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Attribution of long-term changes in peak river flows in Great Britain
Aoibheann Brady a, Julian Faraway a and Ilaria Prosdocimi a,b

aDepartment of Mathematical Sciences, University of Bath, Bath, UK; bDepartment of Environmental Sciences, Informatics and Statistics, Ca’ Foscari
University of Venice, Venice, Italy

ABSTRACT
We investigate the evidence for changes in themagnitude of peak river flows in Great Britain. We focus on
a set of 117 near-natural “benchmark” catchments to detect trends not driven by land use and other
human impacts, and aim to attribute trends in peak river flows to some climate indices such as the North
Atlantic Oscillation (NAO) and the East Atlantic (EA) index. We propose modelling all stations together in
a Bayesian multilevel framework to be better able to detect any signal that is present in the data by
pooling information across several stations. This approach leads to the detection of a clear countrywide
time trend. Additionally, in a univariate approach, both the EA and NAO indices appear to have
a considerable association with peak river flows. When a multivariate approach is taken to unmask the
collinearity between climate indices and time, the association between NAO and peak flows disappears,
while the association with EA remains clear. This demonstrates the usefulness of a multivariate and
multilevel approach when it comes to accurately attributing trends in peak river flows.
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1 Introduction

The 2013/14 winter floods in Great Britain saw the destruction
of a railway line, thousands of homes without electricity and
costs in excess of £100 million (Chatterton et al. 2016). A further
series of heavy rainfall events hit Great Britain in the 2015/16
winter, with Storm Desmond breaking the UK 24-hour rainfall
record and Christmas floods resulting in the highest water levels
of every river in Lancashire (Barker et al. 2016). Insurance
payouts for that flood period were estimated to be around
£1.3 billion. As a consequence, there is a fear and widespread
suspicion that there has been an increase in the frequency and
severity of flooding in Great Britain. Climate change projections
suggest an increase in mean annual rainfall across northern
Europe (Bates 2009) over the coming decades, with the belief
that this may contribute to an increase in peak river flows.

Much research has been devoted to the identification of
trends in river flow records, yet current methods do not appear
to be fit for purpose. These have mostly involved performing
some tests at each gauging station separately – see for example
Hannaford and Marsh (2006), Villarini et al. (2009), Mediero
et al. (2014). However, these at-site tests using the relatively
short observed river flow data records do not display compel-
ling evidence of increasing trends. Such an approach tends to
involve fitting a model for some yearly summary value (e.g.
annual maximum flow, annual number of events) at each
individual station, and evidence for monotonic trends is
often derived using specific statistical tests, for example the
Mann-Kendall test (Mann 1945, Kendall 1948). These tests are
not very powerful in a statistical sense (that is, there is a non-
negligible probability of not detecting a trend when one exists);
Prosdocimi et al. (2014) noted that a sample size of hundreds

of years may be needed when using a station-by-station
approach, while reliable records of river flow are typically
much shorter than 100 years. As a consequence, some trends
in the annual maximum flows may not be detected, as each
individual hypothesis test is not sufficiently powerful to detect
them – meaning one may be unable to correctly quantify
changes in flood risk. Additionally, as this approach involves
modelling each station separately, the result at each station is
based solely on the data available at the station itself. Many
gauging stations are geographically close and are exposed to
similar weather conditions, yet this approach does not use
information from nearby stations, which should enhance the
signal at the station in question, and improve the ability to
detect trends provided this trend is the same across all stations.

Another key issue with current models (as noted by Merz
et al. 2012) is the focus on the detection of time trends, rather
than the attribution of these trends to meaningful flood-
generating processes. Gaining a clearer understanding of how
these flows change over time is certainly of interest; however,
time itself cannot explain any of the variability in peak river
flows, instead it is a surrogate for variables which vary with flows
in the same way as time. Thus, this focus on detection does not
give us any insight into the drivers of change in peak river flows.
Gaining an understanding of these drivers of changemay help to
better inform future flood defences; thus, we instead propose to
investigate some potential candidates for attribution of changes
in these flows alongside an analysis of these time trends.

Merz et al. (2012) give a (non-exhaustive) list of the
numerous studies that have investigated trends in peak river
flows and associated flood risk over the past 20 years, typically
with a focus on detection of changes, i.e. on the analysis of
time series data, and attribution has largely followed as “an
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appendix” of a hypothesis test for the significance of such
changes. They noted the need for a switch in focus towards
a more holistic approach, which would incorporate change
detection into the more challenging problem of attribution.
They also discuss attribution in the context of “soft” and
“hard” attribution. Here, “soft” attribution refers to studies
that use hypotheses and references to previous studies to back
up any attributions to drivers of change. On the other hand,
“hard” attribution studies must provide evidence that
detected changes are both consistent with the proposed driver
of change and inconsistent with potential alternative drivers.
Additionally, Merz et al. (2012) require that such “hard”
attribution studies provide some confidence level in the attri-
bution statement. The approach proposed in this paper will
fulfil the criteria of “soft” attribution and the majority of the
“hard” attribution requirements.

