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Performance evaluation of soil moisture profile estimation through entropy-based
and exponential filter models
Vikalp Mishraa,b, W. Lee Ellenburga,b, Kel N. Markerta,b and Ashutosh S. Limayea

aNASA-SERVIR, Marshall Space Flight Center, Huntsville, Alabama, USA; bEarth System Science Center, The University of Alabama in Huntsville,
Huntsville, Alabama, USA

ABSTRACT
In this study we analyzed two models commonly used in remote sensing-based root-zone soil moisture
(SM) estimations: one utilizing the exponential decaying function and the other derived from the
principle of maximum entropy (POME). We used both models to deduce root-zone (0–100 cm) SM
conditions at 11 sites located in the southeastern USA for the period 2012–2017 and evaluated the
strengths and weaknesses of each approach against ground observations. The results indicate that,
temporally, at shallow depths (10 cm), both models performed similarly, with correlation coefficients (r) of
0.89 (POME) and 0.88 (exponential). However, with increasing depths, the models start to deviate: at
50 cm the POME resulted in r of 0.93 while the exponential filter (EF) model had r of 0.58. Similar trends
were observed for unbiased root mean square error (ubRMSE) and bias. Vertical profile analysis suggests
that, overall, the POMEmodel had nearly 30% less ubRMSE compared to the EF model, indicating that the
POME model was relatively better able to distribute the moisture content through the soil column.
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1 Introduction

Soil moisture (SM) is a central component of the global hydro-
logic budget and often considered as one of the most challen-
ging variables to estimate, particularly at regional and global
scales (Robock et al. 1995, Lettenmaier et al. 2015). Monitoring
of SM is traditionally accomplished using ground observa-
tions, sophisticated land surface models (LSMs), and/or
remote sensing methods. Ground observations despite being
relatively more accurate, are often monitored sparsely
(Aghakouchak et al. 2015) thus cannot be used to assess the
spatial dynamics at regional scales.

Further, they are often only active during field campaigns
and thus temporally limited and inconsistent (Reichle 2005).
However, LSMs can represent SM dynamics consistently in
both space and time by capturing the complex physical pro-
cesses in moisture movement through a soil column using
physically based mathematical equations. However, one of
the limitations of the LSMs is that they depend on
a multitude of input parameters to characterize soil properties
which are often not available and therefore parameterized.
Thus, though spatially and temporally consistent, LSMs may
struggle to represent localized soil characteristics, particularly
in data-limited regions.

An alternative to ground observations and LSMs is the use
of remotely sensed satellite techniques to estimate SM.
Microwave (MW) sensors, such as the Advanced Microwave
Scanning Radiometer (AMSR); Soil Moisture and Ocean
Salinity (SMOS); and Soil Moisture Active Passive (SMAP),
can provide SM measurement over large spatial scales with
reasonable accuracy (Njoku et al. 2003, Entekhabi et al. 2010,
Kerr et al. 2010). However, the MW-based SM measurements

only account for the top few (∼0–5) cm of the soil column.
There have been multiple studies exploring the assimilation/
forcing of the surface SM data from MW sensors into LSMs
and crop models with some success in reducing the model
errors (Bolten and Crow 2012, Ridler et al. 2014, Lievens et al.
2015, Yang et al. 2016, Baldwin et al. 2017, 2019).

However, the general observations from these studies is that
the surface SM alone will have only limited success, particu-
larly due to the fact that there is a disconnect between surface
and subsurface SM dynamics. This disconnect often leads to
increased uncertainties in the model at the root zone.
Therefore, a demand for reliable and robust surface to root-
zone SM data from satellite sensors has grown over the years.

Root-zone SM is often used in monitoring and evaluating
agricultural drought and is a fundamental factor in plant–soil–
atmosphere interactions affecting plant growth, sustenance,
and evapotranspiration (ET) (Anderson et al. 2007, 2012,
Bolten and Crow 2012). Furthermore, processes such as infil-
tration and ET influence SM dynamics at shallow depths (<-
100 cm), which can be extremely variable with time and depth
(Scott et al. 2003, Starks et al. 2003). These interdependent
hydrological processes affect the daily distribution of SM in the
root zone, which is a function of soil characteristics as well as
canopy root density and distribution (Mishra et al. 2015).

Thus, information pertaining not only to the amount of
moisture within a soil column, but rather detailed knowledge
of the distribution becomes essential for effective forcing/assim-
ilation of SM into a LSMs or as an independent data source.
Amultitude of approaches have been proposed to estimate root-
zone SM profiles, including traditional methods such as regres-
sion, inversion, knowledge-based, and water balance (Kostov
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and Jackson 1993, Singh 1997, Srivastava et al. 1997, van Dam
and Feddes 2000, Sadeghi et al. 2017), as well as statistical/
empirical methods including maximum entropy, neural net-
works, wavelets or exponential filters (Wagner et al. 1999, Al-
Hamdan and Cruise 2010, Singh 2010, Kornelsen and Coulibaly
2014, Zhou et al. 2016, Pan et al. 2017, Qin et al. 2018, Sun and
Niu 2019). The selection of an approach is usually based on the
application, complexities involved and amount of a priori infor-
mation available. For large-scale applications, the number of
inputs required becomes paramount, especially in data-sparse
regions. Therefore, approaches that require minimum inputs
have generated a lot of interest in large-scale applications. In
this study, we investigate the applicability and limitations of two
such commonly used methods: the exponential filter (EF) and
the principle of maximum entropy (POME) model.

The EF-based method to deduce root-zone SM has received
a lot of attention in recent years, particularly from the remote
sensing community (Albergel et al. 2008, Ford et al. 2014, Cho
et al. 2015, Tabatabaeenejad et al. 2015, Peterson et al. 2016,
Tobin et al. 2017, Wang et al. 2017, Sure and Dikshit 2019).
Exponential filters rely on the relationship between the surface
and underlying root-zone moisture conditions and assume
a hydrologic equilibrium within the soil profile. It has been
argued that the EF model tends to provide relatively better
results under humid conditions (Mahmood and Hubbard
2007, Tobin et al. 2017). However, due to the inherent assump-
tion of no transpiration and constant hydraulic conductivity
(Wagner et al. 1999, Albergel et al. 2008), the EF tends to have
reduced sensitivity during prolonged dry periods where plant
uptake is the main driving force within root-zone moisture
movement. Furthermore, the association of surface to root-
zone SM tends to weaken with depth (Carlson et al. 1995) for
most soil types; thus, the sensitivity of the EF reduces at deeper
layers (approx. >50 cm) (Ford et al. 2014, Peterson et al. 2016).
Despite these limitations, the EF method is commonly used
among the remote sensing community due to its minimum
input requirements; the method only requires surface SM data
as input, which is readily available from MW sensors globally.

Another statistical model that is becoming popular is based
on the maximization of entropy, i.e. the POME model. It has
been argued that the complexities intrinsic to the movement of
moisture through a soil column can be best described through
the description of its entropy (Mays et al. 2002, Pachepsky et al.
2006, Al-Hamdan and Cruise 2010, Singh 2010, Castillo et al.
2015). The maximization of entropy characterizes the diffusion
of moisture through a soil column as a function of time. Unlike
traditional approaches, the POME method does not depend on
a priori information (known or assumed) about the nature or
shape of the profile. The method guarantees the minimum
variance unbiased profile subject to boundary conditions (Al-
Hamdan and Cruise 2010). The POME model has been evalu-
ated extensively under laboratory settings, as well as against
ground observations, by Al-Hamdan and Cruise (2010), Singh
(2010), and Mishra et al. (2015). In addition to the surface SM,
The POME model requires two additional inputs: the mean
moisture content and the bottom-most layer SM value.
Therefore, the POME is relatively better tied to the SMdynamics
and physical processes and could potentially represent the SM
state more accurately. Like the EF model, the inputs to POME

can be obtained from satellite observations; the surface moisture
condition from MW sensors, while the mean moisture content
can be deduced from thermal infrared data (Crow et al. 2008,
Hain et al. 2009, Mishra et al. 2013, 2018). The bottom-most
layer (∼100–200 cm) typically does not vary temporally and
therefore can be parameterized (Mishra et al. 2018).

