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ABSTRACT 

 

In the contemporary world, mental workload becomes higher as technology 

evolves and task demand becomes overwhelming. The operators of a system are usually 

required to complete tasks with higher complicity within a shorter period of time. 

Continuous operation under a high level of mental workload can be a major source of 

risk and human error, thus put the operator in a hazardous working environment. 

Therefore, it is necessary to monitor and assess mental workload.  

In this study, an unmanned vehicle operation with visual detection tasks was 

investigated by means of nonlinear analysis of EEG time series. Nonlinear analysis is 

considered more advantageous compared with traditional power spectrum analysis of 

EEG. Besides, nonlinear analysis is more capable to capture the nature of EEG data and 

human performance, which is a process that subjects to constant changes. By examining 

the nonlinear dynamics of EEG, it is more likely to obtain a deeper understanding of 

brain activity. 

The objective of this study is to investigate the mental workload under different 

task levels through the examination of brain activity via nonlinear dynamics of EEG 

time series in simulated unmanned ground vehicle visual detection tasks. 

The experiment was conducted by the team lead by Dr. Lauren Reinerman Jones 

at Institute for Simulation & Training, University of Central Florida. One hundred and 

fifty subjects participated the experiment to complete four visual detection task 

scenarios (1) change detection, (2) threat detection task, (3) dual task with different 
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change detection task rates, and (4) dual task with different threat detection task rates. 

Their EEG was recorded during performing the tasks at nine EEG channels.  

This study develops a massive data processing program to calculate the largest 

Lyapunov exponent, correlation dimension of the EEG data. This study also develops 

the program for performing 0-1 test on the EEG data in Python language environment. 

The result of this study verifies the existence of chaotic dynamics in EEG time series, 

reveals the change in brain activity as the effect of changing task demand in more 

detailed level, and obtains new insights from the psychophysiological mental workload 

measurement used in the preliminary study.  

The results of this study verified the existence of the chaotic dynamics in the EEG 

time series. This study also supported the hypothesis that EEG data exhibits change in 

the level of nonlinearity corresponding to differed task levels. The nonlinear analysis 

of EEG time series data is able to discriminate the change in brain activity derived from 

the changes in task load. All nonlinear dynamics analysis techniques used in this study 

is able to find the difference of nonlinearity in EEG among task levels, as well as 

between single task scenario and dual task scenario.  
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CHAPTER 1: INTRODUCTION 

 

Mental workload, as defined by Miyake (2002), is the cognitive demand of a task. 

The growing tendency of mental workload can be witnessed in many a field of 

contemporary real-world tasks, such as vehicle operations, industrial controls, and 

military operations, due to the increasing complexity of extensively mentally 

demanding tasks, the shorter intervals of technological advances, and the short-term yet 

highly competitive goals of management. The level of mental workload is directly 

affected by task difficulty. Changes in workload exert remarkable influences on task 

performance (Kaber et al, 2007). Although operators of a system are usually able to 

cope with the variation of workloads to keep their performance level, sufficiently high 

workloads will still make them fail to adapt, and thus exhibit a significant drop in 

performance (Guastelloet al, 2012, Guastello et al, 2012, Guastello, 2014, Guastello et 

al, 2014). High mental workload might also cause memory fault (Dunke, 1990). With 

the increase of mental workload, the function of working memory becomes lower, while 

the operators exhibit less executive control (Guastelloet al, 2012, Guastello et al, 2012, 

Guastello, 2014, Guastello et al, 2014). High workload also causes anxiety that might lead 

to a higher accident rate in the highly hazardous work environment (Guastello, 2015). Task 

difficulty can also influence the performers’ psychophysiological measures. The 

increasing mental workload can impose various hazards in both systems and operators, 

such as the increased risks, accident rates, health problems, as well as reduced employee 

satisfaction, productivity and work performance. Thus, developing more sensitive and 
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more accurate methods for mental workload measurement has become a crucial matter, 

especially in monitoring the performance of unmanned systems operations.  

Unmanned systems are able to generate relatively high work demand for their 

operators, for these systems usually requires sudden response to stimuli, urgent 

processing of a large amount of information, and decision making that has an 

irreversible consequence, after long periods of low activity. Thus, it is important to 

establish effective workload measures, in order to obtain better performance prediction. 

Performance prediction plays a significant role in task design, as well as the selection 

and training of unmanned system operators. Besides, monitoring and estimation of 

mental workload are also crucial in the training process, due to training in high 

workload conditions is more effective and more likely to improve performance. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Mental Workload 

Generally, there are three categories of the tools that are used for measuring 

mental workload, subjective evaluation, performance measurement, and 

psychophysiological measurement.  

The subjective measures are operators’ self-evaluation of workload experience. 

The major subjective measures include NASA Task Load Index (NASA-TLX), 

subjective workload assessment technique (SWAT). NASA-TLX considers six 

subscales namely mental demand, physical demand, temporal demand, own 

performance, effort, and frustration level. SWAT, on the other hand, measures time load, 

mental effort load, and psychological stress load.  

Subjective measurement is important because people’s own perceptions also have 

a great influence on the workload they experience. For instance, knowledgeable and 

skilled persons maybe complete a job with minimum effort, but a relatively simple job 

might create high workload for persons who lack the skill (Rouse et al, 1993). 

The performance measures examine mental workload in terms of operators’ 

behavior or performance. The major consideration of performance measures includes 

task accuracy and the time needed to complete a task. The performance measures and 

subjective evaluations are usually combined together to estimate relative task efficiency. 

Task efficiency E can be expressed by E = (P-R)/2, where P stands for performance and 

R refers to mental load. It is considered that the most efficient task has high performance 
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and low mental effort, and vice versa.  

Measurement of reaction time and subjective score are indicators of the variation 

of the task difficulty. They are more appropriate to be used to indicate memory load and 

post-hoc measurements instead of continuous indicators of mental load. On the other 

hand, EEG is an accurate, near real-time, and continuous measurement for mental 

workload (Zarjam, 2013). 

Psychophysiological measures reflect mental workload by means of monitoring 

the variation of bodily processes and states. This type of measures has the advantage of 

continuous availability of bodily data and a high level of measurement sensitivity. The 

commonly used psychophysiological measures include heart rate, respiration rate, blink 

rate, and electroencephalograph (EEG), among which EEG is accepted as the most 

reliable method for monitoring mental workload since numerous studies have revealed 

that high mental workload is closely related to the dynamics of cognitive activity.  

 

2.2 Psychophysiological Effect of Mental Workload 

According to the theory of localization theory of brain function, cognitive 

processing is the result of the simultaneous collaboration of various regions of the brain, 

and different areas of the brain are assigned for different functionalities. The frontal and 

central areas of the brain play an important role in attentive tasks. The frontal lobe is 

responsible for reasoning, emotion, problem solving, and making plans. The parietal 

lobe is related to movement, feelings, recognition, and perception. The occipital lobe is 

especially important for visual processing. The temporal lobe is highly related to 
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memory, speech, as well as recognition and perception of auditory stimuli. 

The relationship of mental workload and psychophysiological variations, 

especially EEG, is well researched. The correlation between mental workload and 

cognitive activity is well understood. Hong et al (2012) found in a multi-gauge 

monitoring task that the brain appears to be more active when task difficulty increases. 

The authors also found relatively higher activity and higher caution level in occipital 

lobe under the same difficulty level, which is in accordance with the high demand for 

visual process of the task.  

Brooking et al (1996) also studied mental workload using various 

psychophysiological measures. According to the study, eye blink rate lowered when 

mental workload increased, which indicated increased demands of visual attention. In 

the study of Di Stasi (2011) and Cooper et al (2013), mental workload could be tested 

by means of the change in pupil diameters and the saccadic peak value of eyes. The 

change in pupillary diameters can reflect the cognitive workload in the process of 

perceptual tasks, decision making, memory tasks, and complex problem solving (Beatty, 

1976). 

Respiration rate also increased along with increased task difficulty and mental 

workload. Carroll et al (1986) also found that respiration rate increased when more 

difficult laboratory tasks were assigned to subjects. They also found increased heart rate 

along with the increased respiration rate. Son et al (2011) found that task difficulty could 

be reflected by the variation of heart rate during a driving task. However, heart rate has limited 

sensitivity and is insufficient to achieve accurate and reliable measurement of mental 
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workload (Kaber et al, 2007, Patten, 2007). According to Brooking et al (1996), heart 

rate was less sensitive than respiration rate because of the a low variation of metabolic 

demand for different difficulty levels of cognitive tasks. The authors also found that the 

relative EEG power was sensitive to difficulty levels of the tasks. When task difficulty 

increased, the theta band activity showed a significant increase in the central area, 

parietal lobe, right frontal lobe and right temporal lobe of the brain, which inferred more 

extensive attention demand and memory load. Increased beta activity in frontal and 

central areas of the brain is also observed as the result of increased processing demands 

when the brain needed to deal with multi-tasks at the same time. As the difficulty 

elevated, a drop in alpha activity at temporal lobe was also witnessed. The decrease of 

alpha relative power with the increase of task difficulty was also observed by Earle and 

Pikus (1982), Gundel and Wilson (1992). EEG activities in upper alpha band were found 

related to increasing of mental workload (Mak et al, 2013). In the study by Lei and Roetting 

(2011) and Hou et al (2015), the increased frontal theta activities and decreasing parietal 

alpha activities were found related to the increasing mental workloads. The changes in 

mental workloads had more influence in alpha power. The working memory load, on 

the other hand, was more associated with the changes in theta power.  

EEG is a more reliable method to access the cognitive state of the brain under 

mental workload, and is analyzed by various statistical and machine learning technique 

in numerous studies.  

Kramer et al (1994) investigated amplitude of N100, N200, and P300 component, 

which are respectively the mean amplitude of EEG from 75 to 175 milliseconds, from 
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300 to 400 milliseconds,  from 300 to 600 milliseconds post-stimulus, of event-related 

brain potential (ERP). The subjects performed a simulated radar monitoring task and 

an oddball task. The results of the oddball task showed that the various stimulus tone 

type had significant effect on all N100, N200, and P300 ERP. The amplitude of ERP of 

deviant-attend tone, which subjects attended to deviant other than standard tone, is 

larger than that of deviant-ignore tone, or standard tone. The analysis of radar 

monitoring task showed that the amplitude of ERP decreased significantly as the task 

level changed from base-line to low-load condition and then to high-load condition for 

all N100, N200, and P300 components. The study also found that ERP at EEG channel 

Fz was sensitive to changes in workload. 

Ullsperger et al (2000) also studied the physiological effect of mental workload 

for a gauge monitoring task, a mental arithmetic task, and a dual task. N100 and P300 

component of ERP were analyzed for 30 EEG electrodes. The result of this study 

showed that ERP was able to distinguish the increase of the level of brain activity in 

the following brain areas as the task difficulty increased, the task performance declined, 

and the overall workload and temporal demand increased. First, the areas related to 

perceptual, central and spatial perception and manual output for the gauge monitoring 

tasks. Secondly, the areas related to visual input, speech output, and working memory 

for the mental arithmetic task. Thirdly, the areas of perceptual and central stages of 

processing for the dual task. 

Brookings et al (1996) studied the effect of mental workload in two scenarios 

with three difficulty levels on the computer simulated terminal radar approach control 
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(TRACON) task. The subjective measures NASA TLX was recorded. The 

physiological measures included heart rate, eye blink rate, saccade rate, and amplitude, 

respiration rate and amplitude, and EEG. As the task difficulty increased, NASA TLX 

score and blink rate declined, whereas respiration rate and heart rate increased. 

However, these measures could not reflect the change of traffic manipulation types. On 

the other hand, EEG data was sensitive to various difficulty levels. Theta power and 

beta power both increased in frontal and temporal lobe in right hemisphere, as well as 

in the midline central sulcus and parietal lobe. Alpha power decreased while difficulty 

increased. Alpha power and delta power were also demonstrated to be sensitive to the 

interactions of difficulty and traffic manipulation types. In this study, EEG is the only 

mental workload measure that was able to reflex changes in traffic type differences. 

In the study presented by Zhong and Zhang (2014), the authors introduced a new 

approach to estimate the relation between EEG and mental workload. The modeling 

techniques, namely locally linear embedding (LLE), support vector clustering (SVC), 

and support vector data description (SVDD) were used in order to classify the change 

of mental workload based on EEG data. The LLE was used to produce the mental 

workload indicators. The SVC approach was applied to elicit clusters of the mental 

workload indicators in order to detect the variation of mental workload. At last, the 

SVDD was used as a classifier that could detect more delicate changes in the mental 

workload indicators. In this study, the computer-based simulated task was for human 

operators to remotely monitor and repair the systems in spacecraft from earth with 

different task difficulty. The result of the study was able to discriminate the ten task 
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scenarios as three mental workload, namely low, normal, and high levels by means of 

computing the identification accuracy using different combination of the three proposed 

models. 

In the study of Berka et al (2007), different linear and non-linear classifier models 

were used in order to investigate the correlation between EEG and mental workload in 

memory tasks. The authors defined EEG engagement as the result of the calculation of 

a four-class quadratic discriminant function analysis (DFA) based on the EEG absolute 

and relative power spectral density. The workload classifier was constructed by means 

of linear DFA with two categories, namely high and low mental workload. The study 

succeeded in detecting the decreased EEG engagement level in corresponding to 

decreased task performance and increased reaction time and task difficulty. The study 

found that for the learning and memory tasks, the EEG-engagement model was able to 

distinguish the changes in task difficulty, particularly during of encoding and 

recognition period of the memorizing process. The result of the study indicated that 

EEG was able to reflect the allocation of attention resources and variations of mental 

workload when encoding memory. 

Humphrey and Kramer (1994) employed bootstrapping analysis of ERP for 

computation of level of accuracy for differentiating mental workload levels. The 

bootstrapping analysis was an iterative sampling technique in which the amount of 

averaged ERP data was systematically incremented and finally classified into two 

mental workload levels. The classifying method employed in this study was linear 

stepwise discriminant analysis. In this study, the task included a gauge-monitoring task 
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with two task conditions, a repetitive arithmetic task with two difficulty levels. EEG 

was measured at midline electrodes, Fz, Cz, and Pz. P300 ERP was measured at 

electrode Pz. Using this approach, P300 ERP was able to discriminate the difference 

between the single task and dual task condition. The algorithm that was used in this 

study achieved 90% accuracy for classification of mental workload levels. 

Similarly, in the study of Humphrey et al (1990), the bootstrapping analysis was 

performed on the ERP derived from a gauge-monitoring task and an arithmetic task. 

The ERP component that was analyzed in this study included 1) base-to-peak measures 

of P300 amplitude (P3bp), the largest positive value in the waveform between from 300 

to 800 milliseconds post-stimulus. 2) Measures of P300 area (P3area). 3) Cross-

correlation measures of P300 amplitude (P3cross), calculated by moving a 300-

millisecond wide cosine wave across the P300 period. 4) Area measures of a late slow 

wave component (SWarea), the area between 750 and 1,100 milliseconds post-stimulus. 

The study found an inverse correlation between accuracy and levels of task difficulty 

for both the gauge-monitoring task and the arithmetic task. 

Miller et al (2010) investigated the relationship between N1, P2, P3, late positive 

potential (LPP) component of ERP at midline electrodes, Fz, Cz, and Pz, and the task 

difficulty. The result of the study suggested that for the component N1 at Cz electrode, 

P2 at all electrodes, P3 and LPP at Pz electrode, ERP amplitude decreased as the 

difficulty level was higher. The study also concluded thatP3 and LPP were more 

sensitive to variations of mental workload than components N1 and P2. 

Wilson (2002) studied the mental workload derived from aircraft flight tasks. The 



 

11 
  

subjects, who were experienced pilots, were required to complete a total of twenty two 

simulated flight tasks during the experiment. The result of this study suggested that the 

alpha power of EEG in parietal lobe reduced for the tasks with higher complexity such 

as takeoff and landing. As the task difficulty increased, higher delta power in central 

and right parietal scalp was observed. The significant decline in beta power was also 

observed in the tasks with higher difficulty, but was rarely seen in the tasks that had less 

cognitive demand.  