A small number of studies have investigated whether cli-
mate indices can describe the observed variability in the
frequency of flooding in river networks (Lins and Slack
2005, Villarini et al. 2011, Mallakpour and Villarini 2015,
amongst others). Tootle et al. (2005) considered a network
of 1009 “unimpaired” catchments in the USA with data from
1948–1988. By applying a non-parametric rank-sum test to
test for significance, they demonstrated that a number of
climate indices influence stream flow variability in the USA.
Hodgkins et al. (2017) investigated trends in floods for a set
of over 1200 catchments across North America and Europe
over time periods from 1961 to 2010 and 1931 to 2010, noting
a much larger link between these occurrences and the
Atlantic Multidecadal Oscillation (AMO) when compared to
long-term time trends. However, such investigations tend to
be on an at-site basis, leading to small sample sizes and low
power of hypothesis tests. Additionally, Mallakpour and
Villarini (2016) noted that the choice of optimal large-scale
drivers of climate is particularly challenging, so care must be
taken when identifying appropriate climate indices.

There is a need for a new approach to the modelling of
trends in peak river flow, in order to overcome these issues
and improve the ability of tests to detect signals. Instead of
focusing solely on detection of time trends, we instead
focus on the combined approach of the detection and
attribution of trends. We investigate whether trends
detected in peak river flows can be related to large-scale
climate indices (which are proxies for climate variability),
such as the North Atlantic Oscillation (NOA) and the East
Atlantic (EA) index. Additionally, it is often difficult to
separate out anthropogenic changes from natural climate
variability, making it difficult to accurately attribute any
such trends. To avoid the presence of additional potential
confounding variables, such as urbanization levels, the
approach focuses on a set of near-natural “benchmark”
catchments, as defined by Harrigan et al. (2017), so that
those predominantly climate-driven trends can be detected.
In order to improve the ability to detect a signal compared
with at-site testing, all stations will be modelled together in
a multilevel model framework. Specifically, Bayesian multi-
level models are employed, which have widely been used for
the modelling of spatial and spatio-temporal environmental
data (Renard et al. 2006, Diggle et al. 2010, Pirani et al.

2014). Such models provide a framework that allows the
pooling of information between stations, improving the
ability to detect signals which may be missed in an at-site
approach. A Bayesian approach also allows for a clear
uncertainty statement for attribution. Finally, the necessity
for a multivariate approach to modelling trends in peak
river flows is demonstrated, in order to accurately separate
out the net effect of individual covariates. This combined
multilevel multivariate approach will help to give a clearer
picture of the drivers of peak river flows in Great Britain.

In Section 2, multilevel models are introduced in the con-
text of the attribution of such trends. A framework is devel-
oped for modelling of spatial dependence in peak river flows.
In Section 3, the annual maximum river flow data series,
climate indices and the reference network of near-natural
catchments used in the model are presented. In Section 4,
the model is implemented for various climate indices to peak
river flows in Great Britain and findings in both a univariate
and a multivariate setting are presented. The work is sum-
marized and future possibilities discussed in Section 5.

2 Methods

An extension to linear models used to ascertain trends in peak
river flows is proposed. Multilevel mixed-effect models are
introduced, in order to incorporate all stations into one
Bayesian modelling framework. Bayesian multilevel mixed-
effect models allow all stations to be modelled together in
a unique model that pools the information across stations,
which may help to better detect signals that cannot be found
using at-site analysis. The addition of a spatial structure to
these models is also introduced, in order to account for simila-
rities between stations that have some proximity to each other.

2.1 Spatial dependence

Many river gauging stations in Great Britain are geographi-
cally close to each other, and one might expect the peak river
flows of these nearby stations to follow a similar pattern.
Spatial correlation structures are designed to model depen-
dence in data, such as times series obtained at fixed gauging
stations. The work of Kjeldsen and Jones (2010) on spatial
correlation in British annual maximum river flow data sug-
gests that one can expect data from nearby gauging stations to
be correlated with each other. This correlation structure is
exploited in the approach discussed here, by including
a spatial random effect to account for this similarity between
nearby stations in the multilevel models proposed in Section
2.2. This is a correlation-based approach, which can be used
generally in any spatial setting, particularly for scenarios
where measurement locations are fixed and the spatial
domain is not continuous (such as river gauging station
data). This pooling of information should help enhance any
signal, helping us to obtain evidence of any trends in river
flows that would have been too weak to detect otherwise.

Diggle et al. (1994) noted that the most common form of
empirical behaviour for stationary correlation structure is that
the correlation between sites i and j decreases as the distance
between them increases. This shape of correlation appears to
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be valid for British rivers, as shown in Kjeldsen and Jones
(2010). Thus, we seek models whose theoretical correlation
structure behaves in this way. We propose the use of an
exponential correlation structure which satisfies this require-
ment; this simple structure is often used in environmental
studies (see for example, Reich et al. 2011). This purely spatial
correlation function depends on the locations through the
Euclidean spatial distance dij only, so that for gauging stations
iand j, the covariance matrix Σ is described as:

�ij ¼ η2exp
�dij
ρ

� �
(1)

where ρ describes the range over which sites i and j influence
each other, i.e. how close two points must be to influence
each other significantly, while η is the marginal standard
deviation controlling the magnitude of this range. Note that,
as in Kjeldsen and Jones (2010), the distance between two
stations is taken to be the Euclidean distance between the
centroid of the catchments upstream of each station rather
than the distance between the stations themselves.

