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The turbulent cross helicity is directly related to the coupling coefficients for the mean vorticity
in the electromotive force and for the mean magnetic-field strain in the Reynolds stress tensor.
This suggests that the cross-helicity effects are important in the cases where global
inhomogeneous flow and magnetic-field structures are present. Since such large-scale structures
are ubiquitous in geo/astrophysical phenomena, the cross-helicity effect is expected to play an
important role in geo/astrophysical flows. In the presence of turbulent cross helicity, the mean
vortical motion contributes to the turbulent electromotive force. Magnetic-field generation due
to this effect is called the cross-helicity dynamo. Several features of the cross-helicity dynamo
are introduced. Alignment of the mean electric-current density J with the mean vorticity X, as
well as the alignment between the mean magnetic field B and velocity U, is supposed to be one
of the characteristic features of the dynamo. Unlike the case in the helicity or � effect, where J is
aligned with B in the turbulent electromotive force, we in general have a finite mean-field
Lorentz force J�B in the cross-helicity dynamo. This gives a distinguished feature of the cross-
helicity effect. By considering the effects of cross helicity in the momentum equation, we see
several interesting consequences of the effect. Turbulent cross helicity coupled with the mean
magnetic shear reduces the effect of turbulent or eddy viscosity. Flow induction is an important
consequence of this effect. One key issue in the cross-helicity dynamo is to examine how and
how much cross helicity can be present in turbulence. On the basis of the cross-helicity
transport equation, its production mechanisms are discussed. Some recent developments in
numerical validation of the basic notion of the cross-helicity dynamo are also presented.

Keywords: Dynamo; Turbulence; Cross helicity; Transport suppression; Flow generation

1. Introduction

The primary effect of turbulence is enhancing the effective transport. The rates of
transport enhancement as compared with the molecular viscosity � and the magnetic
diffusivity � are approximately expressed by the turbulent Reynolds and magnetic
Reynolds numbers, Re(T ) and Rm(T ), respectively. They are Reynolds numbers defined
using the characteristic velocity of turbulence, u. If we adopt the mixing length ‘ as the
characteristic length scale of turbulence, the turbulent or eddy viscosity �T is estimated
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as �T� u‘. Hence, �T/�¼Re(T ) and for the turbulent magnetic diffusivity or anomalous
resistivity �, we have �/�¼Rm(T ). In geophysical and astrophysical phenomena, the
Reynolds and magnetic Reynolds numbers, and consequently the turbulent counter-
parts, are usually huge, so the transport enhancement is expected to be very large. These
transport enhancements by turbulence often play an essential role in the dynamics of
geophysical and astrophysical bodies.

If we have some symmetry breakage in turbulence, even in the presence of strong
fluctuations, the transport enhancement may be effectively suppressed or balanced by
some other turbulence effects. In this situation, large-scale or mean-field structures such
as the large-scale vorticity, global magnetic field, etc., are generated and sustained
persistently in turbulence. Turbulent dynamo, in which global magnetic fields are
generated and sustained by fluctuation motion, is one of the most interesting and
important physical processes in turbulence.

Here in this paper, dynamo is considered in the broadest sense. Of course, one of the
most important aspects of the dynamo is instability problem: how weak seed fields can
be amplified to strong fields. At the same time, however, the dynamo has the aspect of
transport suppression. The sustainment of the magnetic configuration in the presence of
strong turbulent magnetic diffusivity is also a very important topic in dynamo theory.
This is because the enhancement of magnetic diffusivity is the primary effect of
turbulence in magnetic-field evolution. Without the strong effective resistivity, a large-
scale magnetic configuration cannot be ever formulated from the original or previous
configurations. One of the obvious challenges for dynamo is to elucidate and predict the
solar cycle. In order to elucidate the internal rotation of the Sun and the Maunder
Minimum-like ‘‘anomaly’’ of the solar activity cycle, we have to consider the dynamical
balance between the field generation and destruction mechanisms, which is beyond the
instability.

Starting from 1950s, the mean-field dynamo theory made a great achievement in
understanding physics of magnetic-field generation and sustainment in highly turbulent
electrically conducting media (Parker 1955, 1979, Steenbeck et al. 1966, Moffatt 1978,
Krause and Rädler 1980). First of all, we should point out that it is fabulous to derive,
explain, and predict the basic behaviors of the magnetic fields in the geo/astrophysical
bodies on the basis of a very simple system of equations, magnetohydrodynamics
(MHD). At the same time, several criticisms have been made against the mean-field
dynamo theory with several connotations, which include (i) kinematic approach; (ii)
transport coefficients as parameters; (iii) ‘‘generic’’ form of the turbulent electromotive
force; (iv) physical interpretations of main processes; (v) azimuthal averaging; (vi)
incompressible treatment.

(i) Kinematic approach: In the kinematic dynamo approach, with expectation
that the Lorentz back-reaction force to the flow can be small enough to be
neglected, we assume that the velocity does not depend on the magnetic field.
With this prescribed velocity, evolution of magnetic field is examined.
However, as the magneto-rotational instability (MRI) studies have shown,
even small magnetic field (much less than the equipartition field) will affect
the dynamic evolution of turbulent motion (Balbus and Hawley 1998). Also it
has been argued that even with a very small magnetic field, the Lorentz back-
reaction will restrict dynamo action through the suppression of the generation
and diffusion of the magnetic field (quenching) (Vainstein and Cattaneo 1992)
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In these senses, the central assumption of the kinematic approach completely
failed.

(ii) Transport coefficients as parameters: In some mean-field dynamo models, the
transport coefficients appearing in the turbulent electromotive force are
treated as adjustable parameters with or without a prescribed spatial
distribution (Dikpati and Charbonneau 1999). However, from the viewpoint
of turbulence theory, this is quite questionable. The transport coefficients
should be determined by statistical properties of turbulence, which in general
depends on the spatiotemporal evolution of turbulent flow.

(iii) ‘‘Generic’’ form of the turbulent electromotive force: In some mean-field
dynamo theory, the ‘‘generic’’ form of turbulent electromotive force hu 0 � b 0i
is assumed to be a linear functional of the mean magnetic field and its
derivatives (u 0: velocity fluctuation, b 0: magnetic-field fluctuation, h � � � i:
ensemble average). Even if the proportional coefficients a, b are treated as
tensors, the assumption of such expansion with respect to the mean magnetic
field may not be sufficient (Rädler and Brandenburg 2010).

(iv) Physics of main processes: In order to explain magnetic-field evolution
intuitively, in some mean-field models, a combination of the turbulent helicity
effect (� effect) and the differential rotation effect (O effect) is employed.
However, each process contains several assumptions. For example, the so-
called O effect contains, at least, magnetic flux freezing in highly turbulent
medium, favorable differential rotations, and magnetic reconnection at a
particular location. Analysis of all these processes is not so simple as some
mean-field model explanation naively assumes (Yokoi and Hoshino 2011).

(v) Azimuthal averaging: In some mean-field theory, the azimuthal average along
the rotation axis is adopted as the ensemble average. However, non-
axisymmetric properties are expected to be essential in some magnetic-field
generation processes. Azimuthal averaging procedure will delete the possi-
bility of such non-axisymmetric effects. So, mean-field theory with azimuthal
averaging has nothing to do with the magnetic-field evolution associated with
the non-axisymmetric behavior of the field (Schüssler and Ferriz-Mas 2003).

(vi) Incompressible treatment: In some mean-field theory, key notions of the
dynamo, such as the turbulent electromotive force, are derived under the
assumption of the incompressibility. However, in realistic geo/astrophysical
situations, the compressibility or at least the mean-density stratification plays
an essential role in magnetic-field generation processes. In this sense, the
mean-field theory under the incompressible assumption is not an appropriate
approach to the realistic dynamo phenomena.

Depending on what kind of phenomenon we are interested in, some mean-field
theory employs some of these assumptions or approximations listed above as
connotations. However, none of these connotations are essential ingredients of the
mean-field dynamo theory.

On the criticism related to point (i), kinematic approach, it is worth while to point out
the following point. The velocity field is certainly influenced by the magnetic field. But
the degree of influence depends on the stage of turbulence (or instabilities). At the fully
developed turbulence stage (or fully saturated stage of relevant instabilities), the
influence of the magnetic field is entirely different from the one at the developing stage
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of turbulence or instabilities (Matsumoto and Tajima 1995). In this sense, over-
simplified argument against the kinematic approach is sometimes misleading. Of
course, it is true that the kinematic approach has its limitation. The force-free field
configuration argument in the � dynamo may support such approach to some extent.
However, the most interesting aspect of dynamo action lies in the dynamical interaction
between the flow and magnetic field, as will be stressed later in the context of the cross-
helicity dynamo.

Point (ii), transport coefficients as parameters, will be considered in this paper.
Transport coefficients should be determined from the statistical properties of
turbulence, and statistical properties change depending on the evolution of turbulent
flow. Only in the case of homogeneous turbulence, these transport coefficients can be
treated as constants. But, still they are not adjustable parameters. In this paper, we
stress the importance of self-consistent turbulence modeling, where transport coeffi-
cients are determined by solving transport equations for the coefficients. In other
words, if the mean-field dynamo theory is accompanied by some closure scheme that
determines the transport coefficients in a nonlinear and self-consistent manner, the
mean-field dynamo approach is very strong and useful in realistic applications to the
geo/astrophysical phenomena.

Points (iii) and (iv) are directly related to the subject of this article. If we take
pseudoscalars other than the helicity into account, the ‘‘generic’’ form of the turbulent
electromotive force should be changed. If we have a third party who participates in the
dynamo game, the physics of magnetic-field generation and sustainment may change
drastically.

As for the questions on (v) azimuthal averaging and (vi) incompressible treatment,
again we stress these treatments are not the essential ingredients of the mean-field
dynamo theory. For the latter, we point out the fact that the magnetic induction
equation does not contain the density. So, as far as the formal expression of the
turbulent electromotive force is concerned, the incompressible treatment is expected to
give a good result. However, transport coefficients appearing in the turbulent
electromotive force, �, �, etc., depend on the compressibility.

The mean-field dynamo approach, in particular after clearing all the arguments listed
above, is very strong and useful. However, it is also true that the term ‘‘mean-field’’ has
several historical connotations. So, we prefer the term ‘‘turbulent dynamo’’ to mean-
field dynamo, and hereafter denote this approach without connotations as turbulent
dynamo.

In the study of turbulent dynamos, pseudoscalars play an important role in the
generation and sustainment of the large-scale structures in turbulence. One of the
representative pseudoscalars is the turbulent kinetic helicity hu 0 . x 0i, which character-
izes the helical property of the turbulent motion (x 0 ¼=� u 0: vorticity fluctuation). The
generation of the large-scale magnetic fields has long been studied with special attention
focussed on the helicity or � effect (Moffatt 1978, Parker 1979, Krause and Rädler
1980). In the context of the inverse cascade of the energy from small scales to large
scales, Pouquet et al. (1976) showed that it is not the kinetic helicity hu 0 . x 0i or the
current helicity hb 0 . j 0i but the difference of them that induces the growth of the large-
scale magnetic-field energy ( j 0 ¼=� b 0: electric-current density fluctuation). The
difference defined by h�u 0 . x 0 þ b 0 . j 0i is called the turbulent residual helicity.

A pseudoscalar defined by the cross-correlation between the turbulent velocity and
magnetic field, hu 0 . b 0i, is called the turbulent cross helicity. In contrast to the helicity or
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� effect, not much attention has been paid to the cross-helicity effect in the turbulent

dynamo studies. The cross helicity itself has been investigated extensively, in particular,

in the relation with solar-wind turbulence. From the pioneering work by Dobrowolny

et al. (1980a,b) not a few works have been done in the study of relaxation properties of

the MHD turbulence with cross helicity. Grappin et al. (1982, 1983) and Pouquet et al.

(1988) worked on the energy transfer in MHD turbulence with the cross-correlation

between the velocity and magnetic fields. In addition, the velocity–magnetic-fields

alignment itself is ubiquitous in geo/astrophysical flow phenomena such as solar winds,

and is often called the dynamic alignment. Dynamic alignment has been discussed in

relation to the Alfvén wave and Alfvén effect (Roberts 1967, Pouquet 1993), and the

notion of dynamic alignment has been confirmed through numerical simulations of the

two-dimensional MHD turbulence (Biskamp and Welter 1989, Biskamp 1993).

However, in this paper, we confine ourselves to the cross-helicity effects in the

dynamo action and turbulent transport. Those who are interested in other aspects of

cross helicity are referred to Yokoi (2011) and works cited therein.
As was mentioned, in the context of dynamos, the cross-helicity effect has not drawn

much attention as compared with the helicity or � effect. We can point out several

reasons why people have considered the cross-helicity dynamo to not be much relevant.

(Q-i) Due to the Galilean invariance of the fluid equation, we may put U¼ 0 in the
equation of the fluctuation velocity. As this result, the large-scale fluid
motion represented by U is excluded from the expression of EM in the mean
induction equation.

(Q-ii) The inner and outer products of u 0 and b 0 are related to each other as
(u 0 . b 0)2þ (u 0 � b 0)2¼ ju 0j2jb 0j2. This relation suggests that a large turbulent
cross helicity hu 0 . b 0i corresponds to a small turbulent electromotive force
hu 0 � b 0i. In other words, in the situation where the turbulent electromotive
force plays an essential role, the turbulent cross helicity is expected to be very
small or negligible. Thus, there is no need for us to take the cross-helicity
effect into account in the turbulent dynamo process.

(Q-iii) Turbulent cross helicity is the transport coefficient that couples with the
large-scale vorticity X. The large-scale vorticity is locally equivalent to
the system rotation. Since the system rotation will not directly affect the
magnetic field, the large-scale vorticity is not expected to enter in
the expression for the turbulent electromotive force. In this sense, the cross
helicity must be irrelevant to the turbulent dynamo process.

(Q-iv) Even if the cross helicity can be related to the turbulent dynamo process, it is
difficult for the cross helicity to be present in turbulence. Turbulent cross
helicity represents breakage of symmetry between the directions parallel and
antiparallel to the magnetic field. It is unlikely for large amount of cross
helicity to exist in usual turbulent situation. Namely, the cross-helicity effect
is too weak to play an important role in the real dynamo process in
turbulence.

We shall answer these arguments as follows.

(A-i) By the Galilean invariance of the governing equation, we eliminate only the
translational motion from the equation, but not the rotation or strained
motion. However, if we naively drop the mean velocity by putting U¼ 0,
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we also delete the possibility that the inhomogeneity of the mean velocity U
may work. Namely, the effects of the mean vortical motion X¼=�U and
the mean velocity strain =U. Only in the homogeneous turbulence, such
treatment can be allowed. In this sense, we should be careful to treat the
mean velocity.

(A-ii) First, as we will see from applications of the cross-helicity effects to several
geo/astrophysical phenomena in sections 6 and 7, the magnitude of the scaled
turbulent cross helicity (the turbulent cross helicity normalized by the turbu-
lent MHD energy) we need for the effect to be relevant is
jW/Kj ¼O(10�2)�O(10�1). Not so strong correlation such as 0.1�1 in most
cases.
Secondly, the relationship between the turbulent electromotive force
jhu 0 � b 0ij and the turbulent cross helicity jhu 0 . b 0ij is not so simple. For
instance, let us consider the case with fully aligned u 0 and b 0 as u 0 ¼�b 0. If
the number of parallel and antiparallel ones is almost the same, we have very
small jhu 0 . b 0ij. At the same time, due to the alignment, jhu 0 � b 0ij ¼ 0.
Thirdly, the turbulent electromotive force hu 0 � b 0i cannot be estimated

only by one term of �B, ��J, and �X. The balance of these three terms
should be important. In reality, we may have a situation such as

hu 0 � b 0i|fflfflfflfflffl{zfflfflfflfflffl}
small or large

¼ �B|{z}
large

� �J|{z}
large

þ �X|{z}
large

: ð1Þ

(A-iii) Properties of turbulence will be changed by the rotation effect. Actually, as
we will see in section 3.3.3, the velocity under the rotation or vortical motion
is subject to the Coriolis-like force due to the local angular momentum
conservation.

(A-iv) How and how much cross helicity can exist in turbulence is a problem of
substantial importance. As will be suggested by the estimates of the galactic
magnetic field, the period of magnetic activity, the torsional oscillation inside
the Sun, etc., the turbulent cross helicity scaled by the turbulent MHD
energy, jW/Kj ¼O(10�2) seems to be large enough for the cross-helicity effect
to be relevant for several phenomena. Further information through the
experiments, observations, and numerical simulations is needed on the
estimate of jW/Kj.

These considerations suggest that there is no definite reason why we can deny the
possibility of the cross-helicity-related dynamo. Such a dynamo other than the usual
helicity or � dynamo may serve itself as a supplementary player in the dynamo process.
How much cross-helicity is relevant depends on how much cross helicity we have in
turbulence.

As will be seen in section 3, if we retain the inhomogeneous mean velocity U in the
fluctuation equations, we do have a cross-helicity contribution to the turbulent
electromotive force EM¼hu

0 � b 0i. This contribution was first calculated by Yoshizawa
(1990) with the aid of an analytical statistical theory of inhomogeneous turbulence.
Physical interpretations of this effect have been proposed with the aid of the stationary
dynamo solution consisting of the alignment of the mean magnetic field B and the
velocity field U (Yoshizawa and Yokoi 1993, Yokoi 1996a). Also the physical origin
of the cross-helicity effect has been clarified by Yokoi (1999). The importance of the
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cross-helicity effects has been pointed out in the context of the mean-field dynamo
theory, with special emphasis on the magnetic-field generation in astrophysical
phenomena such as accretion disks (Yoshizawa and Yokoi 1993, Nishino and Yokoi
1998, Yoshizawa et al. 2000a), the Sun and the Earth (Yoshizawa 1993, Yoshizawa and
Yokoi 1996), galaxies (Yokoi 1996a, Brandenburg and Urpin 1998), and on the
turbulence suppression in fusion devices such as the improved confinement mode in
tokamaks (Yoshizawa 1991, Yokoi 1996b, Yoshizawa et al. 1999). What has been
lacking in this dynamo study is a numerical test of the basic notion of the idea.

As we see in the following sections, the cross-helicity dynamo shows features different
from the usual helicity or � dynamo. One of such features is the configuration of the
mean electric-current density J. As we show in section 3.3, the EM expression itself does
not tell us any alignments between the mean electric-current density J, the mean
magnetic field B, or the mean vorticity X. The direction of the mean fields is determined
by the spatial distribution of several turbulent quantities with the boundary conditions.
However, there is alignment tendency between the corresponding parts of the turbulent
electromotive force. As the celebrated figure of the � dynamo indicates (later in
figure 9), an essential ingredient of the � effect lies in its ability to produce a mean-field
configuration with the mean magnetic field B which has a component parallel or anti-
parallel to the mean electric-current density J. If the main balancer against the
turbulent-magnetic-diffusivity-related term �J is the �-related term �B, the essential
feature of the � effect is the alignment of B and J. This point would be clearer if we
consider the mean Ohm’s law as is shown later in (127). With the EM expression, the
mean electric-current density is expressed as in (129). This clearly shows that the �B
term never enters into the mean-field Lorentz force J�B. In this sense, irrespective of
the boundary conditions, the magnetic field induced by the � effect never contributes to
the J�B back reaction.

Alignment of the mean electric-current density J with the mean vorticity X in the EM

expression is one of the characteristics of the cross-helicity dynamo. This configuration
may naturally lead to the alignment of the mean magnetic field B and the mean velocity
U. Unlike the � effect, the mean-field configuration in the cross-helicity dynamo allows
a non-vanishing mean-field Lorentz force (J�B 6¼ 0). This is a distinct difference from
the mean-field configuration in the � dynamo. This feature is fully utilized when we
investigate the flow generation or flow dynamo by considering the cross-helicity effects
in the momentum equation in section 7. Related to the Lorentz force, we should note
the following point. So far we have argued only the mean-field Lorentz force, J�B.
The mean of the Lorentz force, h j� bi, contains the other part expressed by h j 0 � b 0i.
The latter is directly related to the turbulent Maxwell stress, which is included in the
definition of the MHD Reynolds stress (see (24a)) in this work. This certainly gives an
important contribution of turbulence to the mean momentum equation. Actually,
inclusion of both J�B and h j 0 � b 0i is an essential point when we consider the flow
generation related to the turbulent dynamo (section 7).

In the general situation of dynamo process, both the helicity and cross-helicity effects
would play a certain role in generating and sustaining the mean magnetic field against
the enhanced magnetic diffusion due to turbulence. Corresponding to this, as will be
referred to later, the turbulent electromotive force in its generic form is a functional of
B, J, and X. This fact implies that the alignment of J and X is a direct consequence of
the turbulent electromotive force that lacks the B-related term but consists of the J- and
X-related terms only. On the other hand, the alignment of J and B, which is realized in
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the helicity or � dynamo, might be an immediate consequence of the turbulent
electromotive force with the X-related term dropped. These points lead us to the
questions: What physical process underlies in each term of the turbulent electromotive
force that is originated from the presence of the mean magnetic field B, the mean
electric-current density J, and the mean vorticity X? Which effect is dominant under
what conditions? These questions are addressed in the following sections where physical
origin of each term of the turbulent electromotive force is discussed, and where
production mechanisms of the turbulent cross helicity are examined.