Sirevaag et al (1993) also examined the mental workload of experienced pilots 

produced by different communication formats, in terms of information magnitude and 

input types, in a simulated helicopter flight task. The P300 component of ERP at 

midline electrodes was also used as the physiological measure in this research. The 

study concluded that the larger P300 amplitudes reflected the decrease in processing 

demand for low communication load. On the other hand, the subjective measures used 

in this study, NASA TLX in this case, failed to indicate the changes derived from the 

rising of communication load or the changing of communication format. 

Borghini et al (2012) estimated the occurrence of diver’s mental fatigue by 

detecting EEG alpha band spindles. The study employed a monotonous driving task to 

measure drive’s alert and vigilance. The result of the study revealed that the appearance 

of alpha spindles, defined as the short bust in EEG alpha band amplitude, was a sign of 

the occurrence of drowsiness during driving car, and was consistent with driving errors. 

The study defined the mental workload indexes as the ratio of theta power spectral 

density in frontal areas to alpha power spectral density in the parietal areas, for the left 
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side, the midline, and the right side of the brain respectively. The study also concluded 

that the higher workload index was in consistency with higher task difficulty and 

increase of vigilance task errors and driving errors. 

Chaouachi et al (2011) characterized mental workload by means of spectral 

analysis of EEG. The participants were required to solve trigonometry problems in the 

experiment.  The study recorded participants’ EEG data and employed Fast-Fourier 

Transform to transform EEG data into power spectral density. The authors calculated 

the correlations among pretest scenarios, in which the participants only answered basic 

concept questions, learning period, and six problem solving task scenarios with 

gradually increasing task difficulty level. As the result of the study, significant increase 

of EEG power spectral density was found between the learning period and the pretest 

condition, the task level 4, 5, and 6, with the highest difficulty levels, and the pretest 

condition, the task level 5 and 6 and the first four level of tasks. The study computed 

the bi-variate correlation between EEG power spectral density and the response time. 

The significantly positive relationship between workload level derived from EEG 

analysis and the difficulty of problems.  The by-variate correlation results validated 

the significant linear relationship for different task levels and the time spent on problem 

solving. The bi-variate correlation was also calculated between EEG power spectral 

density and task performance. However, the significant linear relationship was only 

found in the pretest condition. 

In the study conducted by Brouwer et al (2012), EEG spectral power and ERP 

were employed as objective measure of mental workload in the n-back memory tasks. 
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The result of this study revealed that the variation in alpha band power was able to 

distinguish the change of task levels, for example from a 0-back task condition to a 2-

back task condition. The alpha band power decreased when memory load became 

higher at midline EEG locations. For ERP analysis, the decreased P300amplitude was 

observed in 2-back task condition compared to 0-back task condition at midline parietal 

areas. The study also concluded, by computing classification accuracy, that combining 

both power spectral analysis and ERP analysis, with 88% accuracy, could improve the 

estimation of mental workload, compared with using each of the methods alone, 

especially when data size was not large enough. 

Gundel and Wilson (1992) investigated the interrelationship between mental 

workload and topographical distribution of EEG. The study used randomized block 

factorial design for statistical analysis of EEG, in which experimental condition, EEG 

frequency band, and element of the broadband crosspower matrix served as three 

factors. The broadband crosspowers were the result of the logarithmic transformation 

of the averages of the absolute values of spectral matrix elements in certain EEG 

frequency band. The cognitive tasks in the experiment were presented with two 

different difficulty levels. For the visual tasks, the reduction of alpha band power was 

found in parietal and occipital lobe for the higher difficulty level. The change in theta 

band power was concluded insignificant across the difficulty levels in this study. 

However, a trend of increase was found for the higher difficulty level in left 

frontotemporal areas. For the auditory task, an increase in theta power band power was 

observed in left frontal areas. 
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Trejo et al EEG (2007) estimated the alert and fatigue states in mental arithmetic 

tasks. EEG was classified using two models. The first model was kernel partial least 

squares (KPLS) decomposition with a discrete-output linear regression classifier. A 

score was given for each randomly separated EEG segment. The KPLS component 

scores were analyzed by means of Bayesian optimal data-based binning methods. The 

second model used in this study was an autoregressive model for each EEG channel 

and EEG epoch. The score of the models was able to categorize the EEG into three 

states, namely heightened alertness, normal alertness, and fatigue. Furthermore, the 

models were also able to detect the change of states for the EEG segments within the 

time series.  

In the study of Lim et al (2015), the classification of EEG power spectral density 

was performed for 4 classes and 2 classes in order to compare the accuracy between 

classifiers for mental workload. EEG data was recorded for three types of tasks, a visual 

match task, an auditory based problem solving task, and a dual task that combines the 

two tasks, with four successive difficulty levels. The classification accuracy of EEG 

power spectral density was calculated, and was subsequently validated by means of 

Support Vector Machine (SVM) and k Nearest Neighbors (k-NN), as long as other 

analysis methods such as statistical analysis, Higuchi Fractal Dimension (FD), wavelet 

entropy, and event related potentials (ERP).  The highest classification accuracy for 

the SVM classifier was achieved by means of the combination of statistical analysis 

and FD, with 80.09% for 4 classes and 90.39% for 2 classes. SVM classifier achieved 

a higher classification accuracy than k-NN. The study succeeded in distinguishing 
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different mental workload levels using EEG data. The larger the difference of difficulty 

levels between two tasks, the higher classification accuracy was obtained. 

Kathner et al (2014) evaluated the mental workload in dichotic listening tasks 

with two difficulty levels using P300 amplitude of ERP. The result of the study also 

confirmed that the overall ERP reduced when the mental workload increased. For this 

experiment, the variations of workload had no significant effect on alpha band and the 

theta band at midline parietal lobe between two tasks levels. However, declined alpha 

band power and significantly increased theta band power in fronto-central locations was 

found in the screening run compared to the low or high task level. The alpha power was 

heightened in parietal and parieto-occipital areas. The study also found the increased 

alpha power in the last task trials compared to the first trials. 

Gevins et al (1998) examined the effect of a memory task among three cognitive 

load on the EEG pattern. The authors used neural network based pattern recognition 

method with the Joseph-Viglione algorithm to assess EEG data. The power spectral 

analysis indicated alpha power was larger for verbal tasks compared to the spatial tasks, 

and was largest in parietal-temporal-occipital areas. Beta power was at its peak in 

midline central areas. Theta power was largest at midline frontal lobe. The neural 

network based classification succeeded in distinguishing the change of memory load 

between task levels and EEG locations. The result of the study revealed that, in the 

memory tasks, alpha power was most frequently weighted in parietal and occipital lobe, 

theta power was less frequently weighted, and beta power had relatively scarce 

contribution.  



 

16 
  

Sammer et al (2007) assessed the mental workload derived from a mental 

arithmetic task with sixteen trials. The power spectral density of EEG was analyzed in 

this study. The significant increase of theta power was obtained from the task 

performing condition with the baseline condition. The higher amplitude of theta power 

was found in frontal locations. On the contrary, the task had no significant effect on 

alpha power. Additionally, alpha power was higher in the posterior brain areas than in 

the frontal lobe. Theta power was higher at the first mental arithmetic trials and declined 

in the later trials. This reduced theta power was still larger than the baseline condition. 

 

2.3 Nonlinear Dynamics of EEG time series 

2.3.1 Nonlinearity in EEG Time Series 

 

Nonlinear dynamics is a theory that considers the structure as well as the 

amplitude of the variability of the systems. It looks deep into the underlying process 

that creates the variability and affects the system outcomes. The temporal patterns are 

one of the typical examples of nonlinear dynamics. The nonlinear dynamics was applied 

to ergonomic as early as the 1980s. Its early application ranges from the study of shift 

work and industrial production as well as the study of physical workload, fatigue, and 

occupational hazards. Nowadays, its application has branched out into the field of 

psychology, including neuroscience, perception, cognition, sensation, and so forth. The 

nonlinear dynamics expand the understanding of cognitive workload and fatigue, 

provides answers to the questions that cannot be solved before. It is now understood 
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that nonlinear dynamics is a significant causal factor for the change in human 

performance (Guastello, 2001, Guastello, 2016). 

The underlying process of human behavior is not as stable as the laws of physics 

(Sterman, 1987). The complex human responses can reflect nonlinear properties, in 

which the slight changes in the initial task conditions induce remarkable changes in 

human performance for both cognitive and physical tasks over a period of time. The 

process of human system interaction is sensitive to initial conditions and might give 

rise to chaotic behaviors. Hence, nonlinear dynamics is especially suitable to be applied 

to the examination of the variability in human performance among repetitions of certain 

task (Karwowski, 2012). Thus, it is important to apply the theory of nonlinear dynamics 

in order to enhance performance and match human capacities and limitations to predict 

the task outcome (Karwowski, 2005). In many a contemporary work systems, human 

performance is subject to the sensitivities to the initial conditions and therefore can be 

reflected by chaotic behaviors (Karwowski, 2009). Nonlinear dynamics was used to 

examine the temporal dynamics of the performance of emergency response team, in 

regarding with their self-organization and coordination process (Guastello 2010). 

The multivariate property of the EEG time series is the result of the simultaneous 

electrical activity of a massive amount of neurons. The EEG signals are the 

superposition of random waves of electric discharge that passes through the network of 

countless neurons. Therefore, the EEG recording shows great complexity that develops 

in time. Due to the complex nature of the EEG records, the time-frequency analysis, 

which relies on linear approaches, is not adequate to discover the subtle changes and 



 

18 
  

significant properties hidden in the time series. Besides the cellular level non-linearity, 

the evidence that the brain is able to accomplish complicated cognitive tasks also 

disproves the hypothesis that the brain activity is a stochastic process. Hence, the 

nonlinear dynamics, based on the deterministic chaos theory, is more suitable for 

analyzing EEG data. Since the introduction of the nonlinear dynamics, deeper and more 

important information about the brain activities has been obtained from the 

interpretation of EEG data. The nonlinear dynamics makes it possible to apply EEG 

data in various fields of clinical research in order to gain more useful insight regarding 

how the brain works.  

 

2.3.2 Deterministic Chaos 

 

Deterministic chaos is referred to a phenomenon that the variables of a system 

are able to generate irregular fluctuations. The primary characteristic of chaotic 

behaviors is the sensitivity of the system depending on the initial values. The outcome 

of the system can be extensively different if its initial condition slightly changes. In 

contrast with randomness which usually features infinite degrees of freedom, 

deterministic chaos tends to be produced from a finite or even a small number of 

degrees of freedom. The quantifiers of chaotic behaviors have been proved to be able 

to reflect the changes in cognitive behavior and the mental state of the brain. Therefore 

these behaviors require techniques that are superior to the traditional research 

methodologies used in cognitive ergonomics (Karwowski, 2000). For example, the 
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variation of work motivation exhibit chaotic behavior within human behavior, obtained from 

the calculation of Lyapunov exponents, self-recorded motivation index time series (Navarro 

and Arrieta, 2010). 

The primary traditional mathematical measures of chaos include correlation 

dimension, maximal Lyapunov exponent, Hurst exponent, and entropy. Correlation 

dimension (Grassberger and Procaccia, 1983) characterizes the number of dimensions 

in phase space that are required to define an attractor. A lower correlation dimension 

corresponds to a more regular system, lack of complexity. On the other hand, a higher 

dimension represents a more complex system, which is associated with growing 

awareness and more frequent cognitive activity. A positive Lyapunov exponent is a sign 

of chaotic behaviors in the system, indicating the existence of complex brain activity 

(Wolf et al, 1985). The larger value and the more occurrence of positive Lyapunov 

exponent suggest the existence of a more complex behavior. Entropy describes the two 

points in the phase space of the embedded time series that are close to each other but 

separated in time (Kannathal et al, 2005). It is an indicator of the predictability of a part 

of the trajectory relying on another part. Higher entropy is a sign of less predictability 

and stochasticity. On the other hand, lower entropy indicates regular dynamics. Hurst 

exponent measures the non-stationary behavior of the time series (Kannathal et al, 

2005). The higher value of Hurst exponent indicates less complexity in the system and 

vice versa. 

In the study of Kannathal et al (2005), the values of the correlation dimension of 

the actual EEG data differed by more than 50% to that of the surrogate data which 
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generated from the same EEG data. This result mathematically testified the non-

linearity that resided in the EEG time series. In this study, the correlation dimension 

that was calculated from the EEG segment during the epileptic seizure was less than 

that from the EEG segment when seizure was absent. The lower dimensionality during 

seizure indicated less brain activity. Moreover, the distinction between epileptic and 

healthy EEG data was supported by means of statistical analysis using t-test with p-

value less than 0.0001. The reduced maximal Lyapunov exponent, the increasing Hurst 

exponent, and the decreasing entropy were also observed during the seizure. All the 

mathematical methods agreed each other and resulted in the same conclusion that less 

chaotic behavior in the time series indicated less neural process in the brain.  

In this study, the mathematic methods were tested again using alcoholic EEG 

compared to normal EEG. The same results were obtained. The decreased results of the 

correlation dimension, the maximal Lyapunov exponent, and the entropy, as well as the 

increase in the Hurst exponent were observed in the alcoholic EEG. The difference 

between two datasets was statistic significant with the p-value less than 0.0001.  

Quiroga (1998) also reviewed some traditional methods of nonlinear dynamics 

that were used to interpret EEG data. In this study, the maximal Lyapunov exponent 

methods had succeeded to detect the chaos that was omitted by the very low correlation 

dimensions, during an epileptic seizure. The maximal Lyapunov exponent was also able 

to detect more arousal brain activity in the state II sleep compared to the deeper stage 

IV sleep, by providing a higher value for the former. The positive values of Lyapunov 

exponent were found in all four stages sleep and REM sleep, which disproved the 
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statement that there was only meaningless noise in EEG recording during sleep. The 

drop of the maximal Lyapunov exponent during seizures was witnessed in the author’s 

study. The similar result was obtained for the correlation dimension as well, leading to 

the conclusion that more regular dynamics was found during the seizures. 

In the study conducted by Kar et al (2010), the EEG recordings were analyzed 

using entropy methods in order to develop a quantitative way for measuring mental 

fatigue. The subjects were required to complete both actual driving tasks and simulated 

driving tasks in the state of sleep. The 3-minute long EEG time series were acquired. 

Five types of entropies were calculated in this study, namely Shannon's entropy, Rényi 

entropy of order 2 and 3, Tsallis wavelet entropy and Generalized Escort-Tsallis entropy. 

The increasing entropy values were found with the accumulation of driving time. This 

increasing trend of entropy values were also in accordance with the increase of 

subjective fatigue levels reported by the subjects. 

In the study conducted by Liu et al (2010), EEG data was analyzed using 

approximate entropy and Kolmogorov complexity were used to detect mental fatigue 

after cognitive task. The significant decrease, where p-value was lower than 0.05, was 

observed for both approximate entropy and Kolmogorov complexity values when 

subjects finished various cognitive tasks after they felt exhausted and quitted. During 

the tasks when the entropy values were higher, the rhythm of EEG was with high 

frequency and low amplitude, indicating the state of desynchronization and high level 

of brain activity. After the subjects gave in with exhaustion, the rhythm of EEG 

switched to a state of synchronization which featured low frequency and high amplitude, 
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indicating the uniformed pace of electric activity of neurons in brain cortex and low 

level of brain activity. The changes in approximate entropy clearly detected this change 

in the level of brain activity. 

Azarnoosh et al (2011) also tried to detect mental fatigue utilizing nonlinear 

dynamics of EEG signals. The mathematics method they applied was Shannon’s 

entropy. In the experiment, they used a long-term attentive task in four consecutive 

trails in order to product mental fatigue for the subjects. By calculation and comparison 

of entropy values of EEG recordings in different trails, the entropy value was higher in 

the first trial than in the last trail when the mental fatigue occurred. The authors 

concluded that the brain activity level was high in the commencement trail because that 

attention required more neural stimulations. After undertaking long periods of attentive 

tasks, the fatigue had made the activity of the brain reduced. Entropy increased with 

higher attentive state of the brain, and decreases with long-term fatigue. In other words, 

the decreased entropy could be treated as a signature of decreased brain activity.  