2.2 Multilevel models

Given that a sample size of hundreds of years may be needed to
construct powerful tests for trends when using an at-site
approach, we propose extending the approach of Prosdocimi
et al. (2014) by modelling all stations together within a multilevel
framework. This has the benefit of improving the power of any
models used by incorporating all data within one model, making
use of the natural structure of the spatial data provided. Including
all stations in a model together with a spatial random effect may
help to obtain evidence of any trends in river flows that would
have been too weak to detect otherwise.

In particular, a Bayesian perspective to multilevel models
(see Section 2.3) is adopted, thus considering the model
parameters as random variables with their own probability
models (Gelman and Hill 2006). These probability models
themselves have parameters (known as hyper-parameters),
which are also estimated from the observed data. Looking
first to the original at-site model, which states that the log of
the standardized annual maximum flows, Y, are affected by
covariates X in the following way:

Yt ¼ β0 þ Xtβ1 þ �t (2)

for a given matrix of covariates X which vary across t years,
with regression coefficients β1, error term �t,N 0; σ2ð Þ, where
σ2 represents the variation in flows after controlling for cov-
ariates X, and intercept β0. Here, β0and β1 represent the inter-
cept and slope, respectively, which do not vary in time. Note
that the log of the standardized annual maximum flows is used,
i.e. flows divided by the median of the annual maximum series
(QMED). The log of the annual maximum flow is assumed to
be normally distributed. Using a lognormal distribution has
been found to fit UK peak flow data reasonably well
(Prosdocimi et al. 2014). Using the median is considered to
be more robust to outliers than the mean (Institute of
Hydrology 1999). A simple version of this model is the case
where the water year is the only explanatory variable, i.e. Xt ¼

[Water Year] (the value for the explanatory variable at time t),
was used by Vogel et al. (2011) and Prosdocimi et al. (2014).

At-site investigations often fail to identify trends (Prosdocimi
et al. 2014). It is difficult for authorities to make decisions
regarding flood defences based upon this approach, which can
prove unreliable. Instead, all stations are modelled together to
better detect any signals, assuming that the peak flows are
affected by some countrywide trend. A multilevel approach is
used to allow for different station-specific effects, which are
expressed as random effects. The peak flows can then be mod-
elled as:

Yit ¼ β0 þ Xtβ1 þ ri þ �it (3)

for gauging station i at time t. Assume now that r,Nð0; σ2i )
and the remaining error is now �it,N 0; σ2ð Þ, where σ2i repre-
sents the variation in flows due to differences between gau-
ging stations after controlling for the covariates X. Now β0
and β1 represent the overall countrywide intercept and slope,
respectively. The assumption of a countrywide trend is
a strong assumption, but necessary to ensure that even with
little data, it should be possible to detect trends. To balance
this assumption to some extent, station-specific effects are
included to allow for some variability between stations.

Nearby stations can be expected to be influenced in
a similar way by external variables; thus, a spatial correlation
structure s is included within the multilevel model. For sta-
tion i at time t, this can be expressed as:

Yit ¼ β0 þ Xtβ1 þ ri þ si þ �it (4)

where X is the matrix of explanatory variables under investi-
gation, ri is a random effect to allow for variation between
stations with r,N 0; σ2i

� �
, si is a spatial random effect distrib-

uted as a multivariate normal s,MVN 0;�ð Þð Þ to allow for
correlation between nearby stations, and �it,N 0; σ2ð Þ is the
error term. The exponential correlation structure discussed in
Section 2.1 is used here. A further modification of the model
in Equation (4) could include station-specific properties such
as catchment size or altitude for each station i as explanatory
variables. However, through some investigations it was found
that such modifications do not improve the model perfor-
mance in terms of explanatory power and are therefore not
discussed further.

2.3 Bayesian inference

When amodel such as one shown in Equation (4) is considered
within a Bayesian framework and prior distributions are set on
model parameters (i.e. before any data is observed), this
becomes a Bayesian hierarchical model (Gelman et al. 2004).
It is convenient to use the Bayesian framework for these multi-
level models, as the computations are sensible and inference is
straightforward. Using such an analysis can allow the incor-
poration of further data, by pooling information across gau-
ging stations in one model. It also allows one to incorporate
prior knowledge about parameters before observing the data,
and provides a straightforward framework to assess the uncer-
tainty in the estimation of parameters and functions of the
parameters. It provides a more intuitive and meaningful
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inference over the frequentist approach of p values (O’Hagan
2004). Additionally, as discussed in detail in Section 4,
a Bayesian analysis avoids the issue of the multiple testing
problem (Gelman et al. 2012). This approach then allows
inferences to be made about model parameters through analy-
sis of the posterior distribution via Bayes’ rule:

pðθjyÞ / pðyjθÞp θð Þ (5)

posterior / likelihood� prior

for parameters θ ¼ β; r; s; σ2f g and observations y ¼ log Flowð Þ.
The prior represents uncertainty about a parameter(s) before the
data is observed, while the likelihood is the conditional density of
the data, given the parameters. The product of this is proportional
to the posterior density, which describes the uncertainty about the
unknown parameter(s) having observed the data. This posterior
density is the output of a Bayesian inference. This quantity is of
interest and, in particular, one often looks at the 95% credible
interval, i.e. given the data observed, this is the interval in which
the parameter is contained with 95% probability. Bayesian hier-
archical models provide a flexible framework for statistical mod-
elling of spatial data such as this, allowing one to perform
inference to quantify levels in the models such as the underlying
latent process. For further information on Bayesian methods in
trend estimation, see Renard et al. (2006).

