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Evaluating simulated daily discharge for operational hydrological drought
monitoring in the Global Drought Observatory (GDO)
C. Cammalleri, P. Barbosa and J. V. Vogt

European Commission, Joint Research Centre (JRC), Ispra, Italy

ABSTRACT
Hydrological drought is currently underrepresented in global monitoring systems, mainly due the short-
age of near real-time estimates of river discharge at the global scale. In this study, the outputs of the
Lisflood model are used to define a low-flow drought index, which shows a good correspondence with
long-term records of the Global Runoff Data Centre in the period 1980–2014, as well as with verified
information from the literature on six major drought events (covering different regions and watershed
sizes). In contrast, the near real-time simulation (from 2015 onward) provides temporally inconsistent
estimates over about 20% of the modelled cells (mostly over South America and Central Africa), even if
reasonable results are obtained over other regions, as confirmed by intercomparison with the operational
outcomes of the European Drought Observatory for the 2018 drought. In spite of the highlighted
limitations, valuable information for operational drought monitoring can be retrieved from these
simulations.

ARTICLE HISTORY
Received 22 October 2019
Accepted 11 February 2020

EDITOR
S. Archfield

ASSOCIATE EDITOR
A. Pretroselli

KEYWORDS
low-flow index; GDO;
Lisflood; drought monitoring

1 Introduction

Drought is commonly seen as a “creeping” phenomenon,
which develops slowly in time and impacts large areas both
directly and indirectly. Contrary to common believe, drought
can affect a variety of regions across the globe, and it is not
limited to arid and semi-arid climates. Worldwide, around
two billion people were affected and more than 10 million
people died due to drought between 1900 and 2010 (van
Loon 2015). In particular, hydrological drought can have
severe impacts on ecological systems (e.g. Lake 2003), as well
as on many economic sectors, including drinking water sup-
ply, crop production through irrigation and electricity produc-
tion (see e.g. van Vliet et al. 2012, Wright et al. 2014, Madadgar
et al. 2017).

Generally, hydrological drought is defined as a lack of water
in the hydrological system, manifesting itself in abnormally
low streamflow in rivers and/or levels in lakes, reservoirs and
groundwater (Tallaksen and van Lanen 2004). Following this
definition, it is clear that hydrological drought can be
described through several variables, each one providing
a different representation of the phenomenon. In the context
of this study, streamflow is adopted as quantity for the mon-
itoring of hydrological drought, thanks to its rapid response to
meteorological drought compared to groundwater.

In more recent years, drought monitoring has gained
a prominent role given the observed increases in frequency,
duration and intensity of droughts and related impacts

observed in the past decades (Trenberth et al. 2014, Spinoni
et al. 2015). In response, several operational drought monitor-
ing systems have been developed for various regions, ranging
from a first approach to build a Global Drought Information
System (GDIS)1 covering the whole globe, to continental scale
systems such as the US Drought Monitor,2 the South Asia
Drought Monitoring System (SADMS),3 and the African
Flood and Drought Monitoring (AFDM),4 to the numerous
national/regional systems.

At the European Commission, following the Communication
to the European Parliament and the Council on “Addressing the
challenge of water scarcity and droughts in the European Union”
(EC, 2007), the Joint Research Centre (JRC) has developed var-
ious web-based platforms for the monitoring and forecasting of
drought events from continental to global scale, including the
European Drought Observatory (EDO)5 and the Global Drought
Observatory (GDO).6 These systems comprise a set of multiple
indicators aiming at covering the different facets of drought:
meteorological drought indicators include the standardized
precipitation index (SPI) and the standardized precipitation-
evapotranspiration index (SPEI); agricultural drought is moni-
tored through anomalies in soil moisture and the fraction of
absorbed photosynthetically active radiation (fAPAR);
and hydrological drought monitoring is behind in development,
with a recently implemented low-flow index in EDO (Cammalleri
et al., 2017a).

