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ABSTRACT 

With the rise of human-agent teaming (HAT), a new cycle of scientific discovery commenced. 

Through scientific discovery, a number of theories of constructs in HAT were developed, 

however, an overarching model is lacking that elucidates the relative importance of these 

constructs in relation to human performance.  

The main objective of this research was to develop a model of simulated military HAT 

and to validate it against selected empirical data. Experimental data borrowed from four 

simulated military HAT studies were used to test the proposed Core model. The Core model was 

assumed to be directly affecting task performance and consisted of constructs related to Task 

Composition, Task Perception, and the qualities that each team member (Human/Agent 

Qualities) brings to the team. The available experimental data were tested against the null model: 

everything, within and between these Core sections, are equal contributors to hit rate.  

Furthermore, in order to validate the Core model, a validation approach was developed 

based on relative importance, wherein the outcome was a proportional value and followed a beta 

distribution (Ferrari & Cribari-Neto, 2004). This new modeling approach consisted of (1) 

application of dominance analysis (DA; Azen & Budescu, 2003; Budescu, 1993) to determine 

the most important contributors to task performance, (2) establishing robustness and 

generalizability of the dominance outcome through bootstrap procedures (Azen & Budescu, 

2003; Efron, 1981), and (3) combining the dominant predictors into a full beta regression model 

to evaluate the fit and significance of the model (Ferrari & Cribari-Neto, 2004). 
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DA of all four experimental studies examined in this research led to rejecting the null 

hypotheses. Constructs in the proposed Core model were not equally important to performance in 

these simulated military HAT studies. Results showed consistently similar yet different 

dominance patterns in relation to human performance. Attempts were made to elucidate the most 

important predictors of task performance. Analyses unveiled the importance of taking task 

difficulty into consideration when assessing the relative importance within the proposed Core 

model. 
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CHAPTER ONE: THE RISE OF HUMAN-AGENT TEAMING 

Standing at the verge of the fourth Industrial Revolution, technology is no longer a mere 

external tool; the lines between humans and technology will gradually blur (Davis, 2016; 

Schwab & Davis, 2018). Indeed, automation has integrated into most areas of human lives. Life 

without smart phones is unthinkable, smart homes emerge rapidly, and the majority of jobs rely 

on forms of intelligent systems. Such systems possess knowledge, can learn over time, have 

decision-making qualities, and can act upon the environment (Russell & Norvig, 2009). These 

intelligent systems are also called agents. Agents are either embodied or disembodied (Bradshaw 

et al., 2012; Fong et al., 2003; Sukthankar et al., 2012; Wiltshire et al., 2013). Advising software 

programs (e.g., Grammarly, 2019) are disembodied agents. Embodied agents can be physically 

present, such as robots, or virtually present, e.g., working remotely with an embodied agent. The 

present effort focuses on these physically embodied, intelligent systems and are referred to as 

agents. 

This surge in agent development is reflected in the realm of science. Numerous 

systematic literature reviews have documented the incremental rise in agent-related research 

(Anjomshoae et al., 2019; Góngora Alonso et al., 2018; Mostafa et al., 2019; Pan et al., 2016; 

Savela et al., 2018). Moreover, in 2000, U.S. Congress passed a bill that required one-third of the 

aerial attack force to be unmanned and autonomous by 2010, and one-third of all ground combat 

vehicles to be unmanned by 2015 (Springer, 2013). This mandate incited new research and 

development toward transforming agents from tools to teammates at the squad level (Childers et 

al., 2016). Indeed, in 2012, the combined American military force actively used over 20,000 
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autonomous unmanned vehicles in the field (Singer, 2012).  To meet the needs posed by the 

military demand, the U.S. Army funded a collaborative effort between industry, academia, and 

the military to progress agents from tools to teammates: the Robotics Collaborative Technology 

Alliance (RCTA; Childers et al., 2016). The RCTA also signified the need for scientific 

knowledge and theory development, as little was known about this new phenomenon of human-

agent teaming (HAT). To understand and predict the performance of teams of a combination of 

humans and agents (human-agent teams), an overarching theoretical model is needed. The 

present study aims to develop such a model and introduces a validation approach to falsify the 

model. 

 

The Emergence of Human-Agent Teaming 

 With the emergence of a new phenomenon in the natural world, researchers attempt to 

form theoretical models to understand the phenomenon. Development of a theoretical model for 

HAT begins with an assessment of the literature for a) vergence of definitions of core concepts, 

and b) the presence of validated theoretical models or theories. Some of the core components that 

require definitions are the notion of human-agent teaming and the operationalization of an agent 

in that context. 
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Defining Constructs of Human-Agent Teaming 

Defining Human-Agent Teaming (HAT) 

Human-agent teams are formed by one or more humans and intelligent agents that 

collaborate in a joint activity with a shared goal in mind (Barnes & Evans, 2010; Cuevas et al., 

2007; Hoffman & Breazeal, 2004; Ososky et al., 2012; Rahimi & Hancock, 1986). It naturally 

follows that HAT is teamwork within a human-agent team. The essence of any teaming effort 

lies in collaboration, which signifies the committal activity of “working jointly with others or 

together in an intellectual endeavor” (“Merriam-Webster,” 2019). Collaboration is not merely a 

joint activity or working on a mutual goal. Collaborative behavior is intelligent in nature, where 

the intentions of others are weighed in the overall commitment to the joint goal, providing 

mutual support where needed (Grosz, 1996). These teaming requirements dictate the qualities of 

an agent in HAT, aside from intelligence and embodiment. 

 

Agent Qualities 

The most primitive foundation of an agent lies in automation. Automation is the process 

or task executed by a technology without the human’s intervention (Parasuraman & Riley, 1997). 

As autonomy or self-government of agents increased over time, the definition of automation was 

expanded in terms of agent requirements. Automation requires sensing qualities, data processing, 

and decision-making skills, psychomotor actors, and communication qualities (Sheridan & 

Parasuraman, 2005). The fluid transition of automation toward autonomy led to those terms 

frequently used interchangeably in the literature (e.g., Parasuraman, Sheridan, & Wickens, 
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2000). However, these concepts are distinct (Kaber, 2017). This distinction is important to 

address as it relates to agents’ functionality in a team. 

Sheridan and Verplank (1978) set forth a continuum of the degree of automation in 

support of the human, as presented in Table 1. The verbiage in this table is derived directly from 

their original work. In their description, the computer or agent gains decisive authority as the 

level of automation increases, thus implying the automation grows progressively more 

autonomous.  

Table 1  

Sheridan and Verplank’s (1978) levels of automation. 

Level of 
Automation 

Description of Interaction 

1 Human does the whole job up to the point of turning it over to the computer to implement. 
2 Computer helps by determining the options. 
3 Computer helps determine options and suggests one which human need not follow. 
4 Computer selects action and human may or may not do it. 
5 Computer selects action and implements if it human approves. 
6 Computer selects action, informs human in plenty of time to stop it. 
7 Computer does whole job and necessarily tells human what it did. 
8 Computer does whole job and tells human what it did only if human explicitly asks. 
9 Computer does whole job and tells human what it did and it, the computer, decides he should 

be told. 
10 Computer does whole job if it decides it should be done, and if so tells human, if it decides 

he should be told. 
 

Function Allocation 

The utility of agents appears beneficial, but the benefit of pairing agents with humans is 

only as good as the complementary combined qualities that each brings to the team. The afforded 

qualities of the agent depend on the functions allocated to the agent (Fitts, 1951), which can be 

static or dynamic (Morris & Rouse, 1986; Rouse, 1994; Scerbo, 2007). The notion of function 
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allocation stemmed from the 1950s when Paul Fitts and his colleagues proposed what functions 

should be allocated to machines (or agents) and humans in air navigation and air traffic control 

(Fitts, 1951). They posited that humans and machines are comparable information processing 

systems. The famous acronym MABA-MABA, Men Are Better At - Machines Are Better At, 

indicates that humans and machines have distinct strengths as information processors (Table 2).  

Table 2  

Fitts’ list. 

Men are better at Machines are better at 

Ability to detect small amount of visual or acoustic 
energy 
Ability to perceive patterns of light or sound 
Ability to improvise and use flexible procedures 
Ability to store very lare amounts of information for 
long periods and to recall relevant facts at the 
appropriate time 
Ability to reason inductively 
Ability to exercise judgment 

Ability to respond quickly to control signals and to 
apply great force smoothly and precisely 
Ability to perform repetitive, routine tasks 
Ability to store information briefly and then to erase it 
completely 
Ability to reason deductively, including computational 
ability 
Ability to handle highly complex operations, i.e. to do 
many different things at once 

Note. Adapted from Fitts (1951). 

The driving principle is that functions in which machines are better should be automated. 

This work is valuable in capturing “the most important regularity of automation” (de Winter & 

Dodou, 2014, p.1), but has been criticized for its notion of comparability rather than 

complementarity to humans (Hancock, 2009; Jordan, 1963), the absence of the strength of 

human affect (Hancock, 2009), and limited application to static function allocation (Hancock, 

2009). One thing to note is that while there is an area of work dedicated to affective robotics, 

given the nature of ruggedized work for military, search and rescue, and otherwise similar 

domains, anthropomorphic characterizations will not be a central focus in the present effort. 
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In a complex and dynamic environment, such as the battlefield, the functions an agent 

needs to execute should vary based on situational demand and task type, as no function 

allocation is optimal for all types of operations and situations (Feigh & Pritchett, 2014; 

Reinerman-Jones et al., 2017; Reinerman-Jones et al., 2011; Ross et al., 2008; Taylor et al., 

2013). Therefore, dynamic function allocation is more appropriate for HAT. 

 Traditionally, dynamic function allocation was classified as either adaptive or adaptable 

(Rouse, 1994). In adaptive allocation, the intelligent system initiates changes in function 

assignment based on operator state and situational demand, while humans take this initiative in 

adaptable systems (Rouse, 1994; Scerbo, 2007). Thus, in these systems, the initiator is fixed. 

However, dynamic and complex environments require the partakers to fluidly adjust to changing 

environments to work most effectively as a team. This necessitates a dynamic adjustment of the 

initiator in the collaboration, also called mixed-initiative interaction (Allen et al., 1999).  

Mixed-initiative interaction allows team members to flexibly interleave their initiative, 

control, and decision-making based on their strengths (Allen et al., 1999; Barnes et al., 2017; 

Jiang & Arkin, 2015), which is especially important in dynamic and complex environments 

(Jiang & Arkin, 2015). Embodied agents have been deployed to highly dangerous environments, 

such as disaster sites, to save and protect human lives. However, often, these agents were not 

successful due to mobility, communication, and perceptual limitations that required human 

intervention. When both human and agent are equipped with initiative and self-governance 

qualities, they will be more capable of effective teamwork. 
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To this point, it is now clear what the basic foundation of an agent is and is not, and what 

functions or tasks agents are better at than humans. However, in the recent decade, research of 

HAT focused increasingly on other aspects of teaming, such as shared understanding (Cooke, 

2015; Cooke et al., 2013; Cuevas et al., 2007; Mathieu et al., 2000; Ososky et al., 2012), trust 

(Billings et al., 2012; Guznov et al., 2015; Hancock et al., 2011; Hanna & Richards, 2018; 

Sanders et al., 2014; Schaefer et al., 2019) and intent (Breazeal & Aryananda, 2002; Schaefer et 

al., 2017), while expanding agent communication possibilities through natural language 

(Chandarana et al., 2017; Harris & Barber, 2014) and multimodal communication (Baber et al., 

2011; Barber, 2018; Barber, et al., 2015; Reinerman-Jones et al., 2017) 

 

Agent Intent 

To work as a member of a team, that is in part comprised of humans, it is important that 

the human teammate understands the agent’s reasoning for its actions and interprets the agent’s 

actions as beneficial to the teamwork (Schaefer et al., 2017). As such, the concept of agent intent 

is intertwined with transparency, or what the agent communicates (Chen et al., 2018; Lyons et 

al., 2017), also known as explainable agency (Anjomshoae et al., 2019; Langley et al., 2017). 

The quest of identifying the best means of communicating such intent has been based on 

research of human-human teaming (Breazeal, 2004; DeChurch & Mesmer-Magnus, 2010; Demir 

et al., 2016; Mesmer-Magnus et al., 2017; Scholtz, 2003). The ability to infer or reason about 

others’ minds depends on detecting eye contact, recognizing what others are looking at, pointing 

behaviors to direct and share attention, and understanding that others may have different beliefs 
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than our own (Lyons & Havig, 2014; Scassellati, 2001). Thus, inferences about the agent’s intent 

have a basis in communication (Schaefer et al., 2017). 

Embodied agents can be programmed with algorithms to infer and reason about their 

human counterpart’s beliefs, desires, and state (Abich et al., 2013; Bainbridge et al., 2008; 

Barnes et al., 2019; Breazeal et al., 2016; Breazeal et al., 2010; Reinerman-Jones et al., 2011; 

Taylor et al., 2013). With these algorithms, agents are capable of learning from social signals, 

inferring intent of their teammate, and communicating without using explicit vocabulary (Barnes 

et al., 2019; Mutlu et al., 2009; Mutlu et al., 2016; Scassellati, 2002). Moreover, these social-

cognitive behaviors have shown to enhance the sense of presence in HAT (Fiore et al., 2013). 

Without this sense of presence, humans could miss the foundation of perceiving the agent as a 

teammate (Bainbridge et al., 2008).  

 

Communication 

Aside from the importance of communication in intent inference, agents also need 

communication qualities in order to function as an equal peer in a team in terms of sharing 

information. In natural human form, communication occurs through verbal and nonverbal means 

(Berlo, 1960; Mehrabian, 1979). As such, agent teammates need the capability of both 

perceiving and interpreting verbal communication, as well as producing grammatically correct 

and meaningful language, to be able to interface with humans (Russell & Norvig, 2009). 

Currently, agents are equipped with technologies to detect and process verbal input through 

speech detection and natural language processing algorithms, and with technologies to allow 
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them to express simple lexicons (Breazeal & Aryananda, 2002; Childers et al., 2016; Harris & 

Barber, 2014). However, agents also require the capability to express and process nonverbal 

communication, as humans convey messages through nonverbal elements as well (Mehrabian, 

1979), even more so in operations wherein verbal communication is limited. Non-verbal agent-

to-human communication can occur through visual and/or tactile form (Lackey et al., 2011), or 

through multiple modalities (Barber et al., 2016; Oviatt, 2012). 

 

Scientific Discovery of Human-Agent Teaming 

In scientific discovery in new and emerging fields, theories are created based on well-

validated theories from relevant research. Hypotheses are generated from related fields and 

tested against empirical data. For instance, HAT involves teamwork or teaming, albeit with 

different entities than human teamwork. The diagram in Figure 1 breaks down the notion of 

gleaning from related fields to further the science in an emerging research area. Here, there is a 

general domain of teaming, wherein human teaming and HAT are distinct sub-domains. HAT 

can be informed by validated theories in the subdomain of human teaming. Each subdomain is 

formed by theories, that contain components on which theories and models exist. 
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Figure 1. Diagram of scientific discovery by gleaning from related fields. 

Note. This diagram visually explains the process of gleaning from related research from other subdomains (here, 

human teaming) to informing newly emerging phenomena in the natural world (human-agent teaming). Each 

subdomain is formed by overarching theories, that contain components on which theories and models exist. 

 

Indeed, human teaming can inform HAT (Keebler et al., 2012; Wiltshire et al., 2013), as 

agents are designed around the human’s needs and means of information processing (Bradshaw 

et al., 2004; Hancock, 2017). Several theories of human teaming exist (e.g., Driskell et al., 2018; 

Salas et al., 2005). Theories are a set of abstract structures, or models, that provide descriptive 

statements and/or representations of the phenomenon that aid in their understanding (Bailer-

Jones, 2003; Cartwright, 1983; Giere, 1988; van Fraassen, 1987). One of the most 

comprehensive theories of human teamwork is developed by Salas, Sims, & Burke (2005), 

wherein they identify five core components of effective teamwork and three coordinating 
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components that support the core components. This theory postulates that the core aspects of 

teamwork are leadership, mutual performance monitoring, back-up behavior, adaptability, and 

team orientation. The coordinating factors are shared mental models, mutual trust, and closed-

loop communication; all necessary ingredients for effective teamwork. These constructs could be 

extended and empirically tested for its application to HAT.  

Each of the components of the theory (see Figure 1), e.g., trust, mental model, closed-

loop communication, are supported by theories and models. Models are descriptive statements 

and/or representations of a phenomenon, that are guided by theory, analogues to aspects of the 

observable world, and aid in understanding these phenomena (Bailer-Jones, 2003; Cartwright, 

1983). One of these models, for example, suggests that closing the loop in communication (i.e., 

bidirectional communication) is effective (Barnlund, 1979; Schramm, 1954).  

 Thus far, there are no corroborated theories that apply to the sub-domain of HAT. 

However, a number of theoretical models have been developed for distinct components or 

constructs that are important in HAT. 

 

Existing Theoretical Models for Components of HAT  

Situation Awareness 

Endsley (1995) developed a theoretical model of situation awareness (SA) that has been 

applied to many forms of human-automation interaction, some of which may be considered a 

form of teaming. SA refers to the ability of individuals to maintain updated knowledge of the 
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state of a dynamic tasking environment (Endsley, 1988, 1995). The definition is a tripartite 

conceptualization:  “the perception of the elements in the environment within a volume of time 

and space, the comprehension of their meaning, and the projection of their status in the near 

future” (Endsley, 1995, p. 36). The first portion refers to Level 1 SA, the perception of elements 

in the environment. Level 2 SA reflects on a deeper understanding of the meaning and 

significance of the observed factors. Lastly, the projection to or prediction of the status in the 

near future is Level 3 SA. All levels of SA require both attentional and working memory 

processing, which can be deteriorated under highly loaded dynamic circumstances. 

SA does not merely exist within individuals; SA can exist in teams (Endsley & Jones, 

2001). Endsley (1995) posits that in a team formation, each individual should maintain SA for 

their own requirements, which can overlap partially, or be shared with, with others’ SA. 

 

Transparency 

Within the subdomain of HAT, a model of transparency was created for disembodied 

agents by Lyons and colleagues (Lyons, 2013; Lyons et al., 2017; Lyons & Havig, 2014). For 

physically embodied agents, which is most relevant to the present effort, Chen and colleagues 

(2014, 2018) developed a situation awareness-based agent transparency (SAT) model to describe 

the information that both teammates need to convey about their decision-making process. Here, 

transparency was defined as “the descriptive quality of an interface pertaining to its abilities to 

afford an operator’s comprehension about an intelligent agent’s intent, performance, future plans, 
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and reasoning process” (Chen et al., 2014, p. 2). The original SAT model emphasized the level 

and type of information that the agent should communicate, as depicted in Table 3. 

 

Table 3  

Situation awareness-based agent transparency model. 

SA Level SAT Category Description 

Level 1: Goals & Actions Agent’s current status/actions/plans • Purpose: Desire (goal selection) 
• Process: Intentions 

(planning/execution); Progress 
• Performance 
• Perception (environment/teammates) 

Level 2: Reasoning Agent’s reasoning process • Reasoning process (belief/purpose) 
• Motivations, environmental and other 

constraints/affordances 
Level 3: Projections Agent’s projections/predictions; 

uncertainty 
• Projection of future outcomes 
• Uncertainty and potential limitations; 

likelihood of success/failure 
• History of performance 

Note. Adapted from (Chen et al., 2014). 

Later, they emphasized the importance of bidirectional transparency, hence, the 

components of Table 3 are extended to the human as well (Chen et al., 2018). The levels of SA 

in the SAT-model refers to a higher level of information that is shared: the current 

status/action/plans (Level 1 SA), reasoning processing (Level 2 SA), and projections/predictions 

and level of uncertainty (Level 3 SA). Indeed, research shows that agent transparency through 

Level 3 SA leads to higher human SA and trust in the agent, compared to lower levels of SA 

transparency (Selkowitz et al., 2017), as well as improved human-agent team performance 

(Mercado et al., 2016).  
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Trust 

Even though trust in automation is a difficult construct to define (Schaefer et al., 2019), 

the most accepted definition is “the attitude that an agent will help achieve an individual’s goals 

in a situation characterized by uncertainty and vulnerability” (Lee & See, 2004, p. 54). For HAT 

in a complex environment, trust refers to the attitude that an agent will help achieve the team’s 

goals, rather than the individual’s goal (Hancock et al., 2011). Herein, trust is the guiding 

mechanism for reliance on the agent (Lee & See, 2004). Trust needs to be adequately calibrated, 

as both overreliance and underreliance on the agent can lead to critical failures (de Visser et al., 

2019; Parasuraman & Riley, 1997). The question of what determines human trust in an agent 

was answered by a meta-analytic study that reviewed human-related, agent-related, and 

environmental factors (Hancock et al., 2011), also known as the three factor model of trust 

(Schaefer et al., 2016). The strongest correlation was found for performance-related factors of 

the agent, followed by a moderate correlation with environmental factors, and little influence 

from human-related factors. This signifies the importance of a well-functioning agent in HAT. 

Without proper agent performance, including adequate communication and transparency (Barnes 

et al., 2014; Chen & Barnes, 2014), it will be difficult for a human to trust an intelligent agent. 

 

Summary 

It is evident that a new phenomenon has entered the natural world: human-agent teaming 

(HAT), or collaborative teamwork between intelligent entities, including human and physically 

embodied agents. The U.S. is making great efforts to implement these agents in the military 
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force. Researchers have attempted to learn more of this new phenomenon based on research and 

theoretical models from related scientific fields. What is needed is an overarching theoretical 

model that helps to understand, explain, and predict HAT performance to facilitate the 

implementation of agents at the squad level. After a review of key constructs and theories, it is 

evident that several theoretical models of HAT exist. However, these apply only to components 

of HAT, rather than to the overarching subdomain of HAT (Figure 1). Without an integration of 

such models and constructs into a comprehensive model, the relative importance of these 

components in presence of the other constructs remains unknown. This weighted understanding 

is needed to optimize experimental design and prediction of HAT performance.  

 

Goal Statement 

In order to robustly predict performance in HAT, a clear understanding is needed of the 

most important contributors to this performance. The present effort aims to fill this gap by 

proposing a theoretical model of HAT for dynamic and complex environments, such as the 

military, that integrates key constructs identified in HAT research. Military HAT research 

utilizes mainly simulated agents (e.g., Mercado et al., 2015). Thus, the model will be developed 

specifically for simulated military HAT. The goal is to test (part of) the model against empirical 

data.   



16 

 

CHAPTER TWO: A MODEL OF SIMULATED MILITARY HUMAN-

AGENT TEAMING 

In this Chapter, a model of simulated military HAT is developed. As shown in Figure 2, 

the model centers around task performance and consists of three layers: the Core, a Relationship 

Layer, and an Environmental Layer that interconnect through a transactional interaction. Each of 

these sections will be discussed in this Chapter. As will be elaborated upon, the Core model is 

the primary focus of the present effort. Moreover, the model is here applied to simulated military 

HAT missions yet could be potentially extended to other dynamic and complex environments 

wherein humans and agents collaborate.  
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Figure 2. Model of simulated military human-agent teaming (HAT) that centers around task performance. 

Note. The model of simulated military HAT consists of three layers. The outer Layer has the least direct impact on 

Task Performance: the Environmental Layer. This Layer consists of environmental variables, such as the scenario in 

which the mission takes place, environmental conditions, and overall awareness of the task, relationship, 

environment, and performance (situation awareness). The Relationship Layer focuses on the relationship between 

the human and agent teammate(s), with constructs as mutual trust, mental models, and transparency. The Core 

model directly impacts Task Performance and consists of Task Components, Task Perception, and the Qualities the 

Human/Agent bring to the team. The current effort focuses on the Core model. Lastly, the layers are transactional, as 

represented by the two-way arrows. The variables in one layer can affect the variables in the other layer and Task 

Performance, although a threshold may need to be reached.  
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Task Performance 

The model identifies performance as the focal point within teaming paradigm. In military 

missions, and other dynamic and complex scenarios such as search and rescue missions, 

performance on the task is the most important criterion, with an accuracy standard of 

approximately 90% (Naval Education and Training Command, 2009). In critical military 

operations, where human lives are at stake, the relationship between team members is 

rudimentary, although the basic foundation of trust and taking ownership for the mission needs 

to be present.  

 

The Core 

 The Core model is the primary focus of the present effort based on the assumption that 

the Core is the most important portion of the model in relation to task performance. The Core 

consists of task characteristics (Task Composition), qualities of the human or agent 

(Human/Agent Qualities), and their perception of the task (Task Perception). These three 

components are proposed to be of equal importance to task performance. 

 

Task Composition 

Research in various domains has consistently shown that characteristics of the task, or 

Task Composition, affect task performance (Green, 1993; Lu et al., 2013; See et al., 1995; 

Szalma et al., 2008). Here, some of the common analyzed components of task composition in 
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relation to HAT performance are discussed, including event rate, signal probability, and modality 

(Teo et al., 2018).  

 

Event Rate 

Event rate is the rate at which stimuli, both targets and non-targets, are presented within a 

given time period (Wickens & Hollands, 2000). In general, higher event rate is more taxing on 

the human information processing system than low event rate (Barber et al., 2019; Wickens, 

2008). However, low event rate can also be experienced as taxing if the likelihood that one of 

these stimuli is a target is low (Dillard et al., 2014; Grier et al., 2003; Hancock & Warm, 1989). 

A foundational example was published by Mackworth (1948) where he described the tendency 

of the Royal Air Force to miss critical but rare occurrences on the sonar and radar screen when 

attempting to detect enemy submarines during World War II. Despite operators’ high motivation 

to detect the enemy, errors of omission were made. 

 

Signal Probability 

As mentioned, signal probability reflects the likelihood of a critical event, e.g., a target or 

threat, occurring (Warm & Jerison, 1980). The effects of signal probability on performance 

stems from the field of vigilance, starting with Mackworth’s (1948) seminal work. Vigilance is a 

highly specialized psychophysical field focused on the study of the ability to maintain attention 

over a long period of time (Parasuraman & Davies, 1977). Herein, individuals monitor for a 

critical but very seldomly occurring signal (low signal likelihood), in a static environment such 
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as in air traffic control or cybersecurity (Brookings et al., 1996; Sawyer et al., 2014). 

Performance is known to drop significantly over time, a phenomenon known as the vigilance 

decrement (Grier et al., 2003; See et al., 1995).  In experimental studies focused on HAT for 

dynamic and complex environments, the environment has more dynamic movement and the task 

duration is often much shorter than the average 40 minutes in vigilance (e.g., for simulated HAT 

see Abich et al., 2013, Barber et al., 2019, and Bendell et al., 2019; for vigilance see See et al., 

1995). Even though the HAT paradigm does not meet the standards of vigilance, the field of 

vigilance may inform HAT as the tasks both involve monitoring an environment for critical 

events. In a cordon-and-search mission, Soldiers monitor the dynamic environment for 

insurgents and contraband for a potentially prolonged period of time (Sutherland et al., 2010). 

Based on knowledge of cognitive processing resources, higher event rate and lower threat 

probability leads to lower performance than low event rate and higher threat probability 

(Wickens & Hollands, 2000). Vigilance research additionally suggests that low event rate and 

low threat probability can be detrimental for performance (Dillard et al., 2014; Grier et al., 

2003). 

 

Modality 

In military missions, it is crucial that Soldiers can communicate their findings and keep 

each other in the loop to reduce threats to their squadron. Communication between the human 

and the agent can occur through a number of modalities: auditory in the form of speech, visual in 
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the form of gestures and images, and tactile through meaningful haptic patterns (Table 4; 

Lackey, Barber, Reinerman-Jones, Badler, & Hudson, 2011).  

 

Table 4 

Communication modalities in human-agent interaction. 

Modality Delivery Explicit Implicit 

Auditory Speech, sounds Language Tone, rate, pitch 

Visual Posture, facial expression, 
gesture, gait, social 
distance, images through 
interface 

Intentional pointing, hand 
signals, imagery 

Unintentional body language, 
intensity, eye contact, talking 
with hands, emotions 

Tactile Belt, vest Intentional touching, patterns Pressure, patterns, shakiness 

Note. Adapted from Lackey et al. (2011). 

Auditory communication can be expressed in formal language and implicit alterations of 

such language, e.g., tone, rate, and pitch (Lackey et al., 2011), which is mainly of interest in 

social robotics. In general, communication through auditory modalities tends to be picked up 

faster by humans (Latorella, 1998; Wickens, Dixon, & Seppelt, 2005). Moreover, when auditory 

communication occurs during an ongoing visual task, the tendency to identify a stimulus as a 

threat becomes more conservative (Bendell et al., 2019a). In addition, new developments show 

that enhanced auditory cues, such as spatialized audio, are useful in providing spatial localization 

information while reducing workload (Kim et al., 2018).  

The visual communication modality facilitates communication between human and agent 

teammates, even when auditory communication means are compromised. Visual agent-to-human 

communication can take place through the means displayed in Table 4. For dismounted 
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operations, useful visual communication means are visual displays and gestures (Dumas et al., 

2009; Harris & Barber, 2014). Gestures are useful when agents are in the line-of-sight of 

humans. If this is not available or not preferred, agents can communicate through interfaces for 

conveying visual representations of messages in the form of maps, pictures of objects, video 

feeds, and text. Moreover, visual display communication is effective in providing transparency 

of the agent’s state (Mercado et al., 2015). 

However, visual display communication may interfere with the human’s continuous 

visual attention to the environment, especially on traditional displays where the user’s head is 

down. Even heads-up displays with mission-critical information on the screen may be a 

distraction away from the primary task and may lead to performance degradation (Lewis & 

Neider, 2016; Sawyer, 2015; Wickens, 2017).  

Another communication modality is tactile, which is less obtrusive, as it delivers 

information via a tactile belt/vest or wearable devices, through tactors that apply 

electromechanical vibration to the skin (Fitbit, 2019; White, 2010). These forms of 

communication facilitate the conveyance of simple messages, in the form of a tactile one- or 

two-word lexicon (Barber et al., 2015; Reinerman-Jones et al., 2017) or cues relating to spatial 

orientation and navigation (Ho et al., 2005; Prewett et al., 2012). Moreover, due to it inobtrusive 

nature, tactile cues are functional in the military battlefield.  

Lastly, multimodal communication, i.e., communicating through more than one modality 

simultaneously (Dumas et al., 2009; Oviatt, 2012), is beneficial when accuracy is vital (Dobrišek 

et al., 2013; Huey & Wickens, 1993; Maurtua et al., 2017). However, this method affects 
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multiple modality resources at the same time and increases workload (Lu et al., 2013; Wickens, 

2002; Wickens et al., 2011). In the battlefield, accuracy makes the difference in life or death, in 

which case the need for accuracy may outweigh the increased workload from multimodal 

information presentation. 

 

Task Perception 

 Task Perception refers to the way in which individuals perceive or experience the task. 

Task Perception may impact task performance, as it relates to compensatory strategies, or self-

regulation, employed by individuals to modulate task performance (Hancock & Warm, 1989; 

Hockey, 1997; Negretti, 2012). Task Perception is conceptualized in terms of perceived 

workload and perceived stress. 

 

Perceived Workload 

Workload is a complex psychological construct that refers to a cognitive state indicating 

the load imposed on the human information processing system by the contextual environment 

(Matthews et al., 2019; Matthews & Reinerman-Jones, 2017; Stanton et al., 2017). Perceived 

workload is the individual’s reflection of the cost incurred by the task and is measured with 

rating scales (Hart & Staveland, 1988). Two additional measurements of workload exist 

(Matthews & Reinerman-Jones, 2017; O’Donnell & Eggemeier, 1986). Performance measures of 

workload indicate the effect of a dual task on the cognitive information processing system. If 
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secondary task performance drops, it is postulated that the primary task depleted the information 

processing resources. The third measurement of workload is formed by various physiological 

measures. Here, neurophysiological measures, such as cerebral blood flow velocity, signal the 

level of involvement of specific brain regions (Neubauer et al., 2013), while cardiovascular 

measures, such as heart rate variability, are more indicative of the level of effort (Thayer et al., 

2012).  

More recently, research showed that these three measures do not consistently converge, 

which may indicate a multidimensional rather than unitary workload construct (Hancock & 

Matthews, 2019; Matthews et al., 2015; Matthews et al., 2019; Matthews & Reinerman-Jones, 

2017; Yeh & Wickens, 1988). In this debate of construct validity, subjective measurements of 

workload have received most criticism. Matthews, de Winter, and Hancock (2019) succinctly 

summarize the criticism into two fundamental concerns.  

The first concern relates to the philosophical issues with quantification of a psychological 

experience. Questions such as what the appropriate scale is to use, how to define the construct, 

the effects of bias of memory due to the time lapse between task and evaluation, and the bias of 

contextual effects, mostly remain unanswered in this philosophical debate (Annett, 2002). 

However, for a number of reasons, the use of subjective rating scales continues for psychological 

constructs (e.g., de Winder, 2014). Measures of perceived experiences have value in 

understanding of a phenomenon if used with relevance to the study, wherein it is used as a 

representational measure (Annett, 2002; Hand, 1996). In addition, measures of perceived 

workload have shown to be useful in predicting performance in HAT (Abich et al., 2013; Abich 
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et al., 2017), which emphasizes an operational use of the measure (Annett, 2002; Hand, 1996). In 

operationalism, “an attribute is defined by its measuring procedure” (Hand, 1996, p. 453), thus 

the measure is all one needs to know regarding the construct. The measure is the construct.  

The divergence problem between perceived measures of workload with other measures of 

workload may reflect psychometric issues, which is the second fundamental concern of the use 

of subjective workload rating scales (Matthews et al., 2019). However, this notion does not 

necessarily invalidate the use of perceived measures of workload. Rather, the divergence may 

reflect a multifaceted construct of workload rather than a unitary construct (Matthews et al., 

2015). For instance, perceived workload is suggested to be sensitive to the number of tasks being 

performed, while performance measures are sensitive to the modality used for both tasks, 

impacting the resource demand and availability (Vidulich & Tsang, 2012). 

Matthews, de Winter, and Hancock (2019) suggested that subjective workload measures, 

such as the NASA Task Load Index (NASA-TLX; Hart & Staveland, 1988), are important in 

terms of self-regulatory strategies. Through the perception of increased demand and potential 

drops in performance, individuals make a strategic decision in terms of up- or downregulating 

their information processing resources or effort toward the task (Hockey, 1997), which may be 

further regulated by differences in personality (Matthews & Campbell, 1998). The self-

regulation hypothesis certainly would explain the dissociation often seen between subjective 

workload levels (e.g., high workload) and performance (e.g., maintained performance), and 

would validate the continued use of subjective rating scales for perceived workload if used 

appropriately.  
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Perceived Stress 

 Stress is “a particular relationship between the person and the environment that is 

appraised by the person as taxing or exceeding his or her resources and endangering his or her 

well-being” (Lazarus & Folkman, 1984; p. 19). This definition emphasizes the subjectivity of the 

experience of stress. Not every person responds in the same manner to identical stressors; it 

depends on the way in which the individual interprets the conditions (Lazarus & Folkman, 1984). 

Stress may impair performance by changing the individual’s adaptability to the task (Hancock & 

Warm, 1989). Similar to perceived workload, the perception of stress due to task demand is a 

regulator of effort in response to increased task demand (Hockey, 1997), which may be further 

moderated by personality differences ( Matthews et al., 2019; Matthews & Campbell, 2009). 

Military personnel are exceptional in handling stressful environments and maintaining task 

performance, which may in part be due to personality differences. Indeed, military members 

have a different personality profile, characterized by lower scores on agreeableness, neuroticism 

and openness to experience (see Table 5 for definitions) than non-enlisters prior to enlistment 

(Jackson et al., 2012). After enlistment, their military training subsequently alters these traits by 

lowering agreeableness further (Jackson et al., 2012). 
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Human/Agent Qualities 

In the Core model, Human/Agent Qualities are included as constructs that affect task 

performance. A team is only as good as its constituents or the qualities that each entity brings to 

the team, which is conceptualized based on their personality traits and entity-specific qualities.  

 

Personality 

 The most common theory of personality traits is the Big Five, which resulted from factor 

analyses indicating five general dimensions: neuroticism, extraversion, openness to experience, 

agreeableness, and conscientiousness (Table 5; Costa & McCrae, 2008; Digman, 1990). 

Table 5 

Big Five personality traits (Costa & McCrae, 2008). 

Big Five Trait Description 

Neuroticism Level of emotional stability, indicating the ease of anxiety, frustration, worry, and 
irritability 

Extraversion Level of sociability, dominance, thrill seeking, and energy 
Openness to experience Level of creativity, imagination, and enjoyment of new activities and experiences 
Agreeableness Level of sympathy, altruism, and tenderheartedness  

Conscientiousness Level of goal-direct efficiency, planning/organization, and responsibility 

 

Research indicates that higher levels of agreeableness and conscientiousness are 

beneficial for team performance, operationalized as a composite of various organizational work 

outputs (O’Neill & Allen, 2011; Peeters et al., 2006). Furthermore, higher levels of neuroticism 

predict impairments of cognition, including attentional resources and working memory, and a 

higher negative sensitivity to threats (Matthews et al., 2003). 
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In 2011, this research was extended from human teaming to human-agent teaming, in a 

study with a disembodied agent that served as a decision-making aid to the human (Szalma & 

Taylor, 2011). Their results showed that task factors posed stronger effects on task performance 

than personality traits. Neuroticism and conscientiousness significantly correlated with 

performance in opposite directions: high neuroticism corresponded with lower accuracy, while 

high conscientiousness correlated with higher accuracy. Furthermore, the effects of personality 

traits on perceived workload and stress were significant. High neuroticism significantly predicted 

higher perceived stress and workload than the other four traits. To date, research studies like 

these have not yet been extended to embodied HAT. However, since the results are congruent 

between human-teaming and HAT, similar results are likely to be found. 

 

Entity-Specific Qualities 

Human Qualities 

 Task performance has been linked to a number of human qualities that are difficult to 

separate, including age, gender, and experience. For instance, experience with a task increases 

over time due to repeated exposure and tends to improve performance. Since increased time and 

increase in age may coincide, age may be associated with experience. However, this is not 

necessarily the case, since cognitive decline is also related to an increase in age (Matthews et al., 

2000). Moreover, expertise may compensate for age-related performance decline for domain-

specific tasking (Morrow et al., 1994). 
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Similarly, video gaming experience seems beneficial for performance on simulated 

military HAT missions (Chen & Barnes, 2012). In general, youngsters tend to engage more in 

video gaming that older people. Another construct that is potentially interwoven in video gaming 

experience, is gender. Men tend to play more video games than women (Lin et al., 2015). Men 

also tend to have higher scores on spatial ability tests than women (Chen, 2010; Hyde, 1990; 

Maeda & Yoon, 2013). The question which of the two, gender or spatial ability, is more 

beneficial for performance remains unknown. While this answer is yet unknown, the discussed 

research indicates that these human qualities may be important for task performance. 

 

Agent Qualities 

The agent team member also brings qualities to the team, as explained by the notion of 

Men Are Better At – Machines Are Better At (MABA-MABA; Fitts, 1951; Table 2). Research 

shows that the level of automation assigned to the agent is beneficial for routine task 

performance, although it may also lead to problems with human take-over qualities and situation 

awareness (Onnasch et al., 2014; Sebok & Wickens, 2017). To this end, the importance of 

transparency arose.  

