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Fluid flow dynamics under location uncertainty
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We present a derivation of a stochastic model of Navier Stokes equations that relies on a decomposition
of the velocity fields into a differentiable drift component and a time uncorrelated uncertainty random
term. This type of decomposition is reminiscent in spirit to the classical Reynolds decomposition.
However, the random velocity fluctuations considered here are not differentiable with respect to time,
and they must be handled through stochastic calculus. The dynamics associated with the differentiable
drift component is derived from a stochastic version of the Reynolds transport theorem. It includes in its
general form an uncertainty dependent subgrid bulk formula that cannot be immediately related to the
usual Boussinesq eddy viscosity assumption constructed from thermal molecular agitation analogy.
This formulation, emerging from uncertainties on the fluid parcels location, explains with another
viewpoint some subgrid eddy diffusion models currently used in computational fluid dynamics or in
geophysical sciences and paves the way for new large-scales flow modeling. We finally describe an
applications of our formalism to the derivation of stochastic versions of the Shallow water equations
or to the definition of reduced order dynamical systems.

Keywords: Damping; Porous structure; Reflection; Transmission; Matching conditions Stochastic
Reynolds Transport Theorem; Stochastic Navier-Stokes equation; Large scales flow modeling;
Uncertainty specification; Subgrid stress modeling

1. Introduction

For several years, there has been a deep and growing interest in defining stochastic models for
climate or geophysical sciences (Majda et al. 1999, Slingo and Palmer 2011) – see also on this
subject the thematic issue (Palmer and Williams 2008) and references therein or the review
(Frederiksen et al. 2013). This interest is strongly motivated by the necessity of devising large-
scale evolution models that allow taking into account statistical descriptions of processes that
cannot be accurately specified – to keep, for instance, an affordable computational time. This
includes small-scale physical forcing (cloud convection, boundary layer turbulence, radiative
interaction, etc.) and numerical hypothesis and choices operated at the dynamics modeling
level, such as a scale coarsening in a given direction, or the selection of a particular functional
space to express the solution. The modeling simplifications and the different unresolved
processes involved introduce de facto errors and uncertainties on the constitutive equations of
the state variables, which are, in general, so complex that only a probabilistic modeling can be
envisaged.
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In traditional large-scale modeling, the interaction between the resolved flow component
and the unresolved components lies essentially in the constitution of a so-called subgrid stress
tensor, which is usually not related to uncertainty or error concepts. We believe that it is
important to extend this notion in order to take into consideration in a more appropriate way
the action, on the resolved component, of stochastic processes modeling errors and uncertainties
of the state variables’ dynamics.

The modeling and the handling along time of such uncertainties are crucial, for instance,
for ensemble forecasting issues in meteorology and oceanography, where ensembles of runs
are generated through randomization of the dynamics’parameters, accompanied eventually by
stochastic forcing that mimics the effect of unresolved physical processes (Slingo and Palmer
2011). Problems related to the underestimation of the ensemble spread and a lack of represen-
tativity of the subgrid stress in terms of the model errors constitute in particular problematic
limitations of the ensemble techniques’ forecasting skill. Such stochastic evolution models are
also needed for data assimilation procedures defined through Monte Carlo implementation of
stochastic filters referred to as ensemble filters or particle filters in the literature (Gordon et
al. 2001, Evensen 2006). In all these situations, a large-scale flow evolution description that
includes stochastic forcing terms and an uncertainty related subgrid stress expression hence
appears necessary. The root problem of this general issue lies essentially in the construction
of adequate stochastic versions of the Navier-Stokes equations.

The establishment of sound stochastic dynamical models to describe the fluid flow but
also the evolution of the different random terms encoding uncertainties or errors is a difficult
issue compounded with an involved mathematical analysis. As initiated by (Bensoussan and
Temam 1973) and intensively studied by many authors, since then (see for instance the review
Flandoli 2008, and references therein) such a formalization has been mainly considered through
the addition of random forcing terms to a standard expression of Navier-Stokes equations.
However, this construction is limited by a priori assumptions about the noise structure.
Furthermore, the question whether this noise should be multiplicative or additive immediately
arises.

Another family of methods initiated by Kraichnan (1959) consists to close the large scale
representation by neglecting statistical correlations in the Fourier space through the so-called
Direct-interaction approximation (DIA). These methods can be generalized by relying on a
Langevin stochastic representation (Kraichnan 1970, Leith 1971) to devise advanced stochastic
subgrid models for barotropic flows or quasi-geostrophic models where interactions between
turbulent eddies and topography are taken into account (Frederiksen 1999, 2012,
Frederiksen et al. 2013). This strategy based on renormalized perturbation theory comes to
randomize the spectral Navier-Stokes representation by replacing the nonlinear interaction
terms by appropriate random forcing and damping terms.

Compared to these works, we wish to explore the problem via a somewhat reverse strategy.
Instead of considering a given – eventually simplified – dynamics and then to supplement it
with random forcing terms to model errors carried by unresolved or unknown processes, we
will start from a general Lagrangian stochastic description that incorporates uncertainties on the
fluid motion. The sought-after Eulerian dynamics is then deduced from this general stochastic
velocity description and standard physical principles or approximations. This construction,
reminiscent to the framework proposed by Mikulevicius and Rozovskii (2004) and initiated
by Brzeźniak et al. (1991), has the great advantage to let naturally emerge deterministic
and stochastic uncertainty terms related to the different errors transported by the evolution
model. Deterministic approximations or stochastic implementations of the dynamics can then
be considered on solid grounds.
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Following this route, we aim in this paper at devising stochastic dynamics for the description
of fluid flows under uncertainties. Such uncertainties, modeled through the introduction of ran-
dom terms, allow taking into account approximations or truncation effects performed during the
dynamics constitution steps. This includes for instance the modeling of the unresolved scales
interaction in Large-Eddies Simulations (LES) or Reynolds Average Numerical Simulations
(RANS). These uncertainties may also encode numerical errors, unknown forcing terms, or
uncertainties on the initial conditions. They gather the effects of processes one does not wish
to accurately model. However, as they propagate along time and interact with the resolved
components their effects must be properly taken into account.

We will assume throughout this study that the fluid particles displacements can be separated
in two components: a smooth differentiable function of time and space and an uncertainty
function uncorrelated in time but correlated in space. This latter component is formulated as a
function of Brownian motion and the whole displacement is defined as an Ito diffusion of the
form:

dX(x, t) = w(X(x, t), t)dt + σ (X(x, t), t)d B̂t , (1)

where X : Ω × R
+ → Ω is the fluid flow map, which represents the trajectory followed by

a fluid particle starting at point X |t=0(x) = x of the bounded domain Ω . This constitutes a
Lagrangian representation of the fluid dynamics and dX(x, t) figures the Lagrangian displace-
ment map of the flow at time t . In expression (1), the velocity vector field, w, corresponds to the
smooth resolved velocity component of the flow. It is assumed to be a deterministic function
(of random arguments) and to have twice differentiable components: (u, v, w) ∈ C2(Ω,R).
When it does not depend on random arguments this velocity field represents the expectation
of the whole random velocity field. This is the situation encountered in the case of mean field
dynamics. The second term is a generalized random field that assembles the unresolved flow
component and all the uncertainties we have on the flow. The combination of both velocity
fields provides an Eulerian description of the complete velocity fields driving the particles:

U(x, t) = w(x, t)dt + σ (x, t)d B̂t . (2)

The whole random field, U(x, t), should be a solution of the Navier-Stokes equations and
is defined here as the combination of a stochastic uncertainty component and a deterministic
“resolved” component driven, respectively, by unknown characteristics, σ and w that have to
be determined or specified.

This framework is also related to the work of Constantin and Iyer (2008). Nevertheless,
their study aimed at building a Monte-Carlo Lagrangian representation of the Navier-Stokes
equations. It is limited to a constant diffusion tensor σ and exhibits additional difficulties
in dealing with boundary conditions (Constantin and Iyer 2011). In this work, we do not
seek a stochastic Lagrangian representation of the deterministic Navier-Stokes equation, but
rather a deterministic smooth representation of the drift velocity component corresponding
to a solution of a stochastic Navier-Stokes equation. Our respective goals, thus, are some-
what opposite to one another. Our objective can be interpreted in terms of Large Eddies
Simulation (LES) or Reynolds Average Numerical Simulation (RANS), as we aim at sepa-
rating a resolved flow component from an unresolved one, each of those fields being defined
as a differentiable component and a time uncorrelated uncertainty component respectively.
From this prospect, the approach proposed here is closer in spirit to RANS techniques
than to the LES paradigm as no spatial filtering is applied (see (Lesieur and Métais 1996,
Meneveau and Katz 2000, Sagaut 2005), for extensive reviews on the subject). We must point
out, furthermore, that the uncertainty component exists at all the possible hydrodynamical
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scales. There is thus, no spatial scale separation principle here but rather a temporal
decomposition in terms of a highly oscillating process with no time differentiation property
and a smooth differentiable component. This approach is also close, in spirit, to the separation
in term of a “coherent” component plus noise operated through adaptive wavelet basis (Farge
et al. 1999, 2001). However, contrary to this approach relying on a Galerkin projection with
an adaptive scale thresholding, our decomposition makes appear a diffusion tensor assembling
the action of the unresolved uncertainty component on the resolved component.

