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SPECIAL ISSUE: HYDROLOGICAL DATA: OPPORTUNITIES AND BARRIERS

Robustness of flood-model calibration using single and multiple events
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ABSTRACT
Lack of discharge data for model calibration is challenging for flood prediction in ungauged basins.
Since establishment and maintenance of a permanent discharge station is resource demanding,
a possible remedy could be to measure discharge only for a few events. We tested the hypothesis
that a few flood-event hydrographs in a tropical basin would be sufficient to calibrate a bucket-type
rainfall–runoff model, namely the HBV model, and proposed a new event-based calibration method to
adequately predict floods. Parameter sets were chosen based on calibration of different scenarios of
data availability, and their ability to predict floods was assessed. Compared to not having any discharge
data, flood predictions improved already when one event was used for calibration. The results further
suggest that two to four events for calibration may considerably improve flood predictions with regard
to accuracy and uncertainty reduction, whereas adding more events beyond this resulted in small
performance gains.
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1 Introduction

Floods give rise to problems and disasters in many basins
around the world, especially in developing countries, where
discharge data are not available. Reliable and accurate predic-
tion of discharge in ungauged basins by means of conceptual
rainfall–runoff models then becomes a difficult task. Given
that these models are empirical rather than physical repre-
sentations, their parameters cannot be directly estimated from
measurements or basin characteristics and, thus, some cali-
bration is needed. One approach to overcome this limitation
is parameter regionalization through statistical or process-
based methods (Blöschl et al. 2013). However, one might
argue that, if time and resources were available, the best
approach would be to perform field measurements, preferably
including time periods representative of the processes occur-
ring in the basins to be modelled (Seibert and Beven 2009,
Tada and Beven 2012). The latter would help to constrain
model parameters, to improve the predictive ability of rain-
fall–runoff models and, ultimately, to improve decision mak-
ing in flood- or water-resources management. In general,
discharge data used in calibration should be as long as pos-
sible, but it is interesting to study in more detail how valuable
smaller amounts of data might be.

Many studies dealing with parameter and performance varia-
bility caused by the length or quantity of the calibration data
have reported good modelling predictions when short discharge
time series are used (Sorooshian et al. 1983, Yapo et al. 1996,
Brath et al. 2004,McIntyre andWheater 2004, Seibert and Beven
2009, Tada and Beven 2012, Melsen et al. 2014). Although the
latter is encouraging, results from these studies vary consider-
ably from site to site and are difficult to generalize as a unique

solution for data-scarce conditions. Explanations of these differ-
ences could be related to the balance between calibration-data
needs and basin-, climate- and model-complexity, dominant
flood types (Sikorska et al. 2015), and to the way calibration
data were distributed in time for each study case (i.e. either as
continuous or discontinuous) (Parajka et al. 2013).

When continuous periods of discharge data have been used
for calibration, between three months and eight years of data
have been reported as sufficient to achieve parameter sets that
can provide good simulations and optimal performance as dis-
cussed in the following. Sorooshian et al. (1983) studied the
influence of calibration data variability and length on model
reliability in the temperate Leaf River basin (Mississippi, USA).
They report that one full hydrological cycle of daily observa-
tions, preferably one wet year, was a minimum requirement to
secure an adequate activation of all the parameters during cali-
bration and, therefore, representation of the various phenomena
occurring in a basin. Harlin (1991) states that for one daily
bucket-type rainfall–runoff model and three basins in Sweden
(i.e. two snow basins with clear seasonal patterns and one basin
with a humid marine climate), performance improvement
beyond two years was limited and after six years was not sig-
nificant. Anctil et al. (2004) analysed the impact of the length of
observed records on the performance of two runoff models, an
artificial neural network and a conceptual rainfall–runoffmodel,
in the temperate Seine River basin (Paris, France) dominated by
rain floods. Their analysis showed that the best model perfor-
mance was reached more or less evenly in both models with
three and five years of daily calibration data. Brath et al. (2004)
calibrated a spatially-distributed model at an hourly resolution
using individual flood events and several scenarios of
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continuous periods equal to or shorter than one year to simulate
floods in the temperate Reno River basin (north-central Italy).
They validated the results against 14 independent flood events
and found the best model performance when parameters were
calibrated against 12 months of data, but suggest at least three
months of data to obtain good results. Tada and Beven (2012)
explored the most effective way to extract the information con-
tent of short observation periods in three temperate basins in
Japan. They tested calibration periods ranging between four and
512 days, generated by randomly selecting their starting day, and
reported good simulations in validation for all data length sce-
narios, even down to four days, but performance range was
larger and also with poor simulations when the calibration
period had a small number of observations. Furthermore, they
state that it may be difficult to identify a priori those best
performing short periods before a field-campaign plan is imple-
mented in an ungauged basin.

Few studies have explored the possibilities of model calibra-
tion using non-continuous discharge records. Based on their
assumptions, two types of studies can be distinguished: the first
assumes only a limited number of individual spot discharge
observations to be available (Perrin et al. 2007, Seibert and
Beven 2009, Pool et al. 2017), and the second assumes contin-
uous discharge records to be available but only for a limited
number of events (Brath et al. 2004, McIntyre and Wheater
2004, Tan et al. 2008, Seibert and McDonnell 2013).