Agent qualities have also been operationalized in terms of reliability, which indicate the 

capability of the agent to accurately perform its task, expressed in a percentage. This construct 

has been applied mostly when the agent is disembodied (a software agent) and serves as a 

decision-making aid (e.g., Chen & Terrence, 2009; Szalma & Taylor, 2011). Wickens and Dixon 

(2005) demonstrated that the cut-off for agent reliability was below 70%; below this point human 
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task performance deteriorated significantly. Chen and Terrence (2009) applied this to HAT yet 

set the reliability level to 60% and compared the type of error made by the agent (false positive 

vs. missed). They found that agent unreliability affected performance in interaction with the 

human team member’s capability, corroborating the notion that both must be considered in a 

model of HAT performance. Aside from impacting task performance, agent reliability also 

affects trust (Hancock et al., 2011), indicating a transaction with a construct in the Relationship 

Layer. 

 Agent qualities are not just conceptualized in terms of level of automation or reliability, 

but also in terms of affordances. Affordances are what an object or system naturally allows the 

user to do, e.g., flat surfaces at hip level invite us to sit on it (Norman, 2013). It was originally 

posed by Gibson (1979) as a term within ecological psychology, highlighting what the 

environment offers to the animal. An embodied agent is naturally afforded with more 

communication qualities than disembodied agents. Embodied agents can use gestures and 

movements to communicate a message, while disembodied agents can only rely on text messages 

for this purpose. If an embodied agent has a mouth (or speakers) it may also be afforded with the 

ability to speak. Thus, the physical form and structure of the agent, or morphology, naturally 

determines its qualities. The morphology of an agent also interacts with the human’s 

interpretation of the agent (Fong et al., 2003).  

Humans tend to anthropomorphize objects and entities they interact with; people 

‘humanize’ entities, that is to ascribe human traits, attitudes, and emotions to an entity (Epley et 

al., 2007). Anthropomorphism aids human understanding and prediction of the entity’s behavior, 
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based on their own inherent knowledge-base (Duffy, 2003; Epley et al., 2007), and adds to the 

human’s mental models of the agent (Kiesler & Goetz, 2002; Powers & Kiesler, 2006; Sims et 

al., 2005; Talone et al., 2015). In general, people tend to find familiar forms more accessible, 

desirable, and expressive (Fong et al., 2003), which is important for the implementation of agents 

as social entities (Relationship Layer). However, there is a treacherous balance in the design of 

humanoid features and human acceptance of the agent. If an embodied agent is designed to be 

too similar to the human, it runs the risk of appearing creepy, a phenomenon known as the 

Uncanny Valley (Mori et al., 2012). This phenomenon is accentuated when movement is taken 

into account (Mori et al., 2012). Moreover, anthropomorphic design can lead to unrealistic 

human expectations of the agent, which may negatively impact trust and acceptance (Duffy, 

2003; Hancock et al., 2011).  

Another concern in relation to anthropomorphized agents, specifically in the military, is 

the creation of a social bond with the agent that may inhibit Soldiers to send the agent in the 

dangerous battlefield (Carpenter, 2016). This notion may be valid, as anthropomorphism has 

shown to affect empathy (Riek et al., 2009). However, other research indicates that military 

embodied agents are generally perceived as more machine-like than robot-like (Schaefer et al., 

2012). Nevertheless, anthropomorphic agents do offer undeniable advantages in their 

communicative affordances, such as deictic gestures.  
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Relationship Layer 

 After discussing Task Performance as the center of the model and the Core model as 

directly impacting Task Performance, the next part of the model (Figure 2) to discuss is the 

Relationship Layer. The Relationship Layer contains construct that pertain to the relationship in 

a human-agent team based on HAT research: mental models, mutual trust, and transparency. 

These constructs have also been identified as important components in human teamwork (Salas 

et al., 2005). 

 

Mental Models 

Mental models refer to a heuristic type understanding that allow people to describe, 

explain, and predict the world around them (Rouse & Morris, 1986). They are a critical 

component of effective teaming (Cannon-Bowers et al., 1993; Klein et al., 2005) and may 

contain variable contents (Johnson-Laird, 1983). Four different mental models are proposed in 

relation to teamwork: models about technology/equipment, the task at hand, team interaction, 

and the team member’s qualities and limitations (Cannon-Bowers, Salas, & Converse, 1993). 

Salas et al. (2005) model merges these four mental models into shared mental models. Shared 

mental models refer to the mutual understanding of the task goal, each team member’s 

responsibilities, and the coordination required to achieve the goal. This is different than situation 

awareness, which refers to a presently updated perception and understanding of the progress of 

the task, team members, and environmental conditions (Endsley, 1995). In terms of a shared 

mental model, all parties need and understanding of and commitment to the task at hand, sharing 
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the same goal and common ground (Klein et al., 2004, 2005). The mental model of team 

interaction refers to an understanding of the roles and responsibilities of each team member and 

the way in which to communicate (Cannon-Bowers et al., 1993; Mathieu et al., 2000). Lastly, all 

members need to be critically aware of their strengths and limitations to be able to provide 

appropriate back-up behavior.  

 

Agent Mental Model of Human 

Agent’s mental models of the human teammate and task can be computed through 

machine learning and decision making algorithms (Adams, 2014; Jonker et al., 2010; Ososky et 

al., 2012; Scheutz et al., 2017). Herein, the agent’s algorithm of the mental model emphasizes 

similarity of mental models between human and agent, as this ‘sharedness’ leads to mutually 

similar expectations for the task goal and team (Jonker et al., 2010). 

 

Human Mental Model of Agent 

Human mental models of the agent refer to the ideas that humans form of agents to 

support their predictions and understanding of agents (Mathieu et al., 2000; Ososky et al., 2012; 

Phillips et al., 2011). Human mental models of the agents are affected by the morphology and 

communication affordances of the agent (Phillips et al., 2011) and are based on extrapolation of 

existing knowledge and experiences (Lee et al., 2005). As such, mental models benefit from 

education and training (Nikolaidis & Shah, 2012; Ososky et al., 2012).  
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However, when explicit knowledge is unavailable, mental models can also be formed 

based on analogies (Bailer-Jones, 2002). For example, when computers first entered the market, 

humans lacked technological knowledge and comprehension of these systems. Microsoft bridged 

that gap with the introduction of a folder icon system to provide an analogy for file storage. 

Although this is not an accurate representation of information storage on a computer, it provides 

a sufficiently accurate understanding of ‘storage’ for laymen to understand how they can store 

and search for files. Similar to computers, people are generally unaware of the technical 

workings of an intelligent, embodied agent. Therefore, they create mental models based on their 

experience and existing knowledge to aid their understanding and prediction of them. A common 

criterion of effective mental models is the extent in which they aid in the understanding and 

predicting behavior of the agent (Norman, 2013). However, for military HAT, mental models 

need a higher degree of accuracy than conventional mental models, as the military battlefield is 

more extreme and dangerous (Phillips et al., 2011).  

 

Trust 

Another construct important to the relationship in HAT is mutual trust. In Chapter 1, trust 

in agents in HAT was defined as the attitude that an agent will help achieve the team’s goals, 

rather than the individual’s goal (Hancock et al., 2011). When team members trust each other, 

they understand that others monitor their performance with the task in mind, rather than being 

out to ‘get them’ (Salas et al., 2005). However, building trust is a process: trust needs to be 

developed and calibrated (Salas et al., 2005; Schaefer et al., 2019). Furthermore, human trust in 
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the agent depends in part on appropriately formed mental models, accurate SA, and agent 

transparency (Schaefer et al., 2019). 

 

Transparency 

In transparency, the focus is on the information that teammates convey about their 

decision-making process. The SAT model (Table 3) explains the information that the agent and 

human teammates should communicate, in line with the three levels of SA: agent’s current 

status/actions/plans, agent’s reasoning process, and agent’s projections/predictions and/or 

uncertainties. As such, agent transparency can enhance the three levels of SA as proposed by 

Endsley (1995). Since it is a relational action, transparency has its place in the Relationship 

Layer rather than the Environmental Layer. Moreover, transparency directly affects trust by 

increasing the human’s understanding of the agent’s actions  (Schaefer et al., 2017; Selkowitz et 

al., 2017).  

 

Environmental Layer 

 The outer layer of the model (Figure 2) is the Environmental Layer. Herein, several 

facets of the environment are covered, including environmental conditions (e.g., weather, 

day/night, extreme temperatures), mission scenario, and situation awareness (SA of the task, 

environment, and team). 
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Environmental Conditions 

 Differential weather circumstances scope the task and qualities of a dismounted military 

team, especially when these conditions are extreme (e.g., rain, ice, fog). Moreover, when 

working with an embodied agent, it is important to understand the effect of extreme conditions 

on the agent as well. During the search and rescue missions of the 9/11 terrorist attacks with 

embodied agents, issues were encountered due to unforeseen effects of the environment on the 

agent: tracks were melting (Murphy, 2004). Furthermore, extreme environmental circumstances 

can deteriorate the ability of the team to perform the mission. For instance, fog impacts visibility 

and thereby affects both the primary mission, if this is vision-based, but also the modality 

through which team members can communicate by limiting visual communication qualities.  

 

Mission Scenario 

 The mission scenario determines the goal and criticality of the mission, and thereby 

affects the team’s mental model of the task, the extent to which they need to rely on each other, 

and Task Perception. Here, the mission scenario is a dismounted military mission, wherein 

threats are identified. Misidentification of threats could result in life or death. Moreover, these 

military missions are dynamic; anything can change at any point in time. For instance, in a 

military operation, the number of individuals to monitor for threat identification may change. In 

such circumstances, the mission scenario affects Task Composition (event rate: number of 

characters available per given timeframe). Thus, the mission scopes the task at hand and may 

interact with the definition of the team’s mental model of the task among other things. 
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Situation Awareness 

 The last component of the Environmental Layer to discuss is situation awareness (SA). 

As discussed in Chapter 1, SA refers to the perception of elements in the environment (Level 1), 

the meaning and understanding of this observation (Level 2), and the projection of the status in 

the near future (Level 3; Endsley, 1995). In the Environmental Layer, SA represents the bird’s 

eye view that team members have over the Task (Composition), the qualities that each team 

member has (Human/Agent Qualities), the relationship between team members (Relationship 

Layer), and an awareness of the environment (Environmental Layer).  

 

Transactional Effects 

As shown in Error! Reference source not found., the three layers of the model, the 

Core, Relationship Layer, and Environmental Layer interconnect through a transactional 

interaction as depicted by the two-way arrows between the layers. This represents the notion that 

the construct within each layer can affect the constructs in other layers. These transactional 

effects may ultimately impact task performance, although a threshold may need to be reached 

before this occurs. 

The first transaction to discuss is the between the Relationship Layer and the Core. For 

instance, as discussed, agent morphology (Human/Agent Qualities within the Core) affects the 

human’s mental model of the agent (Phillips et al., 2011). Research suggests that mental models 
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affect human trust in the agent, which may affect task performance (de Visser et al., 2019). 

Furthermore, it was found that higher agent transparency (Relationship Layer) may improve 

HAT performance (Mercado et al., 2016), although the mechanism through which this works 

remains to be explained in the HAT field. Some research suggests that agent transparency may 

affect the human’s perception of the task, in terms of stress and perceived workload, and as such 

performance may improve (Mercado et al., 2015).  

In addition, there is a transaction between the Environmental Layer and the Relationship 

Layer. The connection between transparency (Relationship Layer) and situation awareness 

(Environmental Layer) has been explained by the SAT-model discussed in Chapter 1 (Table 3) 

and fortified by research. Studies indicate that the highest level of agent transparency leads to 

higher human SA compared to lower levels transparency (Selkowitz et al., 2017). Moreover, 

accurate SA (Environmental Layer) is said to play an essential role in development of trust 

(Relationship Layer; Salas et al., 2005; Schaefer et al., 2019). Trust and SA exchange 

transactional meaning through awareness of the task requirements, the actions each team 

member intends to perform and their reasoning for these decisions (Chen et al., 2014; Chen et al., 

2018). If these actions and decisions are aligned with the mission goal and trust is well-

calibrated, there is a beneficial effect on HAT. Lastly, the mission scenario (Environmental 

Layer) informs the team’s mental model of the task, in terms of the goal and criticality of the 

mission.  

The last transactional effect is between the Environmental Layer and the Core. As 

discussed, environmental circumstances may deteriorate the ability of the team to perform the 
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mission. This occurs particularly when the conditions are extreme, thus the threshold to impact 

task performance may be relatively high. Additionally, the mission may affect task performance, 

through an interaction with the perception of the task (the Core), the qualities of the team 

members (the Core), and the accurate calibration of mutual trust and mental models 

(Relationship Layer). Accurate SA also updates the team’s perception of the task and may 

subsequently contribute to self-regulatory strategies that may affect performance (Vidulich & 

Tsang, 2012). 

 

Summary 

The main objectives of the present effort were to develop a model of simulated military 

HAT and to propose an approach to validate the model with empirical data. The literature review 

elucidated components that contribute to HAT performance, that were integrated into a proposed 

model, wherein task performance is central. This model consists of three layers. The outer layer 

(Environmental Layer) contains environmental variables and a bird’s eye view over the teaming 

paradigm. The middle layer is the Relationship Layer and pertains to constructs that affect the 

relationship between team members in HAT. The focus of this research effort is on the Core 

model. The Core includes components that directly affect task performance: Task Composition, 

Task Perception, and Human/Agent Qualities. All aspects of the Core will be tested against the 

null model, i.e., everything is equally important. A validation approach is presented in 

CHAPTER THREE: METHODS AND PROCEDURES and applied to validate the Core model 

(Error! Reference source not found.). 
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CHAPTER THREE: METHODS AND PROCEDURES 

 The goal of the present effort was twofold. The first objective was to develop a model of 

HAT performance, which was provided in CHAPTER TWO: A MODEL OF SIMULATED 

MILITARY HUMAN-AGENT TEAMING (Figure 2). The second goal of this effort was to 

propose an approach to validating the Core model, hence, developing a validation approach for 

models that imply relative importance of the components. This validation approach was used to 

falsify the Core model against experimental data borrowed from the RCTA (Childers et al., 

2016). In the next sections, the borrowed data will be described, as well as the specific 

hypotheses and description of the methodology or validation approach. 

 

Experimental Data 

De-identified experimental data was taken from the past decade of research under the 

RCTA (Childers et al., 2016), as “Not Human Subjects Research” (APPENDIX L: IRB 

DETERMINATION DISSERTATION). Studies were selected based on the following inclusion 

criteria: 

• Contains a signal/threat detection task. 

• Contains an additional task that requires collaboration with an embodied agent, such as 

agent reporting. 

Four studies of the RCTA, reported by Abich et al. (2017), Barber et al. (2017), Barber et 

al. (2019), Bendell et al. (2020), and Kopinsky (2017), met the above criteria. A full description 
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of the studies can be found in APPENDIX A: DESCRIPTION BORROWED STUDY A through 

APPENDIX D: DESCRIPTION BORROWED STUDY D. Approval from the Institutional 

Review Board (IRB) of these studies is included in APPENDIX G: IRB FOR BORROWED 

EXPERIMENTAL STUDY A through APPENDIX J: IRB FOR BORROWED 

EXPERIMENTAL STUDY D.  

In each of the utilized studies, the ongoing task was a simulated military cordon-and-

search operation (Sutherland et al., 2010), wherein participants identified threats among the 

humanoid characters walking across the screen. Participants identified a threat by clicking on 

them with a pointing device. During the mission, participants worked with (a) simulated 

embodied agent(s) that conducted an independent search of a designated cordon. The agent 

reported back to the human about its findings. The content of the reports varied between the 

studies (see Appendices A through D). The modality through which the human teammate 

received the agent’s report also varied between studies: auditory through headphones, visual 

through an interface, or dual (both simultaneously). To ensure engagement, participants were 

instructed to memorize these reports as they were later randomly probed. A data matrix is 

available in Table 6. 
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Table 6  

Data matrix. 

Manipulation Experimental Study (Source: Abich et al., 2017; Barber et al., 2017; Barber et al., 2019; Bendell et al.,  
2020; Kopinsky; 2017) 

 
Study 
A.1 

Study 
A.2 

Study 
B.1 

Study 
B.2 

Study 
B.3 

Study 
C.1 

Study 
C.2 

Study 
C.3 

Study 
D.1 

Study 
D.2 

Task Composition           

Event rate           
15 characters/min. • •  •  •* •* •*   
30 characters/min.   •  •      
60 characters/min.    •  •* •* •* • • 

Signal likelihood           
0.09-0.10         • • 
0.12-0.13   • • • • • •   
0.13-0.14 • •        • 

Task duration           
5 minutes    •       
10 minutes   •  •      
12 minutes • •         
15-16 minutes         •  
32 minutes      • • •  • 

Agent Task Type           
Receive Report • •    • • • • • 
Pull Report   • •       

Visual Complexity           
Basic •          
Enhanced  •         

 
•* Coded as NA           

  



44 

 

Manipulation Experimental Study (Source: Abich et al., 2017; Barber et al., 2017; Barber et al., 2019; Bendell et al.,  
2020; Kopinsky; 2017) 

 
Study 
A.1 

Study 
A.2 

Study 
B.1 

Study 
B.2 

Study 
B.3 

Study 
C.1 

Study 
C.2 

Study 
C.3 

Study 
D.1 

Study 
D.2 

Task Composition           

Agent Report Delivery Frequency           
Interval         •  
Immediate          • 

Agent Report Modality           
Auditory         • • 
Visual • • • • •    • • 
Single-Adaptive      • •    
Dual        •   

Human/Agent Qualities           
Agent Type           

Legged •          
Wheeled  •         

Demographics           
Age • • • • • • • • • • 
Gender • • • • • • • • • • 

Experience           
Military Experience   • • •      
Video Gaming Experience • •    • • •   

Task Perception           
Perceived Workload (NASA-TLX)           

Mental Demand • • • • • • • • • • 
Physical Demand • • • • • • • • • • 
Temporal Demand • • • • • • • • • • 
Effort • • • • • • • • • • 
Frustration • • • • • • • • • • 
Performance • • • • • • • • • • 
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Manipulation Experimental Study (Source: Abich et al., 2017; Barber et al., 2017; Barber et al., 2019; Bendell et al.,  
2020; Kopinsky; 2017) 

 
Study 
A.1 

Study 
A.2 

Study 
B.1 

Study 
B.2 

Study 
B.3 

Study 
C.1 

Study 
C.2 

Study 
C.3 

Study 
D.1 

Study 
D.2 

Task Performance          
 

Threat Detection Accuracy           
Hit rate • • • • • • • • • • 

Note. This data matrix describes the experimental data available from four studies that were borrowed from the RCTA (Childers et al., 2016) for the 

present research effort. The variables are categorized in accordance with the proposed Core model Figure 2. Task Composition variables pertain to 

characteristics of the task. Human/Agent Qualities include descriptors and qualities that human and agent team members bring to the teaming effort. 

Task Perception variables pertain to the human subjective experience of the task, which is here conceptualized in terms of the NASA-TLX (Hart & 

Staveland, 1988; APPENDIX E: NASA-TLX). Lastly, Task Performance was operationalized in terms of human performance on the threat 

detection task: hit rate. Hit rate was computed as the ratio of the correctly detected threats by the number of total available threats. 
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Hypotheses 

 The following null hypotheses were tested in relation to the Core model: 

Hypothesis 1. Of the Human/Agent Qualities, all human/agent factors are equally important to 

task performance. 

Hypothesis 2. All NASA-TLX subscales (Task Perception) contribute equally to task 

performance. 

Hypothesis 3. All Task Composition variables contribute equally to task performance. 

Hypothesis 4. Task Composition, Perception of Task, and Human/Agent Qualities are equally 

important to task performance. 

 

Validation Approach 

To validate the Core model, a method was selected that could unveil the factors that were 

most important to task performance. The method of choice was dominance analysis (DA). In 

DA, the dominance of a variable is established by comparing the unique additional contribution 

of the predictor to all possible subset (regression) models (Budescu, 1993). Understanding the 

unique contribution of the variables elucidates the underlying variable loadings onto the outcome 

and thereby facilitates prediction (Tighe & Schatschneider, 2014). DA has been widely used in 

fields of ophthalmology (Lips-Wiersma et al., 2018; Shakarchi et al., 2019), biomedicine (Nolan 

& Santos, 2019), clinical psychology (Shah et al., 2019), and education (Tighe & 
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Schatschneider, 2014). This method is also used in engineering fields and is there referred to as 

feature selection (Che et al., 2017; Kuhn & Johnson, 2013; Yu & Liu, 2004), which is a more 

“black box” approach to DA. 

 

Dominance Analysis 

Through comparison of the unique contribution each predictor yields to the response 

variable across different subset model sizes (DA), three levels of dominance can be determined: 

complete dominance, conditional dominance, and general dominance (Azen & Budescu, 2003; 

Budescu, 1993). A predictor is said to completely dominate the other predictors, if its additional 

contribution to each of the k model sizes exceeds the contribution of the other predictors on all 

subset model sizes (Budescu, 1993). Dominance of xi over xj in a subset (xh) predictors is 

(Budescu, 1993) 

𝜌𝑌.𝑥𝑖𝑥ℎ2 ≥  𝜌𝑌.𝑥𝑗𝑥ℎ2     (1) 

or 

(𝜌𝑌.𝑥𝑖𝑥ℎ2 −  𝜌𝑌.𝑥ℎ²) ≥  (𝜌𝑌.𝑥𝑗𝑥ℎ² −  𝜌𝑌.𝑥ℎ²)  (2) 

where 𝜌𝑌.𝑥𝑖𝑥ℎ2  is the squared multiple correlation of the model which includes the 

predictor xi and the remaining predictors xh, while excluding predictor xj (Budescu, 1993).  

Conditional dominance is established is a predictor’s additional contribution within a 

specific model size is larger than the contribution of the others (Azen & Budescu, 2003; Budscu, 
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1993). The unique additional contribution of a predictor in terms of 𝜌𝑌.𝑥𝑖𝑥ℎ2  is expected to 

decrease monotonically as the subset models increase in size (k increases; Azen & Budescu, 

2003). 

General dominance is based on the average of all conditional values and is the lowest 

level of dominance (Azen & Budescu, 2003; Budescu, 1993). General dominance of xi, with p 

additional predictors in model subset size k, with  𝐶𝑥𝑖(𝑘)as the average additional unique 

contribution of xi across all (p - 1) over k subset models, is computed as (Budescu, 1993) 

 (3) 

Budescu (1993) stipulated that dominance is transitive; that is, if xi dominates x2 and x2 

dominates x3, then by definition x1 dominates x3. Moreover, if a predictor completely dominates 

all other predictors, this predictor will also have conditional and general dominance (Azen & 

Budescu, 2003).  

Finally, the dominance pattern can be expressed in dominance indices (Azen & Budescu, 

2003). If xi dominates xj, this is expressed as Dij = 1. If the reverse is true, that xj dominates Xi, 

then Dij = 0. If dominance cannot be established for either predictor, Dij = 0.5. Since DA does not 

yield statistical significance, these values are then bootstrapped, to determine the generalizability 

of the results as well as the internal reproducibility, with confidence interval computations (Azen 

& Budescu, 2003).  
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As shown in Equation (1) and (2), DA is based on comparative squared semi-partial 

correlations by running all possible subset ordinary least squares regression models. As such, the 

data needs to meet the assumptions or linear regression: normally distributed residuals, linearity, 

and independent errors (Pedhazur, 1973). However, in recent years, DA has been extended to 

logistic regression (Azen & Traxel, 2009; Tonidandel & LeBreton, 2010), hierarchical multilevel 

modeling (Luo & Azen, 2013), multivariate regression modeling (Azen & Budescu, 2006), and 

beta regression (Shou & Smithson, 2015; Smithson & Verkuilen, 2006). As the response variable 

in the present effort is operationalized as hit rate, i.e., the number of correctly detected threats 

divided by the number of available threats, the response variable is naturally double-bounded 

between 0 and 1 (Ferrari & Cribari-Neto, 2004; Smithson & Merkle, 2013). This data fits within 

the family of beta distributions. Therefore, DA was conducted based on beta regression models. 

With this distribution, parametric test statistics, such was squared semi-partial correlations, 

cannot be used to compare these models. Therefore, a more appropriate pseudo R2 was selected 

for this effort. 

 

Beta Regression 

The density of y with 0 < y < 1 is (Ferrari & Cribari-Neto, 2004; Shou & Smithson, 2015) 

𝑓(𝑦|𝜇, 𝜃) =  Γ(𝜃)Γ(𝜇𝜃)Γ(θ(1−𝜇)) 𝑦𝜇𝜃−1(1 − 𝑦)𝜃(1−𝜇)−1  (4) 

wherein shape parameters are α > 0 and β > 0, the precision parameter is 𝜃 = (𝛼 + 𝛽) 

and the mean (𝜇) of y is (Ferrari & Cribari-Neto, 2004) 
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E(y) = 𝜇 = 𝛼𝛼+𝛽  (5) 

and the variance is  

𝑣𝑎𝑟(𝑦) =  𝜎2 =  𝛼𝛽(𝛼+𝛽)2(𝛼+𝛽+1) =  𝜇 (1−𝜇 )1+(𝛼+𝛽) =  𝜇 (1−𝜇 )1+( 𝜃)    (6) 

 It follows that var(y) is a function of the mean.  

 For a random sample y1, …, yn, with , with 𝑦 ~ 𝐵(𝜇, 𝜃), i = 1, …, n, the beta regression 

model is (Cribari-Neto & Zeileis, 2010) 

𝑔(𝜇𝑖) = 𝑥𝑖T𝛽𝑖 = 𝜂𝑖  (7) 

 where β = (β1, …, βk)T is a k x 1 vector of unknown regression parameters (k < n), 𝜂𝑖 is a 

linear predictor and xi = xi1, …, xik)T is the vector of k regressors. The coefficients are estimated 

with maximum-likelihood estimators. Beta regression assumes linearity between the predictor 

and response variable through the link function. The link function between the linear predictor 

and the mean of the distribution function is (Cribari-Neto & Zeileis, 2010; Shou & Smithson, 

2015) 

𝑔(𝜇) = log 𝜇1−𝜇  (8) 

 The residuals of a beta regression model are not estimated with 𝑦𝑖 − 𝜇�̂� due to the 

inherent heteroscedasticity of double-bounded variables (Smithson & Merkle, 2013). Ferrari and 

Cribari-Neto (2004) suggest the use of standardized ordinary residuals, defined as 

𝑟P,𝑖 = 𝑦𝑖−𝜇�̂�√VAR̂(𝑦𝑖)  (9) 
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 Where VAR̂(𝑦𝑖) =  𝜇�̂�(1-𝜇�̂�)/(1+ 𝜃�̂�), 𝜇�̂�=𝑔1−1(𝑥𝑖T𝛽)̂, and  𝜃�̂� = 𝑔2−1(𝑧𝑖T�̂�). Although the 

residuals are not necessarily normally distributed (Smithson & Merkle, 2013), they are assumed 

to be independent (Ferrari & Cribari-Neto, 2004). 

 

Pseudo R2 

Since the assumptions of parametric goodness-of-fit estimators are not met within beta 

distributions (Smithson & Merkle, 2013), a more appropriate pseudo R2 was tested and selected 

for this effort. Pseudo R2 is used in other non-parametric models based on maximum likelihood 

estimators such as logistic regression. Azen and Traxel (2009) established four criteria in their 

effort to select an appropriate pseudo R2 for DA on logistic regression (p. 324): 

1. Boundedness: the goodness-of-fit measure is bounded between 0 and 1, wherein 1 

indicates a perfect fit. 

2. Linear invariance: the measure should be robust against linear transformations of the 

variable. 

3. Monotonicity: the measure should increase when more predictors are added to the model. 

4. Intuitive interpretability: the measure aligns with the scale of the intermediate values. 

With these criteria in mind, Azen and Traxel (2009) selected and compared three log-

likelihood-based pseudo R2: McFadden’s RM
2 (1973), Nagelkerke’s RN

2 (1991), and Estrella’s 

RE
2 (1998). McFadden’s RM

2 is defined as 

𝑅𝑀2 = ln 𝐿0−ln 𝐿𝑀ln 𝐿0 = 1 −  ln 𝐿𝑀ln 𝐿0   (10) 
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wherein L0 is the value of the likelihood function for a base model with 0 predictors and 

LM is the likelihood for the estimated model, and ln() is the natural logarithmic value. RM
2 

met all four criteria set forth by Azen and Traxel (2009). 

Nagelkerke’s (1991) RN
2 is based on Cox and Snell’s (2018) pseudo R2, which is  

𝑅𝐶𝑆2 = 1 − ( 𝐿0𝐿𝑀)2 𝑛⁄    (11) 

wherein the sample size is represented in n. One of the limitations of 𝑅𝐶𝑆2  is that the upper 

bound is smaller than 1.00; the upper bound is 1 – L0
2/n. Therefore, Nagelkerke (1991) adjusted 

for this limit by 

𝑅𝑁2 = 1 − 1−(𝐿0 𝐿𝑀⁄ )1−(𝐿0)(2 𝑛⁄ )
(2 𝑛)⁄    (12) 

 RN
2 satisfied all the criteria of an appropriate pseudo R2 (Azen & Traxel, 2009). 

Lastly, Estrella’s (1998) measure is defined as 

𝑅𝐸2 = 1 − [ln 𝐿𝑀ln 𝐿0 ]−(2 𝑛⁄ ) ln( 𝐿0)
  (13) 

which is similar to McFadden’s R2, but raised to the power of −(2 𝑛⁄ ) ln( 𝐿0). Estrella 

(1998) posits that this is needed to ensure that the derivative corresponds with the corresponding 

linear derivative. It is not as fluently interpretable as the other measures (Azen & Traxel, 2009). 

In the current effort, Estrella’s RE
2 (1998) and Nagelkerke’s RN

2 (1991) cannot be used as 

they were designed for dichotomous outcome variables. In addition, McFadden’s (1973) RM
2 and 
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Nagelkerke’s RN
2 assume that the ML estimators are bounded between 0 and 1, which is not the 

case in beta regression (Shou & Smithson, 2015). However, Cox and Snell’s (2018) RCS
2 can be 

extended to regression models that use ML estimation (Allison, 2013) and allow for continuous 

maximum likelihood estimators (Shou & Smithson, 2015).  

The interpretation of a pseudo R2 is not as straightforward as the interpretation of an 

ordinary least squared regression R2. The latter indicates the variance explained by the model. 

However, a pseudo R2 can only be used to compare models ran on one dataset, wherein a higher 

R2 indicates a better fit, i.e., prediction, of the model (Institute for Digital Research & Education 

Statistical Consulting, 2011).  

In this effort, the R (R Core Team, 2013) code from Shou and Smithson (2015) to 

conduct DA on beta regression models was adapted, tested, and incorporated in the 

dominancenalysis, an R package, now available on CRAN (Bustos & Countinho, 2019). All four 

goodness-of-fit measures were compared and RCS
2 was selected as the preferred pseudo R2. 

 

Validating Dominance Analysis 

To validate the generalizability and reproducibility of the dominance indices (e.g., Dij = 1 

for dominance of xi over xj, Dij = 0 for xi not being dominant over xj, or Dij = 0.5 for an 

unestablished dominance pattern) were bootstrapped. Bootstrapping allows for inference about a 

the population based on random sampling with replacement of the sample (Efron & Tibshirani, 

1986). The larger the N of sampling with replacement, the higher the change that all cases will be 



54 

 

replicated at some point. Therefore, the bootstrap sample was set to S = 1000 bootstrap samples. 

Next, the dominance values were computed over the bootstrap sample, building a bootstrap 

distribution of the Dij dominance values (Azen & Budescu, 2003). The average of these 

dominance values within the bootstrap sample is defined as the expected dominance of xi over xj 

in the population, with bounded values of (0,1) and is computed as  

𝐷𝑖𝑗̅̅ ̅̅ =  1𝑆 ∑ 𝐷𝑖𝑗𝑠𝑆𝑠=1   (14) 

Then, the standard error of �̅�ij were calculated, based on (Azen & Budescu, 2003) 

𝑆𝐸(𝐷𝑖𝑗) = √ 1𝑆−1 ∑ (𝐷𝑖𝑗𝑠 − 𝐷𝑖𝑗̅̅ ̅̅ )2𝑆𝑠=1   (15) 

which indicates the variability of the dominance index over the S bootstrap samples. 

Azen and Budescu (2003) set out guidelines for interpretation of the standard error (p. 140): “�̅�ij 

is 1 (and SE is 0) if, and only if, Dij = 1 in all bootstrap samples. Conversely, �̅�ij is 0 (and SE is 

0) if, and only if, Dij = 0 in all bootstrap samples. Finally, �̅�ij is 0.5 if the distribution of 

dominance indices (𝐷𝑖𝑗𝑠 ) is symmetric in the sense that the number of cases in which xi dominates 

xj equals the number of cases in which xj dominates xi.” Here, the SE depends on the number of 

indeterminate dominance values, wherein SE is 0 if, and only if, Dij = 0.5 in all bootstrap 

samples. 

 Azen and Budescu (2003) proposed another method to evaluate the robustness of the 

results: a reproducibility value, based on three proportional measures reflecting the dominance 

indices in the S bootstrap samples, such that 
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𝑃𝑖𝑗 = Pr (𝐷𝑖𝑗 = 1)  (16) 

for the proportion of the S bootstrap samples that replicated the dominance index Dij =1, 

i.e., that xi dominates xj, 

𝑃𝑗𝑖 = Pr (𝐷𝑖𝑗 = 0)  (17) 

for the proportion of bootstrap samples that replicated findings of xj dominating xi, or Dij 

= 0, and 

𝑃𝑛𝑜𝑖𝑗 = Pr (𝐷𝑖𝑗 = 0.5)  (18) 

for the proportion of bootstrap samples that reproduced no dominance establishment for 

xi over xj. Lastly, a reproducibility value is computed that indicates the proportion of bootstrap 

samples that concur with the dominance results in the sample (Azen & Budescu, 2003). If a 

reproducibility value is 0.97, the researcher can be 97% confident of the dominance index (Azen 

& Budescu, 2003). 

 

Model Fit Evaluation 

 Finally, regression analyses were conducted in the hierarchy of the established pattern of 

importance to determine the fit of the model. Herein, the beta regression that was previously 

discussed (Equation (3) – (6)) was applied and evaluated using the pseudo R2 and χ2 as the 

statistics for models based on log-likelihood (Tabachnick et al., 2013; Zeileis et al., 2019). 
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Summary Validation Approach 

 In summary, a validation approach was developed that is appropriate for testing models 

that are based on importance and have a proportion-based outcome variable. The validation 

approach consists of three consecutive steps: 

1. Conduct dominance analysis on beta regression models to determine the most important 

contributors to the outcome variable (Azen & Budescu, 2003; Budescu, 1993). 

2. Establish the robustness and generalizability of the dominance results by bootstrapping the 

dominance values (i.e., Dij = 1, Dij = 0, Dij = 0.5; Azen & Budescu, 2003; Efron, 1981) 

3. Combine the most important predictors into a hierarchical beta regression model and evaluate 

the fit of the model (Ferrari & Cribari-Neto, 2004). 

This validation approach was applied to the borrowed data from the four experimental 

studies (Abich et al., 2017; Barber et al., 2018; Barber et al., 2019; Bendell et al., 2020; 

Kopinsky, 2017) under the RCTA (Childers et al., 2016). The used data is summarized in Table 

6. 

 

Software 

 The program R (R Core Team, 2013) was used for the analyses. Basic analyses were 

conducted with the user interface R Commander (Fox & Bouchet-Valat, 2019). More advanced 

analyses and visualizations were conducted with GGPlot2 (Wickham, 2016, 2016), Tidyverse 

(Wickham, 2017), Hmisc (Harrell, 2019), GGally (Schloerke et al., 2017), Betareg (Zeileis et al., 
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2019), and Candisc (Friendly et al., 2017). The package dominanceanalysis (Bustos & 

Countinho, 2019) was used and updated as part of the present study in collaboration with the 

author of the package. 

 

Operationalization of Constructs per Study 

 Next, each of the studies is described with operationalization of the constructs in light of 

the proposed Core model (Figure 2). 

 

Study A 

Experimental data from Study A was borrowed from the RCTA (Childers et al., 2016; 

Kopinsky, 2017; IRB in APPENDIX G: IRB FOR BORROWED EXPERIMENTAL STUDY 

A). For a full description of this study, see APPENDIX A: DESCRIPTION BORROWED 

STUDY A. This study was a mixed design, with visual complexity (of the signal detection 

display and icons) as a between-subjects variable (two levels: low vs. high) and agent type as a 

within-subjects variable (two levels: legged vs. wheeled; APPENDIX A: DESCRIPTION 

BORROWED STUDY A). The order of presentation was coded; order of agent type presentation 

was counterbalanced and randomized in Study A. Each task duration was approximately 10 

minutes. 
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Since there were repeated measures in the data set, a repeated-measures check was 

conducted. There was no significant difference between first and second instance, Welch’ F(1, 

128.95) = 1.16, p = .284. A total of N = 134 observations was maintained in the dataset.  

Operationalization of the Core Constructs 

Task Performance: Hit Rate 

Task performance was operationalized as hit rate: the number of correctly detected 

threats divided by the number of available threats. Average hit rate was 0.97 (SD = 0.04), within 

the accepted performance standards imposed by the military (e.g., Naval Education and Training 

Command, 2009). The boxplot and histogram indicated a non-normal distribution of the data 

(Figure 3). 
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Figure 3. Distribution of hit rate taken from Study A. 

Note. Hit rate was non-normally distributed in Study A, as identified in the boxplot and histogram with density plot. 

There was a negative skew in the data. 

 

The non-normal distribution was related to a measurement scaling issue, as the response 

variable was naturally double bounded between a minimum value of 0.00 and maximum value of 

1.00 (Smithson & Merkle, 2013). For these types of measurements, i.e., based on rates, the data 

follows a Beta rather than a Gaussian distribution (Ferrari & Cribari-Neto, 2004). The response 

variable y in Beta distributions is bounded, 0 ≤ y ≤ 1, and the shape parameters are α > 0 and β > 

0, with a density function described as (Ferrari & Cribari-Neto, 2004) 

𝑓(𝑦|𝛼, 𝛽) = (𝑦)𝛼−1(1−𝑦)𝛽−1𝐵(𝛼,𝛽) =  Γ(𝛼+𝛽)Γ(𝛼)Γ(𝛽)  (19) 

where Γ denotes the gamma function. Depending on the values of α and β, the 

distribution can have different shapes. As 0 ≤ y ≤ 1 for Beta distributions, all hit rate values equal 

to 1.00 were winsorized to 0.995, creating a new response variable “winsorized hit rate”. 
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Furthermore, since a number of observations were >3 SD, these values were winsorized to the 

minimal value of 3 SD (0.85). See Figure 4 for the distribution of winsorized hit rate. 

 
Figure 4. Distribution of winsorized hit rate taken from Study A. 

Note. The distribution of winsorized hit rate is shown in this boxplot and histogram with density curve. Observations 

of hit rate equal to 1.00 were winsorized to 0.995 (Ferrari & Cribari-Neto, 2004). Observations < 3 SD of the mean 

were winsorized to the value of 3 SD of the mean. The remaining outliers were not due to technical or otherwise 

identifiable errors and were maintained. 