The EF and POMEmodels are inherently different methods to
estimate root-zone moisture content; the EFmodel tries to mimic
the temporal dynamics, whereas the POME attempts to effectively
distribute the moisture through a vertical soil column. Although,
both models are used in remote sensing applications to deduce
root-zone SM content, a detailed comparison of the performance
between the two model has not yet been conducted. In this study,
we evaluate and analyze the performance of both root-zone SM
deduction models against ground observations at various depths.
The root-zone SM profiles were developed for multiple years
(2012–2017) over 11 sites located in the southeastern USA. The
main objective of this study is to evaluate the performance of both
models as an algorithm for deducing and developing root-zone
SM profiles over a diverse range of soils. As mentioned above, the
models are typically applied with satellite remote sensing; how-
ever, to reduce the number of uncertainties in this comparison,
we evaluate both models under optimum conditions, i.e. forced
with in situ observational datasets. In addition to quantitatively
evaluating both approaches, the expected outcome of this inves-
tigation is to understand and help guide the application of these
two approaches by the remote sensing community.

2 Method

This study focuses on the southeastern USA, where a relatively
dense network of SM probes exists. The climate of the southeast
Unite States ranges from subtropical humid to semi-humid, with
average rainfall rates varying from 1000 mm to 1500+ mm
per year. Though subtropical, many areas in the region experience
water-limited conditions throughout the year (Ellenburg et al.
2018). In situ SM observations were obtained from the US
Department of Agriculture Soil Climate Analysis Network
(SCAN) sites throughout the region. A total of 27 SCAN sites
were available for analysis; however, only 11 sites were selected in
this study since they had at least 50% data availability for the study
period of 2010–2017 encompassing a range of wet to dry years
(Fig. 1). Most of the earlier studies by Wagner et al. (1999),
Albergel et al. (2008), Ford et al. (2014), Peterson et al. (2016),
and Tobin et al. (2017), only selected sites that had a significant
relationship between surface andbottom layers for analysis. In this
study, no such pre-screening of sites was performed based on
factors such as lagged autocorrelations; in fact, if these criteria
had been followed, only one of the 11 sites could be used. This was
done in an attempt to evaluate the performance of both models
under data-scarce conditions, where any type of ground observa-
tion is at a premium. Moreover, such an approach allows us to
assess the full capabilities (or lack thereof) of these models by
remaining agnostic to underlying soil characteristics and any
relationship between the layers. The 11 stations that were
employed represent good distributions across soil properties
with two sandy, six loamy sands/sandy loams, and three silty
loams (Table 1). Typically, SCAN stations are operated in agri-
cultural fields or close by, and the stations used in this analysis
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represent a wide variety of profile distributions (dynamic, wetting
and drying). For this analysis, the observational data were used to
provide each model with its minimum inputs. All of the methods
presented here were implemented in the Python programming
language, version 3.6, using theNumPy (van derWalt et al. 2011),
SciPy (Oliphant 2007, Millman and Aivazis 2011), and Pandas
(McKinney 2010) packages. The source code developed and used
in the study for the Exponential filter and POME model are
publicly available at https://github.com/Vikalp86/soil-moisture-
profile.

2.1 Exponential filter

The Exponential function used in this comparative analysis to
deduce root-zone moisture content was developed by Wagner

et al. (1999) and later refined into a recursive form by Albergel
et al. (2008). Its exponential decay function is based on a time
lagged relationship between surface variations and the root-
zone moisture content. The recursive formula for deducing
root-zone moisture content is given as:

SM�
rz tð Þ ¼ SM�

rz t�1ð Þ þ Kt SM�
sfc � SM�

rz t�1ð Þ
� �

(1)

where SM* is the normalized SM content based on minimum
and maximum moisture content over a period of time, rz and
sfc refers to root-zone and surface values, respectively; t is the
time (in days) and K is the gain function computed as:

Kt ¼ Kt�1

Kt�1 þ e
tn�tn�1

T

(2)

where T is the timescale ofmoisture variations in days, while tn −
(tn−1) is the difference in days that the surface moisture content
value was available between the current and previous times. At
the start of the simulation or when the lag in data availability is
greater than 12 days the model is re-initialized with SM�

rz 1ð Þ ¼
SM�

sfc 1ð Þ and K(1) = 1 (Tobin et al. 2017). The surface (∼5 cm)

moisture content input, SM�
sfc, was obtained from the SCAN

observations. The only unknown in this function is T which
conceptually represents several parameters affecting temporal
dynamics of themoisture content within a soil column (Ceballos
et al. 2005). The accuracy of the exponential function is depen-
dent on T (Albergel et al. 2008) and is usually calibrated to
individual sites. Albergel et al. (2008) found little correlation
between soil properties and T along with a weak relationship to

Figure 1. Experimental study area identifying the 11 SCAN stations used.

Table 1. NRCS SCAN sites locations and soil texture at different layer depths.
[Sand/clay content in percentages]. *Soil texture information from SSURGO.

Site Lat/Lon Depth (cm)

5 10 20 50 100

2027 31.5/–83.5 88.1/02.8 88.1/02.8 88.1/02.8 88.1/02.8 78.5/11.5
2037* 34.3/–79.7 95.0/04.0 95.0/04.0 95.0/04.0 95.0/04.0 95.0/04.0
2038* 32.7/–81.2 79.0/04.0 79.0/04.0 79.0/04.0 60.0/26.0 60.0/26.0
2057 34.8/–86.6 29.2/22.9 29.2/22.9 29.2/22.9 20.9/41.3 18.6/47.5
2075 35.1/–86.6 14.8/19.1 14.8/19.2 12.9/23.4 12.9/36.0 21.4/47.8
2077* 35.1/–86.2 06.4/26.6 6.4/26.6 06.4/26.6 05.7/37.2 10.8/33.0
2078 34.9/–86.6 12.7/31.1 13.1/36.7 13.1/36.7 07.5/54.1 07.5/54.1
2179* 34.2/–87.5 63.0/11.0 63.0/11.0 46.0/20.0 46.0/20.0 50.0/25.0
2180* 30.5/–87.7 66.0/14.0 66.0/14.0 39.0/24.0 39.0/24.0 39.0/24.0
2182* 31.0/–85.0 85.0/06.0 85.0/06.0 85.0/06.0 85.0/06.0 90.0/05.0
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climate (wind speed, ET, season); thus, an optimized T (Topt) is
commonly determined by assessing the prediction accuracy
using a metric over a calibration period. More specifically, the
SM time series is simulated for the calibration period using all
realistic values of T, then the objective function is calculated for
the simulated time series against the observed data. The T value
is optimized for each soil layer and the value that provides the
best simulation for each soil layer is selected. This “brute-force”
process can be applied to optimize T due to the quick computa-
tion time of the exponential filter, the limited number of para-
meters being optimized, and the constrained dimension space of
the parameter – typically 1 to ∼60 days (Qiu et al. 2014, Tobin
et al. 2017). For this analysis, a two-year period (2010–2011) was
used as spin-up to compute Topt for each test site and each layer
separately. The Nash-Sutcliffe efficiency (NSE) coefficient was
used as the primary objective function; however, given the
sensitivity of NSE to biases, an unbiased-RMSE (ubRMSE) was
also used as a secondary objective function when optimizing
Topt.

2.2 The POME model

Using Shannon entropy (Shannon 1948), the POME model by
Al-Hamdan and Cruise (2010) was used in this study to
develop vertical SM profiles. The model requires three inputs:
boundary conditions (surface and bottom layer moisture con-
tent) along with the mean moisture content through the soil
column. The model develops a monotonic profile subject to
boundary conditions and constraints. The model uses two
constraints: (a) the total probability constraint and (b) the
mass balance constraint. The constraints are necessary to relate
the first moment in probability space to the mean water con-
tent of the soil column in physical space. The main POME
equation is given as:

Θ zð Þ ¼
ln exp λ2Θ0ð Þ� λ2 exp 1�λ1ð Þ Z=L

� �h i

λ2
(3)

Here, Θ(z) is the effective moisture content at layer depth z, λ
are the Lagrange multipliers, L is the total soil column depth,
andΘ0 is the surface effective SM. The Lagrange multipliers can
be solved from application of the constraints and the boundary
conditions. For a complete model description and derivation,
readers are referred to Al-Hamdan and Cruise (2010).

