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ABSTRACT

In this dissertation, we study the long-term electricity infrastructure investment planning prob-
lems in the electrical power system. These long-term capacity expansion planning problems aim
at making the most effective and efficient investment decisions on both thermal and wind power
generation units. One of our research focuses are uncertainty modeling in these long-term decision-
making problems in power systems, because power systems infrastructures require a large amount
of investments, and need to stay in operation for a long time and accommodate many different
scenarios in the future. The uncertainties we are addressing in this dissertation mainly include de-
mands, electricity prices, investment and maintenance costs of power generation units. To address
these future uncertainties in the decision-making process, this dissertation adopts two different
optimization approaches: decision-dependent stochastic programming and adaptive robust opti-
mization. In the decision-dependent stochastic programming approach, we consider the electricity
prices and generation units investment and maintenance costs being endogenous uncertainties, and
then design probability distribution functions of decision variables and input parameters based
on well-established econometric theories, such as the discrete-choice theory and the economy-of-
scale mechanism. In the adaptive robust optimization approach, we focus on finding the multistage
adaptive robust solutions using affine policies while considering uncertain intervals of future de-

mands.

This dissertation mainly includes three research projects. The study of each project consists of two
main parts, the formulation of its mathematical model and the development of solution algorithm-
s for the model. This first problem concerns a large-scale investment problem on both thermal
and wind power generation from an integrated angle without modeling all operational details. In
this problem, we take a multistage decision-dependent stochastic programming approach while

assuming uncertain electricity prices. We use a quasi-exact solution approach to solve this mul-
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tistage stochastic nonlinear program. Numerical results show both computational efficient of the
solutions approach and benefits of using our decision-dependent model over traditional stochas-
tic programming models. The second problem concerns the long-term investment planning with
detailed models of real-time operations. We also take a multistage decision-dependent stochas-
tic programming approach to address endogenous uncertainties such as generation units invest-
ment and maintenance costs. However, the detailed modeling of operations makes the problem
a bilevel optimization problem. We then transform it to a Mathematic Program with Equilibrium
Constraints (MPEC) problem. We design an efficient algorithm based on Dantzig-Wolfe decompo-
sition to solve this multistage stochastic MPEC problem. The last problem concerns a multistage
adaptive investment planning problem while considering uncertain future demand at various lo-
cations. To solve this multi-level optimization problem, we take advantage of affine policies to
transform it to a single-level optimization problem. Our numerical examples show the benefits of
using this multistage adaptive robust planning model over both traditional stochastic programming
and single-level robust optimization approaches. Based on numerical studies in the three projects,
we conclude that our approaches provide effective and efficient modeling and computational tools

for advanced power systems expansion planning.
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CHAPTER 1: INTRODUCTION

Optimization is a very important approach in mathematics and operations research. It has been
widely applied in a broad area of our lives. Mathematical optimization deals with problems of

maximizing or minimizing a function of many variables subject to constraints shown as follows,

min f(x) (1.1a)

st.g(x) <0 (1.1b)

where x is decision variable vector in R"”. f(x) and g(x) correspond to objective function and
constraints of this mathematical programming problem. Different properties of f(x), g(x) and x
defines different types of mathematical programming problems, and accordingly different solution

techniques are developed.

Optimization has been successfully applied in a great variety of applications, among which the
electricity power system benefit greatly by applying optimizations to resolve a large number com-

plex problems in both planning and operations.

1.1 Optimization Models in Long-term Electricity Generation Expansion Planning

Electrical power system is a extremely complex system. Thousands of electrical components are
operated, controlled and managed within the electric system to generate, transmit, and supply the
electric power. It forms a multi-level network that connects original energy supplies to the ultimate

consumers.
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Figure 1.1: IEEE 3 bus power system

Figure 1.1 displays a 3-bus power system which has 3 nodes and 3 arcs. Each node represents a
region that supplies or consumes the electricity. Power generators are connected to the network
at certain nodes. In this network, there are two forms of power generators: conventional power
generator labeled with G and wind power generator label with WW. The amount of electricity
generated by each unit is restricted by the capacity of each generator, it is also restricted by capacity
factor which represents the average ratio of currently installed capacity that can be utilized for

generation. Each arc represents a transmission line that transmit electric energy from one region to



another. The amount of electricity being transmitted is restricted by the limitation of transmission
lines. The demand or load is connected to the nodes with the label of D. The users demand is
satisfied by properly operating all the generators and supplying the electricity without violating
all the technical restrictions. This 3-bus power system forms a network that addresses three major

aspects of electric power system, i.e. generation, transmission and distribution.