More precisely, the resolved component of the Navier-Stokes equation we consider includes
in its general form an anisotropic diffusion term that emerges due to the presence of the random
uncertainty term. By analogy with the Reynolds decomposition and LES, we refer to this
tensor as the subgrid stress tensor. It is important, however, to outline that its construction
differs completely from the Reynold stress definition. As a matter of fact, the unresolved
fluctuating component is a nondifferentiable random process in our case, and stochastic calculus
differentiation rules must therefore be applied. We will see that in the general case, the resulting
subgrid stress cannot be immediately related to the usual eddy viscosity assumption, formulated
in the nineteenth century by Boussinesq (1877) from thermal molecular agitation analogy – also
commonly referred to as Boussinesq assumption in the litterature – and that is still intensively
used in the Large Eddies Simulation paradigm since the work of Smagorinsky (1963) and Lilly
(1966).

The simpler form of eddy diffusion will be recovered only when the uncertainty will be
confined to homogeneous random fields such as the Kraichnan random field (Kraichnan
1968). For particular forms of the uncertainty random component, this formulation will explain
with another viewpoint some subgrid eddy diffusion models proposed in computational fluid
dynamics or in geophysical sciences. Following this route, an appropriate definition of
uncertainty models adapted to given situations allows opening the way for new large scales
flow modeling.

In a very similar way as in the deterministic case, the representation we propose will be
determined from a stochastic version of the Reynolds transport theorem relying on a specific
model of the uncertainty random field.

2. Construction of the uncertainty random field

Before presenting in detail the derivation, we consider to built stochastic fluid flow evolution
models, we need to specify the random component that will encode the uncertainty associated
to the fluid parcels location. This random field, which lives on the bounded domain Ω , relies
on a Brownian motion field, refer hereafter to as Brownian avatar (as a smooth idealization of
a dense Brownian map) defined on R

d . This Brownian field is defined in the following section.
It is built from a finite dimensional discrete set of standard Brownian variable and tends in law
to a continuous limit. This construction will allow us to handle the spatial derivatives of the
uncertainty field with simple calculus.

2.1. Brownian motion field avatar

This random field, denoted B̂t : R
d → R

d , is built from a finite dimensional discrete set of
standard Brownian variables as

B̂
n
t (x) = 1√

n

n∑
i=1

Bt (xi )ϕν(x − xi ), (3)



Fluid flow dynamics under location uncertainty 123

where Bt = {Bt (xi ), i = 1, . . . , n} is a set of independent d-dimensional (with d = 2 or 3)
standard Brownian motions centered on the points of a discrete grid S = {xi , i = 1, . . . , n} ⊂
Ω and ϕ is a Gaussian function of standard deviation ν. It is immediate to check that B̂

n
t is

a zero mean Gaussian process, with uncorrelated increments. Its spatial covariance tensor is
defined as

E
[
B̂

n
t (x)B̂

nT

t ( y)
] = t

n
Id

∑
i

ϕν(x − xi )ϕν( y − xi ), (4)

and, for an infinite number of grid points, tends to

Q = lim
n→∞ E

[
B̂

n
t (x)B̂

nT

t ( y)
] = tϕ√2ν(x − y)Id , (5)

as

lim
n→∞

1

n

∑
i

ϕν(x − xi )ϕν( y − xi ) = (4πν2)−d/2 exp
(
− 1

4ν2
‖x − y‖2

)
(6a)

= ϕ√2ν(x − y). (6b)

It can be checked, the operator

Q f (x) =
∫

Rd
Q(x, y) f ( y)d y, (7)

is symmetric positive definite. In addition, in order to define a well-defined Gaussian process
the trace of this covariance must be bounded for any orthonormal basis {ek |k ∈ N} of the
associated function space. It can be checked, this covariance operator is not of finite trace in
L2(Rd). However, it is well defined in a bigger space (that includes in particular the constant
functions) such as the space of mean square integrable functions L2((Rd), μ(x)) associated
to the measure dμ(x) = dx/(1 + |x|α). As a matter of fact, denoting (, )α the inner product
associated to the space L2(Rd , μ(x)), we have for any orthonormal basis {ek |k ∈ N} of this
space

tr Q
	=

∞∑
i=1

(Qei , ei )α = td
∞∑

i=1

∫
Rd

∫
Rd
ϕ√

2ν(x − y)ei (x)ei ( y)dμ( y)dμ(x) (8a)

≤ td
∞∑

i=1

(∫
Rd
ϕ2ν(0)ei ( y)dμ( y)

)(∫
Rd
ϕ2ν(0)ei (x)dμ(x)

)
(8b)

≤ td
∞∑

i=1

(
ϕ2ν(0), ei

)2
α

(8c)

≤ td
∫

Rd
ϕ2

2ν(0)dμ(x) ≤ C, when α > d − 1. (8d)

As B̂
n
t is a Gaussian process, it tends thus in law to a zero mean continuous process in

L2(Rd , μ(x)) with the same limiting covariance.† This limiting process will be denoted in a
formal way through a convolution product

Bt � ϕν(x) =
∫

Rd
Bt (x′)ϕν(x − x′)dx′, (9)

†Note the covariance operator would be also well defined in a periodic domain L. In this case tr Q = ‖ϕν‖2
L .
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and will be identified to B̂t in the following. Furthermore, it can checked that the covariance
of B̂

n
t has a finite trace. Indeed, for any orthonormal basis {ek |k ∈ N} of L2, denoting by

(
,
)

the associated inner product and | f |2 = ( f, f )1/2 its induced norm, we have

tr E
[
B̂

n
t B̂

nT

t

] =
∞∑

k=1

∫
Rd

∫
Rd

eT
k (x)E

[
B̂

n
t (x)B̂

nT

t ( y)
]
ek( y)d ydx (10a)

=
∞∑

k=1

E(B̂
n
t , ek)

2 = E
∥∥B̂

n
t

∥∥2
2, (10b)

where the Brownian avatar L2 norm is given by

E
∥∥B̂

n
t

∥∥2
2 = td

n

n∑
i=1

∫
Rd
ϕ2
ν (x − xi )dx = td

(
4πν2)−d/2

. (11)

The energy of the Brownian avatar hence does not depend on the number of grid points used
for its construction but only on the standard deviation of the Gaussian smoothing function.
The trace of the limiting covariance is thus provided by (11). At finite time horizon, when the
standard deviation tends to infinity, the energy brought by the uncertainty tends to zero and the
SDE (1) behaves almost like a deterministic evolution law. At the opposite, in the zero limit of
the smoothing function standard deviation, the variance – or the energy – becomes unbounded
and the Ito stochastic integral can be no more defined. For nonzero standard deviation,
the covariance operator is of finite trace and the Brownian avatar tends to a well-defined
Q-Wiener process (Prato and Zabczyk 1992) in L2(Rd , μ(x)). Let us point out that such
Gaussian correlation is probably the most widely used kernel in Geo-statistics and Machine
Learning despite its strong unrealistic smoothing characteristics. In our case, this kernel will
be used in combination with a diffusion tensor.

2.2. White noise avatar

The analogue of the white noise on the bounded domain Ω is similarly defined in a formal
way from the generalized function d B̂t = dBt � ϕν and, σ t , a linear bounded deterministic
symmetric operator of the space of mean square integrable functions with null condition
outside the domain interior R

d/Ω ∪ ∂Ω . We will furthermore assume that this operator is
Hilbert-Schmidt (for any orthonormal basis of {ek |k ∈ N} of L2(Rd , μ(x)) the operator
σ : L2(Rd , μ(x)) → L2(Ω) has a bounded operator norm:

∑
k∈N

‖σek‖2 < ∞).

Then the uncertainty component reads

σ (x, t)d B̂t =
∫
Ω

σ t (x, y)d B̂t ( y)d y. (12)

This operator σ t is referred in the following to as the diffusion tensor. The limiting covariance
tensor of the uncertainty component σ t d B̂t , (also called the two points correlation tensor)
reads

Q = lim
n→∞

1

n
dt δ(t − s)

n∑
i=0

σ (x, •, t) � ϕν(xi )σ (•, y, t) � ϕν(xi )

= dt δ(t − s)σ ϕν (x, t)σ ϕν ( y, t), (13)

where σ ν(x, y, t) = σ (x, •, t) � ϕν( y) is a filtered version of σ along its first or second
component since it is symmetric. As the diffusion tensor is Hilbert-Schmidt, we observe



Fluid flow dynamics under location uncertainty 125

immediately through Young’s inequality that the covariance is of finite trace. It constitutes
thus a well-defined covariance operator and the resulting process is a Q-Wiener process in
L2(Ω).

Processes of central importance in stochastic calculus are the quadratic variation and
co-variation processes. They correspond to the variance and covariance of the stochastic
increments along time. The quadratic co-variation process denoted as 〈X,Y 〉t , (respectively,
the quadratic variation for Y = X) is defined as the limit in probability over a partition
{t1, . . . , tn} of [0, t] with t1 < t2 < · · · < tn , and a partition spacing δti = ti − ti−1, noted as
|δt |n = max

i
δti and such that |δt |n → 0 when n → ∞:

〈X,Y 〉t = P
lim|δt |n→0

n−1∑
i=0

(
X(ti+1)− X(ti )

)(
Y(ti+1)− Y(ti )

)T
.