Generally, most of the operational near real-time systems
focus on meteorological and agricultural drought indicators,
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especially at the largest spatial scales (i.e. global). This is likely
due to the relative ease of retrieving rainfall, soil moisture or
vegetation datasets (e.g. from remote sensing data). In fact, the
major limitation for a global-scale hydrological drought mon-
itoring is the lack of a reliable, self-consistent time series of
water discharge data, delivered in near-real time and capable,
on the one hand, of characterizing the typical low-flow regime
of each river based on historical data and, on the other hand, of
achieving timely detection of the start and the temporal evolu-
tion of a drought event.

Such characteristics can be achieved only by means of
hydrological simulations, given the current sparseness of in-
situ discharge measurements (Fekete and Vörösmarty 2007),
but hydrological simulations are subject to uncertainties aris-
ing from various factors, principally in meteorological forcing
and hydrological parameterization (Masaki et al. 2017). As an
example, Müller Schmied et al. (2016) showed how different
meteorological datasets derived from observations might affect
simulated runoff and river discharge, highlighting the need of
homogenized meteorological time series in practical applica-
tions. In addition, the availability of global near real-time
meteorological datasets is quite limited, restraining the options
for viable forcing.

A similar issue has been previously tackled in GDO for the soil
moisture anomaly (SMA) indicator, where the final product
combines Lisflood near real-time simulation of root-zone soil
moisture with remote sensing proxies derived from the NASA
MODIS (Moderate-resolution Imaging Spectroradiometer) land
surface temperature and the ESACCI (Climate Change Initiative)
combined active/passive microwave product (Cammalleri et al.
2017b). In this operational product, the Lisflood model (see
Section 2.1) is forced with daily meteorological maps derived
from the European Centre for Medium-range Weather
Forecasts (ECMWF) data, as spatially resampled and harmonized
by the JRC Monitoring Agricultural ResourceS (MARS) group.
Areas with inconsistent meteorological forcing were detected
thanks to the cross-correlation with the two other products,
whereas the use of anomalies limited the problem of absolute
model calibration, since in this case relative temporal consistence
becomes more important than absolute accuracy.

Starting from this experience, the same Lisflood near real-
time simulation can be used to derive a low-flow drought index
based on daily discharge simulations. However, even if
Lisflood river discharge estimates are currently used for an
operational forecast of flood events within the Global Flood
Awareness System (GloFAS),7 the suitability of such simula-
tions for capturing the spatio-temporal dynamic of the low-
flow regimes needs to be evaluated in detail. In addition, due to
the absence of other products for a cross-validation of the
outputs (similar to what was done for SMA by Cammalleri
et al. 2017b), a key step of the analysis would be to evaluate the
temporal consistency of the discharge time series in the most
recent years compared to a consolidated historical dataset that
has been validated against groundmeasurements from selected
stations of the Global Runoff Data Centre (GRDC).8

Following these considerations, the main objective of this
study is to investigate the feasibility of a near real-time monitor-
ing of hydrological drought based on a low-flow index derived
from daily river discharge maps, as simulated by the Lisflood
model. To achieve this goal, both the historical baseline and the
near real-time datasets were analysed in order to evaluate the
joint capability of: (a) characterizing past drought events and
low-flow regimes, and (b) capturing the start and severity of
evolving drought events. The ultimate objective of the study is to
provide insight into the implementation of such a low-flow
indicator within the GDO operational monitoring system.

2 Materials and method

The proposed hydrological drought monitoring system is
comprised of: (a) a near real-time simulation framework to
monitor the daily evolution of river discharge, which also
includes the characterization of the historical low-flow
regimes, and (b) a statistically robust modelling framework
to extrapolate a synthetic hydrological drought indicator
from the combination of historical and near real-time daily
discharge simulations. These two components are described in
the next sub-sections, alongside the strategy adopted for the
validation of the outcomes.

2.1 River discharge simulations

Daily river discharge data are simulated by means of the
Lisflood distributed hydrological rainfall–runoff model (de
Roo et al. 2000). The model simulates all the main hydrological
processes occurring in the land–atmosphere system at grid-cell
scale, including exchanges of evapotranspiration fluxes, infil-
tration, soil water redistribution in the vadose zone, surface
runoff and groundwater dynamics (Burek et al. 2013). The
surface runoff generated in each cell is channeled to the nearest
river network cell by means of a routing component based on
a four-point implicit finite-difference solution of the kinematic
wave (Chow et al. 1988). This allows one to produce daily
discharge maps covering the full river network.