Murata and Iwase (1998) investigated the EEG time series using fractal 

dimension. EEG data was recorded when subjects worked on arithmetic tasks which 

consisted of addition of two numbers with four difficulty levels. The largest Lyapunov 

exponent calculated from frontal lobe and central lobe was all positive for all work 

levels, indicating the existence of chaotic behaviors. The authors calculated the fractal 

dimension using the method by Grassberger and Poincare (1983). Fractal dimension 

increases with the increasing work difficulty levels. As a result, fractal dimension was 

proved successful to indicate cognitive work demand and mental workload. 
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In the study conducted by Lutzenberger (1992), the fractal dimension of EEG 

time series, which were recorded when subjects were asked to complete a series of 

tactile and imagery tasks, were calculated and compared. The result showed that the 

fractal dimension decreased for alpha activity in the tactile and the visual attention tasks, 

and increased for alpha activity in the imagery tasks, which indicated a higher brain 

complexity for internal processing than for perceptual processing. Besides, these 

significant differences all occurred in frontal lobe, which was in accordance with the 

higher activity level of frontal lobe during the thinking process. The authors also 

pointed out that such information was not found in their previous studies with the same 

data using conventional power estimation of EEG bands. 

According to the study conducted by Miao (2012), the changes in chaotic 

behaviors of EEG time series were measured by means of computing the largest 

Lyapunov exponent using improved Rosenstein algorithm. The extensive increase of 

largest Lyapunov exponents was found in occipital lobe and right cerebral area when 

subjects performed speaking tasks. On the other hand, the largest Lyapunov exponents 

reduced when subjects were listening to peaceful music. The study concluded that the 

increase in chaotic behaviors of EEG time series was a useful demonstration of the 

increase in brain cognitive activity. Besides, this change was able to be reflected by the 

increase of the largest Lyapunov exponent values. 

There is much more evidence. The progress of brain development was observed by 

examining the changes of Lyapunov coefficients in frontal brain areas among different 

ages, which was used as an evidence of the maturation process of the brain (Meyer-
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Lindenberg, 1996). The evidence of the existence of chaos in EEG recording was found 

by computation of Lyapunov exponent and correlation dimension (Wand and Luo, 

2006). The study has also revealed the changing chaotic behavior of EEG responded to 

different emotions within the posterior temporal areas of the brain. Negative emotions 

tended to generate more bounded and normal dynamics, whereas the positive emotions 

tended to produce greater chaotic behaviors, indicating greater complexity and 

activation of the neural networks. The nonlinear dynamics can access more sensitive 

change in EEG data than power analysis of EEG. It can detect the variation related to 

emotional change that cannot be revealed by linear analysis (Aftanas et al, 1998). 

Studies have found the variation process of attention during physical effort by means 

of nonlinear analysis of the using nonlinear dynamics (Balague et al, 2012). By 

examining the Hurst exponent, research also found that nonlinear dynamics is more 

predictable when brain is more activated with increasing task difficulty and vise versa 

(Diaz et al, 2015). Using the technique of phase space reconstruction, the shapes of 

attractors of EEG time series showed significant change under various mental workload 

levels (Tumey et al, 1991). By nonlinear analysis of EEG time series, it has been 

succeeded in identifying frontal and occipital lobe as the influenced regions during 

arithmetic tasks. The study revealed that the correlation dimension increased, the Hurst 

exponent and approximate entropy declined while the task difficulty rose, as the EEG 

showed more regular behaviors (Zarjam et al, 2012). The study indicated that the 

imagery process required more complex brain activities than perception of an actual 

object, with higher fractal dimension (Lutzenberger et al, 1992). The more intelligent a 
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person is, his or her brain has more complex nonlinear dynamics, higher dimensional 

complexity, while resting, might derive from self-initiated cognitive behavior 

(Lutzenberger et al, 1992).  

Natarajan et al (2004) employed nonlinear measures including correlation 

dimension, Lyapunov exponent, Hurst exponent, and approximate entropy to 

investigate the difference of complexity of EEG recorded from resting condition, 

listening to music, and under gentle foot reflexologic stimulation. The result of the 

chaos quantifiers found reduced nonlinear complexity and randomness in EEG when 

subjects were under the influence of music and reflexologic stimulus, suggesting the 

state mind change into a more relaxed state compared with the resting condition. The 

increased Hurst exponent, declined correlation dimension, largest Lyapunov exponent, 

and approximate entropy were obtained from the computation, evidently demonstrated 

the reduction of randomness in EEG time series. 

Iasemidis and Sackellares (1996) found that the change in complexity of EEG was 

related to the onset of epilepsy seizures. The study recorded the EEG from subdural and 

depth electrodes for the before seizures preictal, during seizures ictal, and after seizures 

postictal states. The authors stated that occurrence of epileptic seizures could be 

represented by the phase transitions of the chaotic characteristics of EEG. Distinct 

difference of the value of Lyapunov exponent was found among the three states. The 

largest Lyapunov exponent was largest in postictal state, lower in preictal state, and 

lowest in ictal state. The discharge of epileptic seizure less complex state.  As the 

result of nonlinear dynamic analysis, several minutes before the occurrence of temporal 
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lobe epilepsy seizure, the change of the largest Lyapunov exponent happened in anterior 

temporal cortex. Subsequently, the change of the largest Lyapunov exponent was 

detected in locations distant from the onset, later in hippocampal depth electrodes, 

demonstrating the pattern of the change in chaotic characteristics happened in EEG.  

Before investigation of physiological nature of the epileptic seizures was often 

achieved by visual inspection or traditional signal processing techniques of EEG. 

However, more subtle changes in brain cannot be obtained from visual inspection of 

EEG, such as the change of nonlinearity in hippocampal depth EEG. Less random 

behavior in interictal and preictal states was observed than the contralateral 

hippocampal EEG in normal state. Moreover, by detecting the change of complexity in 

the brain several minutes before seizure onset, prediction of the epileptic seizures 

becomes possible. 

 

2.4 Nonlinear Dynamic Analysis Methods 

2.4.1 Fractal Dimension 

 

Correlation dimension is an important and a widely used technique for 

mathematically determining the fractal dimension of chaotic time series. Its algorithm, 

as proposed by Grassberger and Procaccia (1983), measures the complexity of the 

system that is relative to its degrees of freedom. The first step of calculating the 

correlation dimension is to construct a phase space, in which the evolution of a system 

through time is represented (Prichard and Duke, 1995). The “time shift method” 
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(Takens, 1981) is used to reconstruct the space phase, using the following formula, in 

which 𝑚 is the embedding dimension, 𝜏 is the time delay, and the vector �⃗� is a point 

in the phase space which represent a state in the system. 

�⃗� = {𝑥(𝑡), 𝑥(𝑡 + 𝜏), … , 𝑥(𝑡 + (𝑚 − 1) · 𝜏)}              (1) 

Then the correlation integral C(r) is calculated. C(r) is the probability that two 

arbitrary points in the phase space that has distance smaller than r, where the 

vector x⃗⃗ is the point in the phase space, and θ is theHeaviside function. 

C(r) = lim
N→∞

1

N2
∑ θ(r − |x⃗⃗i − x⃗⃗j|)

i≠j

(2) 

Then, correlation dimension is calculated. 

CD = lim
r→0

log(C(r))

log(r)
                        (3) 

 

2.4.2 Lyapunov Exponent 

 

Lyapunov exponent (λ) quantitatively measures the level of chaos in a system. 

It indicates the sensitivity of the system depending on the initial conditions. It 

determines the average rate of divergence of two trajectories with time. More 

rapid diverges of the neighboring trajectories imply that the system is more 

chaotic and is more sensitive to initial conditions. A negative exponent indicates 

that the trajectories are approaching a common fixed point. A zero exponent 

implies that the trajectories are maintaining the relative positions and are on a 

stable attractor. A positive exponent means that the trajectories are on a chaotic 
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attractor.  

Using the algorithm proposed by Wolf et al (1985), the first step to calculate 

Lyapunov exponents is the phase space reconstruction. For the time series x(t) in 

the phase space with m embedding dimensions and delay coordinate t, 

{x(t), x(t + t), … , x(t + (m − 1)t} , the nearest neighbor to the initial point 

{x(t0), x(t0 + t), … , x(t0 + (m − 1)t} is located. Given the distance (L) of t these 

two points, after the system evolves for a period of time, the length between these 

two points will change to a new distance (L′). Then repeat the evolution process 

and calculate the successive distances until the divergence is larger than the 

threshold. The average exponential rate of divergence of two initially close 

trajectories is calculated using the formula: 

λ =
1

tM − t0
∑ log2

L′(tk)

L′(tk−1)

M

k=1

(4) 

The embedding dimension, the time delay and the evolution time must be 

selected. 

 

2.4.3 Entropy 

 

Entropy measures the rate of information loss for dimension of the attractor 

and indicates the amount of disorder in the system. Entropy is derived from the 

embedded time series by finding points that are close in phase space but separate 

in time. The velocity of these points move away from each other is observed. The 

time that these points take to move away from each other can be represented by 
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Kolmogorov entropy (K). The Kolmogorov entropy can be calculated using the 

formula 〈tdiv〉 = 2−Kt , where 〈tdiv〉  is the time for divergence. The higher 

Kolmogorov entropy reflects the less predictable and more stochastic the system 

(Kannathal et al, 2005). 

 

Kolmogorov entropy can also be expressed by the sum of the positive 

Lyapunov exponents, with the following formula. (Quiroga, 1998) 

K2 = ∑ λi

λ>0

(5) 

 

2.4.4 Hurst Exponent 

 

Hurst exponent is another way for estimating the fractal dimension. It is often 

used to characterize the smoothness or the roughness of the time series. Hurst 

exponent indicates the strength of the dependence of the time series to its own 

past histories. Its H parameter has values ranging from 0 to 1, with the value 0.5 

serving as a phase switching boundary. With H between 0 and 0.5, the system is 

more unpredictable, suggesting long term shifting in sequential values. When H is 

between 0.5 and 1, the system is considered to be steady and does not have drastic 

change. Whereas the value 0.5 suggests that the time series is subject to 

uncorrelated Gaussian noise. The Hurst exponent is an indicator of the rate of 

chaos (Diaz et al, 2015). The Hurst exponent can detect fractal random time series. 

The relationship between Hurst exponent and fractal dimension (D) is D = 2 − H.  
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2.5 0-1 Test for Chaos 

The 0-1 test was proposed by Gottwald and Melbourne (2003) as a new test to 

examine chaotic behaviors.  

The data input of the analysis is the observables that come directly from the 

measurement. Thus, the 0-1 test has the features of universality, as well as the 

independence of the data, which indicates that almost any measurement data could be 

applied to this test method. The method is irrelevant to the underlying equations of the 

system. It has the advantage of suiting the system of which the knowledge of the 

underlying dynamics is unknown. Thus, it is an extraordinary option for analyzing EEG 

time series. 

Besides, unlike traditional methods, such as computing Lyapunov exponent, 

which require phase space reconstruction, 0-1 test doesn’t have limitation of 

dimensions. Large embedding dimensions will result in smaller maximal Lyapunov 

exponent, causing ambiguity of the result. As a result, the high dimensionality of the 

attractor requires the time series to be sufficient in length to allow asymptotic Brownian 

behavior to occur and that data becomes stationary and deterministic.  

 

2.5.1 Algorithm of The 0-1 Test 

 

The original data will be transferred into a set of translation variables p(n). The 

test assumptions include that p(n) is unbounded and presents diffusive behavior 
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resembling Brownian motion if the underlying dynamics of the system is considered to 

be chaotic. 

After p(n) is determined, the mean square displacement is calculated in order to 

describe the growth of the function p(n). The assumption is that the mean square 

displacement M(n) grows linearly as time passes when p(n) behaves asymptotical 

Brownian motion if the underlying dynamics is chaotic. The M(n) does not increase 

with n and is bounded if the underlying dynamics is non-chaotic.  

Then growth rake K of the mean square displacement was then calculated as the 

result of linear regression of log M(n) versus log n. The result will therefore exhibit a 

clear difference between chaotic and a non-chaotic system. The chaotic characteristic 

of the system can be determined when K is close to 1. On the other hand, the system is 

determined to be non-chaotic is K is close to 0.  

p(n) = ∑ Φ(j)cosjc

n

j=1

(6) 

M(n) = lim
N→∞

1

N
∑[p(j + n) − p(j)]2

N

j=1

(7) 

K = lim
n→∞

log M(n)

log n
(8) 

The translation variables p(n) is considered a part of the solution to the skew 

product system: 

θ(n + 1) = θ(n) + c, (9) 

p(n + 1) = p(n) + Ф(n)cosθ(n),                 (10) 

q(n + 1) = q(n) + Ф(n)sinθ(n),                 (11) 

(θ, p, q) is the coordinates on the Euclidean group. θ represents the rotation and 
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is the (p, q) represents position in the plane.  

By simply looking at the plot of (p, q) trajectories, one can visually examine the 

chaotic characteristic of the underlying dynamics. If the behavior of p and q develops 

asymptotical motion along the line like Brownian motion, there is chaotic behavior in 

the system, the attractor is uniformly hyperbolic. At the meantime, the variance of the 

Brownian motion is nonzero for any observable Ф(n)  and when c > 0 . The 

underlying system should have a fast rate of decay of correlations in order to achieve 

K = 1.  

For infinite number of data Φ(n)  where 1 ≤ n ≤ N, the formula can be 

modified as below. 

M(n) =  
1

N − n
∑[p(j + n) − p(j)]2

N−n

j=1

(12) 

In case of avoiding negative logarithms, use the equation below. And the slope K 

will not change. 

K = lim
n→∞

log M(n) + 1

log n
(13) 

For a small data size, certain choice of constant c might incur a resonance 

phenomenon. The choice of c resonates with the frequencies of the underlying 

dynamics, which makes the growth of the mean square displacement yield to n2 and 

results in an unusual linear growth of p(n) with K=2. However, the cases of picking a 

bad choice of c are rare in practical experiments. The possibility of such bad choices is 

zero theoretically. In order to eliminate the resonance phenomenon, it is preferred to 

choose multiple values of c randomly, compute K for each choice of c, and take the 

median value of K. The method of taking median value of K instead of taking the 
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average of K is the result of eliminating weight of the irregular values of K. 

 

2.5.2 Application of 0-1 Test on Theoretic Models 

 

The 0-1 test is a straightforward and highly effective tool for uncovering 

deterministic chaos in nonlinear systems. The performance of the 0-1 test was evaluated 

in various experiments and literature in the past. The test has been applied to various 

well-understood nonlinear systems, and has been compared to other analytical methods. 

The effectiveness of the test was demonstrated.  

Falconer et al (2007) constructed a bipolar motor system experimental setup and 

tested the data derived from it using 0-1 test in order to test the effectiveness of the test. 

The purpose of this experiment was to justify the performance of the 0-1 test in 

contaminated condition.  

The bipolar motor was created by suspending a dipole magnet in a fixed, linearly 

polarized oscillating magnetic field. The motor was able to rotate around an axis freely. 

The angular position θ of the dipole magnet was recorded and a frequency of 25 times 

per second. The cosθ  was set as observable Ф(n) . The final time series that the 

authors used for analysis duration contained 2700 data points. 

The mean square displacement was calculated using the arbitrary choice c=1.95. 

The result shows dramatic difference between the bounded behavior which indicates 

the regular dynamics and the linear augment which indicates the chaotic behaviors. The 

asymptotic growth rate K of the mean square displacement was then determined using 
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c as a range between 0 and 2π. The values of the growth rate K as the function of c from 

0 to 6.28 was acquired. The result shows demonstrated that except several unusual 

values, the majority of the c values yielded that K=0 for regular dynamics and K=1 for 

chaotic behaviors. The median of the K is used in order to avoid the weight of the 

exceptional values. The authors computed K for two experimental conditions with 

different frequencies of the magnetic field. The result of the computation was K=0.02 

for 0.9Hz, periodic dynamics, and K=0.92 for 0.6Hz, chaos dynamics, which 

demonstrated that 0-1 test is able to distinguish chaotic behaviors. The authors also 

computed K using length of the time series N as a parameter. The result showed that 

with an increasing number N, the test obtained a better performance. 