Within the first group, Perrin et al. (2007) found that 350
discontinuous calibration days randomly sampled out of
a longer dataset including dry and wet conditions were sufficient
to reach robust parameter values in 12 basins with different
hydrological and climatic conditions in the USA (ranging
from semi-arid to very wet). Seibert and Beven (2009) investi-
gated how many discharge measurements are needed for the
calibration of 11 seasonally snow-covered basins in Sweden and
reported that model performance increased largely when the
number of randomly sampled days increased from two to 16,
while little further improvement was seen beyond 32 daily
observations. Pool et al. (2017) explored an optimal strategy
for sampling runoff and the potential of calibrating a rainfall–
runoff model with only 12 daily discharge observations during
a year in 12 basins located in regions with temperate and snow
climates across the eastern USA. They report that different
sampling strategies have different information value for runoff
prediction since they found that strategies including high-flow
conditions simulated better hydrographs, whereas strategies
including low and mean values predicted better flow–duration
curves.

Within the second group, McIntyre and Wheater (2004)
tested the effects of using different subsets of daily continuous
and event-based data for calibration of an in-river phos-
phorus model in the upper part of the Hun River (China).
When event-based data were used, they found results less
biased in some cases. Their results suggest that only small
amounts of data may be necessary if data are sampled on an
event basis rather than at fixed intervals. Brath et al. (2004)
report that simulations obtained after individually calibrating
10 flood events provide, as an average, better model perfor-
mance, in terms of volume and peak errors, than a simulation
obtained after calibrating on a single event. The latter was not

the case in terms of time-to-peak errors, since they found
better performance when only using one event in calibration.
Tan et al. (2008) investigated the feasibility of calibrating
a rainfall–runoff model using 10 representative storm flows
in a tropical basin located in Singapore. They calibrated the
events individually using data with a 5-min temporal resolu-
tion and averaged the optimal parameter sets found to obtain
an event-based parameter set. Furthermore, they compared
continuous- and event-based calibration in validation against
106 events and reported that the former is more reliable in
predicting runoff volume, whereas the latter is better in pre-
dicting the overall shape of the hydrograph, peak flow and
time to peak. Seibert and McDonnell (2013) explored the
value of limited streamflow measurements and soft data in
the temperate Maimai basin (New Zealand). They reported
that 10-min discharge data from one event, or at least 10
measurements sampled during high flows, were as informa-
tive for calibration of a simple conceptual model as three
months of continuous discharge data. Generally, in those
studies with multiple events available, the parameter sets
that fit best each event were selected first in calibration and
then tested individually or by an averaging procedure in
validation. This approach resulted in parameter sets that
contained only information for an individual event rather
than that for all the events available as a whole.

In summary, the general understanding in the literature is
that adequate calibration depends on the value or information
content of the datasets rather than on their length or quantity,
thereby implying that good model predictions might be
achieved by using discharge measurements from a limited
number of events. Previous studies focus on topics related
to the minimum data requirements for model calibration, in
terms of time-series length, quantity and information content,
for example, on knowing how many runoff measurements are
needed to obtain parameter sets similar to those obtained
from longer records, on developing methods to locate the
most informative parts of hydrographs, and on exploring
methods for optimal sampling strategies. Our study tests the
hypothesis that adequate model calibration in a data-scarce
environment is possible when hydrographs of only a few
events are available, and assesses the value of such events in
terms of quantity and information content. Furthermore,
a new calibration method based on limited discharge data is
proposed to improve the robustness of flood predictions
compared to the scenario of no discharge data being available.
Calibration in this method is event based, but it takes into
account the time series of all the events available as one. The
investigation was carried out for a tropical basin in Panama
using the generalized likelihood uncertainty estimation
(GLUE) framework (Beven and Binley 2014). Our research
questions are:

(1) How many high-flow events are needed for model
calibration to achieve an adequate flood prediction?

(2) How much predictive performance is gained by
increasing the number of high-flow events for
calibration?

(3) Is the information content of individual extreme flood
events equally informative for calibration?

HYDROLOGICAL SCIENCES JOURNAL 843



2 Material and methods

2.1 Study site

The study area is the Boqueron River basin in Panama. The
basin has a drainage area of 91 km2 and is mostly covered with
forest. The differences in elevation can range from several
metres to nearly 900 m. The basin has a tropical climate with
a wet and a dry season. Rainfall mainly occurs betweenMay and
December in the form of thunderstorms with high intensity, and
is normally convective and orographic. The mean annual rain-
fall in the basin is around 3800 mm year−1, of which 72% leaves
the basin as river discharge.

Based on hourly rainfall data from four stations, areal
rainfall was calculated for the period 1997–2011 using the
Thiessen polygon method. River stage is recorded continu-
ously in a natural cross-section at the Peluca station and is
stored every 15 min. Hourly maximum-annual discharge for
27 years (1985–2011) and 15 years of continuous discharge
data (1997–2011) are available. Long-term daily mean values
of potential evaporation were estimated using daily pan eva-
poration data from the Tocumen station, located 36 km
southeast of the basin. The continuous rainfall–runoff data
available in this study were quality-controlled by Reynolds
et al. (2017).

The events used in this study were identified using
a threshold value. All events above the median annual flood
(489 m3 s−1 or 19. 4 mm h−1, recurrence interval of 2.33 years)
were chosen. This resulted in the selection of 10 events for the
period between November 2002 and December 2010.