The organization of this paper is as follows. In section 2, we introduce the turbulent
cross helicity and present its properties that are relevant to the dynamo process.
In section 3, the turbulent electromotive force is viewed from several aspects. By
considering the evolution equation of the turbulent electromotive force, the physical
origin of each term of the electromotive force is shown. In section 4, basic properties of
the cross-helicity dynamo are explained. In comparison with the � or helicity dynamo,
the main features of the field configuration in the cross-helicity dynamo are stressed.
In the application of the cross-helicity dynamo to real phenomena, how and how much
cross helicity exists in turbulence are very important issues. By considering the transport
equation of the turbulent cross helicity, we examine the production mechanisms of
turbulent cross helicity in section 5. In section 6, some illustrative applications of the
cross-helicity dynamo to real phenomena are presented, which include galactic magnetic
field (section 6.1), accretion disk (section 6.2), solar dynamos (section 6.3). Another
interesting feature of the cross-helicity effect is flow generation. Some examples of this
flow dynamo are presented in section 7. Recently several numerical tests on the cross-
helicity effect have been performed or in progress. Some of these numerical results are
presented in section 8. Concluding remarks are given in section 9.

2. Cross helicity

In order to examine the turbulence effects on the evolution of the mean velocity and
magnetic field, we adopt an ensemble average h � � � i and divide a field quantity f into the
mean F and the fluctuation around it, f 0:

f ¼ F þ f 0, F ¼ h f i ð2a;bÞ

with

f ¼ u,x, b, j, e, a, �, p, pM, q, �ð Þ, ð3aÞ

F ¼ U,X,B, J,E,A, �,P,PM,Q,�ð Þ, ð3bÞ

f 0 ¼ u 0,x 0, b 0, j 0, e 0, a 0, � 0, p 0, p 0M, q 0, � 0
� �

, ð3cÞ

where u is the velocity, x(¼=� u) the vorticity, b the Alfvén velocity (magnetic field
measured in the Alfvén speed unit), j(¼ =� b) the electric-current density counterpart,
e the electric field counterpart, a the vector potential, � the density, p the pressure,
pM(¼pþ b2/2) the MHD pressure, q the internal energy, � the temperature. Note that
the decomposition (2) itself does not require any scale separation between the
mean and fluctuation quantities. Here, the magnetic field, etc., are expressed using the
Alfvén-speed unit, and are related to the ones with the original or physical unit denoted
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with � as

b ¼
b�ffiffiffiffiffiffiffiffi
	0�
p , j ¼

j�ffiffiffiffiffiffiffiffiffiffiffi
�=	0

p , e ¼
e�ffiffiffiffiffiffiffiffi
	0�
p , p ¼

p�
�

ð4a�dÞ

(	0 is the magnetic permeability).
The main reason of introducing the Alfvén-speed formulations is to make the system

of equations more symmetric and the treatment of nonlinearity simpler. This is along
the same line with introducing the pressure function ~p ¼

R
ð p=�Þdp in the barotropic

fluid analysis, and with the Favré or mass-weighted average of the velocity fu}m¼h�ui/
h�i in the compressible turbulence analysis. In order to tackle a strongly nonlinear
problem, typically represented by the response-function equation (A27), it is very useful

to introduce some variables that make the governing equations simpler or more
symmetric.

Another (physically more important) reason to adopt the magnetic field in Alfvén-
speed units is related to its usefulness in the physical arguments. It is not the turbulent

MHD energy (density) �hu 02i=2þ hb 0�
2i=ð2	0Þ or the turbulent cross helicity (density)

hu 0 . b 0�i themselves, but a dimensionless quantities constructed by the energy and the

cross helicity that represents the dynamic properties of turbulence transports. In the
later sections we see that the turbulent cross helicity hu 0 . b 0i normalized by the
turbulent MHD energy (per unit mass) hu 02þ b 02i/2 is such a measure. This is in

contrast to the geometrical or topological measure hu 0 . b 0�i=ð
ffiffiffiffiffiffi
u 02
p ffiffiffiffiffiffiffi

b 0�
2

p
Þ, which just

represents the alignment angle between the velocity and magnetic field.
Cross helicity is the correlation between the velocity and magnetic field defined by

Wtot �

Z
V

u . b� dV, ð5Þ

where V is the volume of the system considered. In this paper, we mainly consider its
local density u . b with the magnetic field measured in Alfvén-speed units, and denote it
as cross helicty. Then the turbulent cross helicity (density) is defined as

W � hu 0 . b 0i, ð6Þ

while the mean-field cross helicity (density) is defined as

WM � U . B: ð7Þ

These definitions are adopted on the basis that we mostly treat turbulence in an
incompressible framework. In the case of incompressible turbulence, whether we define
the cross helicity by the magnetic field in physical units, b�, or by the counterpart in
Alfvén-speed units, b, makes no substantial difference. It is quite common in the

literature of turbulence studies to express the magnetic field by the one measured in
Alfvén-speed units. An even more symmetrical form of MHD equations, the Elsasser-

variable formulation is often adopted in the analysis of incompressible MHD
turbulence.

Treating fully nonlinear compressible MHD turbulence is a very difficult task. There
are several strategies for it (Yoshizawa 2003, Yoshizawa and Yokoi 2003). One approach

is a hybrid treatment: turbulence is treated as incompressible, but the compressibility
effects are taken into account for the estimate of the effective transport coefficients
(Canuto and Mazzitelli 1991). The assumption that the turbulence is incompressible is
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made because of the simplicity of the mathematical treatment. We should note that even

in the compressible turbulence case if we can neglect the density fluctuations (� 0 ¼ 0), the

expressions for the Reynolds stress R and the turbulent electromotive force EM are

written in a form similar to the counterpart in the incompressible case. We also note that

the Elsasser formulation can be extended to the compressible MHD cases (Marsch and

Mangeney (1987), see also Yokoi andHamba (2007) for compressibleMHD turbulence).
Cross helicity possesses several important features, which include (i) conservation, (ii)

topological interpretation, (iii) pseudo-scalar, (iv) transport suppression, (v) bounded-

ness, (vi) relation to Alfvén wave. Since these features are related to the properties of

cross-helicity-related dynamo, we briefly explain them.

(i) Conservation. Cross helicity, as well as the MHD energy
R
V

1
2 ðu

2 þ b2ÞdV and

magnetic helicity
R
V a . b dV, is an inviscid invariant of the MHD equations. It is

conserved in the absence of the molecular viscosity and magnetic diffusivity (�¼ �¼ 0).

This can be easily shown as

dWtot

dt
¼

Z
V

@u

@t
. b� þ u .

@b�
@t

� �
dV

¼

Z
V

� u . =ð Þu�
1

�
=p� þ

1

�
j� � b�

� 	
. b� þ u . =� u� b�ð Þ½ 	


 �
dV

¼

Z
V

= . 1
2u

2 �
�0

�0 � 1

p�
�

� �
b� � u . b�ð Þu

� 	
dV ð8aÞ

¼

Z
S

1
2u

2 �
�0

�0 � 1

p�
�

� �
b� � u . b�ð Þu

� 	
. n dS, ð8bÞ

where �0 is the ratio of the pressure and volume specific heats and n is the outward
normal unit vector. A polytropic relation between the pressure and density p ¼ ��0 is

assumed. Here use has been made of vector identities

u . =ð Þu ¼ = 1
2u

2
� �

� u� x, ð9Þ

u . =� u� b�ð Þ½ 	 ¼ �= . u� u� b�ð Þ½ 	 þ u� b�ð Þ . x ð10Þ

(x(¼ =� u) is the vorticity). Equation (8b) shows that if we have no velocity nor
magnetic field at the boundary surface (u¼ b�¼ 0), the total amount of cross helicity is

conserved. The last line of (8b) shows that in addition to the cross-helicity influxZ
S

u . b�ð Þu . ð�nÞdS, ð11Þ

if we have a sort of energy inhomogeneity along the magnetic field:Z
S

1
2u

2 �
�0

�0 � 1

p�
�

� �
b� . n dS ¼

Z
V

b� . = 1
2u

2 �
�0

�0 � 1

p�
�

� �
dV, ð12Þ

the cross helicity is supplied to the system. As the divergence form (8a) shows, this just
expresses the transport effect. However, it may play an important role in the local cross-

helicity generation because the cross helicity is not positive definite. This is a very

important point for cross helicity generation mechanism and in strong contrast with the

positive definite quantities like the energy. We return to this point later in section 5.
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(ii) Topological interpretation. Like the kinetic helicity u . x and the magnetic

helicity a . b (b¼=� a, where a is the magnetic vector potential) the cross helicity can

be topologically interpreted (Moffatt 1978). The cross helicity provides a measure of

degree of linkage of the vortex tubes of the velocity field with the flux tubes of the

magnetic-field. To see this, we consider a special situation where the magnetic field is

b¼ 0 except in a single flux-tube volume Vb in the neighborhood of the closed line Cb

and the vorticity is x¼ 0 except in a single vortex-tube volume V! in the neighborhood

of the closed line C! as in figure 1.
In this case, the cross helicity is expressed asZ

V

u . b dV ¼

Z
Vb

u . b dVb þ

Z
V!

u . b dV!: ð13Þ

If the magnetic field is homogeneous in the cross section of the volume Vb, the first term
in (13) is expressed asZ

Vb

u . b dVb ¼ Fb

Z
Cb

u . ds ¼ Fb

Z
SbðCbÞ

ð=� uÞ . n dSb

¼ Fb

Z
SbðCbÞ

x . n dSb ¼ FbF!, ð14Þ

where

Fb ¼

Z
SðVbÞ

b . n dS ¼

Z
S!ðC!Þ

b . n dS! ð15Þ

is the magnetic flux through the cross section of the volume Vb, which is equal to the
magnetic flux through the surface S!(C!) spanned by the loop C!. And F!, the vortex
flux through the surface Sb spanned by the loop Cb, is equal to the vortex flux through

the cross section of volume V!. A similar argument is applicable to the second term

in (13). Finally, the total amount of cross helicity is expressedZ
V

u . b dV ¼ 2nF!Fb, ð16Þ

where n shows how many times the vortex (or magnetic flux) tube thread through the
surface spanned by the magnetic flux (or vortex) tube. Equation (16) shows that the

cross helicity is equivalent to the knottedness of the vortex tube with the magnetic flux

tube. The conservation of cross helicity topologically means the number of knottedness

is conserved.

Fw

Cw Vw

Fb
Sb (Cb)Sw (Cw)

Vb
Cb

Figure 1. Topological interpretation of cross helicity.
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(iii) Pseudoscalar. Unlike the energy, the cross helicity is not positive definite.
Inversion of the coordinate system is equivalent to a combination of rotation and
reflection (mirror) transformations. It corresponds to the change of the coordinate
system from right-handed into left-handed. Velocity is a polar vector whose
components change their sign under inversion (x i 7!x̂ i ¼ �x i) as u i} û i

¼�u i,
whereas magnetic field is an axial vector whose components do not change their sign as
b i 7!b̂ i ¼ b i ( .̂ denotes a quantity under inversion). Defined as the inner product of the
velocity and magnetic field, the cross helicity (density) changes its sign under inversion
as W} Ŵ¼�W.

In a mirror or reflectional symmetric system, all statistical quantities show
f ðrÞ7!f̂ ðr̂Þ ¼ f̂ ð�rÞ ¼ f ðrÞ. At the same time, by definition, a pseudoscalar quantity
changes its sign under the inversion as f ðrÞ7!f̂ ðr̂Þ ¼ f̂ ð�rÞ ¼ �f ðrÞ. Thus a pseudoscalar
in a mirrorsymmetric system obeys f (r)¼�f (r). Namely, a pseudoscalar in a
mirrorsymmetric system always vanishes: f (r)¼ 0. To put it other way, a finite value
of pseudoscalar appears only in non-mirrorsymmetric systems. In this sense,
pseudoscalar is a measure for representing the breakage of mirrorsymmetry.
Pseudoscalar nature of cross helicity is of fundamental importance in dynamo.

(iv) Transport suppression. In the magnetic induction equation:

@b

@t
¼ =� u� bð Þ þ �r2b, ð17Þ

the nonlinear mixing is represented by the first or u� b-related term. Note that in
general the velocity u depends on the magnetic field b. If the velocity and the magnetic
field are aligned, ukb, the mixing term vanishes. In such a case, we have no nonlinear
mixing and magnetic-field evolution obeys just a diffusion equation:

@b

@t
¼ �r2b: ð18Þ

Since the magnitude of inner and outer products of velocity and magnetic-field vectors
are related as

u . bð Þ
2

juj2jbj2
þ

u� bð Þ
2

juj2jbj2
¼ 1, ð19Þ

the cross helicity is expected to be related to the suppression of nonlinear mixing coming
from u� b.

(v) Boundedness. The magnitude of cross helicity is bounded by that of MHD energy
since

u� bð Þ
2

 0 ð20aÞ

or equivalently

ju . bj

ðu2 þ b2Þ=2
� 1: ð20bÞ

This inequality should be locally satisfied. So, the magnitude of local cross helicity
(density) is always bounded by the local MHD energy (density). As will be shown in the
later sections, this boundedness of cross helicity gives important constraints for the
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magnitude of the cross-helicity effect, model constants for cross-helicity evolution
equations, etc.

(vi) Alfvén wave. Cross helicity is related to the asymmetry of Alfvén waves. If the
Alfvén wave propagates in the direction parallel (or antiparallel) to the large-scale
magnetic field, the velocity variation associated with the Alfvén wave is antiparallel (or
parallel) to the magnetic-field variation, contributing to a negative (or positive)
turbulent cross helicity (figure 2). If the Alfvén waves equally propagate in the
directions parallel and antiparallel to the large-scale magnetic field, the negative and
positive contributions to cross helicity are canceled out, and the net cross helicity
becomes zero. If we have asymmetry between these two directions, we have a finite cross
helicity. In the case of solar wind, the source of oscillation is located on the surface of
the Sun. As this result, the Alfvén waves predominantly propagate outward direction
from the Sun in the solar wind. This strong asymmetry of the Alfvén wave propagation
gives large positive and negative cross helicity in the solar-wind turbulence depending
on the magnetic-field sectors. In a sector with magnetic field is outward (or inward)
direction from (or toward) the Sun, we have negative (or positive) cross helicity. This is
the reason why we observe exceptionally large magnitude of cross helicity in the solar-
wind turbulence in general.

This asymmetry of Alfvén wave is related to the cross-helicity supply mechanism (12).
This point will be referred to later in section 5.3 in relation to the cross-helicity
generation mechanism in turbulence.

3. Turbulent electromotive force

3.1. Mean and fluctuation

In order to investigate the flow–turbulence interaction, we have to simultaneously treat
the mean fields and the fluctuation fields. In this section, we will show some basic
results from the analytical statistical theory for the inhomogeneous MHD turbulence.
The analytical expressions are often too complicated for the practical applications to
the real-world turbulence in astro- and geophysical phenomena. Turbulence modeling
on the basis of the statistical theory provides a powerful tool for analyzing the real-
world turbulence. The methods of turbulence modeling will also be referred to in this
section.

Propagation Propagation

B

b′

u′

Figure 2. Alfvén wave propagation and sign of helicity.
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For the sake of simplicity, in the following, we basically consider the incompressible
flow. This treatment does not deny the importance of the compressibility in dynamo
action at all. Rather, compressibility is often one of the most important ingredients of
the dynamo processes. We will refer to the cross-helicity production mechanism in
compressible MHD turbulence later.

With decomposition (2), equations for the mean velocity and magnetic field are
given as

@U

@t
¼ U�Xþ J� B� = . Rþ F� = Pþ 1

2U
2 þ 1

2b
02

� 
� �
, ð21Þ

@B

@t
¼ =� U� Bþ EMð Þ þ �r2B, ð22Þ

and the solenoidal conditions for the mean velocity and magnetic field:

= . U ¼ = . B ¼ 0, ð23Þ

where X(¼=�U) is the mean vorticity and F is the mean part of the external force.
Here the Reynolds stress R and the turbulent electromotive force EM are defined by

R�� � u 0�u 0� � b 0�b 0�
� 


, EM � u 0 � b 0
� 


: ð24a;bÞ

They are sole quantities representing the effects of fluctuation in the mean equations.
On the other hand, equations for the velocity fluctuation u 0 and the magnetic-field

counterpart b 0 are expressed in the rotational forms as

@u 0

@t
¼ u 0 �XþU� x 0 þ j 0 � Bþ J� b 0 � =p 0 � = . Rþ f 0 þ �r2u 0, ð25Þ

@b 0

@t
¼ =� u 0 � Bð Þ þ =� U� b 0ð Þ þ =� u 0 � b 0ð Þ � =� EM þ �r

2b 0, ð26Þ

with the solenoidal conditions for the fluctuation fields:

= . u 0 ¼ = . b 0 ¼ 0 ð27Þ

( f 0: fluctuation part of the external force).

3.2. Reynolds stress and turbulent electromotive force

From the two-scale direct-interaction approximation (TSDIA), analytical theory of
inhomogeneous MHD turbulence, the Reynolds stress and the turbulent electromotive
force are expressed as

R�� ¼
2

3
KR


�� � �KS
��
þ �MM

��
þ O�G� þ O�G� �

1

3

��X . C, ð28aÞ

EM ¼ ��Jþ �Bþ �X ð28bÞ

(Yoshizawa 1990). Here KR(�hu
02� b 02i/2) is the turbulent MHD residual energy,

X(¼=�U) is the mean vorticity, and C depends on the gradient of the kinetic-helicity
spectrum, =Huu (For the definition of Huu, see (A.37c) in appendix A). In (28a,b), �K,
�M, �, �, and � are the transport coefficients, which are connected to the statistical
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properties of turbulence. As will be shown later, �K and �M are directly related to � and
�, respectively. In (28a), S and M are the strain rates of the mean velocity and
magnetic fields, respectively. They are defined by

S
��
¼
@U�

@x�
þ
@U�

@x�
, M��

¼
@B�

@x�
þ
@B�

@x�
: ð29a;bÞ

Outline of how to derive expressions (28a,b) from (25) and (26) with (27) is given in
appendix A. The main assumptions used in derivation is homogeneity and isotropy of
the lowest-order fields (basic fields) of turbulence at very high Reynolds number.
Effects of inhomogeneity of the mean quantities, the mean magnetic field, and the mean
vortical motion (including the system rotation) are taken into account in a perturba-
tional manner. Equations (28a,b) are obtained by the analysis up to the first-order
calculations (O(
) calculation, 
: scale parameter in the expansion, see (A.14), (A.15),
and (A.21)). The higher-order derivatives appear in the expressions ofR and EM in the
higher-order calculations. For example, a term representing the magnetic pumping
appears in the second-order calculation. Also the term related to X� J should appear in
the higher-order (O(
2)) analysis. Note that in (28a) both X and C (/=Huu) contain a
spatial derivative of the mean quantities. Thus the X-related terms originally come from
the O(
2) calculation of the TSDIA. By making an analysis in a rotating frame, we
selectively derive an expression for the helicity effect in the lower-order (first-order)
calculations. Later in this paper these X-related term is often dropped from the R
expression.

In (28b), the turbulent electromotive force EM and the electric-current density J are
polar vectors, which change their sign under the inversion of the coordinate system,
whereas the magnetic field B and the vorticity X are axial vectors, which do not.
Considering this symmetry, we see that the coefficients � and � are pseudoscalars which
change their sign under the inversion, while � is a usual (pure-)scalar.

Substituting EM (see (28b)) into the mean induction equation (22), we have

@B

@t
¼ =� U� Bð Þ � =� �þ �ð Þ=� B½ 	 þ =� �Bþ �Xð Þ: ð30Þ

The second term shows that the effective magnetic diffusivity is enhanced by turbulence
as �! �þ �, with spatiotemporal variation of �. The third term represents the effects of
pseudoscalars � and � (both of them, as well as �, show spatiotemporal variations),
which may balance the � effect or the turbulent magnetic diffusivity to suppress the
enhanced transport of the mean magnetic field. Note that higher-order caluculations of
the TSDIA analysis give rise to a contribution deviating from the isotropic expression
of the transport coefficients.

In the traditional and authentic mean-field dynamo theory, the mean-field depen-
dence of the turbulent electromotive force EM has been calculated on the basis of
fluctuation equations (25) and (26). At the same time, in some cases, EM is given
without referring to the relation with the fluctuation equations, by using the Ansatz: the
turbulent electromotive force should be expressed by a linear combination of the mean
magnetic field and its derivatives as

u 0 � b 0
� 
a

¼ �abBb þ �abc
@Bb

@xc
þ � � �: ð31Þ
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This gives a clear insight on the expression of the turbulent electromotive force from the
mathematical viewpoint. However, we should note that this ‘‘generic’’ form of EM is a
direct consequence of putting U¼hui¼ 0 in (25) and (26). If we retain the mean velocity
in (25) and (26), we naturally have additional terms related to U in (31). Thus the
‘‘generic’’ form (31) should be extended to the one with U. In this context, we should
note that there are quite a few papers in which the possibility of the other contributions
to the turbulent electromotive force is discussed which do not depend on B (Rädler
1976, 2000). The reader is also referred to the arguments extended by Rädler and
Brandenburg (2010), where the U dependence of EM is considered in a general manner.