In this dissertation, we study a specific type of optimization problems for the power system, which
belongs to long-term capacity expansion planning problem. Capacity expansion planning seeks
the maximum-profit within the process of expanding the electricity generation facilities to meet the
rising demand for the electricity services [2]. Attributing to the long-term planning horizon (15 to
20 years) of the capacity expansion, some of the key parameters are uncertain, including investment
cost, electricity price and user demands. Hence, it has been suggested that uncertainty should be
considered to achieve effective expansion planning [3]. Another important source of uncertainty
attributes to the rapid growth of renewable energy sources in the market. Figure 1.2 shows a clear
trend of the growth of renewable energy, especially for the wind power which has a growth rate
for more than 15% every year. However, due to the variable and uncertain behavior of wind, the
generation planning of a wind farm is still a difficult issue. In order to make most effective and
efficient investment decisions, how to deal with increasing uncertainty in the generation planning

that involves large-scale electric power is an urgent and challenging task.
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Figure 1.2: Power generation from different energy source

In the following, two popular approaches, i.e. stochastic programming and robust optimization,
are introduced to address the uncertainty difficulties within the long-term electricity generation

expansion planning.

Stochastic programming is one of the most popular optimization approaches that deal with uncer-
tainty. The uncertain parameters are assumed to be unknown before they are realized at some time
point. It aims at finding a solution which maximize or minimize the expected value of all future

outcomes, which has following general formulation,

min 'z 4+ E[Q(z,w)]



where w is an random vector, ¢ and x are the cost vector and decision vector. E[Q(x,w)] is the

expected future cost of Q(x, w), which is the cost of decisions made after the uncertainties unfold/

Traditionally, the probability distribution of the stochastic optimization model is predetermined

before the uncertainty unfolds, shown as follows,

Prob* = k(€), (1.2)

where (&) is a known distribution, such as normal, binomial, Weibull and so on. This is true for the
majority stochastic optimization problems. However, there exists the reality that the probability of
making decision is affected by the decision itself. For example, in the stock market, the probability
of purchasing the stocks is affected by the price of stocks. The price of the stock is also affected
by the purchasing decision itself. Hence, the probability of purchasing a stock is affected by the
purchase decision. This simple example illustrates the fact that the future uncertainties are not
only affecting but also affected by the current decision. In particular, the probability distribution
can be dynamically adjustable according to the decisions, i.e. decision-dependent probability. The

decision-dependent probability has the formulation as follows,

Prob*(z) = f(x,§), (1.3)

where x is decision variable and £ represents uncertain data.

Nevertheless, the stochastic programming approach has its limitations. For example, in some cases,
we need to seek the “safest” solution among all the uncertain data. In the following, we are going

to introduce the robust optimization that deals with uncertainty using a different approach.

Unlike the stochastic optimization that uses probability distribution to represent the chance uncer-

tainty, robust optimization considers the uncertainty in a different angle. The robust optimization



seeking an “immunized against uncertainty’’ solution to an uncertain problem and the objective fol-
lows the “worst-case-oriented philosophy” [4]. It is formulated as a collection of linear programs
of a common structure with the data varying in a given uncertainty set. It is generally formulated

as follows,

min { sup c'x: Az <b, ¥(c,Ab) € L{} (1.4)
z (e,Ab)eU

where (c, A, b) refers to the uncertain data, x is the decision variable vector, I/ is a given uncertain
set. The original objective is acquired by quantify quality of a robust feasible solution = by its

largest value sup{c’z : Az <b, V(c, A,b) € U}.

In the robust optimization model, all of its decision variables must be determined before the actual
realization of the uncertain data [5]. This type of variables that represent the decision made before
the realization of uncertain data are called “here and now” decision variables. However, there
are some cases in reality that some of variables are able to tune themselves to varying data, that
represents “wait and see” decisions. The framework that incorporates this adjustable feature is call

Adaptive Robust Optimization, which is a extension of Robust Optimization.