Gottwald and Melbourne (2003) also examined the 0-1 test in other cases. They 

applied the test method to investigate the forced van der Pol oscillator system. The 

chaotic behaviors were determined based on an unfixed parameter in the underlying 

equation that varied from 2.457 to 2.466, although the authors emphasized that the 

choices of the parameter would not affect the result. The value of c was equal to 1.7. 

The total time series contained 2,000,000 units of time. The result distinguished the 

onset of chaos dynamics when the parameter was equal or larger than 2.462. The result 

of the 0-1 test was compared to the result of the largest Lyapunov exponent using the 

same parameter in the same range. They both indicated same conclusion of regular 

dynamics when the parameter was smaller than 2.462 and both recorded the appearance 

of chaotic behaviors when the parameter was equal or larger than 2.462. The calculation 

result of K was K=0.01 for regular dynamics and K=0.8 for chaos dynamics. The 
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authors then carried out the 0-1 test again on the same system with less data quantity, 

containing 50,000 units of time. The result recorded the same onset point of chaos, 

except that the sensitivity of K was not as good as the test with larger data size. 

The authors examined the 0-1 test on a high-dimensional system, namely damped 

Korteweg-de Vries (KdV) equations, in which the parameter β will result in regular 

solution when it is large, while lead to spatiotemporal chaos if it is adequately small. 

The 0-1 test was carried out for this equation. The result showed that when β = 0, K = 

0.939, when β = 0.1, K = 0.989, and when β = 4, K = 0.034, which accorded with the 

assumptions of the equation. The authors then tested the method again on a discrete 

dynamical system with an ecological model which has a chaotic attractor. The 0-1 test 

succeeded to detect the chaotic behaviors (K = 1.023) with only 10,000 data points.  

In another study, Gottwald and Melbourne (2005) examined if the 0-1 test could 

keep the performance in the presence of noise. The authors compared the 0-1 test to the 

maximal Lyapunov exponent in two experiments. In the first experiments, a logistic 

map was employed. The actual Lyapunov exponent was obtained directly from the map 

equation and was used as a benchmark. The approximate Lyapunov exponent was 

calculated from the phase space reconstruction. The result of the 0-1 test was compared 

to the maximal Lyapunov exponent calculated using the two methods mentioned above. 

The noise data with 1% noise level was added to the original data. The result showed 

that the addition of noise reduced the performance of the Lyapunov exponent with phase 

space reconstruction, but had little effect on the 0-1 test. The result of the 0-1 test was 

still consistent with the exact Lyapunov exponent. The authors then increased the noise 
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level to 10%, a more obvious deterioration in performance was observed for the 

maximal Lyapunov exponent. The performance of the 0-1 test, on the other hand, stayed 

the same.  

The authors also compared the 0-1 test to the direct method for calculating the 

maximal Lyapunov exponent using the example of n-dimensional Lorenz system, also 

known as Lorenz 96 system. The same three indicators were calculated in order to test 

the capability of the two methods in terms of finding periodic windows in the system. 

In the noise-free environment, both methods found periodic windows correctly. 

However, when the noise level was increased to 10%, the maximal Lyapunov exponent 

began to exhibit much less distinguishable difference between chaotic and ordered 

dynamics. It also failed to recognize quasi-periodic windows from the chaos peaks. The 

0-1 test was not influenced by the appearance of noise. The authors thus drew the 

conclusion that the 0-1 test was superior to the traditional chaos indicators in terms of 

noise toleration. 

 

2.5.3 Application of 0-1 Test on Experimental Data 

 

Litak et al (2009) investigated the chaotic vibration of a bouncing ball system 

which consisted of a ball that impacted on a kinematically forced plate while free falling 

in the Earth gravitational field and. This is an example of chaotic trajectories in the non-

smooth mechanical systems. The authors stated that the 0-1 test had the advantage over 

the method of estimating the Lyapunov exponent given the absence of the equation of 
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the motion. It could be directly applied in the discontinuous system. However, the 

authors partially integrated the motions of the bouncing ball between the impacts. Thus 

the system could be directly investigated by both methods. The authors then examined 

the chaotic characteristics in the velocity of the kinematically forced plate after each 

impact, using the 0-1 test and the largest Lyapunov exponent respectively. 

The maximal Lyapunov exponents were computed for two dimensionless driving 

frequencies q=20 and 22 and were plotted versus the impact numbers. The result 

indicated that the dynamics reached the definite value at the 250th impact, after which 

the chaotic or non-chaotic behaviors could be determined. When q= 20, there was a 

positive exponent suggesting a chaotic solution. While a negative exponent was 

obtained for q=22 indicating a regular solution. 

The authors then applied the 0-test. The certain constant c was chosen as c = 1.7. 

The phase portraits of the plane of the translation variables p(n) and q(n) were already 

able to show that the distinction between Brownian trajectory (chaotic behaviors) when 

q=20 and the bounded trajectory (regular dynamics) when q = 22. The quantitative 

results of 0-1 test were K = 0.92 when q = 20 and K = 0.042 when q = 22, which 

confirmed the conclusion of the method of maximal Lyapunov exponent. The authors 

also plotted the all maximal Lyapunov exponents and K versus all parameter q from 15 

to 25. The result indicated that these two methods agreed with each other constantly. 

And the experiments confirmed the practical performance of the 0-1 test in the 

experimental analysis. The phase portrait of translation variable (p, q) also illustrated 

the bounded circle trajectory for the regular dynamics and the unbounded trajectory for 
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the chaotic behaviors. 

Yuasa and Saha (2007) repeated the study of the bouncing ball experiment in their 

study. They examined the time series of the vibration velocity when frequency q = 20 

and q = 2. The calculation results of value K were near 1 in case of chaotic series and 0 

in case of normal series, which supported the validation of the algorithm of the 0-1 test. 

In this study, a diffusive pattern of the translation variable, and the growth of the mean 

square displacement versus time were clearly observed for chaotic behaviors. The 

authors concluded that the 0-1 test was a reliable qualitative method for analyzing 

nonlinear dynamics. 

Sun et al (2010) also compared the 0-1 test and the method of maximal Lyapunov 

exponent in their study. At first, the authors explore the different strategies of 

calculating the constant value c, using the example of the Hénon map. The experiments 

indicated that choosing the median value of K from 10 randomly chosen values of c 

could greatly mitigate the effect of the resonance phenomenon, although some periodic 

exceptional results still occurred. When calculating K from 100 random choices of 

values of c, the chance of resonance phenomenon almost disappeared. The authors then 

increased the total amount of value c to 1000. The result of the calculation did not show 

any further improvement. Thus the authors used 100 values of c in their calculation of 

K. According to the authors, the greater length of time series was able to help the 0-1 

test improve its performance and reach its ideal value. The choice of parameter n was 

supposed to comply with the principle of 1 ≤ n ≤ N/10. Nevertheless, the authors 

pointed out that the selection of n did not significantly affect the value of K in case of 
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chaotic behaviors. In the cases of regular dynamics, a smaller n could reduce the value 

of K and result in better distinction from chaotic behaviors. 

The authors then applied both 0-test and the method of maximal Lyapunov 

exponent on the Hénon map, the integer-order simplified Lorenz system, and the 

fractional-order simplified Lorenz system. The result of the calculation showed great 

consistency between these two methods. The 0-1 test was considered to have lower 

computation cost regarding both effort and time. The 0-1 test was able to indicate a 

clear distinction of chaotic and non-chaotic behaviors. Furthermore, as a result of 

comparison the computation outcome for these two methods, the authors concluded that 

K ≤ 0.1 referred to regular dynamics and K > 0.1 referred to chaotic behaviors. In this 

study, the phase portraits of the translation components for the three models were 

obtained. They all exhibited bounded shapes for the regular motion and asymptotic 

Brownian trajectory for the chaotic motion. 

Dawes and Freeland (2008) investigated the performance of 0-1 test of 

distinguishing a strange nonchaotic attractor (SNA) in a quasi-periodic nonlinear 

system. The SNA cannot be detected by the method of the maximal Lyapunov exponent. 

It has a structure that is more complicated than normal dynamics. But it does not have 

a positive Lyapunov exponent for its separate rates are not as fast as exponential. The 

authors also offered a modification to the standard test procedure so that the test can 

better differentiate SNA. The authors used Fourier transformation and transferred the 

time series to smoothed time series in order to reduce the effect of noise. The authors 

then calculated the mean square displacement and its strength of increase K using the 
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Fourier transformed data. The calculation was repeated with different constant c that 

was distributed in the range from 0.1 to π/2. The median of K was selected in order to 

avoid the resonance effect. The refinement of the implement of the 0-1 test was 

accomplished by means of adding a noise term in the calculation of the mean square 

displacement. This modification was able to eliminate the frequent resonance effect 

generated from the quasi-periodic dynamics whose higher correlations would lead to 

erroneous numeric result of K = 1. The data that the authors used were generated from 

an original GOPY model. Compared with the standard test, value K in the modified 

version dropped significantly from 0.40683 to 0.0225608 for quasi-periodic structure 

but showed little difference for SNA. The result of the study demonstrated that the 

modified 0-1 test successfully recorded the onset of the SNA behavior of the quasi-

periodic system. 

Ascani et al (2008) also verified the capability of the 0-1 test to discover the chaos 

in quasi-periodic time series in their study. The authors applied the methods on time 

series generated from the Rössler model. The authors manipulated the parameter of the 

model and created two time series, one doubly-periodic and one chaotic. And then the 

authors added 10% white noise to the two noise-free time series respectively. Without 

the noise, the median of K values was 0.02 for the periodic data and 0.71 for the chaotic 

data. Given the presence of noise, the median of K values was 0.17 for the periodic data 

and 0.74 for the chaotic data. Therefore, the 0-1 test succeeded to distinguish the chaotic 

behaviors in the quasi-periodic time series even in a noisy condition. The authors also 

tested the performance of the 0-1 test on a surface electromyographic (sEMG) signals 
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witch captured the spinal waves derived by the muscle activities around the neck region 

in 30-second duration. The authors computed the maximal Lyapunov exponents for 10 

segments of the time series, namely from 0 to 3 seconds, from 0 to 6 seconds, and so 

forth until the whole dataset. The false nearest neighbors (FNN) method was used to 

calculate the embedding dimension. After the phase space was reconstructed, the 

Lyapunov exponents for the group of time series were calculated. The positive maximal 

Lyapunov exponents were found in each segment, revealing the chaos in the sEMG 

recording. The authors then implemented the 0-1 test. They divided the data set into 

segments that consisted of 10 successive segments with identical time span, five 

successive segments with identical time span, and two successive segments with 

identical time span. The calculation was done for each of the time series segments and 

for the whole time series. The median value of K was selected with the 100 values of c 

ranging from π/5 to 4π/5. The result showed that with the exception of only one of the 

3-second segments, all values of K were greater than 0.75. All calculation indicated the 

existence of chaotic behaviors. The accuracy of the calculation increased along with the 

growth of the length of the data. The result of the two methods complied with each 

other. The authors tested the two methods again on a surrogate nondeterministic time 

series that were created based on the sEMG time series. The results of the two methods 

were still consistent with each other, which both mistakenly detected the false chaos, 

revealing the limitation of these nonlinear dynamics methods. 

Budhraja et al (2012) verified the consistency between the 0-1 test and the 

maximal Lyapunov exponent. They tested the two methods on the Peter-de-Jong map 
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equations, which exhibited chaos or periodic behavior according to the variation of 

parameters. A total of 200,000 data units were generated from the model. The authors 

constructed 10 scenarios with different choice of parameters. They also compared the 

calculation results to the phase plot of the attractor. For the four scenarios in which the 

unbounded drifting phase plots suggested chaotic motion, the results of the 0-1 test and 

the maximal Lyapunov exponent both succeeded to detect the chaos. For three out of 

the four scenarios that have periodic form of attractors, both methods had results that 

were consistent with the phase plot, providing the signs of regular motion. For only one 

case, the trajectory of the attractor showed regular behavior. But a positive Lyapunov 

exponent was found. Besides, the value of K was 0.67571, according to the authors, 

indicating week chaos. Both of the mathematics methods had results that contradicted 

to the interpretation of the attractor. However, the authors did not provide any further 

explanation to the rare conflict. They concluded that the 0-1 test was as effective as the 

maximal Lyapunov exponent. 

Because the 0-1 test can be carried out when the underlying equations of the data 

is unknown, it is favorable to adopt this method into various fields of practical or 

industrial applications where nonlinear processes are present. Litak et al (2009) studied 

the nonlinearity in a mechanical motion process of a machine. The authors employed 

the 0-1 test to predict the possible chaotic movement that could happen in a cutting 

sequence due to the friction, delay effect, structural factors, or contact loose effect 

between the tool and the work piece. The friction effect in the model resulted in non-

smooth vector fields, and thus caused difficulty for computing Lyapunov exponents. 
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The calculation reached incorrect solutions for there were positive numbers for regular 

dynamics. Therefore the authors employed the 0-1 test in order to study the chaotic 

vibration generated in the cutting process, using the horizontal cutting depths for their 

time series data. The authors selected c=1.7 according to the reference of Gottwald and 

Melbourne. They calculated K versus four vertical cutting forces, namely 0.25, 0.5, 

0.75, and 1. The result clearly distinguished the chaotic motion for the cutting force of 

0.5 and 0.75 from the regular motion for the cutting force of 0.25 and 1. This result was 

supported by the phase portrait of (p, q) coordinates. The authors concluded that the 0-

1 test was a reliable method for precise detection of the nonlinear chaos according to 

their study. 

Gutnichenko et al (2014) studied the instability of high chromium cast iron (HCCI) 

in the cutting process with two polycrystalline cubic boron nitride (PCBN) tools. The 

instability was the result of the low-frequency vibration known as the “chatter” which 

was caused by the high hardness of the microstructural carbides constitutes. Under the 

influence of various factors, such as temperature and velocity dependent friction 

conditions, the “chatter” reflected the nonlinear interaction of tool and workpiece. Thus, 

the authors applied the nonlinear dynamics in their test as one of the indicators of the 

instability during machining, along with the specifics of tools wear mechanisms, the 

parameters of surface finish, and the morphology of the worn tools. In the experiment, 

two grades of PCBN tools were used on HCCI work pieces with two different chemical 

compositions and three different heat treatments. The acceleration amplitudes of the 

vibrations at different feeding rates were recorded. Afterward, the data was processed 
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by means of the 0-1 test. The result proved great stability for both of the two tools. The 

authors then verified the result by calculating the Lyapunov exponents. The result 

agreed with the previous conclusion, and confirmed the regular dynamics of the tools. 

Chowdhury et al (2012) used the 0-1 test in order to investigate the nonlinearity 

in the time series of the potential fluctuation generated from a glow discharge plasma 

system. The plasma systems appear to have nonlinear dynamics and can have chaos or 

periodic behavior according to the change of parameters. The authors calculated the 

maximal Lyapunov exponent using Rosenstein’s method. The result was 0.02 for quasi-

periodic data and 0.2 for the chaotic data. The method clearly captured the existence of 

chaos. However, the value was close to zero for the quasi-periodic dynamics, indicating 

that it was a week indicator in this case. The 0-1 test was then carried out. The 100 

values of constant c were chosen randomly varying from π/5 to 6π/5. For the quasi-

periodic dynamics, the numeric result of K was close to zero. The plot of mean square 

displacement showed there was no growth as time went on. For the chaotic behaviors, 

the median of K was proximately 0.9. The plot of mean square displacement depicted 

an obvious positive growing slope. The study proved the advantage of the 0-1 test over 

the maximal Lyapunov exponent in terms of accuracy regarding distinguishing quasi-

periodic behavior. 