In principle, expression for any correlations of the velocity and magnetic-field
fluctuations can be derived from the evolution equations of the velocity and magnetic
fluctuations (see (25) and (26)). They are equivalently expressed as

@u 0

@t
¼ � U . =ð Þu 0 � u 0 . =ð ÞUþ B . =ð Þb 0 þ b 0 . =ð ÞB

� u 0 . =ð Þu 0 þ b 0 . =ð Þb 0 � = . R� =p 0M þ �r
2u 0 þ f 0, ð32Þ

@b 0

@t
¼ B . =ð Þu 0 � u 0 . =ð ÞB� U . =ð Þb 0 þ b 0 . =ð ÞU

� u 0 . =ð Þb 0 þ b 0 . =ð Þu 0 � =� EM þ �r
2b 0, ð33Þ

where p 0M is the fluctuation part of the MHD pressure pM¼ pþ b2/2.
With the aid of an analytical theory of inhomogeneous turbulence, it was shown that

the transport coefficients in Reynolds stress R (see (28a)) and the turbulent
electromotive force EM (see (28b)) are expressed as

� ¼
1

3

Z
dk

Z �

�1

d�1Gðk, x; �, �1, tÞ �Huuðk, x; �, �1, tÞ þHbbðk, x; �, �1, tÞ½ 	, ð34aÞ

� ¼
1

3

Z
dk

Z �

�1

d�1Gðk, x; �, �1, tÞ Quuðk, x; �, �1, tÞ þQbbðk, x; �, �1, tÞ½ 	, ð34bÞ

� ¼
1

3

Z
dk

Z �

�1

d�1Gðk,x; �, �1, tÞ Qubðk, x; �, �1, tÞ þQbuðk, x; �, �1, tÞ½ 	, ð34cÞ

C ¼
1

15

Z
k�2dk

Z �

�1

d�1Gðk, x; �, �1, tÞ=Huuðk, x; �, �1, tÞ ð34dÞ

with relations

�K ¼
7

5
�, �M ¼

7

5
� ð35a;bÞ

(Yoshizawa 1990). Here G is the response function of inhomogeneous turbulence, and
Quu, Qbb, Qub, Huu, and Hbb are the spectral functions of the turbulent kinetic energy,
magnetic energy, cross helicity, kinetic helicity, and current helicity, respectively. For
details of derivation of (28a,b) with (34a–d) and (35a,b), the reader is referred to
Yoshizawa (1990).

Equations (34a–c) indicate that the transport coefficients �, �, and � can be modeled
by the statistical quantities multiplied by the time scale of turbulence as

� ¼ C��H with H ¼ h�u 0 . x 0 þ b 0 . j 0i, ð36aÞ
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� ¼ C��K with K ¼ hu 02 þ b 02i=2, ð36bÞ

� ¼ C��W with W ¼ hu 0 . b 0i, ð36cÞ

where � is the time scale of turbulence. Here, C�, C�, and C� are the model constant.
They should be estimated from (34a–c). There have been some attempts to evaluate

them. According to these studies, they are estimated as

C� ¼ Oð10�2Þ, C� ¼ Oð10�1Þ, C� ¼ Oð10�1Þ ð37a�cÞ

(Hamba 1992, Yoshizawa 1998). Further work on estimating these constants using the
high-resolution direct numerical simulations (DNS’s) of the MHD turbulence is needed.

As we see in (34b) and (36b), in the TSDIA analysis up to the O(
) calculation (
:
scale parameter in the expansion), the turbulent magnetic diffusivity � depends both on

the turbulent kinetic and magnetic energies. This is in disagreement with the results of

the first-order calculation in the traditional mean-field theories such as the first-order

smoothing approximation (FOSA), the � approximation, etc. In the latter, the first-

order calculation shows that � depends on hu 02i but shows no dependence on hb 02i if the

mean magnetic field is much smaller than the equipartition field (Rädler et al. 2003,

Brandenburg and Subramanian 2005, Rädler and Rheinhardt 2007).
As far as the TSDIA analysis is concerned, this rise of ‘‘discrepancy’’ is connected to

the point how the solenoidal condition and magnetic pressure are treated in the TSDIA

formalism.
The Lorentz force in the momentum equation is rewritten as

j� b ¼ ðb . =Þb� = 1
2b

2
� �

, ð38Þ

and the second or magnetic-energy-related part is absorbed into the MHD pressure
defined by

pM ¼ pþ 1
2b

2 ð39Þ

(p: gas pressure). Applying the Reynolds decomposition (2), pM is divided into the mean
MHD pressure PM and the fluctuation around it, p0M. They are expressed as

PM ¼ Pþ 1
2B

2 þ 1
2hb
02i, ð40aÞ

p 0M ¼ p 0 þ b 0 . Bþ 1
2b
02
� 1

2hb
02i: ð40bÞ

We see from (40b) that the mean magnetic field B is included in the fluctuation MHD
pressure p0M.

In the incompressible turbulence analysis, the fluctuation pressure (p0M in the present

case) is eliminated using the solenoidal condition of the fluctuation velocity. At the

same time, in the TSDIA analysis, the solenoidal condition (A.19) is satisfied by the

solenoidal fluctuation (A.20). This suggests that some higher-order calculation is

needed for treating the solenoidal fluctuation field.
If we recall the external parameter (B, xF) expansion in the present TSDIA formalism

(see (A.22) in appendix A), we see the magnetic-energy-related contribution emerges at

higher-order calculations. Actually higher-order contributions in the TSDIA were

examined without resorting to the Elsasser formulation. It was found that the magnetic

fluctuation contribution is canceled by the higher-order contributions (Hamba and Sato

2008). However, it is also probable that, if we proceed to further higher-order
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calculations, magnetic fluctuation dependence of the turbulent magnetic diffusivity

would recover again. In relation to this point, we should note that in some literature the

magnetic fluctuation contribution to the turbulent magnetic diffusivity has been

reported (Rogachevskii and Kleeorin 2001, 2004, Kleeorin and Rogachevskii 2007). In

these papers, the turbulent transport coefficients are analyzed for the arbitrary ratio of

the mean magnetic field to the equipartition field. If the mean magnetic field is not so

small compared to the equipartition field, the turbulent magnetic diffusivity depends on

hb 02i as well as on hu 02i. However, if the mean magnetic magnetic field is much smaller

than the equipartition, their results are in agreement with Rädler et al. (2003),

Brandenburg and Subramanian (2005) and Rädler and Rheinhardt (2007).
The dependence of the transport coefficients on the turbulent quantities itself can be

derived easily without resorting to any elaborated closure theory for inhomogeneous

turbulence. From (32) and (33), we write the equation of the turbulent electromotive

force EM¼hu
0 � b 0i. Multiplying b 0b to the a component of (32) and u 0a to the b

component of (33), and adding them, we obtain

b 0b
@u 0a

@t
þ u 0a

@b 0b

@t
¼ �Ucb 0b

@u 0a

@xc
�Ucu 0a

@b 0b

@xc
þ Bcb 0b

@b 0a

@xc
þ Bcu 0a

@u 0b

@xc

þ b 0bb 0c
@Ba

@xc
� u 0au 0c

@Bb

@xc
þ u 0cb 0c

@Ub

@xc
� b 0bu 0c

@Ua

@xc

� b 0b
@p 0M
@xa
þ b 0b

@

@xc
hu 0cu 0a � b 0cb 0ai þ u 0a

@

@xc
hu 0cb 0b � b 0cu 0ai

� b 0bu 0c
@u 0a

@xc
þ b 0bb 0c

@b 0a

@xc
� u 0c

@

@xc
u 0ab 0b

þ b 0c
@

@xc
u 0au 0b þ �u 0a

@2b 0b

@xc@xc
þ �b 0b

@2u 0a

@xc@xc
þ b 0bf 0a: ð41Þ

We multiply (41) by the alternating tensor ��ab and take the ensemble average h � � � i of
each term. We have

@

@t
u 0 � b 0ð Þ

� ��
¼ ��ab b 0b

@u 0a

@t
þ u 0a

@b 0b

@t

� �� �

¼ �Uc @

@xc
��abu 0ab 0b
� 


þ
1

3
b 0b� bca

@b 0a

@xc
� u 0b� bca

@u 0a

@xc

� �
B� �

1

3
u 0bu 0b þ b 0bb 0b
� 


��ca
@Ba

@xc

þ
2

3
u 0bb 0b
� 


��ba
@Ua

@xb
þR:T:, ð42Þ

where R.T. stands for the higher-order terms. Here, use has been made of an
approximation that the fluctuating field is statistically homogeneous and isotropic:

f 01
�f 02

�
� 


þ f 02
�f 01

�
� 


¼
2

3

�� f 01

af 02
a

� 

: ð43Þ

The residual or higher-order terms R.T. include a term arising from the fluctuating
MHD pressure p0M, ���abhb 0bð@p 0M=@x

aÞi. As equation (40b) shows, p0M depends on the

mean magnetic field B. If we write the B-related part of p0M as p0MB¼ b 0 . B,
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its contribution is written as

���ab b 0b
@p 0MB

@xa

� �
¼ ���ab b 0b

@

@xa
b 0cBc

� �

¼ ���ab b 0bb 0c
� 
 @Bc

@xa
� ��ab b 0b

@b 0c

@xa

� �
Bc

¼ �
1

3
b 0db 0d
� 


��ab
@Bb

@xa
� ��ab b 0b

@b 0c

@xa

� �
Bc: ð44Þ

Here use has been made of (43). The first term in (44) gives a contribution to the mean
electric-current term while the second term gives a contribution to the magnetic
pumping term.

We should note that the fluctuation fields in general are neither statistically
homogeneous nor isotropic. In this sense, we have to treat the fluctuation equations in
more elaborative manners as the statistical closure theory for inhomogeneous
turbulence which leads to (34a–d) and (35a,b).

The treatment leading to (42) given above is very primitive. It does not pay any
special attention to the closure of the correlation moments. In this sense, this should be
considered as an expedient to get a broad grasp of physics relevant to the electromotive
force. The simple � approach described by Rädler and Rheinhardt (2007) is a much
more elaborated method to understand the dependence of turbulent electromotive force
on the mean magnetic field and velocity. The point here is that even the simplest
possible approach like (41) provides some insight into the mean velocity-related term if
we retain the mean velocity in the fundamental equations.

3.3. Physical interpretation of each effect

In what follows, we shall examine the effects of each term that is directly linked to U
and B in (32)–(33). Such arguments should be employed with caution. Since each term
reflects only a portion of the effects of U, B, etc., some effects may be canceled by other
terms as will be suggested concerning to the magnetic fluctuation effect on the turbulent
magnetic diffusivity (section 3.3.1). However, as long as we bear this point in mind,
it serves a useful way for abstracting the physical origins of the field-destruction
and -generation mechanisms due to turbulence.

3.3.1. Electromotive force due to turbulent motion; �-related term
Velocity-fluctuation effect. We start with the field-destruction mechanism due to the
turbulent motion. Let us consider a fluid element moving in a shearing mean magnetic
field B. From equation (33), the magnetic-field variation due to the mean magnetic
shear, 
b 0, is written as


b 0 ¼ ���Kðu
0

. =ÞB ð45Þ

(��K is the time scale of the fluctuation). Equation (45) shows that, if the fluid element
fluctuates and moves in the mean magnetic field shear, the magnetic-field variation is
induced in the direction of the mean magnetic field. The magnetic-field variation due to
the fluctuating motion u 0, 
B 0, is induced so that the induced variation may relax the
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original shear of the mean magnetic field. In case the element moves in the direction
that B increases, 
b is induced in the direction antiparallel to B (figure 3), resulting in
the relaxation of the original gradient of B. This manifests itself the ‘‘diamagnetic’’
nature of plasmas and is in common with the turbulent transport. For example, in the
case of the turbulent diffusion of a passive scalar, the transport due to turbulence occurs
in the direction opposite to the mean scalar gradient. The contribution to the turbulent
electromotive force, u 0 � 
b 0, resulting from the coupling of the mean magnetic shear
and the turbulent motion, is in the direction antiparallel to the mean electric-current
density J (figure 3). Note that the direction of u 0 � 
b 0 is always antiparallel to J
regardless of the fluctuation direction relative to the gradient B. This point is consistent
with the expression for the J-proportional term in EM (see (28b)). Then the
electromotive force due to the velocity fluctuation may be written as

hu 0 � b 0i�K ¼ ��KJ, ð46Þ

with the positive coefficient �K whose magnitude is determined by the intensity of the
velocity fluctuation.

Magnetic-fluctuation effect. Next, we proceed to the effect of the magnetic-field
fluctuation b 0 on the electromotive force. As is similar to the velocity-fluctuation case,
we consider the shearing magnetic field or the mean electric current (figure 4). The same
line of argument holds in the magnetic-field fluctuation case. However, physical origin
of the magnetic-fluctuation effect may become much clearer if we consider the mean
electric-current density J instead of B itself. In the presence of J, the velocity variation
due to the magnetic fluctuation b 0, 
u 0, is subject to the fluctuating Lorentz force as


u 0 ¼ ��MJ� b 0, ð47Þ

where ��M is the time scale of the motion. From equation (47), the contribution to the
electromotive force is given as


u 0 � b 0 ¼ ��MðJ� b 0Þ � b 0 ¼ ���Mb 02J: ð48Þ

du′

du′ µ b′

J µ b′

b′

B
J

B

D

Figure 4. Turbulent magnetic energy effects. This figure should be viewed with caution (see also figure 5).

u′

d b′

B

u′ µ db′
B

J

Figure 3. Turbulent kinetic energy effects.
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Equation (48) shows that the contribution is in the direction antiparallel to J (figure 4).
Note that since b 0 longitudinal to Jmakes no contribution to J� b 0, we consider only b 0

that is transverse to J in figure 4. Clearly, this argument has no dependence on the

direction of b 0 to the magnetic-field gradient associated with J. Then, the electromotive

force due to the magnetic fluctuation may be written as

hu 0 � b 0i�M ¼ ��MJ, ð49Þ

with �M being the positive coefficient whose magnitude is determined by the magnitude
of magnetic-field fluctuation.

Higher-order magnetic-fluctuation effect. As we have just derived above, the magnetic-

field fluctuation contributes to the turbulent electromotive force antiparallel to the

mean electric-current density (see (49)). The higher-order contribution of the magnetic-

field fluctuation may reduce this magnetic fluctuation contribution (Hamba and Sato

2008). Let us consider the mean electric-current density J, which corresponds to the

sheared mean magnetic-field configuration as in figure 5. We consider the magnetic-

field fluctuation b 0, whose direction is the same as in figure 4. We have the electric-

current fluctuation j 0 associated with the magnetic fluctuation b 0 as in figure 5. The

fluctuating Lorentz force j 0 �B due to the fluctuation electric-current density j 0 is

exerted in the diverging and converging directions on the near and far sides,

respectively. Hence, the magnetic pressure on the near side becomes lower than the

pressure on the far side. Because of this magnetic pressure gradient, velocity is induced

in the direction from far to near sides as


u 0 ¼ ���M2=p 0M: ð50Þ

As this result, we have a contribution to the turbulent electromotive force parallel to the
mean electric-current density:


u 0 � b 0
� 


�M2
¼ þ��M2J: ð51Þ

For the same magnetic fluctuation, the contribution from (51) is in the opposite
direction to the one from (49). This implies that the magnetic fluctuation effect in the

turbulent magnetic diffusivity may be suppressed due to the magnetic pressure, in

particular in the case of incompressible MHD flow. This result is consistent with the

traditional mean-field theories (Rädler et al. 2003, Brandenburg and Subramanian

2005, Rädler and Rheinhardt 2007, Hamba and Sato 2008).

〈b′2〉 ≠ 0

d u′
b′j′

j′

j′ µ B

j′ µ B

B

J

B

du′ µ b′

Figure 5. Higher-order turbulent magnetic energy effects.
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3.3.2. Electromotive force due to turbulent helicity; �-related term
Kinetic-helicity effect. We consider a fluid element placed in the uniform magnetic field

B whose direction is coincident with the z axis (figure 6). The direct effects of the mean

magnetic field B enter through the first term in equation (26) or =� (u 0 �B). It is useful

to divide u 0 into two parts; the velocity fluctuation parallel to B, u 0jj, and the one

perpendicular to B, u 0?. Since u
0
jj � B ¼ 0, we see from equation (26) that in the context

of the direct effects of B, only u 0? is relevant to the evolution of b 0. From equation (33),

the magnetic-field fluctuation due to the mean magnetic field is given as


b 0 ¼ ��KðB . =Þu 0 ð52Þ

with ��K being the time scale of the motion. Equation (52) can be rewritten as


b 0 ¼ ��K Bj j
@u 0

@z
¼ ��K Bj j

�u 0

�z
, ð53Þ

where �u 0 is the variation of u 0 with the displacement �z along B. Equation (53) states
that under the concept of magnetic-flux freezing, the magnetic-field line slightly bends

as u 0 changes with z, which leads to the transverse magnetic field 
b 0 proportional to
�u 0/�z. The changes of u 0, �u 0, in the magnitude and in direction are determined by

the topological properties of the turbulent field. The one in magnitude does not

contribute to the turbulent electromotive force since, in this case, �u 0(/ 
b 0) is parallel
to the original u 0, leading to u 0 � 
b 0 ¼ 0. Then we shall consider the change in direction.

In this context, we should recall that the turbulent kinetic helicity hu 0 . x 0i(¼

hu 0 . =� u 0i) represents the helical property of the turbulent velocity field. In the

presence of positive hu 0 . x 0i, the fluctuation vorticity x 0 is parallel to u 0 in a statistical

sense. In other words, the velocity variation associated with x 0, �u 0, tends to head for

the right-skew direction to u 0, as is seen in figure 6. It follows from equation (53) that

the magnetic field variation 
b 0 is in the direction parallel to �u 0. As a result, the

contribution to the turbulent electromotive force, hu 0 � 
b 0i, becomes antiparallel to B.

On the other hand, the contribution is parallel to B in the case of negative hu 0 . x 0i.

Then the electromotive force due to the kinetic helicity may be expressed as

hu 0 � b 0i�K ¼ �KB, ð54Þ

where �K is the kinetic-helicity-related coefficient whose sign is equal to that of
�hu 0 . x 0i. We see from the above argument that the kinetic-helicity effect is originated

B

u′

u′ x db′

〈u′ ·w ′〉 > 0

w ′
db′

Δu′z

Figure 6. Turbulent kinetic helicity effects.
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from the emergence of the magnetic-fluctuation variation that is not aligned with the

velocity fluctuation. Such a magnetic fluctuation is induced by the helical property of

the turbulent velocity field through the intermediary of the magnetic-flux freezing.

Current-helicity effect. Next, we proceed to the electromotive force due to the turbulent

current helicity hb 0 . j 0i(¼ hb 0 . =� b 0i). For simplicity of discussion, we consider the

magnetic-field fluctuation b 0 normal to the mean magnetic field B (figure 7). Starting

from equation (32) with the argument similar to the kinetic-helicity case presented in

section 3.3.2, we can derive the velocity variation due to the mean magnetic field B, �u 0.

As to the current-helicity effect, however, the understanding would be more easily

facilitated if we consider the effect of the fluctuating Lorentz force. From equation (25),

the velocity variation due to B, 
u 0, is given by


u 0 ¼ ��Mj 0 � B, ð55Þ

with ��M being the time scale of the motion. This variation results from the tension of
the magnetic field, and is closely connected to the topological properties of the

turbulent magnetic field. In contrast to the kinetic helicity hu 0 . x 0i, the turbulent

current helicity hb 0 . j 0i represents the helical property of the turbulent magnetic field.

The positive hb 0 . j 0i means that the electric-current fluctuation j 0 is statistically parallel

to b 0 as shown in figure 7. As a result, the contribution to the electromotive force,

h
u 0 � b 0i, is parallel to B if hb 0 . j 0i> 0. On the other hand, the contribution is

antiparallel to B in the case of negative hb 0 . j 0i. Then the electromotive force due to the

current helicity may be expressed as

hu 0 � b 0i�M ¼ �MB, ð56Þ

with �M being the current-helicity-related coefficient whose sign is equal to that of
hb 0 . j 0i.