As the proposed approach will use all individual gauging
stations to make inferences about the entire population, the
hierarchical form of Equation (5) is used, as follows:

pðα; θjyÞ / pðyjθ; αÞpðθjαÞp αð Þ (6)

posterior / data� process� prior

for population-level parameters αi, individual-level para-
meters θi ¼ ri; sið Þ and observations of flow data yi. For the
proposed model (Equation (4)), the data level is modelled via
a Gaussian likelihood, where the log of the annual maximum
flow observations is taken:

p yjβ; r; s; σ2� � ¼ Yn
i¼1

N yijxTi βþ ri þ si; σ
2
�

� �
(7)

The process level (i.e. the physical drivers of peak river flows)
is determined by the priors over β, r and the Gaussian process
s given α, which corresponds to the parameters for the expo-
nential covariance structure for the spatial random effect.
Priors are specified on those parameters α ¼ ρ; η2ð Þ which
will be estimated. Standard procedure is followed for prior
specification of regression coefficient parameters βi, which are
given independent Gaussian priors:

βi,N μβ;�β

� �
(8)

where μβ is a q-dimensional mean vector and �β is a q� q-
dimensional covariance matrix. We suggest a mean of 0, and
a relatively large precision in this case. The variance σ2 is
given a half-Cauchy prior with scale 2.5 as suggested by
Gelman et al. (2008), i.e.:

σ2,Cauchy 0; 2:5 � bð Þ (9)

where b is the standard deviation of the residuals of a linear
regression of covariates X against flows. The covariance para-
meters ρ and η2 are given weakly informative half-normal
priors following the recommendations of Gelman et al. (2017):

ρ,half-normal 0;�ρ

� �
; η2,half-normal 0;�η2

� �
(10)

where half-normal means that values are constrained to lie
above zero. In most cases, the posterior is not mathematically
easily tractable except in the cases of small numbers of dimen-
sions. However, samples from this distribution may be gener-
ated using Markov chain Monte Carlo (MCMC) methods
(Smith and Roberts 1993). Stan is a C++ program which
draws samples from Bayesian models to obtain posterior simu-
lations given a user-defined model and data (Carpenter et al.
2016). This approach uses a modified MCMC approach for
sampling from these models. Diagnostics are carried out dur-
ing modelling to check for convergence of the modelling pro-
cedure and to ensure the effective sample size is sufficient. The
potential scale reduction factor, Rhat, provides an estimate of
convergence, which can be interpreted as the factor by which
the variance of an estimate can be reduced with longer chains.
We seek values close to 1 (and at most Rhat < 1.1), which will
happen as the number of simulations approaches infinity. If
samples obtained by the sampler are independent, then the
effective sample size Neff is equal to the actual sample size. On
the other hand, if the correlation between samples decreases so
slowly that the sum in the denominator diverges, the effective
sample size is zero (Ripley 1987). Markov chains tend to
explore the parameter space very slowly, leading to low effec-
tive sample size numbers, and parameters may not be accu-
rately estimated.

3 Peak river flow and climate index data for great
britain

3.1 Benchmark catchments and peak river flow data

It has been noted (Hannaford and Marsh 2006, 2008) that there
can be considerable difficulties in accurately attributing climate-
driven trends to peak river flows in Great Britain, largely due to
the impact of humans and changes in hydrometric performance
in gauging stations over time. This has led to a focus on devel-
oping a series of dedicated networks of natural catchments, in
order to study trends over time. In the UK, an initial benchmark
network (UK Benchmark Network V1, UKBN1) consisting of
122 catchments was developed by Bradford and Marsh (2003).
This aimed to use catchments that had long records of good
hydrometric quality, and were relatively near-natural and repre-
sentative of UK hydrology. Such natural gauged catchments
tend to be small and rural, located predominantly in Wales,
Scotland and the southwest of England. An updated version of
the benchmark network, obtained as a compromise between
geographical coverage and a lack of external interference on
river flows, was therefore developed for the detection and attri-
bution of climate trends. This known as the UK Benchmark
Network V2 (UKBN2) (Harrigan et al. 2017) and consists of 146
benchmark catchments as a representative reference network.
Annual maximums of instantaneous peak flow data for the
V2 benchmark catchments are used to investigate the effect of
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non-anthropogenic (i.e. non-human driven) changes on peak
river flows in Great Britain.