In this study, the model was forced with boundary condi-
tions at 5 and 100 cm depths, using data from the SCAN
observations. The profile mean moisture content was also
computed from the SCAN observations. These inputs were
used to obtain SM profiles at 5-cm depth increments from 0
to 100 cm. The model represents a monotonically increasing
(+) or decreasing (–) function to develop dry or wet profiles,
respectively. However, not all profiles are monotonic in nature;
some tend to have at least one prominent inflection point (the
dynamic case) (Mishra et al. 2015). The POME model identi-
fies the dynamic case when the mean moisture content is
outside the limits of the boundary condition and POME has
no solution. The POME model can handle the profiles with
inflection point by sub-dividing the profile into two mono-
tonic profiles and applying the model over them separately.

The presence of an inflection point poses another challenge in
terms of input requirements; the depth as well as SM value at
the inflection point are necessary. Inflection point location and
value is a function of soil characteristics and moisture inputs
from rainfall or irrigation. Mishra et al. (2015) suggest that, for
a given soil type, the inflection point does not vary much over
time. Additionally, their study showed that, for most of the
soils (except extremely porous), the inflection point was typi-
cally present around 20 cm depth. In terms of SM value at the
inflection point, they argued that for large-scale applications,
the initial inflection point value can be assumed as field capa-
city and can be used as a calibration parameter to achieve mass
balance in each part of the profile. Therefore, in the spirit of
minimum data input requirements, as would be the case
within the remote sensing environment, for this study, the
inflection point was assumed to be at 20 cm depth and an
initial value was set as the field capacity. This value was
iteratively reduced until the correct mass balance was achieved.

3 Analysis and discussion

When considering the performance evaluation of these two
statistical models, it is important to note the inherent differ-
ences in model conceptualization, the temporal aspect of the
EF vs the vertical distribution of the POME. Hence, most of the
earlier studies pertaining to the evaluation of the EF model
were based on time series analysis (Albergel et al. 2008, Ford
et al. 2014, Tobin et al. 2017), while the POME model analysis
was typically restricted to analyzing the vertical distributions
(Al-Hamdan and Cruise 2010, Singh 2010, Mishra et al. 2015).
Thus, such comparisons may not fully encapsulate the
strengths (or weaknesses) of the respective models in vertical
or temporal space. Although, the models were developed to
estimate different aspects of SM dynamics, in this study we
analyzed model performance temporally as well as vertically to
evaluate the SM dynamics in both spaces.

Both the EF and POME models were employed to devel-
oped profiles down to 100 cm depth. The EF model was
applied at depths of 10, 20, 50 and 100 cm, while the
POME model, being a continuous integral, produced the
SM profile at 5 cm intervals in the range 0–100 cm.
However, SM content at only three layer depths – 10, 20,
and 50 cm corresponding to the sensing depths of the SCAN
observations – could be considered for performance evalua-
tion. Surface (5 cm) and bottom (100 cm) layer data were not
used for evaluation, since these were supplied as input to one
or both of the models. Both models were run for a period of
6 years (2012–2017) at a 1-day time step over 11 SCAN sites.
Years 2010 and 2011 were used as a calibration period to
initialize the EF model. The SM estimates in this study are
represented in effective terms as: (θ − θr)/(η − θr), where η is
the soil porosity, θ is volumetric SM, and θr is the residual
moisture content.

3.1 Temporal analysis

The exponential function is known to perform best in moder-
ately moist soils where the sand or clay content does not make
up the majority of the soil texture (Albergel et al. 2008, Ford
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et al. 2014, Tobin et al. 2017). However, in our analysis, soils
with higher sand content are found to relate to a more signifi-
cant Topt in the calibration period, resulting in a better perfor-
mance overall, especially in the upper two layers. Table 2
summarizes the optimal NSE and Topt at all SCAN sites for all
layers found during the calibration period. Only two of the 11
sites had negative optimum NSE (2075 and 2078) sites for
depths of 50 and 100 cm. Overall, the mean optimum NSE for
all sites was 0.59 at 10 cm, indicating a strong relationship
between the surface and the layer immediately adjacent. At
20 cm depth, the mean NSE across all sites was – 0.37, though
the mean might be skewed due to a single site (2078) with NSE
of – 5.52. Excluding site 2078, the mean NSE was 0.14 for the
rest of the sites, indicating that the model was better in simulat-
ing the SM condition than assuming the mean. The results of
optimumNSE were consistent with the findings of Carlson et al.
(1995) and Capehart and Carlson (1997), who argued that as the
depth increases, the surface and root-zone essentially gets
decoupled and exhibit very weak (if any) relationship.

Figure 2 shows the boxplot of the overall temporal statistics
across all sites of the POME and EF derived root-zone SM

estimates against the SCAN observations by layer. In terms of
correlation coefficient (r), the POME estimates outperform the
EFmodel at all depths. This can be explained in part by the two
additional inputs (mean SM and bottom boundary conditions)
that are required by the POME model. However, the median
values at 10 cm depth were very similar in both cases, with r
= 0.89 and 0.88 for the POME and EF models, respectively.
The difference increases with depth: r = 0.91 vs 0.83 at 20 cm,
and 0.93 vs 0.58 at 50 cm for the POME and EF models,
respectively. Similar trends were observed for the unbiased
RMSE (ubRMSE). In fact, the ubRMSE (effective SM for the
POME model) tends to reduce with depth, while the reverse is
observed for the EF SM estimates (Table 3). It can be argued
that, due to the use of the lower boundary condition as one of
the inputs to the POME model, the errors in lower depths are
greatly reduced. In the case of bias, the EF SM estimates at
10 cm depth have relatively low mean bias (0.005 in effective
SM). With depth, the bias tends to become negative indicating
general underestimation of SM by the EF model. The POME,
on the other hand, showed relatively low bias consistently at all
depths. Detailed statistical results of both models against the
SCAN observations are presented in Table 3.

Although, Table 3 details the temporal analysis results for
each of the 11 sites by layers, two locations (site 2027 and 2057)
were chosen to discuss the model performance in detail. These
two sites represent the extremes (with respect to soil properties
and model agreement) among all the sites evaluated. Figure 3
showcases the SM time series for year 2016 to demonstrate the
temporal dynamics estimated by the models compared with the
SCAN observations. Site 2027 is an example where the two
models track closely to each other as well as the in situ observa-
tions, while site 2057 demonstrates where the twomodels depart
dramatically in the lower layers. At Site 2027 located in South
Georgia, the soil texture is reported as sandy (0–60 cm), with
sand content at 88.1% (Table 1). One can see that both models
slightly overestimate the moisture content in each layer

Table 2. Table listing optimal NSE (Topt in days) at each layer depth for all sites
using two-years of spin-up period (2010–2011).

Site 10 cm 20 cm 50 cm 100 cm

t Topt t Topt t Topt t Topt
2009 0.73 1 0.52 2 –0.15 6 –2.51 7
2027 0.9 1 0.75 1 –0.81 8 –35.2 59
2037 0.92 1 0.63 1 –1.31 39 –3.54 59
2038 0.87 1 0.84 1 –35.3 39 –51.7 59
2057 0.87 1 –1.61 5 –9.93 16 –4.57 21
2075 –0.88 1 –0.01 6 0.67 9 –49.9 59
2077 0.82 1 –0.31 4 0.13 17 0.04 47
2078 –0.22 1 –5.52 2 –0.12 39 –0.96 12
2179 0.73 1 –0.25 4 –2.95 7 0.45 8
2180 0.83 1 0.09 2 –12.3 39 –14.2 59
2182 0.87 2 0.80 3 –22.1 8 –4.76 4
Mean 0.59 1 –0.37 3 –7.65 21 –15.17 36

Figure 2. Boxplot of temporal statistics of correlation coefficient (r), bias and ubRMSE for the exponential filter and POME model against SCAN observations over all 11
sites.
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presented for most of the year (except around November).
While some differences exist throughout the time series, the
two models differ the most during the drying period (generally,
August/September–October) and particularly in the lower layers
(Fig. 2(a)). The EF model begins to under predict once the
moisture movement is less tied to surface events. Once the
surface is dried, its hydraulic connectivity with the subsurface
is significantly reduced and the two moisture pools (surface and
root-zone) become effectively decoupled (Carlson et al. 1995,
Capehart and Carlson 1997). Additionally, the EF model begins
to smooth out the individual responses to precipitation events at
the lower layers, while the POME model shows a clear positive
bias despite being given the 100 cm boundary condition.