3.3.3. Electromotive force due to turbulent cross helicity; c-related term
Cross-helicity effect. Thus far, we have treated the cases with the mean magnetic field B;

namely, the current density J, as the curl of B, and B itself. Here we shall treat a case

with the mean velocity U, and consider a fluid element fluctuating in the mean vorticity

field X(¼=�U) (figure 8). If the element moves (u 0) in the plane perpendicular to X,

the force u 0 �X acts on it because of the local angular-momentum conservation. Then

B

b′du′ x b′

j′ x B
〈b′ ·j′〉 > 0

du′
j′

Δb′
z

Figure 7. Turbulent current helicity effects.
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the element is accelerated in the direction perpendicular both to u 0 and to X as


u 0 ¼ ��u
0 �X, ð57Þ

with �� being the time scale of the motion. In this context, we should recall that the
turbulent cross helicity hu 0 . b 0i characterizes the cross correlation between u 0 and b 0.
Non-vanishing turbulent cross helicity indicates that u 0 and b 0 are statistically aligned
with each other. In the case of hu 0 . b 0i> 0, b 0 is parallel to u 0 in a statistical sense, while
b 0 is antiparallel if hu 0 . b 0i< 0. As a result, the contribution to the electromotive force,
h
u 0 � b 0i, is parallel to X in case hu 0 . b 0i> 0 and antiparallel in case hu 0 . b 0i< 0. Then
the electromotive force due to the cross helicity may be expressed as

hu 0 � b 0i� ¼ �X, ð58Þ

where � is the cross-helicity-related coefficient whose sign is equal to that of hu 0 . b 0i. We
see from the above consideration that the key ingredients for the cross-helicity effect are
the local angular-momentum conservation in the mean vorticity field and the cross
correlation between the turbulent velocity and magnetic fields.

4. Cross-helicity effects

In the history of turbulent dynamo study, the cross-helicity-related term has been
missing. Dropping the � or cross-helicity-related term in (28b), we have the usual �
dynamo, where the main balancer against the � or turbulent magnetic diffusivity effect
is the � or helicity effect. We can consider the other limit: If we drop the � or helicity
term in (28b), the main balancer against � is the � or cross-helicity effect. The latter
situation may be called as the cross-helicity dynamo, in contrast to the former situation
is called as the � dynamo:

EM ¼ �B� �J
zfflfflfflfflffl}|fflfflfflfflffl{� dynamo

þ �X|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
cross-helicity dynamo

: ð59Þ

Without the � or cross-helicity effect, we have the usual � or helicity dynamo:

EM ¼ �B� �J: ð60Þ

b′
u′

du′ x b′

u′ x W

W

〈u′ ·b′〉 > 0

du′

Figure 8. Turbulent cross-helicity effects.
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In this case, the main balancer against the turbulent magnetic diffusivity � is the helicity
or � effect. This main balance suggests the mean-field configuration with the alignment
of the mean electric-current density J with the mean magnetic field B. Consequently, the
generated mean-field configuration gives a force-free state (J�B¼ 0). This is one of the
most prominent features of the � dynamo.

A physical interpretation of the � or helicity dynamo is often presented with figure 9.
If turbulence possesses a helical property, a configuration of the mean electric-current
density J parallel or antiparallel to the mean magnetic field B can be generated. We
should note that in the original idea of this figure, neither B nor J represent the mean
fields. There supposed the instantaneous magnetic and current-density fields, b and j, in
our notations.

At first glance, the physical picture of the helicity dynamo may be clear. In the
description of the former dynamo, use has been often made of the concept of the bend-
and-twist mechanism, where the magnetic-field loop originated from the bending of the
magnetic-field line turns round under the helical nature of the turbulent field. The
resultant effect is characterized by the electric-current configuration parallel or
antiparallel to the original magnetic field (Krause and Rädler 1980, Roberts 1993).
Concerning this description, we should remark upon the following points. In the
picture, the diffusion or reconnection as well as the bend and twist of the magnetic field
is indispensable for the dynamo process. The electric-current configuration aligned with
the original magnetic field cannot be attained to from an arbitrary magnetic diffusion.
In other words, in order for the alignment configuration to be realized, the twisting
process due to the helicity should be delicately balanced with the diffusion process due
to the turbulence. These points indicate that the bend-and-twist picture includes both
the helicity effect (explicitly) and the turbulent-diffusion effect (implicitly) as the key
ingredients. In handling the bend-and-twist picture, we should keep the above
reservations in mind.

If we substitute the turbulent electromotive force expression (28b) with the � effect
dropped:

EM ¼ ��Jþ �X ð61Þ

into the mean induction equation (22), we have

@B

@t
¼ =� U� B� �Jþ �Xð Þ: ð62Þ

Here we have neglected the molecular magnetic diffusivity � since the turbulent
magnetic diffusivity � is much larger than �.

w ′

B

J

u′
〈u′ ·w ′〉 > 0

Figure 9. � Dynamo.
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For stationary state, equation (62) has particular solutions

B ¼
�

�
U ¼ C�

W

K
U, ð63aÞ

J ¼
�

�
X ¼ C�

W

K
X ð63bÞ

with C� (37c) being a model constant (Yoshizawa and Yokoi 1993).
Equation (63a) indicates that in the presence of cross helicity in turbulence, we have a

magnetic field proportional to the mean velocity. The proportional coefficient �/� is

expressed by the turbulent cross helicity scaled by the turbulent MHD energy. Since

turbulent cross helicity is a pseudoscalar, it may have a positive or negative value. If we

have positive (or negative) cross helicity in turbulence, we have the mean magnetic field

parallel (or antiparallel) to the mean velocity.
As (61) indicates, in the turbulent electromotive force, the turbulent magnetic

diffusivity term �J is mainly balanced by the cross-helicity effect �X. A schematic figure

for the cross-helicity dynamo is given as figure 10. In the presence of positive turbulent

cross helicity hu 0 . b 0i> 0, we have the mean electric-current J configuration parallel to

the mean vorticity X. At the same time we have the mean magnetic-field B

configuration parallel to the mean velocity U (U . B> 0). With normal cascade of the

turbulent cross helicity, this sign is consistent with the positive turbulent cross helicity.
Due to the pseudoscalar nature, the turbulent cross helicity is likely to be distributed

antisymmetrically in space. For instance, we can consider a situation where the

turbulent cross helicity is positive and negative in the respective regions upper and lower

to the midplane (figure 11). In this case, from (63a), we have magnetic field parallel and

antiparallel to the mean velocity in the upper and lower regions, respectively. With a

mean velocity distribution symmetric with respect to the midplane, we have antisym-

metric magnetic field. How antisymmetric distribution of the turbulent cross helicity is

UMidplane

Positive turbulent
cross helicity

Negative turbulent
cross helicity

Parallel mean
magnetic field

Anti-parallel mean
magnetic field

B

B

〈u′ ·b′〉 > 0

〈u′ ·b′〉 < 0

Figure 11. Antisymmetric magnetic configuration in the cross-helicity dynamo. Case with the positive
turbulent cross helicity W¼hu 0 . b 0i> 0 in the upper half domain and the negative turbulent cross helicity in
the lower half domain is presented here.

W

B

J

U

〈u′ ·b′〉 > 0

Figure 10. Cross-helicity dynamo.
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generated is discussed later in section 5, where we examine the production mechanisms
of the turbulent cross helicity.

Finally in this section, we should note the non-conservation of the cross helicity.
In the picture of closure theory of turbulence at very high Reynolds number, the fully
nonlinear mode coupling, typically represented by the response-function equation
(A.27), is the subject of main interests. It appears that the molecular viscosity and
diffusivity play only a subsidiary role. However, it is not the case. The turbulent cross
helicity, as well as the turbulent energy, cascades from larger to smaller scales, and is
dissipated at the smallest scales of turbulence. The dissipation due to the molecular
viscosity and diffusivity and the cascade associated with such dissipation are essential
ingredients of this turbulence cascade. In this sense, the non-conservation of the cross
helicity in the real-world turbulence is a matter of course.

The cascade property of a quantity G is usually represented by the transfer rate of the
quantity, �G, which is equivalent to the dissipation rate of G, "G, in the cascade picture
of Richardson or Kolmogorov:

PG ¼ "G ð64Þ

with G¼ (K,W).
The viscosity and diffusivity effects appear only in the definitions of the dissipation

rates (see (70b) and (71b)) and in some viscosity transport terms. Instead of considering
the evolution of the dissipation rates, we consider the transfer rates and construct the
equations for them. No viscosity effects explicitly appear in the model on the basis of
the assumption that the turbulent Reynolds numbers are high enough everywhere. In
hydrodynamic turbulence, however, in the immediate vicinity of the wall, the viscosity
or diffusion effect should be taken into account irrespective of how high the bulk
Reynolds number may be. This issue is often called the ‘‘low-Reynolds number
correction’’ in turbulence modeling (Durbin and Pettersson Reif 2011, Hanjalić and
Launder 2011). In wall boundary-layer turbulence, we have several important and
established laws that the mean velocity and the turbulent correlations should obey.
They include the logarithmic wall law of the mean velocity, the asymptotic behavior of
each components of the Reynolds stresses as the distance from the wall approaching to
zero. In contrast, in the astrophysical applications we often have no wall boundaries.
Then, we have no definite laws of the mean magnetic field or the Reynolds (and
turbulent Maxwell) stresses.

Equations (63a,b) (also (141) and (142) in section 7.3) are obtained with the
assumption that the turbulent transports are much larger than the molecular
counterparts (�� �). If we retain the molecular magnetic diffusivity- or �-related
term in (62), the counterparts of (63a,b) are written as

B ¼
�

�þ �
U ¼ 1�

1

RmðTÞ

� �
�

�
U ¼ 1�

1

RmðTÞ

� �
C�

W

K
U, ð65aÞ

J ¼
�

�þ �
X ¼ 1�

1

RmðTÞ

� �
�

�
X ¼ 1�

1

RmðTÞ

� �
C�

W

K
X, ð65bÞ

respectively. Here Rm(T ) is the turbulent magnetic Reynolds number defined by
Rm(T )

¼ �/�.
In the astrophysical applications, where Rm(T ) is usually huge, corrections due to the

molecular magnetic diffusivity are expected to be negligibly small. However, for
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numerical simulations with intermediate Rm(T), such corrections may lead to a

substantial difference.

5. Cross-helicity generation mechanisms

5.1. Turbulence modeling and statistical quantities

The most straightforward approach to investigate turbulent flows is to directly solve the

system of fundamental equations. However, for most geo/astrophysical flows of

interests, with huge Reynolds number (Re) and magnetic Reynolds number (Rm), it is

impossible to perform direct numerical simulations (DNS’s) in the foreseeable future.

In this situation, turbulence models provide a very useful and strong tool for

investigating turbulent flows at high Re and Rm.
In turbulence modeling, the statistical properties of unresolved motions have to be

modeled by using some quantities that represent such properties. The simplest model is

the mixing-length theory of the eddy viscosity �T, where the turbulent or eddy viscosity

is expressed in terms of the typical velocity and length scales of turbulence as

�T � u‘: ð66Þ

If typical velocity scale u is estimated by using the mean velocity shear jdU/dxj as

u � ‘
dU

dx

����
���� ð67Þ

with a length scale of turbulence ‘ called the mixing length, the eddy viscosity �T is
expressed as

�T � u‘ � ‘2
dU

dx

����
����: ð68Þ

At this moment, the problem is reduced to the point how to estimate the mixing length.
A more elaborated modeling approach is to consider appropriate statistical quantities

that represent the statistical properties of the unresolved motions and to construct the

transport equations of these statistical quantities. Since the statistical quantities evolve

depending on the mean fields or resolved motions, equations of the statistical quantities

should be solved with the mean or resolved field equations. Since both mean and

turbulence fields are solved simultaneously, the whole system of equations is self-

consistently treated in this approach. This is the main reason why this type of modeling

approach can provide a very strong tool for investigating turbulent flows. Here the

problems are reduced to the points: which statistical quantities we choose, and how to

construct proper transport equations for the statistical quantities. The schematic

methodology of the basic notion of turbulence model is depicted in figure 12.
Statistical analytical theory of inhomogeneous turbulence can provide a firm basis for

the turbulence modeling (Yoshizawa 1984). For details on how to construct the MHD

turbulence model on the basis of inhomogeneous turbulence closure theory, the reader

is referred to Yokoi (2006, 2011), Yokoi and Hamba (2007), and Yokoi et al. (2008).
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5.2. Transport equation of turbulent cross helicity (incompressible case)

From the viewpoint of constructing transport equations, the turbulent statistical
quantities that are related to the conservative property of the fundamental equations
are very important. Transport equations for such turbulent statistical quantities can be
written in a simple and clear form.

The MHD energy
R
V

1
2 ðu

2 þ b2ÞdV and
R
V u . b dV are inviscid invariants of the MHD

equation. The local densities of these quantities, the turbulent MHD energy (density)
K¼hu 02þ b 02i/2 and the turbulent cross helicity (density) W¼hu 0 . b 0i obey a simple
evolution equation:

@

@t
þU . =

� �
G ¼ PG � "G þ TG ð69Þ

with G¼ (K,W). Here, PG, "G, and TG are the production, dissipation, and transport
rates defined as

PK ¼ �R
ab @U

a

@xb
� EM . J, "K ¼ �

@u 0a

@xb
@u 0a

@xb

� �
þ �

@b 0a

@xb
@b 0a

@xb

� �
ð� "Þ, ð70a;bÞ

TK ¼ B . =Wþ f 0 . u 0
� 


þ = . T 0K, ð70cÞ

PW ¼ �R
ab @B

a

@xb
� EM . X, "W ¼ ð�þ �Þ

@u 0a

@xb
@b 0a

@xb

� �
, ð71a;bÞ

TW ¼ B . =Kþ f 0 . b 0
� 


þ = . T 0W ð71cÞ

(f 0: fluctuation external force). Here, T 0K and T 0W are the transport rates of the turbulent
MHD energy K and the turbulent cross helicity W, respectively. They are explicitly
written as

T 0K ¼ �
�
1
2

�
u 02 þ b 02

�
þ p 0M

�
u 0 þ u 0 . b 0ð Þb 0

D E
, ð72Þ

T 0W ¼ � u 0 . b 0ð Þu 0 þ
�
1
2

�
u 02 þ b 02

�
� p 0M

�
b 0

D E
: ð73Þ

Figure 12. Turbulence modeling. Mean fields and turbulent statistical quantities.
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In order to perform a realistic calculation of the turbulent transport with the aid of
MHD turbulence model, it is of fundamental importance to properly estimate how
much turbulent quantities such as the turbulent MHD energy, the turbulent cross
helicity, etc., are generated and dissipated. In the context of the cross-helicity dynamo,
the production rate of the turbulent cross helicity, which is directly related to the mean-
field configurations, is most important. We will focus on the cross-helicity generation
mechanisms in the following subsection (section 5.3).

It is also very important to properly estimate how and how much the cross helicity is
dissipated. In practical calculations, the dissipation rate of the turbulent cross helicity is
often estimated by using the algebraic model as

"W ¼ CW
W

�
, ð74Þ

where � is the characteristic time of turbulence and CW is the model constant. This
algebraic model is the simplest possible expression for the cross-helicity dissipation rate.
More elaborated model for "W has also been proposed. For the detailed discussions on
the cross-helicity evolution, including the theoretical derivation of the "W equation, the
reader is referred to Yokoi (2011).

5.3. Cross-helicity production mechanisms

Production rates represent turbulence generation arising from the coupling between the
fluctuation and mean-field inhomogeneity. If the Reynolds stress, the correlations
between the fluctuation velocities and the fluctuation magnetic fields, is coupled with
the mean-velocity shear, the turbulent energy can be generated through �Rab@Ua/@xb

(the first term in (70a)). If we adopt the eddy-viscosity representation, the simplest
possible model expression for the Reynolds stress is

R�� ¼
2

3
KR


�� � �KS
��, ð75Þ

with the residual energy KR�hu
02� b 02i/2 and the mean velocity strain rate S (29a), the

production rate related to R is written as

�Rab @U
a

@xb
¼ þ1

2�K S
ab

� �2
: ð76Þ

Since the eddy viscosity is positive (�K> 0), the mean velocity strain always enhances
the turbulent energy.

If we only consider the turbulent magnetic diffusivity expression for the turbulent
electromotive force as

EM ¼ ��J, ð77Þ

the production rate related to EM reads

�EM . J ¼ þ�J2: ð78Þ

Since the turbulent magnetic diffusivity is positive (�> 0), the mean electric current
always enhances the turbulent energy. This is the enhancement of the Joule heating due
to turbulence.
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A similar argument can be applied to the production rate of turbulent cross helicity,
PW. However, due to the non positive-definite nature of the cross helicity, the results are
different. The Reynolds stress coupled with the mean magnetic-field shear �Rab(@Ba/
@xb) (the first term in (71a)) gives the cross-helicity production. If we adopt the eddy-
viscosity representation (75), we have

�Rab @B
a

@xb
¼ þ1

2�KS
ab
M

ab ð79Þ

(M: mean magnetic-field strain rate). Positive or negative turbulent cross helicity is
generated depending on the configuration of the mean velocity and magnetic-field
strains. This is also the case for the cross-helicity generation related to the turbulent
electromotive force (the second term in (71a)). The turbulent magnetic diffusivity
representation of EM (77) leads to the cross-helicity generation

�EM . X ¼ þ�J . X: ð80Þ

This indicates that a positive or negative turbulent cross helicity is generated depending
on the configuration of the mean electric current and vorticity. If the mean electric
current and vorticity are aligned in a parallel (or antiparallel) manner, positive (or
negative) turbulent cross helicity is generated.

PW 4 0 for J . X4 0, ð81aÞ

PW 5 0 for J . X5 0: ð81bÞ

The results expressed by (79) and (80) show that the cross-correlation between the
velocity and magnetic field in turbulence entirely depends on the mean-field
configurations. If we have a particular configuration between the mean velocity and
magnetic field, the turbulent cross helicity has a particular preference for its sign.

Another important cross-helicity generation mechanism arising from the coupling
between the mean field and turbulent correlation is the inhomogeneity of the turbulent
energy along the mean magnetic field (see the first term in (71c)). This mechanism is
related to the cross-helicity generation expressed by (12), and shows a property entirely
different from the production rates of the turbulent cross helicity, PW (71a), and that of
the turbulent MHD energy, PK (70a), as follows.

From the mean velocity and magnetic field equations, the evolution equation for the
mean-flow MHD energy, (U2

þB2)/2, is written as

@

@t
þU . =

� �
1
2 U2 þ B2
� �

¼ PKM � "KM þ TKM: ð82Þ

Here, PKM, "KM, and TKM are the production, dissipation, and transport rates of the
mean MHD energy, respectively. They are defined as

PKM ¼ þR
ab @U

b

@xa
þ EM . J ¼ �PK, "KM ¼ �

@Ua

@xb

� �2

þ

@Ba

@xb

� �2

, ð83a;bÞ

TKM ¼ TKMT þ TKMB, ð83cÞ

where TKMT is the transport rate of the mean MHD energy arising from the fluctuation
correlations:

TKMT ¼ = . �U :Rþ EM � Bð Þ ð84Þ
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((U: R)�¼Ub
R

b�). The other term TKMB arises from the mean magnetic field and
velocity field:

TKMB ¼ B . = U . Bð Þ½ 	 þU . F� =PMð Þ ð85Þ

(F: mean external force).
On the other hand, the equation of the mean-field cross helicity, U . B, is written as

@

@t
þU . =

� �
U . Bð Þ ¼ PWM � "WM þ TWM: ð86Þ

Here, PWM, "WM, and TWM are the production, dissipation, and transport rates of the
mean cross helicity. They are defined by

PWM ¼ þR
ab @B

b

@xa
þ EM . X ¼ �PW, "WM ¼ ð�þ 
Þ

@Ua

@xb
@Ba

@xb
, ð87a;bÞ

TWM ¼ TWMT þ TWMB, ð87cÞ

where TWMT is the transport rate of the mean cross helicity arising from the fluctuation
correlations:

TWMT ¼ = . �B :Rþ EM �Uð Þ ð88Þ

((B : R)�¼Bb
R

b�). The other term arises from the mean magnetic field:

TWMB ¼ B . =
�
1
2

�
U2 þ B2

��
þ F� =PM

� �
: ð89Þ

The generation mechanisms of the cross helicity can be divided into two
categories: those related to the production rate PW (71a); and those related to the

transport rate TW (71c).
As equations (83a) and (87a) show, the production rates of the mean-flow MHD

energy and the mean-flow cross helicity, PKM and PWM, are exactly the same

expressions as the turbulent counterparts but with the opposite signs (PKM¼�PK and

PWM¼�PW). This shows that the production rates of the turbulent MHD energy and

cross helicity correspond to the drain or sink of the mean-flow counterparts. This
reflects the cascade nature of the MHD energy and the cross helicity.

On the other hand, the generation by TW is related to the asymmetric distribution of

the energy in the volume. This mechanism is not related to the cascade process, and

does not necessarily need mean-field counterparts, either. Unlike the production rates,

PK and PW, we have no drain-like term for the B . =K in the mean cross-helicity

equation. This reflects the fact that the cross-helicity generation due to the inhomo-

geneity along the mean magnetic field, B . =K, is not related to the cascade nature of
turbulence, but is related to the cross-helicity injection through the boundary (see (12)).

