy largely plateaus

for all t around mode 32. In Figure 4.16, the plateau is nearest mode 32 and the plateau

recedes as δ is increased in the following three figures.

Also note that energy for KG KdV in Figures 4.16—4.19 is clearly distributed more so

among the higher modes, compared to KG KdV-1. This suggests that KG KdV is closer to

equipartition than KG KdV-1. As we shall see in the final set of figures and tables, this is

not the case, by way of the spectral entropy function.
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Figure 4.12. Plot of the power, P (j, 10), of the solutions of PS-RK4, with N = 27,
h = .1 ·N−2, u(x, 0) = cos(πx), and δ = 0.018.
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Figure 4.13. Plot of the power, P (j, 10), of the solutions of PS-RK4, with N = 27,
h = .1 ·N−2, u(x, 0) = cos(πx), and δ = 0.021.
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Figure 4.14. Plot of the power, P (j, 10), of the solutions of PS-RK4, with N = 27,
h = .1 ·N−2, u(x, 0) = cos(πx), and δ = 0.022.
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Figure 4.15. Plot of the power, P (j, 10), of the solutions of PS-RK4, with N = 27,
h = .1 ·N−2, u(x, 0) = cos(πx), and δ = 0.023.
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Figure 4.16. Projection of the power, P (j, t), of the solutions of PS-RK4, with N = 27,
h = .1 ·N−2, u(x, 0) = cos(πx), and δ = 0.018.
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Figure 4.17. Projection of the power, P (j, t), of the solutions of PS-RK4, with N = 27,
h = .1 ·N−2, u(x, 0) = cos(πx), and δ = 0.021.
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Figure 4.18. Projection of the power, P (j, t), of the solutions of PS-RK4, with N = 27,
h = .1 ·N−2, u(x, 0) = cos(πx), and δ = 0.022.

54



Figure 4.19. Projection of the power, P (j, t), of the solutions of PS-RK4, with N = 27,
h = .1 ·N−2, u(x, 0) = cos(πx), and δ = 0.023.
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In Figure 4.20, we plot the spectral entropy of the systems. The configuration of

the graphs relative to their equations is the same as in Figures 4.8—4.11. Note that the

maximum of the ordinate axis is set to be ln
(

N
2

)

≈ 4.16. Recall that equipartition is

achieved when S(n) reaches this value.

Immediately, we find that none of the dynamical systems considered reach equipartition

on the time scale t ≤ 10. However, there is an approach toward equipartition in some

cases. In particular, notice that KdV and KG KdV-2 in Figure 4.20 tend to, on a certain

time-average, trend downwards after around t = 1 for all δ. This downward trend is

less pronounced as δ decreases. On the other hand, KG KdV-2 and KG KdV tend to,

on a certain time-average, trend upwards. This upward trend is more pronounced as δ

decreases.

Notice that, for KdV and KG KdV-2 in Figure 4.20, S(n) decreases to between a

quarter and a third of its maximum value several times. This is indicative of the pumping

of energy back into the initial modes, illustrated by the striations in KdV and KG KdV-2

in Figures 4.16—4.19. This phenomenon is absent for the KG KdV-1 and KG KdV

equations. Instead, for KG KdV-1, sudden increases in spectral entropy are observed, and

they are not followed by decreases of similar magnitude, e.g. at t = 4.5 and δ = 0.023.

This also occurs for KG KdV at t = 3 and δ = 0.021.
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Figure 4.20. Plot of the spectral entropy, S(t), of the solutions of PS-RK4, with N = 27,
h = .1 ·N−2, u(x, 0) = cos(πx).
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In place of a more rigorous diagnostic for time-average spectral entropy, we have

provided a means of comparing the total entropy as a proportion of maximum entropy in

the IVPs by numerically integrating S(n) on t : 0 ≤ t ≤ 10. In particular, define the total

normalized entropy as

S̃normal =
1

tmax ln
(

N
2

)

∫ tmax

0

S(t)dt. (4.16)

Notice that S̃normal ≈ 1 implies equipartition has been achieved on a given time scale. The

results of this computation are provided in Table 4.1. We find that the total normalized

entropy in KG KdV-1 is largest overall, followed by KG KdV, KdV, and then KG KdV-2.

On the whole, this is consistent with the data in Figures 4.8—4.20.

Table 4.1. The quantity S̃normal for the solutions of PS-RK4, with N = 27, h = .1 ·N−2,
u(x, 0) = cos(πx).