The length of the discharge time series for each event was
defined as follows: (a) the start was the time step at which the
precedent rainstorm started, and (b) the end was when its rain-
storm had ended and the percentage change in the recession
varied for 10 consecutive hourly time steps by less than 5%, or
when the percentage change had a positive increase because of the
occurrence of a new storm. Generally speaking, the 10 flood
events had fast responses and were triggered by rainfall events
with large volumes, high rainfall intensities and relatively short
durations (usually less than 24 h with the exception of two
events). The length of the events varied between 18 and 51 h,
rainfall storms between 6 and 35 h, rainfall maxima between 31

and 96 mm h−1, total rainfall depth between 137 and 573 mm,
total runoff depth between 100 and 547 mm, discharge peak
between 489m3 s−1 (19.4mmh−1) and 1029m3 s−1 (40.9mmh−1),
initial discharge between 4 m3 s−1 (0.2 mm h−1) and 57 m3 s−1

(2.3 mm h−1), time delay (lapse between mass centroid of rainfall
and discharge peak) between 0.9 and 7.2 h, and they occurred
throughout the entire rainy season (May–December) (Table 1).

2.2 Model

A simple bucket-type hydrological model, the HBV model
(Bergström 1976) was used in this study. The model uses
rainfall, air temperature and potential evaporation as input
to simulate river discharge at the basin scale. Applications of
the model have shown general good results in basins with
different hydrological and climatological conditions
(Häggström et al. 1990, Seibert 1999, Li et al. 2014,
Reynolds et al. 2018, Wang et al. 2019). The HBV model
has low data requirements and low computational demands.
This allows performing a large amount of model runs, which
was important in this study.

The software HBV-light (v. 4.0.0.171) allows several model
structures, but the one chosen for this study was the standard
one, which was spatially set-up in a lumped way. Model
descriptions are given by Bergström (1992) and Seibert and
Vis (2012).

2.3 Experimental design

To assess how many events are sufficient to achieve reliable and
accurate flood simulations in data-scarce conditions, we started
with the assumption that discharge data were available for
a limited numbers of events. This number of events (Mp) was
varied from one to five (out of the total number of events). Then,
the HBV model was calibrated for all possible event combina-
tions for a given Mp. Calibrated parameters were subsequently
used in validation to simulate all individual events and to assess
their predictive ability. Each event combination had its own
number of behavioural parameter sets that resulted in specific
model performances in validation. The median of those perfor-
mances, referred to here as median model performance, was

Table 1. Characteristics of the 10 selected flood events.

Event ID 1 2 3 4 5 6 7 8 9 10

Length (h) 29 40 18 36 51 36 28 44 47 32
Rainfall depth (mm) 176.2 137.3 215.5 138.2 282.3 137.7 151.6 184.3 573.1 265.1
Rainfall duration (h) 11 14 6 13 26 8 15 12 35 20
Rainfall peak (mm h−1) 71.4 35.8 95.7 54.9 34.0 55.4 31.0 50.9 77.6 53.0
Mean rainfall intensity (mm h−1) 16.0 9.8 35.9 10.6 10.9 17.2 10.1 15.4 16.4 13.3
Discharge peak (m3 s−1) 821.3 536.2 517.3 708.5 746.2 488.8 518.2 561.6 1,028.9 822.7
Runoff peak (mm h−1) 32.6 21.3 20.6 28.2 29.7 19.4 20.6 22.3 40.9 32.7
Runoff depth (mm) 154.8 112.8 104.0 179.9 277.2 100.0 125.8 148.0 547.4 227.3
Initial discharge (m3 s−1) 13.4 16.4 3.9 56.6 13.8 6.5 16.5 8.2 15.2 3.9
Initial runoff (mm/h) 0.5 0.7 0.2 2.3 0.5 0.3 0.7 0.3 0.6 0.2
Time delay (h) 0.9 5.3 2.7 1.1 1.5 2.5 5.4 2.2 7.2 2.3
Date of occurrence
(dd-mm-yy)

30-11-02 27-05-06 07-07-06 18-11-07 28-12-07 10-08-08 18-11-09 07-11-10 08-12-10 26-12-10

Day of year 334 147 188 322 362 223 322 311 342 360

1http://www.geo.uzh.ch/en/units/h2k/Services/HBV-Model.html.
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computed for each event combination. Finally, median model
performances achieved in validation were compared for differ-
ent values ofMp. Themedian value of accuracy for every value of
Mp is referred to as the median of the median model-perfor-
mance values. All possible combinations of one to five events
were tested, which resulted in 637 different calibration set-ups
(10 forMp = 1, 45 forMp = 2, 120 forMp = 3, 210 forMp = 4, and
252 for Mp = 5).

To assess if the information content of individual flood
events was equally informative for calibration, median model
performances in validation were compared based on the types of
events used in calibration for each value of Mp. The 10 calibra-
tion events were first classified into three types based on their
characteristics (Section 2.4), and each of the 637 calibration set-
ups was classified in three larger groups according to its event-
type combination for every value of Mp (Fig. 1). These larger
groups represent the information content of the three types of
event identified. If the calibration set-up had an event-type
combination that had most of the events of one type, it was
assumed that this set-up was only representative of that type of
event, regardless of whether another type was included in it. For
example, if the calibration set-up included two Type-1 events
and one Type-2 event (i.e. event-type combination 1–1–2), then
this set-up was assigned to the group that represented the
information content of the Type-1 events for Mp = 3. When
the majority of events in any calibration set-up was equal in
quantity for Type-1 and Type-2 events (i.e. combinations 1-2,
1-2-3, 1-1-2-2 and 1-1-2-2-3), this set-up was attributed to the
groups that represented the information content of the two
types of events, so equal weight was given to each group.