The relationship between the surface, 20 and 50 cm layers
appears to be less explained by the EF at site 2057 (Fig. 2(b)).

Site 2057, located in North Alabama, is reported as a mix of
loam (0–20 cm, 29% sand), clay loam (20–40 cm, 24.3% sand)
and clay (40–100 cm, 20.1% sand). For site 2057, the Topt was
1, 5 and 16 days for layers at 10, 20 and 50 cm, respectively
(Table 2). For comparison, the Topt for site 2027 with sandy
soil was 1 day at the 10 and 20 cm layers and 8 days at 50 cm.
The shorter Topt for site 2027 is consistent with high hydraulic
conductivity associated with sandy soil types. The NSE was 0.9
and 0.75 for the top two layers, while at 50 cm depth NSE was –
0.8, indicating weakening of the relationship between surface
and subsurface SM dynamics. At site 2057, Topt was moder-
ately longer at the lower layers which is typical of loamy soils,
however, the NSE was negative in both lower layers
(NSE < – 1.6), indicating no clear relationship between surface
and lower layers.

Table 3. Time series analysis results from EF and POME models for 2012–2017. N: number of days SCAN data was available; NSE: Nash-Sutcliffe efficiency; r: correlation
coefficient; E: ubRMSE; B: bias. The ubRMSE and bias are in effective SM.

Site Depth
(cm)

N* Exponential filter POME

NSE r
E

(10−2)
B

(10−2) NSE r
E

(10−2)
B

(10−2)

2009 10 864 0.63 0.85 3.8 –2.1 0.70 0.85 4.1 1.8
20 1678 0.07 0.75 4.2 4.1 0.83 0.88 2.6 –0.9
50 1678 –0.88 0.62 4.5 5.4 0.73 0.83 2.9 –1.2
100 1676 –6.92 0.35 12.6 5.3 – – – –

2027 10 2307 0.84 0.92 2.9 –0.1 0.83 0.95 2.5 –0.7
20 2307 0.44 0.81 4.6 –3.0 0.76 0.88 3.5 0.5
50 2306 –0.7 0.48 7.0 –3.0 0.17 0.96 2.2 –6.4
100 2306 –114.6 0.14 7.5 –34.4 – – – –

2037 10 1492 0.91 0.96 2.8 1.1 0.92 0.97 2.4 –1.8
20 1492 0.73 0.92 4.0 3.5 0.56 0.95 3.1 –5.5
50 1492 –1.79 0.51 6.0 –9.1 0.81 0.96 1.8 1.6
100 1492 –6.1 0.52 5.7 –16.0 – – – –

2038 10 1693 0.84 0.95 3.2 2.5 0.28 0.90 5.4 –7.2
20 1995 0.61 0.95 4.2 –5.0 0.49 0.90 5.6 –7.2
50 1995 –92.6 0.50 6.9 –33.2 0.35 0.89 3.7 5.1
100 1993 –184.9 0.64 4.2 –44.2 – – – –

2057 10 2297 0.68 0.92 7.5 –7.3 0.68 0.87 8.3 4.8 –3.2
20 2237 –0.20 0.75 11.6 –14.9 0.81 0.90 –0.6
50 2296 –2.22 0.63 12.5 –24.7 0.01 0.86 2.7 6.3
100 2277 –1.96 0.55 12.8 –22.5 – – – –

2075 10 1827 0.71 0.90 9.0 5.9 0.74 0.94 6.3 –4.8
20 1829 0.62 0.83 10.5 –2.8 0.46 0.92 6.7 4.5
50 1823 0.60 0.78 11.5 –0.4 0.81 0.98 5.3 –4.1
100 1829 –2.38 0.45 12.2 20.2 – – – –

2077 10 2311 0.73 0.91 4.6 3.8 0.76 0.95 3.7 –3.9
20 2311 0.67 0.83 6.0 –1.0 0.87 0.94 2.6 0.9
50 2311 0.34 0.78 7.4 –0.1 0.82 0.94 2.0 1.1
100 2309 –0.05 0.45 7.1 2.7 – – – –

2078 10 1634 0.39 0.79 11.4 2.0 0.69 0.82 11.8 0.1
20 1634 –0.42 0.83 8.8 –14.8 –0.82 0.93 0.1 12.3
50 1634 0.01 0.42 9.1 –0.5 0.70 0.94 3.0 –3.0
100 1632 0.44 0.67 9.7 –1.5 – – – –

2179 10 1869 0.65 0.87 8.9 5.9 0.74 0.91 6.5 –4.4
20 1869 0.44 0.83 10.2 7.6 0.47 0.88 5.3 –5.8
50 1762 0.50 0.81 10.6 –4.4 0.67 0.96 3.9 3.3
100 1836 –0.07 0.77 14.7 –8.0 – – – –

2180 10 1214 0.44 – 0.90 4.1 –4.5 0.76 0.91 3.9 2.8
20 1214 0.3 0.78 4.9 –7.1 0.68 0.90 3.3 2.5
50 1214 –10.4 0.32 5.9 –9.4 0.71 0.97 1.7 –2.8
100 1214 –14.8 0.05 6.7 –24.5 – – – –

2182 10 1099 0.04 0.71 8.0 6.7 –2.2 0.50 0.75 7.2 4.9 –3.5
20 1527 –0.14 0.79 –5.2 0.15 0.91 –8.9
50 1533 –7.9 0.70 4.5 –34.2 –0.3 0.92 4.1 5.1
100 1532 –15.9 0.72 11.4 –46.1 – – – –

Mean 10 1692 0.62 0.88 6.0 6.9 0.5 0.69 0.89 5.6 3.9 –2.2
20 1827 0.23 0.83 –3.5 0.48 0.91 –0.7
50 1822 –11.9 0.58 7.8 –10.3 0.50 0.93 3.0 0.4
100 1827 –38.1 0.48 9.5 –19.0 – – – –

*N may be different for each layer, depending upon the availability of SCAN observations.
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For site 2057, the EF actually performs better than POME in
the second layer (10 cm) at least in two instances: first around
May then around the October time frame. These time periods
also seem to coincide with wet/dry transition periods (dynamic
moisture profiles) and is most likely the result of the POME
model overestimating the inflection point (see profile discus-
sion below). The surface layer moisture fluctuates in the
absence of rainfall due to the direct soil evaporation and sur-
face transpiration; however, in the lowest layers (80+ cm), the
SM is much less variable and remains rather high. This could
be in part due to the presence of higher clay content in the
lower layers compared to the surface. Clay soils with low
hydraulic conductivity can hold moisture content much longer
and are relatively less influenced by loamy surface fluctuations,
effectively adding to the already compacted lower layers. In the
lower layers the Exponential model begins to divert from the
observed values. The EF tends to exaggerate during drying
events (i.e. once the growing season starts in April/May) and
it is propagated throughout the year. The underestimation
during drying months is in tune with the surface moisture

drifts (Fig. 3(b)). The POME model, on the other hand, driven
by boundary conditions as well as mean moisture content, can
better account for these changes with over or under estimation
of mean moisture content input.

Overall, at shallow depths (i.e. 10 cm), one can argue that
both models performed similarly in terms of time series across
all sites. The difference in ubRMSE and bias between the models
was less than 10%. This relationship holds for the top two layers
in most sandy soils (likely true somewhat beyond the 20 cm
mark; however, our analysis is limited to the SCAN observations
depths). At 20 cm, loamy soils’ difference in ubRMSE is roughly
30% higher. As depth increases the error in the EF model results
increased (to 60% higher than the POME at 50 cm depths)
indicating the limitations of the model to estimate lower layer
moisture content solely from the surface observations. At shal-
lower depths the relationship is more directly related to the
surface (soil) evaporation while the lower layers aremore related
to the vegetative ET that the EF model does not capture effec-
tively. The performance of the EF model tends to be the worst
during summertime (March–September) when drying events

Figure 3. Time series of effective SM at different layer depths (10, 20 and 50 cm) for two sites: 2027 (left) and 2057 (right) along with precipitation data.
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induced by lack of rainfall and ET (i.e. root-zone transpiration)
decouple the two moisture pools (see Fig. 3(b)).