This analysis focuses on annual maximum river flow data
from Great Britain for the stations included in the UKBN2 net-
work. The annual maximum flows are used as a proxy for flood-
ing, and are built from 15-min measurements. This dataset
contains the largest observed instantaneous peak flows in each
water year (which runs from October to September), measured
in m3/s. After removing stations for Northern Ireland in order to
include a spatial effect, and including all stations for which there
are available observations, there are 5475 observations in total,
from 117 benchmark gauging stations in Great Britain, ranging
from 1851 to 2015. The station locations can be seen in Fig. 1. The
average record length of stations within this network is 46 years,
with a minimum of 21 and a maximum of 86 years. There is an
average of 1.4% of records missing, with only five stations having
records of 10–30% missing. The average catchment size of the

network is 210 km2 (minimum: 3.07 km2, maximum: 1500 km2).
A total of 92% of stations may be considered to be “essentially
rural” under the Flood Estimation Handbook (FEH) URBEXT
criteria, i.e. with less than 2.5% of the catchment area covered by
urban landmass (Flood Estimation Handbook (Institute of
Hydrology 1999). Only two stations exceed 10% urbanization;
both are in areas with spatial gaps in the network, and are
included in UKBN2 as a compromise to ensure full spatial cover-
age. Plots of some of the FEH catchment descriptors – see the
Flood Estimation Handbook (Institute of Hydrology 1999) – can
be seen in Fig. 1. These plots show the catchment area, the base-
flow index (BFI) and average annual rainfall for each catchment.

The data for the UKBN2 catchments, annual maximum
series and catchment descriptors can be obtained from the
UK National River Flow Archive (NRFA)1 (Dixon 2010),
which is the primary UK source of hydrometric data.

3.2 Climate indices

Climate is defined as the average state of the atmosphere over
long time periods, thus changes in climate are considerably
slower than the weather. A climate index is defined as some
calculated value that describes the state of the climate system,
and any changes, including weather, occurring in the system
(Integrated Climate Data Center 2011). These indices are
impacted by climate change in a more direct manner than
precipitation (Nobre et al. 2017), so they are proxies for climate
which is changing (but are also variable to begin with).
Moreover these indices are constant across the whole country
for a given time. In Section 4, we investigate whether changes in
peak river flow can be attributed to some of these indices. Note
that the values used are the average of the monthly values for
December, January and February in a given year. The two key
climates indices used in this study are the North Atlantic
Oscillation (NAO) and the East Atlantic (EA) index. These
indices have been indicated in previous studies as potential
drivers of variability in peak flow records (see, for example,
Nobre et al. 2017), and are introduced briefly below.

3.2.1 North Atlantic oscillation
The NAO is a mode of natural climate variability, which impacts
the weather and climate of the North Atlantic region and sur-
rounding continents, particularly Europe (NOAA 2017).
Usually, the North Atlantic surface pressure is relatively high
in the subtropics at latitudes 20–40°N (known as “the Azores
High”), and lower further north at latitudes 50–70ºN (the
“Icelandic Low”). This state extends through higher levels in
the atmosphere, and affects the north–south pressure difference,
which determines the strength of the westerly winds directed
from North America towards Europe. The NAO describes these
fluctuations in north–south pressure differences.

When the NAO index is well above normal, the chances of
above average seasonal temperatures in northern Europe
increase. Precipitation patterns are more localized, with an
increased chance of higher rainfall in northwest Europe and
lower rainfall in southern Europe associated with a higher
than usual NAO. When the NAO index is well below normal,

Figure 1. Plots of Flood Estimation Handbook (FEH) catchment descriptors for
each gauging station: the baseflow index (BFI), the log of the catchment area
(log(Area)) and average annual rainfall.

1http://www.ceh.ac.uk/data/nrfa.
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the opposite tends to occur. The fluctuations in the NAO
occur on a wide range of time scales. There are day-to-day
changes associated with weather systems, and slower changes
associated with seasonal and longer-term variability in other
climate system components such as ocean temperature.
Previous studies have shown that the NAO is related to the
variability in floods (Hannaford and Marsh 2006, Kingston
et al. 2006, Hannaford 2015), while Macdonald and Sangster
(2017) found statistically significant relationships between the
British flood index and the NAO with historical data records.
This provides strong motivation for inclusion as a possible
driver of changes in peak river flows in Great Britain.

A correlation plot between NAO and time can be seen in
Fig. 2, which suggests a correlation coefficient (R) of 0:49
between the two. This indicates possible confounding issues
in the analysis, i.e. the inability to separate the effect of time
from that of the NAO index. A confounding variable is one
that influences both the dependent variable (the log of the
standardized annual maximum flows in this analysis) and the
independent variables (the NAO index), leading to spurious
associations (see for example Faraway 2014). Such confound-
ing will need to be taken into account in the analysis.

3.2.2 East Atlantic index
The EA index (NOAA 2017) is a mode of low-frequency varia-
bility over the North Atlantic, similar in structure to the NAO. It
consists of a north–south dipole of anomaly centres spanning the
North Atlantic from east to west. Positive phases of the EA index
are associated with above-average surface temperatures in Europe
in all months, above average precipitation over northern Europe
and Scandinavia, and below average precipitation across southern
Europe. The EA index exhibits strong multi-decal variability
across records from 1950–2004. Nobre et al. (2017) noted that
positive (negative) phases of both the NAO and EA are associated
with more (less) frequent and intense seasonal extreme rainfall
over large areas of Europe. A correlation plot between EA and
time can be seen in Fig. 2. Again, there appears to be a positive
correlation (R = 0.53) between EA and Water Year (WY), indi-
cating a possible confounding between the two variables.