For linear structure problems, the linear robust optimization approach is also denoted as robust
counterpart (RC) and the linear adaptive robust optimization approach is denoted as adjustable

robust counterpart (ARC) [5]. The formulation of ARC of the uncertain linear programming is

(ARC) : min{c"u:V({ =[A,b,c € Z)Iv : Uu+ Vv <b} (1.5)
In contrast, the Robust Counterpart (RC) is formulated as:

(RC) : min{c"u:FoV(=[Abd€Z): Uut+Vv<b} (1.6)



It is obvious to notice that ARC is more flexible than RC with larger robust feasible region. ARC
takes advantage of the nature of adjustable variables that the decisions can be made until the
uncertainty is (partially) unfolded. Thus, ARC enables a better optimal value while still satisfying
all possible realizations of the constraints. However, on the other hand, this flexibility brings in
computational issues for ARC. Unlike that most RC problems are computationally tractable, most
of ARC problems are computationally intractable, i.e. they cannot be solved efficiently [S]. To
make the ARC problems solvable, the decision rules of adjustable variables need to be specified
and restricted. One of the most popular approach is the affine policy, which will be discussed in

Chapter 4.

If we try to compare Stochastic optimization (SO) against robust optimization (RO), we may notice
following differences. In SO, the uncertain numerical data are assumed to be random and follow
a certain (usually discrete) probability distribution. Therefore, the number of possible outcomes is
finite. Whereas, the uncertain data in RO usually falls within a continuous set, where the number
of possible outcomes is infinite. Another important difference between SO and RO is the different
goal. SO solves for the optimal of the expected value of uncertain outcomes. The RO, on the hand,
solves for the optimal based on the “worst-case-scenario”. Its solution must satisfy even the worst

uncertain data. Therefore, worst-case-oriented RO approach is more conservative than the SO.

1.2 Outline of this Dissertation

This dissertation is motivated by real world arising operations research problems in the electrical
power system. It aims at solving the long-term capacity expansion planning problems with renew-
able energy under uncertainty. Serval mathematical optimization models are presented and various
advance solution algorithms are developed to deal with computational difficulty of each research

problem.



The structure of this dissertation is organized as follows. In Chapter 2, we introduces decision de-
pendent stochastic programming model for long-term power generation expansion planning prob-
lem. It tries to solve for the maximum profit in capacity expansion when a large amount of wind
power is involved. This model uses multistage decision dependent stochastic programming mod-
el to address the price uncertainty. The decision-dependent feature enables the probability dis-
tribution of stochastic programming to be dynamically adjustable according to the optimization
decisions. We employ a quasi-exact solution approach to deal with bilinear constraints and thus
transform nonlinear model into mixed-integer linear programming (MILP) model. The wind pene-
tration, investment decisions, and the optimality of the decision dependent model are evaluated in a
series of multistage case studies. Chapter 3 investigates the decision dependent multistage stochas-
tic programming for long-term generation expansion planning problem in the market framework.
This model seeks for the optimal sizing and siting for both thermal and wind power units to be
built to maximizing the expected profit for a profit-oriented power investor. The proposed formu-
lation is based on the bilevel framework that includes an upper-level stochastic expansion planning
problem and a collection of lower-level problems that solves for optimal power flow (OPF). The
optimal power flow problem solves for the minimum generation cost while considering the techni-
cal details of local power network. Transformation and decomposition approaches are developed
to overcome the computational challenges of this optimization model. Extensive numerical experi-
ments are conducted to analysis our model and solution algorithm. Chapter 4 studies the generation
expansion planning problem with multistage adaptive robust optimization which aims at finding
the best solution that satisfies the worst-case-scenario. In this model, the investment decisions turn
out to be adjustable. In order to manage the computation intractability of the adaptive robust op-
timization model, a simplified affine policy is applied. Numerical experiments are conducted to
study the performance of the proposed model with comparisons to existing approaches. Chapter 5

concludes the dissertations.



CHAPTER 2: DECISION DEPENDENT STOCHASTIC
PROGRAMMING APPROACH FOR POWER GENERATION

EXPANSION PLANNING !