Xu et al (2011) investigated the chaotic properties of a combustion process by 

means of the 0-1 test. According to the authors, there were nonlinear properties in the 

combustion process. Therefore, the combustion instability could be characterized by 

the existence of chaos. The authors applied 0-1 test to the nonlinear time series data 
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derived from the position series of the flame tip structures for different combination of 

fuel flow rates and air flow rates. For the results where the value K was equal to 0.8081, 

the authors concluded that the chaos happened. This conclusion was verified by the 

diffusive trajectory of the translation variable. For the results where K was below 0.8 

and above 0.5, the author carried out further investigation using the recurrence plot 

method Poincaré section. The comparison leaded to the facts that when k was equal to 

0.5046, the system was characterized as a periodic process. On the other hand, when 

values of k were equal to 0.6482 and 0.7646, the system was characterized as quasi-

periodic processes. The authors implemented the 0-1 test twice by means of regression 

method function and correlation methods respectively. The difference was found in the 

numeric result for the two methods. However, they were both able to distinguish the 

condition in which the chaotic behaviors existed. The validity of the result was 

confirmed by the calculation of the maximal Lyapunov exponent. 

The 0-1 test also serves as a tool for detecting chaos in time series in the financial 

research. Webel (2012) applied this method to examine the existence of chaotic 

structure in the financial time series data. The author estimated the daily stock returns 

from 30 companies in the German stock market. There were 1655 data units in the time 

series from each company. The authored used four kinds of wavelet filters in order to 

reduce the noise in the data, namely the least asymmetric, best localized, coiflet and the 

Haar filter. The multiple denoising methods were used in order to demonstrate that the 

filtering result was independent of the specific filter types. A total of 100 values of the 

constant c were randomly chosen in the range from π/8 to7π/8. The growth rate K was 



 

46 
  

calculated for each constant c and the median value was recorded as the final solution. 

According to the computation, the author successfully identified chaotic structure in the 

time series data from all 30 companies, drawing the conclusion that there was inherent 

deterministic chaos underlying the fluctuations of stock returns.  

Kriz (2014) employed the 0-1 test to investigate if there was deterministic chaos 

in financial data using the example of the Finnish gross domestic product (GDP) data. 

Besides, the author verified the result of the 0-1 test with other methods, including the 

metric method such as the correlation dimension, the dynamical method such as 

computing the maximal Lyapunov exponent, and the topological method such as the 

recurrence plot. The author gathered quarterly data from year 1975 to 2012. There are 

two time series, namely seasonally adjusted data and data without adjustment. After the 

embedding dimension was determined by means of the “false nearest neighbors” 

method, the largest Lyapunov exponents was calculated using the Rosenstein algorithm. 

Positive maximal Lyapunov exponents were found in both time series, suggesting the 

existence of the chaotic behavior. The 0-1 test was then implemented. The value of the 

correlation coefficient was calculated as 0.95 for both time series. The correlation 

dimension was also computed using Grassberger and Procaccia algorithm. The values 

of Hurst exponent for the two time series were both close to 1, indicating the existence 

of long-range dependence. The recurrence plots presented irregular diagonal structures, 

which also confirmed that there was chaotic structure in the time series. The author 

concluded that all the methods mentioned above corresponded with each other and 

reached same result of chaotic structure for both time series. 
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CHAPTER 3: OBJECTIVES 

 

3.1 Problem statement 

The objective of this study is to examine the mental workload under different task 

difficulty levels through the investigation of brain activity by means of nonlinear 

dynamics of EEG recordings in simulated unmanned ground vehicle visual detection 

task scenarios. It is hypothesized that EEG associated with mental workload exhibits 

chaotic behavior. Furthermore, increased mental workload is associated with higher 

level of chaos in corresponding EEG pattern. The main research tasks include:  

1), Does the level of chaotic behaviors in EEG data varies according to the 

changes of task difficulty?  

2), How does the change in brain activity reflect the effect of mental 

workload? 

The first task aims to find the change of nonlinearity levels in EEG recordings for 

different task difficulty. If significant changes of EEG nonlinearity occur, it is indicated 

that varying task difficulty is able to cause the change in performers’ brain activity, and 

that brain activity is an indicator of mental work. As a result, the next task will occur 

regarding what parts of brain are affected by different level of mental workload, and 

affected in what way. It would be necessary to investigate the pattern of the changes in 

brain activity in order to understand how they are influenced by variation of mental 

workload. 
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3.2 Research Hypothesis 

There are two hypotheses in this research. The first one is that the EEG associated 

with mental workload will exhibit chaotic behavior. Secondly, the varied mental 

workload associates with different level of chaos in corresponding EEG pattern. 
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CHAPTER 4: RESEARCH METHODOLOGY 

 

4.1 Participants 

One-hundred and fifty graduate and undergraduate student volunteers, including 

85 males and 65 females, whose average age was 19.57 with standard deviation 3.46, 

participated in the experiment. Informed consent was obtained from the participants. 

All participants were screened for normal or corrected-to-normal vision and had zero 

previous experience with the simulator prior to participation. Subjects also had no 

ingestion of alcohol, and/or sedative medications at least 24 hours prior to participation, 

as well as no ingestion of caffeine, and/or nicotine at least 2 hours prior to participation, 

in order to ensure the validity of physiological measures. 

 

4.2 Apparatus 

The tasks were performed in a simulated operator control unit (OCU) for an 

unmanned ground vehicle (UGV) using the Mixed Initiative eXperimental (MIX) 

testbed, designed by Reinerman-Jones et al (2010). The UGV navigated through an 

environment which appeared to be a generic Middle Eastern town seized by enemy 

threats. The UGV drove autonomously along a prefixed route. Participants were 

expected to identify the occurrence of enemy targets on the way. A desktop computer 

(3.2GHz, Intel Core i7 processor) with a 22” (16:10 aspect ratio) monitor was used as 

display device for this simulation. The participants’ responses to the task were collected 

by means of clicking the left mouse button. 
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4.3 Tasks 

The tasks designed by Reinerman-Jones et al (2010) included two parts and were 

performed by participants independently, namely threat detection (TD) task and the 

change detection (CD). These two tasks were also performed simultaneously, forming 

a dual-task scenario. These tasks resembled the real military intelligence, surveillance 

and reconnaissance missions with a simulated unmanned vehicle operation. The threat 

detection task was chosen base on signal detection theory (SDT). According to SDT, 

decisions are made in the presence of uncertainty due to the presence of either internal 

that comes from perceptual processing and/or neural activity and/or external noise that 

comes from environmental sources. Thus, it is crucial to determine the decision-making 

criteria in order to mitigate unwanted results or workload in a high-risk environment. 

The change detection task was chosen based on the theories of change blindness (CB), 

which refers to the situation in which the observer fails to notice changes in a visual 

scene. Change detection requires the ability of attention allocation which closely related 

to workload level. As a result, workload exerts a strong influence on the performance 

of change detection tasks. 
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Figure 1 The Tasks in The Unmanned Ground Vehicle System (Reinerman-Jones et al, 

2010). 

 

4.3.1 Threat Detection Task 

 

As shown in Figure 1, in the threat detection task, participants were asked to 

monitor a video feed projecting the forward view of the UGV that drove along a 

prefixed route and report any potential threats present. Among the four categories of 

people that were presented, namely friendly soldiers, friendly civilians, enemy soldiers, 

and insurgents, the last two were considered as threats and were reported by a left-

clicking of the computer mouse on the “threat detect” button located on the top right of 

the OCU followed by another left-clicking on the threat in the UGV video feed. 
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4.3.2 Change Detection Task 

 

In the change detection task, participants were asked to monitor an aerial map 

located at the bottom of the OCU that displayed the location of various icons. There 

were an average of 24 icons presented randomly across the defined area. Three types 

of changes of the icons were exhibited, namely appear, disappear and movement. Three 

change detection buttons representing each type of change were positioned above the 

aerial map. The identified icon changes were reported by a left-clicking of the computer 

mouse on the appropriate change detection button.  

 

4.3.3 Task Procedure 

 

Participants were trained and were provided with a practice session. The full 

experiments consisted of four scenarios. There were two single task scenarios, in which 

participants performed the change detection task only or threat detection task only. 

There were also two dual task scenarios, in which participants performed the change 

detection task at a varied event rate, while event rate of the threat detection task kept at 

a constant level, or vice versa, performed the TD task at a varied event rate, while the 

CD task kept at a constant level. Three levels of event rate were utilized within each 

scenario, as presented in Table 1, representing low, medium, and high task levels.  

For the change detection single task (Scenario 1): the event rate 6, 12, and 24 per 

minute was used. For the change detection dual task (Scenario 2): the event rate was 6, 
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12, and 24 per minute for the change detection task, as well as 30 per minute for threat 

detection task. For the threat detection single task (Scenario 3): the event rate was used 

15, 30, and 60 per minute. On the other hand, for the threat detection dual task (Scenario 

4), the event rate was 15, 30, and 60 per minute for change detection task, as well as 12 

per minute for the threat detection task. The order of the task scenarios that represented 

different workload levels was counterbalanced and randomized for each participant.  

After performing the tasks, the subjective workload measure NASA Task Load 

Index (Hart & Staveland, 1988), also known as NASA-TLX, scores of the participants 

were recorded. NASA-TLX assesses subjective mental workload on six dimensions, 

namely mental demand, physical demand, temporal demand, performance, effort, and 

frustration level. It employs a weighting procedure, in which the dimensions will be 

selected if they are more relevant to workload, so that the multiple subscales used in 

this technique can eventually combine together and provide a unidimensional 

estimation of mental workload. The task load manipulation of low, medium, and high 

level resulted in corresponding level of subjective workload measure. 

The mean and standard deviation of the NASA-TLX data recorded by Mathews 

et al (2014) are shown in Table 2. The two dual tasks both have higher subjective 

measures than the single tasks. For the two single tasks, change detection task has 

higher NASA-TLX than threat detection task. For both change detection tasks and 

threat detection tasks, the increased task difficulty level has significant effect on the 

subjective mental workload measurements, when compare the dual task with the single 

task. However, there is no significant effect between the two single tasks (Mathews et 
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al, 2014). 

Table 1 Task event rate per minute under different task scenarios 

 Change 

Detection 

Single Task (S1) 

Change  

Detection  

Dual Task (S2) 

Threat 

Detection 

Single Task (S3) 

Threat 

Detection 

Dual Task (S4) 

Change  6 6  12 

Detection 12 12   

Event Rate 24 24   

Threat  30 15 15 

Detection   30 30 

Event Rate   60 60 

 

Table 2 NASA task load index under different task scenarios 

NASA-TLX Mean Standard Deviation 

Change Detection 

Single Task (S1) 47.67 14.20 

Change Detection  

Dual Task (S2) 57.68 14.51 

Threat Detection 

Single Task (S3) 31.58 16.53 

Threat Detection 

Dual Task (S4) 56.31 19.92 

 

4.4 EEG Data Acquisition 

The EEG data was collected for each of the one-hundred and fifty participants 

from an Advanced Brain Monitoring X10 system while they performed the four single 

and dual task scenarios throughout the five-minute duration with a sampling rate at 256 

Hz. The EEG was recorded at nine channels located at frontal, central, and parietal 

locations, namely F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4. The baseline EEG was 

recorded while the participants were resting and used as reference. In Figure 2, a sample 

of the EEG time series data for a central parietal channel from one subject is shown. 
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Figure 2 The distribution map of the EEG channels. 

 

Figure 3 Sample EEG data from subject one central parietal channel, scenario 1 

condition. 

 

4.5 Methodology 

4.5.1 Data Processing 

 

Due to the large amount of EEG data set and the enormous volume of the data. I 

developed the first part of the program via software Python as a file loader. The data of 

each EEG channel can be separated from one data file, which contains the data of all 

nine EEG channels for one subject, and transpose from multiple rows into one column. 

Each file can be automatically loaded from the file folder into Python software and be 
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ready for further computation. 

 

4.5.2 Lyapunov Exponent And Fractal Dimension 

 

The two parameters that are used to calculate the largest Lyapunov exponent and 

the correlation dimension, namely time delay and embedding dimension, are calculated 

for each task scenario, via software Matlab. 

The embedding dimension m was calculated using false nearest neighbors (FNN) 

algorithm. According to the FNN algorithm, a chaotic time series is a projection of the 

dynamics from a higher-dimensional phase space to a lower-dimensional phase space.  

Thus, two nearest points in the lower dimensional phase space are considered false 

nearest neighbors due to they are not close to each other in the higher dimensional phase 

space, which is the reason why the time series exhibits chaotic dynamics. Phase space 

reconstruction is a process of embedding the time series into higher dimensional phase 

space, until all false nearest neighbors are separated. The FNN algorithm finds the true 

neighbors that remain close when the data are embedded into a higher dimensional 

space. When FNN is detected, the minimal embedding dimension is also recognized, 

which is the situation when as the embedding dimension increases, the fraction of the 

FNN changes less than 5%. 

The time delay τ was calculated by means of estimating the autocorrelation in the 

time series. The autocorrelation function for a series of continuous variables is defined 

as 
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C(τ) = lim
T→∞

∫ 𝑥(𝑡)𝑥(𝑡 + τ)dt

𝑇
2

−
𝑇
2

(14) 

τ is the time lag, representing the level of correlation between two points in time 

(t and t+ τ). τ is determined when it is large enough so that  x(t) and x(t+ τ ) have less 

difference, where C(τ) approaches zero. 

After the phase space was reconstructed for the EEG time series data, the largest 

Lyapunov exponent was computed using Rosenstein method (1993). The correlation 

dimension was estimated using the method developed by Grassberger and Procaccia 

(1983), using software Python. 

 

4.5.3 0-1 Test 

 

The 0-1 test for chaos was applied to the EEG time series of each of the nine EEG 

channels of each of the one-hundred and fifty participants for all four task scenarios 

and for the resting baseline, using the algorithm that I developed on software Python. 

The parameter of c was chosen from a randomly generated string of values between 1/5 

π and 4/5 π. So that the selection of median Kc was able to mitigate the resonance effect. 

A K value was obtained for each EEG channel for every participant and for every 

scenario. The K value close to 1 indicates the existence of chaos and the K value close 

to 0 indicates a regular dynamics.  
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4.5.4 Statistical Analysis 

 

The relationship between the task demand of each scenario and changes in brain 

activity was examined via the one-way analysis of variance (ANOVA) using software 

Minitab, among the same EEG channel’s largest Lyapunov exponent, correlation 

dimension, and K value for different task scenarios and the resting baseline.  

The effect of task difficulty was further investigated via ANOVA using software 

Minitab among the nine EEG channels for different level of tasks, in order to examine 

at which areas of the brain the shifting mental workload levels has an effect on brain 

activity. 
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CHAPTER 5: RESULTS 

 

5.1 Lyapunov Exponent 

The EEG data was bandpass filtered using FIR filter from 4Hz to 30Hz, in the 

range from Theta to Beta brain wave, in order to eliminate the effect of eye blink. The 

embedding dimensions for scenario 1, scenario 2, scenario 3, and scenario 4 are shown 

in Table 3. The time delay for scenario 1, scenario 2, scenario 3, and scenario 4 are 

shown in Table 4. The same parameters were also employed in the calculation of 

correlation dimension. 

 

Table 3 The embedding dimension for each task scenario 

Task Scenario Embedding Dimension 

Change Detection 

Single Task (S1) 

8 

Change Detection 

Dual Task (S2) 

8 

Threat Detection 

Single Task (S3) 

7 

Threat Detection 

Single Task (S4) 

10 
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Table 4 The time delay for each task scenario 

Task Scenario Time Delay 

Change Detection 

Single Task (S1) 

4 

Change Detection 

Dual Task (S2) 

4 

Threat Detection 

Single Task (S3) 

5 

Threat Detection 

Single Task (S4) 

3 

 

The positive largest Lyapunov exponents are observed in all EEG time series, 

which can be considered as the evidence that supported the existence of the chaotic 

dynamics in EEG time series. 

 

5.1.1 Task Levels 

 

One-way ANOVA was performed on the results of Lyapunov exponent in order 

to examine the effect of varying task levels. Significant difference in Lyapunov 

exponent was found between medium and high task levels for change detection single 

task (p-value = 0.31). Marginally significant effect was found between low and medium 

task levels also for change detection single task (p-value = 0.110). However, there was 

no significant difference for other task scenarios when the task difficulty levels change. 