This feature gives a special position for this mechanism in cross helicity generation in

real-world turbulence.
We should note that cross-helicity generation due to B . =K is related to the Alfvén-

wave interpretation of the turbulent cross helicity. If we assume that turbulence is a

collective motion associated with the Alfvén waves, a region with large (or small)

turbulent energy corresponds to one with the large (or small) number of Alfvén-wave

packets. In this picture, the energy inhomogeneity along the mean magnetic field is inter-
preted as the spatially inhomogeneous distribution of the number of Alfvén-wave
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packets. We can expect that the number of Alfvén waves propagating along the mean

magnetic field from region with larger turbulent energy to one with smaller turbulent

energy is larger than the one propagating in the other direction: from smaller to larger

turbulent energy regions. Due to this asymmetry with respect to the directions along the

mean magnetic field, we have a finite cross helicity in turbulence (figure 13).
This is a direct consequence of the non-positive definiteness of the cross helicity, one

of the prominent characteristics of the cross helicity, common to other pseudoscalars

such as the kinetic, magnetic, and current helicities. Even if the cross helicity is zero

when it is averaged through the total volume, positive and negative cross helicities can

be distributed spatially or temporally. This property gives the generation mechanism of

the cross helicity very distinctive in comparison with that of the energy. The generation

mechanism arising from the transport terms (71c) is related to such a spatial

distribution of the cross helicity.
If we have no mechanism of turbulent cross-helicity generation independent of the

mean magnetic field, the cross-helicity generation is just related to the dynamo

instability itself. On the basis of this thought, Rüdiger et al. (2011) examined

importance of the non-conservation of the cross helicity in turbulent media. In some

situation, however, the external force term h f 0 . b 0i may play an essential role in the

turbulent cross-helicity generation. If we consider a convective flow with the buoyancy

force f¼��0�g (�0: thermal expansion coefficient, �: temperature, g: gravitational

acceleration), this expression

f 0 . b0
� 


¼ ��0 �
0b 0

� 

. g ð90Þ

gives rise to an important turbulent cross-helicity generation independent of the mean
magnetic field.

Coupled with the mean magnetic-field shear in the momentum equation and with the

mean vorticity in the magnetic-field equation, a finite cross helicity existing in a local

region may play an important role in the modification of transports there. If we take a

volume average, however, the average of the cross helicity is identically zero. This shows

that the averaging thorough the total volume is not appropriate for capturing the cross

helicity existing locally in space. The cross-helicity distribution reflects the breakage of

symmetry due to the inhomogeneity of turbulence and directions of the mean-field

quantities. We should properly define the averaging procedure depending on the

asymmetry of the mean-field configurations. If the generation mechanism is due to

B . =K (the first term in (71c)), the domain for average should reflect the asymmetry of

the turbulence inhomogeneity and the magnetic field direction. For example, let us

B

B ·ÎK < 0ÎK

Figure 13. Turbulence inhomogeneity along the mean magnetic field.
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consider the cross-helicity generation in an accretion disk shown later in figure 15.

In this case, the midplane is the plane of symmetry for the turbulence inhomogeneity.

It follows that the positive and negative cross helicities are distributed in the northern

and southern hemispheres, respectively. This shows that the average should be taken

separately in the northern and southern hemisphere. Otherwise, this feature of the

cross-helicity distribution can not be captured at all.

5.4. Transport equation of turbulent cross helicity (compressible case)

In the compressible MHD case, it is useful to write the density dependence explicitly. In

this subsection we express the magnetic field in the original physical unit. The turbulent

cross helicity is defined by

W� � u 0 . b 0�
� 


: ð91Þ

Here, subscript � denotes that the magnetic field is measured in the original physical
unit (not in Alfvén-speed units).

The transport equation of W� is given as

DW�
Dt
�

@

@t
þU . =

� �
W�

¼ �
1

2
u 0au 0b �

1

	0�
b 0�

ab 0�
b

� �
@Bb
�

@xa
þ
@Ba
�

@xb

� �
ð92aÞ

� u 0 � b 0�
� 


. X ð92bÞ

� ð�0 � 1Þ
1

�
� 0b 0�
� 


. =Q ð92cÞ

� ð�0 � 1Þ
1

�
q 0b 0�
� 


. =� ð92dÞ

�
1

�
� 0b 0�
� 


.
DU

Dt
ð92eÞ

�W�= . U ð92fÞ

þ B� . = 1
2u
02

� 

ð92gÞ

þ f 0 . b 0�
� 


ð92hÞ

� "W� þ TW� þR:T:, ð92iÞ

where R.T. denotes the residual terms arising from the higher order terms. Here
q(¼CV�) is the internal energy (CV: specific heat at constant volume, �: the

temperature), �0(¼CP/CV) the ratio of specific heats (CP: specific heat at constant

pressure), and f 0 the fluctuation of the external force per unit mass. The internal energy

is divided into the mean Q and fluctuation around it, q 0 (q¼Qþ q 0). The plasma

pressure is assumed to satisfy the ideal gas relation p¼R��¼ (�0� 1)�q (R: gas

constant).
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In (92), "W� and TW� are the dissipation and transport rates, respectively, whose
detailed expressions are suppressed here. Among the other terms, (92a,b,g) are
incompressible terms. They have counterparts in (69) with (71).

Equation (92) indicates that, in the compressible case, even if we dropped the density-
fluctuation effect (� 0 ¼ 0), we still have some production mechanisms of W� that is not
directly connected to the mean magnetic field. Terms labeled (92d,f) are such terms. The
importance of (92d) is discussed in the context of the local magneto-convection in the
Sun. On the other hand, (92f) indicates that the magnitude of W� increases irrespective
of the sign of W�, if the mean flow is converging (= . U< 0).

It is in general very difficult to simultaneously measure three components of the
fluctuating velocity and magnetic field by remote observations. However, there are
some attempts to estimate the turbulent cross helicity in terms of mean-field quantities
which are easier to measure (Kleeorin et al. 2003, Rüdiger et al. 2011). It would be
useful to compare (92) with the previous estimate of the cross helicity. For the
inhomogeneous and density stratified turbulence, Kleeorin et al. (2003) derived an
expression for the turbulent cross helicity in their equation (11) as

u 0 . b 0�
� 


¼
3

2
�L�1u Br

� þ �chðB�Þ B� . =ð ÞB2
�, ð93Þ

where L�1u ¼ j=hu
02ij=hu 02i is the reciprocal of the turbulence inhomogeneity scale, Br

� is
the radial mean velocity, and �ch(B�) is a quenching function expressed in terms of the
toroidal field B�. Another expression was proposed by Rüdiger et al. (2011) in their
equation (15) as

u 0 . b 0�
� 


¼ �G . B� þ
�

2
þ
2�̂

3

� �
B� . = lnhu 02i, ð94Þ

where G ¼ = ln � ¼ =�=� is the reciprocal of density scale height (�: mean density).
The first term of (93) and the second term of (94) is quite similar: the turbulent energy

inhomogeneity along the mean magnetic field. This is an important factor generating
the turbulent cross helicity. This contribution is expressed as (92g). As was referred to
previously, this mechanism arises not from the production rate related to cascade but
from the transport rate. Equation (92g) is rewritten as

B� . = 1
2u
02

� 

¼ 1

2B� u
02

� 

.

1

u 02
� 
= u 02

� 

�

1

�

�

2
B� . = ln u 02

� 

, ð95Þ

where use has been made of ��hu 02i�. Equation (95) corresponds to the second term
of (94).

The effect of the mean density stratification appears in (92d). The fluctuation of the
internal energy is expressed as

q 0 ¼
1

�0 � 1

p 0�
�

ð96Þ

for the ideal gas. With (96), the correlation of the internal-energy and magnetic-field
fluctuation is written as

q 0b 0�
� 


¼
1

�0 � 1

1

�
p 0�b

0
�

� 

: ð97Þ
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Then, (92d) yields to

�ð�0 � 1Þ q 0b 0�
� 
 1

�
= � ¼

1

�
p 0b 0�
� 
 1

�
= � � u 02b 0�

� 
 1
�

= � ð98Þ

where use has been made of p 0 � �u 02. If we estimate the triple correlation as
hu 02b 0�i � ��B�=�, we finally obtain

�ð�0 � 1Þ q 0b 0�
� 
 1

�
= � �

1

�
�B�= ln �: ð99Þ

This may correspond to the first term in (94).
The Lorentz force is divided into the Maxwell-stress and the magnetic-pressure parts.

The cross-helicity generation due to the turbulent Maxwell stress is expressed by the
second part of (92a):

P
ðmxwÞ
W�

¼ þ
1

2

1

	0�
b 0�

ab 0�
b

� 
 @Bb
�

@xa
þ
@Ba
�

@xb

� �
: ð100Þ

If we simply model the turbulent Maxwell stress as b 0�
ab 0�

b
� 


� Ba
�B

b
�, the production rate

due to the turbulent Maxwell stress yields to

P
ðmxwÞ
W�

�
1

	0�
Ba
�

@

@xa
B2
�: ð101Þ

This is similar to the second term of (93). But of course, in order to take the quenching
effect into account, we should include the reduction mechanisms of the turbulent cross
helicity such as the dissipation rate "W in (92i) and the � effect in (92b) (also see (112)).

The turbulent cross helicity generation in the compressible MHD turbulence will be
further reported in the future work (Yokoi et al. 2013b).

6. Illustrative examples of cross-helicity effects

In this section, we present several examples of the application of the cross-helicity
effects to astrophysical and fusion plasma phenomena.

6.1. Galactic magnetic field

As we have seen, if the main balancer against the turbulent magnetic diffusivity � is the
cross-helicity effect �, we have the mean-field configuration with the mean vorticity X

aligned with the mean electric current density J. We substitute model expressions for �
and � into the special solution for the stationary magnetic field (63a). The magnetic
field measured in the Alfvén speed unit, b, is related to the original magnetic field
(measured in the physical unit), b�, as in (4). Thus the mean magnetic field B� is
expressed as

B� ¼
ffiffiffiffiffiffiffiffi
	0�
p

B ¼
ffiffiffiffiffiffiffiffi
	0�
p

C�
W

K
U: ð102Þ
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Rotation curves of several galaxies show a very flat profile in outer regions. The
rotation speed of galaxies can be represented by this constant part of the rotation
profile. In figure 14, we plot the observed magnetic-field strength of several galaxies
against the rotational speed. This figure shows that the magnetic-field strength of
galaxies is approximately proportional to the rotational speed of them. The inclination
angle of the plot gives the value of the cross helicity scaled by the turbulent MHD
energy, jWj/K. We see from figure 14 that jWj/K is estimated as

jWj

K
¼ 0:03: ð103Þ

This estimate indicates that the scaled cross helicity of jWj/K¼O(10�2) is large enough
for explaining the galactic field strength.

Detailed analysis of the Faraday rotation measure (RM) of several galaxies has
revealed the basic properties of the galactic magnetic fields. They may be summarized as
(Sofue et al. 1986, Ruzmaikin et al. 1988)

(i) Strength of the mean magnetic field is much smaller than the total magnetic
field estimated by using the Zeeman effect;

(ii) Direction of the global magnetic field is approximately along the spiral arms
rather than along the global velocity;

(iii) Most ubiquitous configuration of the global magnetic field is the ‘‘bisym-
metric spiral (BSS)’’. The directions of global magnetic field is in outward
direction for one spiral arm and inward for the next arm.

In the framework of the cross-helicity dynamo, these features can be explained as
follows. If the cross helicity is distributed antisymmetric with respect to the midplane of
galaxy with symmetric distribution of global velocity, from (102) we have a global
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Figure 14. Magnetic field strength of several galaxies against their rotation speed.
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magnetic field whose strength is the same but the directions are opposite in the upper
and lower half domains of the galactic disk. In such a case, the rotation measure
observed from a remote place may be canceled out. We need some additional breakage
of symmetry with respect to the midplane of the galactic disk. It is known that, due to a
sort of corrugation, the density of galactic gas is distributed asymmetrically with respect
to the midplane (Weaver and Williams 1974). The reference density is the same between
the upper and lower half domains, but the actual global distribution of gas density
corrugates and deviates from the reference value approximately up to �10%. This
asymmetry gives the residual contribution for the Farady rotation measure (RM).
Taking this into account, three features of galactic magnetic field listed above can be
elucidated to some extent in the framework of the cross-helicty dynamo with a simple
expression for the mean magnetic field (102) (Yokoi 1996a).

6.2. Accretion disks

A gas surrounding a compact massive object accretes to the central object with rotating
around it. This is called accretion disk, and is ubiquitously observed in several
astrophysical bodies such as protostar, binary stars, active galactic nuclei, black holes,
etc. Bipolar jets, ejected from the central region of the accretion disk to both directions
perpendicular to the disk, are often observed. These jets are called astrophysical jets.
One of the prominent features of astrophysical jets is their high collimation. The
expansion rate estimated by the spatial dimensions for the vertical to parallel directions
to the jets is very small: O(10�6). One possible explanation of this extremely high
collimation is confinement of plasma gas by the magnetic fields associated with the
accretion disk and jets.

From the viewpoint of cross-helicity effects, we should note that the accretion disk
geometry is favorable for the cross-helicity dynamo to work since the mean-field
configurations are favorable for the production of turbulent cross helicity there. We
consider a situation where a global magnetic field is threading the gas disk whose
turbulence is strongest at the midplane (figure 15). Note that this particular direction of
gradient or inhomogeneity is not essential for the following argument. Due to this
inhomogeneity along the mean magnetic field, we have different signs of cross-helicity
generation between the upper and lower half domains. If the threading magnetic field is
in the downward direction (from upper to lower domains), the production of turbulent
cross helicity is positive and negative in the upper- and lower-half domains, respectively.
According to equation (63a), the global magnetic field is parallel (or anti-parallel) to the
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Figure 15. Cross-helicity generation due to the inhomogeneity along the magnetic field.
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velocity in the upper (or lower) half domain. We have an antisymmetric magnetic field
for a global rotational motion symmetric with respect to the midplane.

The global magnetic-field configuration is dipolar-like, and we have a global electric-
field current density in a radially inward direction as in figure 16. As this result, a global
electric current is ejected from the center region of the accretion disk in the direction
perpendicular to the disk or bipolar direction. The existence of global electric current J
in the bipolar direction suggests that there is a self-sustaining mechanism for the
turbulent cross helicity. The global bipolar electric current coupled with the global
vorticity X contributes to the turbulent cross helicity generation as

�J . X4 0 ! PW 4 0 for the upper half domain, ð104aÞ

�J . X5 0 ! PW 5 0 for the lower half domain: ð104bÞ

These signs are equal to the original ones, leading to the self-sustained cross-helicity
distribution for an accretion disk (Yoshizawa and Yokoi 1993, Nishino and Yokoi
1998, Yoshizawa et al. 2000a).

6.3. Solar dynamos

6.3.1. � Effect as a perturbation
One important point to note is that the magnetic field generated by the � or helicity
effect may reduce the turbulent cross helicity originally present (Yoshizawa et al.
2000b). As we show in the following, this property is expected to play a very important
role in the periodic behavior of the solar magnetic field.

To see this point, we consider a combination of the cross-helicity and � effects.
We assume that the dominant dynamo effect is due to the cross-helicity effect
(reference state), and the � effect serves itself as a perturbation or modulation to the
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Figure 16. Mean field configuration of an accretion disk.
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reference state. In this sense, the perturbations B1 and J1 are smaller than the B0 and J0
fields. We write the mean magnetic field and electric-current density as

B ¼ B0 þ B1, J ¼ J0 þ J1 , ð105a;bÞ

where B0 and J0 are zeroth-order in �, and B1 and J1 first-order. Substituting (105) into
the mean induction equation (30), we obtain equations for the reference (O(�0)) and
modulation (O(�1)) fields as

@B0

@t
¼ =� U� B0 � �J0 þ �Xð Þ, ð106Þ

@B1

@t
¼ =� U� B1 þ �B0 � �J1ð Þ: ð107Þ

As we saw in section 4, the reference-field equation (106) has a special solution for the
stationary state as

B0 ¼
�

�
U: ð108Þ

Substituting (108) into (107), we have the modulation-field equation as

@B1

@t
¼ =� U� B1 þ

��

�
U� �J1

� �
: ð109Þ

We approximate the mean velocity U in the polar spherical coordinate (r, �, �) by the
toroidal velocity as U¼ (Ur, U�, U�)’ (0, 0, U�). In this section (section 6.3.1) and also
in the following section (section 6.3.2), axisymmetry of the mean velocity and magnetic
field, U and B, is assumed. In the low latitude region, the radial component of the mean
magnetic field is small (Br

1 ’ 0), and the latitudinal gradient of the toroidal mean
velocity is also small (@U�/@�’ 0). Using these approximations, we estimate

=� U� B1ð Þ ’ 0, 0,Br
1

@U�

@r
þ B�1

1

r

@U�

@�

� �
’ 0, 0, 0ð Þ: ð110Þ

Under these considerations, we see that

J1 ¼
�

�
B0 ¼

��

�2
U ð111Þ

is an approximate solution for the stationary state of equation (109). This corresponds
to the poloidal field B1 generation from the toroidal field B0 through the � effect.

Here one remark should be put on the role of differential rotation in the cross-helicity
dynamo. A prominent feature of the cross-helicity dynamo lies in the point that it
produces a toroidal magnetic field from a poloidal one without resorting to the
differential rotation. This does not deny the importance of the differential rotation,
which is essential to sustain turbulence. Without turbulence, turbulent cross helicity
also vanishes.

Since the modulated field B1 associated with the mean electric-current density
J1(¼=�B1) is the poloidal one, B1 is aligned with the local rotation vector X. Since �
and � are pseudoscalars, both of them change their signs between the northern and
southern hemispheres. Consequently, the directions of J are the same for both
hemispheres, leading to a dipole-like magnetic-field configuration.
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We consider the evolution equation of the turbulent cross helicity. There is a
contribution to the cross-helicity production arising from the poloidal magnetic field B1

induced by the � effect, PW1, as

@W

@t
¼ � � � ��B1 . X|fflfflfflfflfflffl{zfflfflfflfflfflffl}

PW1

þ� � �: ð112Þ

First, we consider a situation where the turbulent cross helicity is positive (� > 0) in
the northern hemisphere. If the turbulent residual helicity is also positive (�> 0) there,
the mean electric-current density J1 induced by the � effect is parallel to the mean
vorticity as

J1 ¼
��

�2
U with

��

�2
4 0: ð113Þ

In this case, the mean magnetic field B1 induced by the � effect is parallel to the mean
vorticity X as in figure 17(a). Thus we have a negative turbulent cross-helicity
generation due to the � effect as

PW1 ¼ ��B1 . X5 0 for �4 0, �4 0: ð114Þ

If the turbulent residual helicity is negative (�< 0) there, the mean electric-current
density J1 induced by the � effect is antiparallel to the mean velocity as

J1 ¼
��

�2
U with

��

�2
5 0: ð115Þ

In this case, the mean magnetic field B1 induced by the � effect is antiparallel to the
mean vorticity X as in figure 17(b). Thus again, a negative turbulent cross helicity is
generated by the � effect as

PW1 ¼ ��B1 . X5 0 for �5 0, �4 0: ð116Þ

U

U

(a)
B1B1

J1

U

U
J1

U

U
J1

U

U
J1

B1B1

(b)

(d)
W

W

W

W

(c)

a > 0, g < 0

a > 0, g > 0

a < 0, g < 0

a < 0, g > 0 a > 0, g > 0

a > 0, g < 0

a < 0, g < 0

a < 0, g > 0

Figure 17. Combination of the cross-helicity and � effects. Depending on the signs of the turbulent cross
helicity (�) and turbulent residual helicity (�), the mean magnetic-field configuration changes.
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For situations where the turbulent cross helicity is negative (� < 0) in the northern
hemisphere, a similar argument can be applied. We have a positive turbulent cross-
helicity generation due to the � effect as

PW1 ¼ ��B1 . X4 0 for �7 0, �5 0 ð117Þ

(figures 17(c) and (d)).
We see from the above arguments that for both situations with the positive and

negative turbulent cross helicity, the � effect works as the reduction of the original
turbulent cross helicity. This suggests that the cross-helicity dynamo coupled with the �
effect gives the possibility of the periodic magnetic-field reversal through the oscillatory
behavior of the turbulent cross helicity.

6.3.2. Several levels of models
On the basis of the mean induction equation (30), we write the equations for the toroidal
magnetic field B and for toroidal component of the vector potential A representing the
mean poloidal magnetic field. One of the most simplified expressions is given as

@

@t

B

A

� �
¼

�r2 Ĝ

�̂ �r2

 !
B

A

� �
, ð118Þ

where Ĝ denotes the mean velocity shear and �̂ denotes the � effect. The mean velocity
shear (Ĝ) coupled with the mean poloidal magnetic field (A) induces the toroidal
magnetic field (B). At the same time, the helical properties of turbulence, represented by
� effect (�̂), coupled with the toroidal magnetic field (B) give rise to the poloidal
field (A).