4 Results

Here, we fit the models investigating the relationship between
the log of the annual maximum flows and time, NAO and EA.
We look to fit models of the form in Equation (4), changing

the covariates Xt in each case (where the subscript t indicates
that the covariate is indexed by time):

Model A: Xt ¼ [Water Year]t
Model B: Xt ¼ [EA]t
Model C: Xt ¼ [NAO]t
Model D: Xt ¼ [Water Year, EA]t
Model E: Xt ¼ [Water Year, NAO]t
Model F: Xt ¼ [Water Year, EA, NAO]t

Models A, B and C are described in Sections 4.2.1 and 4.2.2;
models D–F are detailed in Section 4.3. These models are
implemented in Stan (Carpenter et al. 2016). In terms of
diagnostics discussed in Section 2.3, all values of R̂ for the
model runs fall between 0.999 and 1.001. For a model run
with four chains, each of 1000 iterations (and a burn-in
period of 500 iterations), the Neff is at least 1500 for each
parameter in the model, which is more than sufficient. Stan
code is included as supplementary material.

4.1 At-site approach for comparison

At first, models are fitted using the at-site approach described
in Prosdocimi et al. (2014) for comparison. A linear model is
fitted to observations at each individual station; then, the
p value is extracted to determine whether there is
a significant trend. The null hypothesis is that there is no
significant trend (for time, EA or NAO) in the annual max-
imum flow data. If the p value is less than 0.05, this null
hypothesis is rejected and the conclusion is that a significant
difference does exist.

First, time is considered as the explanatory variable, and the
annual maximum river flow as the response. A map showing
stations for which the null hypothesis of no trend is rejected is
presented in Fig. 3. This map shows negative and positive
trends in red and blue respectively, with significant trends
denoted by a circle and non-significant trends by a cross.

A total of 30 out of 117 stations exhibit significant trends
(seen particularly in the northwest of England) – this represents
of 25% of all stations. However, if all stations were independent,
5% of these stations could show a trend by chance. This large
proportion of false positives produced when running multiple
hypothesis tests is known as a multiple testing problem. Often,
false discovery rate (FDR) controlling approaches are used to
limit the number of these false positives. However, the need for
using such methods to overcome this problem can disappear

Figure 2. Correlation plots for water year with NAO (left) and EA (right), where R is the correlation coefficient between variables.
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almost entirely when using a Bayesian multilevel approach.
Gelman et al. (2012) propose such an approach for scenarios
in which multiple comparisons occur. They note that classical
inference techniques only use information from a particular site
to get effect estimates at that site (thus ignoring key information
from other sites), and tend to keep point estimates fixed.
Multiple comparisons are adjusted for by increasing interval
width. However, they also point towards multilevel models,
which employ partial pooling of information, ensuring that
each site’s estimate will get pulled towards the overall estimate.
This has the consequence of making multilevel model estimates
more conservative, which is appropriate as the resulting inter-
vals are more likely to include zero, and are more likely to be
valid. Thus, the use of Bayesianmultilevel models in the sections
that follow ensures that there is no need to be concerned about
the multiple testing problem, unlike for the at-site case.

We repeat the at-site approach with NAO as the explana-
tory variable instead of time. In this case, very few stations
seem to have a significant NAO trend – only 12 out of 117
stations (10%); however, these are clustered in a similar

manner to those stations with a time trend, further suggesting
that confounding may be an issue with these two variables.
Finally, for the EA index, a total of 32 stations display sig-
nificant trends, accounting for only 27% of all stations in the
dataset. Given the proximity of significant and non-significant
gauging stations it seems this approach may not be fit for the
purpose of detecting long-term trends in peak river flows. In
comparison, the approach discussed in Section 2.2 and imple-
mented below demonstrates a clear ability to detect trends on
a countrywide level.

4.2 Univariate models

Posterior distribution plots for the fixed effect parameters of
the univariate models (A, B and C) are shown in Figs. 4 and
5. These plots show the posterior density of the parameter of
interest conditional on the data observed, along with
a credible interval representing the uncertainty about the
given parameter. Here, what one is interested in is where
the large proportion of the density lies – the size of the
y-axis itself is not of interest. The median of this distribution
is indicated by the thick vertical line on each plot, and the
95% credible interval (i.e. given the data and the model, there
is a 95% chance the true values of the parameters lie in that
interval) is represented by the shaded region of the plots. On
the x-axis is the range of values that the posterior distribution
can take. This represents the change in the log of the annual
maximum flows given the covariate modelled.

4.2.1 Time trends in peak flow data
Firstly, a model investigating the relationship between peak river
flows and time is fitted. A clear time trend is observed in Fig. 4
upon inspection of the posterior distribution. This plot shows the
range of the 95% most credible values that the regression

Figure 3. Significance of time and climate index trends for river flows in Great
Britain.