δ KdV KG KdV Var. 1 KG KdV Var. 2 KG KdV

0.018 0.492 0.661 0.438 0.619
0.021 0.460 0.646 0.416 0.566
0.022 0.441 0.633 0.403 0.577
0.023 0.434 0.618 0.387 0.572

With these data in mind, we consider a final experiment. PS-RK4 is initialized with

N = 2048, L = 2, l = 0, U0
j = cos(πj∆x) and δ = 0.001. We run the experiment only

for the KG KdV-1 equation. Notice that δ is much smaller than previously considered.

The results are presented in Figure 4.21. The scheme became unbounded shortly after

t = 6.598. However, the solution differs from previous cases in subtle, yet significant,

ways. In particular, observe the appearance of a group of traveling waves near x = 1.75

and t = 1. These waves appear to have leftward and rightward-traveling counterparts,

the likes of which did not exist in any previous case. Moreover, virtually none of the

observed traveling waves remain intact and, near tfinal, the waves wander significantly.

In the power spectrum, notice that between one-half and two-thirds of the modes are

excited by tfinal. The proportion of excited modes for KG KdV-1 with larger δ is notably
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smaller, in contrast. Finally, the spectral entropy indicates that, while equipartition is not

achieved, there is an obvious second phase of rapid increase in spectral entropy starting

around t = 2. Interestingly, this second phase in growth appears to, thereafter, grow

logarithmically.
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Figure 4.21. KG KdV-1 equation: Plots of the solution, power spectrum, and spectral
entropy with N = 211, h = N−2, δ = 0.001, u(x, 0) = cos(πx), using PS-RK4.
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CHAPTER 5: CONCLUSION

The results obtained in Chapter 2 verify the previous findings. The numerical

experiments, by and large, indicate that small perturbations to the linear system

corresponding to the FPU problem do not necessarily result in equipartition. Instead,

recurrence phenomenon is observed even on very long time scales. In certain special cases,

when the initial data and the restoring force are symmetric, recurrence is essentially

perfect.

The results obtained in Chapter 3 were undertaken to provide a straightforward

derivation of the KdV equation, the KG KdV equations, and some of their traveling wave

solutions. It also made clear the manner in which an expansion of arbitrary order for

the FPU-α problem could be transformed into a KG KdV equation of arbitrary order,

as provided in Appendix B. Unsurprisingly, higher order approximations of the FPU

lattice become increasingly stiff. While this presents considerable difficulty for numerical

experimentation, analytical investigation of its qualitative features may be of interest.

In Chapter 4, equipartition is not observed on the time scale considered. However,

the numerical experiments suggest that spectral entropy, and thus approach toward

equipartition of energy, increases as δ → 0 in the case of the KG KdV equation and KG

KdV-1. For KG KdV-1, this is particularly substantiated by the final experiment, where

δ = 0.001. Moreover, KG KdV-1 was found to have higher total normalized spectral

entropy than the KG KdV equation.
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APPENDIX A: ALTERNATIVE PROJECTIONS OF DISPLACEMENT
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The following figures provide alternative projections of the surfaces in Figures

4.8—4.11. The choice of δ proceeds in the same sequence as in Figures 4.8—4.11. The

configuration of the graphs relative to their equations is the same as in Figures 4.8—4.11.

Figure A.1. Projection of solutions of PS-RK4, with N = 27, h = .1 ·N−2, δ = 0.018,
u(x, 0) = cos(πx). Points, u(x, t) ∈ R, are colored with a linear mapping.
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Figure A.2. Projection of solutions of PS-RK4, with N = 27, h = .1 ·N−2, δ = 0.021,
u(x, 0) = cos(πx). Points, u(x, t) ∈ R, are colored with a linear mapping.
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Figure A.3. Projection of solutions of PS-RK4, with N = 27, h = .1 ·N−2, δ = 0.022,
u(x, 0) = cos(πx). Points, u(x, t) ∈ R, are colored with a linear mapping.
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Figure A.4. Projection of solutions of PS-RK4, with N = 27, h = .1 ·N−2, δ = 0.023,
u(x, 0) = cos(πx). Points, u(x, t) ∈ R, are colored with a linear mapping.
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APPENDIX B: MTH ORDER KUDRYASHOV GENERALIZED KDV EQUATION
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Recall the FPU-α case (κ = 1, β = 0) so that Equation (3.1) becomes

m∂TTy = γ((yi+1 − yi) + (yi−1 − yi)) + α((yi+1 − yi)
2 − (yi−1 − yi)

2), (B.1)

= γ((yi+1 − yi) + (yi−1 − yi)) + α(y2i+1 − 2yiyi+1 − y2i−1 + 2yiyi−1), (B.2)