2.1 Introduction

In recent years, renewable energy sources grows rapidly due to the fact that conventional power
generation has become a main source of air pollution, and thus face a great challenge of maintain-
ing a sustainable future environment. The development of renewable energy especially wind power
generation becomes a potential solution to tackle this challenge. It is considered as an alternative
to fossil fuels, due to its incomparable features of being plentiful, renewable, widely distributed
and produces no green house gas during operations [6]. However, due to the variable and uncertain
behavior of wind, the generation planning of a wind farm is still a difficult issue. It becomes more
complicated when wind power is present in a large scale and long term planning. In order to make
most effective and efficient investment decisions, how to deal with increasing uncertainty in the

generation planning that involves large-scale electric power is an urgent and challenging task.

In this chapter, we propose a long-term planning model through a multistage, decision-dependent,
stochastic nonlinear programming approach. We take advantage of the decision-dependent process
where the probability distributions of electricity prices depend on the key decision variables: the

installed capacities of different types of generation assets.

Y. Zhan, Q. Zheng, J. Wang, P. Pinson. A Decision Dependent Stochastic Programming Model for Power Gener-
ation Expansion Planning with Large Amounts of Wind Power, accepted at IEEE Transaction of Power System.



2.2 Literature Review

To address these uncertainties, stochastic programming is one of the most popular approaches
applied in power system generation planning problems [7], where uncertainties are described by
random variables with some predetermined probability distributions. A lot of research has explored
stochastic programming approaches not only in the short term generation operation phase [8], but
also in the long-term planning phase [9]. Among the many research endeavors pursued for long-
term expansion planning under uncertainty, Ahmed et al. [10] addressed a multi-period investment
model for capacity expansion in an uncertain environment including uncertain demand and cost
parameters, as well as economies of scale in expansion cost. Kennedy [11] has estimated the
benefits of large penetrations of wind power with the consideration of stochastic interaction among
wind power variability, electricity demand, and the operation of other generators on the power

system.

However, most previous works were designed to deal with exogenous uncertainty [12], where the
probability distributions of uncertain factors are pre-determined and fixed before the optimization
process. In other words, the stochastic programming models with exogenous uncertainties, such
as electricity prices, are usually formulated based on the assumption that future random electrici-
ty prices are independent of the investment decisions at the current stage. However, in real-world
generation planning, the decision variables in the current stage also play an important role influenc-
ing the future uncertainties. The study in [13] shows that the decisions on power plant expansion
are affected by several variable criteria including capital costs, current costs, budget deduction,
and electricity prices. It is discovered in [14] that different risk-aversion levels result in differ-
ent investment strategies in wind facilities. In the study in [15], the maximum social welfare is
achieved when the electricity price is varying according to a user’s energy demands. It is shown

in [16] that different installed capacities of wind power will influence the entire power system,

10



especially when a large amount of wind power is involved. The probability distribution of future
electricity prices is affected by the level of wind power. All of these research findings indicate
that decision variables play an important role in determining the uncertain process at later stages.
Hence, in order to consider the endogenous uncertainties, we adopt a decision-dependent approach
that takes into account decision variables in determining the distributions of the uncertain process.
In the operations research field, several studies have utilized this decision-dependent approach to
deal with endogenous uncertainties. Among the many approaches, a hybrid mixed-integer disjunc-
tive programming approach has been presented in [12] to address a class of stochastic programs
with decision-dependent uncertainties. In [17], a decision-dependent approach was applied to a
mixed-integer stochastic programming model where the timing of information discovery can be

influenced by decisions.

Our proposed model contains bilinear terms that make the optimization process computationally
very challenging. This model, known as the bilinear program (BLP), belongs to the class of hard
nonconvex nonlinear programs where functions are twice continuously differentiable [18]. Pre-
vious studies proposed many theoretical and algorithmic approaches for acquiring the optimality
of BLPs, such as deterministic branch-and-bound [19], branch-and-contract global optimization
algorithm [20], reformulation-linearization technique [21], Lagrangian relaxation [22], automatic
symbolic reformulation procedure [23], linear cutting plane algorithms [24], effective heuristic al-
gorithms [25] and etc. However, there are also limitations among some of the existing approaches
that prevent their direct applications to our model. For example, some approaches only work with
special BLPs (e.g., disjoint BLP [19], BLP with nonlinear constraints [20, 24]), some approaches
only converge under certain conditions (e.g., the zero duality gap conditions for Lagrangian relax-
ation [22]), some approaches may not always converge to a global optimum [25]. Nevertheless,
the quasi-exact solution algorithm in [26] uses a straightforward linearization mechanism that does