Only one Type-3 event was identified when clustering the
events, and all the calibration set-ups that included this event
were considered representative of the information content of
this type. Finally, after all calibration set-ups were classified,
the model performance in validation was compared and
assessed in terms of the information content of each type of
event for every value of Mp.

2.4 Clustering events and event-type combinations

The events were characterized by: (a) rainfall depth, (b) rain-
fall duration, (c) rainfall peak, (d) runoff depth, (e) runoff
peak, (f) day of year of flood-peak occurrence, and (g) time
delay. These characteristics were normalized with respect to
their standard deviation and the events were then classified
into three clusters based on k-means clustering. This method
partitions the observations into k clusters in which each
observation belongs to the cluster with the nearest mean.
The squared Euclidian distance metric was used for
minimization.

The main steps in k-means clustering are: (i) select the
number of clusters k to classify the observations; (ii) ran-
domly select k observations, which are the initial clusters
and means; (iii) assign each observation to the cluster
closest to its mean; (iv) calculate the mean value of the
cluster after a new observation has been assigned to it; (v)
randomly select a new set of k observations so they are
treated as the initial clusters; and repeat steps (iii)–(iv)

until the sum of variation of all clusters is minimized
and cluster membership does not change. The number of
clusters k was chosen to be equal to three because the
reduction in variation between the clusters was the greatest
for this value of k, and considerably lower for higher
values.

2.5 Model calibration

Behavioural parameter sets were selected from Monte Carlo
simulations for each calibration set-up. One-hundred-thou-
sand parameter sets were randomly generated assuming
a uniform distribution with predefined parameter value
ranges suggested from previous HBV applications (Seibert
1999, Booij 2005). Ranges of parameter values were the
same for every calibration set-up (Table 2).

Simulations were run continuously for the period
January 2000 to December 2010. It was assumed that the
input-data time series were available to drive the model for
the preceding period, but that discharge data from only one
or more events were available for calibration.

There are significant trade-offs between different objective
functions (Jie et al. 2016), but it is also recognized that
multiple objective functions can improve the performance
of a model by characterizing different attributes of the
hydrograph (Madsen 2000). Three objective functions for
evaluating the performance of the flood predictions were
used in this study: (a) mean volume error of the flood
events, F1(θ), (b) mean root mean square error (RMSE) of
the flood events, F2(θ), and (c) mean peak-flow error of the
flood events, F3(θ). The first measure is an indicator of the
agreement between the simulated and observed water
volume (i.e. long-term water balance), the second statistic
measure is an indicator of the overall agreement of the flood
hydrograph, whereas the third measure is an indicator of the
agreement of the flood peak.

Mean volume error of the flood events:

F1 θð Þ ¼ 1
MP

XMp

j¼1

1
nj

Xnj
i¼1

Qobs;i � Qsim;i θð Þ� ������
����� (1)

Table 2. Parameter ranges used for model calibration and for computation of
the upper and lower benchmarks.

Parameter Description Min−Max Unit

Soil moisture routine
PFC Maximum soil-moisture storage 50–1000 mm
PLP Soil-moisture value above which

actual evaporation reaches
potential evaporation.

0.0−1.0 -

PBETA Determines the relative contribution
to runoff from rainfall

0.5−6.0 -

Response routine
PPERC Threshold parameter 0.0–19.2 mm d−1

PALPHA Non-linearity coefficient 0.1–1.9 -
PK1 Storage coefficient 1 0.0024–1.2 d−1

PK2 Storage coefficient 2 0.0012 − 0.03 d−1

Routing routine
PMAXBAS Length of isosceles triangular

weighting function
1.0−24.0 h

HYDROLOGICAL SCIENCES JOURNAL 845



Mean RMSE of the flood events:

F2 θð Þ ¼ 1
Mp

XMp

j¼1

1
nj

Xnj
i¼1

Qobs;i � Qsim;i θð Þ� �2" #1
2

(2)

Mean peak-flow error of the flood events:

F3 θð Þ ¼ 1
Mp

XMp

j¼1

Qobs max;j � Qsim max;j

�� �� (3)

where Qobs,i is the observed runoff at time i in each event,
Qsim,i is the simulated runoff at time i in each event, nj is the
number of time steps in each flood event j, Mp is the total
number of flood events in calibration, Qobs max,j is the
observed peak runoff in the flood event j, Qsim max,j is the
simulated peak runoff in the flood event j, and θ is the set of
model parameters to be calibrated.

The three measures were merged into a single objective
function by an aggregate measure F(θ) called the Euclidean
distance (4), which gives equal weight to every measure
(Madsen 2000):

F θð Þ ¼
X3
k¼1

Fk θð Þ þ Akð Þ2
" #1

2

(4)

where Ak are transformation constants corresponding to dif-
ferent objective functions, k is the index of the objective
function being transformed (i.e. 1,2,3). The value of Ak was
computed as follows:

Amax ¼ max Fk;min
� �

(5)

Ak ¼ Amax � Fk;min (6)

All objective functions give positive values, where values close
to zero indicate best performance. The minimum of each
function obtained from 100 000 model runs was considered
as optimum. Parameter sets for every calibration set-up were
considered behavioural if they gave an F(θ) score (4) equal to
or less than [F(θ)min + 1].