For Brownian motion, these covariations can be easily computed and are given by the following
rules 〈B, B〉t = t , 〈B, h〉t = 〈h, B〉t = 〈h, h〉t = 0, where h is a deterministic function and B
a scalar Brownian motion. In our case, the quadratic variation of the uncertainty component
reads 〈∫ t

0

(
σ (x, t)d B̂t

)i
,

∫ t

0

(
σ (x, t)d B̂t

) j
〉

= lim
n→∞

1

n

∫ t

0

n∑
�=0

∑
k

σ ik(x, •, s) � ϕν(x�)σ k j (•, x, s) � ϕν(x�)ds

=
∫ t

0

∑
k

σ ik
ϕν
(x, s)σ k j

ϕν
(x, s)ds

	=
∫ t

0
ai j (x, s)ds a.s. (14)

Its time derivative corresponds to the diagonal of the spatial covariance tensor. We can note
that for homogeneous random fields σ (x − y) these expressions simplify. As a matter of fact,
in this case, the random component σ (x, t)d B̂t = σ (•, t) � d B̂t (x) has a covariance tensor
that is defined as

Q = dt δ(t − s)σ (•, t) � σ (•, t) � ϕ√
2ν(x − y). (15)

It remains thus homogeneous and its quadratic variation tends to a spatially constant d × d
matrix for an infinite number of grid points:

lim
n→∞

1

n

n∑
i=0

[σ (•, t) � ϕν(x − xi )]2dt = dt
∫
Ω

[σ (•, t) � ϕν(x)]2 dx

= Σ(t)dt a.s. (16)

Besides, we remark that spatial derivatives of the white noise avatar can be defined and
manipulated in a simple manner:

∂xi (σ (x)d B̂t ) = lim
n→∞

1√
n

n∑
j=0

∂xi σ ϕν (x, xj )dBt (xj )

= ∂xi σ ϕν (x)d B̂t .

As a direct consequence, we note that a divergence free random component is thus necessarily
associated to a divergence free diffusion tensor. The derivative operator of the identity diffusion
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tensor σ (x, y) = δ(x − y) is also still well defined for a nonzero standard deviation and acts
solely on the white noise avatar Gaussian smoothing function.

2.3. Kraichnan turbulent model

Toys models pioneered by Kraichnan (1968) and intensively explored for the theoretical
analysis of passive scalar turbulence (Kraichnan 1968, Gawedzky and Kupiainen 1995,
Majda and Kramer 1999) can be easily specified with such a model. The Kraichnan random
field model

dξ
ζ
t = P � ψγκ � f ζ � dBt , (17)

is formally defined from the divergence free projector P , a power function f ζ (x) = Cζ‖x‖ζ/2
for 0 < ζ < 2 and a band-pass cut-off function, ψγκ , on the so-called inertial range that lies
at high Reynolds number between the short dissipative scale �D = 1/κ and the large integral
scale L = 1/γ at which the forcing takes place. The constant Cζ has a dimension of �1−(ξ/2)/t ,
which follows from dimensional analysis (the energy transfer rate ε = E(u2/t) ∼ �2/t3 and
ε ∼ C2

ζ �
ξ /t). The spectral correlation tensor of dξ

ζ
t is defined as

Q̂(k)i j = |k|−ζ−d
(
δi j − ki k j

|k|2
)(
ψ̂
γ
κ

)2dt,

and the variance per unit time (or time derivative of the quadratic variation process) of this
homogeneous random field reads

d
〈
ξ
ζ
t (x), ξ

ζ
t (x)

〉
i j = δi j

∫
Ω

[P � ψγκ � f ζ (x)
]2dx a.s. (18)

which is constant and given for a band-pass filter, ψ̂γκ , defined as a box filter as

Cζ
(2π)d

d − 1

d

2πd/2

�(d/2)
ζ−1(Lζ − �

ζ
D) δi j . (19)

The square root of this quantity represents the mean absolute value of the velocity field compo-
nents. It blows up when the integral scale tends to infinity and exhibits a strong dependency on
the largest length scale. This injection scale dominates the turbulent energy and corresponds
to the distance beyond which velocities are uncorrelated.

We will see that such random fields, which are both homogeneous in space and uncorrelated
in time, lead to a simple form of the dynamics drift term involving an intuitive eddy viscosity
term defined from the uncertainty random field variance. However, more general random fields
will let rise a formulation of the Navier-Stokes equations in which emerges an anisotropic
diffusion term that cannot be immediately related to the usual eddy viscosity assumption first
formulated in the nineteenth century by Boussinesq (1877)† and that is still predominantly
used in the Large Eddies Simulation paradigm.

3. Stochastic Reynolds transport theorem

In a similar way as in the deterministic case, our derivation relies essentially on a stochastic
version of the Reynolds transport theorem. The rate of change of a scalar function q within a
material fluid volume V(t) transported by (1) is

†Referred sometimes for that reason as the Boussinesq assumption.
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d
∫
V(t)

q(x, t)dx =
∫
V(t)

{
dt q+

[
∇·(qw)+ 1

2
‖∇· σ‖2q −

∑
i, j

1

2

∂2

∂xi∂x j
(ai j q)|∇·σ=0

]
dt

+ ∇·(qσd B̂t )

}
dx. (20)

In this expression, the forth right-hand term must be computed considering the diffusion tensor
is divergence free, and the tensor a(x) denotes the uncertainty variance defined in (14) and
dtφ denotes the function increment at a fixed point for an infinitesimal time step.

To give some insights on how this expression is obtained, let us consider a sufficiently
spatially regular enough scalar function φ of compact support, transported by the flow and
that vanishes outside V(t) and on ∂V(t). As this function is assumed to be transported by the
stochastic flow (1), it constitutes a stochastic process defined from its initial time value g:

φ(X t , t) = g(x0),

where both functions have bounded spatial gradients. The initial function g : Ω → R vanishes
outside the initial volume V(t0) and on its boundary. Let us stress the fact that function φ cannot
be a deterministic function. As a matter of fact, if it was the case, its differential would be given
by a standard Ito formula

dφ(t, X t ) =
(
∂tφ + ∇φ · w + 1

2

∑
i, j

d
〈
Xi

t , X j
t
〉 ∂2φ

∂xi∂x j

)
dt + ∇φ · σd B̂t .

This quantity cancels as φ is transported by the flow. A separation between the slow determin-
istic terms and the fast Brownian term would yield a very specific uncertainty lying on the
function iso-values surfaces (∇φT σ = 0) or a null uncertainty, which is not the general goal
followed here.

As φ is a random function, the differential of φ(X t , t) involves the composition of two
stochastic processes. Its evaluation requires the use of a generalized Ito formula usually referred
in the literature to as the Ito-Wentzell formula (see Theorem 3.3.1, Kunita 1990). This extended
Ito formula incorporates in the same way as the classical Ito formula† quadratic variation terms
related to process X t but also co-variation terms between X t and the gradient of the random
function φt . Its expression is in our case given by

dφ(t, X t ) = dtφ + ∇φ · dX t +
∑

i

d
〈 ∂φ
∂xi

, Xi
t

〉
dt + 1

2

∑
i, j

d
〈
Xi

t , X j
t
〉 ∂2φ

∂xi∂x j
dt

= 0, (21)

It can be immediately checked that for a deterministic function or for uncertainties directed
along the function iso-values, the standard Ito formula is recovered. Otherwise, for a fixed grid
point, function φ(x, t) is hence solution of a stochastic differential equation of the form

†relevant only to express the differential of a deterministic function of a stochastic process
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dtφ(x, t) = v(x, t)dt + f (x, t) · d B̂t . (22)

The quadratic variation term involved in (21) is given through (14) as

d
〈
Xi

t , X j
t
〉 = ai j (x, t), (23)

and the covariation term reads

d
〈∂φt

∂xi
, Xi

t

〉
= lim

n→∞
1

n

∑
j

n∑
�=0

(∂ f j

∂xi
(x, •, t) � ϕν(x�)

)
σ i j (x, •, t) � ϕν(x�),

=
∑

j

∂ f j

∂xi
� ϕν(x, t)σ i j

ϕν
(x, t). (24)

From these expressions and identifying first the Brownian term and next the deterministic
terms of equations (21) and (22), we infer

f (x, y, t)T = −∇φ(x, t)T σ (x, y, t),

v(x, t) = −∇φ · w +
∑
i, j

1

2
ai j

∂2φ

∂xi∂x j
+ ∇φ · ∂σ

• j
ν

∂xi
σ i j
ν ,

and finally get

dtφ = Lφdt − ∇φ · σd B̂t , (25)

Lφ = −∇φ · w +
∑
i, j

1

2
ai j

∂2φ

∂xi∂x j
+ ∇φ · ∂σ

j•
ϕν

∂xi
σ i j
ϕν
.