The model set-up used is the one employed within GDO,
including daily time-step simulations on a global regular grid
of 0.1º × 0.1º. The river network is extracted from the high-
resolution HydroSHEDS dataset (Lehner et al. 2008) and
mapped at 0.1º using the scaling algorithm proposed by
Fekete et al. (2001). More details on the characteristics of the
operational model can be found in Alfieri et al. (2013), whereas
specifics of the model calibration over 1287 stations through
an evolutionary optimization algorithm, with the Kling-Gupta
efficiency criterion (KGE) as objective function, are reported in
Hirpa et al. (2018).

Model meteorological forcings were obtained from the JRC
in-house MARS database, which harmonizes daily maps of
precipitation, daily average temperature and three evapotran-
spiration products (from open water, from bare soil and from
the reference crop) derived from the ECMWF simulations. In

7www.globalfloods.eu/.
8http://www.bafg.de.
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this case, meteorological fields for the period 1980–2014 can be
considered consolidated, whereas successive years were pro-
duced operationally in near-real time (with approx. 2 days of
delay), as already used for the development of the SMA indi-
cator in GDO.

2.2 Low-flow drought indicator

The hydrological drought index proposed herein is analogous
to the low-flow indicator described in detail by Cammalleri
et al. (2017a), who provide a validation over Europe and its
operational implementation in EDO. The key quantity in this
analysis is the total water deficit, computed from an unbroken
sequence of discharge values below a defined low-flow thresh-
old. More specifically, a daily changing threshold computed as
the 95th percentile of a multi-year 31-day moving window is
used. This approach helps to capture the seasonality that can
be observed in the low-flow regimes in some climatological
regions.

According to the theory of runs (Yevjevich 1967),
a continuous period with discharge values below the defined
low-flow threshold is considered as a drought event, whose
severity is quantified by the total deficit (D, represented by the
area enclosed by the threshold and the streamflow time series).
To reduce the risk of including in the analysis small events
without real impacts, two post-processing corrections are
applied to the first-guess event dataset: (a) consecutive events
with an inter-event interval smaller than 10 days are pooled
together (Zelenhasić and Salvai 1987), and (b) small isolated
events (of duration less than 5 days) are removed from the
analysis (Jakubowski and Radczuk 2004). The first correction
allows us to account for the statistical inter-dependency of
events that are close in time, whereas the second reduces the
effects of the uncertainty in the defined threshold by removing
the events that have discharge values lower than the threshold
only for a short period of time.

The set of water deficit values obtained for each cell from
the historical time series (1980–2014) is used to derive the
cumulative frequency of such events, which has been succes-
sively fitted to the Pareto Type II distribution (also known as
Lomax distribution), formally expressed as:

F D; α; λð Þ ¼ 1� 1þ D
λ

� ��α

(1)

where α and λ are the strictly positive shape and scale para-
meters, respectively, derived from the sample according to the
maximum likelihood method. It is worth noticing that
Cammalleri et al. (2017a) used the exponential distribution
over the European domain, of which the Lomax can be con-
sidered a more general case since it is a special case of the
generalized Pareto that is a mixture of the exponential and the
gamma distributions. The choice of the Lomax distribution
provides more flexibility to the fitting, in order to better adapt
to a wider range of conditions and hydrological low-flow
regimes that may be encountered at global scale compared to
the European one.

Operationally, the fitting is performed only for the cells
with more than five events within the 1980–2014 climatologi-
cal dataset, as well as with a minimum contributing area of
1000 km2 and a year-average streamflow greater than
10 m3 s−1. The first constraint imposes a minimum standard
in performing the fitting and evaluating its goodness, whereas
the other two focus on removing from the analysis those
secondary rivers or areas characterized by very limited flows.