3.2 Vertical profile analysis

In addition to time series analysis, we further compare the
performance of the two models with respect to their vertical
SM profile distributions. Figure 4 shows selected SM profiles
estimated by both the Exponential and POME models as com-
pared to the SCAN observations. Although shown, surface and
bottom layer (5 and 100 cm) data were not considered for this
analysis since they were used as inputs. Figure 4 showcases the
various types of profiles that are typically observed i.e. the
wetting, drying and dynamic front as examples. Figure 4(a)
represents a drying profile, the most common profile in non-
irrigated systems where the surface soil is relatively dry com-
pared to the lower layers, i.e. a typical stage in a prolonged
period (hours or days depending on the soil type) after rainfall

or irrigation. The profiles in Fig. 4(c) represents the dynamic
case (with at least one prominent inflection point). Such a case
can arise a short time after a rainfall event that only influences
the surface and has not made it to the lower layers yet, or due to
significant differences in soil physical characteristics between the
layers. The wetting front that defines the dynamic case can
eventually transition into a wetting profile or can revert back
to a typical dry profile (in the case of a short rainfall event).
Figure 4(b) is an interesting one, where SCAN SM profile shows
an inflection point at 20 cm depth, yet the mean (and inflection
point moisture content itself) was within the bounds of surface
and bottom SM. Therefore, in the POME implementation it was
treated as a dry case. Figure 4(d) represents a wetting profile
(0–50 cm) that can occur during and just after rainfall events
where the profile is progressively more wet toward the wetting
front (surface). The four panels are generally representative of all
the profiles generated in this comparison and represent three
different SCAN sites.

Figure 4. SM profiles for demonstrating the possible shapes for different cases: (a) a dry case; (b) another dry case profile, despite the fact that the SCAN clearly showed
a prominent inflection point; (c) a dynamic case; and (d) a wet case. Surface and bottom-most points are not considered in statistics, therefore displayed in dashes.

Figure 5. Boxplot of daily statistics of correlation and ubRMSE for each SCAN site.
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The results in terms of correlation coefficient and ubRMSE of
each profile analysis by each site is shown in Fig. 5. In terms of
correlation, similar to the time-series results, the POME model
performed better than the EF model for nearly all sites, with an
average r of 0.58 compared to 0.14 for the EFmodel. Overall, the
POME model ubRMSE was nearly 30% less than the EF model
(0.05 vs 0.07), indicating that the POME model was better able
to distribute moisture through the soil column compared to the
SCAN observations. Due to the constraints of the SCAN obser-
vation depths, only three values per profile were available for
statistical comparison (10, 20 and 50 cm depths); therefore,
these results should be interpreted in light of this knowledge.

The 6 years’ worth of data over 11 scan sites gives us a sample
size of more than 16,000 profiles. Of all profiles analyzed, 63.4%
represented the dry case, followed by the dynamic case profiles
(19.3%) and rest of the profiles belonged to the wet case. Figure 6
summarizes the ubRMSE and bias for both model results by
each profile type. It should be noted here that the results shown
in Fig. 6 for wet and dynamic cases have a smaller sample size
compared to the dry case profiles. The POME model results for
ubRMSE seem to be relatively stable with a ± 5% (approx.)
difference in mean ubRMSE for all three cases. Interestingly, the
errors for themonotonic cases (dry and wet) were higher than the
dynamic case profiles that were developed by parameterizing the
inflection point location. This is in contrast with the finding of
earlier studies by Al-Hamdan and Cruise (2010) andMishra et al.
(2015), where the monotonic cases had lower errors compared to
the dynamic cases. This anomalous result can be due to wrong
interpretation of dynamic case profiles as monotonic ones as
shown in Fig. 4(b). In terms of bias, a similar trend was observed
for all the profile cases. The use of the dynamic case, even with the
parameterized inflection point location, seems to perform better
in reducing the overall bias for the POMEmodel. In comparison,
the EF model seems to perform best under the wet profile

scenario. This is consistent with the assumptions inherent in the
development of the EF model and results of the prior studies
discussed earlier. The dry and dynamic case bias for the EFmodel
is negative indicating a relative underestimation of the moisture
content compared to SCAN data. These underestimations can be
attributed to the fact that the surface layer dries out much quicker
over prolonged drying cycles (due to evaporation) and its effects
trickle down to the lower layers, whereas in reality this relation-
ship is essentially decoupled since the lower layers might still hold
on to the moisture content. The variation in the EF model
performance is higher compared the POME model signifying
the importance of the profile type in model performance.

As mentioned earlier, in profiles that exhibited inflection
points, the location of the inflection point was assumed to be at
the 20 cm depth based on prior studies. However, in reality, the
inflection point may develop at different depths at a given time
depending on factors such as the soil characteristics, amount
and intensity of the precipitation (or irrigation) event, the
plant types which govern the root distribution as well as root
density. Therefore, the dynamic case profile results are further
studied to analyze the impact of inflection point selection over
both model performance as well as to evaluate the assumptions
made in the POME model implementation for such profiles
(see Section 2.2). Figure 7 shows the ubRMSE distribution as
a function of percent of dynamic cases for the 20 cm depth
layer for both models for each site. As it can be seen, as
the percent of dynamic cases increase, the ubRMSE tends to
increase for the EF model (with R2 of 0.7), while the POME
model show a slight decline (R2 of 0.1). Together Figs. 6 and 7,
seem to suggest that the performance of the EF model deterio-
rates as the number of profiles with inflection points increases,
whereas the POME model results, with its current mode of
implementation, showed a decrease in ubRMSE. This high-
lights the significant difference between the EF and POME

Figure 6. Daily profile statistics by the types: dry, wet and dynamic.
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models, while implying that the POME model can handle such
cases effectively even with parameterized inputs.

This analysis also looked into potential relationships based on
seasonality and sub-climate regimes across our study area. On
average the performance of both the EF and POME models
performed slightly better in the cooler, wetter years of the region
(December–March), where wet case profiles are the majority,
however, the differences are small and not significant. Overall,
the annual spread in ubRMSE was <0.04 and <0.01, respectively,
for both temporal and profile comparisons. Though our study is
mostly representative of a humid, subtropical climate, there are
regional climate differences across the area (i.e. annual rainfall
rates vary over 400 mm). When looking at how each site per-
formed with respect to its location, there are no clear trends by
site or by location (e.g. latitude, coastal boundaries etc.). These
results corroborate well with other studies that found no clear
link between the performance of the EF model and climate and/
or seasonal variations (Albergel et al. 2008, Tobin et al. 2017),
and it makes sense that the POME results should follow.

Overall, it is observed that the POME model outperforms the
EF model in most cases, and it can be seen that the EF model
performs worst once drying events start to occur. Wetting fronts
have a larger influence on Topt where the relationship between the
surface and lower layers is the strongest; hence, the EF model has
relatively better characterizations of the vertical SM profiles in
these cases. In the drying cases, the relationship of the lower layer
SM is not closely (linearly) related to the surface. Once the upper
layer(s) start to dry, the hydraulic connectivity with the subsurface
is significantly reduced and the error appears to propagate
throughout the time series. This explains that though the overall
correlation is somewhat maintained, the mass balance signifi-
cantly altered (≫ bias). This can also be explained, in part, by
plant uptake (through ET) in the root-zone. The effect of ET on
the profile (via root distributions) adds a bit more complexity to
the moisture distribution that cannot be captured by the EF
model (in the Topt parameterization). The POME model, on the
other hand, due to its reliance on mean moisture content, inclu-
sion of an inflection point, and lower boundary conditions in
addition to the surface, tends to perform more reliably

throughout the depth. The daily mean moisture inputs take into
account the ET and drainage processes unlike the EF model.

The results from the temporal and profile analysis suggest
that the SM estimates using the POME model are generally
better as compared to the EF model when analyzing against the
SCAN observations. However, this is not always the case, and
in some scenarios, the single-input EF model can result com-
parative performances.

3.3 Limitations and implications in large-scale
applications

The POME and EF models are statistical estimations of the
movement and redistribution of root-zone SM and have cer-
tain inherent limitations in terms of model structure, applic-
ability, or input requirements, in addition to the configuration
and implementations. For example, the dependence on
a calibrated spin-up period can have a negative influence on
the EF model performance across scales. Topt is typically cali-
brated to a specific spin-up period and location and can impart
biases on the T parameter used in the exponential filter. To
address these biases, in part, the T can be optimized for
different seasons; however, we found, as earlier studies did
(Albergel et al. 2008), that there were no significant differences
across seasons and, thus, it was not included in this study.
Additionally, as discussed earlier, the inherent assumption of
no loss (i.e. ET) limits the overall mass balance of the EF
model. With respect to the POME model, the inclusion of an
inflection point presents an added benefit of capturing
dynamic profiles; however, it carries with it a potential source
of error if not properly parameterized. In this study, the
inflection point is assumed to be at 20 cm depth, but observa-
tions show that it may vary with soil types as well as temporally
(Mishra et al. 2015).

