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There has for many years been interest in finding necessary conditions for dynamo action. These are
usually expressed in terms of bounds on integrated properties of the flow. The bounds can clearly be
improved when the flow structure can be taken into account. Recent research presents techniques for
finding optimised dynamos (that is with the lowest dynamo threshold) subject to constraints, (e.g. with
fixed mean square vorticity). It is natural to ask if such an optimum solution can exist when the mean
square velocity is fixed. The aim of this note is to show that this is not the case and in fact that a steady
or periodic dynamo can exist in a bounded conductor with an arbitrarily small value of the kinetic
energy.

Keywords: Dynamo theory; Magnetic fields; Anti-dynamo theorems

1. Introduction

In this paper we consider the problem of finding optimal conditions for non-decaying (steady
or time-periodic) solutions to the dimensionless induction equation

∂ B
∂t

= Rm∇ × (u × B) + ∇2 B (1)

in a fixed spherical conductor D0 of radius R0, and volume V0 = 4π R3
0/3 surrounded by

insulator, with a given velocity field u. We can take R0 = 1 without loss of generality. The
velocity may in principle depend on space and time; in this note we suppose that u is steady. If
such solutions exist we say that we have dynamo action. There is a long history of research on
necessary conditions for dynamo action, beginning with the lower bounds of Backus (1958)
(see also Proctor 1977) on the maximum strain rate, Childress (1969) on the maximum speed,
and more recently Proctor (1979) on the rms dissipation. These conditions all rely on the
equation for the rate of change of the total magnetic energy. Because of the non-normality
of the induction equation it is not possible to give sufficient conditions for dynamo action
based on the growth of the magnetic energy, as energy can grow transiently for some initial
conditions even for flows which are not dynamos. However, if the threshold for dynamo action
can be optimised for all flows in a given class, and the optimising flow can be given explicitly,
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then we can assert that dynamo action will occur for sufficiently vigorous flows of that nature,
and this amounts to a sufficient condition.

A programme of this type has recently been undertaken by Willis (2012) and Chen et al.
(2015) who have given explicit optimised steady dynamos as measured by the rms dissipation,
in a periodic domain and a cube respectively. Though the task has not been completed for a
conducting sphere, it seems clear that such a programme is feasible using spherical harmonics
rather than the Fourier decomposition appropriate to a cubic geometry. We can easily imagine
a generalisation to other bounded conductor shapes.

2. Analysis

While the above authors appear to have successfully found optimised steady velocity fields
obeying the above constraint, with a bound necessarily rather greater than would emerge from
the necessary condition of Proctor (1979), they noted that problems arose when considering
instead flows obeying a constraint on the energy of the flow. Thus we revisit the problem for
this constraint. We shall show that there is in fact no smooth optimising field and that – perhaps
counterintuitively – the minimum energy for a working dynamo in a conducting sphere is zero.

As a class of fields we choose those that are normalised with respect to the total en-
ergy, so that E = ∫

D0
|u|2 d3x = 1. We suppose that for a particular flow u in this class

there is a critical value of Rm corresponding to a steady solution or a periodic solution
(with period T ) of equation (1). We shall show that we can find a sequence of flows in this class,
which are non-zero in smaller and smaller subregions of D0, corresponding to a sequence of
critical values of Rm which become arbitrarily small.

First we consider a comparison problem; we choose a velocity field u0 = f (x) which
vanishes outside D0 but with an external stationary conductor, with the same diffusivity as the
internal fluid, extending to infinity. We then solve this modified dynamo problem, confining
velocities those normalised so that E = 1, and suppose that for Rm = Rmc equation (1) is
solved for a steady magnetic field B0(x) or a periodic field with period T0.