Keeping the arguments developed in section 6.3.1 in mind, we should take into
account the following two points:

(i) Transport equations for the transport coefficients;
(ii) Inclusion of the cross-helicity effect.

As we see from (34a–c), the transport coefficients should be determined by the
statistical properties of turbulence. For instance, � is determined by the turbulent
residual helicity, the difference between the turbulent kinetic and current helicities
defined by h�u 0 . x 0 þ b 0 . j 0i. However, since neither kinetic helicity

R
V u . xdV nor the

current helicity
R
V b . j dV is an inviscid invariant of the MHD equations, it is difficult

to derive a model equation for � on a theoretically firm basis (Yoshizawa 1996, Yokoi
et al. 2008). On the other hand, since the magnetic helicity

R
V a . b dV is an inviscid

invariant of the MHD equation, the transport equation for the turbulent magnetic
helicity ha 0 . b 0i can be written in a simple form on a firm theoretical basis. In this line of
thought, models for the � or magnetic-helicity evolution have been proposed (Kleeorin
and Rogachevskii 1999, Kleeorin et al. 2000, 2003). Also a recent sophisticated mean-
field models for the magnetic-helicity feedback reproduces the helicity pattern in close
agreement with the observations (Pipin and Kosovichev 2011).

From the viewpoint of the cross-helicity dynamo, inclusion of the cross helicity effect
with its transport equation may be further important steps. As we have seen in section
6.3.1, the coupling of the poloidal magnetic field generated by the � effect with the
turbulent cross-helicity generation is expected to play an essential role in the periodic
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reversal of the solar magnetic field. The essential ingredients of the field reversal process
are the evolution equations of the toroidal and poloidal magnetic fields, BT and BP:

@B

@t
¼ =� U� Bð Þ þ =� EM þ �r

2B, ð119Þ

and the evolution equations of the turbulent cross helicity W:

@W

@t
þ U . =ð ÞW ¼ �Rab @B

a

@xb
� EM . Xþ B . =Kþ = . T 0W, ð120Þ

with the Reynolds stress R (28a) and the turbulent electromotive force EM (28b).
The transport coefficients appearing inR, �K and �M, and in EM, �, �, and �, are not

adjustable constants. They should represent statistical properties of turbulence as (34a–
c) show. The simplest possible expressions for them are the mixing-length type ones.
A further elaborated approach is to construct evolution equations of the transport
coefficients themselves or equations of statistical quantities determining the transport
coefficients.

Toy model. We can construct a minimal model for the periodic behavior of solar
magnetic field (Yoshizawa et al. 2000b). This model is constituted of the equations that
express (i) the toroidal-field generation due to the cross-helicity effect (see (108)), (ii) the
poloidal-field generation due to the � effect (see (107)); and (iii) the cross-helicity
reduction due to the poloidal field (see (112)). The model is expressed as

BT ¼ �
�UT,

dBP

dt
¼ ��BT,

d��

dt
¼ �
�BP, ð121a�cÞ

where �� and 
� are defined as

�� ¼
1

�C

�LC

�
, 
� ¼ �C

�

�
!F ð122a;bÞ

(�C: characteristic time scale of turbulence often modeled as �C¼K/", LC: characteristic
length scale of turbulence, !F: angular velocity of the Sun). If we eliminate BT and BP

from these equations, the equation for the cross helicity can be written as

d2��

dt2
¼ �!2

r�
� with !r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��
�U�

p
: ð123a;bÞ

Equation (123a) shows a simple sinusoidally oscillation of the cross helicity with the
reversal frequency of !r.

Models with cross-helicity evolution equation. Some other attempts have been started for
treating more elaborated model equations. Kuzanyan et al. (2007) and Pipin et al.
(2011) solved a model transport equation of the turbulent cross helicity as well as the
equations for the toroidal and poloidal magnetic fields. Here, as an example, we
introduce a recent result by Pipin (2011). If we construct model equations in a spherical
coordinate system with only the latitudinal dependence retained, the equations for the
toroidal field B, the toroidal component of the vector potential representing the
poloidal field A, and the turbulent cross helicity �, are given as

@B

@t
¼
@

@�

1

sin �

@ ðB sin �Þ

@�
� 2�C�Dðx sin � þ 1Þ f ð�Þ, ð124aÞ
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@A

@t
¼ cos �Bþ

1

sin �

@

@�

1

sin �

@A sin �

@�
, ð124bÞ

@�

@t
¼ �

�

sin �

@A sin �

@�
þ

1

sin �

@

@�
sin �

@�

@�
, ð124cÞ

where D is the dynamo number, f(�)¼ @O/@x the radial derivative of the shear, � the
stratification parameter (varies from 5 at the bottom to 30), C� the model constant

related to the cross helicity generation. Here we omit the detailed description of the

model equation. Using this system of equations, we can reproduce a periodic behavior

of the toroidal and poloidal magnetic field with the oscillation behavior of the turbulent

cross helicity without resorting to the mean-velocity shear or so-called O effect term

(figure 18).
In the same line of thought, another simple equation can be also proposed. We write

a system of equations in a local Cartesian coordinate sytem (x, y, z) (x: colatitude, y:

azimuthal, z: radial directions). For the sake of simplicity, we drop the azimuthal and

radial dependence of the field quantities (@/@y¼ @/@z¼ 0). We assume that the mean

velocity has only azimuthal component U¼ (Ux,Uy,Uz)¼ (0, U(x), 0) and its latitudinal

profile is prefixed (kinematic treatment). As for the turbulent transport coefficients, �
and � are treated as parameter (no spatial dependence), but the evolution equation for

the cross-helicity-related coefficient � is solved. Under these assumptions and

approximations, equations for the toroidal magnetic field By(�B), toroidal component

of the vector potential Ay (�A), and � are written as

@B

@t
¼ �

@2B

@x2
þ =� �Xð Þ

y
¼ �

@2B

@x2
�
@2U

@x2
� �

@U

@x

@�

@x
, ð125aÞ

Figure 18. Temporal evolution of the magnetic fields and cross helicity. The spatiotemporal distributions of
the poloidal magnetic field (upper) and the turbulent cross helicity (lower) are plotted in gray scale.
The toroidal field is expressed as contours. Courtesy of Valery Pipin.
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@A

@t
¼ �

@2A

@x2
þ �B, ð125bÞ

@�

@t
¼ �

@2�

@x2
� ��B . Xþ ��J . X ¼ �

@2�

@x2
� ��

@U

@x

@A

@x
þ ��

@U

@x

@B

@x
, ð125cÞ

where � is the timescale of turbulence. Again, apart from the diffusion term related to �
(the first term), we retain only the cross-helicity or � effect (the second and third terms)
and dropped the � and O effects in the toroidal magnetic-field equation (125a). In the
poloidal magnetic-field or vector-potential equation (125b), we only retain the � effect
(the second term) in addition to the diffusion or �-related term (the first term). As for
the equation of the cross-helicity-related coefficient (125c), we retain the �-related
reduction term (the second term) and the cross-helicity generation term (third term) in
addition to the diffusion term (the first term). This linear system of equations is solved
as an eigenvalue problem. The result will be reported in the forthcoming paper (Schmitt
and Yokoi 2013).

7. Flow generation

7.1. Cross-helicity effects in the momentum equation

The cross-helicity effects appear in the Reynolds stressR (28a) in the mean momentum
equation (21), as well as in the turbulent electromotive force EM (28b) in the mean
induction equation (22). Substituting (28a) into (21), we have

@U

@t
¼ U�Xþ J� Bþ �Kr

2 U�
�

�
B

� �
þ F� = Pþ

1

2
U2 þ

1

2
b 02

� �
þ
2

3
KR

� �
: ð126Þ

Note that the �-related term in (126), ��Kr
2(�B/�), comes from the third term in the

Reynolds stress expression (28a), �MM. This suggests that the coupling of the turbulent
cross helicity and the magnetic-field strain may effectively suppress the eddy-viscosity
effect �K.

The mean Ohm’s law is written as

J ¼ � EþU� Bþ EMð Þ ð127Þ

(� (¼1/�): electric conductivity). If we substitute (28b) with the helicity-related terms
dropped into (127), and solve it with respect to J, we have

J ¼
1

�
U� Bþ �Bþ �X�

@A

@t
� =’

� �
ð128Þ

(vector potential A, electrostatic potential ’). Note that �J was dropped as compared
with �J since �
�. However, we should keep in mind the discussions extended in the
final part of section 4. It follows from (128) that the mean-field Lorentz force J�B is
expressed as

J� B ¼
1

�
U� Bð Þ � Bþ

�

�
X� B�

1

�

@A

@t
þ =’

� �
� B: ð129Þ
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Note that the �-related term has no contribution to (129) since the � effect gives J
parallel to B. Substituting (129) into (126), and taking the curl operation, we obtain the

mean vorticity equation as

@X

@t
¼ =� U�

�

�
B

� �
�Xþ �Kr

2 U�
�

�
B

� �� 	

þ =� Fþ
1

�
U� Bð Þ � B�

1

�

@A

@t
þ =’

� �
� B

� 	
: ð130Þ

This equation is fully utilized in the following examples.

7.2. Plasma rotation in internal-transport-barrier mode in tokamaks

We consider the reversed magnetic shear confinement or reversed shear (RS) mode in

tokamaks, where an internal transport barrier (ITB) is formed in the core region of

plasmas. In the RS mode, a global plasma rotation in the poloidal direction is observed

associated with the ITB formation. Here we address the generation of the poloidal

rotation in the RS mode from the viewpoint of the turbulent dynamo (Yoshizawa et al.

1999, Yokoi et al. 2008). For a more general treatment of this phenomena, the reader is

referred to Diamond et al. (2010) and references therein.
In the RS mode in tokamaks, the safety factor qs defined by the ratio of toroidal and

poloidal twist numbers as

qs ¼
r

R

B�

B�
ð131Þ

(R: major radius, B�: toroidal magnetic field, B�: poloidal magnetic field) shows a radial
profile whose minimum is located in the core region of plasma (figure 19(a)). Such a

radial profile of qs corresponds to the hollow radial profile of the plasma current in the

RS mode (figure 19(b)). Namely, the plasma current J�(¼ Jz in cylindrical approxi-

mation) shows a local minimum in the center of plasma (r/a¼ 0, a: minor radius).
We approximate a torus by a cylinder (cylinder approximation) with a cylindrical

coordinate system (r, �, z) (�: poloidal direction, z: toroidal direction). We assume that

the physical quantities depend only on the radius r (@/@�¼ @/@z¼ 0). In this situation,

4

3

2

1

0

qS Jz
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r/ar/a(a) (b)

Figure 19. (a) Safety factor and (b) plasma current in the RS and NS (normal shear) modes.
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we see from (130) that the toroidal or z component of the mean vorticity, O z, obey

@O z

@t
¼ �Kr

2O z � �Mr
2Jz: ð132Þ

Here we assumed that the spatial variation of �M/�K¼ �/� can be neglected. Equation
(132) shows that, in the absence of turbulent cross helicity (�M¼ �¼ 0), Oz is subject to
only the decaying process due to the turbulent viscosity �K. In contrast, in the presence
of the turbulent cross helicity, mean vorticity can be generated.

The turbulent cross helicity W is generated by the production term PW (71a). At the
early stage of plasma rotation, where jXj is small, the production rate can be expressed
as

PW ’ �J . X: ð133Þ

In this case, the cross-helicity evolution is subject to

@W

@t
¼ C�

K2

"
JzO z þ � � �: ð134Þ

From (132) and (134), we obtain

@2O z

@t2
� �

5

7
C�C�

K 3

"2
Jzr2Jz

� �
O z ¼ � � �: ð135Þ

This suggests that the mean vorticity O z increases with the growth rate �2O if

�2O ¼ �
5

7
C�C�

K 3

"2
Jzr2Jz 4 0: ð136Þ

From the radial distribution of the toroidal mean electric-current density J z shown in
figure 19(b), the radial distribution of J z

r
2J z can be calculated. In the region near r/a

’ 0.6, J z
r
2 J z< 0, leading to a positive �2O in this region. This suggests that in the core

region the mean toroidal vorticity will increases. For given magnetic-field profiles
corresponding to the radial profiles of the safety factor qs (see figure 19(a)) and the
hollow mean electric current (figure 19(b)), the mean-vorticity equation is numerically
solved simultaneously with the evolution equations of the turbulent MHD energy K, its
dissipation rate ", and the turbulent cross helicity W. The poloidal velocity profiles are
plotted in figure 20. We see in the core region that the poloidal velocity is generated and
increases as time goes by. This numerical result confirms that the presence of turbulent
cross helicity coupled with a mean magnetic-field reversed shear configuration causes a
poloidal rotation in the core region.

7.3. Torsional oscillation inside the Sun

Thanks to the remarkable developments in helioseismology research, the detailed
configurations of plasma motions inside the Sun have been revealed with amazing
accuracy in the past two decades. One of the most interesting features obtained by
helioseismology is the torsional oscillation in the solar convective zone. The azimuthal
or rotational motion inside the Sun shows oscillatory properties. This periodic motion
shows a similarity in pattern with the solar magnetic activity. A typical period of
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oscillatory motion is a few years and the magnitude of the oscillating azimuthal velocity
is 10 m s�1.

In the context of the torsional oscillation of the Sun, the importance of the feedback
effect due to the mean-field Lorentz force J�B (B¼hbi, J¼=�B) has been pointed out
(Malkus and Proctor 1975). By investigating the turbulent transport through the
Reynolds (and turbulent Maxwell) stress, Rüdiger and Kichachinov (1990) proposed the
so-called L-effect quenching mechanism, where the balance between the turbulent
transport and the mean-field effect is supposed to occur (see also Kitchatinov et al. 1994).

Here we address this torsional oscillation phenomenon from the viewpoint of flow
dynamo: flow generation due to the cross-helicity effect (Itoh et al. 2005).

In order to extract the cross-helicity effects in the momentum equation, we divide the
mean velocity and vorticity as

U ¼ U0 þ 
U, X ¼ X0 þ 
X, ð137a;bÞ

where U0 and X0 are the reference fields without the cross-helicity effect and 
U and 
X
are the modulation fields due to the cross-helicity effect. Substituting (137a,b) into the
mean vorticity equation in a rotating frame, we obtain the equations for the reference
and modulation mean vorticities as

@X0

@t
¼ =� U0 � 2xF þ �Kr

2U0 þ F�
1

�

@A

@t
þ =’

� �
� B

� 	
, ð138Þ

@
X

@t
¼ =� 
U�

�

�
B

� �
� 2xF þ �Kr

2 
U�
�

�
B

� �� 	
: ð139Þ

Here we dropped the mean vorticity X as it is small compared with the system
rotation xF.

If the time scale of the turbulent viscosity is rapid enough compared with the
temporal evolution of the periodic motion as

@
X

@t

����
����
 �Kr

2
X
�� ��, ð140Þ
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Figure 20. Poloidal flow induced by the cross helicity.
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we see from (139) that the modulation velocity


U ¼
�

�
B ð141Þ

is a particular solution of (139) in the stationary state in that condition (140) is satisfied.
This solution indicates that the mean velocity is modulated by the mean magnetic

field in the presence of the turbulent cross helicity. If we rewrite (141) in physical
units as


U ¼
�

�
B ¼

�

�

B�ffiffiffiffiffiffiffiffi
	o�
p , ð142Þ

we see the following features of this solution:

(i) The pattern of the periodic change of differential rotation follows the pattern
of the solar magnetic cycle;

(ii) The flow oscillates in time;
(iii) The direction and magnitude of the flow change according to the changes of

W/K and B;
(iv) 
U is larger near the surface where the density � is smaller.

As for the solar parameters, we adopt the number density of hydrogen as O(1028)m�3

and the magnitude of magnetic field as jBj ¼ 1T at the location of the relative solar
radius of r/R(¼ 0.8�0.9. If we assume the turbulent cross helicity scaled by the
turbulent MHD energy to be of the order

W=K
�� �� ¼ Oð10�1:5Þ, ð143Þ

we obtain

j
Uj � 10m s�1, ð144Þ

which agrees with the result obtained by helioseismology. If the value of
jW/Kj ¼O(10�4) or smaller, the estimate (142) gives too small j
Uj. In such a case,
the cross-helicity effect is not relevant for the torsional oscillation.

In addition, (141) cannot be applied to the case in which the phase difference between
the magnetic and flow pattern is large. Here we should note that the expression for the
modulation velocity (141) is time independent in the meaning of (140). In order to treat
the phase difference between the magnetic and flow patterns, we have to consider the
higher-order part of the modulation velocity that responds to the temporal variation of
the turbulent cross helicity and the mean magnetic field. A report of such investigation
is in preparation (Yokoi 2013).

The present mechanism using the cross-helicity effect is similar to the previous work
in that it consider both the feedback due to the mean-field Lorentz force J�B and the
turbulent transport through the Reynolds (and turbulent Maxwell) stress. The balance
between the structure destruction and generation is considered to play an essential role
in the torsional oscillation.

Themain difference between the present and previous work lies in the point: the former
considers the mean-velocity effect through the turbulent cross helicity whereas the latter
does not. In the present scenario, the effect of mean vortical motions on the magnetic-
field generation is considered through the cross-helicity effect term in (28b), �X, and the
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mean vorticity effect on the momentum equation, coming from the CX terms in (28a), is
negligible as compared with the cross-helicity and mean magnetic strain term, �MM.
This may be expressed as

R�� :¼ ��KS
��
þ �MM

��, EM :¼ ��Jþ �X ð145a;bÞ

(‘‘:¼’’ denotes ‘‘is schematically expressed by’’).
On the other hand, in the previous work using the L-effect quenching, the cross-

helicity effect is neglected. It may be schematically expressed as

R�� :¼ ��KS
��
þ ½CX	��, EM :¼ ��Jþ �B ð146a;bÞ

(the symbol ‘‘K’’ in the L effect is replaced by ‘‘C’’ following our notation in (28a)). This
difference is reflected by the point that the mean velocity U¼hui is entirely neglected in
the basic equations for the velocity and magnetic field in Rüdiger and Kichachinov
(1990).

In the TSDIA formalism, the CX (the last three terms in (28a)) arises from the higher-
order (O(
2)) calculation. This is the reason why we drop it at the first stage of research.
If we have no cross helicity at all, the third term or �MM

�� vanishes, so we have to
retain the CX as a first candidate for balancing the turbulent viscosity effect �K.
Actually this is the case in hydrodynamic turbulence (Yokoi and Yoshizawa 1993).

The key question is which is the dominant effect in the torsional oscillation: cross
helicity or helicity? As mentioned above, if we have the turbulent cross helicity
normalized by the turbulent MHD energy of jWj/K¼O(10�1)�O(10�2), the cross
helicity effect may be relevant. Numerical experiments with realistic parameters using a
more generalized form:

R�� :¼ ��KS
��
þ �MM

��
þ ½CX	��, EM :¼ ��Jþ �Xþ �B ð147a;bÞ

would be an interesting subject.

7.4. Flow–turbulence interaction in magnetic reconnection

In order to get efficient magnetic reconnection, we need enhanced magnetic diffusivity.
We also need some mechanism that will bridge the scale gap between the diffusion
region of the magnetic field and the typical scale of the system where magnetic
reconnection occurs. Turbulence is considered to be one of the candidates that
contributes to the fast and localized reconnection process (Matthaeus and Lamkin
1985, 1986, Lazarian and Vishniac 1999). From the viewpoint of the cross-helicity
effects, turbulent magnetic reconnection is a very interesting phenomenon where both
of the effects in magnetic-field and flow generations play an essential role.

If we substitute the electromotive force expression EM (28b) with the �-related term
dropped into the mean magnetic-field induction equation (22), we get (62).