 

Human/Agent Qualities 

 Of the human qualities, age, gender, military experience, and video gaming experience 

were included. The simulated agent was manipulated to be presented as legged or wheeled, yet 

was otherwise simulated to be a fully autonomous, 100% reliable, intelligent, and embodied. The 

agent scouted the outer cordon for threats and contraband. As within-subjects variable, agent 

morphology type was manipulated as legged (zoomorphic) or wheeled (machine-like).  
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 Participants were recruited from the University of Central Florida’s undergraduate 

psychology pool in exchange for course credit (N = 67; IRB in APPENDIX G). The 

characteristics of the sample in Study A are presented in Error! Reference source not found.. 

 

Table 7  

Sample characteristics Study A, as conducted by (Kopinsky, 2017). 

Sample 
Categorization 

N  
Age 

(M, SD) 
Video gaming experience 

(M, SD) 

Male 

Student 65 20.66 (5.20) 4.85 (1.09) 
Military 4 40.50 (12.12) 4.00 (2.31) 
Overall 69 21.81 (7.33) 4.43 (1.70) 

Sample 
Categorization 

N  
Age 

(M, SD) 
Video gaming experience 

(M, SD) 
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Sample 
Categorization 

N  
Age 

(M, SD) 
Video gaming experience 

(M, SD) 

Female 

Student 65 21.11 (5.51) 2.60 (1.38) 
Military 0 NA NA 
Overall 65 21.11 (5.51) 2.60 (1.38) 

Overall 

Student 130 20.88 (5.34) 3.72 (1.68) 
Military 4 40.50 (12.12) 4.00 (2.31) 
Overall 134 21.47 (6.50) 3.86 (2.00) 

Note. This table shows the sample characteristics including the number of observations (N), age (mean, standard 

deviation), and video gaming experience (Table 47), per gender (male, female) and military experience (student, 

military). The military participants were significantly older than students, Welch’ F(1, 3.04) = 10.41, p = .048. Men 

played video games significantly more frequent then women, Welch’ F(1, 126.37) = 97.50, p < .0001. 

 

Task Perception 

Task perception was operationalized as perceived workload as measured with the NASA 

Task Load Index (NASA-TLX; Hart & Staveland, 1988), containing six subscales. A description 

of the subscales is found in Error! Reference source not found.Error! Reference source not 

found.. The rating scales range from 0 to 100 (see APPENDIX E: NASA-TLX). The 

performance subscale traditionally needed rescoring but was adapted to account for this (see 

APPENDIX E: NASA-TLX). 

 



63 

 

Table 8 

Description of NASA-TLX subscales. 

Scale Description 

Mental demand The amount of mental and perceptual activity required during the task 
Physical demand The amount of physical activity required during the task 
Temporal demand The amount of experienced time pressure due to rate or pace of the task (elements) 
Frustration The amount of experienced frustration during the task 
Effort The amount of experienced (mental and physical) effort to accomplish the level of 

performance 
Performance A rating of how successful you perceived you were in accomplishing the task to standard 

Note. Adapted from (Hart & Staveland, 1988, p. 32). 

In Study A, the NASA-TLX was offered after each scenario. The average scores on the 

NASA-TLX subscales are shown in Error! Reference source not found.. The highest mean 

score was found for mental demand and the lowest score for performance. However, for each of 

the subscales the standard deviation was high relative to the mean. Such a high variability 

complicated interpretation of the scales. 

 

Table 9  

Average of NASA-TLX scores taken from Study A (Kopinsky, 2017). 

NASA-TLX Scale Mean SD 

Global 33.23 19.15 

Mental Demand 56.68 30.18 

Physical Demand 30.34 23.63 

Temporal Demand 33.58 26.33 

Effort 44.18 27.98 

Frustration 28.81 27.32 

Performance 15.82 19.45 
Note. In study A, the highest mean score was found for mental demand and the lowest score for performance. 

However, for each of the subscales the standard deviation was high relative to the mean, complicating interpretation 

of the scales. 
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Task Composition 

The ongoing threat detection task was conducted at an event rate of 15 characters/minute 

on screen, with a signal probability of 0.13-0.14. During this task, the autonomous agent sent 

reports to the participant with information of what it found and where this was found. 

 

Visual Complexity. The agent reports were sent visually, wherein the visual complexity of the 

report was manipulated as between-group variable. In low visual complexity (Figure 5), 

participants saw the visual report with a Compass bar and symbols identifying what was found. 
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Figure 5. Low visual complexity condition in Study A (Kopinsky, 2017; Copyright in APPENDIX K: 

COPYRIGHT). 

Note. This figure shows the gaming environment in Study A during the low visual complexity condition. Agent 

reports are sent to the participant visually through text updates, a compass bar, and a symbol or marker with basic 

elements. These symbols are identifiers of what the simulated agent found. 

 

In high visual complexity, the symbols were enhanced with the quantity of the items that 

were found. Additionally, a minimap was offered to provide an additional view of the location of 

the found items within the environment (Figure 6).  

  

Figure 6. High visual complexity condition in Study A (Kopinsky, 2017; copyright in APPENDIX K: 

COPYRIGHT). 

Note. This figure shows the gaming environment in Study A during the low visual complexity condition. Agent 

reports are sent to the participant visually through text updates, a compass bar, a minimap showing the agent’s 
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location, and a symbol or marker with enhanced elements. These symbols are identifiers of what the simulated agent 

found. 

 

Study B 

A full description of Study B is in APPENDIX B: DESCRIPTION BORROWED 

STUDY B, with the IRB in APPENDIX H: IRB FOR BORROWED EXPERIMENTAL STUDY 

B. Study B consisted of three within-subject conditions (Figure 7). Participants actively pulled 

agent reports, but under constant or changing event rate (B.1 and B.2 conditions). There was an 

additional condition (B.3 condition) that was conducted under constant event rate, wherein 

participants received agent reports. Each condition lasted approximately 10 minutes. 

 

Figure 7. Experimental design of Study B (Abich et al., 2017; Barber et al., 2018). 

Note. Study B consisted of three conditions: B.1 was conducted at constant medium event rate (30 

characters/minute), B.2 was conducting at a changing event rate (low: 15 characters/minute, high: 60 
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characters/minute), and B.3 was a different reporting task than B.1 and was conducted at a constant medium event 

rate. 

 

 Since the overall dataset (N = 332) had repeated measures, a check was conducted. The 

repeated occurrences were not significantly different, Welch’ F(2, 123.92) = 0.57, p = .566, thus 

the observations were all maintained. 

 

Operationalization of the Core Constructs 

Task Performance: Hit Rate 

Task performance was operationalized as hit rate: the number of correctly detected 

threats divided by the number of available threats. Average hit rate was 0.95 (SD = 0.07), within 

the accepted performance standards imposed by the military (e.g., Naval Education and Training 

Command, 2009). The boxplot and histogram indicated a non-normal distribution of the data 

with a number of outliers (Figure 8). 
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Figure 8. Distribution of hit rate taken from Study B. 

Note. Hit rate was non-normally distributed in Study B, as identified in the boxplot and histogram with density plot. 

There was a negative skew in the data. 

 

The distribution was a beta-distribution (Ferrari & Cribari-Neto, 2004), with 0 ≤ y ≤ 1. 

Therefore, all hit rate values equal to 1.00 were winsorized to 0.995, creating a new response 

variable “winsorized hit rate”. The outliers > 3 SD were winsorized to a minimal acceptable 

value of 0.74 (= 3 SD). The distribution of winsorized hit rate is shown in Figure 9. 
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Figure 9. Distribution of winsorized hit rate taken from Study B. 

Note. The distribution of winsorized hit rate is shown in this boxplot and histogram with density curve. Observations 

of hit rate equal to 1.00 were winsorized to 0.995 (Ferrari & Cribari-Neto, 2004). Observations < 3 SD of the mean 

were winsorized to the value of 3 SD of the mean. The remaining outliers were not due to technical or otherwise 

identifiable errors and were maintained. 

 

Human/Agent Qualities 

This study did not manipulate agent variables. The out-of-sight agent was simulated to be 

a fully autonomous and 100% reliable, intelligent, and embodied that scouted the outer cordon 

for threats and contraband. Of the human qualities, age, gender, military experience, and video 

gaming experience were included.  

Two samples were utilized in this study. One sample were undergraduate students from 

the University of Central Florida (N = 56), that were recruited through the Psychology resource 

pool for course credit (IRB in APPENDIX H: IRB FOR BORROWED EXPERIMENTAL 
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STUDY B). The other sample were Soldiers from Ft. Benning’s officer school (N = 29, IRB in 

APPENDIX H). Soldiers volunteered and did not receive compensation for their participation. 

The characteristics of the sample in Study B are summarized in Error! Reference source not 

found.. 

 

Table 10  

Sample characteristics Study B (Abich et al., 2017; Barber et al., 2018). 

Sample 
Categorization N 

Age  
(M, SD) 

Video 
Gaming 

Experience 
(M, SD) 

Male  

Student 295 19.95 (1.83) 4.74 (1.09) 
Military 82 26.70 (3.41) NA 

Overall 213 22.55 (4.16) 4.74 (1.09) 

Female  

Student 91 21.30 (5.55) 3.52 (1.52) 
Military 28 26.71 (3.02) NA 

Overall 119 22.57 (5.56) 3.52 (1.52) 

Overall  

Student 222 20.50 (3.87) 4.23 (1.41) 
Military 110 26.70 (3.30) NA 

Overall 332 22.56 (4.70) 4.23 (1.41) 
Note. This table shows the sample characteristics including the number of observations (N), age (mean, standard 

deviation), and video gaming experience (Table 44), per gender (male, female) and military experience (student, 

military). The military participants were significantly older than students, Welch’ F(1, 250.47) = 230.41, p < .0001. 

Male and female participants did not differ significantly in age, Welch’ F(1, 192.86) = 0.00, p = .970. Men played 

video games significantly more frequent then women, Welch’ F(1, 76.90) = 21.65, p < .0001. 
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Task Perception 

The NASA-TLX (Hart & Staveland, 1988) was presented every 2.5 minutes in the B.1 

and B.2 conditions. The B.3 condition did not have a NASA-TLX administration. The average of 

the perceived workload scales is presented in Error! Reference source not found.. The average 

highest score (mental demand) was below 50. The lowest score was found for physical demand. 

However, for each of the subscales the standard deviation was high relative to the mean. Such a 

high variability complicated interpretation of the scales. 

 

Table 11  

Average NASA-TLX scores taken from Study B. 

NASA-TLX Scale Mean SD 

Effort 35.67 27.52 

Frustration  23.82 24.07 

Mental Demand 40.65 31.55 

Performance 22.10 23.73 

Physical Demand 14.81 18.19 

Temporal Demand 31.74 27.83 

Global 28.14 19.87 
Note. In study B, the highest score was for mental demand. However, for each of the subscales the standard 

deviation was high relative to the mean., complicating interpretation of the scales. 

 

Task Composition 

Event Rate. Event rate was manipulated as a within-subjects variable (Abich et al., 2017; Barber 

et al., 2018). In condition B.1 the ongoing threat detection task had a constant number of 
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characters on screen per minute, which was set at 30 characters/minute. In B.2, the event rate 

changed halfway during the scenario. Half of the scenario ran in a low event rate, with 15 

characters/minute, while the remainder ran in a high event rate, with 60 characters/minute. The 

order of the event rate shift, either from low-to-high or high-to-low, was counterbalanced within 

the design. Furthermore, a third condition, B.3, was present that was conducted at a medium 

event rate (30 characters/minute), wherein participants received agent reports. Signal probability 

across the three conditions was 0.12-0.13. 

 

Task Type. As mentioned, in two conditions participants actively pulled agent reports, while in a 

third condition, participants received reports (Abich et al., 2017; Barber et al., 2018). In the pull-

condition, Participants could pull a report from the agent teammate that contained information 

about the number of threats (critical, non-critical, and non-targets). A multimodal interface 

(MMI) could be brought up and a report was requested by clicking on text or image.  

The information displayed in either report was identical. In the image report, boxes were 

shown around threats and critical threats, while the text report showed the number of threats, 

critical threats, and non-threats (not needed for probes). Participants also had the freedom to pull 

text and image reports sequentially.  

 In condition B.3, wherein participants received a report, the report was an assistance 

request from the agent that asked the participant to make a decision for them (A or B). 
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Study C 

A full description of Study C is in APPENDIX C: DESCRIPTION BORROWED 

STUDY C, with the IRB in APPENDIX I: IRB FOR BORRWED EXPERIMENTAL STUDY 

C. In Study C, two within-subject factors were manipulated over three scenarios, that each lasted 

approximately 32 minutes (Figure 10; Barber et al., 2019). Event rate was manipulated as low 

(15 characters/minute on screen) vs. high (60 characters/minute), wherein the rate changed every 

eight minutes. An exception in this design, are the first and last blocks; these only lasted four 

minutes.  

 

 
Figure 10. Experimental design of Study C (Barber et al., 2019). 

Note. Study C consisted of three conditions, that all participants participated in. In condition 1 and 2 participants 

received reports from a simulated agent through a single modality, wherein the modality changed between auditory 

and visual (single adaptive modality). In condition 3 agent reports were sent through both modalities simultaneously 

(dual). Event rate changed within the conditions from low (15 characters/minute) to high (60 characters/minute). 
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Furthermore, agent report modality was manipulated between conditions. Condition 1 

and 2 were both single-adaptive modalities, wherein condition 1 started in auditory modality and 

condition 2 started in visual modality. In the third condition, the reports were sent in two 

modalities simultaneously: auditory plus visual.  

Since participants ran through all three conditions, a repeated-measures check was 

conducted. The three conditions were not significantly different, Welch’ F(2, 80.96) = 0.34, p = 

0.713. The sample contained N = 126 observations. 

 

Operationalization of the Core Constructs 

Task Performance: Hit Rate 

Task performance was operationalized as hit rate: the number of correctly detected 

threats divided by the number of available threats. Average hit rate was 0.95 (SD = 0.07), within 

the accepted performance standards imposed by the military (e.g., Naval Education and Training 

Command, 2009). The boxplot and histogram indicated a normal distribution with a negative 

skew, with a number of outliers (Figure 11). 
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Figure 11. Distribution of hit rate taken from Study C. 

Note. Hit rate was approximately normally distributed in Study A, but with a negative skew, as identified in the 

boxplot and histogram with density plot. 

 

 To fit the beta distribution (Ferrari & Cribari-Neto, 2004), hit rate was winsorized to a 

highest value of 0.995 and lowest value of 0.75 (= 3 SD), see Figure 12 for the distribution. 

Trimming the outliers resulted in a more non-normal distribution. 
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Figure 12. Distribution of winsorized hit rate taken from Study C. 

Note. The distribution of winsorized hit rate is shown in this boxplot and histogram with density curve. Observations 

of hit rate equal to 1.00 were winsorized to 0.995 (Ferrari & Cribari-Neto, 2004). Observations < 3 SD of the mean 

were winsorized to the value of 3 SD of the mean. Trimming the outliers resulted in a more non-normal distribution. 

The remaining outliers were not due to technical or otherwise identifiable errors and were maintained. 

 

 

Human/Agent Qualities 

Study C did not manipulate agent variables. The out-of-sight agent was simulated to be a 

fully autonomous and 100% reliable, intelligent, embodied agent that scouted the outer cordon 

for threats and contraband. Of the human qualities, age, gender, military experience, and video 

gaming experience were examined. Participants were recruited from the University of Central 

Florida’s undergraduate psychology pool in exchange for course credit (N = 42; IRB in 

APPENDIX I). Sample characteristics are presented in Error! Reference source not found.. 
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Table 12  

Sample characteristics in Study C. 

Sample 
Categorization N 

Age (M, 
SD) 

Video gaming 
experience 
(M, SD) 

Male    

Student 73 18.92 (2.40) 4.25 (1.37) 
Military 3 20.00 (0.00) 5.00 (0.00) 
Overall 75 18.96 (2.36) 4.28 (1.35) 

Female    

Student 51 19.41 (2.16) 2.71 (1.65) 
Military 0 NA NA 
Overall 51 19.41 (2.16) 2.71 (1.65) 

Overall    

Student 123 19.12 (2.31) 3.61 (1.67) 
Military 3 20.00 (0.00) 5.00 (0.00) 
Overall 126 19.14 (2.28 3.64 (1.67) 

Note. This table shows the sample characteristics including the number of observations (N), age (mean, standard 

deviation), and video gaming experience (Table 44), per gender (male, female) and military experience (student, 

military). One participant had military experience, leading to three observations. Men were not significantly older 

than women, Welch’ F(1, 113.32) = 1.23, p = .270. Men played video games significantly more frequent then 

women, Welch’ F(1, 92,82) = 31.80, p < .0001. 

 

Task Perception 

The NASA-TLX was conducted after each condition. The average scores are shown in 

Error! Reference source not found.. The highest scores were found for mental demand and 

effort, and the lowest score for physical demand. However, for each of the subscales the standard 
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deviation was high relative to the mean. Such a high variability complicated interpretation of the 

scales. 

 

Table 13  

Average NASA-TLX scores taken from Study C. 

NASA-TLX Scale Mean SD 

Effort 77.21 21.29 

Frustration 65.33 27.83 

Mental Demand 86.50 14.62 

Performance 51.08 28.29 

Physical Demand 30.00 32.62 

Temporal Demand 62.83 26.49 

Global 62.17 15.87 
Note. In study C, the highest mean scores were found for mental demand and effort. However, for each of the 

subscales the standard deviation was high relative to the mean, complicating interpretation of the scales. 

 

Task Composition 

Event Rate. Event rate was manipulated as low versus high. The blocks that were similar in their 

manipulations (e.g., auditory + low (Condition 1, block 5 and Condition 2, block 4)) could not be 

combined as significant differences were found (Barber et al., 2019). Thus, in the present effort, 

event rate was coded as constant (Condition 3) versus changing (Condition 1 and 2). Signal 

probability was 0.12-0.13. 
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Agent Report Modality. Since the blocks could not be combined, agent report modality was 

coded as single-adaptive (Condition 1 and 2) or dual (Condition 3). 

 

Study D 

A full description of Study D is in APPENDIX D: DESCRIPTION BORROWED 

STUDY D, with the IRB in APPENDIX J: IRB FOR BORROWED EXPERIMENTAL STUDY 

D. This study employed a mixed design, wherein two two-level factors were manipulated 

(Bendell et al., 2020). Each participant experienced two sensory modalities of agent report 

delivery (visual text vs. auditory speech) in two separate scenarios, each lasting approximately 

16 minutes. The between-subjects variable was the timing of agent report delivery. Reports could 

be delivered regularly every minute (Condition D.1) or immediately, which was irregular 

(Condition D.2). This order for the scenarios was randomized and counterbalanced.  

A repeated-measures check indicated that the two instances of the same participant did 

not significantly affect hit rate, Welch’ F(1, 114.41) = 0.35, p = .556. The total analyzable 

sample was N = 117. 

 

Operationalization of the Core Constructs 

Task Performance: Hit Rate 

Task performance was operationalized as hit rate: the number of correctly detected 

threats divided by the number of available threats. Average hit rate was 0.67 (SD = 0.11), well 
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below the accepted performance standards imposed by the military (e.g., Naval Education and 

Training Command, 2009). The boxplot and histogram indicated an approximate normal 

distribution of the data with a number of outliers (Figure 13). 

 

 
Figure 13. Distribution of hit rate taken from Study D. 

Note. Hit rate was approximately normally distributed in Study D, as identified in the boxplot and histogram with 

density plot. 

 

 The data was more normally distributed, but still contained in a beta distribution due to 

the double-bounded response variable (Smithson & Merkle, 2013). Any hit rate values of 1.00 

were winsorized to 0.995. The lower minimal value was winsorized to 3 SD of the mean (0.34). 

The distribution of winsorized hit rate was similar to the original variable (Figure 14). 
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Figure 14. Distribution of winsorized hit rate taken from Study D. 

Note. The distribution of winsorized hit rate is shown in this boxplot and histogram with density curve. Observations 

of hit rate equal to 1.00 were winsorized to 0.995 (Ferrari & Cribari-Neto, 2004). Observations < 3 SD of the mean 

were winsorized to the value of 3 SD of the mean. The distribution of winsorized hit rate was similar to the 

distribution of hit rate. The remaining outliers were not due to technical or otherwise identifiable errors and were 

maintained. 

 

Human/Agent Qualities 

This study did not manipulate agent variables (study description in APPENDIX D: 

DESCRIPTION BORROWED STUDY D, IRB in APPENDIX J: IRB FOR BORROWED 

EXPERIMENTAL STUDY D; Bendell et al., 2020). The out-of-sight agent was simulated to be 

a fully autonomous and 100% reliable, intelligent, and embodied that scouted the outer cordon 

for threats and contraband. Of the human qualities, age and gender were included. Participants 

were recruited from the University of Central Florida’s undergraduate psychology pool in 
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exchange for course credit (N = 59; IRB in APPENDIX J).  None of the participants reported 

military experience and there was no data for video gaming experience. The sample 

characteristics are presented in Error! Reference source not found.. 

 

Table 14  

Sample characteristics in Study D (Bendell et al., 2020). 

Sample 
Categorization N Age (M, SD) 

NA 2 NA 
Male   
Student 57 20.07 (4.95) 
Military 0 NA 
Overall 57 20.07 (4.95) 
Female   
Student 58 19.24 (1.73) 
Military 0 NA 
Overall 58 19.24 (1.73) 
Overall   
Student 117 19.65 (3.70) 
Military 0 NA 
Overall 117 19.65 (3.70) 

Note. This table shows the sample characteristics including the number of observations (N) and age (mean, standard 

deviation) per gender (male, female) and military experience (student, military). This sample had no military 

experience. Men and women did not significantly differ in age, Welch’ F(1, 69.28) = 1.43, p = .236. 

 

Task Perception 

The NASA-TLX was administered after each condition. The average scores are shown in 

Error! Reference source not found.. The highest score was for mental demand, followed by 

performance. Physical demand was the lowest score. However, for each of the subscales the 
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standard deviation was high relative to the mean. Such a high variability complicated 

interpretation of the scales. 

 

Table 15  

Average NASA-TLX scores in Study D. 

NASA-TLX Scale Mean SD 

Effort 53.46 24.52 

Frustration 34.96 28.04 

Mental Demand 67.69 22.99 

Performance 60.51 24.80 

Physical Demand 16.32 16.91 

Temporal Demand 45.38 25.22 

Global 46.40 13.95 
Note. In study D, the highest mean score was found for mental demand and performance. However, for each of the 

subscales the standard deviation was high relative to the mean, complicating interpretation of the scales. 

 

Task Composition 

 Event rate was constant at 60 characters/minute on screen, at a threat probability of .09-

.10 (Bendell et al., 2020). 

 

Agent Report Modality. To ensure reports were attended to, an auditory tone alerted participants 

one second prior to release of each report (Bendell et al., 2020). There were 30 non-critical 

reports that contained information pertaining to the route, such as obstacles encountered. Four 

reports were critical and included an IED image review request. Report review was possible by 
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clicking a button on the controller to pull up the MMI. They could raise the controller to bring 

the MMI up or keep the controller down to look down at the simulated MMI. The modality 

through which reports were delivered was auditory or visual. In the auditory condition, all non-

critical reports were sent through speech alone. Critical IED review requests were still sent 

visually, as these required visual inspection. Contrary, in the visual report condition, all reports 

were solely transmitted through the MMI. 

 

Agent Report Delivery Frequency. The delivery frequency of the agent reports was manipulated 

(Bendell et al., 2020). They could be delivered every minute (interval; Condition D.1), or 

immediately (Condition D.2). 
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CHAPTER FOUR: RESULTS 

 The hypotheses were tested for each of the studies against the proposed Core model 

(Figure 2), as separate falsifications of the model using the approach discussed in Chapter 3.  

 

Study A 

Hypotheses Study A 

Study A manipulated agent (morphology) type (legged vs. wheeled) and visual 

complexity of the markers in the agent reports (basic vs. complex). The threat detection task was 

conducted under a low event rate of 15 characters/minute and high threat probability of 0.13-

0.14. Agent qualities were not available. The collaborative agent was simulated to be a fully 

autonomous and 100% reliable, intelligent, embodied agent that scouted the outer cordon for 

threats and contraband. The predictors that were available in study A were tested against the null 

hypotheses of the Core model. This is represented in Figure 15. 
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Figure 15. Visual representation of null hypotheses in Study A. 

Note. The size of the sections of the pie represent the relative importance of the factor to task performance. The null 

hypotheses are that all factors and categories are of equal importance to task performance. 

  

The null hypotheses are as follows: 

Hypothesis 1. Of the Human/Agent Qualities, human and agent factors are equally important to 

task performance (hit rate). 

Hypothesis 2. All NASA-TLX subscales (Task Perception) contribute equally to task 

performance. 

Hypothesis 3. Task Composition, Perception of Task, and Human/Agent Qualities are equally 

important to task performance. 
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Dominance Analysis Study A 

 Linearity was established between predictors and the response variable (Appendix F, 

Error! Reference source not found.).  

 

Human/Agent Qualities 

Overall, the variables were not strong in predicting hit rate, since the average additional 

contribution of each predictor was very low (Table 48, Appendix F). 

 

Complete Dominance 

 Agent type completely dominated all other predictors, as shown in Error! Reference source 

not found.. Age also dominated gender, video gaming experience, and military experience across 

all subset model sizes (k). Lastly, video gaming experience dominated gender. 
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Table 16  

Complete dominance results Human/Agent Qualities Study A. 

Variable Agent Type Age Video Gaming 
Experience 

Military 
Experience 

Gender 

Agent Type 0.5 1 1 1 1 
Age 0 0.5 1 1 1 
Video Gaming Experience 0 0 0.5 0.5 1 
Military Experience 0 0 0.5 0.5 0.5 
Gender 0 0 0 0.5 0.5 

Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 

  

Conditional Dominance 

 Since agent type and age completely dominated the other predictors, they also 

conditionally dominated them Figure 16. The unique additional contribution of agent type 

remained fairly stable regardless of subset model size. However, the unique contribution of age 

decreased considerably as the subset model size increased. The additional contribution of gender 

and video gaming experience increased with subset model size, which was an indicator that these 

variables were potential suppressors. A suppressor variable improves prediction due to its 

collinearity with other predictors, rather than through a direct correlation with the response 

variable (Azen & Budescu, 2003; Smith et al., 1992).  
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Figure 16. Conditional dominance results Human/Agent Qualities Study A. 

Note. The plot shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) over different subset model sizes 

or levels. For example, a level of 1 indicates that one additional predictor is in the regression model. The unique 

contribution of a predictor should monotonically decrease with increasing subset model sizes (Azen & Budescu, 

2003; Budescu, 1993). An increase, such as here for video gaming experience and gender, indicates that these 

variables are potential suppressors, gaining importance through collinearity with other predictors in the model rather 

than through direct association with the outcome variable (Azen & Budescu, 2003). 
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General Dominance 

 As shown in Figure 17, gender did not (generally) dominate any other predictor. Aside 

from the completely dominating variables age and agent type, military experience generally 

dominated video gaming experience and gender. 

 

 
Figure 17. General dominance results Human/Agent Qualities Study A. 

Note. The general dominance bar graph shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) 

averaged over all possible subset model sizes. 
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Task Perception 

 The global score on the NASA-TLX was removed as it was fully redundant with the six 

subscale scores. Overall, the variables were not strong in predicting hit rate, since the average 

additional contribution of each predictor was approximately 0.00 (Appendix F, Table 49). 

 

Complete Dominance 

 As shown in Error! Reference source not found., complete dominance was established 

for the performance subscales over all other scales, except the effort scale. Performance and 

effort were dominant over each other, depending on the subset model size. Dominance could not 

be established for performance over effort, or effort over performance (Dij or Dji = 0.5). 

 

Table 17  

Complete dominance results Task Perception in Study A. 

Variable Effort Performance Temporal 
Demand 

Mental 
Demand 

Physical 
Demand 

Frustration 

Effort 0.5 0.5 0.5 1 1 1 
Performance 0.5 0.5 0.5 0.5 1 1 
Temporal 
Demand 0.5 0.5 0.5 0.5 0.5 0.5 

Mental 
Demand 0 0.5 0.5 0.5 0.5 0.5 

Physical 
Demand 0 0 0.5 0.5 0.5 0.5 

Frustration 0 0 0.5 0.5 0.5 0.5 
Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined 
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Conditional Dominance 

 As shown in Figure 18, performance dominated all other predictors when it was the only 

predictor in the model (k = 0) or with one other predictor (k = 1). For larger models, the effort 

subscale dominated. There was a monotonical increase for effort, mental demand, and temporal 

demand, which indicated that these variables were potential suppressors (Azen & Budescu, 

2003). This indicated that these scales were not unique predictors of hit rate, as their predictive 

power was related to collinearity.  

 

Figure 18. Conditional dominance results Task Perception in Study A. 

Note. The plot shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) over different subset model sizes 

or levels. For example, a level of 1 indicates that one additional predictor is in the regression model. The unique 

contribution of a predictor should monotonically decrease with increasing subset model sizes (Azen & Budescu, 
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2003; Budescu, 1993). An increase, such as here for effort, mental demand, and temporal demand, indicates that 

these variables are potential suppressors, gaining importance through collinearity with other predictors in the model 

rather than through direct association with the outcome variable (Azen & Budescu, 2003). 

 

General Dominance 

 The bar graph in Figure 19 indicates that effort and performance generally dominated, 

which confirmed the transitive character of dominance (Budescu, 1993). Physical demand did 

not (generally) dominate any predictor. 

 

Figure 19. General dominance results Task Perception in Study A. 

Note. The general dominance bar graph shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) 

averaged over all possible subset model sizes (levels). 
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 Given the potential suppressing nature of the completely dominant subscale effort, the 

other completely dominant predictor, performance, was selected for inclusion in evaluation of 

the full model. 

 

Full Model 

 Lastly, DA was conducted on the most important predictors, removing potential 

suppressors, such that: 

𝑤𝑖𝑛𝑠𝑜𝑟𝑖𝑧𝑒𝑑 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 ~ 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 +  𝐴𝑔𝑒 + 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒+ 𝐴𝑔𝑒𝑛𝑡 𝑇𝑦𝑝𝑒 + 𝑉𝑖𝑑𝑒𝑜 𝐺𝑎𝑚𝑖𝑛𝑔 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 

In the DA, the human predictors that were not important to hit rate, i.e., gender, military 

experience, and video gaming experience, were maintained, as they cannot be factored out in the 

natural world. However, they can be held constant and thereby accounted for, a method known 

as constrained DA (Azen & Budescu, 2003). The raw dominance analysis results can be found in 

Appendix F, Table 50. 

 

Complete Dominance 

 Holding video gaming experience, military experience, and gender constant in the model, 

complete dominance was established for performance over all other predictors, followed by 

visual complexity (Table 18). Agent type also completely dominated age. 
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Table 18  

Complete dominance results Full Model in Study A. 

Variable Performance Visual Complexity Agent Type Age 
Performance 0.5 1 1 1 
Visual Complexity 0 0.5 1 1 
Agent Type 0 0 0.5 1 
Age 0 0 0 0.5 

Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 

 

 Since dominance is transitive (Budescu, 1993), conditional and general dominance 

followed the same pattern as complete dominance (Error! Reference source not found., 

Appendix F). No additional dominance patterns were established. 

 

Bootstrap 

 The results of S = 1000 bootstrap samples indicated that the confidence that the 

performance subscale and visual complexity would completely dominate in the actual population 

was low, varying from 39.3% to 58.5 % (  
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Table 19). This confidence increased slightly for the conditional dominance level, to around 60%, 

and to approximately 70% for the lowest level of dominance. This indicated that the robustness 

of the dominance results was not optimal. 
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Table 19  

Bootstrap results for the full model in Study A. 

Variable i Variable j Dij �̅�ij SE(Dij) Pij Pji Pnoij Reproducibility 

Complete Dominance        

Age Agent Type 0.5 0.423 0.358 0.191 0.345 0.464 0.464 

Age 
Visual 
Complexity 0 0.316 0.320 0.088 0.457 0.455 0.457 

Age Performance 0 0.263 0.343 0.111 0.585 0.304 0.585 

Agent Type 
Visual 
Complexity 0 0.381 0.350 0.154 0.393 0.453 0.393 

Agent Type Performance 0 0.319 0.384 0.179 0.541 0.280 0.541 

Visual 
Complexity Performance 0 0.435 0.429 0.310 0.441 0.249 0.441 

Variable i Variable j Dij �̅�ij SE(Dij) Pij Pji Pnoij Reproducibility 

Conditional Dominance        

Age Agent Type 0 0.434 0.410 0.278 0.410 0.312 0.410 

Age 
Visual 
Complexity 0 0.273 0.371 0.151 0.606 0.243 0.606 

Age Performance 0 0.247 0.361 0.136 0.642 0.222 0.642 

Agent Type 
Visual 
Complexity 0 0.347 0.401 0.215 0.521 0.264 0.521 

Agent Type Performance 0 0.307 0.410 0.218 0.604 0.178 0.604 

Visual 
Complexity Performance 0 0.435 0.457 0.360 0.491 0.149 0.491 

General Dominance        

Age Agent Type 0 0.478 0.500 0.478 0.522 0.000 0.522 

Age 
Visual 
Complexity 0 0.218 0.413 0.218 0.782 0.000 0.782 

Age Performance 0 0.239 0.427 0.239 0.761 0.000 0.761 

Variable i Variable j Dij �̅�ij SE(Dij) Pij Pji Pnoij Reproducibility 

Agent Type 
Visual 
Complexity 0 0.302 0.459 0.302 0.698 0.000 0.698 

Agent Type Performance 0 0.286 0.452 0.286 0.714 0.000 0.714 

Visual 
Complexity Performance 0 0.449 0.498 0.449 0.551 0.000 0.551 

Note. Dij is the dominance value of the original analyses, wherein Dij = 1 – Dji. Although each pair has two possible 

orders (ij and ji), only one order is shown to reduce redundancy 

The P.. values indicate the proportion of the S = 1000 bootstrap sample that replicated Dij, such that Pij = Pr(Dij = 1), 

Pji = Pr(Dij = 0), Pnoij = Pr(Dij = 0.5). The reproducibility value refers to the proportion of the bootstrap sample that 

replicated Dij. 
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The bold values imply a reference to the dominance value from the sample (Dij). 

 

Model Fit Evaluation: Regression 

 The dominant predictors were combined into a hierarchical beta regression model to 

evaluate the model fit, such that: 

𝑤𝑖𝑛𝑠𝑜𝑟𝑖𝑧𝑒𝑑 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 ~ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 + 𝑉𝑖𝑠𝑢𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + 𝐴𝑔𝑒𝑛𝑡 𝑇𝑦𝑝𝑒 + 𝐴𝑔𝑒+ 𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 +  𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑉𝑖𝑑𝑒𝑜 𝐺𝑎𝑚𝑖𝑛𝑔 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 

The results are found in Table 20. The pseudo R2 of the model is 0.038, χ2(9) = 315.27, p = 

0.780. None of the variables were significant in the regression on (winsorized) hit rate. 

Table 20  

Results beta regression on Full Model in Study A. 

 Beta Coefficient SE z-value Probability(>|z|) 
Intercept 3.37 0.74 4.56 < 0.001 

Video Gaming 
Experience -0.03 0.06 -0.52 0.606 
Gender 0.05 0.21 0.26 0.769 
Performance 0.00 0.00 -1.04 0.297 
Visual Complexity 0.18 0.19 0.96 0.336 
Agent Type 0.07 0.14 0.51 0.613 
Age 0.00 0.01 0.03 0.974 
Military Experience -0.06 0.52 -0.11 0.913 

Note. Significant values are in bold. 

 The poor fit of the model was confirmed by the predicted vs. observed values plot on the 

right side in Error! Reference source not found.. The plotted line is the fitted line based on 

maximum likelihood. 
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Hypotheses 

Although the dominance analyses indicated a qualitatively different pattern in unique 

additional contribution for the predictors in the Core model, none of these differences were 

statistically significant. Therefore, all null hypotheses were rejected. If the differences would 

have been significant, the Core model should resemble Figure 20, with a primary contribution 

by  Task Perception, driven by the NASA-TLX performance subscale, followed by Task 

Composition (visual complexity of symbols), and lastly Human/Agent Qualities, driven by agent 

morphology type. 

 
Figure 20. Updated Core model based on results Study A. 

Note. The size of the sections of the pie represent the relative importance of the factor to task performance. 
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Study B  

Hypotheses Study B 

The predictors that were available in study B were tested against the null hypotheses of 

the Core model: everything is equal. This is represented in Figure 21. Task duration was 

included as well, since condition B.2 was divided in two blocks of five minutes: one with low 

event rate (15 characters/minute) and one with high event rate (60 characters/minute). Agent 

qualities were not available. The collaborative agent was simulated to be a fully autonomous and 

100% reliable, intelligent, embodied, and out-of-sight agent that scouted the outer cordon for 

threats and contraband.  
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Figure 21. Visualization of hypotheses in Study B. 

Note. The size of the sections of the pie represent the relative importance of the factor to task performance. The null 

hypotheses are that all factors and categories are of equal importance to task performance. 

 

 The null hypotheses were as follows: 

Hypothesis 1. Of the Human/Agent Qualities, all human factors (age, gender, military 

experience, and video gaming experience) are equally important. 

Hypothesis 2. All NASA-TLX subscales (Task Perception) contribute equally to task 

performance. 

Hypothesis 3. All Task Composition variables contribute equally to task performance. 
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Hypothesis 4. Task Composition, Perception of Task, and Human/Agent Qualities are equally 

important to task performance. 

 

Dominance Analysis Study B 

Linearity was established between predictors and the response variable (Appendix F, 

Error! Reference source not found.).  

 

Human (/Agent) Qualities 

Agent qualities were not manipulated in Study B; the agent was simulated to be fully 

autonomous and 100% reliable. Overall, the variables were not strong in predicting hit rate, since 

the average additional contribution of each predictor was 0.000 – 0.014 (Appendix F, Table 51). 

Video gaming experience was excluded from the analyses due to a high percentage of missing 

values. 

 

Complete Dominance 

 As shown in   



103 

 

Table 21, military experience completely dominated the other predictors in the model. Complete 

dominance for age over gender, or reversed, could not be established. 
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Table 21 

Complete dominance results Human/Agent Qualities in Study B. 

Variable Military Experience Age Gender 
Military Experience 0.5 1 1 
Age 0 0.5 0.5 
Gender 0 0.5 0.5 

Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 

 

Conditional Dominance 

 Figure 22 shows that complete dominance could not be established for age and gender. 

Age only dominated gender in k = 0 subset models, while gender dominated age for larger subset 

models. 
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Figure 22. Conditional dominance results Human/Agent Qualities in Study B. 

Note. The plot shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) over different subset model sizes 

or levels. For example, a level of 1 indicates that one additional predictor is in the regression model.  

 

General Dominance 

 In addition to the higher levels of dominance, general dominance was established for 

gender over age (Figure 23). 
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Figure 23. General dominance results Human/Agent Qualities Study B. 

Note. The general dominance bar graph shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) 

averaged over all possible subset model sizes. 