Model performance scores in the evaluation period were
compared to an upper and lower benchmark, as suggested by
Seibert et al. (2018). The upper benchmark represented the
best possible discharge simulation that could be achieved with
data from our study basin, whereas the lower benchmark
represented a simulation based on calibration from only
literature information. The upper benchmark of F(θ) was
the best score possible in validation from the 100 000 para-
meter sets previously generated. Similarly, the upper bench-
marks of F1(θ), F2(θ) and F3(θ) were the best possible scores
obtained in validation, but only from the behavioural para-
meter sets selected using the F(θ) measure. For the lower
benchmarks, the model was run with random parameters
(here 500 sets) within typical ranges (Table 2). The discharge
time series for the lower benchmark was obtained by aver-
aging the ensemble of the 500 runoff simulations into a single
mean time series. Thereafter, the model efficiencies of F(θ),
F1(θ), F2(θ) and F3(θ) resulting for this mean time series were
calculated and used as the lower benchmarks.

3 Results

3.1 How many events are required for model
calibration?

The 10 selected events were combined in all possible ways
into clusters of one to five events. For every scenario of data
availability, the model was calibrated and tested in validation.
The median model performances obtained in validation were
compared for every value of Mp to answer our first question.

Results for the F(θ) measure (Fig. 2(a,b)) show that if only one
extreme event were available, this would improve predictability in
comparison to the scenario of no data available at all (i.e. F(θ)
values were above the lower benchmark). Having at least two
events available seemed sufficient in terms of the median value
of accuracy for F(θ), since it did not always improve forMp values
greater than two (Table 3). Furthermore, it was also surprising to
find that median value of accuracy for F(θ) slightly decreased
when three events were used instead of two (from 10.60 to 10.78
error units). However, the uncertainty ranges of F(θ) reduced
considerably for a greater number of events (Table 3). This uncer-
tainty reduction was clearly seen when moving from the scenario
of having only one event available to the scenario of having four
events (the range for F(θ) decreased from 1.76 to 0.44). For Mp

values higher than four, no performance improvement was seen.
The median values of accuracy for volume error of floods, F1(θ),
were relatively similar for all values ofMp, but uncertainty ranges
were smaller when using a greater number of events (Fig. 2(c)).
Furthermore, median model performance of F1(θ) was typically
below its lower benchmark, but better performance is clearly seen
when the largest amount of discharge data was used for calibra-
tion. Root mean square error, F2(θ), and peak error of floods,
F3(θ), were more sensitive to varyingMp than F1(θ) (Fig. 2(c–f)).
The accuracy and reduction in uncertainty for F2(θ) and F3(θ)
improve for a greater number of events, but, similar to F(θ), not
much improvement in performance is noticeable for Mp values
higher than four (Table 3).

3.2 Assessing information content of individual extreme
events

The characteristics of the 10 flood events varied considerably,
but they could be classified into three types. The assessment
of information content of individual events was based on the
types of events used in calibration for different scenarios of
data availability.

3.2.1 Flood types
The k-means clustering algorithm divided the 10 events into
three groups: Type-1, Type-2 and Type-3 (Fig. 3). Type-1
events typically occurred during the last two months of
the year during which also the most extreme monthly rainfall
totals occurred (ETESA 2018). Type-1 events were further
characterized by relatively large discharge peaks (between
700 and 850 m3 s−1) and runoff depth (between 150 and
300 mm), short time delays (less than 2.2 h) and long rainfall
durations (between 11 and 26 h). In contrast, Type-2 events
occurred throughout the entire rainy season and were char-
acterized by relatively low discharge peaks (below 600 m3 s−1),
low runoff depth (below 150 mm), long time delays (between
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2.2 and 5.5 h) and short rainfall durations (between 6 and
15 h). The single Type-3 event occurred in the last month of
the rainy season of year 2010 and was the most extreme of all
10 events. It was characterized by the largest discharge peak
(1029 m3 s−1), the largest rainfall and runoff depths (573 and
547 mm, respectively), the longest rainfall duration (35 h) and
the longest time delay (7.2 h). The distinction between the
three event types is visible by comparing both their hydro-
graphs and event characteristics (Fig. 3, Table 1). It is worth
noting that antecedent conditions (represented as discharge
before the onset of each event) showed small correlations
with the aforementioned event characteristics (non-para-
metric Kendall correlation tests returned ρ coefficients of
≤ ±0.29).

3.2.2 Information content of individual flood events based
on type
When the 10 events had been classified into three types and
when the 637 calibration set-ups had been grouped based on
their event-type combination, median model performances in
validation were compared with respect to the type of events
used in calibration for every scenario of data availability.
Flood predictions using the F(θ) measure improved when at
least one event was available for calibration regardless of the
event type (Fig. 4(a)). The comparison of the F(θ) measure
obtained when using only a single event (Mp = 1) shows the

highest median accuracy results for the Type-3 event. The
median value of accuracy was found to be better for Type-2
than for Type-1 events, but the uncertainty was smaller for
the latter (Table 4). This was the case for all the objective
functions used in calibration (Fig. 4(a–d)). However, given
the low number of events for each type (i.e. four Type-1
events, five Type-2 events and only one Type-3 event), it is
difficult to generalize the findings when Mp = 1.

The results for Mp = 2 varied considerably for any type of
event, similarly to those for Mp = 1. Calibration set-ups in the
Type-2 group resulted in higher median values of accuracy
and reduced uncertainty compared to set-ups in the Type-1
group (Fig. 4(e–h), Table 4). Calibration set-ups that included
the Type-3 event resulted in larger uncertainties for estimat-
ing event volume (quantified by F1(θ), Fig. 4(f)). However,
these set-ups in the Type-3 group were also associated with
considerably smaller uncertainties for estimating the hydro-
graph shape (quantified by F2(θ), Fig. 4(g)), and peak flows
(quantified by F3(θ), Fig. 4(h)).