To extract the magnetic field intrinsic to the cross-helicity effect, we divide the mean
magnetic field and electric-current density as

B ¼ B0 þ 
B, J ¼ J0 þ 
J, ð148a;bÞ
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where B0 and J0 are the reference fields without the cross-helicity effect, and 
B and 
J
are the modulation fields due to the cross-helicity effect. Substituting (148a,b) into (62),

we obtain

@B0

@t
¼ =� U� B0ð Þ � =� �=� B0ð Þ ð149Þ

for the reference field, and

@
B

@t
¼ =� U� 
Bð Þ � =� �=� 
B�

�

�
U

� �� 	
ð150Þ

for the modulation field. Equation (150) has a particular solution


B ¼
�

�
U ð151Þ

for a stationary state. Here we should note (151) is not so bad approximation even for
the variable � and � case. Reviewing the relation

=�

�
�

�
U

�
¼
�

�
=�Uþ =

�

�

� �
�U, ð152Þ

we see (151) holds as long as the magnitude of =(�/�)�U is not so critical. Equation
(151) shows that in the presence of the turbulent cross helicity, we have a modulation of

the mean magnetic field aligned with the mean velocity and the proportional coefficient
is given by the scaled turbulent cross helicity. If the sign of the turbulent cross helicity is

positive (or negative), we have a modulation magnetic field parallel (or antiparallel) to

the mean velocity.
In a similar manner, we consider the momentum equation. If we substitute (137) into

the mean vorticity equation (130), we obtain

@X0

@t
¼ =� U0 �X0 þ �Kr

2U0 þ F�
1

�

@A

@t
þ =’

� �
� B

� 	
ð153Þ

for the reference mean vorticity X0, and

@
X

@t
¼ =� 
U�

�

�
B

� �
�X0 þ �Kr

2 
U�
�

�
B

� �� 	
ð154Þ

for the modulation vorticity 
X. Equation (154) has a particular solution


U ¼
�

�
B ð155Þ

for a stationary state. This shows, in the presence of the turbulent cross helicity, we have
a modulation of the mean velocity aligned with the mean magnetic field, and the

proportional coefficient is given by the scaled turbulent cross helicity. If the sign of the

turbulent cross helicity is positive (or negative), we have a modulation velocity parallel

(or antiparallel) to the mean magnetic field.
Evolution of the turbulent cross helicity is subject to (69) with (71). As the production

rate (71a) shows, the spatial distribution of the turbulent cross helicity is determined by

the mean-field configurations such as the combination of the mean velocity andmagnetic
strains, S : M (79) and the combination of the mean vorticity and electric-current
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density, J . : (80) (see figure 21(a)). Considering such mean-field configurations around
the magnetic reconnection, we see that the spatial distribution of the turbulent cross
helicity is the quadrupole-like configuration (see figure 21(b)).

If we combine the modulation fields (155) and (151) with the quadrupole-like spatial
distribution of the turbulent cross helicity, we have a converging-type flow and a X-
point-like magnetic-field configuration, which is favorable for fast reconnection. The
basic role of the cross-helicity effect is balancing and suppressing the effect of turbulent
magnetic diffusivity. However, the turbulent cross helicity is spatially distributed with
positive and negative values and vanishing at the symmetry surfaces. This pseudoscalar
property makes the reconnection region very narrow and thin, which contributes to the
fast reconnection.

Using (155) and (151), we can estimate the magnetic reconnection rate Min as a
function of the scaled turbulent cross helicity. In figure 22, we show how the magnetic
reconnection rate Min is enhanced by the turbulent cross helicity. For detailed
arguments, the reader is referred to Yokoi and Hoshino (2011), Yokoi et al. (2013a),
and Higashimori et al. (2013).

Figure 22. Magnetic reconnection rate Min against the scaled turbulent cross helicity j�j/�. �0 is the angle
between the reference inflow velocity and magnetic field.

x

y

J

W0

W = 0

W = 0

W > 0

J
W0
W < 0

J
W0

W < 0

J
W0

W > 0

x

y

Inflow

Outflow

(a) (b)

Figure 21. Mean and turbulent fields in magnetic reconnection.

Cross helicity and related dynamo 165



8. Numerical tests

In order to fully solve the mean-field dynamo equations under the combination of the

helicity and cross-helicity effects without resorting to any approximate or perturbation

methods, we have to utilize numerical simulation. Actually, what has been lacking in

the study of cross-helicity dynamo is numerical test of the basic notions. In this section,

we present some results obtained by numerical simulations.
Brandenburg and Urpin (1998) numerically solved the induction equation for the

mean magnetic field with the turbulent electromotive force consisting of both the

helicity and cross-helicity effects. They succeeded in explaining the rapid growth rate of

the large-scale magnetic field in young galaxies, which the conventional helicity dynamo

had failed to elucidate. However, the turbulence properties such as the profiles and

magnitude of the turbulent diffusivity, helicity, etc., are presumed and fixed in their

simulation. In this sense, the relationship between the helicity and cross-helicity effects

still remains indeterminate. Recently, Sur and Brandenburg (2009) examined the cross-

helicity effect in the Archontis flow (a generalization of the Arnold–Beltrami–Childress

flow). By performing direct numerical simulations in a situation with no helicity or �
effect, they showed that a certain magnetic field can be generated genuinely by the

cross-helicity effect. Performing a large-eddy simulation (LES) of MHD turbulence,

Hamba and Tsuchiya (2010) examined the turbulent electromotive force in a turbulent

channel flow. With the aid of a subgrid-scale (SGS) model for LES, it was confirmed

that the cross-helicity effect coupled with the large-scale vorticity plays a central role in

producing the turbulent electromotive force and that the magnetic field is induced by

the cross helicity dynamo in this case.
In the following, we present some other simulations which have been very recently

performed.

Kolmogorov flow with imposed magnetic field. For understanding basic properties of

MHD flow, it is useful to consider a simple inhomogeneous flow configuration.

Kolmogorov flow is a three-dimensional periodic flow with external forcing

f ¼ f x, f y, f zð Þ ¼ f0 sin
2�y

Ly
, 0, 0

� �
ð156Þ

(Lx, Ly, Lz: box dimension). Due to the forcing, this flow is inhomogeneous in the y
direction, but homogeneous in the x and z directions. Kolmogorov flow is known to be

suitable for investigating three-dimensional inhomogeneous turbulent flow. Here, in

order to examine basic MHD properties, we further impose a uniform magnetic field in

the inhomogeneous or y direction:

B ¼ 0,B0, 0ð Þ ð157Þ

(figure 23). With this numerical setup, we perform a direct numerical simulation (DNS)
to examine the turbulent electromotive force and its model (Yokoi and Baralac 2011).

As for the statistics, we adopt the averaging over the homogeneous (x and z) directions

and ensemble average over 70 independent realizations in time.
A comparison of the turbulent electromotive force EM¼hu

0 � b 0i with each term of

the model expression (28b) is shown in figure 24. We see the �-related term, �B, is
negligibly small in the whole region of the flow. The main balance is held between the
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turbulent magnetic diffusivity or �-related term, �J, and the turbulent cross-helicity or
�-related term, �X, in this flow. This is because in this flow we have certain mechanisms
for generating the turbulent cross helicity whereas there is no generation mechanisms
for the turbulent residual helicity.

Flow around the sunspot. How and how much turbulent cross helicity exists in real geo/
astrophysical situations is a very important issue. With the aid of a realistic numerical
simulations of the flow around the sunspot (Jacoutot et al. 2008), the spatial
distribution of the turbulent cross helicity and its generation mechanisms are
investigated (Yokoi et al. 2013b). We consider a rectangular box mimicking a local
flow region around a sunspot (figure 25). The depth of the box corresponds to
the depth of the local convection zone (region of 0 to 5 Mm from the solar surface).
A large-scale magnetic field inclined by 85� toward the surface (almost horizontal) is
imposed. We perform numerical simulations with different magnetic-field strengths

y

gW z

aBz

bJz

〈u′ x b′〉 z

Figure 24. Turbulent electromotive force and its model in Kolmogorov flow. Spatial distribution of hu 0 � b 0

i
z (thick black) is compared with each term in the turbulent electromotive force model, �Bz (thin black); �Jz

(light gray); ��z (dark gray).

x

y

z

fx(y) = f0 sin (2py/Ly)

Lx

Ly

Lz

By

Figure 23. Kolmogorov flow with imposed uniform magnetic field (Left) and external forcing (Right).
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(600, 1200, and 1500G). We assume the system to be periodic in the horizontal (x–y)

directions. All the statistics is made using the horizontal plane average.
The spatial distribution of the turbulent cross helicity scaled by the turbulent MHD

energy is shown in figure 26. The statistics fluctuate from one realization to another, but

we see the basic tendency. First, the magnitude of the scaled cross helicity is

u 0 . b 0
� 


u 02 þ b 02
� 


=2
¼

u 0 . b 0c=
ffiffiffiffiffiffiffiffi
4��
p� 


u 02 þ b 0c
2=ð4��Þ

� 

=2
¼ Oð10�1:5Þ �Oð10�1Þ ð158Þ

(subscript c denotes that magnetic field is measured in the physical cgs unit).
This magnitude seems to be large enough for the cross-helicity effect to work.

Secondly, the turbulent cross helicity is negative near the surface and positive in the

deeper region.

Figure 26. Spatial distribution of the scaled cross helicity.

Figure 25. Numerical simulation mimicking the flow around a sunspot.
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As we showed in (92) in section 5.4, in the compressible case, we have several cross-

helicity generation mechanisms. Spatial distributions of several production terms are

plotted in figure 27 for three cases with different magnetic-field strengths (600, 1200,

and 1500 G). In all magnetic-field strength cases, the turbulent cross-helicity generation

mechanism related to the mean density stratification (see (92d)):

PW=� ¼ �ð�0 � 1Þ
1

�
q 0b 0c
� 


. = � ð159Þ

plays a dominant role in producing the negative cross helicity in the shallow region, where
the large mean density variation is present. In the same region, as we see in figure 27, the

inhomogeneity of the turbulent energy along the mean magnetic field (see (92g)):

PW=K ¼ Bc . = 1
2u
02

� 

ð160Þ

contributes to production of a positive cross helicity. But the magnitude of production
is small compared with the density stratification-related negative production except for

the 1500G case.

9. Concluding remarks

The effects of cross helicity in turbulent dynamo were investigated. If the symmetry

along the directions parallel and antiparallel to the magnetic field is broken, we can

expect finite cross helicity in turbulence. Since the cross helicity is a pseudoscalar (and

not positive-definite), it can be locally distributed positive and negative in space even if

the total amount of the cross helicity integrated over the volume is zero. If a finite cross

helicity exists locally in turbulence, it couples with the mean vorticity in the mean

induction equation, and with the mean magnetic strain in the momentum equation,

which may reduce the effects of turbulent magnetic diffusivity � and eddy viscosity �K,
in the respective case.

In the dynamo equation, the cross-helicity effect coupled with the mean vortical

motion contributes to the turbulent electromotive force. This effect paves the way for

extending the scope of turbulent dynamos. The limitation of mean-field dynamo theory

Figure 27. Spatial distribution of several production terms. Courtesy of Irina Kitiashvili.
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andmodel related to the point (iii), ‘‘generic’’ form of the turbulent electromotive form, is
broken through, and point (iv), physics of main dynamo process, is drastically changed.

Another important point is related to the cross-helicity effect in the momentum
equation. As we have seen in particular in section 7, the turbulent cross helicity coupled
with the inhomogeneity of the mean magnetic field gives rise to flow generation. This
feature is entirely novel since the usual helicity or � effect, which leads to the force-free
configuration, never contributes to the momentum equation through the mean-field
Lorentz force.

Considering all these points, we can conclude that the cross-helicity effects deserve to
be paid much more attention in the turbulent dynamo study in the future.
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Gene Parker for stimulating discussions on the cross-helicity effects. My thanks are also
due to Simon Candelaresi, who carefully read the whole manuscript and contributed to
improving the presentation of the paper. Finally, I would like to express my gratitude to
the editor and special editors of GAFD, Andrew M. Sowards, Axel Brandenburg, and
Igor Rogachevskii for their sincere assistance. Part of this work was performed during
my stay at NORDITA in February and July–August 2011, and October 2012, and at
the Princeton Plasma Physics Laboratory (PPPL) in November 2012. This work is
supported by the Japan Society for the Promotion of Science (JSPS) Institutional
Program for Young Researcher Overseas Visits and also by the JSPS Grant-in-Aid for
Scientific Research (No. 24540228).

References

Balbus, S.A. and Hawley, J.F., Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod.
Phys. 1998, 70, 1–53.

Batchelor, G.K., The Theory of Homogeneous Turbulence, 1953 (Cambridge: Cambridge University Press).
Biskamp, D., Nonlinear Magnetohydrodynamics, 1993 (Cambridge: Cambridge University Press).
Biskamp, D. and Welter, H., Dynamics of decaying two-dimensional magnetohydrodynamic turbulence.

Phys. Fluids B 1989, 1, 1964–1979.
Brandenburg, A. and Subramanian, K., Astrophysical magnetic fields and nonlinear dynamo theory. Phys.

Reports 2005, 417, 1–209.
Brandenburg, A. and Urpin, V., Magnetic fields in young galaxies due to the cross-helicity effect. Astron.

Astrophys. 1998, 332, L41–44.
Canuto, V.M. and Mazzitelli, I., Stellar turbulent convection: a new model and applications. Astrophys. J.

1991, 370, 295–311.
Diamond, P.H., Itoh, S.-I. and Itoh, K., Modern Plasma Physics. Physical Kinetics of Turbulent Plasmas,

Vol. 1, 2010 (Cambridge: Cambridge University Press).
Dikpati, M. and Charbonneau, P., A Babcock–Leighton flux transport dynamo with solar-like differential

rotation. Astrophys. J. 1999, 518, 508–520.
Dobrowolny, M., Mangeney, A. and Veltri, P., Properties of magnetohydrodynamic turbulence in the solar

wind. Astron. Astrophys. 1980a, 83, 26–32.
Dobrowolny, M., Mangeney, A. and Veltri, P., Fully developed anisotropic hydromagnetic turbulence in

interplanetary space. Phys. Rev. Lett. 1980b, 45, 144–147.
Durbin, P.A. and Pettersson Reif, B.A., Statistical Theory and Modeling for Turbulent Flows, 2nd ed., 2011

(West Sussex: John Wiley & Sons).

170 N. Yokoi
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Appendix A: Outline of the present two-scale direct-interaction approximation

(TSDIA) analysis

In the turbulent dynamo study it is of central importance to obtain expressions for the
Reynolds stress R (24a) and the turbulent electromotive force EM (24b). In this paper
we present the expressions (28a,b) obtained from the two-scale direct-interaction
approximation (TSDIA) by Yoshizawa (1990). The TSDIA is a statistical analytical
theory for inhomogeneous turbulence (Yoshizawa 1984) constituted of a combination
of the multiple-scale analysis and the direct-interaction approximation (DIA), an
elaborated closure scheme for homogenous isotropic turbulence by Kraichnan (1957).

In this appendix, we present the outline of the TSDIA procedure that leads to (28a,b).
For detailed derivation, the reader is referred to Yoshizawa (1990, 1998).

A.1. Fundamental equations and Elsasser-variable formulation

We apply the TSDIA formulation to the incompressible MHD turbulence. In the
TSDIA formalism, by way of the differential expansion and the external-field
expansion, the effects of inhomogeneity, external field, and rotation appear in the
higher-order analysis. If we perform an analysis in a rotating frame, we can selectively
derive the expression of the inhomogeneous helicity effects coupled with the rotation
and equivalently the mean vorticity in the lower-order calculations. This makes the
calculation much simpler. So, here in the appendix we present the calculation in a
rotating frame.
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An incompressible MHD plasma in a coordinate system rotating with the angular
velocity xF obeys

@u

@t
þ u . =ð Þu� b . =ð Þb ¼ �=pM � 2xF � uþ �r2u, ðA:1Þ

@b

@t
þ u . =ð Þb� b . =ð Þu ¼ �r2b, ðA:2Þ

with the solenoidal conditions for the velocity u and the magnetic field b:

= . u ¼ = . b ¼ 0: ðA:3Þ

Here, pM(¼ pþ b2/2) is the MHD pressure, � is the kinematic viscosity, and � is the
magnetic diffusivity. We express b, etc., in Alfvén-speed units as in (4). In assuming
incompressibility, we do not deny the importance of compressibility in MHD
turbulence. With this understanding, the present work should be regarded as an
attempt to consider some basic properties of the turbulent dynamo in the framework of
incompressible MHD turbulence theory.

For the sake of clarity, we introduce the Elsasser variables:

/ ¼ uþ b, w ¼ u� b ðA:4a;bÞ

and rewrite (A.1)–(A.3). Then we have

@/

@t
þ w . =ð Þ/ ¼ �=pM � xF � /þ wð Þ þ

�þ �

2
r2/þ

�� �

2
r2w, ðA:5aÞ

@w

@t
þ / . =ð Þw ¼ �=pM � xF � wþ /ð Þ þ

�þ �

2
r2wþ

�� �

2
r2/, ðA:5bÞ

= . / ¼ = . w ¼ 0: ðA:6Þ

Note that in (A.5a,b) the nonlinearity can be expressed in terms of / and w only.
Equations (A.5a,b) and (A.6) have a highly symmetric form; the interchange of / with
w does not change the system of equations at all. We fully utilize this property in the
following calculations.

If we further assume that the difference between � and � is not so critical, (A.5a,b) are
reduced to the simplest possible form as

@/

@t
þ w . =ð Þ/ ¼ �=pM � xF � /þ wð Þ þ

�þ �

2
r2/, ðA:7aÞ

@w

@t
þ / . =ð Þw ¼ �=pM � xF � wþ /ð Þ þ

�þ �

2
r2w: ðA:7bÞ

Note that the Elsasser formulation can also be applied to the compressible case
(Marsch and Mangeney 1987). As for an application to the compressible MHD
turbulence, the reader is referred to Yokoi and Hamba (2007).

We divide the Elsasser variables into the mean and fluctuation around it:

/ ¼ Uþ / 0, w ¼ Wþ w 0: ðA:8a;bÞ

Using these variables, the Reynolds stressR (24a) and the turbulent electromotive force
EM (24b) are expressed as

E�M ¼ �
1
2�
�abRab

E , R�� ¼ 1
2 R

��
E þR

��
E

� �
ðA:9a;bÞ
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with RE being defined as

R
��
E ¼ � 0� 0�

� 

, ðA:10Þ

which may be called the Elsasser Reynolds stress.
We apply the Reynolds decomposition (A.8) into (A.7a). In a frame rotating with the

angular velocity xF, / 0 obeys

@� 0�

@t
þCa @�

0�

@xa
þ

@

@xa
 0a� 0� �R�aE
� �

þ
@p 0M
@x�
� �r2� 0�

¼ ���ab!a
F �

0b þ  0b
� �

�  0a
@F�

@xa
ðA:11Þ

with the solenoidal condition

= . / 0 ¼ 0: ðA:12Þ

The counterparts for w 0 are obtained by the exchange of variables

/ 0 ! w 0, w 0 ! / 0, U! W, W! U, R��E !R
��
E : ðA:13Þ

As will be seen later, in the Reynolds stress expression, the helicity effect occurs in a
combination of the mean vorticity and the gradient of the turbulent kinetic helicity.
Such a term appears at the O(
2) calculation in the TSDIA since both the mean vorticity
and helicity gradient are the quantities of O(
). If we consider the Reynolds stress in a
rotating frame, such a combination appears in the O(
) calculation. This is the reason
why we adopt a frame rotating with xF in (A.11).

A.2. TSDIA procedure

The formal procedure of the TSDIA may be summarized as

(i) Introduction of two scales;
(ii) Fourier representation of the rapid variables;
(iii) Scale-parameter expansions;
(iv) Calculation using the Green’s functions;
(v) Statistical properties for the basic field;
(vi) Calculation of the correlation functions using the DIA.

Through the steps listed above, effects of mean-field inhomogeneity, rotation,
magnetic field, etc., are incorporated in a perturbation manner into the closure scheme
of turbulence, which was originally applicable only to homogeneous isotropic
turbulence.

In the following, we briefly explain each step.

A.2.1. Introduction of two scales
Using a scale parameter 
, we introduce the slow and rapid variables:

n ¼ x, X ¼ 
x; � ¼ t, T ¼ 
t: ðA:14a�dÞ

This parameter is not necessarily small. If 
 is small, the X and T in (A.14) represent the
slow variables. The slow variables (X, T ) provide long spatial and temporal scales since
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their changes are not negligible only when x and t are large. On the other hand, the
rapid variables (n, �) are appropriate for describing the fine spatiotemporal motions.
With these two-scale variables, the spatial and temporal derivatives are expressed as

= ¼ =� þ 
=X,
@

@t
¼
@

@�
þ 


@

@T
, ðA:15a;bÞ

and the field quantities f are divided into F and f 0 as

f ¼ FðX;TÞ þ f 0ðn,X; �,TÞ: ðA:16Þ

The expansion parameter 
 is not an actual parameter, but is an artificial one for
implementing the effect of slowly varying quantities on the fast varying quantities. This
parameter appears if we have differentiations with respect to the slow variables (A.15).
This parameter automatically disappears in the final results through the replacement of
X! 
x and T! 
t.

A.2.2. Fourier representations
We perform the Fourier transform with respect to the rapid variable n as

f ðn,X; �,TÞ ¼

Z
f ðk,X; �,TÞ exp½�ik . ðn�U�Þ	dk, ðA:17Þ

and express the governing equations in wave-number space. The factor
exp[�ik � (n�U�)] on the RHS of (A.17) expresses that the transform is performed in
the frame moving with the large-scale flow U. For instance, the equation for / 0 is
expressed as

@� 0�ðk; �Þ

@t
þ �k2� 0

�
ðk; �Þ � ik�p 0Mðk; �Þ

� ikb
ZZ

ðk� p� qÞdpdq 0

b
ðp; �Þ� 0

�
ðq; �Þ

¼ iðk . BÞ� 0
�
ðk; �Þ � ��ab!a

F � 0
b
ðk; �Þ þ  0

b
ðk; �Þ

� �
þ 
 � 0

a
ðk; �Þ

@F�

@Xa
�
D� 0ðk; �Þ

DTI

�
þ Ba @�

0�ðk; �Þ

@Xa
I

�
@p 0Mðk; �Þ

@X�I

�
@

@Xa
I

ZZ

ðk� p� qÞdpdq 0aðp; �Þ� 0�ðq; �Þ

�
, ðA:18Þ

k . / 0Sðk; �Þ ¼ 0, ðA:19Þ

where the solenoidal fluctuation / 0S is defined by

/ 0Sðk; �Þ ¼ / 0ðk; �Þ þ 
 i
k

k2
@� 0aðk; tÞ

@Xa
I

� �
: ðA:20Þ

In (A.18), 
(k� q� r) denotes the delta function which vanishes unless the wave-vector
relation k¼ qþ r is satisfied. Here and hereafter in the argument notation dependence
on the slow variables X and T is suppressed.