This differential at a fixed point, x, defines the equivalent in the deterministic case of the
material derivative of a function transported by the flow. For interested readers, several
conditions under which such linear equations with a multiplicative noise exhibits a unique
weak, mild or strong solution are studied in Prato and Zabczyk (1992). In our case, only
existence of a weak solution is needed as we will proceed to a formal integration by part. The
differential of the integral over a material volume of the product qφ is given by

d
∫
V(t)

qφ(X t , t)dx = d
∫
Ω

qφdx,

=
∫
Ω

(
dt qφ + qdtφ + dt 〈q, φ〉)dx,

where the first line comes from φ(t, x) = 0 if x ∈ Ω\V(t) and the second one from the
integration by part formula of two Ito processes. Hence, from (25) this differential is∫

Ω

(
dt qφ + qLφ + ∇φ · a∇q

)
dt dx −

∫
Ω

q∇φ · σd B̂t .

Introducing L∗ the (formal) adjoint of the operator L in the space L2(Ω) with Dirichlet
boundary conditions, this expression can be written as∫

Ω

((
dt q + L∗q − ∇· (a∇q)

)
dt +∇·(qσd B̂t

))
φdx.
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With the complete expression of L∗ and if φ(x, t) → 1IV(t)/∂V(t), where 1I stands for the
characteristic function, we get the extended form of this differential:∫

V(t)

[
dt q +

(
∇· (qw)−

∑
i, j

∇·
(

qσ i j
ν

∂σ
j•
ν

∂xi

)

+ 1

2

∑
i j

∂2

∂xi∂x j
(ai j q)−

∑
i j

∂xi a
i j∂x j q −

∑
i j

ai j∂2
xi x j

q

)
dt + ∇·(qσd B̂t

)]
dx,

which can be further simplified as∫
V(t)

[
dt q + ∇· (qw)dt − 1

2

∑
i jk

(
σ ik
ν σ

k j
ν

∂2q

∂xi∂x j
+ ∂x jσ

ik
ν ∂xiσ

k j
ν q

+2 σ ik
ν ∂xiσ

k j
ν ∂x j q − ∂xiσ

ik
ν ∂x jσ

k j
ν q
)

dt + ∇·(qσd B̂t
)]

dx.

At last this expression may be more compactly written as∫
V(t)

[
dt q + ∇· (qw)dt − 1

2

∑
i j

∂2

∂xi∂x j
(ai j q)|∇· σ=0dt + 1

2
‖∇· σ‖2qdt + ∇·(qσd B̂t

)]
dx,

where the third term must be computed by considering a divergence free diffusion tensor. Let
us note it is now straightforward to get the expression of the transport theorem for a divergence
free turbulent component:

d
∫
V(t)

q(x, t)dx =
∫
V(t)

[
dt q +

(
∇· (qw)− 1

2

∑
i, j

∂2
i j (ai j q)

)
dt + ∇q · σd B̂t

]
dx. (26)

4. Mass conservation

This expression of volumetric rate of change relation allows us stating the mass conservation
principle under fluid particles location uncertainty. Applying the previous transport theorem
to the fluid density ρ(x, t), we get a general expression of the mass variation:∫

V(t)

[
dtρ +

(
∇· (ρw)− 1

2

∑
i, j

∂2

∂xi∂x j
(ai jρ)|∇· σ=0 + 1

2
‖∇· σ‖2ρ

)
dt + ∇·(ρσd B̂t

)]
dx.

(27)

A mass conservation constraint on the transported volume implies canceling this expression.
Besides, as the volume is arbitrary this provides the following constraint

dtρ + ∇· (ρw)dt = 1

2

(∑
i, j

∂2

∂xi∂x j
(ai jρ)|∇· σ=0 − 1

2
‖∇· σ‖2ρ

)
dt − ∇·(ρσd B̂t

)
. (28)

4.1. Incompressible fluids

For an incompressible fluid with constant density, canceling separately the slow deterministic
terms and the highly oscillating stochastic terms of the mass conservation constraint (28), we
obtain
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∇· (σd B̂t ) = 0, ∇· w = 1

2

∑
i, j

∂2ai j

∂xi∂x j
. (29a,b)

In the very same way as in any large scale flow decompositions, we aim here at recovering a
physically plausible volume preserving drift component. Imposing to the drift component to
be divergence free, this system boils down hence to an intuitive system of incompressibility
constraints

∇· (σd B̂t
) = 0, ∇· w = 0, (30a,b)

coupled with a less intuitive additional constraint on the quadratic variation tensor:

∇· (∇· a) = 0. (31)

For the Kraichnan model (or for any divergence-free homogeneous random fields), this last
constraint is naturally satisfied, as its quadratic variation is constant and the system comes down
to the classical incompressibility constraint. In the same way, any homogeneous divergent-free
random fields associated to a volume preserving drift leads to mass conservation.

4.2. Isochoric flows and isoneutral uncertainty

For divergence-free volume preserving flows (refered as isochoric flow) with varying density,
we get a mass conservation constraint of the form

dtρ + ∇ρ · w dt − 1

2

∑
i, j

∂2

∂xi x j
(ρai j )dt = ∇ρ · σ d B̂t . (32)

An interesting property emerges if the uncertainty has a much larger scale along the density
tangent plane than in the density gradient direction. This situation occurs in particular in
oceanography or in meteorology where the fluid is stratified and the horizontal scale much
larger than the vertical scale. In a such case, it is essential that the large-scale numerical
simulations preserve the natural fluid stratification and consequently to define subgrid models
with controlled diffusion along the iso-density surfaces. This behavior can be easily setup by
defining the diffusion tensor as a diagonal projection operator so that the uncertainty σd B̂t

lies on the isodensity surfaces:

σ i j = δi j − ∂xiρ(x)∂x jρ( y)

‖∇ρ‖2
δ(x − y). (33)

Together with the small slope assumption Gent and McWilliams (1990)

(√
(∂xρ)2 + (∂yρ)2 �

∂zρ

)
the diffusion tensor and the quadratic variation can then be written as a matrix function

a(x) =
⎛
⎜⎝

1 0 αx (x)

0 1 αy(x)

αx (x) αy(x) |α(x)|2

⎞
⎟⎠ , (34)

where we introduced the neutral slope vector α = (αx , αy, 0) = −(∂xρ/∂zρ, ∂xρ/∂zρ, 0).
Owing to the divergence free condition of the diffusion tensor, this slope vector is necessarily
constant along the depth axis ∂zαx = ∂zαy = 0 and divergence free ∇ · α = 0. This yields for
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the mass preserving equation a diffusion along the density tangent plane. The density evolves
as the deterministic model:

∂ρ

∂t
+ ∇ρ · w = 1

2

∑
i j

∂xi (ai j∂x jρ), (35)

where we considered the divergence free constraint ∇· a = 0. This type of anisotropic diffusion
corresponds exactly to the so-called isoneutral diffusion currently used to model unresolved
mesoscale eddies in coarse scale resolution of ocean dynamics simulations
(Gent and McWilliams 1990).As mentioned previously, the divergence free uncertainty induces
a slope vector that is also divergence free and independent of the depth. This enforces further the
density surfaces to be quasi-harmonic (for smooth depth density variation) in the horizontal
planes and provides a strong stratification of the density organized as a pile of pancakes
with no maxima excepted on the domain horizontal boundaries. To our knowledge, those
additional constraints are not taken into account in the isoneutral diffusion and according to
our interpretation this comes to consider uncertainties that are not volume preserving.

In the case of the Kraichnan model, the density variation is simplified as

dtρ + ∇ρ · w dt − γ
1

2

∑
i, j

∇2ρ dt = ∇ρ · σ d B̂t , (36)

and when the drift term does not depend on random argument (i.e. if it corresponds to the
flow expectation w = EdX t as in the case of a mean field dynamics) the density expectation
evolution is a classical intuitive advection diffusion equation

∂t ρ̄ + ∇ρ̄ · w = 1

2
γ∇2ρ̄. (37)

The mass conservation constraint and the stochastic version of the Reynolds theorem allows
us now expressing the linear momentum conservation equations.

5. Conservation of momentum

Newton’s second law states that the net force acting on the fluid is equal to the rate of change
of the linear momentum. In our case, the flow evolution is described through an Ito diffusion
(1), where the drift component w(x, t) represents the unknown flow we wish to estimate,
whereas the noise term denotes the fluctuating part either caused by physical processes that
are neglected or generated by numerical errors and coarsening processes. Whatever the type of
uncertainties considered on the fluid particles location, they introduce de facto an uncertainty
on the forces. In order to take into account all the uncertainty sources within the momentum
equations, we consider a stochastic conservation principle of the form

d
∫
V(t)

ρ
(
w(x, t)dt + σ (x, t)d B̂t

)
dx =

∫
V(t)

F(x, t)dx. (38)

In this equation, the acceleration is highly irregular and has to be interpreted in the sense of
distribution. For every h ∈ C∞

0 (R+):∫
h(t)

∫
V(t)

F(x, t)dx dt= −
∫

h′(t)
∫
V(t)

σ (x, t)d B̂t dx dt +
∫

h(t) d
∫
V(t)

ρw(x, t)dx dt.

(39)
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Since both sides of this equation must have the same structure, the forces can be written as∫
h(t)

∫
V(t)

F(x, t)dx dt = −
∫

h′(t)
∫
V(t)

σ (x, t)d B̂t dx dt

+
∫

h(t)
∫
V(t)
(

f (x, t)dxdt + θ(x, t)d B̂t
)
dx. (40)

The first terms of the right-hand sides of equations (39) and (40) are identical and cancel out.
The second right-hand term of equation (39) corresponds to the derivative of the momentum
associated to the resolved velocity component, whereas the second right-hand term of (40)
provides us the structure of the forces under localization uncertainty. We now further develop
those different terms.