The statistical goodness-of-fit is verified according to the
Lilliefors test (1969), which requires a Monte Carlo estimation
of the critical values of the Kolmogorov-Smirnov metric (for
p = 0.05). This approach is suitable when the parameters are
derived from the same sample, and a separation between
calibration and validation sets is not possible due to the limited
size of the sample.

2.3 Evaluation dataset

Since the Lisflood model has been developed primarily for the
modelling of flood events, its capability to accurately charac-
terize low streamflow conditions (i.e. drought) needs to be
specifically evaluated. The capability to represent a low-flow
regime can be quantified by comparing the modelled 95th
percentile daily threshold (as defined in Section 2.2) against
analogous limit values derived from ground measurements.
With this aim, a set of discharge time-series was derived
from the Global Runoff Data Centre (GRDC).9 In particular,
ground stations from the so-called “Climate Sensitive Dataset”
were selected; this dataset includes almost 1200 stations
respecting minimum criteria on temporal consistency, basin
development, length of records and accuracy.

Among these stations, the ones respecting our imposed
(more stringent) criteria on minimum upstream area
(1000 km2) and average yearly flow (10 m3 s−1), as well as
a continuous coverage in the period 1980–2014, were
extracted. Additionally, “duplicate” stations, located on the
same river stretch or in nearby sub-basins, were removed in
order to avoid overweighting the impact of these streams on
the validation. As a result of this selection procedure, 80 sta-
tions were considered for the validation. It should be noted
that this seemingly limited number of stations (compared to
the original 1200) does not impact significantly on the spatial
coverage of the original dataset, as can be seen in Fig. 2 by
comparing the spatial distribution of the selected stations with
the ones available in the GRDC web portal for the full
dataset.10

In addition, the drought events derived from the historical
dataset used to fit the Lomax distribution can be contrasted
against recorded major past events. With this goal, a set of six
well-documented drought events was selected, covering differ-
ent regions of the globe, as well as different river size and flow
values. The main characteristics of these six events are sum-
marized in Table 1. All six events occurred during the period
1980–2014, with the oldest being the drought in California,
USA, in the late 1980s/early 1990s, whereas the most recent
one is the event in Kenya in the early 2010s.

9http://www.bafg.de.
10http://www.bafg.de/SharedDocs/Bilder/Bilder_GRDC/grdcTSEcss.jpg?__blob=poster.
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Finally, the near real-time component of the system was
tested by evaluating the capability of the low-flow index to
capture the spatio-temporal evolution of the recent well-
documented drought event that occurred in central and north-
ern Europe during the summer of 2018. During this event, the
analogous low-flow index developed in EDO (Cammalleri
et al., 2017a) was already operationally implemented, by
using a more reliable local meteorological dataset, providing
a benchmark reference that can be used to investigate the
soundness of the global low-flow indicator over this region.

The complete evaluation procedure, jointly with the various
steps involved in the computation of the low-flow index, is
summarized in the flow chart of Fig. 1, which highlights how
the ground measurements, historical drought events and EDO
maps are used to test the operational procedure in its various
components.

3 Results and discussion

3.1 Test on the historical dataset

The 35-year historical dataset (1980–2014) was used to char-
acterize the seasonality of the threshold used to define the
upper boundary of the low-flow regime. To evaluate the

capability of the Lisflood model to correctly reconstruct the
observed dynamic, the same procedure was applied to mea-
sured river discharge data from the GRDC in order to obtain
a benchmark dataset for comparison.

The maps in Fig. 2 show the Pearson correlation coefficient
(r, Fig. 2(a)) and the Nash-Sutcliffe efficiency coefficient (E,
Fig. 2(b)) for the 80 GRDC selected stations. Since the goal of
this comparison is to evaluate the correspondence in low-flow
dynamic, a preliminary bias correction of the data was per-
formed, the aim being to focus only on the temporal dynamic
without accounting for possible discrepancies in the magni-
tude of the two datasets.

The results reported in these maps (Fig. 2) highlight an
overall good capability of Lisflood to capture the low-flow
regime dynamic, with most of the values greater than 0.6 and
0.33 for r and E, respectively. This is better shown by the
histograms depicted in Fig. 3, which highlight a rather negative
skewed distribution for both r and E, with a median value of
about 0.77 and 0.54, respectively. The fraction of values below
the above reported threshold of 0.6 for r and 0.33 for E is 20%
and 33%, respectively, with a very small fraction of data (less
than 5% and 10% for r and E, respectively) lower than 0.