 

Task Perception 

The global score on the NASA-TLX was removed as it was fully redundant with the six 

subscale scores. Overall, the variables were not strong in predicting hit rate, since the average 

additional contribution of each predictor was very low (Appendix F, Table 52). 
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Complete Dominance 

 Performance completely dominated mental demand, physical demand, effort, and 

frustration subscales (Table 22). Complete dominance was not established for performance over 

temporal demand, or vice versa. Temporal demand completely dominated the mental demand, 

physical demand, and effort subscales. Dominance of temporal demand over frustration could 

not be established. 

 

Table 22 

Complete dominance results Task Perception in Study B. 

Variable 
Performance 

Temporal 
Demand Frustration 

Mental 
Demand 

Physical 
Demand Effort 

Performance 0.5 0.5 1 1 1 1 
Temporal Demand 0.5 0.5 0.5 1 1 1 
Frustration 0 0.5 0.5 0.5 0.5 0.5 
Mental Demand 0 0 0.5 0.5 0.5 0.5 
Physical Demand 0 0 0.5 0.5 0.5 0.5 
Effort 0 0 0.5 0.5 0.5 0.5 

Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 

 

Conditional Dominance 

 Figure 24 shows the conditional dominance pattern of the predictors over all subset 

model sizes. Here, it was clear that complete dominance could not be established between 

performance and temporal demand. Performance was a stronger predictor for k = 0 and k = 1 

subset models. However, for larger models, temporal demand grew increasingly more important. 

This effect indicates that temporal demand was potentially a suppressor variable, along with the 
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effort subscale. In addition, effort and frustration dominated the mental and physical demand 

subscales. Frustration dominated effort for subset models up to k = 3, due to the suppressor effect 

of effort. 

 

 
Figure 24. Conditional dominance results Task Perception in Study B. 

Note. The plot shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) over different subset model sizes 

or levels. For example, a level of 1 indicates that one additional predictor is in the regression model. The unique 

contribution of a predictor should monotonically decrease with increasing subset model sizes (Azen & Budescu, 
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2003; Budescu, 1993). An increase, such as here for temporal demand and effort, indicates that these variables are 

potential suppressors, gaining importance through collinearity with other predictors in the model rather than through 

direct association with the outcome variable (Azen & Budescu, 2003). 

 

General Dominance 

 General dominance was established such that frustration > (i.e., dominated) effort > 

mental demand > physical demand (Figure 25). 

 

 
Figure 25. General dominance results Task Perception in Study B. 

Note. The general dominance bar graph shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) 

averaged over all possible subset model sizes. 



110 

 

 

Task Composition 

Type of event rate (changing vs. constant) was removed from the analyses due to 

redundancy issues with other predictors. Overall, the variables were not strong in predicting hit 

rate, since the average additional contribution of each predictor was very low (Appendix F, 

Table 53). 

 

Complete Dominance 

 As presented in Table 23, event rate completely dominated task type and task duration. 

Complete dominance could not be established between task type and task duration. 

 

Table 23 

Complete dominance results Task Composition in Study B. 

Variable Event Rate Task Duration Task Type 

Event Rate 0.5 1 1 

Task Duration 0 0.5 1 

Task Type 0 0 0.5 
Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 
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Conditional Dominance 

 Task duration was a more important predictor than task type for k = 0 and k = 1 subset 

models (Figure 26). When two other predictors were in the model (k = 2), dominance could not 

be established between the two. 

 

 
Figure 26. Complete dominance Task Composition in Study B. 

Note. The plot shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) over different subset model sizes 

or levels. For example, a level of 1 indicates that one additional predictor is in the regression model. The unique 

contribution of a predictor should monotonically decrease with increasing subset model sizes (Azen & Budescu, 

2003; Budescu, 1993). An increase, such as here is slightly seen for the variable task type, indicates that this variable 

is a potential suppressor, gaining importance through collinearity with other predictors in the model rather than 

through direct association with the outcome variable (Azen & Budescu, 2003). 
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General Dominance 

 Aside from the overall dominance of event rate, on average over all subset models, task 

duration was generally a more predictor than task type (Figure 27). 

 

 
Figure 27. General dominance results Task Composition Study B. 

Note. The general dominance bar graph shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) 

averaged over all possible subset model sizes. 
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Full Model 

Lastly, DA was conducted on the full model, such that 

𝑊𝑖𝑛𝑠𝑜𝑟𝑖𝑧𝑒𝑑 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 ~ 𝐴𝑔𝑒 + 𝐺𝑒𝑛𝑑𝑒𝑟 +  𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 + 

𝐸𝑣𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 + 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 

 In the DA, the human predictors that were not important to hit rate, age and gender, were 

held constant. The overall model pseudo R2 was low (see Table 54 in Appendix F). 

 

Complete Dominance 

 As shown in Table 24, event rate completely dominated the NASA-TLX performance 

subscale and military experience. Military experience was dominated by the performance scale.  

 

Table 24 

Complete dominance results Full Model in Study B. 

Variable Event Rate Performance Military Experience 

Event Rate 0.5 1 1 

Performance 0 0.5 1 

Military Experience 0 0 0.5 
Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 
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No additional conditional and general dominance patterns were established, since 

complete dominance was prevailing (Error! Reference source not found., Appendix F).  

 

Bootstrap 

 The results of S = 1000 bootstrap samples indicated that the confidence that event rate 

would dominate in the actual population was high, varying from 81.0% to 98.8 % (Table 25). The 

confidence that performance would dominate military experience ranged from 66.7 – 81.3 %.  

 

Table 25  

Bootstrap results Full Model in Study B. 

Variable i Variable j Dij �̅�ij SE(Dij) Pij Pji Pnoij Reproducibility 

Compete Dominance        

Military Experience Event Rate 0 0.015 0.099 0.005 0.975 0.020 0.975 

Military Experience Performance 0 0.196 0.299 0.059 0.667 0.274 0.667 

Event Rate Performance 1 0.860 0.309 0.810 0.090 0.100 0.810 

Conditional Dominance        

Military Experience Event Rate 0 0.015 0.105 0.008 0.979 0.013 0.979 

Military Experience Performance 0 0.182 0.317 0.085 0.721 0.194 0.721 

Event Rate Performance 1 0.864 0.318 0.830 0.103 0.067 0.830 

General Dominance        

Military Experience Event Rate 0 0.012 0.109 0.012 0.988 0.000 0.988 

Military Experience Performance 0 0.187 0.390 0.187 0.813 0.000 0.813 

Event Rate Performance 1 0.879 0.326 0.879 0.121 0.000 0.879 

Note. Dij is the dominance value of the original analyses, wherein Dij = 1 – Dji. Although each pair has two possible 

orders (ij and ji), only one order is shown to reduce redundancy 



115 

 

The P.. values indicate the proportion of the S = 1000 bootstrap sample that replicated Dij, such that Pij = Pr(Dij = 

1), Pji = Pr(Dij = 0), Pnoij = Pr(Dij = 0.5). The reproducibility value refers to the proportion of the bootstrap sample 

that replicated Dij. 

The bold values imply a reference to the dominance value from the sample (Dij). 

 

Model Fit Evaluation: Regression 

 The most important predictors were combined into a hierarchical beta regression model, 

wherein all human variables were preserved, as they would always be present in the natural 

world as well: 

𝑤𝑖𝑛𝑠𝑜𝑟𝑖𝑧𝑒𝑑 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 ~ 𝐸𝑣𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 + 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 +  𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 + 

𝐺𝑒𝑛𝑑𝑒𝑟 + 𝐴𝑔𝑒 

The beta coefficients and significance testing are presented in Table 26. The pseudo R2 of 

the model is 0.107, χ2(7) = 484.39, p = 0.008. Even though the model was a poor fit, the full 

model significantly predicted hit rate. Only event rate was significant, although the performance 

subscale of the NASA-TLX approached significance.  

Table 26  

Results beta regression on Full Model in Study B. 

 Beta Coefficient SE z-value Pr(>|z|) 
Intercept 3.30 0.49 6.78 < 0.001 

Event Rate -0.01 0 -3.48 < 0.001 

Performance -0.01 0 -1.91 0.056 
Military Experience 0.19 0.18 1.04 0.298 
Gender -0.06 0.13 -0.46 0.643 
Age 0.01 0.02 0.35 0.727 

Note. Significant values are in bold. 
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 The residuals did not show signs of dependence between the errors. The predicted vs. 

observed values plot confirmed the poor fit of the model (the plotted line is the fitted line based 

on maximum likelihood; see Appendix F, Error! Reference source not found.). 

 

Hypotheses 

The null Hypothesis 1, of the Human/Agent Qualities, all human factors (age, gender, 

military experience, and video gaming experience) are equally important, was rejected. Video 

gaming experience was excluded from the analyses. However, military experience was the most 

important predictor of hit rate in this study that contained a relatively larger number of military 

members (33.1%).  

The null Hypothesis 2, all NASA-TLX subscales (Task Perception) contribute equally to 

task performance, was rejected. The performance subscale dominated all other predictors, even 

though the pseudo R2 remained small. Temporal demand also showed importance. However, this 

importance increased with size of the subset model, indicating it was a potential suppressor 

variable, and therefore not included in the full model analyses. 

The null Hypothesis 3, all Task Composition variables contribute equally to task 

performance, was rejected. Event rate dominated all other predictors, even though the pseudo R2 

remained small. 
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The null Hypothesis 4, Task Composition, Perception of Task, and Human/Agent 

Qualities are equally important to task performance, was rejected. Task Composition, in the form 

of event rate, was most important to hit rate, followed by Task Perception (NASA-TLX 

performance subscale) and lastly military experience. 

Based on the analyses, the model is updated and represented in Figure 28. In study B, 

Task Composition was most important to hit rate, driven by event rate, followed by Task 

Perception (NASA-TLX performance subscale), and lastly Human(/Agent) Qualities, based on 

military experience. 

 
Figure 28. Updated Core model based on results in Study B. 

Note. The size of the sections of the pie represent the relative importance of the factor to task performance. 
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Study C 

Hypotheses Study C 

Study C manipulated the agent report modality (single adaptive vs. dual) and event rate; 

however, event rate could not be analyzed since the scenarios were compared as a whole (see 

Figure 10 for the experimental design). Similar blocks could not be individually combined as 

some were significantly different (Barber et al., 2019). Agent qualities were not available. The 

collaborative agent was simulated to be a fully autonomous and 100% reliable, intelligent, 

embodied agent that scouted the outer cordon for threats and contraband. The null hypotheses are 

visually presented in Figure 29. 
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Figure 29. Visual representation of hypotheses in Study C. 

Note. The size of the sections of the pie represent the relative importance of the factor to task performance. The null 

hypotheses are that all factors and categories are of equal importance to task performance. 

 

 The null hypotheses were as follows: 

Hypothesis 1. Of the Human/Agent Qualities, all factors are equally important to task 

performance. 

Hypothesis 2. All NASA-TLX subscales (Task Perception) contribute equally to task 

performance. 

Hypothesis 3. Task Composition, Perception of Task, and Human/Agent Qualities are equally 

important to task performance. 



120 

 

 

Dominance Analysis Study C 

Linearity was established between predictors and the response variable (Appendix F, 

Error! Reference source not found.).  

 

Human (/Agent) Qualities 

 Agent qualities were not manipulated in Study C; the agent was simulated to be fully 

autonomous and 100% reliable. The overall model pseudo R2 was low (see Table 55 in 

Appendix F). 

 

Complete Dominance 

As shown in   
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Table 27, video gaming experience completely dominated gender, military experience, and 

age. In addition, military experience and gender completely dominated age. Complete dominance 

could not be established between military experience and gender. 
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Table 27  

Complete dominance results Human/Agent Qualities in Study C. 

Variable Video Gaming Experience Gender Military Experience Age 
Video Gaming Experience 0.5 1 1 1 
Gender 0 0.5 0.5 1 
Military Experience 0 0.5 0.5 1 
Age 0 0 0 0.5 

Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 

 

Conditional Dominance 

 As shown in Figure 30, gender dominated military experience for models of size k = 0 

and k = 1. However, for larger subset models, military experience dominated gender. Moreover, 

the increase in R2 for military experience indicated this predictor was a possible suppressor 

variable, gaining importance due to collinearity with other predictors (Azen & Budescu, 2003). 
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Figure 30. Conditional dominance results Human/Agent Qualities Study C. 

Note. The plot shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) over different subset model sizes 

or levels. For example, a level of 1 indicates that one additional predictor is in the regression model. The unique 

contribution of a predictor should monotonically decrease with increasing subset model sizes (Azen & Budescu, 

2003; Budescu, 1993). An increase, such as here for military experience, indicates that this variable is a potential 

suppressor, gaining importance through collinearity with other predictors in the model rather than through direct 

association with the outcome variable (Azen & Budescu, 2003). 
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General Dominance 

 General dominance, the lowest level of dominance, was not established for military 

experience over age and gender (Figure 31). Age did not generally dominate any other 

predictors. 

 

 
Figure 31. General dominance results Human/Agent Qualities in Study C. 

Note. The general dominance bar graph shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) 

averaged over all possible subset model sizes. 
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Task Perception 

 The overall model’s pseudo R2 for Task Perception was low (see Table 56 in Appendix 

F). 

 

Complete Dominance 

 As shown in Table 28, temporal demand completely dominated all other subscales. 

Frustration completely dominated mental demand and physical demand completely dominated 

performance. Complete dominance between frustration and physical demand could not be 

established. 

 

Table 28  

Complete dominance results Task Perception in Study C. 

Variable 
Temporal 
Demand 

Physical 
Demand Frustration Effort Performance 

Mental 
Demand 

Temporal Demand 0.5 1 1 1 1 1 

Physical Demand 0 0.5 0.5 0.5 1 0.5 

Frustration 0 0.5 0.5 0.5 0.5 1 

 
Temporal 
Demand 

Physical 
Demand Frustration Effort Performance 

Mental 
Demand 

Effort 0 0.5 0.5 0.5 0.5 0.5 

Performance 0 0 0.5 0.5 0.5 0.5 

Mental Demand 0 0.5 0 0.5 0.5 0.5 
Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 
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Conditional Dominance 

 In addition to the complete dominance pattern, physical demand also conditionally 

dominated the effort subscale (Figure 32). Physical demand dominated the effort subscale for 

smaller subset models (up to k = 3), while frustration dominated physical demand for larger 

subset models (k > 3). This was an indication that the frustration subscale was a potential 

suppressor, increasing slightly in importance through collinearity with other predictors in the 

model. 

 
Figure 32. Conditional dominance results Task Perception in Study C. 

Note. The plot shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) over different subset model sizes 

or levels. For example, a level of 1 indicates that one additional predictor is in the regression model.  
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General Dominance 

 In addition to the complete and conditional dominance patterns, general dominance was 

established for physical demand over performance, mental demand, effort, and frustration 

(Figure 33). Frustration generally dominated performance and effort. Effort generally dominated 

performance and mental demand, while performance dominated mental demand. Mental demand 

was the least important predictor of hit rate. 

 
Figure 33. General dominance results Task Perception in Study C. 

Note. The general dominance bar graph shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) 

averaged over all possible subset model sizes. 
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Full Model 

Lastly, DA was conducted on the full model, such that 

𝑊𝑖𝑛𝑠𝑜𝑟𝑖𝑧𝑒𝑑 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 ~ 𝐴𝑔𝑒 + 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑉𝑖𝑑𝑒𝑜 𝐺𝑎𝑚𝑖𝑛𝑔 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 + 

𝐴𝑔𝑒𝑛𝑡 𝑅𝑒𝑝𝑜𝑟𝑡 𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦 + 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 + 𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 

 In DA, the human predictors that were not important to hit rate, age, military experience 

and gender, were held constant. The overall model pseudo R2 was low (see Table 57 in 

Appendix F). 

 

Complete Dominance 

 As shown in Table 29, temporal demand completely dominated all other predictors. 

Video gaming experience completely dominated agent report modality. 

 

Table 29  

Complete dominance results Full Model in Study C. 

Variable Temporal Demand Video Gaming Experience Agent Report Modality 
Temporal Demand 0.5 1 1 
Video Gaming Experience 0 0.5 1 
Agent Report Modality 0 0 0.5 

Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 
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 No additional levels of dominance (conditional or general) could be established, as the 

highest level of dominance prevailed the results (Error! Reference source not found., 

Appendix F). 

 

Bootstrap 

 The bootstrap does not handle a large number of missing values. Therefore, military 

experience was excluded from the bootstrap. The results of S = 1000 bootstrap samples indicated 

that the confidence that temporal demand would dominate age, video gaming experience, gender, 

and agent report modality in the actual population was high, around 80% (Table 30). This level 

of confidence grew higher as the level of dominance decreased to conditional and general 

dominance.  

 

Table 30  

Bootstrap results Full Model in Study C. 

Variable i Variable j Dij �̅�ij SE(Dij) Pij Pji Pnoij Reproducibility 

Complete Dominance        

Video Gaming 
Experience 

Temporal 
Demand 0 0.129 0.289 0.071 0.813 0.116 0.813 

Video Gaming 
Experience 

Agent Report 
Modality 1 0.647 0.348 0.432 0.139 0.429 0.432 

Temporal Demand 
Agent Report 
Modality 1 0.879 0.279 0.821 0.064 0.115 0.821 

Video Gaming 
Experience 

Temporal 
Demand 0 0.118 0.292 0.081 0.846 0.073 0.846 

Video Gaming 
Experience 

Agent Report 
Modality 1 0.657 0.356 0.459 0.145 0.396 0.459 

Temporal Demand 
Agent Report 
Modality 1 0.889 0.277 0.844 0.067 0.089 0.844 
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Variable i Variable j Dij �̅�ij SE(Dij) Pij Pji Pnoij Reproducibility 

General Dominance        

Video Gaming 
Experience 

Temporal 
Demand 0 0.126 0.332 0.126 0.874 0.000 0.874 

Video Gaming 
Experience 

Agent Report 
Modality 1 0.670 0.470 0.670 0.330 0.000 0.670 

Temporal Demand 
Agent Report 
Modality 1 0.898 0.303 0.898 0.102 0.000 0.898 

Note. Dij is the dominance value of the original analyses, wherein Dij = 1 – Dji. Although each pair has two possible 

orders (ij and ji), only one order is shown to reduce redundancy 

The P.. values indicate the proportion of the S = 1000 bootstrap sample that replicated Dij, such that Pij = Pr(Dij = 

1), Pji = Pr(Dij = 0), Pnoij = Pr(Dij = 0.5). The reproducibility value refers to the proportion of the bootstrap sample 

that replicated Dij. 

The bold values imply a reference to the dominance value from the sample (Dij). 

 

The dominance of video gaming experience was less robust. The results indicated that the 

confidence that this dominance pattern would occur in the population was 43.2% to 71.5% and 

only increased slightly under lower levels of dominance. 

 

Model Fit Evaluation: Regression 

To evaluate the model, the most important predictors were combined into a hierarchical 

beta regression model, wherein all human variables were preserved, as they would always be 

present in the natural world as well. Military experience was preserved in the hierarchy. 

𝑤𝑖𝑛𝑠𝑜𝑟𝑖𝑧𝑒𝑑 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 ~ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 + 𝑉𝑖𝑑𝑒𝑜 𝐺𝑎𝑚𝑖𝑛𝑔 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 +  
 𝐴𝑔𝑒𝑛𝑡 𝑅𝑒𝑝𝑜𝑟𝑡 𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦 + 𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 +  𝐺𝑒𝑛𝑑𝑒𝑟 + 𝐴𝑔𝑒 
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The beta coefficients and significance testing are presented in Table 31. The pseudo R2 

of the model was 0.189, wherein the model was significantly better than the null model, χ2(8) = 

236.87, p < 0.001. The full model significantly predicted hit rate, based on temporal demand and 

video gaming experience. The other predictors were non-significant.  

 

Table 31  

Results beta regression on Full Model in Study C. 

 Beta Coefficient SE z-value Pr(>|z|) 
Intercept 3.36 0.66 5.09 < 0.001 

Temporal Demand 0.01 0.00 3.71 < 0.001 

Video Gaming Experience -0.08 0.04 -2.29 0.022 

Agent Report Modality -0.21 0.11 -1.86 0.062 
Military Experience -0.67 0.39 -1.72 0.086 
Gender -0.07 0.12 -0.63 0.530 
Age 0.00 0.02 -0.07 0.944 

Note. Significant values are in bold. 

 The residuals did not show signs of dependence between the errors. The predicted vs. 

observed values plot confirmed the poor fit of the model (the plotted line is the fitted line based 

on maximum likelihood; Appendix F Error! Reference source not found.). 

 

Hypotheses 

The null Hypothesis 1, of the Human(/Agent) Qualities, all factors are equally important 

to task performance, was rejected. Video gaming experience was the most important contributor 

to hit rate, followed by military experience and gender. Age was the least important predictor. 
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Hypothesis 2, all NASA-TLX subscales (Task Perception) contribute equally to task 

performance, was rejected. Temporal demand was the most important contributor to hit rate 

within this subset. This was not surprising since each participant ran through three 32-minute 

scenarios. 

The null Hypothesis 3, Task Composition, Perception of Task, and Human/Agent 

Qualities are equally important to task performance, was rejected. In Study C, the most important 

predictor was formed by Task Perception, specifically the perceived load related to time (NASA-

TLX temporal demand subscale), followed by Human (/Agent) Qualities (video gaming 

experience), and lastly Task Composition (agent report modality).  

Based on the analyses and bootstrap, the hypothesized Core model in Study C is 

presented in Error! Reference source not found. In study C, Task Perception, driven by the temporal 

demand subscale of the NASA-TLX, was the most important contributor to hit rate, followed by 

Human(/Agent) Qualities, based on video gaming experience, and lastly Task Composition 

(agent report modality). 
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Figure 34. Updated Core model based on results in Study C. 

Note. The size of the sections of the pie represent the relative importance of the factor to task performance. 

 

Study D 

Hypotheses Study D 

Study D manipulated the delivery frequency of agent reports (immediate vs. interval) and 

the modality through which the report was delivered (auditory vs. visual). The threat detection 

task occurred at a constant event rate of 60 characters/minute with a low threat probability of 

0.09-0.10. Average hit rate was 0.67 (SD = 0.11), which was significantly lower than hit rate in 

Study A, B, and C (see Appendix F. Data regarding video gaming were not available and all 

participants were non-military/students. Additionally, agent qualities were not available. The 

collaborative agent was simulated to be a fully autonomous and 100% reliable, intelligent, 
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embodied agent that scouted the outer cordon for threats and contraband. The null hypotheses are 

visually presented in Figure 35. 

 

 
Figure 35. Visual representation of hypotheses in Study D. 

Note. The size of the sections of the pie represent the relative importance of the factor to task performance. The null 

hypotheses are that all factors and categories are of equal importance to task performance. 

  

 The null hypotheses were as follows: 

Hypothesis 1. Of the Human/Agent Qualities, all factors are equally important to task 

performance. 



136 

 

Hypothesis 2. All NASA-TLX subscales (Task Perception) contribute equally to task 

performance. 

Hypothesis 3. The Task Composition factors contribute equally to task performance. 

Hypothesis 4. Task Composition, Perception of Task, and Human/Agent Qualities are equally 

important to task performance. 

 

Dominance Analysis Study D 

Linearity was established between predictors and the response variable (Appendix F, 

Error! Reference source not found.).  

 

Human (/Agent) Qualities 

 The Human(/Agent) Qualities’ overall model’s pseudo R2 was low (see Table 58 in 

Appendix F). Only age and gender were compared in the dominance analysis. 

 

Complete Dominance 

 The dominance analysis pattern was clear for Human(/Agent) Qualities in Study D. 

Gender completely dominated age (Table 32), which indicated that gender also dominated 

gender over lower dominance levels, i.e. conditional and general dominance (Error! Reference 

source not found., Appendix F). 
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Table 32  

Complete dominance results Human/Agent Qualities in Study D. 

Variable Gender Age 

Gender 0.5 1 

Age 0 0.5 
Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 

 

Task Perception 

The overall model’s pseudo R2 for Task Perception was low (see Table 59 in Appendix 

F). 

 

Complete Dominance 

 As shown in Table 33, of the NASA-TLX subscales, mental demand completely 

dominated all other subscales and the performance subscale dominated frustration and physical 

demand. Lastly, the effort scale dominated the physical demand scale. 

Table 33  

Complete dominance results Task Perception in Study D. 

Variable 
Mental 
Demand Performance Effort 

Temporal 
Demand Frustration 

Physical 
Demand 

Mental Demand 0.5 1 1 1 1 1 

Performance 0 0.5 0.5 0.5 1 1 

Effort 0 0.5 0.5 0.5 0.5 1 

Temporal Demand 0 0.5 0.5 0.5 0.5 0.5 

Frustration 0 0 0.5 0.5 0.5 0.5 

Physical Demand 0 0 0 0.5 0.5 0.5 
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Conditional Dominance 

 In addition to the complete dominance pattern, temporal demand and frustration also 

dominated physical demand. Figure 36 shows that temporal demand and effort were potential 

suppressors, as the additional contribution increased as the k size of the subset models grew.   

 

 
Figure 36. Conditional dominance results Task Perception in Study D. 

Note. The plot shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) over different subset model sizes 

or levels. For example, a level of 1 indicates that one additional predictor is in the regression model. The unique 

contribution of a predictor should monotonically decrease with increasing subset model sizes (Azen & Budescu, 

2003; Budescu, 1993). An increase, such as here for temporal demand, indicates that this variable is a potential 
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suppressor, gaining importance through collinearity with other predictors in the model rather than through direct 

association with the outcome variable (Azen & Budescu, 2003). 

 

General Dominance 

 The general dominance values, as plotted in Figure 37, indicated no additional dominant 

predictors. The subscale of lowest importance to hit rate was physical demand. 

 

 

 
Figure 37. General dominance results Task Perception in Study D. 

Note. The general dominance bar graph shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) 

averaged over all possible subset model sizes. 
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Task Composition 

The overall model’s pseudo R2 of Task Composition was low (see Table 60 in Appendix 

F). Only two predictors were manipulated in study D and thus compared in the dominance 

analysis. 

 

Complete Dominance 

 Agent report modality completely dominated the delivery frequency of the reports ( 

Table 34). This indicated that agent report modality also dominated delivery frequency over 

lower dominance levels, i.e. conditional and general dominance (Error! Reference source not 

found., Appendix F). 

 

Table 34  

Complete dominance results Task Composition in Study D. 

Variable Agent Report Modality Delivery Frequency 
Agent Report Modality 0.5 1 
Delivery Frequency 0 0.5 

Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 
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Full Model 

Lastly, DA was conducted on the full model, such that 

𝑊𝑖𝑛𝑠𝑜𝑟𝑖𝑧𝑒𝑑 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 ~ 𝐴𝑔𝑒 + 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑀𝑒𝑛𝑡𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 + 𝐴𝑔𝑒𝑛𝑡 𝑅𝑒𝑝𝑜𝑟𝑡 𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦+ 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

 In DA, the human predictor that was not important to hit rate, i.e., age, was held constant. 

The overall model pseudo R2 was low (see Table 61 in Appendix F). 

 

Complete Dominance 

 As shown in Table 35, gender completely dominated all other predictors in the model, 

followed by mental demand. Agent report modality also completely dominated agent report 

delivery frequency. Since this confirmed the earlier finding reported in Human/Agent Qualities, 

delivery frequency was not further evaluated and dropped from analyses. 

 

Table 35  

Complete dominance results Full Model in Study D. 

Variable Gender Mental Demand Agent Report Modality Delivery Frequency 
Gender 0.5 1 1 1 
Mental Demand 0 0.5 1 1 
Agent Report 
Modality 0 0 0.5 1 
Delivery Frequency 0 0 0 0.5 

Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 
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 Since complete dominance was established between all predictors, such that gender > 

mental demand > agent report modality > delivery frequency, the conditional and general 

dominance analyses did not yield any additional results (Error! Reference source not found., Appendix 

F). 

 

Bootstrap 

Delivery frequency was not further evaluated and dropped from analyses, since it 

consistently was not an important predictor of hit rate. 

The results of S = 1000 bootstrap samples indicated that the confidence that gender would 
dominate mental demand and agent report modality in the actual population was high, varying 
from 73.2% to 88.9% (  
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Table 36). This level of confidence grew higher as the level of dominance decreased to 

conditional and general dominance. Since complete dominance was established between all 

predictors, such that gender > mental demand > agent report modality > delivery frequency, the 

bootstrapped conditional and general dominance values did not yield any additional results. 
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Table 36  

Bootstrap results Full Model in Study D. 

Variable i Variable j Dij �̅�ij SE(Dij) Pij Pji Pnoij Reproducibility 
Complete Dominance        

Gender Mental Demand 1 0.769 0.400 0.732 0.195 0.073 0.732 

Gender Agent Report Modality 1 0.918 0.248 0.889 0.054 0.057 0.889 

Mental Demand Agent Report Modality 1 0.730 0.405 0.663 0.203 0.134 0.663 

Conditional Dominance        

Gender Mental Demand 1 0.767 0.404 0.734 0.201 0.065 0.734 

Gender Agent Report Modality 1 0.919 0.252 0.897 0.059 0.044 0.897 

Mental Demand Agent Report Modality 1 0.737 0.414 0.690 0.217 0.093 0.690 

General Dominance        

Gender Mental Demand 1 0.775 0.418 0.775 0.225 0.000 0.775 

Gender Agent Report Modality 1 0.917 0.276 0.917 0.083 0.000 0.917 

Mental Demand Agent Report Modality 1 0.736 0.441 0.736 0.264 0.000 0.736 

Note. Dij is the dominance value of the original analyses, wherein Dij = 1 – Dji. Although each pair has two possible 

orders (ij and ji), only one order is shown to reduce redundancy 

The P.. values indicate the proportion of the S = 1000 bootstrap sample that replicated Dij, such that Pij = Pr(Dij = 

1), Pji = Pr(Dij = 0), Pnoij = Pr(Dij = 0.5). The reproducibility value refers to the proportion of the bootstrap sample 

that replicated Dij. 

Bold values imply a reference to the dominance value from the sample (Dij). 

 

Model Fit Evaluation: Regression 

The most important predictors were combined into a hierarchical beta regression model, 

wherein all human variables were preserved, as they would always be present in the natural 

world as well: 

𝑤𝑖𝑛𝑠𝑜𝑟𝑖𝑧𝑒𝑑 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 ~ 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑀𝑒𝑛𝑡𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 + 𝐴𝑔𝑒𝑛𝑡 𝑅𝑒𝑝𝑜𝑟𝑡 𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦 + 𝐴𝑔𝑒  
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The pseudo R2 of the model was 0.243 and was significantly better at predicting hit rate 

than the null model, χ2(6) = 111.34 p < 0.001. Moreover, the important predictors, i.e., all except 

age, were significant as shown in Table 37. 

 

Table 37  

Results beta regression on Full Model in Study D. 

 Beta Coefficient SE z-value Pr(>|z|) 
Intercept 0.00 0.14 -0.01 0.991 

Gender 0.37 0.08 4.59 < 0.001 

Mental Demand 0.01 0.00 3.66 < 0.001 

Agent Report Modality 0.2 0.08 2.52 0.012 

Age 0.01 0.01 0.39 0.698 
Note. Significant values are in bold. 

 

 The residuals did not show signs of dependence between the errors (Appendix F, Error! 

Reference source not found.). The predicted vs. observed values plot showed a large number of 

observations that were deviated from the fitted line based on maximum likelihood. However, the 

model looked superior compared to the models of studies A, B, and C.  

 

Hypotheses 

The null Hypothesis 1, of the Human/Agent Qualities, all factors are equally important to 

task performance, was rejected. Gender completely dominated age. 
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The null Hypothesis 2, all NASA-TLX subscales (Task Perception) contribute equally to 

task performance, was rejected. The most important variables to hit rate in terms of Task 

Perception was the mental demand subscale. 

The null Hypothesis 3, the Task Composition factors contribute equally to task 

performance, was rejected. Agent report modality was more important than the delivery 

frequency. 

The null Hypothesis 4, Task Composition, Perception of Task, and Human/Agent 

Qualities are equally important to task performance, was rejected. In study D, Human/Agent 

Qualities (gender) were most important to hit rate, followed by Task Perception (mental 

demand), and Task Composition (agent report modality) last. 

Based on the analyses and bootstrap, the hypothesized Core model in study D is 

presented in Figure 38. In study D, Human Qualities (gender) was most important to hit rate, 

closely followed by Task Perception (mental demand), and lastly Task Composition (agent 

report modality). 
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Figure 38. Updated Core model based on the results in Study D. 

Note. The size of the sections of the pie represent the relative importance of the factor to task performance. 

 

Overall Results 

 The overall results of the most importance factors of hit rate are captured in Table 38, 

wherein the darkness of the color indicates the level of importance. The results were very 

different between studies. This may be in part due to the different independent variables that 

were manipulated within each study. For instance, study A manipulated visual complexity, 

whereas study D manipulated agent report delivery frequency. However, the studies also differed 

in the content of the agent reports, threat criterion, and design of the humanoid character models 

(see Appendix A through D). These factors could not be accounted for in the present research 
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effort, as they were either fully nested between the studies or unidentified (in case of agent report 

content for Study D). Other differences between the studies were in terms of event rate and threat 

probability, two factors that influence task difficulty (Wickens & Hollands, 2000).  
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Table 38 

Data matrix with dominance results in color. 

Manipulation Experimental Study (Source: Abich et al., 2017; Barber et al., 2017; Barber et al., 2019; Bendell et al.,  
2020; Kopinsky; 2017)) 

 
Study 
A.1 

Study 
A.2 

Study 
B.1 

Study 
B.2 

Study 
B.3 

Study 
C.1 

Study 
C.2 

Study 
C.3 

Study 
D.1 

Study 
D.2 

Task Composition           

Event rate           
15 characters/min. • •  •  •* •* •*   
30 characters/min.   •  •      
60 characters/min.    •  •* •* •* • • 

Signal likelihood           
0.09-0.10         • • 
0.12-0.13   • • • • • •   
0.13-0.14 • •        • 

Task duration           
5 minutes    •       
10 minutes   •  •      
12 minutes • •         
15-16 minutes         •  
32 minutes      • • •  • 

Agent Task Type           
Receive Report • •    • • • • • 
Pull Report   • •       

Visual Complexity           
Basic •          
Enhanced  •         

 
 
•* Coded as NA           

Note. Darker hue indicates higher importance.  
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Manipulation Experimental Study (Source: Abich et al., 2017; Barber et al., 2017; Barber et al., 2019; Bendell et al.,  
2020; Kopinsky; 2017) 

 
Study 
A.1 

Study 
A.2 

Study 
B.1 

Study 
B.2 

Study 
B.3 

Study 
C.1 

Study 
C.2 

Study 
C.3 

Study 
D.1 

Study 
D.2 

Task Composition           

Agent Report Delivery Frequency           
Interval         •  
Immediate          • 

Agent Report Modality           
Auditory         • • 
Visual • • • • •    • • 
Single-Adaptive      • •    
Dual        •   

Human/Agent Qualities           
Agent Type           

Legged •          
Wheeled  •         

Demographics           
Age • • • • • • • • • • 
Gender • • • • • • • • • • 

Experience           
Military Experience   • • •      
Video Gaming Experience • •    • • •   

Task Perception           
Perceived Workload (NASA-TLX)           

Mental Demand • • • • • • • • • • 
Physical Demand • • • • • • • • • • 
Temporal Demand • • • • • • • • • • 
Effort • • • • • • • • • • 
Frustration • • • • • • • • • • 
Performance • • • • • • • • • • 
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The results of the conducted analyses in this effort suggest that these differences in task 

difficulty matter. Of the three studies that all had higher hit rate (> 0.90), event rate was 

significant in the study that manipulated this variable (study B). To understand the importance of 

predictors in light of task difficulty differences between studies, another DA was conducted 

wherein these factors were kept constant. This method ensured that the error associated with 

event rate and signal probability was accounted for. Age was also held constant, as the variable 

cannot be factored out in the real world.  

 However, even though event rate and signal probability were nested between the studies, 

a new variable could be created to account for their variance. Event rate and signal probability 

were combined into a new independent variable: threat conspicuity (Table 39). Threat 

conspicuity refers to the ease of perceiving a threat under conditions of event rate and threat 

probability. Low threat conspicuity was defined by high event rate (60 characters/minute) and 

low threat probability (0.09-0.10). High threat conspicuity was defined by low event rate (15 

characters/minute) and high threat probability (0.13-0.14). Anything in between was defined as 

medium threat conspicuity.  

 

Table 39  

Operationalization of threat conspicuity. 

Threat Conspicuity Level Event Rate Threat Probability 
Low threat conspicuity 60 characters/min. 0.09-0.10 
Medium threat conspicuity 30 characters/min.  

OR 
alternating 15 – 60 characters/min. 

0.12-0.13 

High threat conspicuity 15 characters/min. 0.13-0.14 
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Combined Studies: Constrained DA 

Hypothesis 

 Similar to the individual studies, the null hypothesis in the combined studies was: Task 

Composition, Perception of Task, and Human/Agent Qualities are equally important to task 

performance (Figure 39). 

 
Figure 39. Visual representation of hypothesis in combined studies. 

Note. The size of the sections of the pie represent the relative importance of the factor to task performance. The null 

hypotheses are that all factors and categories are of equal importance to task performance. Constant factors are 

grayed out. 
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Herein, based on the DAs on the individual studies, only the most important predictors of 

hit rate were included.  The potential suppressors from the individual studies, temporal demand, 

mental demand, and military experience, were indeed also suppressors in the combined analyses 

(see Table 62 and Error! Reference source not found. in Appendix F). These suppressor 

variables were dropped from the overall analyses, to gain insight into the most important 

predictors. 

Furthermore, due to the large number of missing values between studies, agent type, 

visual complexity, agent report delivery frequency, video gaming experience, and task type were 

excluded from the dominance analyses, as they missing values bias the results through 

elimination of observations. None of these variables were the primary important predictors of hit 

rate in DA of the individual studies.  

Since threat conspicuity and task duration could not be analyzed, as they are nested 

between the studies, they were kept constant and DA on the full model was conducted. Age was 

also kept constant, since it was not an important predictor in any of the studies yet could not be 

excluded in the natural world in a HAT context. The constants are greyed out in Figure 39. 

 

Dominance Analysis Combined Studies 

Full Model: Constrained DA 

 DA was conducted on the full model, such that: 
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𝑤𝑖𝑛𝑠𝑜𝑟𝑖𝑧𝑒𝑑 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 ~ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 + 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝐴𝑔𝑒𝑛𝑡 𝑅𝑒𝑝𝑜𝑟𝑡 𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦+ 𝑇ℎ𝑟𝑒𝑎𝑡 𝐶𝑜𝑛𝑠𝑝𝑖𝑐𝑢𝑖𝑡𝑦 + 𝑇𝑎𝑠𝑘 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐴𝑔𝑒 

 Herein, the constants were threat conspicuity, task duration, and age. 

 

Complete Dominance 

 Table 40 shows that when combining the studies, and keeping threat conspicuity, task 

duration, and age constant, agent report modality (Task Composition) the most important 

predictor of hit rate. It completely dominated all other factors. Complete dominance could not be 

established for the NASA-TLX performance subscale (Task Perception) and gender 

(Human/Agent Qualities).  

 

Table 40 

Complete dominance results in Combined Studies. 

Variable Agent Report Modality Performance Gender 
Agent Report Modality 0.5 1 1 
Performance 0 0.5 0.5 
Gender 0 0.5 0.5 

Note. A dominance value of 1 indicates dominance of the row variable of the column variable; 0 indicates 

dominance of the column variable over the row variable; 0.5 indicates that dominance could not be determined. 