According to the previous section results, the transport equation applied to the linear
momentum gives for each component of the velocity:

d
∫
V(t)

ρwi dx =
∫
V(t)

[(
dt (ρwi )+ ∇· (ρwiw)+ ‖∇· σ‖2ρwi

−
∑
j,k

1

2

∂2

∂x j∂xk
(a jkρwi )|∇· σ=0

)
dt + ∇·(ρwiσd B̂t

)]
dx. (41)

As for the forces, we will consider that only body forces and surface forces are involved
(i.e. there is no external forces). A direct extension of the deterministic case provides us the
surface forces as

Σ =
∫
V

−∇(pdt + d p̂t )+ μ
(
∇2U + 1

3
∇(∇· U)

)
,

whereμ is the dynamic viscosity, p(x, t) denotes the deterministic contribution of the pressure
and d p̂t is a zero mean stochastic process describing the pressure fluctuations due to the random
velocity component. The gravity force is deterministic and standard.

Expressing the balance between those forces and the acceleration (41), incorporating then
the mass preservation principle (28), and finally equating, in the one hand, the slow temporal
bounded variation terms and, in the other hand, the Brownian terms, we get the expression of
the flow dynamics:(∂w

∂t
+ w∇T w

)
ρ − 1

2

∑
i, j

ai jρ
∂2w

∂xi∂x j
−
∑
i, j

∂(ai jρ)

∂x j
|∇· σ=0

∂w

∂xi

= ρg − ∇ p + μ
(
∇2w + 1

3
∇(∇· w)

)
, (42a)

∇d p̂t =−ρw∇Tσd B̂t + μ
(
∇2(σd B̂t

)+ 1

3
∇(∇· (σd B̂t )

))
, (42b)

dtρ+
(
∇· (ρw)− 1

2

∑
i, j

∂2

∂xi∂x j
(ai jρ)|∇· σ=0 + 1

2
‖∇· σ‖2ρ

)
dt = ∇·(ρσd B̂t

)
. (42c)

This system provides a general form of the Navier–Stokes equations under location uncertainty.
Similarly to the Reynolds decomposition, the dynamics associated to the drift component
includes an additional stress term that depends on this resolved component and on the uncer-
tainty diffusion tensor. In order to specify further, the different terms involved in this general
model, we will examine simpler particular instances of this system. In the following, we will
confine ourselves to the case of an incompressible fluid of constant density. Considering as a
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first example the divergence free isotropic Kraichnan model defined in (17) and its associated
transport equation, we obtain straightforwardly the following Navier-Stokes equation:(

∂w

∂t
+ w∇T w − γ

1

2
∇2w

)
ρ = ρg − ∇ p + μ∇2w, (43a)

∇d p̂t = −ρ(w∇T )dξ t + μ∇2dξ t , (43b)

∇· w = 0. (43c)

The first equation of this model corresponds to a traditional turbulent diffusion modeling relying
on the Boussinesq assumption with a constant eddy viscosity coefficient. Let us note that for
this system, the second equation related to the random pressure term is not needed to compute
the resolved drift w. The uncertainty is in that case specified a priori as an homogeneous
random field. Considering a more general divergence free random component, we obtain(

∂w

∂t
+ w∇T w− 1

2

∑
i, j

∂xi ∂x j (a
i jw)

)
ρ = ρg−∇ p + μ∇2w, (44a)

∇d p̂t = −ρ(w∇T )σd B̂t + μ∇2σd B̂t , (44b)

∇· w = 0, ∇· σ = 0, ∇· (∇· a) = 0. (44c–e)

This model of Navier-Stokes equations includes now a diffusion term that cannot be directly
related to the traditional Boussinesq eddy viscosity formulation anymore. Furthermore, the
incompressibility condition on the variance tensor provides a nonlocal constraint on the subgrid
model, which is lacking in usual eddy viscosity models (Kraichnan 1987). One can point out
that for divergence-free incompressible uncertainty models this term is globally dissipative.
As a matter of fact the energy associated to the subgrid term reads∫

Ω

wT
∑
i, j

∂2

∂xi∂x j
(ai jw) =

∫
Ω

∑
i

∂

∂xi

(
wT
∑

j

( ∂

∂x j
ai jw

))

−
∫
Ω

∑
k

∇wT
k a∇wk −

∫
Ω

(∇· a)
∑

k

∇wkwk

= −
∫
Ω

∥∥∇w
∥∥2

a −
∫
Ω

(∇· a)∇
(

1

2
‖w‖2

)
. (45)

The first term ‖∇w‖2
a = ∑

i j ai j∂xi w · ∂x j w, is always non-negative as, a = σσ T , is semi-
positive definite. The second term associated to the incompressibility constraint, ∇·∇a = 0,
cancels: ∫

Ω

(∇· a)∇
(

1

2
‖w‖2

)
dx = 1

2

∫
Ω

(
∇·(∇· a ‖w‖2))dx (46)

= 1

2

∫
∂Ω

‖w‖2(∇· a) · nds = 0 .

The energy of the subgrid term reduces to∫
Ω

wT
∑
i, j

∂2

∂xi∂x j
(ai jw)dx = −

∫
Ω

∥∥∇w
∥∥2

adx, (47)



134 E. Mémin

and is thus globally dissipative. Such model paves the way to setup subgrid models and
stochastic expression of Navier-Stokes equations for different forms of the diffusion tensor. It
can be noted that this subgrid model provides the same dissipation as∫

Ω

wT
∑
i, j

∂xi (a
i j∂x j w)dx = −

∫
Ω

∥∥∇w
∥∥2

adx, (48)

which involves a diffusion operator D f = ∑
i, j ∂xi (a

i j∂x j f ) similar to diffusion introduced
in LES (Karamanos and Karniadakis 2000) through the concept of spectral vanishing viscosity
operator initially introduced for 1D problems (Tadmor 1989). No clear consensus, nevertheless,
exists in the 3D case on the form such an operator should take (Pasquetti 2006).

5.1. Kinetic energy of the complete flow

From this expression of subgrid stress energy, it is insightful to exhibit the total kinetic energy
associated to the whole flow. This expression will allow us to set an additional constraint on
the energy of the random unresolved process. For a divergence free turbulent component, the
kinetic energy associated to the resolved drift component is first of all provided by

1

2

∫
Ω

∂t |w|2 + ν

∫
Ω

|∇w|2 + 1

2

∑
i, j

∫
Ω

ai j∂xi w · ∂x j w = ( f ,w
)
. (49)

Here f gathers the whole external forcing. From this expression and the energy of the
uncertainty component, we get the mean kinetic energy of the global velocity field U(x, t) =
w(x, t)dt + σ (x, t)d B̂t :

1

2dt
E

∫
Ω

∫ t

0
d|U |2 = 1

2

∫
Ω

∫ t

0
∂t |w|2dt + 1

2
tr(a) (50a)

= 1

2
tr(a)−

∫ t

0

{∫
Ω

ν|∇w|2+ 1

2

∑
i, j

∫
Ω

ai j∂xi w · ∂x j w−( f ,w
)}

dt.

(50b)

For inviscid flows without external forcing, this energy should be conserved. Differentiating
with respect to time we have thus:

∂t tr(a)−
∑
i, j

∫
Ω

ai j∂xi w · ∂x j w = 0. (51)

This equation provides us a simple evolution model of the uncertainty component energy. It
expresses a balance between the diffusive damping term that drains energy from the resolved
component and the energy of the stochastic process that is backscattered to the resolved smooth
component. For the Kraichnan uncertainty model, denoting γ (t) = tr(a) the uncertainty field
energy (19), we get, the first order ordinary equation:

∂tγ (t) = γ (t)
∥∥∇w

∥∥2
2, (52)

which implies γ (t) = γ (0) exp
∫ t

0 ‖∇w‖2
2dt . The uncertainty energy grows exponentially

in time with respect to the velocity gradients norm. For decaying turbulence, this quantity
stays bounded. With an additional ellipticity condition on the quadratic variation tensor, it
can be shown through classical arguments that the drift gradient norm is bounded by the
initial condition and the external force (see Appendix A). When the resolved velocity gradient
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increases the diffusion get stronger. The velocity gradients are in return smoothed accordingly
and a larger scale representation for the drift flow is obtained. For nonisotropic diffusion tensors
the smoothing is operated in an anisotropic way. Its intensity depends on an oriented velocity
gradient norm.