= γ((yi+1 − yi) + (yi−1 − yi)) + α((yi+1 − yi−1)(yi+1 + yi−1)− 2yi(yi+1 − yi−1)),

(B.3)

= γ((yi+1 − yi) + (yi−1 − yi)) + α(yi+1 − yi−1)(yi+1 − yi−1 − 2yi), (B.4)

= γ((yi+1 − yi) + (yi−1 − yi)) + α((yi+1 − yi) + (yi−1 − yi))(yi+1 − yi−1). (B.5)

Also recall from Section 3.2 the Mth order Taylor expansion of yi±1 using the continuum

interpolant, wherein

yi±1 − yi =
M
∑

j=1

(±h)j

j!

∂j

∂Xj
y +O(hM+1). (B.6)

Therefore,

((yi+1 − yi) + (yi−1 − yi)) =
M
∑

j=1

hj

j!
∂jXy +

(−h)j

j!
∂jXy +O(hM+1), (B.7)

=
M
∑

j=1

hj

j!
∂jXy(1 + (−1)j) +O(hM+1), (B.8)

= 2
M
∑

j=2
∧j even

hj

j!
∂jXy +O(hM+1), (B.9)
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and

(yi+1 − yi−1) =
M
∑

j=1

hj

j!
∂jXy −

(−h)j

j!
∂jXy +O(hM+1), (B.10)

=
M
∑

j=1

hj

j!
∂jXy(1− (−1)j) +O(hM+1), (B.11)

= 2
M
∑

j=1
∧j odd

hj

j!
∂jXy +O(hM+1). (B.12)

(B.13)

Consequently, the product

((yi+1 − yi) + (yi−1 − yi))(yi+1 − yi−1) = 4







M
∑

i=2
∧i even

hi

i!
∂jXy +O(hM+1)






(B.14)

·







M
∑

l=1
∧l odd

hl

l!
∂lXy +O(hM+1)






,

= 4
M
∑

i=2
∧i even

M
∑

l=1
∧l odd

hi+l

i!l!
∂jXy∂lXy +O(hM2+1), (B.15)

= 4
M
∑

i=2
∧i even

M
∑

l=1
∧l odd

∧i+l≤M

hi+l

i!l!
∂jXy∂lXy +O(hM+1). (B.16)

Upon substitution of Equations (B.9) and (B.16) into Equation (B.5), we have

m∂TTy = 2γ
M
∑

j=2
∧j even

hj

j!
∂jXy + 4α

M
∑

i=2
∧i even

M
∑

l=1
∧l odd

∧i+l≤M

hi+l

i!l!
∂jXy∂lXy +O(hM+1). (B.17)
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As in the derivation of the KdV equation in Subsection 3.2.1, we transform the truncation

of Equation (B.17) according to































y(X,T ) =
γ

2αh
v(x, τ), (B.18)

x = X − h

√

γ

m
T, (B.19)

τ =
ϵh

2

√

γ

m
T. (B.20)

Again, Equations (B.18)—(B.20) have frequently been used to transform interpolations

of the FPU lattice into KdV-type equations [9, 11, 14, 17, 20, 22]. To proceed, recall Faa di

Bruno’s formula,

∂n

∂µn
f(x, τ) =

n
∑

j=0

n!

j!(n− j)!

(

∂x

∂µ

)n−j (
∂τ

∂µ

)j
∂nf

∂xn−jτ j
. (B.21)

The transformation in Equations (B.18)—(B.20) implies

∂x

∂X
= 1, (B.22)

∂x

∂T
= −h

√

γ

m
, (B.23)

∂τ

∂X
= 0, and (B.24)

∂τ

∂T
=

ϵh

2

√

γ

m
. (B.25)

So,

∂j

∂Xj

[ γ

2αh
v
]

=
γ

2αh
∂jxv, (B.26)

∂j

∂T j

[ γ

2αh
v
]

= m

(

(

−h

√

γ

m

)2

∂xx

[ γ

2αh
v
]

+ 2

(

−h

√

γ

m

)(

ϵh

2

√

γ

m

)

∂xτ

[ γ

2αh
v
]

(B.27)

+

(

ϵh

2

√

γ

m

)2

∂ττ

[ γ

2αh
v
]

)

,

=
hγ2

2α

(

∂xxv − ϵ∂xτv +
ϵ2

4
∂ττv

)

. (B.28)
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Using Equations (B.26) and (B.28), the transformation of the truncation of Equation

(B.17) is now readily expressed as

0 = −hγ2

2α

(

∂xxv − ϵ∂xτv +
ϵ2

4
∂ττv

)

(B.29)

+ 2γ
M
∑

j=2
∧j even

hj

j!