The spatial distribution of the values, as pictured in Fig. 2,
shows a predominance of high values in South America and

Table 1. Summary of the drought events used to evaluate the baseline historical dataset.

Area River Avg. flow* (m3 s−1) Period Peak year Reference

California, USA Sacramento 500 1987–1992 1991 State of California (2005)
Southeast Australia Murray 370 2001–2009 2006 BoM (2007)
Yorkshire, UK Derwent 90 1995–1997 1996 EDC (2013)
Balochistan/Sindh, Pakistan Indus 2450 1998–2002 2000/01 Pakistan Weather Portal (2011)
Zona Sur, Chile Bio-Bio 530 1996–1999 1998 Quintana (2000)
Kenya Tana 50 2011–2012 2011 UN (2011)

*Values refer to the model cell used in the analysis (not necessarily the closing section of the basin); they are only indicative of the size of the river.

Figure 1. Flow chart describing the computation of the low-flow index, as well as the protocol adopted for the validation of the different steps of the operational
procedure. Black lines represent operations on the historical data, whereas dashed grey lines represent operations on the near real-time data.
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Europe, with some smaller values observed in central USA and
Canada. Overall, the results suggest a substantial agreement
with the observations, especially if the coarse resolution of the
modelled data (0.1º) and the focus only on the low-flow regime
are considered. At the same time, we have to note that the lack
of ground measurements in Africa, Asia and large parts of
Australia results in uncertainties for the modelling accuracy
in those parts of the globe.

Themodelled threshold values were usedwithin the theory of
runs to define a dataset of drought events for each grid cell,
whose empirical frequency distribution was fitted with the
Lomax distribution. The goodness of fit was tested for all the
cells with at least: (a) more than 5 events, (b) a minimum

contributing area of 1000 km2 and (c) a year-average streamflow
greater than 10 m3 s−1 (corresponding to 187 700 grid cells). The
outcome of the Lilliefors test highlights a statistically significant
fitting (p = 0.05) for about 96% of the cells, with a spatial
distribution of the corresponding p values as depicted in Fig. 4
(only the cells with at least 10 000 km2 of drainage area are
reported in the map to improve the legibility). Figure 4 further
highlights the overall good performance of the Lomax distribu-
tion in capturing the statistical structure of the historical
drought events, with a small concentration of non-significant
fittings concentrated in the Middle East; this behavior may be
partially related to the frequent dry conditions experienced in
those regions, which may not be well captured by the chosen

Figure 2. Spatial representation of (a) the Pearson correlation coefficient, r, and (b) the Nash-Sutcliffe efficiency coefficient, E, computed by comparing the low-flow
threshold values (95th percentile) derived from the Lisflood historical simulation vs the GRDC ground stations.

Figure 3. Frequency distribution of (a) r values and (b) E values computed by comparing the low-flow threshold values (95th percentile) derived from the Lisflood
historical simulation vs the GRDC ground stations.
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probability distribution. Overall, the obtained fittings seem sui-
table for operational use in the context of a drought monitoring
system.

The capability of this historical dataset to capture the actual
dynamic of past droughts is evaluated qualitatively for the six
case studies summarized in Table 1. With this aim, all the deficit
periods retrieved by the model in the same year were summed-
up and plotted in Fig. 5, with the goal to easily highlight the years
that had prolonged low-flow periods according to our proposed
indicator. Contextually, the years classified as under drought
according to the sources reported in Table 1 are demarked by
the grey-filled areas in the plots. Additionally, under each plot,
a detailed evolution of the monthly values of the low-flow
indicator is depicted for the 3 years across the drought peak.
In these time-series, the F(D) values were classified according to
the colour code currently in use in EDO, as: mild (0 < F(D) ≤
0.25, yellow), moderate (0.25 < F(D) ≤ 0.5, orange), severe
(0.5 < F(D) ≤ 0.75, red) and extreme (F(D) > 0.75, maroon).