5.2. Link to the Smagorinsky subgrid model

The Smagorinsky subgrid model is widely used in large eddies simulation approaches. This
eddy viscosity model, built from the Boussinesq assumption, imposes that the proper directions
of the subgrid stress tensor are strictly aligned with those of the resolved rate of strain tensor.
The subgrid model derived from our uncertainty analysis does not rely on such assumption.
Nevertheless, a relation with the Smagorinsky model term can be easily emphasized. As a
matter of fact, setting the quadratic variation tensor to the form

a = C‖S‖I, (53)

with C a constant and where ‖S‖ = 1
2 [∑i j (∂xiw

j + ∂x jw
i )2]1/2 denotes the Frobenius norm

of the rate of strain tensor, we get an uncertainty stress tensor term that reads∑
i j

∂xi ∂x j (a
i jwk) =

∑
i j

∂xi ∂x j

(‖S‖δi jwk) (54a)

= 2
∑

j

∂x j ‖S‖∂x jw
k + ‖S‖∇2wk + ∇2‖S‖wk . (54b)

This term complemented by 2
∑

j ∂x j ‖S‖∂xkw
j − ∇2‖S‖wk provides the standard trace free

Smagorinsky subgrid stress, ∇· τ , where

τ = C‖S‖S. (55)

The complementary term may be rewritten as

2∂xk

∑
j

∂x j (‖S‖)w j − 2
∑

j

∂x j ∂xk (‖S‖)w j − ∇2‖S‖wk . (56)

We observe that the first term is a gradient term that can be compensated by a modified
pressure as it is usually done considering deviatoric expression of the Reynolds stress tensor.
However, unless assuming that the rate of strain magnitude is a very smooth function with
flat iso-surfaces there is no particular reason to cancel the two other terms. Let us note this
condition allows fulfilling the variance incompressibility constraint ∇·∇· a = 0. According
to our interpretation, the Smagorinsky model constitutes thus an adapted uncertainty model
only for smooth deformations with flat rate of strain tensor norm.

In the examples provided previously, the uncertainties have been fixed a priori. In such
situations, the second equation of system (44) is not required unless a realization of the
oscillating random pressure field is needed (which is a direct possibility of our formulation).
However, when the diffusion tensor is not specified the system exhibits another degree of
freedom and this tensor or at least the quadratic variation tensor must be estimated in order to
fulfill the balance of Newton’s second law.

5.3. Diffusion and quadratic tensors estimation

The second equation of (44) provides a mean to proceed to the estimation of the diffusion
tensor. Projecting this equation on the divergence-free space tensor, for a given increment
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ε = y − x, we obtain a matrix screened Poisson equation with variable source functions:

∇2σ (x, ε + x) = ρ

μ
P � (w∇T σ )(x, ε + x), (57)

where P indicates the divergence free projector, applied to the column vectors of w∇T σ . A
symmetric solution can be imposed adding and averaging the transposed problem on both
sides:

∇2σ (x, ε + x) = ρ

2μ
[P � (w∇T σ )+ (σ∇wT ) � P](x, ε + x). (58)

Formally this equation should be solved for each increment value, which is obviously unreal-
istic in practice. Nevertheless, with the hypothesis of an homogeneous decorrelation function
the resolution can be led only for the diagonal (ε = 0); the complete tensor σ (x, y) is then
inferred from those values and the decorrelation function.Another solution consists to assume a
rapid decorrelation and to solve the system for a narrow band around the diagonal. An iterative
solution can be built assuming an initial diffusion tensor, and solving these equations from
the current values of w and σ . Let us point out that the quadratic variation tensor, a, requires
finally an ultimate projection to stick to the last constraint of the system (44). A normalization
and a weighting with respect to (51) enables then to guaranty the balance between the drained
energy and the backscattered unresolved energy.

6. Shallow water model

We describe in this section an application of our formalism to the derivation of a stochastic
model of the shallow-water equations.

The shallow-water equations constitute one of the simplest models that can be used to de-
scribe the evolution of mean horizontal components of atmospheric winds or oceanic streams.
This 2D model is valid for problems in which the vertical dynamics is relatively insignificant
when compared to the horizontal effects and cannot be used when it becomes important to
consider the effect of the third dimension. It is derived from a 3D incompressible model by depth
averaging with the assumption that the depth is “shallow” when compared to the horizontal
domain. In order to establish the shallow-water approximation, the pressure variable is assumed
to follow quite correctly an hydrostatic equilibrium relation given by

∂p

∂z
= −gρ, (59)

where the density is constant on a shallow layer of the fluid.
In our case, the whole pressure function is given as the summation of a deterministic pressure

contribution, p′, and, d p̂, a zero mean random pressure

p(x, y, z, t) = p′(x, y, z, t)+ d p̂(x, y, z, t). (60)

Assuming the external force is due to gravity and neglecting the friction forces, the hydrostatic
balance for a deterministic system can be regarded as a boundary layer assumption in which the
vertical acceleration of the fluid is supposed null. Considering a system with uncertainty under
the same hypotheses, that is to say: no friction and a vertical acceleration compensated by
the subgrid diffusion, we obtain an identical hydrostatic relation (59). However, two different
choices are possible. Either the hydrostatic balance can be assume to hold for the global
pressure or only for the deterministic component. In the first case, in complement to an
hydrostatic balance on the deterministic pressure component, the random pressure component
is necessarily such that
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∂zd p̂t = 0. (61)

A strong hydrostatic assumption on the global pressure component hence requires that the
random pressure term is constant along the vertical axis. In the second case, there is a
supplementary degree of freedom and only a boundary condition on the random component
will have to be imposed.

With the assumption that the vertical shear on the horizontal velocity fields is negligible,
which is reasonable for a fluid with shallow hypothesis, (assuming also no rotation for sake of
simplicity) and using (59) we obtain a 2D momentum equation that reads(

∂wh

∂t
+ wh∇h T

wh − 1

2

∑
i, j

∂2

∂xi∂x j

(
ai jw

h))ρ = −∇h p′, (62a)

∇hd p̂t = −ρ(wh∇h T )(
σd B̂t

)h
, (62b)

∇· w = 0, ∇· σ = 0, ∇·∇· a = 0. (62c–e)

Here the superscript, h, indicates an horizontal vector. In order to stick to the no vertical
shear hypothesis, we can regard the horizontal velocity components as being averaged along
the vertical axis between an upper free surface, hu , of the fluid and the bottom topography,
hb. As for the turbulent component, it is natural in the same way to rely on a 3D Brownian
uncertainty vector independent of the depth. Its quadratic variation, consequently, does not
depend on depth either. This choice ensures a strict respect of a null vertical shear and provides
a diffusion tensor that is independent from depth. The 3D velocity will be thus defined as a
velocity field of the form⎛

⎝U (x, y, t)
V (x, y, t)
W (x, t)

⎞
⎠ =

⎛
⎜⎜⎝

u(x, y, t)dt + (σ (x, y, t)d B̂t
)

x

v(x, y, t)dt + (σ (x, y, t)d B̂t
)

y

w(x, t)dt + (σ (x, y, t)d B̂t
)

z

⎞
⎟⎟⎠ . (63)

Notice that the noise is a 3D white noise defined on the plane and that the vertical velocity
component depends on the height. Considering the free surface, hu , as a material surface that
no fluid crosses, we have, from the stochastic transport principle,

dt (hu)+
(

∇huwh − 1

2

∑
(i, j)h

∂2

∂xi∂x j
(ai j hu)

)
dt + ∇·

(
hu
(
σd B̂t

)h) = −w(hu)− (σd B̂t
)

z,

(64)
where,w(hu), denotes the vertical velocity at point (x, y) of the surface hu and (i, j)h indicates
summation over horizontal indices. In the same way, for the stationary topographic depth we
obtain(

∇hbw
h − 1

2

∑
(i, j)h

∂2

∂xi∂x j
(ai j hb)

)
dt + ∇·

(
hb
(
σd B̂t

)h) = −w(hb)− (σd B̂t
)

z . (65)

The integration of the hydrostatic relations (59) from a depth z up to the free surface, gives
for a constant density:

p′(x, y, z, t)− p′(x, y, hu, t) = gρ(hu − z). (66)

Here takes place the two possible choices on the hydrostatic balance. For a hydrostatic balance
defined up to a noise, it is possible to impose an isobaric upper boundary condition to the global
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pressure: pu(t) = p(x, y, hu, t). This condition implies necessarily p′(x, y, hu, t) = pu(t),
accompanied by d p(x, y, hu, t) = 0 as a boundary condition for the random term. This last
constraint is inappropriate for a global hydrostatic balance as in this case the random component
is depth free. In this case, it is necessary to impose a boundary condition only to the deterministic
pressure function. Let us note that in this latter case, (61) imposes to the uncertainty to be
orthogonal to the depth free vertical component gradient ∂zd pt = w∇T σdBt = 0. This also
introduces a locally noisy variable pressure on the upper surface which might be difficult to
control. The former case, is less strict and allows a supplementary degree of freedom for the
uncertainty.