Now consider a velocity field u1 of the form

u1 = δ−3/2 f ( y) , y = x/δ , (2)

for some constant δ < 1. Because u1 vanishes outside the sphere r = δR0 it can be verified that
u1 satisfies E = 1. If we rescale x in equation (1), and write ∇ = δ−1∇y, ∂/∂t = δ−2∂/∂τ ,
where ∇y denotes derivatives with respect to y, then we can rewrite the induction equation as

δ−2 ∂ B
∂τ

= Rmδ−1∇y × (u1 × B) + δ−2∇2
y B , (3)

and substituting for u1 we get

∂ B
∂τ

= Rmδ−1/2∇y × ( f ( y) × B) + ∇2
y B (4)

and this equation has solution B = B0( y), either steady or with period T0 in τ , i.e. period
δ2T0 in t , provided that Rm = Rmcδ

1/2.
It is then clear that for the comparison problem we may find a sequence of velocity fields for

δ → 0 satisfying E = 1 for which the corresponding values of Rm for marginal dynamo action
tend to zero. Thus there is no lower bound on the critical Rm for a dynamo when normalised
with respect to the energy of the flow.
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We now replace the material outside r = R0 by insulator, and consider how this changes
the critical Rm . For very small δ the magnetic field at r = R0 for the comparison problem will
be very small relative to the the field near the origin. To see this note that in the outer region
u = 0, and so the magnetic field at large | y| will obey the equation ∂ B/∂τ = ∇2

y B. The far
field solutions of this equation, vanishing at infinity, are exponentially small for time-periodic
solutions and fall off no slower than δ2 for | y| ∼ δ−1. Thus the relative change in the critical
value of Rm due to imposing the insulating boundary condition at r = R0 will be no greater
than δ2 � δ1/2 and thus in the limit δ → 0 the critical value of Rm will be the same, that is
arbitrarily small.

It is clear intuitively that a very similar argument will work in a periodic box or a cubical
domain, as the comparison problem does not depend on the shape of the domain as long as the
region of non-zero u lies within the domain. In the periodic case the flow u1 will be repeated
in each periodic box, but other aspects of the argument are unchanged.

Note that as the limit is approached the velocity field is zero almost everywhere, very large
in a tiny volume and with very large gradients. Thus the final limit is not part of the class of
smooth fields originally posited. It is perhaps this that leads to difficulties for the numerical
minimisation scheme.

3. Discussion

It has been shown above that the critical value of Rm for marginal dynamos with a given energy
is zero. This can be stated alternatively as showing that for a given value of the magnetic
diffusivity the critical value of the energy is arbitrarily small. We can generalise this result in
a simple way. Choose a number p, and define Fp = E p D1−p where D = ∫

D0
|∇u|2 d3x is

the dissipation. In a similar way to the above we can seek an optimised flow with R minimal
Rm subject to Fp = 1. Applying the same transformations as in equation (2) we can define a
flow u2 = δ−q f ( y), where q = (2p + 1)/2 and so by following on in the same way as above
we find that the critical value of Rm scales as δq−1 = δ p−1/2. Thus normalising with Fp for
p > 1/2 will yield a zero critical Rm , but not otherwise. The case p = 1/2 is interesting since
for the infinite conductor at least there is an infinity of possible flows, connected by a scale
transformation, that has the same value of Rm normalised with F1/2.

Finally it should be noted that although there is no minimum energy bound, we can find
bounds for higher order norms of u. For example, we can show from the induction equation
(1) that, if D0 is surrounded by insulator, and M is the total magnetic energy 1

2

∫
R3 |B|2 d3x,

dM

dt
≤ Rm

(∫
D0

|u|4 d3x
)1/4 (∫

D0

|B|4 d3x
)1/4 (∫

D0

|∇ B|2 d3x
)1/2

−
∫
D0

|∇B|2 d3x . (5)

We can also show ∫
D0

|B|4 d3x ≤ c2
1(2M)1/2

(∫
D0

|∇B|2 d3x
)3/2

, (6)

where c1 is a dimensionless constant (Proctor 1979, 2007). in addition we have the well-known
Poincaré inequality ∫

D0
|∇B|2 d3x

2M
≥ π2

R2
0

. (7)
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Thus among velocity fields normalised so that
∫
D0

|u|4 d3x = 1 we require for dynamo action

R2
m ≥

∫
D0

|∇B|2 d3x(∫
D0

|B|4 d3x
)1/2

≥ 1

c1

[∫
D0

|∇B|2 d3x

2M

]1/4

≥ 1

c1

√
π

R0
. (8)
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