Figure 4. The fixed effect posterior for Model A. This shows the posterior density
of the fixed effect of water year conditional on the data observed, with a 95%
credible interval representing uncertainty about this parameter (shaded region).
The median is indicated by the thick vertical line. The x-axis shows the range of
values that the density can take.
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coefficient for water year can take based on the given data. Using
this posterior distribution plot, it can be seen that the fixed effect
of water year is highly likely to be greater than 0.003 because the
median value (indicated by the thick vertical line) andmost of the
mass of the distribution lies to the right of this value. As this is on
a log scale, this corresponds to time adding at least 0.3% to peak
flows each year (or a 3% increase in the median every 10 years)
suggesting that peak flows have been increasing considerably
over time. This is of particular interest as it demonstrates the
enhanced ability of the multilevel approach to detect signals that
have previously been missed using an at-site approach.

However, time itself cannot cause changes in peak river
flows. Instead it is acting as a proxy for some other unknown
variables which vary with peak river flows in the same way as
time, for example global warming. In itself, it does not pro-
vide information on potential causes of changes in peak river
flows, and thus is not the only area of interest when it comes
to the attribution of such changes. Instead, we focus on
relating these changes to large-scale climate indices, which
themselves represent changes in climate.

4.2.2 Relationship between climate indices and peak river
flows
We now focus on the attribution of changes in peak river flows
to climate indices. In Model B, the effect of the EA index alone
is investigated. From looking at the posterior plot shown in Fig.
5, this appears to have a strong association with peak river
flows. The posterior density of the regression parameter is
clearly centred away from zero as over half of its mass lies
above 0.10, and does not contain zero in its credible interval.
This corresponds to a 10% increase in the median peak river
flows when going from a null EA value to a positive anomaly of
size 1. This suggests that the EA index has some positive
association with peak river flows in Great Britain.

When fitting Model C (see Fig. 5), it can be seen that the
NAO seems to have some association with peak river flows.
The posterior distribution also has slight overlaps with zero,
although it does not contain zero in its 95% credible interval.
One might expect the NAO to have some association with
these annual maximum flows, roughly a 2% increase in the

median when going from a null NAO value to a positive
anomaly of size 1.

4.3 A multivariate approach

In Section 4.2 we showed that both time and climate indices are
related to peak river flows in Great Britain. It is clear from the
plots in Fig. 2, however, that the climate indices are both
correlated with time, suggesting the possibility of confounding
between these variables. There is a need to separate out the net
effect of these indices when time has been taken into account. It
is necessary to use a multivariate approach to accurately deter-
mine the scale of the association between these indices and
peak river flows after time has been taken into account.

It is not unreasonable to believe that the effect of time may be
preventing us from seeing the true effect of climate indices such as
EA andNAOon the peak annual river flows or that, vice versa, the
detected effect of time is actually the result of the effect of climate
indices which happen to also change in time. Note that there may
be other unobserved variables that change with time, that also
drive change, as time itself cannot drive change – it is however
a good proxy for these variables. We will demonstrate that this
effect is masking the true extent of the associations between
climate indices by utilizing a multivariate approach.

To overcome this potential confounding effect of time, the
peak river flows are modelled as a function of both time and
climate indices. Modelling more than one covariate at a time
is key to identifying collinearity between variables and will
provide a clearer picture of what is driving peak river flows in
Great Britain. We noted that time trends have primarily been
the focus in past approaches, but isolating the effect of climate
indices to attribute these trends has largely been overlooked
thus far (Merz et al. 2012). Combinations of time and these
climate indices are now considered, in order to observe
whether those associations seen in models B and C remain
when time has been included in the model.

Model D investigates the link between both time and EA,
and the log-transformed peak river flows. Even with time
taken into account, EA is clearly associated with peak river
flows. This can be seen in the plot on the right of Fig. 6 – the

Figure 5. Fixed effect posteriors for Models B (left) and C (right).

1166 A. BRADY ET AL.



posterior distribution still lies away from zero, with a median
value of approximately 0.09. This plot represents the effect of
the change in EA for a fixed point in time. We see that, even
when time has been taken into account, EA still shows a 9%
increase in the median peak flows when going from neutral to
positive EA. This is crucial as it suggests that there is a clear
association between the EA index and the annual maximum
river flows in Great Britain. Note also that the size of the
association of time is reduced when EA is added to the model.
This again suggests the presence of confounding between
these variables.

In contrast, the plot for Model E (Fig. 7) suggests that the
NAO no longer has any relation to the annual maximum
flows when the time effect is taken into account – it can be
seen that the posterior now has considerable overlap with
zero, in contrast with Fig. 5, and in fact the value becomes
negative, suggesting there is some collinearity between NAO
and Water Year. This lack of a clear association may also
suggest that the NAO is not a key driver of change. However,
we do not rule out this possibility, since, if the NAO changes
linearly with time in a very close manner, it is possible that it
is still a driver of peak flows in Great Britain.

Finally, modelling the combined effect of time, EA and
NAO on peak river flows (Fig. 8) shows the same results –

both time and EA appear to have an association with peak
flows, while NAO again seems to have little to no association.
These results, in particular the change in apparent relation-
ship between NAO and peak river flows when accounting for
time, suggest that it is necessary to use a multivariate
approach to accurately estimate the size of associations
between climate indices and peak river flows in Great Britain.