In both cases, we have nevertheless from (66) that

p′(x, y, z, t) = gρ(hu − z)+ pu, (67)

and
∇h p′(x, y, z, t) = gρ∇hhu(x, y, t), (68)

where we have assumed that pu is horizontally uniform. The momentum equation of the
horizontal velocity field becomes thus(

∂wh

∂t
+ wh∇T wh − 1

2

∑
(i, j)h

∂2

∂xi∂x j

(
ai jw

h))ρ = −gρ∇hu, (69)

and is independent of the vertical coordinate. If we now integrate the velocity drift divergence
free constraint along the z axis, we get

−∇· wh(hu − hb) = w(x, y, hu, t)− w(x, y, hb, t). (70)

In the same way, the integration along depth of the uncertainty divergence free constraint
provides the relations

∇h· σ h = 0, ∇h· (∇h· ah) = 0. (71a,b)

The horizontal component of the uncertainty vector is hence divergence free and the horizontal
part of the quadratic variation tensor obeys a 2D uncertainty mass preservation constraint.
Introducing (71a,b) in the difference between (64) and (65) gives, for h = hu − hb,

dt h +
(
∇·(hwh)− 1

2

∑
(i, j)h

∂xi ∂x j (ai j h)
)

dt + ∇h
(
σd B̂t

)h = 0. (72)

The 2D whole shallow water model with uncertainty is hence finally given by(∂wh

∂t
+ wh∇T wh − 1

2

∑
(i, j)h

∂xi ∂x j

(
ai jw

h))ρ = −gρ∇hu, (73a)

dt h +
(
∇· (hwh)− 1

2

∑
i, j

∂xi ∂x j

(
ai j h

))
dt + ∇h

(
σd B̂t

)h = 0, (73b)

∇hd p̂ = −ρ(wh∇T
)(

σd B̂t
)h
, (73c)

∇· σ h = 0, ∇·(∇· ah) = 0. (73d,e)

Here the surface is driven by a stochastic pdes that involves a multiplicative noise. The horizon-
tal velocity fields is coupled to this stochastic dynamics through the upper surface gradient.
This system is nevertheless unclosed. As a matter of fact, in this inviscid case, the second
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equation can no longer be used to define the diffusion tensor, as one can always find a random
pressure for any given diffusion tensors. Either the diffusion tensor or its quadratic variation
must hence be modeled.

Let us point out it is possible to greatly simplify this system if one seeks only a mean
horizontal velocity field. As a matter of fact, taking the surface conditional expectation, h̄u ,
upon a given initial condition for the surface, provides us the following continuity equation
for the shallow water model with uncertainty:

∂ h̄

∂t
+ ∇· (h̄wh)− 1

2

∑
(i, j)h

∂xi ∂x j (ai j h̄) = 0, (74)

This amounts then to solve the system

(
∂wh

∂t
+ wh∇T wh − 1

2

∑
(i, j)h

∂xi ∂x j

(
ai jw

h))ρ = −gρ∇h̄u, (75a)

∂ h̄

∂t
+ ∇· (h̄wh)− 1

2

∑
(i, j)h

∂xi ∂x j (ai j h̄) = 0, (75b)

∇·(∇· ah) = 0. (75c)

The same system can also be obtained specifying the uncertainties lie on iso-height surfaces
since in that case the Brownian random terms cancel out. In both cases, we get a deterministic
formulation of the shallow-water equations under uncertainty. The first momentum and the free
surface evolution both include similar subgrid diffusion models accounting for the action of
the uncertainty term associated to the noisy fluid particle location. Proceeding to an integration
along the depth direction and writing the system in conservative form, we finally get(

∂ h̄wh

∂t
+ ∇·

(
h̄wh(wh)T + g

1

2
h̄2

I

)
−
∑
(i, j)h

1

2
∂xi ∂x j

(
h̄ai jw

h)− ai j∂x jh̄∂xi w

)
ρ

= −gρh̄∇h̄b, (76a)
∂ h̄

∂t
+ ∇· (h̄wh)− 1

2

∑
(i, j)h

∂xi ∂x j (ai j h̄) = 0, (76b)

∇· (∇· ah) = 0. (76c)

A stochastic system of the same form could as well be obtained from the spde’s (73a–e).
Let us outline that the derivation applied here for the shallow-water system is quite general.

This type of methodology could probably be extended to the different forms of geophysical flow
models. Such developments constitute perspective works we would like to explore. Another
example of the eventual benefits brought about by the application of our formalism concerns
the establishment of reduced order dynamical models. We briefly describe such a derivation
in the following section.

7. Application to low order dynamical system modeling

The constitution of low order dynamical models to describe the evolution of fluid flows arouses
an intense research interest in several domains ranging from climatic study (Majda et al.
1999), flow control (Bergmann and Cordier 2008, Noack et al. 2010) or atmospheric sciences



140 E. Mémin

(Selten 1995, Franzke and Majda 2005). Reduced order model are usually defined from a
Galerkin projection on a reduced basis specified from experimental measurements or numerical
simulation data. One of the simplest way to define such empirical basis functions stems from
the Karhunen-Loeve decomposition (referred as proper orthogonal decomposition – POD – in
the fluid mechanics domain). In this decomposition, the basis functions encodes the direction
of higher variance and are solutions of eigenvalues problems associated either to the two
points correlation tensor or to the temporal correlation tensor (see for instance (Holmes et al.
1996)). This expansion is easy to implement, and leads through a Galerkin projection to a
system of ordinary differential equations that enables representing with only few modes the
evolution of complex flows. Nevertheless, the constructed system reveals often unstable in
practice and does not allow operating long term forecasts even if it fits perfectly to the data
(Noack et al. 2005, Artana et al. 2012). To mitigate structural instabilities, artificial damping
terms are usually introduced in the reduced model. One of the classical solution consists in
adding a constant viscosity acting in the same way on all the POD modes (Rempfer and
Fasel 1994). Approaches involving different viscosity values for the set of modes have been
also considered (Rempfer 1996) and spectral vanishing dissipative model (Karamanos and
Karniadakis 2000) have been introduced. Those damping terms added to the flow kinematic
viscosity enables improving the system’s numerical stability but require often a proper tuning
of the set of parameters involved. Some of the methods proposed may even require fixing a
priori a great number of parameters. The principle followed by all those techniques consists
in artificially reintroducing a lost dissipative mechanism attached to the mode discarded by
the severe truncation operated at the Galerkin projection stage. The inclusion of uncertainty in
the flow dynamics brings naturally such a mechanism, with the additional advantage that the
parameters can be properly fixed from the data. In the following section, we recall briefly the
principles of the proper orthogonal decomposition, and we show how a Galerkin projection of
the Navier-Stokes equations under uncertainty onto a reduced set of empirical modes enables
to get a dynamical system of low order.

7.1. POD basis

POD decomposition has been widely used by different authors as a technique to obtain
approximate descriptions of the large scale coherent structures in laminar and turbulent flows.
Given an ensemble u(x, ti ) of velocity fields obtained experimentally at M different discrete
instants, POD provides a set of M mutually orthogonal basis functions, or modes, φi (x), which
are optimal with respect to the kinetic energy.

Considering such a decomposition enables to write the velocity field as an average ū with
fluctuations captured by a finite set of modes:

u(x, t) = u +
M∑

i=1

bi (t)φi (x), (77)

where, f , denotes a temporal average of function f. Seeking an optimal finite energy represen-
tation subspace for u(x, ti ) on the domain Ω and along the sampling time comes to find an
ensemble of functions of L2(Ω) that maximize

∣∣(u, ψ)∣∣22, subject to (ψ,ψ) = 1, (78)
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The solution, φ, of this constrained optimization problem satisfies the following eigenvalue
problem ∫

Ω

K (x, x′)φk(x)dx = φk(x)λk, (79)

with the spatial autocorrelation – or two points correlation – tensor

K (x, x′) = (u(x, t)u(x′, t)) = 1

M

M∑
i=1

u(x, ti )u(x′, ti ).

This tensor is linear, positive semi-definite, and self-adjoint. As a consequence, it admits by
the Hilbert-Schmidt theorem a spectral representation, which guaranties a solution to problem
(78). The eigenvalues are real and positive and by the Mercer theorem, the autocorrelation can
be represented as the (uniformly convergent) series:

K (x, x′) =
+∞∑
i=0

λiφk(x)φT
k (x

′). (80)

The spatial and temporal symmetry of the representation in terms respectively of the temporal
{bi , i = 1, . . . ,M} or spatial {φi , i = 1, . . . ,M} expansions allows interchanging the
two points correlation tensor with the two times correlation tensor (Sirovich 1987). Such a
procedure is numerically advantageous when the temporal dimension is lower than the spatial
dimension. This new eigenvalue problem, whose eigenvectors are the temporal coefficients,
bk , is obtained by expressing in (79) the spatial modes as a linear combination of the velocity
fields

φk(x) = 1

λk
bk(t)u(x, t).

The eigenvalues of this new problem are identical to those obtained for the spatial modes
(Holmes et al. 1996).

7.2. Galerkin projection

AGalerkin projection enables to rewrite a partial differential equation (PDE) system as a system
of ordinary differential equations (ODE). According to this procedure, the state variables and
their associated evolution models are projected on a finite dimensional subspace of the phase
space (in this case, the subspace generated by the first s modes).