γ

2αh
∂jxv

+ 4α
M
∑

i=2
∧i even

M
∑

l=1
∧l odd

∧i+l≤M

hi+l

i!l!

( γ

2αh

)2

∂ixv∂lxv,

= −hγ2

2α

(

∂xxv − ϵ∂xτv +
ϵ2

4
∂ττv

)

(B.30)

+
hγ2

α

M
∑

j=2
∧j even

hj−2

j!
∂jxv

+
hγ2

α

M
∑

i=2
∧i even

M
∑

l=1
∧l odd

∧i+l≤M

hi+l−3

i!l!
∂ixv∂lxv.

After multiplying Equation (B.31) by 2α
hγ2 ,

0 = −
(

∂xxv − ϵ∂xτv +
ϵ2

4
∂ττv

)

(B.31)

+ 2
M
∑

j=2
∧j even

hj−2

j!
∂jxv

+ 2
M
∑

i=2
∧i even

M
∑

l=1
∧l odd

∧i+l≤M

hi+l−3

i!l!
∂ixv∂lxv,

= ϵ∂xτv −
ϵ2

4
∂ττv (B.32)

+ 2
M
∑

j=4
∧j even

hj−2

j!
∂jxv

+ 2
M
∑

i=2
∧i even

M
∑

l=1
∧l odd

∧i+l≤M

hi+l−3

i!l!
∂ixv∂lxv.
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Thus,

0 = ϵ∂xτv + 2
M
∑

j=4
∧j even

hj−2

j!
∂jxv + 2

M
∑

i=2
∧i even

M
∑

l=1
∧l odd

∧i+l≤M

hi+l−3

i!l!
∂ixv∂lxv +O(ϵ2). (B.33)

Using the assumption that 0 < ϵ << 1, Equation (B.33) is truncated, as in [9,11,14,20,22].

This yields,

0 = ϵ∂xτv + 2
M
∑

j=4
∧j even

hj−2

j!
∂jxv + 2

M
∑

i=2
∧i even

M
∑

l=1
∧l odd

∧i+l≤M

hi+l−3

i!l!
∂ixv∂lxv. (B.34)

Equation (B.34) is now transformed according to







∂xv(x, τ) = u(x, t), (B.35)

t =
τ

ϵ
. (B.36)

Again, it is critical to note that truncation of Equation (B.33) and subsequent transformation

according to Equations (B.35) and (B.36) have the effect of imposing a long-wavelength

assumption of the form ∥vττ∥ << 1 on the continuum limit model. So, we have

0 = ut + 2
M
∑

j=4
∧j even

hj−2

j!
u(j−1)x + 2

M
∑

i=2
∧i even

M
∑

l=1
∧l odd

∧i+l≤M

hi+l−3

i!l!
u(i−1)xu(l−1)x. (B.37)

Now define δ = h√
12

. Then Equation (B.37) becomes

0 = ut + 2
M
∑

j=4
∧j even

12
j−2
2 δj−2

j!
u(j−1)x + 2

M
∑

i=2
∧i even

M
∑

l=1
∧l odd

∧i+l≤M

12
i+l−3

2 δi+l−3

i!l!
u(i−1)xu(l−1)x, (B.38)

= ut + 2
M
∑

j=4
∧j even

12
j−2
2 δj−2

j!
u(j−1)x + 2

M
∑

i=2
∧i even

M
∑

l=1
∧l odd

∧i+l≤M

12
i+l−3

2 δi+l−3

i!l!
u(i−1)xu(l−1)x, (B.39)

= ut +

⌊M
2 ⌋
∑

j=2

22j−13j−1δ2j−2

(2j)!
u(2j−1)x +

⌊M
2 ⌋
∑

i=1

s(M,i)
∑

l=1
∧

l odd

22i+l−23
2i+l−3

2 δ2i+l−3

(2i)!l!
u(2i−1)xu(l−1)x, (B.40)
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where s(M, i) =
⌊

M
2

⌋

− 1 −
⌊∣

∣2i−
⌊

M
2

⌋

− 1
2

∣

∣

⌋

. The case where M = 2 was considered in

[17, 22]. The case where M = 2 and β ̸= 0 was provided in [20]. The case where M = 3

was studied in [9, 19] and, with β ̸= 0, in [11]. Dissipative modifications have also been

investigated [10].
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