When Mp = 3, uncertainty ranges for all objective func-
tions, except for F1(θ), were relatively similar for the three
types of events but with different median values of accuracy
(Fig. 4(i–l), Table 4). For Mp > 3, median values of accuracy
and uncertainty ranges were relatively similar for any type of
event used in calibration (Fig. 4(m–t), Table 4). Our results
suggest that when less than three events are available, the type

Figure 1. Classification of calibration set-ups, based on their event-type combination, to groups representing the information content of each type of event when Mp

equals (a) two, (b) three, (c) four and (d) five. For every Mp value, each circle represents the information content of one type of event and the serial numbers inside
them indicate the event-type combinations of the calibration set-ups included in each group.
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of event matters in calibration, whereas for a greater number
of events, the type of event influences prediction performance
less and becomes less important.

The latter can be illustrated when comparing the simu-
lated hydrograph of event no. 9 (Type-3 event) with the
behavioural parameter sets selected following the calibra-
tion of the different scenarios of data availability (Fig. 5).
As expected, using data from the same event for calibration
would result in a good fit (Fig. 5(a)). However, using only
a single event of a different type, with a faster response,
resulted in considerable overestimations of peak discharge
and underestimations of the time to peak (Fig. 5(b)). When
two different types of events were used in calibration
(i.e. Mp = 2, where one event had a fast response and the
other a slow response), peak discharge was still overesti-
mated and time to peak was still underestimated but both
much less than in the former case (Fig. 5(c)). For the Mp

cases previously described, it is worth noting that the
parameter sets could reproduce the first flow peak well.
When Mp ≥ 3, the information content of the events in
calibration was relatively similar, which resulted in similar
simulations of the peak discharge and errors in the time to
peak (Fig. 5(d–e)), but with higher accuracy than for the
first two Mp cases.

Figure 2. Boxplots of median performance in validation for different scenarios of data availability. Median model performance refers to the median values of model
performance achieved by the behavioural parameter sets for each calibration set-up. The dashed (blue) lines represent the upper benchmarks, whereas the solid
(blue) lines represent the lower benchmarks; (b) and (f) are zoom-ins of (a) and (e), respectively. Upper and lower benchmarks of F1(θ) would be the equivalent of
relative volume errors equal to 13% and 15% respectively; upper and lower benchmarks of F2(θ) would be the equivalent of Nash-Sutcliffe efficiencies of 0.90 and
0.45, respectively, whereas upper and lower benchmarks of F3(θ) would be the equivalent of relative error of peak flow of 22% and 56%, respectively.

Table 3. Summary statistics of distribution of median performance in validation
for different scenarios of data availability. The range is defined as the difference
between the 75th and 25th percentiles of median performance.

Measure
(mm h−1)

Percentile Mp = 1 Mp = 2 Mp = 3 Mp = 4 Mp = 5

F(θ) 25th 10.25 10.22 10.30 10.23 10.16
50th 11.22 10.60 10.78 10.48 10.34
75th 12.00 11.34 11.35 10.67 10.51
Range 1.76 1.12 1.05 0.44 0.35

F1(θ) 25th 0.76 0.73 0.73 0.73 0.74
50th 0.78 0.78 0.79 0.79 0.79
75th 0.89 0.84 0.86 0.83 0.82
Range 0.13 0.11 0.13 0.10 0.08

F2(θ) 25th 2.77 2.82 2.88 2.84 2.86
50th 3.35 3.18 3.17 3.07 3.05
75th 3.82 3.51 3.40 3.32 3.27
Range 1.05 0.69 0.52 0.48 0.40

F3(θ) 25th 6.45 6.27 6.41 6.24 6.14
50th 7.59 6.57 6.97 6.41 6.28
75th 8.09 7.66 7.56 6.73 6.46
Range 1.64 1.39 1.15 0.49 0.33
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4 Discussion

Assessing the value of small amounts of data for model
calibration is essential in data-scarce conditions. This study
tested the hypothesis that adequate model calibration in
a data-scarce environment is possible when hydrographs of
only a few events are available. Studies where the information
content of short runoff records was assessed were commonly
carried out at daily resolutions, except for some (Brath et al.
2004, Tan et al. 2008, Seibert and McDonnell 2013, Melsen
et al. 2014). Here, we took advantage of the availability of
long time series of hourly rainfall–runoff data in a small
tropical basin, which we treated as ungauged for the purpose
of the experiment. While the hourly sampling of the data was
sufficient to simulate runoff at the time scale of the basin
response, it also provided more information at the event
scale, since the time series of the events are longer at such

fine temporal resolution in comparison to the data being
available at a daily resolution.

The calibration in our experiment was event-based and, to
avoid making assumptions about initial conditions before the
occurrence of each event, it was assumed that the entire time
series of the input data was available to drive the model.
Although it is known that any calibration procedure depends on
the interaction between input data and model structure (Beven
2001), errors in the input data were not corrected since no infor-
mation about uncertainties of the data was available.
Consequently, we assumed that rainfall estimates characterized
correctly the true input to the basin. Even if rainfall uncertainty
was large for the periods where no discharge data were used in
calibration, it is assumed that the initial conditions before the
occurrence of each event did not have a large influence for gen-
erating runoff. Antecedent wetness conditions in tropical basins,

Figure 3. (a)–(u) Normalized event characteristics (unitless), and (v) discharge time series of flood events classified by their types. The event characteristics were
normalized with respect to their standard deviation.
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Table 4. Summary statistics of distribution of median performance in validation for different scenarios of data availability based on the type of the events used in
calibration. The range is defined as the difference between the 75th and 25th percentiles of median performance. TY1, TY2, TY3: Type-1, −2, −3, respectively.