 



156 

 

Conditional Dominance 

 The conditional dominance figure (Figure 40) elucidates that dominance could not be 

established between performance and gender. Both predictors have a similar low contribution to 

hit rate. 

 

 
Figure 40. Conditional dominance results in Combined Studies. 

Note. The plot shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) over different subset model sizes 

or levels. For example, a level of 1 indicates that one additional predictor is in the regression model. 

 

General Dominance 

 As shown in Figure 41, in terms of general dominance performance dominated gender. 
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Figure 41. General dominance results in Combined Studies. 

Note. The general dominance bar graph shows the unique contribution (in Cox & Snell’s (2018) pseudo R2) 

averaged over all possible subset model sizes. 

 

Bootstrap 

The results of S = 1000 bootstrap samples indicated that the confidence that agent report 

modality would dominate performance and gender was 100% (Table 41). Dominance between 

performance and gender was undetermined for the complete and conditional dominance levels, 

which was replicated in 72.3% - 78.3% of the bootstrap samples. Dominance tended toward 

performance, as seen by the higher mean (resp. 0.609 and 0.639). Indeed, dominance of 

performance over gender was confirmed on the general dominance level in 100% of the 

bootstrap samples. 
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Table 41  

Bootstrap results in Combined Studies. 

Variable i Variable j Dij �̅�ij SE(Dij) Pij Pji Pnoij Reproducibility 

Complete Dominance        

Performance Gender 0.5 0.609 0.206 0.217 0.000 0.783 0.783 

Performance Agent Report Modality 0 0.000 0.000 0.000 1.000 0.000 1.000 
Gender Agent Report Modality 0 0.000 0.000 0.000 1.000 0.000 1.000 

Conditional Dominance        

Performance Gender 0.5 0.639 0.224 0.277 0.000 0.723 0.723 

Performance Agent Report Modality 0 0.000 0.000 0.000 1.000 0.000 1.000 
Gender Agent Report Modality 0 0.000 0.000 0.000 1.000 0.000 1.000 

General Dominance        

Performance Gender 1 1.000 0.000 1.000 0.000 0.000 1.000 

Performance Agent Report Modality 0 0.000 0.000 0.000 1.000 0.000 1.000 

Gender Agent Report Modality 0 0.000 0.000 0.000 1.000 0.000 1.000 

Note. Dij is the dominance value of the original analyses, wherein Dij = 1 – Dji. Although each pair has two possible 

orders (ij and ji), only one order is shown to reduce redundancy 

The P.. values indicate the proportion of the S = 1000 bootstrap sample that replicated Dij, such that Pij = Pr(Dij = 

1), Pji = Pr(Dij = 0), Pnoij = Pr(Dij = 0.5). The reproducibility value refers to the proportion of the bootstrap sample 

that replicated Dij. 

The bold values imply a reference to the dominance value from the sample (Dij). 

 

Model Fit Evaluation 

The most important predictors were combined into a hierarchical beta regression model, 

such that: 

𝑤𝑖𝑛𝑠𝑜𝑟𝑖𝑧𝑒𝑑 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 ~ 𝐴𝑔𝑒𝑛𝑡 𝑅𝑒𝑝𝑜𝑟𝑡 𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦 + 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 + 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝐴𝑔𝑒+ 𝑇ℎ𝑟𝑒𝑎𝑡 𝐶𝑜𝑛𝑠𝑝𝑖𝑐𝑢𝑖𝑡𝑦 + 𝑇𝑎𝑠𝑘 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 
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The beta coefficients and significance testing are presented in Table 42. The pseudo R2 of 

the model was 0.520, which was a considerable improvement compared to the fits of the full 

models in the individual studies. The model was significantly better at predicting hit rate than the 

null model, χ2(10) =1079.80, p < 0.001. Furthermore, significance testing of the beta coefficients 

indicated that agent report modality was significant, while performance and gender were not 

significant. Additionally, threat conspicuity and task duration were indeed significant in 

predicting hit rate, which signified the importance of taking the variables into account. 

 

Table 42  

Results beta regression on model in Combined Studies. 

 Beta Coefficient SE z-value Pr(>|z|) 
Intercept -1.52 0.27 -5.66 < 0.001 

Agent Report Modality (Dual) -3.74 0.35 -10.74 < 0.001 

Agent Report Modality (Single Adaptive) -3.65 0.40 -9.15 < 0.001 

Agent Report Modality (Visual) 0.23 0.09 2.57 0.010 

Performance -0.00 0.00 -0.91 0.361 
Gender 0.10 0.06 1.78 0.076 
Age 0.01 0.01 0.76 0.446 
Threat Conspicuity 3.42 0.19 17.68 0.000 

Task Duration 0.13 0.01 9.62 0.000 

Note. Significant values are in bold. 

 

 Lastly, the residuals and predicted vs. observed values plots indicate that there was some 

grouping around the errors (Error! Reference source not found., Appendix F). This was most likely 

related to the differences in hit rate between studies A, B and C on the one hand, and study D on 

the other hand. This notion was also suggested in the predicted vs. observed values plot, wherein 

two groups of observations were present. 
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Hypothesis 

The null Hypothesis, Task Composition, Perception of Task, and Human/Agent Qualities 

are equally important to task performance, was rejected. When combining the four studies with 

threat conspicuity (Table 39) and non-important human variables kept constant, Task 

Composition (agent report modality) was most important to hit rate. Both Task Perception 

(performance), and Human/Agent Qualities (gender) were of little importance to task 

performance. 

 Based on the analyses, the Core model was best represented as shown in Figure 42Error! 

Reference source not found.. Task Composition factors were the most important contributors to task 

performance, with little contribution of Task Perception and Human(/Agent) Factors. 
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Figure 42. Updated Core model based on the results of the Combined Studies. 

Note. The size of the sections of the pie represent the relative importance of the factor to task performance. 
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CHAPTER FIVE: DISCUSSION 

The main objectives of the current effort were to (1) develop a model of military HAT 

performance and (2) to develop an approach to validate the model and apply this method to test 

the proposed model against empirical data. The experimental data was borrowed from studies 

conducted for the RCTA program (Childers et al., 2016), reported by Abich et al. (2017), Barber 

et al. (2018), Barber et al. (2019), Bendell et al. (2020), and Kopinsky (2017).  

 

Objective 1: Model of Simulated Military Human-Agent Teaming 

To develop the model, important constructs in relation to HAT performance were 

identified and integrated into a comprehensive model centered around task performance (Error! 

Reference source not found.). The proposed model consists of three layers. The outer Layer has 

the least direct impact on Task Performance: The Environmental Layer. This Layer consists of 

environmental variables, such as the scenario in which the mission takes place, environmental 

conditions, and overall awareness of the task, relationship, environment, and performance 

(situation awareness). The Relationship Layer focuses on the relationship between the human 

and agent teammate(s), with constructs as mutual trust, mental models, and transparency. The 

Core model directly impacts Task Performance and consists of Task Components, Task 

Perception, and the Qualities the Human/Agent bring to the team. The Core model was validated 

in this effort. Variables within each category, and between the three categories, were 

hypothesized to be of equal importance to task performance. 
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Task Composition refers to elements of the task and is known to affect task performance 

(Green, 1993; Lu et al., 2013; See et al., 1995; Szalma et al., 2008). Some of the most common 

analyzed components of task composition in relation to HAT performance are event rate, signal 

probability, and modality (Teo et al., 2018). However, other task components may be 

manipulated as well, as indicated by the data analyzed in the present effort. 

 The way in which individuals perceive the task (Task Perception) also affects task 

performance. Task Perception relates to the individual’s compensatory strategies, or self-

regulation, to modulate performance (Hancock & Warm, 1989; Hockey, 1997; Matthews, 

Winter, et al., 2019). Through perception of increased demand and potential drops in 

performance, individuals make a strategic decision in terms of up- or downregulating their 

information processing resources or effort toward the task (Hockey, 1997). In this manuscript, 

Task Perception was operationalized as the score on the NASA-TLX subscales, which are 

reflective of perception of cost incurred by the task, or perceived workload (Hart & Staveland, 

1988).  

 Lastly, Human/Agent Qualities refer to the qualities that each entity brings to the team. 

Human qualities include differences in personality, experience, age, and gender. Agent qualities 

pertain to characteristics such as morphology, level of automation, and reliability. In the 

borrowed experimental studies, the agent was simulated to be 100% reliable, fully autonomous 

and capable of performing its task.  
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Objective 2: Model Validation Approach 

Data from four simulated military HAT studies were taken from previous efforts under 

the RCTA (reported by Abich et al., 2017; Barber et al., 2018; Barber et al., 2019; Bendell et al., 

2020; Kopinsky, 2017) to validate the Core model. Herein, participants performed a continuous 

threat detection task, while an autonomous agent conducted its own task out-of-sight and 

reported intermittently to the human team member. Task performance was operationalized in 

terms of accuracy of the primary mission, which was threat detection. Threat detection was 

performed by the human teammate. Performance was measured as hit rate, i.e., the ratio of 

correctly identified threats to number of total threats available. As a proportional variable, the 

data followed a beta-distribution (Ferrari & Cribari-Neto, 2004). 

To test this relative-importance based model against beta-distributed empirical data, a 

validation approach was proposed: 

1. Apply dominance analysis (DA) on beta regression models to determine the most important 

contributors to the outcome variable. DA compares the unique additional contribution of each 

predictor to the outcome variable in all regression subset model sizes (Azen & Budescu, 2003; 

Budescu, 1993). 

2. Establish the robustness and generalizability of the dominance results by bootstrapping the 

dominance values (Azen & Budescu, 2003; Efron, 1981). 

3. Combine the most important predictors into a hierarchical beta regression model and evaluate 

the fit of the model (Ferrari & Cribari-Neto, 2004). 
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 As part of the development of the validation approach, different pseudo R2 were as 

goodness-of-fit estimators of dominance analysis based on beta regression models. Cox and 

Snell’s pseudo R2 (Cox & Snell, 2018) was the most appropriate statistics and was integrated in a 

dominanceanalysis package that is now available in R for public use (Bustos & Countinho, 

2019).  

In the following sections, the results of the analyses for each study are discussed in terms 

of hypothesized and reported results. Subsequently, the overarching implications are discussed in 

relation to the proposed model and modeling approach. 

 

Study A 

 In Study A, agent morphology type (animal-like vs. machine-like; category 

Human/Agent Quality) and visual complexity (basic vs. enhanced visual cues; category Task 

Composition) were manipulated. The threat detection task was conducted under low event rate 

with high threat probability. Average hit rate (M = 0.97, SD = 0.05) was within the military 

performance standard (Naval Education and Training Command, 2009). No DA was conducted 

on Task Composition, since one Task Composition predictor was manipulated: visual 

complexity. The results are summarized in Table 43. 
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Table 43  

Summarized result of dominance analyses in Study A. 

Null Hypothesis Importance Result 

1. All Human/Agent Qualities 
contribute equally to hit rate 

Agent morphology type > age > military 
experience. 
Video gaming experience and gender 
suppressors 

Null hypothesis 1 not 
rejected 

2. All Task Perception variables 
contribute equally to hit rate 

Performance. 
Effort, mental demand, and temporal demand 
suppressors 

Null hypothesis 2 not 
rejected 

3. Task Composition, Perception of 
Task, and Human/Agent Qualities 
are equally important to hit rate 

Performance (TP)a > visual complexity (TC)a 
> agent report modality (TC)a > age (H/A)a 

Null hypothesis 3 not 
rejected 

Note. In the column Importance the > symbol signifies the dominance of the variable over the others. For instance, 

agent morphology type dominated age and military experience, while age also dominated military experience. 

a TP = Task Perception, TC = Task Composition, H/A = Human/Agent Qualities. 

 

 None of the null hypotheses were rejected since statistical significance was not 

established for the differences in unique additional contribution between the predictors. For the 

Human/Agent Qualities, DA indicated that agent morphology was the most important contributor 

to hit rate, followed by age, and military experience. However, this difference was not 

statistically significant in the subsequent analyses. Two potential suppressors were identified, 

video gaming experience and gender. Suppressor variables gain importance over different model 

subset sizes through collinearity with other predictors in the model, rather than through their 

direct association with the outcome variable (Azen & Budescu, 2003; Smith et al., 1992). Thus, 

video gaming experience and gender were not yielding an important unique contribution to hit 

rate in Study A.  
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DA of the NASA-TLX subscales, reflective of Task Perception, indicated that in this 

study the performance subscale was qualitatively the most important predictor of hit rate. The 

effort, mental demand, and temporal demand subscales were suppressor variables. However, 

since subsequent statistical analyses did not establish significance for these differences, the null 

Hypothesis 2, all Task Perception variables are equally important to hit rate, was not rejected. 

The qualitatively most important predictors were combined into a full statistical model. 

Herein, non-dominant human/agent variables were held constant to account for their explained 

variance without analyzing their dominance effects (Azen & Budescu, 2003). DA on the full 

model, holding military experience, video gaming experience, and gender constant, indicated 

that the NASA-TLX performance subscale (Task Perception) was the most important predictor 

of hit rate. Visual complexity (Task Composition) was the second most important variable, 

followed by agent type and age (Human/Agent Qualities). Under the parameters set by this 

study, e.g., low event rate and high signal probability, human or agent variables contributed little 

to performance. However, subsequent analyses were not significant, thus, the null hypothesis that 

Task Composition, Task Perception and Human/Agent Qualities contributed equally to task 

performance was not rejected. 

 The dominance pattern was not robust based on the bootstrap results. The strongest level 

of dominance results (complete dominance) were replicated in 58.5% of the bootstraps at most, 

which indicated that the confidence that this result will be replicated in the natural world was 

low. The lack of robust generalizability to the population was most likely explained by the poor 
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model fit, as indicated by the low pseudo R2 (0.038) and lack of significance when this full 

model was compared to the null model. 

 

Study B 

In study B, event rate and agent task type (pull vs. receive agent report) were 

manipulated. The threat detection task was conducted under low event rate, medium event rate, 

or high event rate. Task duration was either five or ten minutes, depending on the scenario. This 

study collected data at a university and at a military base, to understand the effects of differences 

in military experience to performance. The average hit rate was 0.95 (SD = 0.07) and within 

bounds of the military standard (Naval Education and Training Command, 2009). The 

hypotheses and results are summarized in Table 44. 

Table 44  

Summarized result of dominance analyses in Study B. 

Null Hypothesis Importance Result 

1. All Human/Agent Qualities contribute 
equally to hit rate 

Military experience > Age & gender Null hypothesis 1 
rejected 

2. All Task Perception variables 
contribute equally to hit rate 

Performance. 
Effort and temporal demand suppressors 

Null hypothesis 2 
rejected 

3. All Task Composition variables 
contribute equally hit rate 

Event rate > Task duration > Task type Null hypothesis 3 
rejected 

4. Task Composition, Perception of 
Task, and Human/Agent Qualities are 
equally important to hit rate 

Event rate (TC) a > Performance (TP) a > 
Military experience (H/A) a 

Null hypothesis 4 
rejected 

Note. In the column Importance the > symbol signifies the dominance of the variable over the others. For instance, 

event rate dominated task duration and task type, while task duration also dominated task type. 

a TP = Task Perception, TC = Task Composition, H/A = Human/Agent Qualities. 
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 DA on the Human/Agent Qualities, i.e., age, gender, and military experience, indicated 

that military experience was the most important predictor of hit rate. Null Hypothesis 1, all 

Human/Agent Qualities are equally important to hit rate, was rejected. 

 Of the Task Perception variables, the NASA-TLX performance subscale was the most 

important predictor of hit rate. The effort and temporal demand subscales were suppressor 

variables. Mental and physical demand were the least important predictors of hit rate. Null 

Hypothesis 2, all Task Perception variables are equally important to hit rate, was rejected. 

 DA of the Task Composition variables indicated that event rate completely dominated 

task type (push vs. pull reports) and task duration. Task duration and task type were not 

important to hit rate. 

 DA on the full model using the most important predictors, and the human variables as 

constants, indicated that event rate (Task Composition) was the most important predictor of hit 

rate. The NASA-TLX performance subscale (Task Perception) was the second most important 

variable. Human Qualities were the least important contributors to hit rate. The null hypothesis 

that Task Composition, Task Perception and Human/Agent Qualities were equally important to 

hit rate was rejected. 

Of the full model, the complete dominance results were replicated in 81.0 to 99.3% of the 

bootstraps, which indicated that the confidence that this result will be replicated in the natural 

world was high. The bootstrapped general dominance values emphasized the importance of event 

rate and the performance subscale. The fit of the full model was poor (pseudo R2 =  0.107) but 
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significant compared to the null model. This significance was driven by event rate, emphasizing 

the importance of Task Composition on task performance. 

 

Study C 

In study C, event rate (low vs. high) and agent report modality (single-adaptive vs. dual) 

were manipulated. However, event rate was not evaluated for importance since experimental 

blocks could not be combined. Some blocks that were expected to be identical resulted in 

significantly different results (Barber et al., 2019). The average hit rate was again high, 0.95 (SD 

= 0.07), within the bounds of the military performance standard (Naval Education and Training 

Command, 2009). Since agent report modality was the only manipulated Task Composition 

variable, no DA was conducted on Task Composition alone. The hypotheses and results are 

summarized in Table 45. 

 

Table 45  

Summarized result of dominance analyses in Study C. 

Null Hypothesis Importance Result 

1. All Human/Agent Qualities 
contribute equally to hit rate 

Video gaming experience > gender > age 
Military experience suppressor 

Null hypothesis 1 
rejected 

2. All Task Perception variables 
contribute equally to hit rate 

Temporal demand Null hypothesis 2 
rejected 

3. Task Composition, Perception of 
Task, and Human/Agent Qualities 
are equally important to hit rate 

Temporal demand (TP) a > Video gaming 
experience (H/A) a > Agent report modality 
(TC) a 

Null hypothesis 3 
rejected 
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Note. In the column Importance the > symbol signifies the dominance of the variable over the others. For instance, 

video gaming experience dominated gender and age, while gender also dominated age. 

a TP = Task Perception, TC = Task Composition, H/A = Human/Agent Qualities. 

 

DA of the Human/Agent Qualities indicated that video gaming experience was the most 

important predictor of hit rate. Military experience was identified as a potential suppressor 

variable that gained importance through collinearity with other predictors in the model. The 

predictor of lowest importance to hit rate was age. Null Hypothesis 1, all Human/Agent Qualities 

are equally important to hit rate, was rejected. 

 DA of the NASA-TLX subscales, reflective of Task Perception, indicated that in this 

study the temporal demand subscale was the most important contributor to hit rate. Thus, the 

amount of experienced time pressure due to rate or pace of the task (Hart & Staveland, 1988) 

was an important predictor of hit rate. This result is unsurprising given the long duration of the 

three scenarios, each 32 minutes, all participants were exposed to. Null Hypothesis 2, all Task 

Perception variables are equally important to hit rate, was rejected. 

 DA on the full model using the most important predictors, and the human variables as 

constants, indicated that temporal demand (Task Perception) was the most important predictor of 

hit rate, followed by video gaming experience (Human/Agent Qualities) and agent report 

modality (Task Composition). Null Hypothesis 3, Task Composition, Perception of Task, and 

Human/Agent Qualities are equally important to task performance, was rejected.  
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The generalizability of the results of the full model was fairly robust. The complete 

dominance of temporal demand was replicated in 81.3 to 92.7% of the bootstraps, which 

indicated that the confidence that this result will be replicated in the natural world was high. 

However, the complete dominance of video gaming experience was less robust (43.2% - 71.5% 

reproducibility). Nonetheless, in the significance testing of the full hierarchical model, video 

gaming experience was significant. Moreover, the fit of the full model, although poor (pseudo R2 

= 0.189), was significant compared to the null model.  

 

Study D 

Study D manipulated the delivery frequency of agent reports (immediate vs. interval) and 

agent report modality (auditory vs. visual). The threat detection task occurred at a constant high 

event rate with a low signal probability. Average hit rate was considerably lower (M = 0.67, SD 

= 0.11) than Study A, B, and C and well below the military standard of performance (Naval 

Education and Training Command, 2009). Data regarding video gaming were not available and 

all participants were non-military (i.e., students). The hypotheses and results are summarized in 

Table 46. 

. 
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Table 46  

Summarized result of dominance analyses in Study D. 

Null Hypothesis Importance Result 

Hypothesis 1. All Human/Agent 
Qualities contribute equally to hit 
rate 

Gender > Age Null hypothesis 1 
rejected 

Hypothesis 2. All Task Perception 
variables contribute equally to hit 
rate 

Mental demand. 
Temporal demand and effort suppressors 

Null hypothesis 2 
rejected 

Hypothesis 3. All Task Composition 
variables contribute equally hit rate 

Agent report modality > Agent report 
delivery frequency 

Null hypothesis 3 
rejected 

Hypothesis 4. Task Composition, 
Perception of Task, and 
Human/Agent Qualities are equally 
important to hit rate 

Gender (H/A) a > Mental demand (TP) a > 
Agent report modality (TC) a  

Null hypothesis 4 
rejected 

Note. In the column Importance the > symbol signifies the dominance of the variable over the others. For instance, 

gender dominated mental demand and agent report modality, while mental demand also dominated agent report 

modality. 

a TP = Task Perception, TC = Task Composition, H/A = Human/Agent Qualities. 

 

DA of the Human/Agent Qualities variables, i.e., age and gender, indicated that gender 

was the most important predictor of hit rate. Null Hypothesis 1, all Human/Agent Qualities are 

equally important to hit rate, was rejected. 

 DA of the NASA-TLX subscales, reflective of Task Perception, indicated that in this 

study the mental demand subscale was the most important predictor of hit rate, followed by the 

effort subscale. The temporal demand subscale was identified as a potential suppressor variable. 

Null Hypothesis 2, all Task Perception variables are equally important to hit rate, was rejected. 

 DA of the Task Composition variables, agent report modality and report delivery 

frequency, indicated that agent report modality was the most important predictor of hit rate. 
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 DA on the full Core model using the most important predictors, and age as a constant, 

indicated that gender (Human/Agent Qualities) was the most important predictor of hit rate, 

followed by mental demand (Task Perception) and agent report modality (Task Composition). 

Null Hypothesis 4, Task Composition, Perception of Task, and Human/Agent Qualities are 

equally important to task performance, was rejected.  

The generalizability of the results of the full model was robust. The complete dominance 

results of gender were replicated in 73.2 to 99.1% of the (S = 1000) bootstraps, which indicated 

that the confidence that this result will be replicated in the natural world was high 

The fit of the full model, based on the hierarchy of importance, was poor (pseudo R2 = 

0.243) yet significant compared to the null model. The significance of the coefficients confirmed 

that gender, mental demand, and agent report modality were important predictors of hit rate. 

 

Summary Results 

 The pattern of dominance was different between studies, potentially due to the different 

independent variables that were manipulated within each study. However, the studies also 

differed in the content of the agent reports, threat criterion, and design of the humanoid character 

models (see Appendix A through D). These factors could not be accounted for in the present 

research effort, as they were either fully nested between the studies or unidentified (in case of 

agent report content for Study D). Other differences between the studies were in terms of event 

rate and threat probability, two factors that influence task difficulty (Wickens & Hollands, 2000). 

These latter two predictors were collapsed into a new variable: threat conspicuity (Table 39). 



175 

 

Threat conspicuity refers to the ease of perceiving a threat under conditions of event rate and 

signal probability. An exploratory DA was conducted on the combined studies, keeping this task 

composition factor constant. 

 

Combined Studies 

 DA was conducted on the full model, with task difficulty parameters (threat conspicuity 

and task duration) and age held constant. The hypothesis that Task Composition, Task 

Perception, and Human/Agent Qualities were equally important to hit rate was rejected. The 

analysis indicated that agent report modality (Task Composition) was the most important 

contributor to hit rate, followed by the NASA-TLX performance subscale (Task Perception) and 

gender (Human/Agent Qualities). The results were very robust. Complete dominance of agent 

report modality was dominated in 100% of the (S = 1000) bootstrap samples. General dominance 

of performance over gender was replicated in 100% of the bootstrap samples as well.   

The fit of the full model was considerably better than the fit of the models of the 

individual studies (pseudo R2 = 0.520 compared to pseudo R2 ≤ 0.243). Moreover, the beta 

regression model was significant compared to the null model. The significance of the coefficients 

revealed that not only agent report modality was indeed a significant predictor of hit rate, so 

were threat conspicuity and task duration.  
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Overarching Implications 

Model 

 The validation results of the Core model, based on four studies, unveils a number of 

implications. First, the analyses of each of the studies showed that the factors within and between 

each section of the Core model, i.e., Task Composition, Task Perception, and Human/Agent 

Qualities, were not equal contributors to task performance (Figure 43). All studies falsified the 

model in this sense. However, since the results were drastically different between the studies, 

which factors are most important predictors of hit rate remained unknown based on the available 

experimental data. This is where the second implication needs to be discussed. 
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Figure 43. Summary of validation results per study. 

Note. The validation results of the Core model are visually summarized in this figure. The size of the sections of the 

pie charts represent the relative size of importance of components. In Study A, Task Perception factors are most 

important to task performance, followed by Task Composition, and last Human/Agent Qualities. In contrast, Task 

Composition factors were most important in Study B, followed by Task Perception, and Human/Agent Qualities 

last. Study C identified Task Perception components as most important contributors to hit rate, followed by 

Human/Agent Qualities, and Task Composition factors last. Task Composition factors were also of lesser 

importance in Study D, where Human/Agent Qualities were most important, followed by Task Perception. 
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 The second implication of the analyses is that task difficulty factors should be taken into 

account when analyzing the relative importance of factors to task performance. Task difficulty 

factors are task-specific elements that are manipulated to vary the difficulty of the task (Wickens 

& Hollands, 2000). In the experimental data here, the studies differed in event rate (number of 

characters on screen per minute; Wickens & Hollands, 2000), signal probability (the likelihood 

that one of these characters was a threat; Warm & Jerison, 1980), and task duration. The results 

in Figure 43 reflect dominance patterns when these task difficulty factors are not taken into 

account and suggests that importance varies considerably between studies. 

 However, when the studies were combined, to allow for consideration of task difficulty 

factors, i.e., kept constant in the dominance analysis to take their explained variance into account 

(Azen & Budescu, 2003), the results showed that Task Composition factors matter most (Figure 

44). Moreover, significance testing of the beta coefficients in the full model, wherein constants 

are evaluated, revealed that these task difficulty factors were also significant in predicting hit 

rate. The way in which participants rate their perceived workload related to the task (Task 

Perception) and the qualities team members bring to the table (Human/Agent Qualities) did not 

bare importance. Thus, the Core model was consistently falsified, indicating that Task 

Composition, Task Perception, and Human/Agent Qualities are not equally important to military 

HAT accuracy performance.  
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Figure 44. Summarized dominance analysis results in combined studies with task difficulty parameters kept 

constant. 

Note. This figure summarizes the validation results of the Core model for the four studies combined, with task 

difficulty parameters (task duration and threat conspicuity, see Table 39) and age held constant. The size of the 

sections of the pie charts represent the relative size of importance of components. When task difficulty factors are 

taken into account, Task Composition factors are most important to task performance. 

 

Conclusion Model 

 Based on the results, the assumption of the Core model, Task Components, Task 

Perception, and Human/Agent Qualities are equally important to hit rate, was falsified. The 

results between the studies were too different to reliably establish the most important contributor 
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to hit rate, which may in part have been due to differences in task difficulty between the studies. 

However, when task difficulty parameters are taken into account, Task Composition factors were 

identified as most important to performance. These analyses also unveiled the need to take task 

difficulty parameters into account when examining dominance patterns. 

 

Modeling Approach 

A modeling approach was developed to validate importance-based models with a 

proportional outcome variable. The validation method consisted of the following steps: 

1. Apply DA on beta regression models to determine the most important contributors to the 

outcome variable (Azen & Budescu, 2003; Budescu, 1993). 

2. Establish the robustness and generalizability of the dominance results by bootstrapping the 

dominance values (Azen & Budescu, 2003; Efron, 1981). 

3. Combine the most important predictors into a hierarchical beta regression model and evaluate 

the fit of the model (Ferrari & Cribari-Neto, 2004). 

To conduct DA on beta regression models, four different pseudo R2 statistics were tested. 

The most appropriate pseudo R2 (Cox & Snell, 2018) was integrated with beta regression models 

in the dominanceanalysis package in R (Bustos & Countinho, 2019). This combined method has 

shown to be capable of establishing complete, conditional, and general dominance of predictors 

in beta-distributed data. This allows researchers to understand which predictors are most 
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important to performance. The pseudo R2 was also useful as a goodness-of-fit estimator, 

confirming previous studies (Shou & Smithson, 2015).  

Conducting bootstrap procedures on the dominance values allowed a more robust 

evaluation of the dominance values. Dominance analysis alone is a qualitative relative weight 

analysis, which traditionally has not yielded statistical significance or confidence estimations 

(Budescu, 1993). Applying Azen and Budescu’s (2003) bootstrap procedure in this effort yielded 

a confidence percentage indicative of generalization to the actual population. Moreover, 

bootstrap procedures confirmed the hierarchy of dominance as set forth by Budescu (1993). He 

suggested that complete dominance is a higher level of dominance than conditional, and lastly 

general dominance. If a predictor is completely dominant over another predictor, it is by 

definition also conditionally and generally dominant over said predictor (Budescu, 1993). 

Indeed, the bootstrap analyses indicated that generalizability of complete dominance is more 

difficult to establish, i.e., the confidence percentage of generalizability tended to be lower, than 

conditional and general dominance.   

The last step of the validation approach is to combine the most important predictors, as 

identified by DA and bootstrapping, into a full hierarchical beta regression model (Ferrari & 

Cribari-Neto, 2004). This step added statistical significance testing to the traditional dominance 

analysis. As such, the significance of the dominant predictors was established and fortified the 

most dominant contributors of task performance. Evaluation of the full model, in terms of the fit, 

also yields a comparative goodness-of-fit approach, along with significance testing of the model 

against the null model (Ferrari & Cribari-Neto, 2004).  
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Conclusion Validation Approach 

The developed model validation approach identified the most important contributors to 

hit rate per study, relative to all other predictors present in the model. The added bootstrap and 

model fit evaluation procedures allowed for significance testing of the dominance findings, a 

step that was previously lacking in DA. This approach has filled a gap in science; now 

importance-based models, with proportion-based outcome variables, can be validated with an R 

package that fluidly integrates beta regression into DA: https://rdrr.io/cran/dominanceanalysis/ 

(Bustos & Countinho, 2019). 

 

Limitations 

 The first goal of the present effort was to develop a model of simulated military HAT to 

fill the gap in science. The proposed model is limited in a number of ways. First, the model is a 

step toward a conceptual model, rather than a true conceptual model that elucidates the 

interrelations between all concepts (Imenda, 2014). The proximity of the layers (Core, 

Relationship layer, and Environmental layer) to the center of task performance represents the 

hypothesized direct impact of these grouped variables to performance. However, the proposed 

model lacks directionality between and within the layers. The present research effort was a first 

step in modeling simulated military HAT. Future research should capitalize and continue this 

work to provide the finalized conceptual model. 

https://rdrr.io/cran/dominanceanalysis/
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In the present effort, model testing was limited to the Core model, as a first step in 

validation of this model. However, the Core could only be tested against available empirical 

data. This meant that components of Task Perception, i.e., perceived stress, and Human/Agent 

Qualities, i.e., personality differences, were lacking. Moreover, in the studies, the agent was 

simulated to be fully autonomous and 100% reliable; therefore, these Agent Qualities were not 

tested within the Core model. Furthermore, task performance, the focal point of this simulated 

military HAT model, was operationalized in terms of human performance in terms of threat 

detection performance. Here, this was an appropriate metric of HAT performance, as in 

dismounted military operations the Soldier is still recommended to make threat/no threat (i.e., 

life or death) decisions, rather than the agent (Singer, 2009). Moreover, the performance was 

conducted within the proposed HAT paradigm wherein the human and agent both contributed to 

the mission. The agent scouted the outer cordon and reported its findings to the human 

teammate. However, the extent to which the results from the present effort generalize to studies 

wherein task performance is operationalized in terms of agent and/or mission performance (e.g., 

time of completion) is unknown. Moreover, this outcome variable did not enhance our 

understanding of the global performance, which included both accuracy and response time. 

Typically, accurate responses in terms of decision-making come at a cost of prolonged response 

time and fast responses come at a cost of accuracy (Pachella & Pew, 1968).  

 Another limitation of the present effort relates to the design of the studies from which the 

experimental data was used. Three of the four studies showed a ceiling effect on the performance 

outcome (within military standards), while one study had an average outcome well below the 

military performance standard. These differences in results may have affected the dominance 
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analysis findings in a non-controllable way. This is a limitation of the developed validation 

approach: it cannot transcend data limitations. An attempt was made to account for task 

difficulty factors between the studies and reevaluate the dominance pattern of predictors. 

However, in these attempts, most of the Task Composition factors were excluded from the 

analysis. Values could not be imputed as the results between the studies were different and the 

variables were manipulated factors. Given these limitations, no conclusions could be made 

regarding the most important predictors of hit rate. 

Lastly, the finding that Task Composition was most important for hit rate may not be 

extended to other simulated military HAT studies. Even though the generalizability of the results 

were very robust, they may only pertain to studies with similar data. Moreover, the results may 

not yet extend to military HAT in the natural world either. Simulation is an ecologically valid 

approach to understanding phenomena in the natural world. However, the psychological 

conditions are very different between simulated military studies and the military battlefield. 

Similarly, collaborating with a simulated intelligent agent may not be a correct approximation of 

working with an agent face-to-face in the field either. Therefore, the implications of the results of 

the present research effort is limited to the described scope of simulated military HAT. 

 

Future Research 

 In the current effort, a model of military HAT was developed that integrates important 

HAT-constructs and the Core model was validated against available empirical data. While the 

results falsified the assumption of the Core model that Task Composition, Task Perception, and 
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Human/Agent Qualities are equally important to performance, it is still unknown which factors 

contribute most to task performance. The experimental data used to test the model (a) prevented 

inclusion of all proposed components of the Core model, (b) differed in task difficulty 

parameters and outcome variables, and (c) were nested in terms of task difficulty. Future 

research should focus on testing the Core model with all of the proposed variables included.  

Moreover, task difficulty parameters need further examination in simulated military HAT 

studies. When event rate and signal probability follow vigilance research (See et al., 1995), hit 

rate is high (> 0.90) and within the bounds of the military standard of performance (Naval 

Education and Training Command, 2009). However, when these task difficulty variables are 

changed such that event rate is constant and high (60 characters/minute) with a lower signal 

probability (0.09-0.10), average hit rate plummets and falls well below the military standard. 

Future research should focus on deepening the understanding the factors that affect performance 

under distinct task difficulty levels in simulated military HAT. 

Additionally, another area of interest that future research should pursue is the 

beforementioned speed-accuracy tradeoff in these dynamic threat detection tasks. In a threat 

detection task, participants decide whether or not they think a character is a threat by clicking or 

not clicking on a character (Pachella & Pew, 1968). The speed-accuracy tradeoff can be 

examined using a response signal procedure that requires a response immediately after a signal 

appears, or using a deadline procedure, wherein a response should be given within a certain time 

limit (Dambacher & Hübner, 2013). In the current borrowed studies, the deadline procedure is in 

better alignment with the methodology than the response signal procedure, as participants were 
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to click on a simulated threat before it would walk off the screen. However, a future study also 

should meet other design requirements to be able to calculate the speed-accuracy tradeoff, such 

as controlled/designed time-on-screen (deadline) for the characters and instructions to detect 

threats as accurately and as rapidly as possible under various task difficulty levels (Dambacher & 

Hübner, 2013; Wickelgren, 1977). The borrowed studies used here were not designed in this 

manner and the data thus cannot be evaluated in terms of a speed-accuracy tradeoff. Moreover, 

traditionally, speed-accuracy tradeoffs with deadline procedures are not used in dual-task 

paradigms (Dambacher & Hübner, 2013). Therefore, future studies looking to examine the 

speed-accuracy tradeoff in dynamic threat detection tasks may need to remove the interrupting 

agent reporting tasks in order to adequately understand the tradeoff. 

Lastly, as mentioned in the limitations, the proposed model is a first step into providing a 

complete conceptual model that elucidates interrelations between concepts, both within and 

between the layers of the model. The relationships between the concepts within the Core model 

should be further clarified, following the suggested guidelines in this section. Then, the 

interrelations between the constructs within the Relationship Layer and the Environmental Layer 

need to be further developed, validated, and mapped within the conceptual model. As a last step, 

the transactional interactions between the three sections of the model (Core, Relationship Layer, 

Environmental Layer) should be tested.  
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APPENDIX A: DESCRIPTION BORROWED STUDY A 

Participants were recruited from the University of Central Florida’s undergraduate 

psychology pool in exchange for course credit. Two participants classified as military based on 

their extensive self-reported military experience.  

The study was ran on a Human-Robot Interaction testbed that was built in an Unreal 

Games Engine environment (Epic Games, Inc., 2019). A virtual reality system was used to create 

an immersed, simulated experience. The HTC Vive (D’Orazio, 2015) system was used for this 

study. This system consists of two SteamVR base stations, a head-mounted display, with a 

camera near the bottom, and two wireless handheld controllers, allowing participants to 

interactively move in 3D space. The base stations create a 360 degree virtual space up and emit 

infrared pulses at 60 pulses per second, allowing the Vive system to track the participant’s 

physical location (D’Orazio, 2015; Steamworks, 2019). The headset and controllers both have 

infrared sensors that interact with the base stations, allowing the system to track the accessories 

in 3D space (“HTC Vive,” 2019). The headset refreshes at 90 Hz and has a 110 degree field of 

view (FOV), although an entire 360 degree FOV is available due to the physical affordances of 

the system (D’Orazio, 2015; VIVE, 2019). In the display, two OLED panels are available, one 

for each eye, with a combined display resolution of 2160 x 1200 pixels (“HTC Vive,” 2019). 

With the controller, participants could point to characters on screen. Pointing the 

controller created a simulated laser beam, which allowed participants to aim. With the 

controller’s trigger, they could identify a threat. A trigger-click temporarily highlighted the 

character, as a feedback of response mechanism. 
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Experimental Design 

This study was a mixed design, with visual complexity (of the signal detection display 

and icons) as a between-subjects variable (two levels: low vs. high) and agent type as a within-

subjects variable (two levels: legged (study A.1) vs. wheeled (study A.2)). Neither of these 

factors was represented sufficiently in the other included studies to generate statistical power for 

the present effort. Thus, these independent variables were not coded in the dataset for the present 

study. The order of presentation was coded, which agent was presented first was counterbalanced 

and randomized in Study A. Each task duration was approximately 10 minutes. 

Participant data was collected in accordance with the approved IRB. Video gaming 

experience was rated as shown in Table 47. 

 

Table 47  

Rating scale for video gaming frequency. 

1 2 3 4 5 6 
Never Rarely Once every few 

months 
Monthly Weekly Daily 

 

 

Threat Detection Task 

 The ongoing task was a threat detection task, wherein participants were to identify threats 

among the characters walking across the screen. The event rate for the characters was set at 15 

per minute. The characters were of three types: friendly soldiers, friendly civilians, and enemy 
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civilians (insurgents). Figure 45 shows the friendly civilians and soldiers. Figure 46 displays the 

range of enemy civilians. Participants identified a threat by clicking on them with the HTC Vive 

controller. 