When considering only the minimum inputs required, the
EF model clearly is more applicable with only surface observa-
tions required. However, this does assume that there is
a reasonable dataset available to calibrate Topt and that there is
a strong relationship between surface and subsurface layers. On
the other hand, the POME model requires three inputs, surface
SM, mean moisture, and lower boundary conditions. With
respect to their use in large scale applications, both models’
minimum inputs can be obtained from alternate sources. For
instance, MW sensors can provide the surface observations
required for both the models (Albergel et al. 2008, Ford et al.
2014, Peterson et al. 2016, Tobin et al. 2017, Mishra et al. 2018).
The mean moisture content data required for the POME model
can be obtained using TIR based moisture estimations (Mishra
et al. 2013, 2018). The TIR observations can be used to deduce
the root-zone mean moisture content indirectly using energy
fluxes (Anderson et al. 2007, Hain et al. 2009). The lower
boundary (100–200 cm) are usually well below the crop rooting
depth and therefore are generally temporally less dynamic com-
pared to shallow layers (Scott et al. 2003) and can either be
parameterized or can act as calibration factor. Since one of the
goals of developing SM profiles is to assimilate them back into
LSMs/crop models for improved representation of the moisture
content in data scarce regions, the calibration of the lower

Figure 7. Scatterplot displaying the relation between ubRMSE and the number of
profiles with inflection points (dynamic case) for both EF and the POME model for
all sites.
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boundary could be an effective approach to tie the remotely
sensed profiles into the modeling framework.

Each of the added remote sensing datasets come with their
own limitations and uncertainties, such as spatial resolution
and sensing depths for MW sensors or cloud constraints for
thermal observations (Schmugge et al. 1992, 2002, Norman
et al. 1995). However, this study presented the raw uncertain-
ties of the models themselves to better help understand the
opportunities when used with remote sensing. Although it was
expected that POME would outperform the exponential model
generally, it is important to quantify this improvement given
the additional information that must be gleaned from the
remote sensing platforms. This study found that the EF
model performs similarly to the POME in the upper soil layers
(up to, and potentially beyond, 20 cm in sandy soils) in most
cases. However, the EF model demonstrated a clear lack of
ability (in term of bias and ubRMSE) to consistently estimate
SM at the 50 cm mark and beyond. When concerned with SM
profile distributions and depths in the lower root-zones the
significantly better performance of the POME model is
a compelling case for the added minimum inputs. This sce-
nario could be the case in agricultural applications, where
time-dependent root-zone SM can be critical for crops.
However, in the case of broader land surface applications,
where shallow (∼0–10 cm) SM information is needed, the EF
model may suffice.

4 Concluding remarks

The purpose of this study was to evaluate and compare the
simulation of SM profiles using two models commonly used in
data limited environment, the EF and POME models. These
models typically use remote sensing datasets as inputs to simulate
SM conditions. For this study, we used observation as inputs from
11 SCANsites for 2012–2017 over the southeasternUSA, allowing
for comparison of the twomodels under optimumconditions.We
found that the POME model generally outperformed the EF
model at estimating SM profiles, especially in the lower layers of
the soil column. However, it was found that both models had
comparable performance at shallow depths (∼10 cm) in terms of
time series across all sites and potentially beyond 20 cm for sandy
soils. However, as depth increased the error in the Exponential
model results increased indicating the limitations of the model to
estimate lower layer moisture content solely from the surface
observations. This was particularly identified during prolonged
drying events where the surface and root-zone moisture pools
becomeuncoupled. ThePOMEmodel, with three data inputs (SM
boundary conditions and mean column SM), could be necessary
when profile distribution and time specific root-zone moisture
availability is important (i.e. agriculture applications) To summar-
ize the implications of this study:

● Satellite remote sensing data can derive two out of three
inputs needed for the POME model and one (and only)
input(s) required for the exponential filter model.

● Remote sensing of surface SM estimates are more reliable
than root-zone SM, making the inputs into the EF model
more robust than the POME model.

● The T parameter for the EF is calibrated and not
dynamic thus can be influenced by the calibration
period chosen for Topt.

● The EF model fails to distribute the moisture properly
during dry conditions where the hydraulic connectivity
between the surface and root-zone be577 come uncoupled
and the resulting error is propagated in time.

● The EF model does not include transpiration in the SM
estimates, whereas the POME model infers transpiration
from the mean root-zone SM inputs and mass balance
calculations.

● The POME model is scalable in space and depth because
of the soil agnostic parameterizations, whereas the EF
needs Topt to be optimized for a particular soil column
thus limiting use to other geographic areas and layers
with calibration data.

● The POME model includes the specification of inflection
points, i.e, dynamic SM profiles, although requiring the
use of some assumptions. The EF does not consider
inflection points and only assumes a relationship of the
soil layer to the surface layer.

In applications where time dependent root-zone SM can be
critical (i.e. agriculture), the significantly better performance of the
POME model could justify the added minimum inputs required.

The results of this study are meant as a guide for the
application of the models by users to better select an approach
given the assumptions and data inputs. When using any model,
it is important that users understand the limitations and best
uses of the models. The comparison of the two models char-
acterizes the limitations and caveats, guiding their further use
for applications. Further research is needed to understand and
compare the results of the EF and POME models using inputs
from actual remote sensing data inputs rather than idealized
inputs; however, the results of this study provide a starting
point for practitioners in choosing the best available model
for estimating SM profiles from remote sensing datasets.

Acknowledgements

We would like to thank Dr James F. Cruise, Professor Emeritus, Civil and
Environmental Engineering Department, The University of Alabama in
Huntsville for his guidance and valuable comments on the manuscript.
The authors would also like to acknowledge and thank the NRCS for
making soil moisture observation data publicly available. Lastly, we thank
the anonymous reviewers for their invaluable comments that helped in
improving the quality of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Support for this work was provided through the joint US Agency for
International Development (USAID) and National Aeronautics and Space
Administration (NASA) initiative SERVIR, particularly through the
NASA Applied Sciences Capacity Building Program, NASA Cooperative
Agreement NNM11AA01A.

1046 V. MISHRA ET AL.



References

Aghakouchak, A., et al., 2015. Remote sensing of drought: progress,
challenges and opportunities. Reviews of Geophysics, 53, 452–480.
doi:10.1002/2014RG000456

Albergel, C., et al., 2008. From near-surface to root-zone soil moisture
using an exponential filter: an assessment of the method based on
in-situ observations and model simulations. Hydrology and Earth
System Sciences, 12, 1323–1337. doi:10.5194/hess-12-1323-2008

Al-Hamdan, O.Z. and Cruise, J.F., 2010. Soil moisture profile development
from surface observations by principle of maximum entropy. Journal of
Hydrologic Engineering, 15 (5), 327–337. doi:10.1061/(ASCE)HE.1943-
5584.0000196

Anderson, M.C., et al., 2012. Use of Landsat thermal imagery in monitor-
ing evapotranspiration and managing water resources. Remote Sensing
of Environment, 122, 50–65. doi:10.1016/j.rse.2011.08.025

Anderson, M.C., et al., 2007. A climatological study of evapotranspiration
and moisture stress across the continental United States based on
thermal remote sensing: 1. Model formulation. Journal of Geophysical
Research, 112 (D10117). doi:10.1029/2006JD007506

Baldwin, D., et al., 2017. Predicting root zone soil moisture with soil
properties and satellite near-surface moisture data across the conter-
minous United States. Journal of Hydrology, 546, 393–404. doi:10.1016/
j.jhydrol.2017.01.020

Baldwin, D., et al., 2019. Estimating root zone soil moisture across the Eastern
United States with passivemicrowave satellite data and a simple hydrologic
model. Remote Sensing, 11 (17), 2013. doi:10.3390/rs11172013