A.2.3. Scale-parameter expansion
We expand the field quantities # 0 ¼ (/ 0,w 0) in the scale parameter 
:

# 0 ¼ # 00 þ 
#
0
1 þ 


2# 02 þ � � �, ðA:21Þ

176 N. Yokoi



where #0 is the field without the mean field. We further expand this in the external-field
parameter such as the mean magnetic field B, the angular velocity xF, etc.:

# 0 ¼ # 0B þ #
0
01 þ #

0
02 þ � � � þ #

0
1 þ #

0
2 þ � � �: ðA:22Þ

Here, # 0B is the basic field corresponding to the homogeneous isotropic turbulence.
For instance, the equation for / 0B is written as

@� 0B
�ðk; �Þ

@�
þ �k2� 0B

� � iZ�abðkÞ

ZZ

ðk� p� qÞdpdq 0B

aðp; �Þ� 0B
bðq; �Þ ¼ 0, ðA:23Þ

where Z�ab(k)¼ kaD�b(k) (D��(¼ 
��� k�k�/k2) is the projection operator in the wave-
number space). Note that the basic field is free from the effect of mean shear, frame
rotation, and mean magnetic field. This equation is considered to be the equation for
the homogeneous isotropic turbulence except for the implicit dependence on the slow
variables X and T.

The O(
1) field /1 obeys

@� 0�S1 k; �ð Þ

@�
þ �k2� 0�S1 k; �ð Þ � iZ�ab kð Þ

ZZ

ðk� p� qÞdpdq  0a0ðp; �Þ� 0bS1ðq; �Þ

¼ �D�bðkÞ 0a0 k; �ð Þ
@Fb

@Xa
�
D� 0�0 k; �ð Þ

DTI
þ Ba @�

0�
0 k; �ð Þ

@Xa
I

þ i�cab!a
F

kb

k2
D�cðkÞ

@

@Xd
I

� 0d0 ðk; �Þ þ  0d0 ðk; �Þ
� �

þ i�cab!a
F

kc

k2
D�dðkÞ

@

@Xd
I

� 0b0ðk; �Þ þ  0b0ðk; �Þ
� �

� iðk . BÞ� 0�S1ðk; �Þ � �cab!a
FD

�cðkÞ � 0bS1ðk; �Þ þ  0bS1ðk; �Þ
� �

ðA:24Þ

with the solenoidal condition:

k . / 0S1ðk; �Þ ¼ 0, ðA:25Þ

for /S1 defined by

/ 0S1ðk; �Þ ¼ / 01ðk; �Þ þ i
k

k2
@� 0aBðk; �Þ

@Xa
I

: ðA:26Þ

In (A.24) we have eliminated the MHD pressure p0M using the solenoidal condition
(A.25).

A.2.4. Calculation using Green’s functions
We define Green’s functions for / 0B, / 001, etc. For example, the one for / 0B,
G 0�

��ðk; �, � 0Þ, is defined by

@G 0�
��ðk; �, � 0Þ

@�
þ �k2G 0�

��ðk; �, � 0Þ

� iZ�abðkÞ

ZZ

ðk� p� qÞdpdq 0B

aðp; �ÞG 0�
b�ðq; �, � 0Þ ¼ 
��
ð� � � 0Þ:

ðA:27Þ
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Using these Green’s functions, we formally solve # 001 and #
0
1.

� 0�S1 k; �ð Þ ¼ �
@Fb

@Xa
D�bðkÞ

Z �

�1

d�1G
0�c
� k; �, �1ð Þ 0a0 k; �ð Þ

�

Z �

�1

d�1G
0�a
� k; �, �1ð Þ

D� 0a0 k; �ð Þ

DTI

þ Ba

Z �

�1

d�1G
0�b
� k; �, �1ð Þ

@� 0b0 k; �ð Þ

@Xa
I

þ i�cab!a
F

kb

k2
DcdðkÞ

Z �

�1

d�1G
0�d
� k; �, �1ð Þ

@

@Xe
I

� 0e0ðk; �Þ þ  0e0 ðk; �Þ
� �

þ i�cab!a
F

kc

k2
DdeðkÞ

Z �

�1

d�1G
0�d
� k; �, �1ð Þ

@

@Xe
I

� 0b0ðk; �Þ þ  0b0ðk; �Þ
� �

� iðk . BÞ

Z �

�1

d�1G
0�a
� k; �, �1ð Þ� 0aS1ðk; �Þ

� �cab!a
FD

cdðkÞ

Z �

�1

d�1G
0�d
� k; �, �1ð Þ � 0bS1ðk; �Þ þ  0bS1ðk; �Þ

� �
: ðA:28Þ

Here the RHS still contains /S1 and wS1. By the iteration method, we get the leading
expression for /S1, which is the same as (A.28) with the last two terms of the RHS
dropped.

A.2.5. Statistical properties for the basic fields
Since the basic fields are homogeneous and isotropic, we assume the statistical
properties for them in the form:

#�Bðk; �Þ��Bðk
0; � 0Þ

D E

ðkþ k 0Þ

¼ D��ðkÞQ#�ðk; �, � 0Þ þ
i

2

ka

k2
���aH#�ðk; �, � 0Þ, ðA:29Þ

G 0#
��ðk; �, � 0Þ

� 

¼ 
��G#ðk; �, � 0Þ, ðA:30Þ

where # and s denote / and/or w. For later convenience, we introduce the symmetric
and anti-symmetric parts of Green’s functions as

GSðk; �, � 0Þ ¼ 1
2 G�ðk; �, � 0Þ þ G ðk; �, � 0Þ
� �

, ðA:31aÞ

GAðk; �, � 0Þ ¼ 1
2 G�ðk; �, � 0Þ � G ðk; �, � 0Þ
� �

: ðA:31bÞ

A.2.6. Calculation of the correlation functions
Following the above procedure, we calculate the correlation functions. Especially, the
Elsasser Reynolds stress RE (A.10) is caluculated as

� 0
�
 0

�
D E

¼ � 0B
� 0B

�
� 


þ � 0B
� 001

�
� 


þ � 001
� 0B

�
� 


þ � � �

þ � 0B
� 01

�
� 


þ � 01
� 0B

�
� 


þ � � �, ðA:32Þ

with the renormalization of the propagators:

Q��
B ðk; �, � 0Þ7!Q��ðk; �, � 0Þ, ðA:33aÞ

G��B ðk; �, � 0Þ7!G��ðk; �, � 0Þ, ðA:33bÞ

where Q��
B and G��B are the lowest-order propagators whereas Q�� and G�� are their

exact counterparts.
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A.3. Results

With the abbreviated expressions for the spectral and time integrals:

InfAg ¼

Z
k2nAðk, x; �, �, tÞdk, ðA:34aÞ

InfA,Bg ¼

Z
k2ndk

Z �

�1

d�1Aðk, x; �, �1, tÞBðk, x; �, �1, tÞ, ðA:34bÞ

the main results of the TSDIA analysis are given as follows.

Turbulent electromotive force. The turbulent electromotive force EM is obtained from
(A.9a) as

EM ¼ �B� �Jþ �Xþ 2�FxF: ðA:35Þ

The transport coefficients �, �, �, and �F are expressed as

� ¼
1

3
I0 GS, �Huu þHbbf g � I0 GA, �Hub þHbuf gð Þ, ðA:36aÞ

� ¼
1

3
I0 GS,Quu þQbb

� �
� I0 GA,Qub þQbu

� �� �
, ðA:36bÞ

� ¼
1

3
I0 GS,Qub þQbu

� �
� I0 GA,Quu þQbb

� �� �
, ðA:36cÞ

�F ¼
2

3
I0 GS,Qbu

� �
� I0 GA,Quu

� �� �
: ðA:36dÞ

Here, Quu, Qbb, Qub, Huu, Hbb, etc., are the spectral functions of the kinetic energy,
magnetic energy, cross helicity, kinetic helicity, current helicity, etc., for the basic field,
respectively. They are written as

1
2 u
0
B
2 þ b 0B

2
� 


¼

Z
Quuðk; �, �Þ þQbbðk; �, �Þð Þdk, ðA:37aÞ

u 0B . b 0B
� 


¼ 2

Z
Qubðk; �, �Þdk, ðA:37bÞ

�u 0B . x 0B þ b 0B . j 0B
� 


¼

Z
�Huuðk; �, �Þ þHbbðk; �, �Þð Þdk, ðA:37cÞ

u 0B . j 0B
� 


¼

Z
Hubðk; �, �Þdk: ðA:37dÞ

If we retain only a part of Green’s function with mirrorsymmetry, GS, we get (34a–c).
Green’s functions are closely related to the characteristic time scales of MHD
turbulence. Since time scales are in general pure scalars, the mirrorsymmetric part of the
Green’s function is supposed to play a dominant role as compared with the anti-
symmetric part of it. In such a case, the transport coefficients for X and 2xF are
the same

� ¼ �F ðA:38Þ

if the velocity and magnetic-field fluctuations are statistically stationary (Qub¼Qbu).
Then we have

EM ¼ �B� �Jþ � Xþ 2xFð Þ: ðA:39Þ
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A TSDIA analysis using not the Lagrange derivative but the co-rotational derivative,
which assures the material frame indifference of turbulent fields, exactly gives relation
(A.38) in the calculation of order up to O(
2) (Hamba and Sato 2008).

Reynolds stress. The Reynolds stress is obtained from (A.9b) as

R�� ¼
2

3
KR


�� � �KS
��
þ �MM

��

þ ðO� þ 2!�FÞG
� þ ðO� þ 2!�FÞG

� �
1

3

�� Xþ 2xFð Þ . C, ðA:40Þ

where KR(¼ hu
02� b 02i/2) is the turbulent MHD residual energy. The transport

coefficient �K (turbulent viscosity) and �M are related to � and � as

�K ¼
7

5
�, �M ¼

7

5
�: ðA:41a;bÞ

The other coupling coefficient related to the vorticity X and angular velocity xF, C, is
expressed as

C ¼
1

15
I�1fGS,=Huug � I�1fGA,=Hbugð Þ: ðA:42Þ

We see from the X and xF-related terms in (A.40) with (A.42) that the inhomogeneity
of kinetic helicity coupled with the mean vortical motion contributes to the Reynolds
stress. This effect is the MHD counterpart of the helicity effect in the hydrodynamic
turbulence (Yokoi and Yoshizawa 1993). These terms related to the helicity gradient
arise from the O(
2) calculation of the TSDIA analysis, so they are sometimes dropped
for practical applications.

A.4. Features of the TSDIA formulation

The two-scale direct-interaction approximation (TSDIA) is a combination of the direct-
interaction approximation (DIA) and the multiple-scale analysis. Its procedure may
appear to be complicated although each step of calculation is straightforward. Several
features of the TSDIA analysis can be indicated, including several assumptions and
intrinsic restrictions of this formalism. They are divided into three classes: those
intrinsic to the DIA formalism; those arising from multiple-scale treatment; and those
related to the system of basic equations to be treated.

A.4.1. Features of the DIA
The direct-interaction approximation (DIA), a second-order renormalized perturbation
theory, is a modern closure scheme for homogeneous isotropic turbulence (Kraichnan
1957). In the earlier studies of homogeneous isotropic turbulence, closure schemes for
the correlation functions have been intensively explored (Batchelor 1953). If the
homogeneity of the fluctuating field is presumed, the Fourier representation provides a
powerful tool for describing the properties of fluctuating quantities. In addition to the
correlation functions, Kraichnan (1957) introduced the notion of response function into
the study of turbulence. Propagators (correlation and Green’s function) are introduced
in the wave-number space. Through Green’s functions, velocity fluctuations are related
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to the steering force or noise. The spirit of the DIA approach is embodied in (A.27) for

Green’s function: The dynamics of Green’s function is explored with the nonlinear

interactions among the modes. Using the propagator renormalization (so-called line

renormalization, no vertex renormalization), a particular sort of interaction between the

modes k, p, and q (called the direct interaction) are calculated up to the infinite order. In
Green’s function equation (A.27), the nonlinear mode coupling term is the most

important part, and the molecular viscosity plays only a minor role. In this sense, this

approach is suitable for treating fully developed turbulence at high Reynolds number.

This is one of the most prominent features of the DIA approach as compared with the

quasi-linear or first-order smoothing approximation.
Its Lagrangian version succeeded in reproducing turbulence statistics, which includes

the Kolmogorov’s scaling law, from the Navier–Stokes equations without putting any

Ansatz for the first time in the history.

A.4.2. Features of the two-scale analysis coupled with the DIA
Following the DIA formulation, the Green’s functions are introduced in the wave-

number space in the TSDIA. We use the average of the Green’s functions with the

isotropic assumption (A.30).
The first-order field / 0S1 obeys (A.24). The left-hand side (LHS) of this equation is

essentially the same as that of the basic field (A.23). Terms directly related to the mean-

field shear, rotation, and magnetic field appear on the right-hand side (RHS). We

regard these terms on the RHS as the force terms. Then we can formally solve (A.24)

with the aid of the Green’s function (A.27). In this sense, effects of mean-field

inhomogeneity, etc., are incorporated as a perturbation for the basic field, homoge-

neous isotropic turbulence.

Homogeneous isotropic basic field. In the TSDIA, effects of the mean-field inhomoge-

neity are incorporated through the differential expansion (A.15) in a perturbational
manner (A.21). As for the basic field, a homogeneous and isotropic field is assumed

following the DIA approach. Spectral function and Green’s function for the

homogeneous isotropic turbulence are expressed in very simple forms as (A.29) and

(A.30). Due to this choice, this approach is not valid in the case that the higher-order

derivatives of the mean field play more important role than the lower-order derivatives.

For the hydrodynamic turbulence, this corresponds to situations where the eddy-
viscosity expression of the Reynolds stress itself is not valid.

A measure of mean-field inhomogeneity may be the relative magnitude of the

turbulence time scale �turb to the mean inhomogeneity counterpart �mean. If �turb is

similar to or less than �mean:

�turb
�mean

�
KS

"
.1, ðA:43Þ

the differential expansion is not bad. Here, K is the turbulent energy and " is its
dissipation rate. The characteristic time scale of turbulence, �turb, is given by the energy

cascade time K/". On the other hand, the characteristic time scale of the mean-field

inhomogeneity �mean is given by the reciprocal of the mean shear rate S

(e.g. S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS

ab
Þ
2=2

q
, with S (29a)). In a typical turbulent channel flow, KS/"� 3.
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On the other hand, if �mean is much shorter than �turb:

�turb
�mean

�
KS

"
� 1, ðA:44Þ

the differential expansion from the homogeneous isotropic field is not good. In this
case, other approach such as the rapid distortion theory (RDT) might be more
appropriate, although its applicability to the fully developed nonlinear stage is open.

External-field expansion. In order to incorporate the effects of frame rotation and/or
large-scale magnetic field, we invoke the external-field expansion (A.22). This is
basically appropriate if the external fields (frame rotation, magnetic field, etc.) are not
so strong. As is well known, an external field often makes turbulence anisotropic. In the
case of a strong external field, the expansion from the homogeneous isotropic basic field
is considered to be inappropriate. In such a situation, assuming a homogeneous but
anisotropic basic field may be appropriate. The isotropic form of Green’s function
(A.30) should be also reappraised. In (A.29) and (A.30) we assume that the basic fields
(lowest-order fields) are isotropic. However, this is just for the sake of simplicity of
calculation, not the essential ingredients of this approach. Introduction of anisotropy is
a very important point in the research of turbulence with rotation, density stratification,
magnetic field, etc. Starting with the simplest anisotropy with axisymmetry with respect
to the rotation, magnetic field is one good starting point. Actually such analysis is in
progress.

Green’s function in the wave-number space. By introducing Green’s functions in wave-
number space, we can fully treat nonlinear mode coupling of turbulence in the sense of
the DIA. On the other hand, if we introduce Green’s functions in the real or
configuration space, the real-space non-locality and memory effects related to the
mean-field quantities can be incorporated. For example, the Reynolds stress may be
expressed as

u 0�u 0�
� 


ðx; tÞ ¼

Z t

0

ds

Z
dyG�aðx, y; t, sÞQ�b @U

aðy; sÞ

@xb
: ðA:45Þ

Here, the Reynolds stress is expressed in a form non-local in space and time. In this
paper we do not discuss about such approaches. In the context of the cross-helicity
effect, the reader is referred to Rädler and Brandenburg (2010). Their equation (42) for
the mean-vorticity-related coefficient should be compared with (34c) in the present
paper.

A.4.3. Simplifications
As shown in (A.1)–(A.3), we consider incompressible MHD turbulence and further
assume that the difference between the viscosity � and the magnetic diffusivity � is not
so critical. This makes the equations of / and w very simple.

One justification for this treatment may be as follows. In geo/astrophysical magnetic
phenomena, both the Reynolds and magnetic Reynolds numbers are usually huge.
Unless the difference between them is so critical, we can assume that the difference of
viscosity (�) and the magnetic diffusivity (�) can be negligible as compared with the
magnitudes of � and � themselves. If we use an approach with the assumption that the
Reynolds numbers are small, the results may depend on the relative values of � and �.
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However, the present approach is most suitable for the case with infinite Reynolds

numbers. In this sense, this assumption is not so critical as compared with the case in

the latter approach.

Symmetry of Green’s functions. Owing to the coupling between the velocity and

magnetic-field fluctuations in the analysis of MHD turbulence, we have to examine the

velocity fluctuation responses to the infinitesimal disturbances both on the velocity and

magnetic-field evolutions, and the counterparts of magnetic fluctuation responses. This

means that in order to treat MHD turbulence strictly we have at least four Green’s

functions, which may be schematically denoted as Guu, Gub, Gbu, and Gbb. In this work,

we adopt the Elsasser variables / and w. Equivalently, in the Elsasser formulation, we

in general have four Green’s functions, which may be denoted as G��, G� , G �, and

G  . By putting �¼ �, we drop the cross diffusion term (the last terms in (A.5a,b) to

have (A.7a,b). With this treatment, we assume that G� and G � are negligibly small

(G� ¼G �¼ 0) as compared with G��(� G�) and G  (� G ).
In addition, we assume that the antisymmetric part of Green’s function, GA (A.31b),

is negligible as compared with the symmetric part GS (A.31a). This treatment

corresponds to the situation where the time scales associated with / and w are the

same. The turbulent time scales associated with the motions parallel and anti-parallel to

the magnetic field are the same.
Under these considerations, we assumed that the responses of fluctuating fields are

represented by only one Green’s function.

To summarize:

Effects of inhomogeneities are treated in the differential expansion from the basic

field. Nonlinear interactions of the fluctuation field is fully taken into account through

the introduction of the Green’s function equations and the renormalization of the

propagators. This is a ‘‘partial sum’’ of the direct interactions. The summation is partial

but to the infinite order. This approach is considered to be most suitable for fully

developed turbulence with very high Reynolds numbers.

� The basic field of turbulence is homogeneous isotropic;

– The spectrum of the velocity correlation and the average of Green’s functions
for the basic fields are isotropic.

� Responses of the velocity and magnetic-field fluctuations to the steering force or
noise are treated by introducing Green’s functions;

– Green’s functions are introduced in the wave-number space;
– Nonlinear dynamics of fluctuation are fully considered with the mode

couplings in the Green’s function equation;
– In order to treat the mean-field non-locality in space, we have to introduce

Green’s function in the configuration space.

� For the incompressible MHD turbulence, we have four Green’s functions;

– By introducing the Elsasser formalism with some symmetries, we assume that
dynamics of MHD turbulence can be described by only one Green’s function.

– G��, G� , G �, G  in the Elsasser veriable formulation;
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– G� ¼G �¼ 0, G��(� G�), G  (� G );
– G�¼G , GS[¼ (G�þG )/2]¼G, GA[¼ (G��G )/2]¼ 0.

� Inhomogeneities of the mean fields are incorporated through the differential
expansion from the basic fields;

– Higher-order derivatives (r2U, r2B, . . . ) and nonlinear terms of inhomoge-
neity ((=U)2, (=B)2, (=U)(=B), . . .) occur in higher-order in the expansion.

� External-field effects such as the system rotation xF, mean magnetic field B,
etc., are taken into account by way of the external-field expansion;

– This is the so-called weak-field expansion;
– Nonlinear terms like x2

F, B
2 etc., enter in the higher-order term.
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