A first analysis of the yearly time series in Fig. 5 highlights
how the years affected by significant drought can be clearly
seen in comparison to the rest of the historical period in all
cases, suggesting a good capability of the model to discriminate
between drought and regular years. Additionally, by compar-
ing the plots with the values reported in Table 1, it is possible
to observe a good correspondence between the major modelled
events and the peak years, with the only exception of the Indus
River for which the modelled event seems to occur slightly
later than the observed one. It is worth noticing that the
weaker events of 2005 and 2009 can be also correctly observed
over this area.

According to the max F(D) value retrieved for each major
event during the peak year, it seems that all the case studies can
be classified as extreme, which is accurate given the well-
known relevancy of such events. Overall, despite being limited
to a few major past drought events, this analysis seems to
support the capability of the model to capture both the timing
and the severity of these events, with no clear discrepancies,
either between small and large rivers or along the time series.

3.2 Near real-time application

Temporal inconsistencies can arise when the threshold values
derived from an historical dataset are mixed with the near real-

time estimates of river discharge. This can be especially true
over areas where the meteorological forcing is less reliable,
which can lead to biased estimates of the low-flow indicator.
In order to demark those areas, an analysis on the annual
minimal flow was performed, by detecting through the
Welch t test (Welch 1947) the cells in which the key statistics
(average and standard deviation) for the period 1980–2014
significantly differ (at p = 0.01) from those for the period
2015–2018.

This test detected statistically significant differences for
about 20% of the modelling cells, mainly those located in
Central Africa and South America (Fig. 6). Both areas are
among the prominent ones where Lisflood soil moisture
anomalies had a low correlation with the two remote sensing
products used in Cammalleri et al. (2017b), confirming the
need to improve model quality over those regions (see Fig. 1 of
Cammalleri et al. 2017b for comparison). This result highlights
the likely difficulties in correctly detecting hydrological
drought events in a near real-time framework over these
regions in the most recent years, suggesting the need to mask-
out these cells in the case of operational monitoring.

To test the reliability of a masking procedure based on the
outcomes of the Welch t test, the F(D) indicator was computed
on 10-day periods (dekads, corresponding to three periods per
month) and the fraction of dekads with F(D) > 0.25 (i.e. at least
moderate drought) in a 5-year window was computed. Figure 7
reports the number of cells corresponding to a certain fraction
value, depicting the results for all the 5-year periods preceding
2015 (1980–1984, 1985–1989, . . . in grey), as well as the most
recent 5-year window (2015–2019) before (continuous black
line) and after (dotted black line) the masking.

These results show that the period 2015–2019 falls in line
with the previous years only once the masking is applied,
highlighting an unusually high number of cells with very
long periods of drought (>30% of the total time) before the
masking. Even if the masking procedure seems overall success-
ful in removing unreliable outcomes, it is still possible to notice
some residual errors in the analysis, with a slightly higher
number of cells with more than one-third of the dekads in
the period under at least a moderate drought, even after the
correction. However, this number is significantly reduced
when compared to the unrealistic one observed before the
masking was applied.

Figure 4. Spatial distribution of the p values obtained according to the Lilliefors test procedure. For the sake of clarity, only the data for the grid cells with at least 10
000 km2 drainage area are reported.

HYDROLOGICAL SCIENCES JOURNAL 1321



Figure 6. Water basins (grey shaded areas) where the Welch t test detects statistically significant differences between historical (1980–2014) and near real-time
(2015–2018) annual minimum discharge.

Figure 5. Total deficit values obtained from the historical dataset for the six selected test cases. The main panels show the year-total deficit, whereas the lower bars
report the monthly details for the specific drought years. The colour scheme adopted here is analogous to the one used in Cammalleri et al. (2017a): mild: yellow,
moderate: orange, severe: red, extreme, maroon.
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As a final test of the near real-time product, the dekadal F(D)
maps produced by the “simulated” operational global model
(namely sim-GDO) were compared against those already avail-
able operationally in the EDO system (namely ope-EDO). In
particular, four maps extracted from the full time series were
selected to highlight the key phases of the drought event affect-
ing Europe during the second half of 2018, as reported in Fig. 8
for both ope-EDO (left) and sim-GDO (right).