Bolten, J.D. and Crow, W.T., 2012. Improved prediction of quasi-global
vegetation conditions using remotely-sensed surface soil moisture.
Geophysical Research Letters, 39 (19), L19406. doi:10.1029/2012GL053470

Capehart, W.J. and Carlson, T.N., 1997. Decoupling of surface and
near-surface soil water content: A remote sensing perspective. Water
Resources Research, 33 (6), 1383–1395. doi:10.1029/97WR00617

Carlson, T.N., Gillies, R.R., and Schmugge, T.J., 1995. An interpretation of
methodologies for indirect measurement of soil water content.
Agricultural and Forest Meteorology, 77 (3), 191–205. doi:10.1016/
0168-1923(95)02261-U

Castillo, A., Castelli, F., and Entekhabi, D., 2015. An entropy-based
measure of hydrologic complexity and its applications. Water
Resources Research, 51, 5145–5160. doi:10.1002/2014WR016035

Ceballos, A., et al., 2005. Validation of ERS scatterometer-derived soil
moisture data in the central part of the Duero Basin, Spain.
Hydrological Processes, 19 (8), 1549–1566. doi:10.1002/hyp.5585

Cho, E., Choi, M., and Wagner, W., 2015. An assessment of remotely
sensed surface and root zone soil moisture through active and passive
sensors in northeast Asia. Remote Sensing of Environment, 160,
166–179. doi:10.1016/j.rse.2015.01.013

Crow,W.T., Kustas, W.P., and Prueger, J.H., 2008.Monitoring root-zone soil
moisture through the assimilation of a thermal remote sensing-based soil
moisture proxy into a water balance model. Remote Sensing of
Environment, 112 (4), 1268–1281. doi:10.1016/j.rse.2006.11.033

Ellenburg, W.L., Cruise, J.F., and Singh, V.P., 2018. The role of evapotran-
spiration in streamflow modeling – an analysis using entropy. Journal of
Hydrology, 567 (9), 290–304. doi:10.1016/j.jhydrol.2018.09.048

Entekhabi, D., et al., 2010. The soil moisture active passive (SMAP)
mission. Proceedings of the IEEE, 98 (5), 704–716. doi:10.1109/
JPROC.2010.2043918

Ford, T.W., Harris, E., and Quiring, S.M., 2014. Estimating root zone soil
moisture using near-surface observations from SMOS. Hydrology and
Earth System Sciences, 18 (1), 139–154. doi:10.5194/hess-18-139-2014

Hain, C.R., Mecikalski, J.R., and Anderson, M.C., 2009. Retrieval of an
available water-based soil moisture proxy from thermal infrared
remote sensing. Part I: Methodology and Validation, 10, 665–683.
doi:10.1175/2008JHM1024.1

Kerr, Y.H., et al., 2010. The SMOS mission: new tool for monitoring key
elements of the global water cycle. Proceedings of the IEEE, 98 (5),
666–687. doi:10.1109/JPROC.2010.2043032

Kornelsen, K.C. and Coulibaly, P., 2014. Root-zone soil moisture estima-
tion using data driven methods. Water Resources Research, 50,
2946–2962. doi:10.1002/2013WR014127

Kostov, K.G. and Jackson, T.J., 1993. Estimating profile soil moisture from
surface-layer measurements: a review. In: H.N. Nasr, ed. Optical engi-
neering and photonics in aerospace sensing. International Society for
Optics and Photonics, 125–136. doi:10.1117/12.154681

Lettenmaier, D.P., et al., 2015. Inroads of remote sensing into hydrologic
science during the WRR era.Water Resources Research, 51, 7309–7342.
doi:10.1002/2015WR017616

Lievens, H., et al., 2015. SMOS soil moisture assimilation for improved
hydrologic simulation in the Murray Darling Basin, Australia.
Remote Sensing of Environment, 168, 146–162. doi:10.1016/j.
rse.2015.06.025

Mahmood, R. and Hubbard, K.G., 2007. Relationship between soil moist-
ure of near surface and multiple depths of the root zone under hetero-
geneous land uses and varying hydroclimatic conditions. Hydrological
Processes, 21 (25), 3449–3462. doi:10.1002/hyp.6578

Mays, D.C., Faybishenko, B.A., and Finsterle, S., 2002. Information
entropy to measure temporal and spatial complexity of unsaturated
flow in heterogeneous media.Water Resources Research, 38 (12), 1313.
doi:10.1029/2001WR001185

McKinney, W., 2010. Data structures for statistical computing in python.
In: S. van der Walt and J. Millman eds. Proceedings of the 9th python in
science conference. Austin, Texas: SciPy, 51–56.

Millman, K.J. and Aivazis, M., 2011. Python for scientists and engineers.
Computing in Science Engineering, 13 (2), 9–12. doi:10.1109/
MCSE.2011.36

Mishra, V., et al., 2018. Development of soil moisture profiles through
coupled microwave-thermal infrared observations in the southeastern
United States. Hydrology and Earth System Sciences, 22, 4935–4957.
doi:10.5194/hess-22-4935-2018

Mishra, V., et al., 2013. A remote-sensing driven tool for estimating crop
stress and yields. Remote Sensing, 5 (7), 3331–3356. doi:10.3390/
rs5073331

Mishra, V., et al., 2015. Modeling soil moisture profiles in irrigated fields
by the principle of maximum entropy. Entropy, 17 (6), 4454–4484.
doi:10.3390/e17064454

Njoku, E.G., et al., 2003. Soil moisture retrieval from AMSR-E. IEEE
Transactions on Geoscience and Remote Sensing, 41 (2), 215–229.
doi:10.1109/TGRS.2002.808243

Norman, J., Kustas, W., and Humes, K., 1995. Source approach for
estimating soil and vegetation energy fluxes in observations of direc-
tional radiometric surface temperature. Agricultural and Forest
Meteorology, 77 (3–4), 263–293. doi:10.1016/0168-1923(95)02265-Y

Oliphant, T.E., 2007. Python for scientific computing. Computing in
Science Engineering, 9 (3), 10–20. doi:10.1109/MCSE.2007.58

Pachepsky, Y., Rawls, W., and Lin, H., 2006. Hydropedology and pedo-
transfer funtions. Geoderma, 131 (3–4), 308–316. doi:10.1016/j.
geoderma.2005.03.012

Pan, X., Kornelsen, K.C., and Coulibaly, P., 2017. Estimating root zone
soil moisture at continental scale using neural networks. JAWRA
Journal of the American Water Resources Association, 53 (1),
220–237. doi:10.1111/1752-1688.12491

Peterson, A.M., Helgason, W.D., and Ireson, A.M., 2016. Estimating
field-scale root zone soil moisture using the cosmic-ray neutron
probe. Hydrology and Earth System Sciences, 20 (4), 1373–1385.
doi:10.5194/hess-20-1373-2016

Qin, M., Gim´enez, D., and Miskewitz, R., 2018. Temporal dynamics of
subsurface soil water content estimated from surface measurement
using wavelet transform. Journal of Hydrology, 563, 834–850.
doi:10.1016/j.jhydrol.2018.06.023

Qiu, J., Crow, W.T., and Nearing, G.S., 2014. The impact of vertical
measurement depth on the information content of soil moisture
times series data. Geophysical Research Letters, 41, 4997–5004.
doi:10.1002/2014GL060017

Reichle, R.H., 2005. Global assimilation of satellite surface soil moisture
retrievals into the NASA Catchment land surface model. Geophysical
Research Letters, 32 (2), L02404. doi:10.1029/2004GL021700

Ridler, M.-E., et al., 2014. Assimilation of SMOS-derived soil moisture in
a fully integrated hydrological and soil vegetation-atmosphere transfer
model in Western Denmark. Water Resources Research, 50 (11),
8962–8981. doi:10.1002/2014WR015392