A Reynolds decomposition of the Navier-Stokes equation under uncertainty can be formu-
lated by separating the deterministic drift component into a mean w̄ and a fluctuating w′ parts:
w′(x, t) = w(x, t)−w̄(x). The system describing the evolution of the fluctuating deterministic
part of the velocity fields reads

∂tw
′ + w′∇T w̄ + w̄∇T w′ + w′∇T w′ − w′∇T w′ + ∇ p′

ρ
− ν∇2w′

− 1
2

∑
i, j

∂xi ∂x j

(
ai jw

′) = 0, (81a)

∇d p̂t = −ρ(w∇T )σd B̂t + μ∇2σd B̂t , (81b)

∇· w = 0, ∇· σ = 0, ∇· (∇· a) = 0. (81c–e)
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Let us assume now that the deterministic drift component, w, lives in a subspace of finite
dimension spanned by a set of basis functions ϕ

	= {φi , i = 1, . . . ,m} determined from a
sequence of observed motion fields {u(·, t j ), j = 1, . . . , f } much longer than the number of
empirical modes (m < f ). As for the highly random oscillating term σdBt , we will assume it
lives in the complement orthogonal space spanned by the basis ϕcs

	= {φi , i = m +1, . . . , f }.
It corresponds to the residual error variance directions that are not explained by the selected
reduced basis. Applying a Galerkin projection of system (81) onto the truncated basis, ϕ, we
get (

∂tw
′ + w′∇T w̄ + w̄∇T w′ + w′∇T w′ − w′∇T w′ + ∇ p′

ρ
− ν∇2w′

− 1

2

∑
i, j

∂xi ∂x j

(
ai jw

′), φ j

)
= 0. (82)

Rewriting (82) in terms of the POD temporal coefficients, we obtain a quadratic system of
ODEs. For every j ≤ m modes, the system reads

dbk

dt
+ ik +

m∑
i=1

likbi +
s∑

i=1

m∑
j=i

bi ci jkb j = 0 ∀k = 1, . . . ,m , (83)

where

li j =
∫
Ω

w̄∇Tφi ·φ j dx +
∫
Ω

φi∇T w̄ ·φ j dx − 1

2

∫
Ω

∑
k,�

∂xk∂x� (ak�φi ) ·φ j dx

−
∫
Ω

ν∇2φi ·φ j dx, (84a)

ci jk =
∫
Ω

φ j∇Tφi ·φkdx, (84b)

ik = 1

ρ

∫
Ω

∇ p′ ·φkdx −
m∑

j=1

λ j

∫
Ω

φ j∇Tφ j ·φkdx. (84c)

All those expressions capture different physical phenomenon. The first linear term (84a)
describes the interaction between the mean flow and the fluctuating field. It also includes
viscous effects of the resolved modes and dissipation caused by the uncertainty component.
Nonlinear advection effects are reported by (84b). The independent term (84c) takes into
account, convective contribution of the modes and the pressure field influence. Boundary
conditions and symmetry make the pressure term vanish in the particular case of wake flows.
As a matter of fact, each mode satisfies the continuity equation, to give∫

Ω

∇ p′ ·φkdx =
∮

C
p′φkds,

where C is the boundary of domain Ω . Works of Deane et al. (1991) and Noack et al. (2003)
demonstrated that for wake flow configurations, the latter expression is negligible compared
to the other terms. Direct calculation of each term of the system (83) can be avoided by
relying on polynomial identification or optimal control techniques (Artana et al. 2012). The
later provide in addition a way to estimate an adapted initial condition of the system and to
consider eventually an error term on the dynamics. Least squares identification or variational
assimilation techniques (Artana et al. 2012), hides the necessity of an additional dissipation
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mechanisms as it is assumed to be carried by the data. However, even in that case it is useful
to formulate in an explicit way the precise form of the uncertainty involved.

The simplest procedure to specify the quadratic variation tensor, a, associated to the uncer-
tainty terms, consists in identifying it to the measurements variance:

a(x) = 1

T

f∑
i=1

(
u(x, ti )− ū −

m∑
j=1

b j (ti )φ j (x)
)(

u(x, ti )− ū −
m∑

j=1

b j (ti )φ j (x)
)

T

.

Here, it is assumed that the measurement variance tensor respects the incompressibility con-
straint ∇·∇· a = 0. A strict respect of this constraint would require an additional projection
defined through a constrained least squares fitting. However, it can be noticed, that the simple
scheme above is very intuitive, as the diffusion process of the large scale flow component is
proportional to the residuals variance tensor. Locally, the greater the discrepancy between the
reduced model and the data the stronger the diffusion of the velocity components.

This procedure provides immediately an expression of the covariance tensor associated to
the uncertainty in terms of the complement space basis functions

E
(
σ (x)dBt (σ (x′)dBt )

T
) =

f∑
k=m+1

λkφk(x)φT
k (x

′). (85)

The uncertainty term can then be classically written in a spectral form as

σ (x)dBt =
f∑

j=m+1

λ
1/2
j φ j dβ j (t), (86)

where β j (t) denotes a set of uncorrelated scalar standard Brownian motions. This represen-
tation supplies thus a simple scheme for the uncertainty sampling and hence allows random
drawings of the whole flow field:

dX t =
m∑

i=1

bi (t)φi dt +
f∑

j=m+1

λ
1/2
j φ j dβ j (t).

Such a formulation should enable to setup stochastic filtering procedures to estimate state
variables of interest from partial observation like satellite images (Beyou et al. 2013) in which
the reduced order modeling would have the great advantage to offer the possibility of an
immediate significant augmentation of the ensemble members.

8. Conclusion

In this paper, we have proposed a decomposition that allows us modeling the action on
a resolved component of the flow dynamics of uncertainties related to the fluid particles
displacement. The random uncertainty field encodes numerical artifacts or unresolved physical
processes that have been neglected in the momentum balance. They are defined through
diffusion tensors that have to be estimated or specified. In the former case, the estimation
can be led from a set of vectorial Poisson equations and two divergence free constraints. In the
latter case, the system reduces to a Navier-Stokes equation with a subgrid modeling defined
from an anisotropic diffusion that involves only the variance of the random term together
with a global constraint on this variance. This formulation gives a way to define appropriate



144 E. Mémin

subgrid diffusion schemes from the flow uncertainties specification and might be useful to
build large scale stochastic climatic or geophysical models. It brings also a new point of
view to some usual subgrid modeling and introduces additional constraints on those models.
In this study such a derivation has been investigated only for a shallow water model and
relation of the subgrid term has been explained for the Smagorinsky model and for the Gent-
McWilliams isopycnal diffusion. In the future, we aim at exploring further the derivation of
large scale geophysical models through such a methodology. This includes for instance the
rotating Boussinesq equations, or quasi-geostrophic models. It would be also of particular
interest to see if such a methodology enables to recover more realistic subgrid models for
the barotropic vorticity and baroclinic QG equations that take into account inhomogeneous
flow over topography. Another perspective of work, will consist to investigate assimilation
strategies between large scale models under uncertainty and fine resolution image data. The
idea will be here to exploit the definition of the subgrid tensor in terms of statistical variances
of the small scale velocities.
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Appendix A: Global energy estimate

To get a global energy estimates, we will assume the field w is smooth enough to be taken as
a test function, w ∈ H1

0 (Ω)
d of a divergence free Sobolev space with null condition on the

boundary for example. Then, taking w as test function in (44) we get the kinetic energy as

1

2

∫
Ω

∂t |w|2 + ν

∫
Ω

|∇w|2 + 1

2

∑
i, j

∫
Ω

ai j∂xi w · ∂x j w = 〈 f ,w〉. (A.1)

An ellipticity condition on ai j ,∑
i, j

ai jξiξ j ≥ α|ξ |2 ∀ ξ ∈ R
d , withα > 0 ,

leads to
1

2

∫
Ω

∂t |w|2 + ν̃

∫
Ω

|∇w|2 ≤
∫
Ω

| f ||w|, (A.2)

with
ν̃ = ν + 1

2
α. (A.3)
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Since w ∈ H1
0 (Ω)

d , using Poincaré inequality, the term
∫
Ω

| f ||w| can be split as follows:∫
Ω

| f ||w| ≤ ∥∥ f
∥∥

H−1(Ω)d

∥∥w∥∥L2(Ω)d
≤ C(Ω)

∥∥ f
∥∥

H−1(Ω)d

∥∥∇w
∥∥

L2(Ω)d
,

where H−1(Ω)d denotes the dual of H1
0 (Ω)

d :∥∥ f
∥∥

H−1(Ω)d
:= sup

v∈H1
0 (Ω)

d

〈 f , v〉
‖v‖H1

0 (Ω)
d
, v �= 0.

Young’s inequality gives

C(Ω)
∥∥ f
∥∥

H−1(Ω)d

∥∥∇w
∥∥

L2(Ω)d
≤ ν̃

2

∥∥∇w
∥∥2

L2(Ω)d
+ C(Ω)2

2ν̃

∥∥ f
∥∥2

H−1(Ω)d
.

Finally we get ∫
Ω

∂t |w|2 + ν̃

∫
Ω

|∇w|2 ≤ C(Ω)2

ν̃

∥∥ f
∥∥2

H−1(Ω)
,

and integration from 0 to T gives∥∥w∥∥2
L2(Ω)d

+ ν̃

∫ T

0

∥∥∇w
∥∥2

L2(Ω)d×d ≤ ∥∥w0
∥∥2

L2(Ω)d
+ C(Ω)2

ν̃

∫ T

0

∥∥ f
∥∥2

H−1(Ω)
,

thus ∥∥w∥∥2
L2(Ω)d

≤ ∥∥w0
∥∥2

L2(Ω)d
+ C(Ω)2

ν̃

∥∥ f
∥∥2

L2(0,T ;L2(Ω))
,

and

ν̃

∫ T

0

∥∥∇w
∥∥2

L2(Ω)d×d ≤ ∥∥w0
∥∥2

L2(Ω)d
+ C(Ω)2

ν̃

∥∥ f
∥∥2

L2(0,T ;L2(Ω))
.

The kinetic energy and the gradient velocity norm are bounded by the external force f and the
energy of initial condition w0.
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