The time series of ope-EDO maps (Fig. 8, left) shows the
first signs of drought at the beginning of June, which already
quickly develop into severe conditions over most of the
southern Scandinavian Peninsula in July. Consequently, the
drought migrated to the south, covering most of central
Europe (most notably Germany) at the beginning of
December, before disappearing almost completely around
January 2019. Overall, the sim-GDO times series (right)
seems able to capture the evolution of the event in both its
temporal and spatial main traits, even if it is possible to
notice a tendency to underestimate the extent of the area
affected in central Europe (i.e. map for the first dekad of
December). In spite of these discrepancies, the intercompar-
ison highlights a good consistency between the two products,
suggesting a possible successful implementation of the indi-
cator within the global drought monitoring system, given the
limitations already discussed.

4 Summary and conclusions

To date, applications of hydrological drought indicators for
a near real-time hydrological drought monitoring, specifically
the ones based on low-flow conditions in river discharge, have
been limited compared to meteorological and agricultural

drought. This is mainly due to the strong dependency on
global runs of hydrological models, whose feasibility is still
limited by data availability for both model calibration and
forcing. Starting from the Lisflood simulations produced oper-
ationally for the soil moisture anomaly (SMA) indicator, avail-
able in the Global Drought Observatory (GDO), the goal of
this study was to evaluate the viability of monitoring hydro-
logical droughts at the global scale based on simulated daily
river discharge maps.

The two main constraints for such an application are: first,
the reliability of the low flow regimes simulated by a model
specifically designed for flood detection and, second, the tem-
poral consistency of the discharge time series based on the
combination of historical and near real-time data. The com-
parison with ground data, even if these are limited in spatial
coverage, confirms the good capability of the model to capture
low-flow regimes under various conditions, despite its origin
as a flood forecasting model. This allows past drought events
(between 1980 and 2014) to be fitted with the Lomax prob-
ability distribution. This modelling framework proved to be
well suited to capture the probabilistic characteristics of hydro-
logical drought events across the globe, with about 96% of the
cells reporting a statistically significant fitting (p = 0.05).

The historical simulation demonstrated the ability to satis-
factorily capture the temporal dynamic of six historical cases,
which were selected as benchmark cases covering a wide range
of conditions. However, the Welch t test analysis (focusing on
the temporal consistency between the historical and recent
simulations) highlighted the large uncertainties in monitoring
hydrological droughts over certain regions of the world with
the current model set-up (about 20% of the domain, most
notably over South America and Central Africa).

Figure 7. Number of cells (in logarithmic scale) having a certain fraction of all the 10-day periods (dekads) in a 5-year window under at least moderate drought
conditions (F(D) > 0.25). As an example, a value of 0.1 corresponds to a cell with 18 dekads (out of the 180 in 5 years) with F(D) > 0.25. The grey lines represent all the
5-year periods before 2015, whereas the continuous and dotted black lines represent the period 2015–2019 before and after the masking, respectively.
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Figure 8. Spatio-temporal evolution of the European drought during the second half of 2018. Maps on the left are derived from the operational EDO system (ope-EDO),
whereas maps on the right simulate the outcome of a future analogous product in the GDO system (sim-GDO).
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The additional comparison of the global dataset with the
already implemented operational system in EDO showed good
consistency in both the temporal and spatial traits of the
European drought of 2018. This outcome confirms the relia-
bility of the estimates of the global model over areas where no
significant temporal inconsistency in the times series is
detected by the Welch t test.

The results reported in this study highlight the boundary of
what is currently achievable with the analysed combination of
model and forcing in an operational setting, emphasizing the
main spatial limitations of a potential future implementation
in GDO. In spite of these limitations, the inclusion of
a Lisflood-based low-flow indicator in GDO will represent
a first step in the operational monitoring of hydrological
drought at the global scale. It will fill the gap in the current
global monitoring system, and potentially lead to further
improvements of the system based on the performance of
this operational index in the case of future drought events.
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