The grouping information of mean values was determined by Fisher’s least significant 

difference test. When the task difficulty level changed from low level to medium level, 

the marginally significant change in Lyapunov exponent was found in change detection 

single task at EEG channel C3, located at left central sulcus (p-value = 0.173). When 
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the task level shift from medium to high level, marginally significant change in 

Lyapunov exponent was found also found in change detection single task at channel C3 

(p-value = 0.054) and P3 (p-value = 0.105), located at left central sulcus and right 

parietal lobe.  

 

Table 5 Comparison of the largest Lyapunov exponent for different task levels 

Scenario Task Level Mean Grouping Standard Deviation 

Change Detection 

Single Task (S1) 

Low 0.014844 A 0.002228 

Medium 0.014983 A 0.002180 

High 0.014793 B 0.002283 

Change Detection 

Dual Task (S2) 

Low 0.014881 A 0.002267 

Medium 0.014832 A 0.002218 

High 0.014756 A 0.002237 

Threat Detection 

Single Task (S3) 

Low 0.013989 A 0.001780 

Medium 0.013972 A 0.001907 

High 0.013895 A 0.001877  

Threat Detection 

Dual Task (S4) 

Low 0.015151 A 0.002479 

Medium 0.015150 A 0.002729 

High 0.015116 A 0.002545 

 

Table 6 ANOVA table of the largest Lyapunov exponent for change detection single 

task (S1) between low and medium level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario     1        0.000012   0.000012      2.55    0.110 

Error        2545     0.012365   0.000005 

Total        2546     0.012378    

 

Table 7 ANOVA table of the largest Lyapunov exponent for change detection single 

task (S1) between medium and high level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario     1        0.000023   0.000023      4.65    0.031 

Error        2554     0.012727   0.000005 

Total        2555     0.012750    
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Table 8 ANOVA table of the largest Lyapunov exponent for change detection single 

task (S1) between low and medium level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000008   0.000008       1.86     0.173 

Error      281        0.001187   0.000004 

Total      282        0.001194 

 

Table 9 ANOVA table of the largest Lyapunov exponent for change detection single 

task (S1) between medium and high level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000016   0.000016       3.75     0.054 

Error      282        0.001208   0.000004 

Total      283        0.001224 

 

Table 10 ANOVA table of the largest Lyapunov exponent for change detection single 

task (S1) between medium and high level at channel P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000011   0.000011       2.65     0.105 

Error      282        0.001137   0.000004 

Total      283        0.00114 

 

  
Figure 4 Comparison of the largest Lyapunov exponent for different task levels. 
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5.1.2 Change Detection Tasks Single And Dual Task Scenarios 

 

One-way ANOVA was then performed on the single and dual change detection 

tasks for each of the three task levels in order to examine the effect of the difference 

between single task and dual task on the change in the nonlinearity of EEG. There was 

no significant difference found at any task level. There was only marginally significant 

difference in Lyapunov exponent found at the medium level (p-value = 0.081). After 

examining the EEG channels, the marginally significant effect between single change 

detection task and dual change detection task was found at C3, left central sulcus, at the 

medium task level. 

 

Table 11 The mean largest Lyapunov exponent for change detection tasks at different 

task level 

Task Level 

Scenario Mean 

Grouping Standard 

Deviation 

Low Change Detection 

Single Task (S1) 

0.014844 

 

A 0.002228 

 

Change Detection 

Dual Task (S2) 

0.014881 

 

A 0.002267 

 

Medium Change Detection 

Single Task (S1) 

0.014983 

 

A 0.002180 

 

Change Detection 

Dual Task (S2) 

0.014832 

 

A 0.002218 

 

High Change Detection 

Single Task (S1) 

0.014793 

 

A 0.002283 

 

Change Detection 

Dual Task (S2) 

0.014756 

 

A 0.002237 
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Table 12 ANOVA table of the largest Lyapunov exponent for change detection single 

and dual tasks at medium task level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario    1         0.000015    0.000015     3.05    0.081 

Error       2563      0.012399    0.000005 

Total       2564      0.012413 

 

Table 13 ANOVA table of the largest Lyapunov exponent for change detection tasks at 

medium task level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.000014   0.000014       2.98     0.085 

Error      283        0.001292   0.000005 

Total      284        0.001306 

 

 
Figure 5 Comparison of the largest Lyapunov exponent for change detection (CD) tasks. 
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change in the nonlinearity of EEG. For all of the three task levels, the significant effect 

was found between the single task scenario and the dual task scenario (p-value < 0.001). 

The dual task scenarios were significantly different from the single task scenarios at all 

EEG channels (p-value < 0.05). 

 

Table 14 The mean largest Lyapunov exponent for threat detection tasks at different 

task level 

Task Level 

Scenario Mean 

Grouping Standard 

Deviation 

Low Threat Detection 

Single Task (S3) 

0.013989  

 

B 0.001780 

 

Threat Detection 

Dual Task (S4) 

0.015151 

 

A 0.002479 

 

Medium Threat Detection 

Dual Task (S3) 

0.013972 

 

B 0.001907 

 

Threat Detection 

Dual Task (S4) 

0.015150 

  

A 0.002729 

 

High Threat Detection 

Single Task (S3) 

0.013895 

 

B 0.001877 

 

Threat Detection 

Dual Task (S4) 

0.015116 

 

A 0.002545 

 

 

Table 15 ANOVA table of the largest Lyapunov exponent for threat detection single and 

dual tasks at low task level.  

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario     1        0.000857    0.000857    183.95   0.000 

Error        2536     0.011812    0.000005 

Total        2537     0.012669 

  

Table 16 ANOVA table of the largest Lyapunov exponent for threat detection single and 

dual tasks at medium task level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario    1         0.000891    0.000891    160.87   0.000 

Error       2563      0.014192    0.000006 

Total       2564      0.015083 
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Table 17 ANOVA table of the largest Lyapunov exponent for threat detection single and 

dual tasks at high task level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

 

Scenario    1         0.000953    0.000953    190.54   0.000 

Error       2554      0.012775    0.000005 

 

Total       2555      0.013728  

 

Table 18 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

low task level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000084   0.000084       18.52    0.000 

Error      280        0.001274   0.000005 

Total      281        0.001358 

 

Table 19 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

low task level at channel C4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000089   0.000089       20.74    0.000 

Error      280        0.001196   0.000004 

Total      281        0.001284 

 

Table 20 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

low task level at channel Cz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000074   0.000074       14.98    0.000 

Error      280        0.001384   0.000005 

Total      281        0.001458 
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Table 21 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

low task level at channel F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000097   0.000097       20.22    0.000 

Error      280        0.001346   0.000005 

Total      281        0.001443 

 

Table 22 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

low task level at channel F4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000066   0.000066       16.20    0.000 

Error      280        0.001149   0.000004 

Total      281        0.001215 

 

Table 23 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

low task level at channel Fz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000026   0.000026       4.38     0.037 

Error      280        0.001634   0.000006 

Total      281        0.001660 

 

Table 24 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

low task level at channel P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000141   0.000141       34.04    0.000 

Error      280        0.001158   0.000004 

Total      281        0.001299 
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Table 25 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

low task level at channel P4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000162   0.000162       41.22    0.000 

Error      280        0.001099   0.000004 

Total      281        0.001261 

 

Table 26 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

low task level at channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000168   0.000168       40.58    0.000 

Error      280        0.001160   0.000004 

Total      281        0.001328 

 

Table 27 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

medium task level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000127   0.000127       26.03    0.000 

Error      283        0.001379   0.000005 

Total      284        0.001506 

 

Table 28 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

medium task level at channel C4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000084   0.000084       17.26    0.000 

Error      283        0.001380   0.000005 

Total      284        0.001464 

 

 

  



 

69 
  

Table 29 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

medium task level at channel Cz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000053   0.000053       10.84    0.001 

Error      283        0.001381   0.000005 

Total      284        0.001434 

 

Table 30 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

medium task level at channel F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000126   0.000126       19.06    0.000 

Error      283        0.001876   0.000007 

Total      284        0.002002 

 

Table 31 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

medium task level at channel F4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000137   0.000137       19.21    0.000 

Error      283        0.002023   0.000007 

Total      284        0.002161 

 

Table 32 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

medium task level at channel Fz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000035   0.000035       6.63     0.011 

Error      283        0.001512   0.000005 

Total      284        0.001547 
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Table 33 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

medium task level at channel P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000119   0.000119       26.71    0.000 

Error      283        0.001265   0.000004 

Total      284        0.001384 

 

Table 34 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

medium task level at channel P4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000100    0.000100      17.87    0.000 

Error      283        0.001579    0.000006 

Total      284        0.001678 

 

Table 35 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

medium task level at channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000144   0.000144       32.72    0.000 

Error      283        0.001246   0.000004 

Total      284        0.001390 

 

Table 36 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

high task level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000150   0.000150       35.74    0.000 

Error      282        0.001184   0.000004 

Total      283        0.001334 
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Table 37 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

high task level at channel C4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000154   0.000154       35.61    0.000 

Error      282        0.001218   0.000004 

Total      283        0.001372 

 

Table 38 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

high task level at channel Cz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000062   0.000062       11.31    0.001 

Error      282        0.001545   0.000005 

Total      283        0.001607 

 

Table 39 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

high task level at channel F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000133   0.000133       23.07    0.000 

Error     282         0.001620   0.000006 

Total     283         0.001752 

 

Table 40 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

high task level at channel F4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000123   0.000123       22.60    0.000 

Error      282        0.001532   0.000005 

Total      283        0.001655 
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Table 41 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

high task level at channel Fz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000045    0.000045      7.34     0.007 

Error      282        0.001718    0.000006 

Total      283        0.001763 

 

Table 42 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

high task level at channel P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000116    0.000116      28.15    0.000 

Error      282        0.001164    0.000004 

Total      283        0.001280 

 

Table 43 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

high task level at channel P4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000108    0.000108      26.16    0.000 

Error      282        0.001160    0.000004 

Total      283        0.001268 

 

Table 44 ANOVA table of the largest Lyapunov exponent for threat detection tasks at 

high task level at channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.000093    0.000093      23.72    0.000 

Error      282        0.001109    0.000004 

Total      283        0.001202 
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Figure 6 Comparison of the largest Lyapunov exponent for threat detection (TD) tasks. 

 

5.2 Fractal Dimension 

5.2.1 Task Levels 

 

As shown in Figure 7 to Figure 10, the phase portraits of the attractors 

demonstrate that the strange attractors were found in EEG time series data, indicating 

the existence of chaos phenomena in these EEG time series. One-way ANOVA was 

performed on the results of correlation dimensions in order to determine the significant 

effect of the task level differences. The results have found that the correlation 

dimensions differed significantly for change detection dual task between low and 

medium task level (p-value = 0.024) and for threat detection single task between 

medium and high task level (p-value < 0.001). There was also marginally significant 

change in correlation dimension for change detection single task between low and 

medium task level (p-value = 0.078). 
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Table 45 Comparison of correlation dimension for different task levels 

Scenario Task Level Mean Grouping Standard Deviation 

Change Detection 

Single Task (S1) 

Low 2.0419  A 1.1245 

Medium 1.9641 A 1.1033  

High 1.9527 A 1.1032  

Change Detection 

Dual Task (S2) 

Low 2.0006 A 1.1100 

Medium 1.9019 B 1.1063 

High 1.9523 B 1.1111  

Threat Detection 

Single Task (S3) 

Low 2.3188 A 0.9215 

Medium 2.3253 A 0.8942 

High 2.2019 B 0.8878 

Threat Detection 

Dual Task (S4) 

Low 1.7419 A 1.2123 

Medium 1.7088 A 1.2073 

High 1.6564 A 1.2073  

 

Table 46 ANOVA table of correlation dimension for change detection single task (S1) 

between low and medium level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario    1         3.86        3.858        3.11    0.078 

Error       2545      3157.88     1.241 

Total       2546      3161.74 

 
   

Table 47 ANOVA table of correlation dimension for change detection dual task (S2) 

between low and medium level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario    1         6.27         6.272       5.11    0.024 

Error       2572      3158.60      1.228 

Total       2573      3164.87 

 
  

Table 48 ANOVA table of correlation dimension for threat detection single task (S3) 

between medium and high level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario    1         9.77         9.7701     12.31    0.000 

Error       2563      2034.83      0.7939 

Total       2564      2044.60 
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Figure 7 Phase portraits of attractors of EEG time series for change detection single 

task (S1). 

 

Figure 8 Phase portraits of attractors of EEG time series for change detection dual task 

(S2). 
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Figure 9 Phase portraits of attractors of EEG time series for threat detection single task 

(S3). 

 

Figure 10 Phase portraits of attractors of EEG time series for threat detection dual task 

(S4). 



 

77 
  

    
Figure 11 Comparison of correlation dimension for different task levels. 

 

Between the low task level and the medium task level, for the change detection 

single task, the significant change in correlation dimension was found at central sulcus 

channel Cz (p-value = 0.013). The marginally significant change was found at left 

parietal lobe EEG channel P3 (p-value = 0.144). For the change detection dual task, 

significant change was found at parietal lobe channel Pz (p-value = 0.037). Marginally 

significant change was found at left central sulcus channel C3 (p-value = 0.108) and 

left frontal lobe channel F3 (p-value = 0.106). For the threat detection single task, 

significant change in correlation dimension was found at frontal lobe channel Fz (p-

value = 0.015) and left central sulcus channel C3 (p-value = 0.044). The marginally 

significant change was also found at central sulcus channel Cz (p-value = 0.142) and 

right central sulcus channel C4 (p-value = 0.098). 

On the other hand, between the medium task level and the high task level, 

significant change in correlation dimension was found in the two threat detection tasks. 

For the threat detection single task, significant effect was found at frontal lobe channel 
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Fz (p-value = 0.004) and right frontal lobe channel F4 (p-value = 0.021). Marginally 

significant effect was also observed at left frontal lobe channel F3 (p-value = 0.057) 

and parietal lobe channel Pz (p-value = 0.094). For the threat detection dual task, 

significant effect was found at central sulcus channel Cz (p-value = 0.029). The left 

parietal lobe channel P3 has marginally significant effect (p-value = 0.117).  

 

Table 49 ANOVA table of correlation dimension for change detection single task (S1) 

between low and medium level at channel Cz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          7.498       7.498         6.25     0.013 

Error      281        337.208     1.200 

Total      282        344.705 

 

Table 50 ANOVA table of correlation dimension for change detection single task (S1) 

between low and medium level at channel P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          2.413       2.413         2.14     0.144 

Error      281        316.228     1.125 

Total      282        318.641 

 

Table 51 ANOVA table of correlation dimension for change detection dual task (S2) 

between low and medium level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          3.081       3.081         2.60     0.108 

Error      284        336.039     1.183 

Total      285        339.121 
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Table 52 ANOVA table of correlation dimension for change detection dual task (S2) 

between low and medium level at channel F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          4.014       4.014         2.63     0.106 

Error      284        432.989     1.525 

Total      285        437.003 

 

Table 53 ANOVA table of correlation dimension for change detection dual task (S2) 

between low and medium level at channel Pz.  