Measure Percentile Mp = 1 Mp = 2 Mp = 3 Mp = 4 Mp = 5
(mm h−1) TY1 TY2 TY3 TY1 TY2 TY3 TY1 TY2 TY3 TY1 TY2 TY3 TY1 TY2 TY3

F(θ) 25th 10.99 10.18 10.25 10.23 10.19 10.23 10.41 10.23 10.23 10.24 10.20 10.23 10.21 10.14 10.22
50th 11.70 10.82 10.25 10.74 10.52 10.40 10.80 10.75 10.57 10.48 10.43 10.52 10.38 10.28 10.35
75th 13.26 13.12 10.25 11.74 11.09 11.02 11.27 11.35 11.05 10.70 10.65 10.68 10.57 10.45 10.49
Range 2.27 2.94 0.00 1.50 0.90 0.79 0.86 1.12 0.82 0.46 0.45 0.44 0.36 0.31 0.27

F1(θ) 25th 0.78 0.75 0.76 0.73 0.73 0.74 0.77 0.72 0.73 0.74 0.73 0.73 0.77 0.73 0.73
50th 0.83 0.76 0.76 0.80 0.75 0.79 0.80 0.77 0.79 0.81 0.78 0.81 0.80 0.78 0.79
75th 0.90 0.90 0.76 0.88 0.83 0.84 0.85 0.87 0.86 0.83 0.83 0.83 0.83 0.81 0.82
Range 0.12 0.15 0.00 0.15 0.10 0.10 0.07 0.15 0.13 0.09 0.10 0.10 0.06 0.08 0.09

F2(θ) 25th 3.28 2.75 3.07 2.83 2.79 2.97 2.97 2.84 2.90 2.84 2.82 2.88 2.91 2.84 2.91
50th 3.71 2.77 3.07 3.23 3.00 3.23 3.26 3.05 3.11 3.18 3.02 3.22 3.20 2.99 3.19
75th 4.47 4.28 3.07 3.59 3.48 3.49 3.43 3.38 3.41 3.35 3.26 3.41 3.31 3.25 3.30
Range 1.19 1.53 0.00 0.77 0.69 0.52 0.46 0.54 0.51 0.51 0.44 0.53 0.40 0.41 0.38

F3(θ) 25th 7.11 6.42 6.13 6.36 6.20 5.99 6.43 6.36 6.32 6.27 6.20 6.19 6.16 6.11 6.10
50th 7.93 7.40 6.13 6.69 6.47 6.12 6.85 6.87 6.47 6.41 6.40 6.29 6.28 6.22 6.19
75th 9.55 9.28 6.13 7.95 7.55 6.59 7.45 7.56 7.44 6.69 6.75 6.64 6.47 6.42 6.40
Range 2.43 2.87 0.00 1.59 1.35 0.60 1.03 1.20 1.12 0.42 0.56 0.45 0.31 0.31 0.30

Figure 4. Boxplots of median performance in validation for different scenarios of data availability based on the type of the events used in calibration. Median model
performance refers to the median values of model performance achieved by the behavioural parameter sets for each calibration set-up. The dashed (blue) lines
represent the upper benchmarks, whereas the solid (blue) lines represent the lower benchmarks. Lower benchmarks of F(θ) and F3(θ) were equal to 17.7 and
14.7 mm h−1, respectively. Upper and lower benchmarks of F1(θ) would be the equivalent of relative volume errors of 13% and 15%, respectively; upper and lower
benchmarks of F2(θ) would be the equivalent of Nash-Sutcliffe efficiencies of 0.90 and 0.45, respectively, whereas upper and lower benchmarks of F3(θ) would be the
equivalent of relative error of peak flow of 22% and 56%, respectively.
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as the one used in this study, tend to be more random and not
relevant for producing floods, since they are often dominated by
infiltration-excess overland flow (Rosbjerg et al. 2013). The latter
was supported by the fact that we did not find a high correlation
between initial discharge and other flood event characteristics.

Our findings suggest that continuous observations from at
least two events may be sufficient to calibrate a model for flood
prediction. While increasing the number of calibration events
leads to increased performance and reduced uncertainty, the
effect seems to level off already after four calibration events.
This strengthens the argument that calibration-data needs rely
on the information content in observations rather than on the
pure number of individual observations. The results are in line
with the findings of McIntyre and Wheater (2004) that fewer
calibration data are necessary if data are taken in an event-based
way. One explanation for this could be that continuous mea-
surements of individual events at a high temporal resolution

may provide sufficient information for constrainingmodel para-
meters as suggested by Seibert and McDonnell (2013). Our
results are also in line with the findings of Tan et al. (2008), in
which runoff volume predictions were better when the discharge
data used in calibration were the largest in terms of quantity.
Contrary to previous event-based studies, we calibrated our
model using multiple events at once, depending on the scenario
of data availability, rather than calibrating our model for each
individual event.