 

 
Figure 45. Friendly civilians and soldiers (non-threats) in Study A. 

Note. Copyright permission in APPENDIX K. 

 

 
Figure 46. Enemy civilians (threats) in Study A. 

Note. Copyright permission in APPENDIX K. 

 

Agent Reporting Task 
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 As part of the cordon-and-search mission, the autonomous robot teammate would 

conduct their search of a designated cordon and report back. These reports were presented 

visually in the interface as a text report with additional visual informational elements, which 

were manipulated between the low and high visual complexity conditions. The reports contained 

information regarding what was found (e.g., three IEDs, two insurgents, five weapon crates) and 

where it was found (e.g., East side of the building, North side of the building, first floor of the 

building). These reports were created based on Subject Matter Expert interviews with a former 

U.S. Army Staff Sergeant and the U.S. Army Handbook (Headquarters Department of the Army, 

2006). A report was sent regularly, that is, every 15 to 18 seconds and the text updates lasted 10 

seconds each.  
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APPENDIX B: DESCRIPTION BORROWED STUDY B 
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APPENDIX B: DESCRIPTION BORROWED STUDY B 

Two samples were utilized in study B. One sample used undergraduate students from the 

University of Central Florida that were recruited through the Psychology resource pool for 

course credit. Three participants from this sample had multiple years of military experience (two 

in the National Guard and one Air Force Reservist). As such, these participants were classified as 

military rather than student. The other sample were Soldiers from Ft. Benning’s officer school. 

Soldiers volunteered and did not receive compensation for their participation. 

 

Equipment 

This study was ran on a desktop-based version of a custom simulation that was developed 

in the Unreal 4 Game Engine (Epic Games, Inc., 2019). The task was viewed on a 30” monitor 

with a resolution of 2560 x 1600. In the top center of the screen, a simulated multimodal 

interface (MMI) would become available when visual agent reports were sent to the participant. 

The MMI matches the size of a Toughpad FZ-M1 tablet with a resolution of 602 x 377 pixels.  

 

Experimental Design 

Study B consists of two conditions. Participants actively pulled agent reports, but under 

constant (B.1) or changing (B.2) event rate. The order of presentation was counterbalanced. 

 In conditions B.1 and B.2 event rate was manipulated as a within-subjects variable. In 

B.1 the ongoing threat detection task  had a constant number of characters on screen per minute, 
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which was set at 30 characters/minute. In B.2, the event rate changed halfway during the 

scenario. Half of the scenario ran in a low event rate, with 15 characters/minute, while the 

remainder ran in a high event rate, with 60 characters/minute. The order of the event rate shift, 

either from low-to-high or high-to-low, was counterbalanced within the design.  

 

Threat Detection Task 

In each condition, the ongoing task was a simulated military Cordon-and-Search 

operation (Sutherland et al., 2010), in which participants were tasked with capturing photos of 

threats to help build the agent teammate’s database with examples of threats. With each click, 

they heard a camera snapshot sound as feedback of response. There were four types of 

characters: friendly Soldiers and friendly civilians (Figure 47), and enemy Soldiers and armed 

civilians (Figure 48). Both enemy Soldiers and insurgents were threats and required a picture 

being taken by the participant. 
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Figure 47. Friendly Soldiers and civilians (non-threats) in Study B. 

Note. Copyright permission in APPENDIX K. 

 

 

 
Figure 48. Enemy soldiers and armed civilians (threats) in Study B. 

Note. Copyright permission in APPENDIX K. 

 

Agent Reporting Task 

Participants could request a report from the agent teammate regarding the number of 

threats (critical, non-critical, and non-targets) if they wanted to. The multimodal interface could 

be brought up and a report was requested by clicking on text or image. These reports provided 

participants situation awareness to respond to commander queries (SA probes).  
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The information displayed in either report was identical. In the image report, boxes were 

shown around threats and critical threats, while the text report showed the number of threats, 

critical threats, and non-threats (not needed for probes). Participants also had the freedom to pull 

text and image reports sequentially.  
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APPENDIX C: DESCRIPTION BORROWED STUDY C 

Participants were recruited from the University of Central Florida’s undergraduate 

psychology pool in exchange for course credit.  

 

Equipment 

This study was ran on a desktop-based version of a custom simulation that was developed 

in the Unreal 4 Game Engine (Epic Games, Inc., 2019). The task was viewed on a 30” monitor 

with a resolution of 2560 x 1600. The simulated environment was a typical Middle Eastern urban 

environment (Figure 49), in which characters walked across the screen. In the top center of the 

screen, an MMI would become available when visual agent reports were sent to the participant. 

The MMI matches the size of a Toughpad FZ-M1 tablet used in Barber et al. (2015), with a 

resolution of 602 x 377 pixels. Auditory reports were delivered through text-to-speech generated 

with Microsoft’s speech platform Software Development Kit version 11 (Microsoft, 2019), based 

on Window’s 10 default male voice. 

The MMI has three sections (Error! Reference source not found.). The left section provides an 

aerial map of the environment with the location of the reporting robot and a military symbol of 

what was found. The right section of the MMI consists of an image of what was found (top right) 

and of a visual text of the complete report (bottom right). The auditory report mimicked the 

visual text. 
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Figure 49. Simulated environment in Study C. 

Note. The simulated environment in Study C shows threats, non-threats, and the multimodal interface used for 

agent-to-human communications. Copyright permission is found in APPENDIX K: COPYRIGHT. 

 

Experimental Design 

Two within-subjects factors were manipulated in this study, in which participants 

conducted an ongoing threat detection task and a concurrent agent reporting task that simulated a 

military cordon-and-search operation (Sutherland et al., 2010). These factors were manipulated 

over three scenarios, that each lasted approximately 32 minutes (Figure 10). 

In all three conditions, event rate, operationalized as the number of characters on screen 

per minute, was varied. It changed every eight minutes from low (15 characters/minute) to high 

(60 characters/minute) and high to low. An exception in this design, are the first and last blocks; 

these only lasted four minutes.  
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Condition C.1 and C.2 varied the modality in which agent reports were delivered every 

eight minutes, with the exception of the first and last block. The only difference between the two 

conditions is the modality in the starting block. In Condition C.3 the reports were sent in two 

modalities simultaneously.  

 

Threat Detection Task 

 Participants performed the role of a squad leader in an outer cordon area. During the task, 

three types of characters walked around a building and surrounding area. Non-threats were 

friendly soldiers, dressed in full camouflage and armor with a weapon, and friendly civilians, 

characterized by civilian clothing and absence of a weapon (Figure 50). Threats were enemy 

civilians recognizable by casual clothing or clothing mixed with camouflage, a weapon, and a 

mask (Figure 51). Participants identified threats by clicking on them with a mouse. This action 

highlighted the character briefly as feedback of response.  
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Figure 50. Friendly soldiers and friendly civilians, all non-threats, in Study C. 

 

 
Figure 51. Enemy civilians (threats) in Study C. 

 

Agent Reporting Task 

 As part of the cordon and search mission, two out-of-sight agents scouted the inner 

cordon and reported their findings back to the squad leader. These reports included information 

regarding identification (money bags, IEDs, weapon crates, or insurgents) and location (inside 
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the building on the first or second floor, and outside the building based on four cardinal 

directions). These reports were created based on Subject Matter Expert interviews with a former 

U.S. Army Staff Sergeant and the U.S. Army Handbook (Headquarters Department of the Army, 

2006). 

 The agent teammates sent these reports auditorily and/or visually, depending on the 

experimental condition. A report was sent regularly, that is, every 15 to 18 seconds. The 

information conveyed in each condition was identical. Visual reports, either in a single-modality 

condition or dual-modality condition, automatically prompted the appearance of the MMI. The 

visual display was generated by the system rather than having the participant initiate display of 

the visual report, to ensure equal time was spent in both the auditory and visual modality. Over a 

four-minute block, nine agent reports were delivered. Approximately every 18 seconds a report 

was delivered. Thus, within a four-minute block, nine reports were delivered, resulting in 72 

reports in the eight four-minute blocks.  
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APPENDIX D: DESCRIPTION BORROWED STUDY D 

  



205 

 

APPENDIX D: DESCRIPTION BORROWED STUDY D 

Participants were recruited via the Psychology undergraduate student resource pool at the 

University of Central Florida. No military experience was reported by any of the participants. 

 

Equipment 

The simulation ran in a custom-built platform (FIRE; Vasquez, Bendell, Talone, & 

Jentsch, 2018) in the Unreal 4 Game Engine (Epic Games, Inc., 2019). The HTC Vive virtual 

reality system was used to create an immersive and interactive 3D experience (VIVE, 2019). A 

MMI was rendered inside the FIRE, modeled after a military-implemented Toughpad (Barber et 

al., 2015). Participants could pull the MMI up with the HTC VIVE controller. The MMI 

displayed an image of what the agent is looking at, command text, as well as sections that relay 

the current status of the agent teammate including battery levels, mechanical health, and Wi-Fi 

connectivity. The controller was used to open and close the MMI, to increase the size of 

transmitted images to full-screen, and to reply to input requests. 

 

Experimental Design 

This study employed a mixed design, wherein two two-level factors were manipulated. 

Each participant experienced two sensory modalities of agent report delivery (visual text vs. 

auditory speech) in two separate scenarios, each lasting approximately 16 minutes. The between-

subjects variable was the timing of agent report delivery. Reports could be delivered regularly 
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every minute (Condition D.1) or immediately, which was irregular (Condition D.2). This created 

four different orders for the scenarios, which were randomized and counterbalanced. For the 

purpose of the current effort, timing of report delivery was encoded into the variable Agent 

Report Event Rate.  

 

Threat Detection Task 

 Participants performed a simulated military cordon-and-search operation (Sutherland et 

al., 2010), wherein they teamed with an agent teammate. The ongoing task was a threat detection 

task. As characters walked across the screen, in a Middle Eastern urban environment, 

participants were asked to identify threats by clicking on them with the HTC Vive controller. 

The controller emitted a laser-like beam in the environment, allowing participants to aim 

precisely. A click on any character would briefly highlight the character, generating feedback of 

response to the participant. Six characters were employed (Figure 52), each carrying an object 

(Figure 53). Threats were characters carrying a small handgun. 
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Figure 52. Character models employed in Study D. 

Note. The characters that carry a handgun are threats. Copyright permission in APPENDIX K. 

 

 
Figure 53. Threat identifier in Study D. 

Note. The figure shows the objects that characters could carry, wherein the handgun was an identifier for threats. 

Copyright permission in APPENDIX K. 

 

Agent Reporting Task 

During the threat detection task, the agent teammate scouted the inner cordon 

simultaneously. The agent searched the environment for IEDs and took pictures, thereby 

producing reports that it sent to the participant. 
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During each scenario, a total of 34 reports were presented to participants; timing of 

delivery was manipulated as between-subjects variable. To ensure all reports were attended to, 

an auditory tone alerted participants one second prior to release of each report. There were 30 

non-critical reports that contained information pertaining to the route, such as obstacles 

encountered. Four reports were critical and included an IED image review request. Report 

review was possible by clicking a button on the controller to pull up the MMI. They could raise 

the controller to bring the MMI up or keep the controller down to look down at the simulated 

MMI. Participants had 15 seconds to review the report. Once the image was reviewed, 

participants needed to determine if a hazard (IED) was present or the area was clear with another 

button click. 

The modality through which reports were delivered was auditory or visual. All 

participants conducted each scenario. In the auditory condition, all non-critical reports were sent 

through speech alone. Critical IED review requests were still sent visually, as these required 

visual inspection. Contrary, in the visual report condition, all reports were solely transmitted 

through the MMI. 
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APPENDIX E: NASA-TLX 
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APPENDIX E NASA-TLX 
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APPENDIX F: RESULTS 
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APPENDIX F RESULTS 

Study A 

Linearity Check 

 
Figure 54. Scatterplot matrix continuous variables Study A. 

Note. Spearman’s correlation was used. The abbreviations represent: F = Frustration subscale on NASA-

TLX, MD = Mental Demand subscale on NASA-TLX, P = Performance subscale on NASA-TLX, PD = 

Physical Demand subscale on NASA-TLX, TD = Temporal Demand subscale on NASA-TLX, Global = 

average score on NASA-TLX, Vid = Video Gaming Experience, w. Hit Rate = winsorized hit rate. 

 

Dominance Analysis 
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Human/Agent Qualities 

Table 48.  

Raw dominance analysis results Human/Agent Qualities in Study A. 

 Additional contribution (pseudo R2) of 

Subset model X Age Gender 

Video 
Gaming 
Experience 

Military 
Experience 

Agent 
Type 

k = 0 0.004 0.000 0.000 0.001 0.004 

Age  0.000 0.000 0.000 0.004 

Gender 0.004  0.000 0.002 0.004 

Video Gaming Experience 0.004 0.000  0.001 0.004 

Military Experience 0.002 0.000 0.000  0.004 

Agent Type 0.003 0.000 0.000 0.002  
Conditional dominance k = 1 0.003 0.000 0.000 0.001 0.004 

Age + Gender   0.001 0.000 0.004 

Age + Video Gaming Experience  0.000  0.000 0.004 

Age + Military Experience  0.000 0.000  0.004 

Age + Agent Type  0.000 0.000 0.000  
Gender + Video Gaming Experience 0.004   0.002 0.004 

Gender + Military Experience 0.002  0.001  0.004 

Gender + Agent Type 0.003  0.000 0.002  
Video Gaming Experience + Military 
Experience 0.003 0.000   0.004 
Video Gaming Experience + Agent 
Type 0.004 0.000  0.001  
Military Experience + Agent Type 0.002 0.000 0.000   
Conditional dominance k = 2 0.003 0.000 0.000 0.001 0.004 

Age + Gender + Video Gaming 
Experience    0.000 0.004 

Age + Gender + Military Experience   0.001  0.004 
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 Additional contribution (pseudo R2) of 

Subset model X Age Gender 

Video 
Gaming 
Experience 

Military 
Experience 

Agent 
Type 

Age + Gender + Agent Type   0.001 0.000  
Age + Video Gaming Experience + 
Military Experience  0.000   0.004 

Age + Video Gaming Experience + 
Agent Type  0.001  0.000  
Age + Military Experience + Agent 
Type  0.000 0.000   
Gender + Video Gaming Experience + 
Military Experience 0.003    0.004 

Gender + Video Gaming Experience + 
Agent Type 0.004   0.002  
Gender + Military Experience + Agent 
Type 0.002  0.001   
Video Gaming Experience + Military 
Experience + Agent Type 0.002 0.001    
Conditional dominance k = 3 0.003 0.000 0.001 0.001 0.004 

Age + Gender + Video Gaming 
Experience + Military Experience     0.004 

Age + Gender + Video Gaming 
Experience + Agent Type    0.000  
Age + Gender + Military Experience + 
Agent Type   0.001   
Age + Video Gaming Experience + 
Military Experience + Agent Type  0.001    
Gender + Video Gaming Experience + 
Military Experience + Agent Type 0.002     
Conditional dominance k = 4 0.002 0.001 0.001 0.000 0.004 

Age + Gender + Video Gaming 
Experience + Military Experience + 
Agent Type      
Overall average 0.003 0.000 0.000 0.001 0.004 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, wherein k = 0 indicates that no other variables 

are in the model aside of the predictor under evaluation. Conditional dominance indicates the average 

unique contribution for that subset model size (k) for the predictor under evaluation. The overall average 

presents the average over all average k model sizes. 

 

Task Perception Variables 
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Table 49 

Raw dominance analysis results Task Perception in Study A 
 

Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 
Demand 

Physical 
Demand 

Temporal 
Demand Effort Frustration 

k = 0 0.021 0.000 0.001 0.000 0.015 0.013 
Performance  0.000 0.001 0.001 0.007 0.004 
Mental Demand 0.021  0.001 0.000 0.028 0.015 
Physical Demand 0.021 0.000  0.000 0.014 0.012 
Temporal Demand 0.022 0.000 0.001  0.025 0.016 
Effort 0.014 0.014 0.001 0.010  0.003 
Frustration 0.012 0.002 0.000 0.003 0.004  
Conditional dominance k = 1 0.018 0.003 0.001 0.003 0.016 0.010 

Performance + Mental Demand   0.002 0.000 0.024 0.007 
Performance + Physical Demand  0.001  0.001 0.007 0.003 
Performance + Temporal Demand  0.000 0.002  0.020 0.008 
Performance + Effort  0.017 0.000 0.014  0.000 
Performance + Frustration  0.003 0.000 0.004 0.004  
Mental Demand + Physical Demand 0.022   0.000 0.029 0.014 
Mental Demand + Temporal 
Demand 0.022  0.001  0.036 0.016 
Mental Demand + Effort 0.017  0.001 0.008  0.003 
Mental Demand + Frustration 0.013  0.000 0.002 0.017  
Physical Demand + Temporal 
Demand 0.022 0.000   0.026 0.015 
Physical Demand + Effort 0.013 0.014  0.011  0.003 
Physical Demand + Frustration 0.012 0.002  0.003 0.005  
Temporal Demand + Effort 0.017 0.011 0.002   0.005 
Temporal Demand + Frustration 0.013 0.000 0.000  0.014  
Effort + Frustration 0.011 0.014 0.001 0.012   
Conditional dominance k = 2 0.016 0.006 0.001 0.006 0.018 0.008 

Performance + Mental Demand + 
Physical Demand    0.001 0.023 0.006 
Performance + Mental Demand + 
Temporal Demand   0.002  0.034 0.008 
Performance + Mental Demand + 
Effort   0.001 0.011  0.000 
Performance + Mental Demand + 
Frustration   0.001 0.002 0.018  
Performance + Physical Demand + 
Temporal Demand  0.000   0.020 0.007 
Performance + Physical Demand + 
Effort  0.017  0.014  0.000 
Performance + Physical Demand + 
Frustration  0.003  0.005 0.004  
Performance + Temporal Demand + 
Effort  0.014 0.001   0.001 
Performance + Temporal Demand + 
Frustration  0.001 0.000  0.014  
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Performance + Effort + Frustration  0.017 0.000 0.015    
Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 
Demand 

Physical 
Demand 

Temporal 
Demand Effort Frustration 

Mental Demand + Physical Demand 
+ Temporal Demand 0.022    0.037 0.015 
Mental Demand + Physical Demand 
+ Effort 0.016   0.009  0.003 
Mental Demand + Physical Demand 
+ Frustration 0.013   0.002 0.018  
Mental Demand + Temporal 
Demand + Effort 0.020  0.002   0.005 
Mental Demand + Temporal 
Demand + Frustration 0.014  0.000  0.025  
Mental Demand + Effort + 
Frustration 0.014  0.001 0.010   
Physical Demand + Temporal 
Demand + Effort 0.016 0.012    0.006 
Physical Demand + Temporal 
Demand + Frustration 0.014 0.000   0.016  
Physical Demand + Effort + 
Frustration 0.010 0.014  0.014   
Temporal Demand + Effort + 
Frustration 0.013 0.011 0.003    
Conditional dominance k = 3 0.015 0.009 0.001 0.008 0.021 0.005 

Performance + Mental Demand + 
Physical Demand + Temporal 
Demand     0.034 0.007 
Performance + Mental Demand + 
Physical Demand + Effort    0.011  0.000 
Performance + Mental Demand + 
Physical Demand + Frustration    0.002 0.018  
Performance + Mental Demand + 
Temporal Demand + Effort   0.001   0.001 
Performance + Mental Demand + 
Temporal Demand + Frustration   0.001  0.027  
Performance + Mental Demand + 
Effort + Frustration   0.001 0.011   
Performance + Physical Demand + 
Temporal Demand + Effort  0.014    0.002 
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Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 
Demand 

Physical 
Demand 

Temporal 
Demand Effort Frustration 

Performance + Physical Demand + 
Effort + Frustration  0.017  0.016   
Performance + Temporal Demand + 
Effort + Frustration  0.014 0.001    
Mental Demand + Physical Demand 
+ Temporal Demand + Effort 0.019     0.006 
Mental Demand + Physical Demand 
+ Temporal Demand + Frustration 0.014    0.027  
Mental Demand + Physical Demand 
+ Effort + Frustration 0.013   0.011   
Mental Demand + Temporal Demand 
+ Effort + Frustration 0.016  0.003    
Physical Demand + Temporal 
Demand + Effort + Frustration 0.012 0.011     
Conditional dominance k = 4 0.015 0.011 0.001 0.010 0.024 0.003 
Performance + Mental Demand + 
Physical Demand + Temporal 
Demand + Effort      0.001 
Performance + Mental Demand + 
Physical Demand + Temporal 
Demand + Frustration     0.028  
Performance + Mental Demand + 
Physical Demand + Effort + 
Frustration    0.012   
Performance + Mental Demand + 
Temporal Demand + Effort + 
Frustration   0.001    
Performance + Physical Demand + 
Temporal Demand + Effort + 
Frustration  0.014     
Mental Demand + Physical Demand 
+ Temporal Demand + Effort + 
Frustration 0.015      
Conditional dominance k = 5 0.015 0.014 0.001 0.012 0.028 0.001 

Performance + Mental Demand + 
Physical Demand + Temporal 
Demand + Effort + Frustration 

      
Overall average 0.017 0.007 0.001 0.007 0.020 0.007 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, wherein k = 0 indicates that no other variables 

are in the model aside of the predictor under evaluation. Conditional dominance indicates the average 

unique contribution for that subset model size (k) for the predictor under evaluation. The overall average 

presents the average over all average k model sizes. 
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Full Model 

Table 50  

Raw dominance analysis results Full Model in Study A. 

 Additional contribution (pseudo R2) of 

Subset Model X Age Task Type Visual Complexity Performance 

Gender + Video Gaming Experience + Military 
Experience 0.003 0.004 0.017 0.020 
Gender + Video Gaming Experience + Military 
Experience + Age  0.004 0.015 0.019 
Gender + Video Gaming Experience + Military 
Experience + Task Type 0.002  0.016 0.018 
Gender + Video Gaming Experience + Military 
Experience + Visual Complexity 0.000 0.004  0.011 
Gender + Video Gaming Experience + Military 
Experience + Performance 0.002 0.002 0.008  
Conditional dominance k = 4 0.002 0.003 0.014 0.017 

Gender + Video Gaming Experience + Military 
Experience + Age + Task Type   0.014 0.017 
Gender + Video Gaming Experience + Military 
Experience + Age + Visual Complexity  0.004  0.011 
Gender + Video Gaming Experience + Military 
Experience + Age + Performance  0.002 0.007  
Gender + Video Gaming Experience + Military 
Experience + Task Type + Visual Complexity 0.000   0.010 
Gender + Video Gaming Experience + Military 
Experience + Task Type + Performance 0.001  0.008  
Gender + Video Gaming Experience + Military 
Experience + Visual Complexity + Performance 0.000 0.002   
Conditional dominance k = 5 0.000 0.002 0.010 0.013 

Gender + Video Gaming Experience + Military 
Experience + Age + Task Type + Visual 
Complexity    0.010 
Gender + Video Gaming Experience + Military 
Experience + Age + Task Type + Performance   0.007  

  



 

 219  

 Additional contribution (pseudo R2) of 

Subset Model X Age Task Type Visual Complexity Performance 

Gender + Video Gaming Experience + Military 
Experience + Age + Visual Complexity + 
Performance  0.002   
Gender + Video Gaming Experience + Military 
Experience + Task Type + Visual Complexity + 
Performance 0.000    
Conditional dominance k = 6 0.000 0.002 0.007 0.010 

Gender + Video Gaming Experience + Military 
Experience + Age + Task Type + Visual 
Complexity + Performance     
Overall average 0.001 0.003 0.010 0.013 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, keeping video gaming experience, military 

experience, and gender constant (Azen & Budescu, 2003). Conditional dominance indicates the average 

unique contribution for that subset model size (k) for the predictor under evaluation. The overall average 

presents the average over all average k model sizes. 
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Figure 55. Conditional and general dominance results full model in Study A. 

Note. The conditional and general dominance patterns conformed to the complete dominance patterns for 

the full model in Study A. The performance subscale of the NASA-TLX dominated all other predictors, 

followed by visual xomplexity, agent morphology type, and age. 

 

 
Figure 56. Study A full model evaluation plots 

Note. The residual plot is on the left, the predicted vs. observed values on the right, and a fitted line based 

on maximum likelihood. 

 

Variable 

r
2
.c
s
 



 

 221  

Study B 

Linearity Check 

 
Figure 57. Scatterplot matrix continuous variables in Study B. 

Note. Spearman’s correlation was used. The abbreviations represent: F = Frustration subscale on NASA-

TLX, MD = Mental Demand subscale on NASA-TLX, P = Performance subscale on NASA-TLX, PD = 

Physical Demand subscale on NASA-TLX, TD = Temporal Demand subscale on NASA-TLX, Global = 

average score on NASA-TLX, Vid = Video Gaming Experience, w. Hit Rate = winsorized hit rate. 

 

Dominance Analysis 
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Human/Agent Qualities 

Table 51  

Raw dominance analysis results Human/Agent Qualities in Study B. 

 Additional contribution (pseudo R2) of 
Subset model X Age Gender Military Experience 

k = 0 0.008 0.005 0.014 

Age  0.006 0.006 
Gender 0.008  0.012 
Military Experience 0.000 0.004  
Conditional dominance k = 1 0.004 0.005 0.009 

Age + Gender   0.005 
Age + Military Experience  0.004  

Gender + Military Experience 0.001   
Conditional dominance k = 2 0.001 0.004 0.005 

Age + Gender + Military Experience    
Overall average 0.004 0.005 0.009 

Note. This table presents the raw output of the dominance analyses, wherein video gaming experience was 

excluded due to a large number of missing values. The unique additional contribution of each predictor is 

shown over all possible subset model sizes, wherein k = 0 indicates that no other variables are in the model 

aside of the predictor under evaluation. Conditional dominance indicates the average unique contribution 

for that subset model size (k) for the predictor under evaluation. The overall average presents the average 

over all average k model sizes. 
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Task Perception 

Table 52 

Raw dominance analysis results Task Perception in Study B. 

 Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 
Demand 

Physical 
Demand 

Temporal 
Demand Effort Frustration 

 k = 0 0.015 0.001 0.001 0.002 0.001 0.005 

Performance  0.000 0.000 0.007 0.000 0.000 
Mental Demand 0.014  0.000 0.012 0.000 0.005 
Physical Demand 0.015 0.000  0.004 0.001 0.004 
Temporal Demand 0.020 0.010 0.003  0.012 0.017 
Effort 0.014 0.000 0.000 0.013  0.004 
Frustration 0.011 0.001 0.000 0.015 0.000  
Conditional dominance k = 1  0.015 0.002 0.001 0.010 0.003 0.006 

Performance + Mental Demand   0.000 0.014 0.002 0.000 
Performance + Physical Demand  0.000  0.008 0.000 0.000 
Performance + Temporal Demand  0.008 0.001  0.014 0.006 
Performance + Effort  0.002 0.000 0.021  0.000 
Performance + Frustration  0.000 0.000 0.013 0.000  
Mental Demand + Physical 
Demand 0.014   0.013 0.000 0.005 
Mental Demand + Temporal 
Demand 0.017  0.002  0.003 0.010 
Mental Demand + Effort 0.016  0.000 0.014  0.005 
Mental Demand + Frustration 0.010  0.000 0.017 0.000  
Physical Demand + Temporal 
Demand 0.018 0.009   0.011 0.015 
Physical Demand + Effort 0.014 0.000  0.015  0.004 
Physical Demand + Frustration 0.010 0.001  0.015 0.000  
Temporal Demand + Effort 0.022 0.001 0.002   0.011 
Temporal Demand + Frustration 0.009 0.003 0.000  0.006  
Effort + Frustration 0.010 0.001 0.000 0.020   
Conditional dominance k = 2 0.014 0.003 0.001 0.015 0.004 0.006 

Performance + Mental Demand + 
Physical Demand    0.015 0.002 0.001 
Performance + Mental Demand + 
Temporal Demand   0.000  0.006 0.003 
Performance + Mental Demand + 
Effort   0.000 0.019  0.000 
Performance + Mental Demand + 
Frustration   0.000 0.017 0.001  
Performance + Physical Demand + 
Temporal Demand  0.007   0.014 0.005 
Performance + Physical Demand + 
Effort  0.001  0.021  0.000 
Performance + Physical Demand + 
Frustration  0.000  0.013 0.000  
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 
Demand 

Physical 
Demand 

Temporal 
Demand Effort Frustration 

Performance + Temporal Demand 
+ Effort  0.000 0.001   0.002 
Performance + Temporal Demand 
+ Frustration  0.004 0.000  0.010  
Performance + Effort + Frustration  0.002 0.000 0.023   
Mental Demand + Physical 
Demand + Temporal Demand 0.016    0.003 0.009 
Mental Demand + Physical 
Demand + Effort 0.016   0.015  0.005 
Mental Demand + Physical 
Demand + Frustration 0.010   0.017 0.000  
Mental Demand + Temporal 
Demand + Effort 0.021  0.002   0.010 
Mental Demand + Temporal 
Demand + Frustration 0.009  0.000  0.002  
Mental Demand + Effort + 
Frustration 0.011  0.000 0.019   
Physical Demand + Temporal 
Demand + Effort 0.021 0.001    0.010 
Physical Demand + Temporal 
Demand + Frustration 0.008 0.003   0.006  
Physical Demand + Effort + 
Frustration 0.010 0.001  0.020   
Temporal Demand + Effort + 
Frustration 0.013 0.000 0.000    
Conditional dominance k = 3 0.013 0.002 0.000 0.018 0.004 0.004 

Performance + Mental Demand + 
Physical Demand + Temporal 
Demand     0.006 0.002 
Performance + Mental Demand + 
Physical Demand + Effort    0.020  0.000 
Performance + Mental Demand + 
Physical Demand + Frustration    0.016 0.001  
Performance + Mental Demand + 
Temporal Demand + Effort   0.000   0.002 
Performance + Mental Demand + 
Temporal Demand + Frustration   0.000  0.006  
Performance + Mental Demand + 
Effort + Frustration   0.000 0.021   
Performance + Physical Demand + 
Temporal Demand + Effort  0.000    0.002 
Performance + Physical Demand + 
Temporal Demand + Frustration  0.004   0.010  
Performance + Physical Demand + 
Effort + Frustration  0.002  0.022   
Performance + Temporal Demand 
+ Effort + Frustration  0.000 0.000    
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 
Demand 

Physical 
Demand 

Temporal 
Demand Effort Frustration 

Mental Demand + Physical 
Demand + Temporal Demand + 
Effort 0.020     0.009 
Mental Demand + Physical 
Demand + Temporal Demand + 
Frustration 0.009    0.002  
Mental Demand + Physical 
Demand + Effort + Frustration 0.011   0.019   
Mental Demand + Temporal 
Demand + Effort + Frustration 0.013  0.000    
Physical Demand + Temporal 
Demand + Effort + Frustration 0.013 0.000     
Conditional dominance k = 4 0.013 0.001 0.000 0.020 0.005 0.003 

Performance + Mental Demand + 
Physical Demand + Temporal 
Demand + Effort      0.002 
Performance + Mental Demand + 
Physical Demand + Temporal 
Demand + Frustration     0.006  
Performance + Mental Demand + 
Physical Demand + Effort + 
Frustration    0.021   
Performance + Mental Demand + 
Temporal Demand + Effort + 
Frustration   0.000    
Performance + Physical Demand + 
Temporal Demand + Effort + 
Frustration  0.000     
Mental Demand + Physical 
Demand + Temporal Demand + 
Effort + Frustration 0.013      

Conditional dominance k = 5 0.013 0.000 0.000 0.021 0.006 0.002 

Performance + Mental Demand + 
Physical Demand + Temporal 
Demand + Effort + Frustration       
Overall average 0.014 0.001 0.000 0.014 0.004 0.004 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, wherein k = 0 indicates that no other variables 

are in the model aside of the predictor under evaluation. Conditional dominance indicates the average 

unique contribution for that subset model size (k) for the predictor under evaluation. The overall average 

presents the average over all average k model sizes. 
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Task Composition 

Table 53 

Raw dominance analysis results Task Composition in Study B. 

 Additional contribution (pseudo R2) of 

Subset model X Event Rate Task Type Task Duration 
k = 0 0.055 0.000 0.004 
Event Rate  0.000 0.001 
Task Type 0.055  0.006 
Task Duration 0.051 0.002  
Conditional dominance k = 1 0.053 0.001 0.004 
Event Rate + Task Type   0.002 
Event Rate + Task Duration  0.002  
Task Type + Task Duration 0.051   
Conditional dominance k = 2 0.051 0.002 0.002 

Event Rate + Task Type + Task Duration    
Overall average 0.053 0.001 0.003 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, wherein k = 0 indicates that no other variables 

are in the model aside of the predictor under evaluation. Conditional dominance indicates the average 

unique contribution for that subset model size (k) for the predictor under evaluation. The overall average 

presents the average over all average k model sizes. 

 

Full Model 

Table 54 

Raw dominance analysis results Full Model in Study B. 

 Additional contribution (pseudo R2) of 
Subset model X Military Experience Event Rate Performance 
Age + Gender 0.000 0.048 0.017 

Conditional dominance k = 2 0.000 0.048 0.017 
Age + Gender + Military Experience  0.052 0.017 
Age + Gender + Event Rate 0.005  0.015 
Age + Gender + Performance 0.000 0.045  
Conditional dominance k = 3 0.002 0.049 0.016 
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Age + Gender + Military Experience + 
Event Rate   0.014 
Age + Gender + Military Experience + 
Performance  0.050  
Age + Gender + Event Rate + Performance 0.004   

Conditional dominance k = 4 0.004 0.050 0.014 
Age + Gender + Military Experience + 
Event Rate + Performance    

Overall average 0.002 0.049 0.016 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, keeping age and gender constant (Azen & 

Budescu, 2003). Conditional dominance indicates the average unique contribution for that subset model 

size (k) for the predictor under evaluation. The overall average presents the average over all average k 

model sizes. 

 

 
Figure 58. Conditional and general dominance results Full Model in Study B. 

Note. The conditional dominance plot (left) shows the unique contribution (in Cox & Snell’s (2018) pseudo 

R2) over different subset model sizes or levels. For example, a level of 1 indicates that one additional 

predictor is in the regression model. The general dominance bar graph (right) shows the unique 

contribution (in Cox & Snell’s (2018) pseudo R2) averaged over all possible subset model sizes. 
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Figure 59. Study B full model evaluation plots. 

Note. The residual plot is shown on the left and the predicted vs. observed values on the right, with a fitted 

line based on maximum likelihood. 
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Study C 

Linearity Check 

 

Figure 60. Scatterplot matrix between continuous variables in Study C. 

Note. Spearman’s correlation was used. The abbreviations represent: F = Frustration subscale on NASA-

TLX, MD = Mental Demand subscale on NASA-TLX, P = Performance subscale on NASA-TLX, PD = 

Physical Demand subscale on NASA-TLX, TD = Temporal Demand subscale on NASA-TLX, Global = 

average score on NASA-TLX, Vid = Video Gaming Experience, w. Hit Rate = winsorized hit rate. 
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Dominance Analysis 

Human/Agent Qualities 

Table 55 

Raw dominance analysis results Human/Agent Qualities in Study C. 

 Additional contribution (pseudo R2) of 

Subset model X Age Gender Military Experience 
Video Gaming 

Experience 

k = 0 0.010 0.027 0.013 0.048 
Age  0.022 0.012 0.041 
Gender 0.005  0.020 0.027 
Military Experience 0.009 0.034  0.058 
Video Gaming Experience 0.003 0.006 0.022  
Conditional dominance k = 1 0.005 0.021 0.018 0.042 
Age + Gender   0.018 0.024 
Age + Military Experience  0.028  0.050 
Age + Video Gaming 
Experience  0.005 0.021  
Gender + Military Experience 0.003   0.032 
Gender + Video Gaming 
Experience 0.002  0.025  
Military Experience + Video 
Gaming Experience 0.001 0.008   

Conditional dominance k = 2 0.002 0.014 0.021 0.035 

Age + Gender + Military 
Experience    0.029 
Age + Gender + Video Gaming 
Experience   0.023  
Age + Military Experience + 
Video Gaming Experience  0.007   
Gender + Military Experience + 
Video Gaming Experience 0.000    

Conditional dominance k = 3 0.000 0.007 0.023 0.029 

Age + Gender + Military 
Experience + Video Gaming 
Experience     

Overall average 0.004 0.017 0.019 0.039 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, wherein k = 0 indicates that no other variables 

are in the model aside of the predictor under evaluation. Conditional dominance indicates the average 
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unique contribution for that subset model size (k) for the predictor under evaluation. The overall average 

presents the average over all average k model sizes. 

 

Task Perception 

Table 56 

Raw dominance analysis results Task Perception in Study C. 

 Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 

Demand 
Physical 
Demand 

Temporal 
Demand Effort Frustration 

k = 0 0.004 0.000 0.031 0.117 0.006 0.003 
Performance  0.000 0.028 0.113 0.004 0.006 
Mental Demand 0.005  0.032 0.128 0.009 0.003 
Physical Demand 0.002 0.001  0.088 0.000 0.006 
Temporal Demand 0.000 0.011 0.002  0.008 0.019 
Effort 0.003 0.003 0.025 0.120  0.007 
Frustration 0.008 0.000 0.035 0.134 0.011  

Conditional dominance k = 1 0.003 0.003 0.025 0.117 0.007 0.008 
Performance + Mental 
Demand   0.030 0.123 0.008 0.006 
Performance + Physical 
Demand  0.002  0.086 0.000 0.010 
Performance + Temporal 
Demand  0.011 0.002  0.009 0.021 
Performance + Effort  0.004 0.024 0.117  0.011 
Performance + Frustration  0.000 0.032 0.128 0.009  
Mental Demand + Physical 
Demand 0.002   0.098 0.002 0.005 
Mental Demand + Temporal 
Demand 0.000  0.002  0.002 0.013 
Mental Demand + Effort 0.003  0.025 0.121  0.006 
Mental Demand + Frustration 0.008  0.035 0.138 0.013  
Physical Demand + 
Temporal Demand 0.000 0.011   0.010 0.020 
Physical Demand + Effort 0.001 0.003  0.097  0.008 
Physical Demand + 
Frustration 0.005 0.000  0.102 0.003  
Temporal Demand + Effort 0.000 0.004 0.003   0.012 
Temporal Demand + 
Frustration 0.002 0.004 0.002  0.001  
Effort + Frustration 0.006 0.002 0.026 0.124   
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 

Demand 
Physical 
Demand 

Temporal 
Demand Effort Frustration 

Conditional dominance k = 2 0.003 0.004 0.018 0.113 0.006 0.011 
Performance + Mental 
Demand + Physical Demand    0.095 0.002 0.008 
Performance + Mental 
Demand + Temporal 
Demand   0.002  0.002 0.015 
Performance + Mental 
Demand + Effort   0.024 0.118  0.010 
Performance + Mental 
Demand + Frustration   0.032 0.132 0.012  
Performance + Physical 
Demand + Temporal 
Demand  0.011   0.010 0.021 
Performance + Physical 
Demand + Effort  0.004  0.096  0.012 
Performance + Physical 
Demand + Frustration  0.000  0.098 0.002  
Performance + Temporal 
Demand + Effort  0.004 0.003   0.014 
Performance + Temporal 
Demand + Frustration  0.004 0.002  0.001  
Performance + Effort + 
Frustration  0.003 0.025 0.120   
Mental Demand + Physical 
Demand + Temporal 
Demand 0.000    0.003 0.013 
Mental Demand + Physical 
Demand + Effort 0.002   0.098  0.007 
Mental Demand + Physical 
Demand + Frustration 0.005   0.105 0.004  
Mental Demand + Temporal 
Demand + Effort 0.000  0.003   0.011 
Mental Demand + Temporal 
Demand + Frustration 0.002  0.002  0.000  
Mental Demand + Effort + 
Frustration 0.007  0.026 0.125   
Physical Demand + 
Temporal Demand + Effort 0.000 0.004    0.012 
Physical Demand + 
Temporal Demand + 
Frustration 0.002 0.004   0.002  
Physical Demand + Effort + 
Frustration 0.005 0.002  0.101   
Temporal Demand + Effort + 
Frustration 0.002 0.003 0.003    
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 

Demand 
Physical 
Demand 

Temporal 
Demand Effort Frustration 

Conditional dominance k = 3 0.003 0.004 0.012 0.109 0.004 0.012 
Performance + Mental 
Demand + Physical Demand 
+ Temporal Demand     0.003 0.015 
Performance + Mental 
Demand + Physical Demand 
+ Effort    0.096  0.010 
Performance + Mental 
Demand + Physical Demand 
+ Frustration    0.102 0.004  
Performance + Mental 
Demand + Temporal 
Demand + Effort   0.003   0.012 
Performance + Mental 
Demand + Temporal 
Demand + Frustration   0.002  0.000  
Performance + Mental 
Demand + Effort + 
Frustration   0.024 0.120   
Performance + Physical 
Demand + Temporal 
Demand + Effort  0.004    0.013 
Performance + Physical 
Demand + Temporal 
Demand + Frustration  0.004   0.002  
Performance + Physical 
Demand + Effort + 
Frustration  0.002  0.097   
Performance + Temporal 
Demand + Effort + 
Frustration  0.003 0.003    
Mental Demand + Physical 
Demand + Temporal 
Demand + Effort 0.000     0.010 
Mental Demand + Physical 
Demand + Temporal 
Demand + Frustration 0.002    0.000  
Mental Demand + Physical 
Demand + Effort + 
Frustration 0.005   0.102   
Mental Demand + Temporal 
Demand + Effort + 
Frustration 0.002  0.003    
Physical Demand + 
Temporal Demand + Effort + 
Frustration 0.002 0.003     
Conditional dominance k = 4 0.002 0.003 0.007 0.103 0.002 0.012 
Performance + Mental 
Demand + Physical Demand 
+ Temporal Demand + Effort      0.012 
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 

Demand 
Physical 
Demand 

Temporal 
Demand Effort Frustration 

Performance + Mental 
Demand + Physical Demand 
+ Temporal Demand + 
Frustration     0.000  
Performance + Mental 
Demand + Physical Demand 
+ Effort + Frustration    0.098   
Performance + Mental 
Demand + Temporal 
Demand + Effort + 
Frustration   0.002    
Performance + Physical 
Demand + Temporal 
Demand + Effort + 
Frustration  0.003     
Mental Demand + Physical 
Demand + Temporal 
Demand + Effort + 
Frustration 0.002      

Conditional dominance k = 5 0.002 0.003 0.002 0.098 0.000 0.012 
Performance + Mental 
Demand + Physical Demand 
+ Temporal Demand + Effort 
+ Frustration       

Overall average 0.003 0.003 0.016 0.110 0.004 0.010 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, wherein k = 0 indicates that no other variables 

are in the model aside of the predictor under evaluation. Conditional dominance indicates the average 

unique contribution for that subset model size (k) for the predictor under evaluation. The overall average 

presents the average over all average k model sizes. 
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Full Model 

Table 57 

Raw dominance analysis results Full Model in Study C. 

 Additional contribution (pseudo R2) of 

Subset model X 
Video Gaming 
Experience 

Temporal 
Demand 

Agent 
Report 
Modality 

Age + Gender + Military Experience 0.039 0.091 0.019 
Conditional dominance k = 3 0.039 0.091 0.019 
Age + Gender + Military Experience + Video Gaming 
Experience  0.089 0.018 
Age + Gender + Military Experience + Temporal 
Demand 0.037  0.026 

Age + Gender + Military Experience + Agent Report 
Modality 0.038 0.098  
Conditional dominance k = 4 0.037 0.093 0.022 
Age + Gender + Military Experience + Video Gaming 
Experience + Temporal Demand   0.025 
Age + Gender + Military Experience + Video Gaming 
Experience + Agent Report Modality  0.096  
Age + Gender + Military Experience + Temporal   + 
Agent Report Modality 0.036   

Conditional dominance k = 5 0.036 0.096 0.025 

Age + Gender + Military Experience + Video Gaming 
Experience + Temporal   + Agent Report Modality    

Overall average 0.037 0.093 0.022 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, keeping age and gender constant (Azen & 

Budescu, 2003). Conditional dominance indicates the average unique contribution for that subset model 

size (k) for the predictor under evaluation. The overall average presents the average over all average k 

model sizes. 
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Figure 61. Conditional and general dominance results Full Model in Study C. 

Note. The conditional dominance plot (left) shows the unique contribution (in Cox & Snell’s (2018) pseudo 

R2) over different subset model sizes or levels. For example, a level of 1 indicates that one additional 

predictor is in the regression model. The general dominance bar graph (right) shows the unique 

contribution (in Cox & Snell’s (2018) pseudo R2) averaged over all possible subset model sizes. 

 
Figure 62. Study C full model evaluation plots. 

Note. The residual plot is shown on the left and the predicted vs. observed values on the right, with a fitted 

line based on maximum likelihood. 
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Study D 

Linearity 

 
Figure 63. Scatterplot matrix between continuous variables in Study D. 

Note. Spearman’s correlation was used. The abbreviations represent: F = Frustration subscale on NASA-

TLX, MD = Mental Demand subscale on NASA-TLX, P = Performance subscale on NASA-TLX, PD = 

Physical Demand subscale on NASA-TLX, TD = Temporal Demand subscale on NASA-TLX, Global = 

average score on NASA-TLX, w. Hit Rate = winsorized hit rate. 

 

Dominance Analysis 

Human/Agent Qualities 
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Table 58 

Raw dominance analysis results Human/Agent Qualities in Study D. 

 Additional contribution (pseudo R2) of 
Subset model X Age Gender 

k = 0 0.011 0.125 
Age  0.117 
Gender 0.004  

Conditional dominance k = 1 0.004 0.117 
Age + Gender   

Overall average 0.007 0.121 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, wherein k = 0 indicates that no other variables 

are in the model aside of the predictor under evaluation. Conditional dominance indicates the average 

unique contribution for that subset model size (k) for the predictor under evaluation. The overall average 

presents the average over all average k model sizes. 

 
Figure 64. Conditional and general dominance results Human/Agent Qualities in Study D. 

Note. The conditional dominance plot (left) shows the unique contribution (in Cox & Snell’s (2018) pseudo 

R2) over different subset model sizes or levels. For example, a level of 1 indicates that one additional 

predictor is in the regression model. The general dominance bar graph (right) shows the unique 

contribution (in Cox & Snell’s (2018) pseudo R2) averaged over all possible subset model sizes. 
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Task Perception 

Table 59 

Raw dominance analysis results Task Perception in Study D. 

 Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 
Demand 

Physical 
Demand 

Temporal 
Demand Effort Frustration 

k = 0 0.007 0.060 0.001 0.002 0.038 0.004 
Performance  0.059 0.001 0.003 0.036 0.013 
Mental Demand 0.006  0.000 0.005 0.003 0.000 
Physical Demand 0.006 0.059  0.002 0.037 0.005 
Temporal Demand 0.007 0.062 0.001  0.043 0.003 
Effort 0.004 0.024 0.000 0.007  0.000 
Frustration 0.015 0.055 0.002 0.001 0.034  

Conditional dominance k = 1 0.008 0.052 0.001 0.003 0.030 0.004 
Performance + Mental Demand   0.001 0.004 0.002 0.003 
Performance + Physical Demand  0.059  0.002 0.035 0.013 
Performance + Temporal 
Demand  0.060 0.000  0.039 0.010 
Performance + Effort  0.025 0.000 0.006  0.001 
Performance + Frustration  0.049 0.001 0.000 0.024  
Mental Demand + Physical 
Demand 0.006   0.005 0.003 0.000 
Mental Demand + Temporal 
Demand 0.005  0.000  0.008 0.002 
Mental Demand + Effort 0.005  0.000 0.011  0.000 
Mental Demand + Frustration 0.008  0.000 0.007 0.003  
Physical Demand + Temporal 
Demand 0.007 0.062   0.043 0.003 
Physical Demand + Effort 0.004 0.025  0.007  0.000 
Physical Demand + Frustration 0.014 0.054  0.000 0.032  
Temporal Demand + Effort 0.003 0.028 0.000   0.000 
Temporal Demand + Frustration 0.014 0.061 0.001  0.040  
Effort + Frustration 0.005 0.024 0.000 0.007   

Conditional dominance k = 2 0.007 0.045 0.000 0.005 0.023 0.003 

Performance + Mental Demand 
+ Physical Demand    0.004 0.002 0.002 
Performance + Mental Demand 
+ Temporal Demand   0.000  0.007 0.007 
Performance + Mental Demand 
+ Effort   0.001 0.009  0.001 
Performance + Mental Demand 
+ Frustration   0.000 0.008 0.001  
Performance + Physical Demand 
+ Temporal Demand  0.060   0.039 0.011 
Performance + Physical Demand 
+ Effort  0.026  0.006  0.001 
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 
Demand 

Physical 
Demand 

Temporal 
Demand Effort Frustration 

Performance + Physical Demand + 
Frustration  0.048  0.000 0.023  
Performance + Temporal Demand 
+ Effort  0.028 0.000   0.002 
Performance + Temporal Demand 
+ Frustration  0.057 0.001  0.031  
Performance + Effort + Frustration  0.025 0.000 0.007   
Mental Demand + Physical 
Demand + Temporal Demand 0.005    0.008 0.002 
Mental Demand + Physical 
Demand + Effort 0.005   0.010  0.000 
Mental Demand + Physical 
Demand + Frustration 0.008   0.006 0.003  
Mental Demand + Temporal 
Demand + Effort 0.004  0.000   0.000 
Mental Demand + Temporal 
Demand + Frustration 0.010  0.000  0.007  
Mental Demand + Effort + 
Frustration 0.006  0.000 0.011   
Physical Demand + Temporal 
Demand + Effort 0.003 0.028    0.000 
Physical Demand + Temporal 
Demand + Frustration 0.014 0.060   0.039  
Physical Demand + Effort + 
Frustration 0.005 0.024  0.007   
Temporal Demand + Effort + 
Frustration 0.005 0.028 0.000    

Conditional dominance k = 3 0.007 0.039 0.000 0.007 0.016 0.003 
Performance + Mental Demand + 
Physical Demand + Temporal 
Demand     0.007 0.006 
Performance + Mental Demand + 
Physical Demand + Effort    0.009  0.001 
Performance + Mental Demand + 
Physical Demand + Frustration    0.008 0.001  
Performance + Mental Demand + 
Temporal Demand + Effort   0.000   0.003 
Performance + Mental Demand + 
Temporal Demand + Frustration   0.000  0.004  
Performance + Mental Demand + 
Effort + Frustration   0.001 0.011   
Performance + Physical Demand + 
Temporal Demand + Effort  0.028    0.002 
Performance + Physical Demand + 
Temporal Demand + Frustration  0.056   0.030  
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Mental 
Demand 

Physical 
Demand 

Temporal 
Demand Effort Frustration 

Performance + Physical Demand 
+ Effort + Frustration  0.026  0.007   
Performance + Temporal 
Demand + Effort + Frustration  0.030 0.000    
Mental Demand + Physical 
Demand + Temporal Demand + 
Effort 0.004     0.000 
Mental Demand + Physical 
Demand + Temporal Demand + 
Frustration 0.010    0.007  
Mental Demand + Physical 
Demand + Effort + Frustration 0.006   0.011   
Mental Demand + Temporal 
Demand + Effort + Frustration 0.006  0.000    
Physical Demand + Temporal 
Demand + Effort + Frustration 0.005 0.028     
Conditional dominance k = 4 0.006 0.034 0.000 0.009 0.010 0.003 

Performance + Mental Demand 
+ Physical Demand + Temporal 
Demand + Effort      0.003 

Performance + Mental Demand 
+ Physical Demand + Temporal 
Demand + Frustration     0.004  
Performance + Mental Demand 
+ Physical Demand + Effort + 
Frustration    0.011   
Performance + Mental Demand 
+ Temporal Demand + Effort + 
Frustration   0.000    
Performance + Physical Demand 
+ Temporal Demand + Effort + 
Frustration  0.030     
Mental Demand + Physical 
Demand + Temporal Demand + 
Effort + Frustration 0.006      
Conditional dominance k = 5 0.006 0.030 0.000 0.011 0.004 0.003 

Performance + Mental Demand 
+ Physical Demand + Temporal 
Demand + Effort + Frustration       
Overall average 0.007 0.043 0.000 0.006 0.020 0.003 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, wherein k = 0 indicates that no other variables 

are in the model aside of the predictor under evaluation. Conditional dominance indicates the average 
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unique contribution for that subset model size (k) for the predictor under evaluation. The overall average 

presents the average over all average k model sizes. 

 

Task Composition 

Table 60 

Raw dominance analysis results Task Composition in Study D. 

 Additional contribution (pseudo R2) of 

Subset model X Delivery Frequency Agent Report Modality 

k = 0 0.007 0.028 
Delivery Frequency  0.028 
Agent Report Modality 0.007  

Conditional dominance k = 1 0.007 0.028 
Delivery Frequency + Agent Report Modality   

Overall average 0.007 0.028 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, wherein k = 0 indicates that no other variables 

are in the model aside of the predictor under evaluation. Conditional dominance indicates the average 

unique contribution for that subset model size (k) for the predictor under evaluation. The overall average 

presents the average over all average k model sizes. 
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Figure 65. Conditional and general dominance results Task Composition in Study D. 

Note. The conditional dominance plot (left) shows the unique contribution (in Cox & Snell’s (2018) pseudo 

R2) over different subset model sizes or levels. For example, a level of 1 indicates that one additional 

predictor is in the regression model. The general dominance bar graph (right) shows the unique 

contribution (in Cox & Snell’s (2018) pseudo R2) averaged over all possible subset model sizes. 
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Full Model 

Table 61 

Raw dominance analysis results Full Model in Study D. 

 Additional contribution (pseudo R2) of 

Subset model X Gender Mental Demand 
Agent Report 

Modality 
Age 0.117 0.055 0.025 

Conditional dominance k = 1 0.117 0.055 0.025 
Age + Gender  0.072 0.026 
Age + Mental Demand 0.134  0.036 
Age + Agent Report Modality 0.118 0.067  

Conditional dominance k = 2 0.126 0.069 0.031 
Age + Gender + Mental Demand   0.041 
Age + Gender + Agent Report Modality  0.087  
Age + Mental Demand + Agent Report Modality 0.138   

Conditional dominance k = 3 0.138 0.087 0.041 
Age + Gender + Mental Demand + Agent Report 
Modality    

Overall average 0.127 0.070 0.032 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 
each predictor is shown over all possible subset model sizes, keeping age constant (Azen & Budescu, 
2003). Conditional dominance indicates the average unique contribution for that subset model size (k) for 
the predictor under evaluation. The overall average presents the average over all average k model sizes. 
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Figure 66. Conditional and general dominance results Full Model in Study D. 

Note. The conditional dominance plot (left) shows the unique contribution (in Cox & Snell’s (2018) pseudo 

R2) over different subset model sizes or levels. For example, a level of 1 indicates that one additional 

predictor is in the regression model. The general dominance bar graph (right) shows the unique 

contribution (in Cox & Snell’s (2018) pseudo R2) averaged over all possible subset model sizes. 

 

 
Figure 67. Study D full model evaluation plots. 

Note. The residual plot is shown on the left and the predicted vs. observed values on the right, with a fitted 

line based on maximum likelihood. 
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Combined Studies 

 

Figure 68. Plot of average winsorized hit rate by study; error bars represent standard error. 

Note. Study D was significantly lower in winsorized hit rate than study A, B, and C, Welch’ F(3, 302.56) = 

264.45, p < .001. 

 

Dominance Analysis Full Model 

Full Model with Suppressors 

 Threat conspicuity, task duration, and age were held constant, while all potential 

suppressors and human variables were included. 
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Table 62 

Raw dominance analysis results Full Model with suppressors in Combined Studies. 

 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration 0.005 0.014 0.001 0.001 0.004 0.008 0.000 
k = 3 0.005 0.014 0.001 0.001 0.004 0.008 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance  0.020 0.000 0.002 0.003 0.010 0.000 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand 0.010  0.013 0.000 0.005 0.006 0.000 
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand 0.004 0.026  0.002 0.003 0.010 0.000 
Age + Threat 
Conspicuity + Task 
Duration + Gender 0.005 0.013 0.001  0.004 0.007 0.000 
Age + Threat 
Conspicuity + Task 
Duration + Agent 
Report Modality 0.004 0.015 0.000 0.002  0.008 0.000 
Age + Threat 
Conspicuity + Task 
Duration + Video 
Gaming Experience 0.006 0.011 0.002 0.000 0.004  0.000 
Age + Threat 
Conspicuity + Task 
Duration + Military 
Experience 0.005 0.014 0.001 0.002 0.004 0.009  
Conditional dominance 
k = 4 0.006 0.016 0.003 0.001 0.004 0.008 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand   0.011 0.001 0.003 0.006 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand  0.030  0.002 0.003 0.011 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Gender  0.018 0.000  0.003 0.008 0.000 
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Agent 
Report Modality  0.020 0.000 0.002  0.010 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Video 
Gaming Experience  0.016 0.001 0.000 0.003  0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Military 
Experience  0.020 0.000 0.002 0.003 0.010  
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand 0.008   0.000 0.003 0.008 0.001 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Gender 0.011  0.013  0.005 0.006 0.000 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Agent 
Report Modality 0.009  0.011 0.000  0.006 0.000 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Video 
Gaming Experience 0.011  0.015 0.001 0.005  0.000 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Military 
Experience 0.011  0.014 0.000 0.005 0.006  
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Gender 0.004 0.025   0.003 0.008 0.000 
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Agent 
Report Modality 0.003 0.026  0.002  0.009 0.000 

  



 

 249  

 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Video 
Gaming Experience 0.005 0.024  0.000 0.003  0.000 
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Military 
Experience 0.004 0.027  0.002 0.003 0.010  
Age + Threat 
Conspicuity + Task 
Duration + Gender + 
Agent Report Modality 0.004 0.014 0.001   0.007 0.000 
Age + Threat 
Conspicuity + Task 
Duration + Gender + 
Video Gaming 
Experience 0.006 0.011 0.002  0.004  0.000 
Age + Threat 
Conspicuity + Task 
Duration + Gender + 
Military Experience 0.005 0.013 0.001  0.004 0.007  
Age + Threat 
Conspicuity + Task 
Duration + Agent 
Report Modality + 
Video Gaming 
Experience 0.005 0.012 0.001 0.000   0.000 
Age + Threat 
Conspicuity + Task 
Duration + Agent 
Report Modality + 
Military Experience 0.004 0.015 0.000 0.002  0.009  
Age + Threat 
Conspicuity + Task 
Duration + Video 
Gaming Experience + 
Military Experience 0.006 0.011 0.002 0.000 0.004   
Conditional dominance 
k = 5 0.006 0.019 0.005 0.001 0.004 0.008 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand    0.001 0.002 0.008 0.001 
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Gender   0.011  0.003 0.006 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Agent Report Modality   0.009 0.001  0.006 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Video Gaming 
Experience   0.012 0.000 0.003  0.001 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Military Experience   0.011 0.001 0.003 0.007  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Gender  0.029   0.003 0.008 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Agent 
Report Modality  0.030  0.002  0.010 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Video 
Gaming Experience  0.028  0.000 0.002  0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Military 
Experience  0.031  0.002 0.003 0.011  
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Gender 
+ Agent Report 
Modality  0.018 0.000   0.007 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Gender 
+ Video Gaming 
Experience  0.017 0.001  0.003  0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Gender 
+ Military Experience  0.018 0.000  0.003 0.008  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Agent 
Report Modality + 
Video Gaming 
Experience  0.017 0.001 0.000   0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Agent 
Report Modality + 
Military Experience  0.021 0.000 0.002  0.010  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Video 
Gaming Experience + 
Military Experience  0.017 0.001 0.000 0.003   
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Gender 0.008    0.003 0.008 0.001 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Agent 
Report Modality 0.007   0.000  0.007 0.001 
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Video 
Gaming Experience 0.009   0.001 0.003  0.001 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Military 
Experience 0.008   0.000 0.003 0.008  
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Gender + 
Agent Report Modality 0.009  0.011   0.006 0.000 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Gender + 
Video Gaming 
Experience 0.011  0.015  0.005  0.000 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Gender + 
Military Experience 0.011  0.014  0.005 0.006  
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Agent 
Report Modality + 
Video Gaming 
Experience 0.010  0.013 0.000   0.001 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Agent 
Report Modality + 
Military Experience 0.009  0.012 0.000  0.006  
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Video 
Gaming Experience + 
Military Experience 0.011  0.016 0.000 0.005   

  



 

 253  

 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Gender + 
Agent Report Modality 0.004 0.024    0.008 0.000 
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Gender + 
Video Gaming 
Experience 0.005 0.025   0.003  0.000 
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Gender + 
Military Experience 0.004 0.026   0.004 0.008  
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Agent 
Report Modality + 
Video Gaming 
Experience 0.004 0.024  0.000   0.000 
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Agent 
Report Modality + 
Military Experience 0.003 0.027  0.002  0.010  
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Video 
Gaming Experience + 
Military Experience 0.005 0.025  0.000 0.003   
Age + Threat 
Conspicuity + Task 
Duration + Gender + 
Agent Report Modality 
+ Video Gaming 
Experience 0.005 0.012 0.001    0.000 
Age + Threat 
Conspicuity + Task 
Duration + Gender + 
Agent Report Modality 
+ Military Experience 0.004 0.014 0.001   0.007  
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + Gender + 
Video Gaming 
Experience + Military 
Experience 0.006 0.012 0.002  0.004   
Age + Threat 
Conspicuity + Task 
Duration + Agent 
Report Modality + 
Video Gaming 
Experience + Military 
Experience 0.005 0.012 0.001 0.000    
Conditional dominance 
k = 6 0.007 0.021 0.007 0.001 0.003 0.008 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Gender     0.002 0.008 0.001 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Agent Report Modality    0.001  0.008 0.001 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Video Gaming 
Experience    0.001 0.002  0.002 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Military Experience    0.001 0.002 0.009  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Gender + Agent Report 
Modality   0.009   0.006 0.001 
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Gender + Video 
Gaming Experience   0.013  0.003  0.001 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Gender + Military 
Experience   0.012  0.004 0.006  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Agent Report Modality 
+ Video Gaming 
Experience   0.011 0.000   0.001 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Agent Report Modality 
+ Military Experience   0.010 0.001  0.007  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Video Gaming 
Experience + Military 
Experience   0.014 0.000 0.003   
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Gender + 
Agent Report Modality  0.028    0.008 0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Gender + 
Video Gaming 
Experience  0.029   0.002  0.000 
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Gender + 
Military Experience  0.030   0.003 0.008  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Agent 
Report Modality + 
Video Gaming 
Experience  0.027  0.000   0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Agent 
Report Modality + 
Military Experience  0.031  0.003  0.011  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Video 
Gaming Experience + 
Military Experience  0.029  0.000 0.003   
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Gender 
+ Agent Report 
Modality + Video 
Gaming Experience  0.017 0.001    0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Gender 
+ Agent Report 
Modality + Military 
Experience  0.019 0.000   0.008  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Gender 
+ Video Gaming 
Experience + Military 
Experience  0.017 0.001  0.003   
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Agent 
Report Modality + 
Video Gaming 
Experience + Military 
Experience  0.017 0.001 0.000    
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Gender + 
Agent Report Modality 0.007     0.008 0.001 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Gender + 
Video Gaming 
Experience 0.008    0.003  0.001 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Gender + 
Military Experience 0.009    0.003 0.008  
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Agent 
Report Modality + 
Video Gaming 
Experience 0.008   0.001   0.002 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Agent 
Report Modality + 
Military Experience 0.007   0.001  0.008  
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Video 
Gaming Experience + 
Military Experience 0.009   0.001 0.003   
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Gender + 
Agent Report Modality 
+ Video Gaming 
Experience 0.010  0.014    0.001 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Gender + 
Agent Report Modality 
+ Military Experience 0.009  0.012   0.006  
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Gender + 
Video Gaming 
Experience + Military 
Experience 0.011  0.016  0.005   
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Agent 
Report Modality + 
Video Gaming 
Experience + Military 
Experience 0.010  0.014 0.000    
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Gender + 
Agent Report Modality 
+ Video Gaming 
Experience 0.004 0.025     0.000 
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Gender + 
Agent Report Modality 
+ Military Experience 0.004 0.025    0.008  
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Gender + 
Video Gaming 
Experience + Military 
Experience 0.005 0.026   0.003   
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Agent 
Report Modality + 
Video Gaming 
Experience + Military 
Experience 0.004 0.025  0.000    
Age + Threat 
Conspicuity + Task 
Duration + Gender + 
Agent Report Modality 
+ Video Gaming 
Experience + Military 
Experience 0.005 0.013 0.001     
Conditional dominance 
k = 7 0.007 0.024 0.009 0.001 0.003 0.008 0.001 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Gender + Agent Report 
Modality      0.008 0.001 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Gender + Video 
Gaming Experience     0.002  0.002 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Gender + Military 
Experience     0.002 0.009  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Agent Report Modality 
+ Video Gaming 
Experience    0.001   0.002 
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Agent Report Modality 
+ Military Experience    0.001  0.009  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Video Gaming 
Experience + Military 
Experience    0.000 0.002   
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Gender + Agent Report 
Modality + Video 
Gaming Experience   0.011    0.001 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Gender + Agent Report 
Modality + Military 
Experience   0.010   0.006  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Gender + Video 
Gaming Experience + 
Military Experience   0.014  0.003   
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Agent Report Modality 
+ Video Gaming 
Experience + Military 
Experience   0.012 0.000    
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Gender + 
Agent Report Modality 
+ Video Gaming 
Experience  0.028     0.000 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Gender + 
Agent Report Modality 
+ Military Experience  0.029    0.008  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Gender + 
Video Gaming 
Experience + Military 
Experience  0.030   0.003   
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Agent 
Report Modality + 
Video Gaming 
Experience + Military 
Experience  0.029  0.000    
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Gender 
+ Agent Report 
Modality + Video 
Gaming Experience + 
Military Experience  0.017 0.001     
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Gender + 
Agent Report Modality 
+ Video Gaming 
Experience 0.008      0.001 
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Gender + 
Agent Report Modality 
+ Military Experience 0.008     0.008  
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Gender + 
Video Gaming 
Experience + Military 
Experience 0.009    0.003   
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Agent 
Report Modality + 
Video Gaming 
Experience + Military 
Experience 0.008   0.001    
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Gender + 
Agent Report Modality 
+ Video Gaming 
Experience + Military 
Experience 0.010  0.015     
Age + Threat 
Conspicuity + Task 
Duration + Mental 
Demand + Gender + 
Agent Report Modality 
+ Video Gaming 
Experience + Military 
Experience 0.004 0.026      
Conditional dominance 
k = 8 0.008 0.026 0.011 0.000 0.003 0.008 0.001 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Gender + Agent Report 
Modality + Video 
Gaming Experience       0.002 
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Gender + Agent Report 
Modality + Military 
Experience      0.008  
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Gender + Video 
Gaming Experience + 
Military Experience     0.002   
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Agent Report Modality 
+ Video Gaming 
Experience + Military 
Experience    0.000    
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Gender + Agent Report 
Modality + Video 
Gaming Experience + 
Military Experience   0.012     
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + Mental 
Demand + Gender + 
Agent Report Modality 
+ Video Gaming 
Experience + Military 
Experience  0.029      
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 Additional contribution (pseudo R2) of 

Subset model X Performance 
Temporal 
Demand 

Mental 
Demand Gender 

Agent 
Report 

Modality 

Video 
Gaming 

Experience 
Military 

Experience 
Age + Threat 
Conspicuity + Task 
Duration + Temporal 
Demand + Mental 
Demand + Gender + 
Agent Report Modality 
+ Video Gaming 
Experience + Military 
Experience 0.008       
Conditional dominance 
k = 9 0.008 0.029 0.012 0.000 0.002 0.008 0.002 
Age + Threat 
Conspicuity + Task 
Duration + 
Performance + 
Temporal Demand + 
Mental Demand + 
Gender + Agent Report 
Modality + Video 
Gaming Experience + 
Military Experience        
Overall average 0.007 0.021 0.007 0.001 0.003 0.008 0.001 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, keeping threat conspicuity, task duration, and 

age were held constant (Azen & Budescu, 2003). All potential suppressors and human variables were 

included. Conditional dominance indicates the average unique contribution for that subset model size (k) 

for the predictor under evaluation. The overall average presents the average over all average k model sizes. 
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Figure 69. Conditional dominance of full model with suppressors for the combined studies. 

Note. The conditional dominance plot identified temporal demand, mental demand, and military experience 

as suppressors (Azen & Budescu, 2003) in the combined studies. These were dropped from subsequent 

analyses. Video gaming experience was missing as a variable study D and was therefore also removed from 

further analyses. 

 

  



 

 266  

Full Model without Suppressors 

Table 63 

Raw dominance analysis results of the full model without suppressors in combined Studies. 

 Additional contribution (pseudo R2) of 

Subset model X Performance Gender Agent Report Modality 
Age + Threat Conspicuity + Task Duration 0.008 0.005 0.156 

Conditional dominance k = 3 0.008 0.005 0.156 
Age + Threat Conspicuity + Task Duration + 
Performance  0.005 0.149 
Age + Threat Conspicuity + Task Duration + 
Gender 0.008  0.153 

Age + Threat Conspicuity + Task Duration + 
Agent Report Modality 0.000 0.002  

Conditional dominance k = 4 0.004 0.003 0.151 

Age + Threat Conspicuity + Task Duration + 
Performance + Gender   0.146 

Age + Threat Conspicuity + Task Duration + 
Performance + Agent Report Modality  0.002  
Age + Threat Conspicuity + Task Duration + 
Gender + Agent Report Modality 0.001   

Conditional dominance k = 5 0.001 0.002 0.146 
Age + Threat Conspicuity + Task Duration + 
Performance + Gender + Agent Report 
Modality    

Overall average 0.004 0.003 0.151 

Note. This table presents the raw output of the dominance analyses. The unique additional contribution of 

each predictor is shown over all possible subset model sizes, keeping age, threat conspicuity, and task 

duration constant (Azen & Budescu, 2003). Conditional dominance indicates the average unique 

contribution for that subset model size (k) for the predictor under evaluation. The overall average presents 

the average over all average k model sizes. 
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Figure 70. Combined Studies full model evaluation plots 

Note. The residual plot is shown on the left and the predicted vs. observed values on the right, with a fitted 

line based on maximum likelihood 
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APPENDIX G: IRB FOR BORROWED EXPERIMENTAL STUDY A 
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APPENDIX G: IRB FOR BORROWED EXPERIMENTAL STUDY A 

• If you believe your activity may not meet the definition of “Human 
Research” subject to IRB oversight, contact the IRB Office prior to 
developing your protocol 

• Be sure that all study materials are correct and consistent with the 

information in this protocol. 

• The italicized bullet points below serve as general guidance to 

investigators on the kinds of information that may be applicable to 

include in each section. Please DELETE the italicized text in your 

protocol.  

• Note that, depending on the nature of your research, some sections below 

will not be applicable. Indicate this as “N/A.” 

• For any items described in the sponsor’s protocol or other documents 
submitted with the application, investigators may simply reference the 

page numbers of these documents.  

•

•

•
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1) Protocol Title 

A Novel Mixed Reality Interface For Effective and Efficient Human Robot 

Interaction with Unique Mobility Platforms 
 

2) Principal Investigator 

• Principal Investigator: Daniel J. Barber 

• Co-PI: Florian Jentsch  

1) Research Assistants: Andrew Watson, Jonathan Harris, Alexis San Javier, 
Thomas Pring, Christopher Miller, Austin Miller, Austin Carter, Nicholas Wyatt, 
Sasha Willis, Andrew Talone 

3) Objectives 

The goal for this experiment as currently defined is to understand how robot type and 

visual complexity of a mixed reality interface affects cooperative human-robot teaming in 

dismounted military applications. In order to accomplish we need to: 

1. Measure how robot type (wheeled vs. legged) impacts users’ expectations of robot 
capability and performance. 

2. Measure how visual complexity (low vs. high) of a mixed reality interface affects 
primary task performance and situation awareness/working memory recall. 

 

These objectives will be measured by: 

• Collecting user feedback regarding the platform type (legged vs. wheeled) and 
presentation of information conveyed from a robot teammate through reports at 
different levels of mixed reality interface visual complexity (low vs. high). 

• Collecting information regarding a user’s ability to interpret robot communication 
data from multimodal reports.  

• Collecting information regarding a user’s ability to recall and recognize 
information during exchanges within a human-robot team. 

• Collecting information regarding a user’s workload while interacting with 
different platform types and levels of mixed reality interface visual complexity 
within a human-robot team. 
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• Collecting information regarding impact on a user’s situation awareness while 
interacting with different platform types and levels of mixed reality interface 
visual complexity within a human-robot team. 

• Collecting information regarding a user’s usability preferences while interacting 
with different platform types and levels of mixed reality interface visual 
complexity within a human-robot team. 

• Assessing the performance costs associated with different platform types and 
levels of mixed reality interface visual complexity within a human-robot team. 

 

4) Background 

 

Mixed Reality 

Extensive research is required to develop a viable mixed reality visual display for 

human-robot collaboration, particularly with a focus on grounding, situation 

awareness, common and shared reference frames and spatial referencing [1]. This 

is especially true for dismounted military applications. 

 

• Prior research for dismounted military applications has focused on a multimodal 
interface (MMI) running on a mobile device (e.g. a tablet) [2, 3]. Furthermore, 
research focused on head-mounted displays mostly focused on 2D augmentation 
[4]. Few studies have focused on 3D augmentation (also referred to as mixed 
reality) interfaces for dismounted military. 

 

Visual Complexity 

• Extensive research has been done on information complexity for visual displays 
for Air Traffic Controllers (ATCs) [5, 6, 7]. The guidelines, metrics and 
questionnaires for the ATC domain will be adapted for human-robot interaction in 
dismounted military applications.  
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• Extensive research has been done on display clutter for Heads-Up Displays 
(HUDs) for airplane pilots. As seen with the Air Traffic Controller research, 
displays with enhanced information provide pilots with information previously 
unavailable with traditional flight instrumentation; however, the display of 
additional information may result in display clutter and therefore inhibiting the 
processes and tasks they are designed to support. Furthermore, it was found 
moderate levels of clutter may be acceptable if the information is relevant to the 
task at hand [8]. 

 

• Moacdieh et al. studied the performance and attentional costs with Primary Flight 
Display (PFD) clutter. Using a flight simulator, the authors created low-, medium- 
and high-clutter PFDs for which pilots flew a simulated flight scenario containing 
intervals of high and low workload. The pilots were required to detect visual 
alerts and notifications that appeared on the PFD. Using eye tracking, 
performance and subjective measures, it was concluded that clutter significantly 
increased response time to alerts and a high workload resulted in more alerts 
being missed [9]. Our research will build upon this research and apply it to the 
domain of human-robot interaction in dismounted military applications. 

 

• Ling et al. argue that visual complexity is found to be negatively correlated with 
usability and positively correlated with mental workload [10]. 

 

Robot Type 

• Robots still lack the capabilities to dynamically interact with human team 
members. Abich et al. developed a simulation to overcome current limitations of 
robot platforms and focused on the development and assessment of 
communication functionality [11]. Legged robots currently lack the intelligence 
and capabilities to be a part of a dynamic human-robot team. An experimental 
environment is needed to understand the communication and interface 
requirements for humans interacting with unique mobility platforms.  

 

• Research has shown that legged robots are anthropomorphized much more than 
wheeled robots. However, few studies have focused on how anthropomorphism 
can be utilized to create affective robot behavior needed for collaboration with 
humans in complex environments [12]. 
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Hypotheses for this study include: 

• H1: Participants will exhibit higher recall accuracy for high visual complexity 
(HVC) scenarios (more information displayed on screen). 

• H2: Participants will exhibit shorter recall response times for HVC scenarios. 
• H3: Participants will report differences in workload (e.g. NASA-TLX, HRV) 

between HVC and low visual complexity (LVC). 
• H4: Participants will perform better (i.e. accuracy, response time) on primary 

signal detection task (SDT) for HVC scenarios (less information to memorize, 
better focus on SDT). 

• H5: Participants will perform better (i.e. accuracy, response time) on recall of 
robot reports in HVC scenarios. 

• H6: Participants will report differences in robot expectations and trust (REPI and 
trust score) between wheeled and legged robot type. 

The results of this research will help us to develop guidelines on how to identify the 

appropriate visual complexity for a mixed reality interface for dismounted military 

applications. Furthermore, it will help us understand how robot platform type affects 

human-robot team collaborations. 

 

5) Setting of the Human Research 

Experimentation will be conducted at UCF and will use the UCF population. This 
experiment will involve participants performing tasks in a simulated environment and 
answering questionnaires. The experiment will be conducted at the Institute for 
Simulation and Training’s Partnershiup II building room 112. 

 
6) Resources available to conduct the Human Research 

• This project is funded by the RCTA FY2016 Task H7: HRI of Unique 
Mobility Platforms. Research staffing, testing equipment and testbeds are 
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provided by the University of Central Florida’s Institute for Simulation and 
Training. 

• A power analysis was conducted a priori and determined that an appropriate 
sample size of 90 would be adequate to detect moderate effects at α = .05, β = 
.05 for a mixed repeated-measures design. 

• We estimate that the time period for this study will be six to nine months. This 
includes data collection and coding.  

• Each of the research staff who will be interacting with participants has 
research experience that includes data collection, facilitating studies, 
recruiting participants, and analyzing data. 

• All of the current staff has received CITI training. 
• We anticipate that all measures and stimuli can be collected either on-line via 

Sona Systems/ UCF Qualtrics, or in the laboratory setting. 
 

7) Study Design 

 

NOTE: Researchers developing multi-faceted protocols (e.g., multiple phases, study 

groups, research components, etc.) may want to develop separate “Study 
Design” sections for each component of their research rather than trying to 
combine disparate components into a single section. 