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          4.999       4.999         4.39     0.037 

Error      284        323.160     1.138 

Total      285        328.159 

 

Table 54 ANOVA table of correlation dimension for threat detection single task (S3) 

between low and medium level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          3.305       3.3052        4.08     0.044 

Error      282        228.461     0.8101 

Total      283        231.766 

 

Table 55 ANOVA table of correlation dimension for threat detection single task (S3) 

between low and medium level at channel C4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          1.997       1.9970        2.75     0.098 

Error      282        204.767     0.7261 

Total      283        206.764 

 

  



 

80 
  

Table 56 ANOVA table of correlation dimension for threat detection single task (S3) 

between low and medium level at channel Cz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          1.851       1.8507        2.17     0.142 

Error      282        240.288     0.8521 

Total      283        242.139 

 

Table 57 ANOVA table of correlation dimension for threat detection single task (S3) 

between low and medium level at channel Fz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          4.516       4.5163        6.05     0.015 

Error      282        210.624     0.7469 

Total      283        215.140 

 

Table 58 ANOVA table of correlation dimension for threat detection single task (S3) 

between medium and high level at channel F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          3.550       3.5503        3.66     0.057 

Error      283        274.207     0.9689 

Total      284        277.758 

 

Table 59 ANOVA table of correlation dimension for threat detection single task (S3) 

between medium and high level at channel F4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          5.475       5.475         5.40     0.021 

Error      283        286.774     1.013 

Total      284        292.249 
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Table 60 ANOVA table of correlation dimension for threat detection single task (S3) 

between medium and high level at channel Fz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          6.154       6.1536        8.67     0.004 

Error      283        200.851     0.7097 

Total      284        207.005 

 

Table 61 ANOVA table of correlation dimension for threat detection single task (S3) 

between medium and high level at channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          2.051       2.0513        2.82     0.094 

Error      283        205.718     0.7269 

Total      284        207.769 

 

Table 62 ANOVA table of correlation dimension for threat detection dual task (S4) 

between medium and high level at channel P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          3.282       3.282         2.47     0.117 

Error      282        375.219     1.331 

Total      283        378.502 

 

5.2.2 Change Detection Tasks Single And Dual Task Scenarios 

 

For the change detection tasks, the dual task only exhibited marginally significant 

change at the medium task level (p-value = 0.154). At the low task level, the dual task 

showed significant change in correlation dimension compared to the single task at 

central sulcus channel Cz (p-value = 0.029) and marginally significant change at left 

central sulcus channel C3 (p-value = 0.165). 

 



 

82 
  

Table 63 Mean correlation dimension for change detection tasks at different task level 

Task Level 

Scenario Mean 

Grouping Standard 

Deviation 

Low Change Detection 

Single Task (S1) 

2.0419 

 

A 1.1245  

 

Change Detection 

Dual Task (S2) 

2.0006 

 

A 1.1100  

 

Medium Change Detection 

Single Task (S1) 

1.9641 

 

A 1.1033  

 

Change Detection 

Dual Task (S2) 

1.9019 

 

A 1.1063 

 

High Change Detection 

Single Task (S1) 

1.9527  

 

A 1.1032  

 

Change Detection 

Dual Task (S2) 

1.9523  

 

A 1.1111  

 

 

Table 64 ANOVA table of correlation dimension for change detection single and dual 

tasks at medium task level.  

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario   1           2.48        2.481      2.03     0.154 

Error      2563        3128.43     1.221 

Total      2564        3130.91 

 

Table 65 ANOVA table of correlation dimension for change detection tasks at low task 

level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          2.089       2.089         1.94     0.165 

Error      282        303.956     1.078 

Total      283        306.045 

 

Table 66 ANOVA table of correlation dimension for change detection tasks at low task 

level at channel Cz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          5.757      5.757          4.80     0.029 

Error      282        338.512    1.200 

Total      283        344.269 
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Figure 12 Comparison of correlation dimension for change detection (CD) tasks. 

 

5.2.3 Threat Detection Tasks Single And Dual Task Scenarios 

 

Similar to the results of Lyapunov exponent. Correlation dimension differed 

significantly at all of the three task levels between the single task scenario and the dual 

task scenario for the threat detection task (p-value < 0.001). Except for right frontal 

lobe channel F4 (p-value = 0.100) at low task level and left frontal lobe channel F3 (p-

value = 0.071) at high task level, with marginally significant effect, all EEG channels 

for the dual tasks were significantly different from the single tasks at all three task levels 

(p-value < 0.05). 
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Table 67 Mean correlation dimension for threat detection tasks at different task level 

Task Level 

Scenario Mean 

Grouping Standard 

Deviation 

Low Threat Detection 

Single Task (S3) 

2.3188 

 

A 0.9215 

 

Threat Detection 

Dual Task (S4) 

1.7419 

 

B 1.2123  

 

Medium Threat Detection 

Single Task (S3) 

2.3253 

 

A 0.8942  

 

Threat Detection 

Dual Task (S4) 

1.7088  

 

B 1.2073 

 

High Threat Detection 

Single Task (S3) 

2.0835 

 

A 0.8563 

 

Threat Detection 

Dual Task (S4) 

1.4229 

 

B 1.0772 

 

 

Table 68 ANOVA table of correlation dimension for threat detection single and dual 

tasks at low task level. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario    1          211.2       211.180    182.14    0.000 

Error       2536       2940.3      1.159 

Total       2537       3151.5 

 

Table 69 ANOVA table of correlation dimension for threat detection single and dual 

tasks at medium task level. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario   1           243.7      243.694     216.16    0.000 

Error      2563        2889.5     1.127 

Total      2564        3133.2 

 

Table 70 ANOVA table of correlation dimension for threat detection single and dual 

tasks at high task level. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenario    1          190.2      190.153     175.92   0.000 

Error       2554       2760.6     1.081 

Total       2555       2950.8 
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Table 71 ANOVA table of correlation dimension for threat detection tasks at low task 

level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          24.52       24.524        22.62    0.000 

Error      280        303.51      1.084 

Total      281        328.03 

 

Table 72 ANOVA table of correlation dimension for threat detection tasks at low task 

level at channel C4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          21.84       21.844        18.15    0.000 

Error      280        336.92      1.203 

Total      281        358.76 

 

Table 73 ANOVA table of correlation dimension for threat detection tasks at low task 

level at channel Cz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          25.36       25.3641       26.85    0.000 

Error      280        264.49      0.9446 

Total      281        289.85 

 

Table 74 ANOVA table of correlation dimension for threat detection tasks at low task 

level at channel F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          10.97       10.972        8.97     0.003 

Error      280        342.62      1.224 

Total      281        353.59 
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Table 75 ANOVA table of correlation dimension for threat detection tasks at low task 

level at channel F4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          4.532       4.532         2.72     0.100 

Error      280        466.224     1.665 

Total      281        470.756 

 

Table 76 ANOVA table of correlation dimension for threat detection tasks at low task 

level at channel Fz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          13.85      13.8466        14.24    0.000 

Error      280        272.19     0.9721 

Total      281        286.04 

 

Table 77 ANOVA table of correlation dimension for threat detection tasks at low task 

level at channel P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          36.26      36.256         30.17    0.000 

Error      280        336.54     1.202 

Total      281        372.80 

 

Table 78 ANOVA table of correlation dimension for threat detection tasks at low task 

level at channel P4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          54.51      54.5101        54.52    0.000 

Error      280        279.95     0.9998 

Total      281        334.46 
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Table 79 ANOVA table of correlation dimension for threat detection tasks at low task 

level at channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          40.54       40.5408       41.78    0.000 

Error      280        271.72      0.9704 

Total      281        312.26 

 

Table 80 ANOVA table of correlation dimension for threat detection tasks at medium 

task level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          17.60       17.601        15.15    0.000 

Error      283        328.74      1.162 

Total      284        346.34 

 

Table 81 ANOVA table of correlation dimension for threat detection tasks at medium 

task level at channel C4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          16.47      16.470         14.96    0.000 

Error      283        311.53     1.101 

Total      284        327.99 

 

Table 82 ANOVA table of correlation dimension for threat detection tasks at medium 

task level at channel Cz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          27.59       27.588        27.27    0.000 

Error      283        286.28      1.012 

Total      284        313.87 
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Table 83 ANOVA table of correlation dimension for threat detection tasks at medium 

task level at channel F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          11.35       11.351        7.82     0.006 

Error      283        411.05      1.452 

Total       284        422.40 

 

Table 84 ANOVA table of correlation dimension for threat detection tasks at medium 

task level at channel F4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          15.16       15.157        10.53    0.001 

Error      283        407.36      1.439 

Total      284        422.52 

 

Table 85 ANOVA table of correlation dimension for threat detection tasks at medium 

task level at channel Fz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          42.54      42.5395        43.48    0.000 

Error      283        276.90     0.9784 

Total      284        319.44 

 

Table 86 ANOVA table of correlation dimension for threat detection tasks at medium 

task level at channel P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          31.43       31.429        29.63    0.000 

Error      283        300.19      1.061 

Total      284        331.61 
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Table 87 ANOVA table of correlation dimension for threat detection tasks at medium 

task level at channel P4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          62.95      62.9539        68.63    0.000 

Error      283        259.61     0.9174 

Total      284        322.57 

 

Table 88 ANOVA table of correlation dimension for threat detection tasks at medium 

task level at channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          36.01      36.0118        39.38    0.000 

Error      283        258.77     0.9144 

Total      284        294.78 

 

Table 89 ANOVA table of correlation dimension for threat detection tasks at high task 

level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          16.04      16.035         13.04    0.000 

Error      282        346.87     1.230 

Total      283        362.90 

 

Table 90 ANOVA table of correlation dimension for threat detection tasks at high task 

level at channel C4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          24.24      24.237         22.40    0.000 

Error      282        305.17     1.082 

Total      283        329.40 
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Table 91 ANOVA table of correlation dimension for threat detection tasks at high task 

level at channel Cz 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          21.12       21.1168       24.53    0.000 

Error      282        242.78      0.8609 

Total      283        263.89 

 

Table 92 ANOVA table of correlation dimension for threat detection tasks at high task 

level at channel F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          4.090        4.090        3.28     0.071 

Error      282        351.693      1.247 

Total      283        355.784 

 

Table 93 ANOVA table of correlation dimension for threat detection tasks at high task 

level at channel F4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          6.904       6.904         4.82    0.029 

Error      282        403.672     1.431 

Total      283        410.575 

 

Table 94 ANOVA table of correlation dimension for threat detection tasks at high task 

level at channel Fz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          14.83       14.8318       17.18    0.000 

Error      282        243.47      0.8634 

Total      283        258.30 
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Table 95 ANOVA table of correlation dimension for threat detection tasks at high task 

level at channel P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          43.43       43.4345       46.49    0.000 

Error      282        263.48      0.9343 

Total      283        306.9 

 

Table 96 ANOVA table of correlation dimension for threat detection tasks at high task 

level at channel P4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          51.66       51.663        51.16    0.000 

Error      282        284.79      1.010 

Total      283        336.45 

 

Table 97 ANOVA table of correlation dimension for threat detection tasks at high task 

level at channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          30.99       30.9867      32.73     0.000 

Error      282        267.00      0.9468 

Total      283        297.99 

 

 
Figure 13 Comparison of correlation dimension for threat detection (TD) tasks. 
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5.3 0-1 Test 

5.3.1 Task Levels 

 

The computation results of the 0-1 test, which is the values of k-median, are close 

to 1 for each task level and for each EEG channel, and thus indicating the existence of 

chaotic dynamics in EEG data. According to the results of one-way ANOVA, between 

the low task level and the medium task level, change detection dual task showed 

significant change of nonlinearity (p-value = 0.037). Marginally significant change was 

found for threat detection dual task (p-value = 1.59). When the task level rises from 

medium level to high level, the change detection single task showed significant effect 

(p-value = 0.027). The threat detection single task showed marginally significant effect 

(p-value = 0.096). 

Furthermore, when the task level increases from low level to medium level, for 

the change detection single task, marginally significant change in nonlinearity was 

found at right parietal lobe channel P4 (p-value = 0.060). For the change detection dual 

task, significant change was found at left frontal lobe channel F3 (p-value = 0.030), and 

right central sulcus channel C4 (p-value = 0.037). Marginally significant change was 

found at frontal lobe channel Fz (p-value = 0.175). For the threat detection single task, 

marginally significant effect was observed at left frontal lobe channel F3 (p-value = 

0.165), left central sulcus channel C3 (p-value = 0.109), and central sulcus channel Cz 

(p-value = 0.094). The significant effect was also found at right central lobe channel C4 

for the threat detection dual task (p-value = 0.032), along with marginally significant 
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effect at parietal lobe channel Pz (p-value = 0.082). 

When the task level shifts from medium level to high level, for the change 

detection single task, significant change was found at right frontal lobe channel F4 (p-

value = 0.043). Marginally change was found at parietal lobe channels Pz (p-value = 

0.107) and P4 (p-value = 0.091). For the change detection dual task, marginally 

significant change was observed at left central lobe channel C3 (p-value = 0.064) and 

right parietal lobe P4 (p-value = 0.116). The threat detection single task showed 

significant effect at parietal lobe channel Pz (p-value = 0.160). Additionally, the threat 

detection dual task showed significant change at parietal lobe channel Pz (p-value = 

0.010) and marginally significant change at left parietal lobe channel P3 (p-value = 

0.114). 

 

Table 98 Comparison of 0-1 test for different task levels 

Scenario Task Level Mean Grouping Standard Deviation 

Change Detection 

Single Task (S1) 

Low 0.98246 A 0.04059 

Medium 0.98371 A 0.03870 

High 0.97988 B 0.04848 

Change Detection 

Dual Task (S2) 

Low 0.984650 A 0.034497 

Medium 0.98155 B 0.04082 

High 0.98185 B 0.05371  

Threat Detection 

Single Task (S3) 

Low 0.98517 A 0.03773 

Medium 0.986581  A 0.028678 

High 0.98440 A 0.03723  

Threat Detection 

Dual Task (S4) 

Low 0.98401 A 0.03909  

Medium 0.98131 A 0.05610 

High 0.98297 A 0.03884 
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Table 99 ANOVA table of 0-1 test for change detection single task (S1) between 

medium and high level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Task Level 1  0.00936 0.009361 4.87 0.027 

Error 2554 4.91397 0.001924   

Total 2555  4.92333    

 

Table 100 ANOVA table of 0-1 test for change detection dual task (S2) between low 

and medium level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Task Level 1 0.00619 0.006191 4.33 0.037 

Error 2572 3.67323 0.001428   

Total 2573 3.67942    

 

Table 101 ANOVA table of 0-1 test for threat detection single task (S3) between 

medium and high level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Task Level 1  0.00305 0.001273 2.77    0.096 

Error 2563 2.82765 0.001121   

Total 2564 2.83070    

 

Table 102 ANOVA table of 0-1 test for threat detection dual task (S4) between low and 

medium level. 