4.4 Spatial trends

We investigate whether any of these explanatory variables
have some regional trends, in order to see whether there is
any unexplained variance remaining that displays a spatial
pattern. We plot the spatial random effect si to check for
regional behaviour: ideally we would see positive and negative
values randomly scattered across the country. As an example
we show the residual effects for Model D (Fig. 9): the resi-
duals for the other models do not differ significantly.

The scale of these effects can be considered approximately
as percentage differences, as we have taken the log of the
annual maximum flows in the model. This means that an
effect of 0.05 corresponds to a 5% difference in the median
peak annual flow. There appears to be some difference in the
size of the spatial random effect in the east and southeast of

Figure 6. Fixed effect posteriors for Model D: Water Year (left) and EA (right).

Figure 7. Fixed effect posteriors for Model E: -Water Year (left) and NAO (right).
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England compared with the rest of the country. This may be
due to the fact that catchments in this region have high BFI
(soil permeability) values (see Fig. 1), and were included in
the reference network as compromise catchments to ensure
full spatial coverage. However, adding this variable to the
model did not make the spatial residual structure disappear.
Further investigation suggests that the size of the EA index
association is at its highest in this part of Great Britain.

5 Discussion and conclusions

In this paper we have presented a study investigating the depen-
dence of extreme river flows upon climate indices for bench-
mark catchments of Great Britain. We have demonstrated that it
is possible to use multilevel models to detect a countrywide
trend at sites with short records by pooling information from
nearby catchments, and that by using these more complex
models, clear associations between these trends and some cli-
mate indices of interest are found. The use of near-natural
“benchmark” catchments in our approach ensured that any
signal found in the data cannot be related to anthropogenic
changes other than climate. A clear countrywide time trend

was detected, in contrast with the scattered signal seen in the at-
site analysis (see Section 4.1). This demonstrates the value of
a pooled approach for future analyses of trends, to get a more
accurate picture. Note that this approach relies on the assump-
tion of constant countrywide effects of the climate indices and
on the linearity of these effects. These assumptions nevertheless
do not appear to be too stringent for a first investigation and
have been verified by checking the model residuals. The use of
non-parametric regression models, as done for example in
Villarini et al. (2009), to describe the relationship between
peak flow and the explanatory variable might be a viable option
to relax the strong linearity assumption.

We also investigated the effect of climate indices on peak
river flows in our approach, and noted a clear signal for both
the EA index in the univariate case, with an increase of 10%
in the median when going from a neutral to positive EA
value. The signal was still strong even when time was added
to the model, suggesting that the EA index may have an
impact on peak river flows even when confounding is
accounted for. This strong association is a key step towards
the accurate attribution of trends in peak river flows moti-
vated by Merz et al. (2012). In particular, it fulfils the “soft”
attribution criteria, along with two of the three criteria for
“hard” attribution – detected changes in peak river flows
appear to be consistent with the East Atlantic index, and an
uncertainty interval has been provided with the Bayesian
approach. It remains to check whether detected changes are
inconsistent with potential drivers other than NAO, which
was also investigated in this paper. However, this is not yet
evidence of a causal link between the two, and given that it is
impossible to control the value of climate indices, ensuring
a full attribution is not trivial. It would be of interest to
explore a causal framework for this model, to ensure that
this association between the EA index and peak flows is
indeed a causal relationship.

There can be concerns over the use of non-stationary models
in hydrological studies (see for example Koutsoyiannis and
Montanari 2015), specifically that the model structure in these
cases can lead to an additional form of uncertainty whenmaking
predictions. However, if one can attribute changes in flows to
the EA index, then predictions of how flows will change with
this index in the future can be made. Additionally, aside from
prediction, a key contribution of this paper is the method itself,
which demonstrates the value of using a multilevel and

Figure 8. Fixed effect posteriors for Model F (left to right): Water Year, NAO and EA.

Figure 9. The mean of the posterior spatial random effect for Model D.
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multivariate approach to give a clearer insight into the country-
wide drivers of peak river flows. To gain a full understanding of
how these flows will change in the future, however, the approach
should not only be based upon time series data, but requires
additional information. Some element of this can be captured
within prior information provided in a Bayesian analysis such as
this, but additional non-data assumptions must be made in
order to infer causal relationships, as suggested by Merz et al.
(2014). These authors note the importance of statistical methods
in hydrological studies, but state that they must be complemen-
ted with investigations of causal relationships and key drivers of
changes within this system. We believe that such an approach
would be of benefit when exploring a causal framework for the
method discussed in this paper.

Finally, in the naive univariate approach, there appeared to be
a clear link between NAO and peak river flows in Great Britain,
with an increase of 2% in the median of peak flows when going
from neutral to positive NAO. However, including time in the
model to address possible confounding between variables leads to
this association going to zero or even becoming slightly negative,
suggesting collinearity between variables. This demonstrates the
necessity of amultivariate approach for accurately quantifying the
strength of association between climate indices and peak flows.
A combined multilevel, multivariate approach towards attribu-
tion helps to provide a clearer insight into changes in peak river
flows in Great Britain, and the strength of the relationship
between these flows and climate indices.
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