Although there is a lot of information to be gained from
individual events, not all events were equally informative for all
the scenarios of data availability. When one or two events were
used for calibration, the results obtained for all measures varied
considerably for any type of event, in terms of median accuracy
and uncertainty ranges. This is because it is highly unlikely that
one single event could include sufficient information for ade-
quate model calibration and for accurate prediction of all types

Figure 5. Simulations for the Boqueron River basin at Peluca for an extreme flood event (Type-3): (a) when discharge data of such an event were available for
calibration; (b–e) when the number of events used in calibration (Mp) was equal to one, two, three and four, respectively. The simulated runoff corresponds to the
5th and 95th percentiles of model simulations obtained with the behavioural parameter sets for each scenario.
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of floods, even though it can provide better model predictions
than without data. When the number of events used for calibra-
tion was equal to or greater than three, it seemed that the
information content of individual events became relatively
equal and less influential in the predictions, regardless of the
characteristics and magnitude of them. It is assumed that by
doing the calibration of the model using multiple events at once,
parameter sets selected as behavioural include sufficient infor-
mation to predict different types of events and not just one type
as it happens when one or two events are used. The low number
of events identified for each type resulted in few calibration set-
ups compound only of events of one type, which makes it
difficult to generalize any assessment of their information con-
tent for every scenario of data availability. To overcome the
latter, a larger number of calibration set-ups, based on their
event-type combination, were considered representative of the
information content of a given type of event, even if they
included events of other types. It might be argued that using
calibration set-ups that include multiple types of events to
represent the information content of a specific type of event
would have a large influence on the results. However, an addi-
tional experiment in which only the calibration set-ups com-
pound of one type of event were used, showed similar results in
terms of information content of the events as we did here,
although with smaller performance ranges possibly because of
the small number of calibration set-ups with such characteristic.

The results reported herein are based on one tropical basin and
one bucket-type rainfall–runoff model. It can be assumed that
calibration-data needs in small andflashy basins located in regions
dominated by rain floodswill be relatively similar to the one found
in this study. Data needs are expected to be higher in large basins
because of the effects of rainfall spatial variability on hydrograph
response. For the latter case, different scenarios of rainfall activity
for the same areal rainfall, such as storm movement across the
basin or localized rainfall events, are expected to result in different
shapes of the hydrograph and therefore, more events may be
needed to cover such variability. One can also expect that calibra-
tion-data needs will be larger in basins dominated by snowmelt
floods in spring and rain floods in autumn. Similarly, data needs
are also expected to depend on model complexity. Here, a simple
and lumped bucket-type hydrological model with eight free para-
meters was used in our experiment. Using amore complexmodel
wouldmeanmore parameters to calibrate and, hence, longer time
series of runoff data may be needed for adequate identification of
the parameters which may not be feasible in data-scarce condi-
tions. In either case, calibration-data requirements are expected to
be relative to the complexity of the basins, climate and models, as
well as by the dominant flood types for each case. Our study case
was a small basin with a fast response dominated by rainfall floods
which could explain the small amount of data needed for improv-
ing the prediction of floods compared to the scenario of no data.

It is suggested in the literature that sampling high flows in
combination with recession data may be the most informative
sampling strategy for hydrograph prediction (Pool et al. 2017). In
our experiment, it was assumed that the discharge time series of
the most extreme flood events were recorded and available for
calibration. In practice, measuring these events is difficult because
their probability of occurrence is low and it is not known in
advance when these events will occur. Additionally, there is

a higher risk for equipment to be damaged or lost when used to
monitor extreme events. In a typical field campaign, it is most
likely that a small to medium event would be gauged rather than
an extreme one. The results of our experiment give an idea of what
could be expected or achieved at best if such data were available.

It was also assumed that discharge data were available for
short periods for each flood event. This implies that stage
measurements were translated to river discharge by applying
a rating curve, which is typically not available in ungauged
basins. Although nowadays, thanks to modern technology, it
is possible for hydrologists to obtain accurate and continuous
level and flow-velocity measurements to estimate river dis-
charge, even without a rating curve. If only water-level data
could be made available, an alternative could be to rely on
calibration methods where these data are used to constrain
model parameters (Jian et al. 2017).

Model performance based on a limited number of events
was compared against upper and lower benchmarks to take
into account what could and should be possible with the
data. This approach has been recognized as useful when
there is an interest in comparing the value of gauging a few
discharge measurements against the value of long-term
gauging (Pool et al. 2017). Here, median model perfor-
mance was typically better than the lower benchmarks in
most cases, which showed the value of adding more events
in calibration in comparison to when no data were avail-
able. Our findings raise interesting questions on what
would be the minimum characteristics of an event required
for calibration, and if it would be possible to identify these
events before they occur. This would be valuable knowl-
edge for water-resources managers with limited time and
resources to optimize field campaigns that will result in the
most informative data for model calibration and, therefore,
for accurate flood prediction.

5 Conclusions

In this study, we explored the value of discharge time series of
a limited number of events, in a data-scarce environment, for
adequacy of model calibration. It was shown that if a few event
hydrographs could be made available, good model performance
could be achieved for predicting floods in basins dominated by
rainfall floods. The specific conclusions from our analysis are

(1) Flood predictions will improve even if only one event
hydrograph is available for calibration.

(2) Using two events for calibration may be sufficient, but
accuracy and reduction in uncertainty may improve if
data from more events can be made available. No signifi-
cant improvements are gained aftermore than four events.

(3) When three or more events were used for calibration,
the information content of individual events impacted
model simulations less regardless of their magnitude.

This study was limited to one basin and one model. While
the generality of our results needs to be further tested in other
basins and with other models, these results are encouraging
and call for the development of field methods towards making
event hydrographs available in ungauged basins.
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