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Task Level 1  0.00466 0.004657 1.99 0.159 

Error 2545  5.95683 0.002341   

Total 2546  5.96149    
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Table 103 ANOVA table of 0-1 test for change detection single task (S1) between low 

and medium level at channel P4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.002916    0.002916      3.56     0.060 

Error      281        0.230277    0.000819 

Total      282        0.233193 

 

Table 104 ANOVA table of 0-1 test for change detection dual task (S2) between low 

and medium level at channel C4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.003315    0.003315      4.40     0.037 

Error      284        0.214062    0.000754 

Total      285        0.217377 

 

Table 105 ANOVA table of 0-1 test for change detection dual task (S2) between low 

and medium level at channel F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.005163    0.005163      4.77     0.030 

Error      284        0.307387    0.001082 

Total      285        0.312550 

 

Table 106 ANOVA table of 0-1 test for change detection dual task (S2) between low 

and medium level at channel Fz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.004350    0.004350      1.85     0.175 

Error      284        0.666842    0.002348 

Total      285        0.671192 
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Table 107 ANOVA table of 0-1 test for threat detection single task (S3) between low 

and medium level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.001489    0.001489      2.58     0.109 

Error      282        0.162487    0.000576 

Total      283        0.163976 

 

Table 108 ANOVA table of 0-1 test for threat detection single task (S3) between low 

and medium level at channel Cz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.004841   0.004841       2.82     0.094 

Error      282        0.483844   0.001716 

Total      283        0.488684 

 

Table 109 ANOVA table of 0-1 test for threat detection single task (S3) between low 

and medium level at channel F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.000608    0.000608      1.94     0.165 

Error      282        0.088410    0.000314 

Total      283        0.089018 

 

Table 110 ANOVA table of 0-1 test for threat detection dual task (S4) between low and 

medium level at channel C4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario   1          0.006424    0.006424      4.64     0.032 

Error      281        0.388859    0.001384 

Total      282        0.395282 
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Table 111 ANOVA table of 0-1 test for threat detection dual task (S4) between low and 

medium level at channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.002897    0.002897      3.04     0.082 

Error      281        0.267456    0.000952 

Total      282        0.270354 

 

Table 112 ANOVA table of 0-1 test for change detection single task (S1) between 

medium and high level at channel F4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.002853    0.002853      4.15     0.043 

Error      282        0.193987    0.000688 

Total      283        0.196840 

 

Table 113 ANOVA table of 0-1 test for change detection single task (S1) between 

medium and high level at channel P4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.003107    0.003107      2.87     0.091 

Error      282        0.305015    0.001082 

Total      283        0.308122 

 

Table 114 ANOVA table of 0-1 test for change detection single task (S1) between 

medium and high level at channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.004725    0.004725      2.62     0.107 

Error      282        0.509389    0.001806 

Total      283        0.514114 
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Table 115 ANOVA table of 0-1 test for change detection dual task (S2) between medium 

and high level at channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.004465    0.004465      3.47     0.064 

Error      284        0.365664    0.001288 

Total      285        0.370129 

 

Table 116 ANOVA table of 0-1 test for change detection dual task (S2) between medium 

and high level at channel P4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.001968    0.001968      2.48     0.116 

Error      284        0.225489    0.000794 

Total      285        0.227457 

 

Table 117 ANOVA table of 0-1 test for threat detection single task (S3) between 

medium and high level at channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.003257   0.003257       1.98     0.160 

Error      283        0.465012   0.001643 

Total      284        0.468268 

 

Table 118 ANOVA table of 0-1 test for threat detection dual task (S4) between medium 

and high level at channel P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.002472    0.002472      2.51     0.114 

Error       282       0.277823    0.000985 

Total     283         0.280296 
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Table 119 ANOVA table of 0-1 test for threat detection dual task (S4) between medium 

and high level at channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.006043    0.006043       6.75    0.010 

Error      282        0.252561    0.000896 

Total      283        0.258604 

 

  
Figure 14 Comparison of K-median from 0-1 test for different task levels. 
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marginally significant change between the dual task and the single task was found at 
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0.098), Pz (p-value = 0.124), and P4 (p-value = 0.127). 

 

Table 120 Mean K-median for change detection tasks at different task level 

Task Level 

Scenario Mean 

Grouping Standard 

Deviation 

Low Change Detection 

Single Task (S1) 0.98246 

A 

0.04059 

Change Detection 

Dual Task (S2) 0.984650   

A 

0.034497 

Medium Change Detection 

Single Task (S1) 0.98371 

A 

0.03870 

Change Detection 

Dual Task (S2) 0.98155 

A 

0.04082 

High Change Detection 

Single Task (S1) 0.97988 

A 

0.04848  

Change Detection 

Dual Task (S2) 0.98185 

A 

0.05371  

 

Table 121 ANOVA table of 0-1 test for change detection single and dual tasks at low 

task level.  

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenarios 1  0.00307 0.003069 2.17 0.141 

Error 2554    3.61916 0.001417   

Total 2555 3.62223    

 

Table 122 ANOVA table of 0-1 test for change detection single and dual tasks at 

medium task level.  

Source of 

Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenarios 1  0.00299 0.002990 1.89 0.169 

Error 2563   4.05582  0.001582   

Total 2564 4.05881    
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Table 123 ANOVA table of 0-1 test for change detection tasks at low task level at 

channel Fz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.007163    0.007163      2.39     0.123 

Error      282        0.845300    0.002998 

Total      283        0.852464 

 

Table 124 ANOVA table of 0-1 test for change detection tasks at medium task level at 

channel P4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.002399   0.002399       3.18     0.076 

Error      283        0.213851   0.000756 

Total      284        0.216250 

 

Table 125 ANOVA table of 0-1 test for change detection tasks at high task level at 

channel P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.005843    0.005843      2.76     0.098 

Error      283        0.598960    0.002116 

Total      284        0.604803 

 

Table 126 ANOVA table of 0-1 test for change detection tasks at high task level at 

channel P4. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.002615    0.002615      2.34     0.127 

Error      283        0.316654    0.001119 

Total      284        0.319269 
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Table 127 ANOVA table of 0-1 test for change detection tasks at high task level at 

channel Pz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.003849    0.003849      2.38     0.124 

Error      283        0.457502    0.001617 

Total      284        0.461352 

 

 
Figure 15 Comparison of the results of 0-1 test for change detection (CD) tasks. 

 

5.3.3 Threat Detection Tasks Single And Dual Task Scenarios 

 

The result of 0-1 test changed significantly at the medium task level between the 

single task scenario and the dual task scenario for the threat detection task (p-value = 

0.003). For the threat detection tasks, at the low task level, the dual task was found 

marginally significantly different from the single task at left frontal lobe channel F3 (p-

value = 0.120). At the medium task level, the dual task changed marginally significantly 

at frontal lobe channel Fz (p-value = 0.117) and left central sulcus channel C3 (p-value 

= 0.140). At the high task level, the dual task also showed marginally significant change 

from the single task, located at left frontal lobe channel F3 (p-value = 0.127) and left 

0.977

0.978

0.979

0.98

0.981

0.982

0.983

0.984

0.985

0.986

CD Single
Task (S1)

CD Dual Task
(S2)

CD Single
Task (S1)

CD Dual Task
(S2)

CD Single
Task (S1)

CD Dual Task
(S2)

Low Medium High

Mean K-median



 

103 
  

parietal lobe channel P3 (p-value = 0.109). 

 

Table 128 Mean K-median for threat detection tasks at different task level 

Task Level 

Scenario Mean 

Grouping Standard 

Deviation 

Low Threat Detection 

Single Task (S3) 

0.98517 

 

A 0.03773 

 

Threat Detection 

Dual Task (S4) 

0.98401 

 

A 0.03909 

 

Medium Threat Detection 

Single Task (S3) 

0.986581 

 

A 0.028678 

 

Threat Detection 

Dual Task (S4) 

0.98131 

 

B 0.05610  

 

High Threat Detection 

Single Task (S3) 

0.98440 

 

A 0.03723 

 

Threat Detection 

Dual Task (S4) 

0.98297 

 

A 0.03884 

 

 

Table 129 ANOVA table of 0-1 test for threat detection single and dual tasks at medium 

task level. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares 
Mean Squares F p Value 

Scenarios 1  0.01783    0.017827 9.00 0.003 

Error 2563 5.07697 0.001981   

Total 2564   5.09479    

 

Table 130 ANOVA table of 0-1 test for threat detection tasks at low task level at channel 

F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.001972    0.001972      2.43     0.120 

Error      280        0.226826    0.000810 

Total      281        0.228797 
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Table 131 ANOVA table of 0-1 test for threat detection tasks at medium task level at 

channel C3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.000856    0.000856      2.19     0.140 

Error      283        0.110679    0.000391 

Total      284        0.111536 

 

Table 132 ANOVA table of 0-1 test for threat detection tasks at medium task level at 

channel Fz. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.01280    0.012804       2.47     0.117 

Error      283        1.46689    0.005183 

Total      284        1.47969 

 

Table 133 ANOVA table of 0-1 test for threat detection tasks at high task level at channel 

F3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.003636    0.003636      2.34     0.127 

Error      282        0.438341    0.001554 

Total      283        0.441977 

 

Table 134 ANOVA table of 0-1 test for threat detection tasks at high task level at channel 

P3. 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares  
Mean Squares F p Value 

Scenario    1         0.002798    0.002798      2.58     0.109 

Error      282        0.305490    0.001083 

Total      283        0.308288 
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Figure 16 Comparison of the results of 0-1 test for threat detection (TD) tasks. 
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CHAPTER 6: CONCLUSION AND DISCUSSION 

 

The goal of this study was to distinguish the variations of mental workload by 

examining brain activity using nonlinear dynamics of EEG. By examining several 

nonlinear dynamics algorithm, the results elicited from this study first verified the 

existence of the chaotic dynamics in the EEG time series. The largest Lyapunov 

exponents are positive values. The correlation dimension and the embedding phase 

space of EEG time series are saturated. The results of 0-1 test are close to 1.  

Furthermore, this study supported the hypothesis that EEG data exhibits a change 

in the level of nonlinearity corresponding to differed task levels. The nonlinear analysis 

of EEG time series data is able to discriminate the change in brain activity derived from 

the changes in task load. All nonlinear dynamics analysis techniques used in this study 

is able to find the difference of nonlinearity in EEG among task levels, as well as 

between single task scenario and dual task scenario. 

 

Correlation dimension has finite values when the system is deterministic but not 

completely random, thus is a suitable metric to evaluate the nonlinear dynamics of the 

system. In the process of phase space reconstruction, it is crucial to select appropriate 

parameters time lag and embedding dimension. A time lag that is too small will cause 

the phase space reconstruction to have the nearly same value and therefore lead to 

redundancy. On the other hand, a time lag that is too big will result in unrelated 

embedding vectors. The objective of determining time lag is to find the appropriate 
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expansion of embedding vectors in the phase space. Also, if the embedding dimension 

is too small, the attractor will not completely unfold. However, if the embedding 

dimension is too big, the system will be close to noise. The principle for determination 

of embedding dimension states that the embedding dimension is larger than two times 

of correlation dimension (m>2D). But the drawback is that the value of the correlation 

dimension must be determined in advance. Previously, researchers achieve the right 

value of embedding dimension by repetitive calculation of correlation dimension with 

the different assumption of embedding dimension until the criterion is reached. 

However, the calculation is difficult because the calculation depends on time lag also. 

In this study, the false nearest neighbor method was employed in order to insure that 

the attractors are completely unfolded. The false nearest neighbor method looks for the 

nearest neighbors in the phase space that remain close when the embedding dimension 

increases (Quiroga, 2002). 

The EEG data obtained from the experiment that was used in this study was 

analyzed by numerous preliminary studies using traditional power spectral analysis. For 

instance, Mathews et al (2017) suggested the correlations between EEG band spectral 

power and subjective measures, higher distress was found in accordance with higher 

beta and theta power. However, the variations among EEG channels were not the focus. 

Mathews et al (2011) also suggested that physiological was more effective than 

subjective measures. Teo et al (2015) suggest that the physiological measures were 

sensitive enough to distinguish the difference in workload. The physiological measures 

were more sensitive for the change detection tasks than the threat detection tasks. Teo 
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et al (2018) confirmed that the dual tasks had increased mental workload as well as 

decreased task performance. Teo et al (2017) found that theta power and correct 

percentage had a negative correlation for the change detection tasks. Abich et al (2013) 

investigated the mental workload through eye fixation. The number of eye fixations 

increased as task difficulty increased. As to the fixation duration for different task 

scenarios, the threat detection was concluded to have a higher demand for focal vision. 

However, the correlation was unconcluded because the duration decreased from low 

demand level to medium level. Matthews et al (2015) also found that different 

psychophysiological measures were sensitive to each workload manipulation, but not 

to both tasks at the same time. Different physiological measures showed varied 

performance for different types of workload manipulation. EEG was effective in 

regarding with differentiating dual task from single task. EEG frontal theta power was 

sensitive to the threat detection tasks and the single task change detection. EEG alpha 

power was not sensitive to the change in different task types. Talor et al (2015) found 

that EEG alpha power in occipital lobe increased at the higher task level. Moreover, 

EEG beta power in frontal lobe and occipital lobe decreased under lower task demand. 

In the study by Reinerman-Jones et al (2014), the frontal theta power evidently showed 

that the single threat detection task had lower mental workload compared to the single 

change detection tasks and the dual tasks. Besides, the single change detection task 

could not distinguish from the dual tasks. Frontal theta power was able to discriminate 

change of mental workload between the single change detection tasks and single threat 

detection tasks, but not between the single threat detection tasks and the dual tasks. The 
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EEG beta power showed that mental workload was the highest for single threat 

detection task. Abich et al (2015) found that the EEG beta power was relatively high 

for frontal beta power in the resting baseline condition, and was lower for the change 

detection tasks. The low frontal theta power was able to effectively predict the task 

performance for the change detection tasks. Frontal alpha, beta, and theta power had 

positive correlation with the distress generated during performing the task. There was 

no statistical significance found in the threat detection tasks. The nonlinear analysis 

methodologies used in this study provide a new way to quantify brain activity, serves 

as a useful method for computation of cross correlations among EEG channels and 

visualization of the intricate dynamics of EEG. 

Among the three methods applied in this study, the nonlinear dynamics analysis 

methods succeeded in detecting the existence of nonlinearity in different brain activity 

levels. They are able to demonstrate the change in nonlinearity in accordance with the 

difficulty of the task scenarios. The 0-1 test is more efficient regarding calculation and 

is easier to code and debug. Moreover, this research obtained new insights from the 

psychophysiological mental workload measurement used in the preliminary study.  

Moreover, it is recommended to examine the EEG time series for each EEG 

channel individually rather than just estimating at a general level. The brain activity in 

certain brain areas sometimes is complicated. Thus the activity in these particular 

channels might not be reflected when estimate using the work level as a whole.  

The significant change in nonlinearity in EEG channels observed in this study is 

consistent with many an experimental observation that the frontal lobe and the parietal 
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lobe become more activated with the increased task demands for visual detection tasks. 

Although the parietal lobe is considered as an important role in spatial processing and 

visual attention (Kanwisher and Wojciulik, 2000), various activities in the frontal lobe 

are found when subjects try to shift their visual attention, rather than holding the 

attention at a fixed target. The activity in superior parietal lobe (SPL) areas also increase 

during attention shifts (Coull and Nobre, 1998; Corbetta et al, 1998; Culham et al, 1998; 

Nobre et al, 2000). These areas related to attention shifts include the intraparietal sulcus 

(IPS), superior frontal lobe areas, such as the frontal eye fields (FEF), on the sides of 

frontal lobe, such as channel F3 and F4, the supplementary eye field (SEF), and the 

supplementary motor area (SMA), near central sulcus area, channel C4. SPL and IPS 

are especially more active when the targets of the visual detection tasks are presented 

in alternating colors or shapes (Le et al, 1998). Besides, the temporoparietal junction 

(TPJ) becomes more activated in visual detection tasks in which the stimulus has 

changing frequencies. Besides, the brain is more activated in the right hemisphere for 

visual attention at changing targets (Corbetta and Shulman, 2002). 
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CHAPTER 7: FUTURE RESEARCH 

 

For future research, it is necessary to maintain the conditions of the experiment 

in a relatively high level of control, for both during task condition and resting condition. 

There is an overlap in activated brain areas for visual attention and auditory attention, 

or even tactile attention. Additionally, auditory attention causes more activations in the 

inferior frontal lobe and the inferior parietal lobe (Klinberg, 1998; Tzourio et al, 1997). 

Spatially directed tactile attention can enhance the activation in the same intraparietal 

areas as the visual attention (Banati et al, 2000, Burton et al, 1999; Hadjikhani and 

Roland, 1998). Furthermore, TPJ is more activated when the stimulus is presented as a 

changing rate, no matter the sensory modality, such as visual, auditory, or tactile 

(Downar et al, 2000). The locations of activation and the level of brain activity can be 

easily altered by the distraction caused by multiple sensory modalities, and thus 

influence the result of the research. 

It is also necessary to control the duration of the experiment, in order to better 

differentiate the arousal of brain areas caused by a higher level of workload and the 

activity change caused by long-term fatigue. 

Future studies might also consider including more EEG channel locations when 

investigating the nonlinearity of EEG time series, in order to obtain a more complete, 

more detailed, and more realistic depiction of the effect of mental workload on the 

change of brain activity. The nonlinear analysis of EEG has a wide range of application. 

It can also be able to use for examining the effect of mental workload that is generated 
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from sensory modalities other than visual attention. The nonlinear analysis of EEG is 

suitable to investigate a variety of more sophisticated tasks, including but not limited 

to, auditory perception, memory tasks, visual perception with informative input, logical 

thinking, or even the effect of emotion change on task. Therefore, nonlinear analysis is 

an efficient tool for obtaining a more profound understanding of the influence of mental 

workload on the human brain. 
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