HYDROLOGICAL SCIENCES JOURNAL 1047

https://doi.org/10.1002/2014RG000456
https://doi.org/10.5194/hess-12-1323-2008
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000196
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000196
https://doi.org/10.1016/j.rse.2011.08.025
https://doi.org/10.1029/2006JD007506
https://doi.org/10.1016/j.jhydrol.2017.01.020
https://doi.org/10.1016/j.jhydrol.2017.01.020
https://doi.org/10.3390/rs11172013
https://doi.org/10.1029/2012GL053470
https://doi.org/10.1029/97WR00617
https://doi.org/10.1016/0168-1923(95)02261-U
https://doi.org/10.1016/0168-1923(95)02261-U
https://doi.org/10.1002/2014WR016035
https://doi.org/10.1002/hyp.5585
https://doi.org/10.1016/j.rse.2015.01.013
https://doi.org/10.1016/j.rse.2006.11.033
https://doi.org/10.1016/j.jhydrol.2018.09.048
https://doi.org/10.1109/JPROC.2010.2043918
https://doi.org/10.1109/JPROC.2010.2043918
https://doi.org/10.5194/hess-18-139-2014
https://doi.org/10.1175/2008JHM1024.1
https://doi.org/10.1109/JPROC.2010.2043032
https://doi.org/10.1002/2013WR014127
https://doi.org/10.1117/12.154681
https://doi.org/10.1002/2015WR017616
https://doi.org/10.1016/j.rse.2015.06.025
https://doi.org/10.1016/j.rse.2015.06.025
https://doi.org/10.1002/hyp.6578
https://doi.org/10.1029/2001WR001185
https://doi.org/10.1109/MCSE.2011.36
https://doi.org/10.1109/MCSE.2011.36
https://doi.org/10.5194/hess-22-4935-2018
https://doi.org/10.3390/rs5073331
https://doi.org/10.3390/rs5073331
https://doi.org/10.3390/e17064454
https://doi.org/10.1109/TGRS.2002.808243
https://doi.org/10.1016/0168-1923(95)02265-Y
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1016/j.geoderma.2005.03.012
https://doi.org/10.1016/j.geoderma.2005.03.012
https://doi.org/10.1111/1752-1688.12491
https://doi.org/10.5194/hess-20-1373-2016
https://doi.org/10.1016/j.jhydrol.2018.06.023
https://doi.org/10.1002/2014GL060017
https://doi.org/10.1029/2004GL021700
https://doi.org/10.1002/2014WR015392


Robock, A., et al., 1995. Use of midlatitude soil moisture and meteorolo-
gical observations to validate soil moisture simulations with biosphere
and bucket models. Journal of Climate, 8, 15–35. doi:10.1175/1520-
0442(1995)008<0015:UOMSMA>2.0.CO;2

Sadeghi, M., et al., 2017. Advancing NASA’s AirMOSS p-band radar root
zone soil moisture retrieval algorithm via incorporation of richards’
equation. Remote Sensing, 9 (1), 17. doi:10.3390/rs9010017

Schmugge, T., et al., 1992. Passive microwave remote sensing of soil
moisture: results from HAPEX, FIFE and MONSOON 90. ISPRS
Journal of Photogrammetry and Remote Sensing, 47 (2–3), 127–143.
doi:10.1016/0924-2716(92)90029-9

Schmugge, T.J., et al., 2002. Remote sensing in hydrology. Advances in Water
Resources, 25 (8–12), 1367–1385. doi:10.1016/S0309-1708(02)00065-9

Scott, C.A., Bastiaanssen, W.G.M., and Ahmad, M., 2003. Mapping root
zone soil moisture using remotely sensed optical imagery. Journal of
Irrigation and Drainage Engineering, 129 (5), 326–335. doi:10.1061/
(ASCE)0733-9437(2003)129:5(326)

Shannon, C.E., 1948. A mathematical theory of communication. Bell System
Technical Journal, 27, 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x

Singh, V., 1997. The use of entropy in hydrology and water resources.
Hydrological Processes, 11 (6), 587–626. doi:10.1002/(SICI)1099-1085-
(199705)11:6<587::AIDHYP479>3.0.CO;2-P

Singh, V.P., 2010. Entropy theory for movement of moisture in soils.
Water Resources Research, 46, W03516. doi:10.1029/2009WR008288

Srivastava, S., et al., 1997.On the relationship betweenERS-1 SAR/backscatter
and surface/sub-surface soil moisture variations in vertisols. Acta
Astronautica, 40 (10), 693–699. doi:10.1016/S0094-5765(97)00125-2

Starks, P.J., et al., 2003. Use of limited soil property data and modeling to
estimate root zone soil water content. Journal of Hydrology, 272 (1–4),
131–147. doi:10.1016/S0022-1694(02)00260-3

Sun, Y. and Niu, J., 2019. Regionalization of daily soil moisture dynamics
using wavelet-based multiscale entropy and principal component
analysis. Entropy, 21 (6), 548–560. doi:10.3390/e21060548

Sure, A. and Dikshit, O., 2019. Estimation of root zone soil moisture using
passive microwave remote sensing: A case study for rice and wheat crops
for three states in the Indo-Gangetic basin. Journal of Environmental
Management, 234, 75–89. doi:10.1016/j.jenvman.2018.12.109

Tabatabaeenejad, A., et al., 2015. P-band radar retrieval of subsurface soil
moisture profile as a second-order polynomial: first AirMOSS results.
IEEE Transactions on Geoscience and Remote Sensing, 53 (2), 645–658.
doi:10.1109/TGRS.2014.2326839

Tobin, K.J., et al., 2017. Multi-decadal analysis of root-zone soil moisture
applying the exponential filter across CONUS. Hydrology and Earth
System Sciences, 21 (9), 4403–4417. doi:10.5194/hess-21-4403-2017

van Dam, J. and Feddes, R., 2000. Numerical simulation of infiltration,
evaporation an shallow groundwater levels with the richards equation.
Journal of Hydrology, 233 (1), 72–85. doi:10.1016/S0022-1694(00)
00227-4

van der Walt, S., Colbert, S.C., and Varoquaux, G., 2011. The numpy
array: A structure for efficient numerical computation. Computing in
Science Engineering, 13 (2), 22–30. doi:10.1109/MCSE.2011.37

Wagner, W., Lemoine, G., and Rott, H., 1999. A method for estimat-
ing soil moisture from ERS Scatterometer and soil data. Remote
Sensing of Environment, 70 (2), 191–207. doi:10.1016/S0034-
4257(99)00036-X

Wang, T., et al., 2017. Evaluating controls of soil properties and climatic
conditions on the use of an exponential filter for converting near
surface to root zone soil moisture contents. Journal of Hydrology,
548, 683–696. doi:10.1016/j.jhydrol.2017.03.055

Yang, K., et al., 2016. Land surface model calibration through microwave
data assimilation for improving soil moisture simulations. Journal of
Hydrology, 533, 266–276. doi:10.1016/j.jhydrol.2015.12.018

Zhou, X., Lei, W., and Ma, J., 2016. Entropy base estimation of
moisture content of the top 10-m unsaturated soil for the Badain
Jaran Desert in northwestern China. Entropy, 18 (9), 323–338.
doi:10.3390/e18090323

1048 V. MISHRA ET AL.

https://doi.org/10.1175/1520-0442(1995)008%3C0015:UOMSMA%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1995)008%3C0015:UOMSMA%3E2.0.CO;2
https://doi.org/10.3390/rs9010017
https://doi.org/10.1016/0924-2716(92)90029-9
https://doi.org/10.1016/S0309-1708(02)00065-9
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(326)
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(326)
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/(SICI)1099-1085(199705)11:6%3C587::AIDHYP479%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1099-1085(199705)11:6%3C587::AIDHYP479%3E3.0.CO;2-P
https://doi.org/10.1029/2009WR008288
https://doi.org/10.1016/S0094-5765(97)00125-2
https://doi.org/10.1016/S0022-1694(02)00260-3
https://doi.org/10.3390/e21060548
https://doi.org/10.1016/j.jenvman.2018.12.109
https://doi.org/10.1109/TGRS.2014.2326839
https://doi.org/10.5194/hess-21-4403-2017
https://doi.org/10.1016/S0022-1694(00)00227-4
https://doi.org/10.1016/S0022-1694(00)00227-4
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1016/S0034-4257(99)00036-X
https://doi.org/10.1016/S0034-4257(99)00036-X
https://doi.org/10.1016/j.jhydrol.2017.03.055
https://doi.org/10.1016/j.jhydrol.2015.12.018
https://doi.org/10.3390/e18090323

	Abstract
	1 Introduction
	2 Method
	2.1 Exponential filter
	2.2 The POME model

	3 Analysis and discussion
	3.1 Temporal analysis
	3.2 Vertical profile analysis
	3.3 Limitations and implications in large-scale applications

	4 Concluding remarks
	Acknowledgements
	Disclosure statement
	Funding
	References