 

a) Recruitment Methods 

 

i) Participants will be recruited from the general psychology and IST research 
pool using Sona Systems. Participants will receive course credit for their 
participation that can be used for a qualifying undergraduate psychology 
course.  

ii) Researchers will not specifically identify or contact potential research 
participants. Rather, the study will be listed as available to be participated in, 
via UCF’s SONA Systems. Our study will only be visible via SONA systems 
to potential participants who identify themselves to SONA Systems as being 
at least 18 years of age. Potential participants who meet this qualification will 
then be able to view our study as an available option for them to participate.  

iii) If students are unable to participate in our study for reasons such as age, or if 
they do not wish to take part in our study for other personal reasons, the 
students will have the opportunity to arrange with their course professors an 
alternate assignment that will allow them to acquire the necessary course 
credit needed.  

iv) No advertisements or other materials will be used to recruit study participants.  
v) We anticipate needing approximately 90 participants to complete this study.  
 

b) Participant Compensation 
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1. Participants will be offered course credit for their participation. 
2. This research will conform to UCF Psychology Department’s and IST’s policy for 

granting course credit in return for research participation.The policy specifically 
states:  
All face-to-face studies are worth twice as much as online studies. Face-to-face 

studies must be credited at the rate of 0.5 credits per 30 minutes (rounded up) and 

online studies must be credited at the rate of 0.25 credits per 30 minutes (rounded 

up). Thus, if your face-to-face study takes approximately 20 minutes to complete, 

your study should be set up to award 0.5 points to each participant.  If the face-to-

face study takes 40 minutes to complete, the study should be set up to award 

participants 1 point. Likewise, a 20 minute online study would be worth 0.25 

points and a 40 minute online study would be worth 0.50 points 

3. If students are unable to participate in our study for reasons such as age, or if they 
do not wish to take part in our study for other personal reasons, the students will 
have the opportunity to arrange with their course professors an alternate 
assignment that will allow them to acquire the necessary course credit needed.  

c) Inclusion and Exclusion Criteria 

Participants involved in this study will be students who are enrolled in an 
undergraduate and graduate classes at the University of Central Florida and are 
over the age of 18. Participants will have to demonstrate eligibility (class 
registration) by signing up for Sona Systems and completing a pre-screening 
measure provided by Sona Systems (age). This pre-screening measure will screen 
students for age such that only students who are 18 years old and above, have 
normal or corrected to normal vision, and an ability to stand/walk without 
assistance will be able to sign up to participate in our study. Participants with a 
previous history of seizures will be excluded. This will be screened for as part of 
the pre-screening provided by SONA, and asked directly while providing consent 
to participate. Researchers will not attempt to recruit persons identified as being 
part of a vulnerable population (e.g., children, prisoners, mentally disabled 
persons). 

d) Study Endpoints 

NOTE: This section is only required for biomedical research. It is 

generally not applicable to social or behavioral research. 

• N/A 

e) Study Timelines 

• Anticipated time to complete the study is approximately 180 minutes.  

• The researchers anticipate that we will need approximately 6 to 9 
months to complete data collection, data coding, and preliminary 
analyses. 
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f) Procedures involved in the Human Research. 

• Deception will not be used in this study. 
• No audio or video recording of this research or research participants will be 

conducted without participant consent. Participants who do not agree to audio 
recording will be able to participate in the study. No video is recorded for this 
study. 

• The foreseeable risk to participants is minimal to none; therefore procedures 
to minimize magnitude of risk will not be taken.  

• However, there may be concern that a military scenario or the suggestion of a 
robotic teammate may invoke a negative response to those sensitive to issues 
associated with military conflict, police investigation, crime, or artificial 
intelligence.  

• Participants will be allowed to withdraw from the study at any time should 
they feel it necessary. Further, they will be credited for the amount of time 
that they took part in the study prior to choosing to withdraw.  

• No source records will be used.  
• No long term follow-up data will be collected.  
• No medical records will be used. 
• A 2 x (Robot Type: Wheeled - W, Legged - L) x 2 (Visual Complexity: Low - 

LVC, High - HVC) mixed design with repeated measures for Robot Type will 
be used to identify the appropriate Visual Complexity to maintain 
performance on the Signal Detection Task (SDT - insurgent identification) 
and Information Reporting Task (IRT - working memory, information recall) 
and understand how Robot affects the user’s perception and expectation for 
the robot and ultimately human-robot team performance. 
 

Questionnaires: 

• Biographical Data questionnaire. A software generated questionnaire 
gathers background information regarding age, gender, visual acuity, 
academic education, military experience, computer use, video game 
exposure/experience, and robotics knowledge. 

• Ishihara color deficiency test. This consists of a number of colored 
plates containing a circle of dots randomized in color and size. Within 
the randomized pattern on each plate are dots that form a number 
visible to those with normal color vision and invisible, or difficult to 
see, for those with a red-green color vision defect. 
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• Spatial orientation survey. This spatial orientation test (adapted from 
Thurstone’s Cubes) assesses the ability to mentally rotate and compare 
objects in space (Ekstrom, French, & Harman, 1979). 

• Verbal-Spatial Ability Rating (VSAR): Self-report measure on two 
items that asks participants to rate their verbal and spatial ability 
separately. 

• Verbal-Visual Learning Style Rating (VVLSR): Self-report measure on 
a single item using a 7-point scale asks participants to rate the degree 
to which they are more verbal or visual learners. 

• Santa Barbara Learning Style Questionnaire (SBLSQ): Self-report 
measure on six items using a 7-point scale asks participants to rate the 
degree to which they are more verbal or visual learners. 

• Reading Span (RSPAN): This software generated working memory 
task requires participants to read aloud sentences, each of which are 
followed by an upper case letter (Kane et al., 2004). Participants must 
recall the letters in correct serial order after a set of sentence-letter 
strings. 

• Trust between people and automation questionnaire. This 12-item checklist is 
a self-report measure of human trust in automation created by Jian, Bisantz, 
and Drury’s (2000). 
 

• NASA-Task Load Index (TLX). The TLX is a multi-dimensional scale 
comprised of six subscales with three focusing on demand imposed on the 
participant (mental, physical, and temporal demand) and three on the 
interactions with the task or system (effort, frustration, and performance level; 
Hart & Staveland, 1988). 

 

• System usability survey (SUS). This 10-item questionnaire focused on 
perceived usability of the system (i.e. hardware, software, equipment; Brooke, 
1996). 

 

• Ratings of Expectation and Perceived Importance (REPI). This 17-item 
questionnaire focused on perceptions of the user’s expectations and perceived 
importance of the robot’s behavior and functionality before and after 
interaction (Lohse, 2011). 
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• Perceived awareness of the research hypothesis (PARH). This scale is a quick 
and convenient quantitative method for measuring the potential influence of 
demand characteristics in psychology research situations (Rubin, Paolini, & 
Crisp, 2010). 

 

• Interaction Reflection. Items of this measure cover positive and negative 
aspects of their interaction with the device, and ask to provide any suggestions 
for improvement. 

 

• Simulator Sickness Questionnaire (SSQ). Beginning, mid-point, and end of 
experiment. Given at set time-intervals during the experiment (Kennedy, 
Lane, Berbaum, & Lilienthal, 1993). 

 

Hardware: 

• Physiological assessment.  

o The Microsoft Band 2, non-invasive, low-cost consumer-grade, 
wearable wristband monitors cardiac activity. Measures of 
heart-rate (HR), heart-rate variability (HRV), inerbeat-interval 
(IBI), and galvanic skin response (GSR), and skin temperature 
will be collected.  

o The Empatica E4, non-invasive, research-grade wearable 
wristband monitors cardiact activity. Measures of heart-rate 
(HR), heart-rate variability (HRV), interbeat-interval (IBI) and 
galvanic skin response (GSR), and skin temperature will be 
collected. 

• Virtual reality headset. The HTC Vive will be used to display the 
virtual environment used within the simulation and emulate a mixed-
reality heads-up display. 

 

Procedure: 
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Upon arrival, participants will be assigned to a group for a corresponding visual 

complexity level (low or high). 

Phase 1: Biographical Data 

Participants will be asked to fill out the following measures: 

• Biographical Data questionnaire 

• RSPAN 

• VSAR, VVLSR, SBLSQ 

• Spatial orientation survey 

• Trust between people and automation questionnaire (Pre-test) 

• Ratings of Expectation and Perceived Importance (REPI; Pre-
test) 

• SSQ (baseline) 

Phase 2: Training 

Participants will then be asked to view a PowerPoint presentation that 
will familiarize them with the tasks they will be asked to perform and 
the subsequent practice exercises. Participants will be asked to 
complete the following training presentations and practice exercises. 

• Background information. Participants will be given 
background information to provide a context for the given 
scenarios. The backstory will be validated by subject matter 
experts (SMEs) to ensure contextual credibility.  

• PowerPoint training on signal detection task. Participants will 
be asked to view a PowerPoint presentation for training on the 
signal detection task which will include the identification of 
threat items in a simulated environment. Threat items will 
include models of potential improvised explosive devices 
(IEDs), weapons cache, as well as models of potential 
insurgents and enemy forces. The training will include which 
items are classified as threat items and how to identify them in 
the simulation.  

• Signal detection practice exercise. After completing the 
training on the signal detection task, the participant will be 
asked to complete a practice signal detection task.  
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• PowerPoint training on robot reporting. Participants will then 
be asked to view a PowerPoint presentation for training on 
when and what type of information the robot will provide in 
the robot reports, how to access reports, how those reports will 
be displayed, and how to respond to related questions during 
the scenarios.  

• Robot reporting practice exercise. Participants will then be 
asked to complete practice trials including the robot reports. 

• Questionnaire exposure. Throughout the training, participants 
will also be given information describing what the 
questionnaires are, how they will look, and how to respond to 
them. They will be given an opportunity to practice answering 
the questionnaires. 

• Physiological assessment. Participants will wear the Microsoft 
Band 2 and the Empatica E4 on their wrists (one on left, one on 
right) for the duration of the experiment. It will be explained to 
them what the Band 2 and E4 are and what information they 
collect. 

• Combined practice exercise. Participants will then be asked to 
complete two practice trials one for the legged and another for 
the wheeled platform that includes robot reporting and signal 
detection tasks.  

Phase 3: Experimental Scenarios 

After completing all of the training materials and the training 
exercises, participants will be asked to complete two experimental 
scenarios. The scenarios will vary in robot type and visual complexity 
depending on assigned group.  

Scenarios will be presented using a custom 3D Virtual Reality 
simulation testbed that emulates the operational area of a dismounted 
Soldier. The simulation will be a completed using suite of gaming 
tools available for customization to meet investigational needs.   

Scenarios will take approximately 15 minutes each to complete. In 
general, during the scenario, participants will be playing the role of a 
human teammate in a simulated Soldier-robot team and will be at a 
fixed location searching for target items while responding to 
communicated messages from a robot. The simulated robot will be 
performing a similar task. The participant will be responsible to 
recall/recognize information from the robots communicated messages. 

▪ Scenario :  
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• Simulation: In a simulated environment, participants will 
take on the role of a team leader within a dismounted 
squad performing a cordon and search operation. The view 
will be from the first-person perspective of the Soldier. 
The Soldier will automatically be placed in the proper 
orientation, distance, and viewing angle to perform the 
signal detection task. Each scenario building location will 
be subject to a cordon and search operation. 

• Signal Detection (SD) task: The event rate will be 15 
events/min with a 13.33% probability of a signal 
present. Based on previous research this should 
correspond to a low task level. An event will be the 
presence of a person (both enemies and friendlies) that 
is entering, exiting, or approaching the cordoned area. 
A signal is the presence of an enemy. The participant 
will identify and select enemies using the HTC Vive 
controllers. 

▪ Conditions: 

• There will be two groups of participants. 

o Group 1 (G1) will experience both Robot Types 
(Wheeled, Legged) for Low Visual Complexity. 

o Group 2 (G2) will experience both Robot Types 
(Wheeled, Legged) for High Visual Complexity. 

• Wheeled Robot + Low Visual Complexity for G1: 

o One wheeled robot (part of the hit team) will send 
reports via audio (i.e. synthesized speech radio 
message) and visual (i.e. virtual text box) 
communicated simultaneously. In addition, a Basic 
Marker (i.e. symbol and location in 3D space) will 
be placed at the location of the report. This marker 
will remain in the scene until the end of the 
scenario. 

o The reports will be initiated automatically. The 
messages will contain information regarding 
distance, direction, and description (i.e. 3 D’s) of 
threats, IEDs, weapons cache, hostages, or 
currency bins outside of and within the building 
(i.e. out of line of sight). 
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o The visual reports will contain the same 
information that is conveyed through auditory 
reports but in text format. In addition, the Basic 
Marker will also show the description of symbol 
and spatial location in the scene. The participant 
must later recall this information and provide a 
report back to the squad leader which will come in 
the form of questions that are prompted on the 
screen at varying intervals (e.g. after receiving 
varying number of reports from the robots). The 
questions will be in regards to the 3 D’s and 
priority intelligence requirement (PIR) reports. 
Participants will verbally respond to questions that 
will be collected using an automatic speech 
recognizer (ASR). This task will provide a measure 
of situation awareness (SA) and level of recall. 

• Legged Robot + Low Visual Complexity for G1: 

o This scenario will be the same as above except the 
robot will be a legged robot. 

• Wheeled Robot + High Visual Complexity for G2: 

o This scenario is the same as Wheeled Robot + Low 
Visual Complexity for G1 but will contain more 
visual display elements (high complexity). 

o There will be a 2D top-down minimap in the 
bottom left corner of the visual display that shows 
the soldiers, robot and markers. 

o Instead of Basic Markers, Enhanced Markers will 
be displayed. Enhanced Markers display a symbol, 
the quantity, the location (direction or floor inside 
a building) and spatial location within the scene. 

• Legged Robot + High Visual Complexity for G2: 

o This scenario will be the same as above except the 
robot will be a legged robot. 

• During and after completing each scenario, participants will 
remove the HTC Vive heads and asked to complete the NASA-
TLX, SUS, Automation Trust, REPI measure, and SSQ on a 
standard desktop computer. 
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• Lastly, to account for potential extraneous effects of the 
presentation order of experimental scenarios, they will be 
counterbalanced across participants. There will 2 scenes which 
will place the participant at different locations/viewpoints in 
the 3D virtual environment. The scenes will also be 
counterbalanced across participants. 

Phase 4: Post scenario questionnaires 

Upon completion of all experimental scenarios and associated 
questionnaires, participants will be asked to complete 

• Free-response questionnaire 

• PARH 

• Participants will then be provided with the post participation 
information form and the optional researcher evaluation form.  

 

g) Data and specimen management 

NOTE: Data confidentiality issues are a separate topic that is addressed 

in section 11 below. 

• See procedures and provisions sections. 
• No data will be sent out or received 
• No specimens or data will be transported. 
• All survey material identification shall be done through a participant id 

number that cannot be traced back to the participants. In addition, participants 
will sign up for the study using a Sona ID number that is only known to the 
participant. This is done to avoid any member of the research team 
accidentally finding out the identity of the research participants when they 
grant participation credit to participants via Sona systems. Through this ID 
number system, researchers granting credit to research participants cannot 
identify participants or potential participants via their name. Only de-
identifiable summary results (e.g., mean ages, age ranges, number of males 
and females) have the potential to be published in technical research reports. 

• All the sub and co-investigators are responsible for collecting and preserving 
data. Data will be kept for a period of five years and secured in a locked file 
cabinet that is compliant with human participant’s research. Digital recorded 
data (e.g. audio recording, simulation logs) will be stored indefinitely in a 
secured network drive in which folder access will be restricted to those listed 
and approved in this protocol. 
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• Data shall be managed carefully by monitoring each of the survey items to 
ensure that they are filled out completely and that the survey items for each 
participant are combined together. If participants chose not to respond to 
items, researchers will determine whether certain items are systematically 
unanswered by study participants and consider removing those items. 
Participants will not be penalized for choosing not to respond to a 
question/item.  

• Researchers will carefully monitor the data to determine if certain items are 
systematically unanswered by participants. As this situation could be a case of 
having “bad items” included in our item pool, we will work to ensure that 
these items receive additional scrutiny and are removed as necessary. 

• Further, if participants are found to be malingering or “Christmas Treeing” 
items, our research team will take the following steps: 

o Politely tell participants, “It is very important that you try your best 
during the experiment. If you feel that you cannot give your full effort, 
I will have to end the experiment early.” Participants will be granted 
credit for all of the time that they participated in the study. 

o The researchers will have the right to ask participants to withdraw 
from the study if they are disrupting the participation of other 
participants, being disrespectful to other participants, the research 
staff, or research equipment, or engage in conduct that is not compliant 
with the University’s Golden Rule policy. In the event that participants 
are asked to withdraw, they will be granted credit for all of the time 
that they participated in the study. 

• Data analysis plan will include but is not limited to the use of correlation, 
regression, and ANOVA statistical techniques as well as analyzing data for 
mean trends or otherwise useful patterns. The independent and dependent 
variables are listed below in Table 1. 
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Independent Dependent 

Biographical data 

• Gender/Sex 
• Video game experience 
• Virtual reality experience 
• Computer usage 
• Multilingual 
• Military experience (e.g. rank, 

deployment, time in service, 
etc.) 

• Education level 
• Robotics Experience 
 

Correlated with  

• Mental workload (TLX score) 
• Usability preference (SUS rating) 
• Working memory (recall probe score) 
• Situation awareness (SA probe 

scores) 
• Robot expectations and perceived 

importance (REPI score) 
• Trust automation (trust score) 

Visual Complexity 

• Low 
• High 

Platform Type 

• Legged 
• Wheeled 

Effects on: 

• Mental workload (TLX score) 
• Usability preference (SUS rating) 
• Working memory (recall probe score) 
• Situation awareness (SA probe 

scores) 
• Robot expectations and perceived 

importance (REPI score) 
• Trust robots (trust score) 
• Physiological response – Microsoft 

Band 2 & Empatica E4 (HRV, IBI, 
HR) 

• Response time (IRT, SDT) 
• Identification percent accuracy (SDT) 
• Identification error rate (SDT) 
• Effects on task performance: 

o Percent accuracy 
o Error rate 
o Response time 
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h) Provisions to monitor the data for the safety of participants  

 

NOTE: This section is only required when Human Research involves 

more than minimal risk to participants. It is not applicable to research 

that is not more than minimal risk. 

• No more than minimal risk is anticipated 

• The research team will not attempt to recruit participants from 
vulnerable populations. All volunteers will indicate that they are of 
legal age (18+ years of age) by answering a prescreening questionnaire 
via Sona Systems. Our study will not be visible as a participation 
option to students who do not indicate that they are at least 18 years of 
age. 

i) Withdrawal of participants 

• Individuals will be informed that participation in the study is voluntary 
and that they may withdraw at any time without penalty. 

• Researchers believe that the likelihood of participant risk is very low. 
However, there may be concern that a military scenario or the 
suggestion of a robotic teammate may invoke a negative response to 
those sensitive to issues associated with military conflict, police 
investigation, crime, or artificial intelligence.  

• Participants will be allowed to withdraw from the study at any time 
should they feel it necessary. Further, they will be credited for the 
amount of time that they took part in the study prior to choosing to 
withdraw.  

• In addition, participants have the right to leave items or measures 
unanswered if they feel that answering the items or measures is not in 
their best interest, could cause unforeseen psychological or physical 
discomfort, or could compromise the confidentiality of their data. 
Researchers will not force participants to answer survey items or 
partake in filling out survey measures if they do not chose to do so. 

• Participants may be asked to withdraw from the research without their 
consent in circumstances in which participants are found to be 
malingering or “Christmas Treeing” items (After being asked to stop 
this behavior by the researchers), or if the researchers determine that 
continuing participation is not in the best interest of the participant 
(e.g., in the event of tornado warning in the building, participant is 
falling asleep, etc.). Participants may be withdrawn from the study if 
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they are disrupting the participation of other participants, being 
disrespectful to other participants, the research staff, or research 
equipment, or if participants engage in conduct that is not compliant 
with the University’s Golden Rule policy. 

• In the event that participants are asked to withdraw, they will be 
granted credit for all of the time that they participated in the study. 

 

8) Risks to participants 

• Researchers believe that the likelihood of participant risk is very low. 
However, there may be concern that the suggestion of a military 
scenario or a robotic teammate may invoke a negative response to 
those sensitive to issues associated with military conflict, police 
investigation, crime, or artificial intelligence, or participation in 
research that is funded by the U.S government, Department of 
Defense, or the U.S. Army.  

• Participants will be informed that this research is funded by the U.S. 
Army on the Informed Consent Form document.  

• The Microsoft Band 2 and Empatica E4 physiological sensors used is a 
commercial wearable product that simply goes on the wrist like a 
watch. There is no foreseeable risks associated with wearing the 
sensor. All the equipment is unobtrusive, non-invasive, and has been 
fully tested and inspected to maintain safety. The researchers 
performing this study have completed training on the use and safety of 
each of the pieces of equipment used in the experiment. 

• There is a slight risk of participants being affected by simulator 
sickness using the HTC Vive Virtual Reality headset. However, breaks 
from interactions with the virtual environment are built into the study 
design to avoid extended periods of VE interaction and lessen the 
likelihood of experiencing simulator sickness.  

9) Potential direct benefits to participants 

• Participants will be immersed in an environment of scholarly research during 
the duration of participation. This may help to augment their research 
education. 

• No benefits have been promised or are expected to be given to the volunteers 
who participate in this study.  However, the data resulting from this research 
will be the primary information used to inform designers of robotic systems, 
specifically in human-robot interaction. 
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10) Provisions to protect the privacy interests of participants 

• Researchers do not foresee privacy interests being comprised by 
participating, entering into our study, or coming into our research 
facilities.  

• Research facilities are located on the main campus of the University 
and its adjacent research park. As both facilities are associated with 
official university business and activities, we do not anticipate privacy 
interests to be compromised. 

• Data in any form will be kept either in a locked cabinet or maintained 
on a password protected computer with limited access.  Only persons 
listed on the IRB will have access to the information. 

• Participant data will not be disseminated outside of the researchers and their 
immediate assistants. However, summary statistics of participant’s de-
identifiable data (e.g., mean age, age range, number of male and females) may 
be reported in technical publications including technical reports and peer 
reviewed submissions. Again, specific data will be used to inform the 
development of a follow up study. 
 

11) Provisions to maintain the confidentiality of data 

• Individual data will not be revealed to anyone other than the 
researchers and their immediate assistants.   

• Only UCF researchers listed on this protocol will have access to 
immediate data in paper or electronic form. 

• Instead of using names and personal information, data will be 
identified by assigned numbers participant numbers. Research credit 
will be granted using a different set of identification numbers 
determined by Sona Systems. This will ensure that the research team is 
not able to link participant data with participant names. Thus, the data 
cannot become identifiable.  

• Participant IP addresses will not be available to researchers and will 
not be sought by researchers.  

• Only group means scores and standard deviations, but not individual 
scores, will be published or reported. 

• Data in paper form will be stored in a locked cabinet to which only 
researchers and immediate assistants will have access for five years. 
Digital data will be stored in a secured network drive in which folder 
access will be restricted to those listed and approved in this protocol 
indefinitely. 
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12) Medical care and compensation for injury 

 

NOTE: This section is not applicable for research that involves no more than 

minimal risk. 

• N/A 

13) Cost to participants 

• Participants will not incur any costs for participation 

14) Consent process 

NOTE: The process of obtaining informed consent is distinct from the 

informed consent document itself.  

• Once in the lab, participants will be presented with the Informed 
Consent form that includes the details of the study, information on the 
rights of research participants, and contact information for the research 
team and internal review boards. The informed consent process will be 
conducted by the research assistants who will be facilitating this study 
and supervised by the sub investigators (Listed in the Investigators 
section of this document). After reviewing the form, participants will 
be given the opportunity to ask for clarification on any of the study 
details and/or ask questions about the research. Once this opportunity 
has passed and all questions and concerns have been addressed, 
participants will be asked if they would like to continue with their 
participation in the study. Participants will indicate their consent by 
signing their name on the informed consent form. If they chose not to 
participate, they will be thanked for their time and instructed to the 
exit. Informed consent will not be attempted in any language other 
than English. In accordance with University policy that dictates 
students demonstrate an adequate level of English language 
comprehension, researchers will anticipate participants to be able to 
read and write in English. 

• Because this research is funded by the U.S. ARMY, the informed 
consent process will also comply with U.S. ARMY standards for 
ethical research. Meaning that, in the event that this research is 
considered “exempt” by the UCF institutional review board, the 
researchers will still seek a signed informed consent document, so as 
to be compliant with both UCF’s IRB and the U.S. ARMY’s 
HLAR/AHRPO review process. 

15) Process to document consent in writing 
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• Although this study is of minimal risk and may qualify for a waiver of written 
documentation of consent, in compliance with DOD standards, participants 
will indicate their consent to participate by signing their name on the Informed 
Consent form. The research assistant conducting the study will also sign as the 
person obtaining consent. A copy of this document will be made and given to 
the participant to keep for their own records. The research team will also keep 
a copy of this document that will be stored in a secure locked filing cabinet 
away from other study materials so as to avoid any chance of linking 
participant names to other study materials. 
 

16) Vulnerable populations 

• The research team will not attempt to recruit participants from 
vulnerable populations. All volunteers will indicate that they are of 
legal age (18+ years of age) by answering a prescreening questionnaire 
via Sona Systems. Our study will not be visible as a participation 
option to students who do not indicate that they are at least 18 years of 
age.  

17) Drugs or Devices 

• N/A  

18) Multi-site Human Research 

• N/A 
19) Sharing of results with participants 

• Participants will have the option to inquire about the results of the 
study by contacting the experimenters.  

• Experimenter contact information will be provided to the participants 
on the post participation information form provided upon the 
completion of the study.    
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APPENDIX H: IRB FOR BORROWED EXPERIMENTAL STUDY B 
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APPENDIX H: IRB FOR BORROWED EXPERIMENTAL STUDY B 

 

 

 

 

 

 

 

 

 

1) Protocol Title 

• Squad Level Soldier-Robot Communication Exchanges 

 

2) Principal Investigator 

• Principle Investigator: Daniel J. Barber 

• Co-PI: Florian Jentsch 

• Research Assistants: Julian Abich IV, Jonathan Harris, Samuel 
Cosgrove, Elizabeth Phillips, Andrew Talone 

3) Objectives 

• Collect Soldier feedback on types of information desired from a robot 
teammate 

• Collect Soldier feedback on how robots should request confirmation regarding 
route planning and how robots should move when en route 

• Collect information regarding frequency and type of information a Soldier 
requests from a robot teammate  

• If you believe your activity may not meet the definition of “Human 
Research” subject to IRB oversight, contact the IRB Office prior to 

developing your protocol 

• Be sure that all study materials are correct and consistent with the 

information in this protocol. 

• The italicized bullet points below serve as general guidance to investigators 

on the kinds of information that may be applicable to include in each 

section. Please DELETE the italicized text in your protocol.  

• Note that, depending on the nature of your research, some sections below 

will not be applicable. Indicate this as “N/A.” 

• For any items described in the sponsor’s protocol or other documents 
submitted with the application, investigators may simply reference the page 

numbers of these documents.  

•

•

•
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• Collect information regarding how frequency and type of information affects a 
Soldier’s SA 

• Collect information regarding a Soldier’s ability to interpret image data from a 
robot asset 

 

4) Background 

The future vision of a Soldier—robot (S-R) team is one in which humans and 
robots complete distributed but interdependent tasks to meet team goals. This vision 
of robotic teammates is one in which robots will be expected to be active participants 
in facilitating situation awareness (SA) among S-R teams.  Military doctrine specifies 
that “Every Soldier is a sensor” on the battlefield (United States Army, 2012, pp. 9-
1), therefore, Soldiers will expect robots to contribute to operator SA by 
understanding information that is relevant to the task at hand and sharing this 
information in an effective, proactive way (Robotics Collaborative Technology 
Alliance, 2012; Schuster, Keebler, Zuniga, & Jentsch, 2012). Emerging Soldier 
systems include advanced sensors that can penetrate walls, detect thermal signatures, 
localize enemy fire through 3D audio, and detect/recognize moving entities (U.S. 
Army Evaluation Center, 2013). They also include advanced networks for inter-and 
intra-squad communications.  Robots will be expected to have some of these 
capabilities and engage in situation assessment behaviors, to perceive and understand 
surroundings, share information and report status (Endsley, 1995), in order to achieve 
SA within the team.   

A robot’s ability to engage in these behaviors, and consequently aid in the 
development of team SA, will be guided by mental models to determine what 
information is relevant and when to share said information.  However, based on what 
is currently known about the state of the art (SOA) in human—robot teams and team 
performance in human—human teams, we know that humans and robots have 
different levels of complexity with regard to mental models for engaging in situation 
assessment behaviors (i.e., information sharing). Assuming a robot system with some 
level of AI, the task-goal architecture is nevertheless still simple (e.g., using ladar and 
camera, recon the interior of a building) and lacking in contingencies/nuances. In high 
performing human—human teams, human team members often draw on highly 
complex mental models that enable members to “push” information in anticipation of 
team member information needs (Johannesen, Cook, & Woods, 1994; MacMillan, 
Entin, & Serfaty, 2004). 

For this effort, investigations of Soldier SA will be based on realistic simulation-
based scenarios with SA questions relevant to scenario events.  Investigations of 
team-member SA benefit from careful construction of scenario events that elicit and 
document team communications and decision making, which in turn demonstrate the 
critical role of communication in shared SA (Elliott, Serfaty, & Schiflett, 1998 Elliott, 
Coovert, Barnes, & Miller, 2003). This communication strategy is dictated by 
knowledge of teammate expectations of information sharing.  As a result, members 
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transfer information to teammates, without explicit prompting.  In SOA human—
robot teams, robots share information based on their internal programming, dictated 
not by an understanding of when humans will expect or need information, but on 
design decisions bounded by practical and functional limitations.  In order to 
reconcile mental model and design differences in situation assessment behaviors, like 
information sharing, research is required to determine Soldier expectations of robot 
information sharing and the degree to which   these expectations and behaviors can 
best support team SA, leading to more efficient and effective team performance and 
increased Soldier safety. 

Previous research has provided insight into perceived mental models of robotic 
teammates along several dimensions.  Dimensions include the human’s perception of 
the robot’s own knowledge of its operating procedures, system limitations, interaction 
patterns, as well as the robot’s knowledge of its human teammates (e.g., teammate 
specific knowledge, skills, and attitudes) (Ososky, Phillips, Swigert, & Jentsch, 
2012).  While this research has a wealth of insight into what novices infer about their 
robotic partner’s understanding of tasks and teammates, it has not provided insight 
into mental models of specific robotic behaviors.  As a result, we do not yet have an 
understanding of the mental models that humans hold of robot situation assessment 
behaviors.  With this research, we would like to investigate human expectations and 
preferences for frequency of information sharing, type of information, and 
presentation of robot queries for information, that robots should communicate to 
Soldiers in a mission environment.  We are also interested in the degree to which 
these information sharing behaviors influence a Soldier’s SA. 

In this effort, we will gather Soldier feedback through a simulation based 
assessment approach, to identify Soldier expectations of robot information sharing 
and information requesting behaviors.  The results will inform the design of robot 
mental models of information sharing (i.e., robot-to-human communication protocols) 
and interfaces for facilitating S-R 
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5) Setting of the Human Research 

Experiments will be conducted at Fort Benning, GA in collaboration and under the 
supervision of the U.S. Army Research Laboratory (ARL). This is a field 
experiment and will be conducted in a designated area on base determined by ARL. 

Permission has been confirmed by Linda Elliot, Ph.D., Human Research and Engineering 
Directorate, Human Factors Integration Division. 

 
6) Resources available to conduct the Human Research 

 

This project is funded by the RCTA FY2014 Task H5: Evaluating Tactical Command 
and Coordination Vocabulary and Protocols. Research staffing, testing equipment 
and testbeds are provided by the University of Central Florida’s Institute for 
Simulation and Training. 

 

7) Study Design 

 

The study will be a 2 (constant demand, varying demand) x 2 (participant request, robot 
request) within-subject design. The first independent variable is signal detection 
task demand with two levels: Baseline (constant low) and varying (low to high). 
The second independent variable is a communication type with two levels with 
constant signal detection task demand: participant requests information and robot 
requests information. 

 

j) Recruitment Methods 

This experiment is going to be conducted on the Fort Benning, GA military base 
and up to 60 OCS Soldiers will participate in the study. This experiment is a 
joint collaboration with HRED-ARL, which will help provide the sample 
population. The project investigators will make clear to the unit that Soldier 
participation in the evaluation will be voluntary.  The Soldiers will be 
informed that if they choose not to participate, they can convey that choice 
privately to a project investigator.  The project investigator will inform that 
Soldier’s unit supervisor, without elaboration, that the Soldier did not meet 
evaluation criteria. 

k) Participant Compensation 

 

Participants will be not be compensated for participantion. 
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l) Inclusion and Exclusion Criteria 

 

Participants will be healthy American Citizens over age 18 years from the U.S. Army 
community.  Participants will be notified by their unit leader that they may be 
excluded from the study before the study actually begins if they do not meet the 
inclusion criteria. 

 

Reasons for exclusion are: 

• Color-blindness 
 

m) Study Endpoints 

 
The results will inform the design of robot mental models of information sharing (i.e., 

robot-to-human communication protocols) and recommendations of display 
characteristics for facilitating S-R communications. 

 
n) Study Timelines 

 
Individual participation in the study will be about 2 hours. The duration anticipated to 

enroll all study participants will be 2 weeks. The estimated date to complete this 
study will be July 2015. 

 

o) Procedures involved in the Human Research. 

Upon arrival, participants will first complete the Informed Consent that details their 
rights as a research participant, the purpose of the study, overall procedure, and 
potential risks associated with participation. After reviewing and signing the 
Informed Consent, the participant will complete the Demographics Questionnaire to 
collect standard items such as age and gender, as well as items used to determine 
their level of training and experience. After completion of the Demographics 
Questionnaire, the participant will complete the Cube Comparison Test. Once all 
pre-questionnaires are completed, the participant will begin training for the 
experiment scenarios. 

Participants will be shown a PowerPoint-based presentation instructing them on the tasks 
they will perform. It will include descriptions of threat and non-threat targets for the 
signal detection task. This presentation will include screenshots of the simulation 
environment with instructions on how to classify potential threats. After reviewing 
the PowerPoint information, the first training scenario will be administered to allow 
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participants to practice performing the signal detection task. After completing the 
signal detection practice scenario, the participant will continue to the next phase of 
the PowerPoint presentation, which will include information regarding when and 
what type of information the robot will provide during Robot Reporting (RR) tasks. 
Next, a practice task will be administered providing practice of receiving audio 
cues, requesting robot status information, and answering SA questions. Upon 
practice task completion, the next training phase will be given using the PowerPoint 
presentation regarding what types of navigation questions and aides the robot may 
require during Robot Assistance (RA) tasks. Similar to the previous training phases, 
a practice scenario focused on requesting assistance from the robot will be 
administered. After completing training for each individual task, participants will 
then be given two additional practice tasks replicating the experimental scenarios. 
The first practice task will include both signal detection and RR tasks. The second 
practice involves signal detection and RA tasks. Project investigators will brief 
Soldiers on the purpose of the each task, and go through the training with each 
Soldier.  Soldiers will be trained on simulation procedures until they demonstrate 
adequate proficiency to perform the simulation tasks.  They will then be requested 
to provide feedback regarding their knowledge of experiment goals, quality and 
sufficiency of training content and practice, and indicate their level of confidence 
(self-efficacy) to perform simulation tasks.   

After completion of all training materials and tasks, participants will 
perform the three experimental scenarios. Project investigators will randomize 
and counterbalance presentation order of experimental scenarios across 
participants. Participants will complete two RR scenarios and one RA. One 
RR scenario will have constant signal detection demand and the other varying 
from low to high. The level of demand of the signal detection task will be 
varied through manipulation of the signal to noise ratio, with demand 
changing half-way through the scenario. The RA scenario will have constant 
signal detection demand. After completing each experimental scenario, 
participants will complete the NASA-TLX followed by the SART. For the RR 
task within varying signal detection task demand, the NASA-TLX will be 
measured half-way through the scenario and at the end. Upon completion of 
all experimental scenarios, participants will be administered the Robot 
Movement Questionnaire.  

p) Data and specimen management 

See procedures and provisions sections. 

q) Provisions to monitor the data for the safety of participants  

 
No more than minimal risk is anticipated 
 

r) Withdrawal of participants 



 
 

 301  

 

 
Individuals will be informed that participation in the study is voluntary and that they 
may withdraw at any time without penalty. 
 

8) Risks to participants 

 

There are no foreseeable risks or discomforts other than those normally encountered 
in the daily lives of healthy persons. As in all studies, there is a potential risk to 
participants; however, in this study those risks are minimal. Specifically, there is 
always a chance of data loss or misplacement. This potential risk is reduced by 
keeping data separate from informed consents, in locked cabinets, and identifiable 
only by numerical ID numbers. 

 

9) Potential direct benefits to participants 

 

No benefits have been promised or are expected to be given to the volunteers who 
participate in this study.  However, the data resulting from this research will be the 
primary information used to inform designers of robotic systems, specifically in robot 
communication behaviors.  

 

10) Provisions to protect the privacy interests of participants 

 
Data in any form will be kept either in a locked cabinet or maintained on a password 
protected computer with limited access.  Only persons listed on the IRB will have 
access to the information. 
 

11) Provisions to maintain the confidentiality of data 

See above 

12) Medical care and compensation for injury 

 

N/A  
 

13) Cost to participants 

Participants will not incur any costs for participation 

14) Consent process 
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When participants arrive for the experimental session, they will be briefed on the 
experimental procedure and asked to read an IRB-approved informed consent form. 
Participants will be allowed to ask questions of the experimenter at any time and all 
questions will be answered completely. Following completion of the informed 
consent form, participants will be assigned a participant number so that all data will 
remain anonymous. This number will be kept separate from the participant’s name, so 
all data collected will be associated with only this number and will not be traceable to 
a specific individual. 

 

Because this research is funded by the U.S. ARMY, the informed consent process 
will also comply with U.S. ARMY standards for ethical research. Meaning that, in the 
event that this research is considered “exempt” by the UCF institutional review board, the 
researchers will still seek a signed informed consent document, so as to be compliant 
with both UCF’s IRB and the U.S. ARMY’s HLAR/AHRPO review process.  

 

 

15) Process to document consent in writing 

 

Although this study is of minimal risk and may qualify for a waiver of written 
documentation of consent, in compliance with DOD standards, participants will 
indicate their consent to participate by signing their name on the Informed Consent 
form. The research assistant conducting the study will also sign as the person 
obtaining consent. A copy of this document will be made and given to the participant 
to keep for their own records. The research team will also keep a copy of this 
document that will be stored in a secure locked filing cabinet away from other study 
materials so as to avoid any chance of linking participant names to other study 
materials. 

 

16) Vulnerable populations 

N/A 

17) Drugs or Devices 

N/A 

18) Multi-site Human Research 

N/A 

19) Sharing of results with participants 
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Results will not be shared with participants. Participants can obtain 
approved-publicly released reports such as journals articles and conference 
proceedings. 

Experimenter contact information will be provided to the subjects on the post 
participation information form provided upon the completion of the study.  
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APPENDIX I: IRB FOR BORRWED EXPERIMENTAL STUDY C 
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APPENDIX J: IRB FOR BORROWED EXPERIMENTAL STUDY D 
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APPENDIX J: IRB FOR BORROWED EXPERIMENTAL STUDY D 
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APPENDIX L: IRB DETERMINATION DISSERTATION 
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