not have the aforementioned limitations.Borrowing the method that a modern computer represents
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any fractional number by using binary variables, the quasi-exact approach ensures that the MILP
(Mixed Integer Linear Programming) problem is equivalent to the original problem when a large
number of binary variables are used to ensure the accurate representation of the fractional numbers.
Hence, the new resulting MILP (Mixed Integer Linear Programming) problem can be solved con-
veniently and efficiently by using any off-the-shelf MILP commercial solver, but still attains a high
level of accuracy as shown in our numerical results. Using this model and the solution approach,
we study the impact of the investments of large-scale wind generation on long-term generation

expansion planning.

2.3 Model Assumption

In this section, we discuss the settings and assumptions of our model. It is assumed that the power
system consists of two types of generators: thermal and wind. The model considers a planning
horizon of 4 stages, each of which spans 5 years. This model can be also applied to compute
under other lengths of planning horizon by changing the values of the parameters without loss of
generality. Since the temporal variability of load and wind power is mainly due to meteorological
fluctuations of seasons and hours of the day [16], in our long-term model these factors have a

relative short-term effect, and thus can use the average values.

Expansion planning models deal with the long-term investment problem, where long-term load
growth and price trends are the main drivers for investment decisions. Given the size of the system
and the multi-stage nature of the investment decisions, even simplified investment problems may
become extremely complex and large-scale optimization problems if all operational constraints, as
well as the stochastic, dynamic characteristics of the renewable generation and load are considered.
Such operational details may result in a large bi-level (or tri-level) optimization problem, e.g.,

in [27]. In addition, it is often seen that results may not be that different from the case where some
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of operational constraints are simplified or ignored. For example, the commitment for thermal
units can be absent. Besides, from the market perspective, similar considerations would hold for
the modeling of all types of strategic behaviors of market competitors and the potential resulting
equilibria as in [27]. Hence, in many of the previous studies, network effects which may be of less
importance, have not been explicitly included (e.g., in the European context as discussed in [27]
and [28]). Other cases without modeling network effects include short-term models [29, 30] and
long-term models [16]. In addition, regardless of the network, the overall average electricity price
has a negative relationship with the wind penetration [16]. Therefore, in this paper, since we
focus on a new decision-dependent modeling approach, where the development of future uncertain
prices depends on current investment decisions, we assume an aggregated level of operations and

uncertain prices without explicitly modeling the network effects.

In this study, we assume the electricity network consists two types of generators units: thermal
and wind, which is typical for the electricity network in the middle west. We also assume that
the storage units are not considered in the network. This is because the energy storage units are
mainly applied to deal with energy dispatch problems in the short-term market such as day-ahead
unit commitment [31]. Our long-term planning horizon averages out the effect of storage units in

the short-term.

The generation expansion requirement is determined by the future load demand level. In our model,
levelized operation and maintenance cost ¢, levelized investment cost 53, and unit investment cost
b are considered as fixed and deterministic. The market price p°®, on the other hand, is assumed
as the endogenous uncertainty. The market demand D is featured as having an overall increasing

trend but affected by price variations.
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2.3.1 Planning Horizon and Scenario Tree Settings of the Uncertain Electricity Price

Our study is aiming at long-term modeling where generation expansions are usually conducted via
multiple steps/stages. We use a rooted scenario tree with multiple stages and branches to represent
the planning horizon with uncertainty. There are two key features in the scenario tree: a time
horizon divided into discrete stages, and each node (except the leaf) has several child nodes with
different outcomes that represent the different realizations of uncertainty. For simplicity, these
stages, j € {1,2,...,J}, occur at evenly spaced increments of time. We denote the complete set
of nodes of the scenario tree by V, each of which represents a potential state of the market price
of electricity. We also use the set N~ = N \ {1} to represent all nodes starting from stage j = 2.
For every node n € N~ in stage j, we denote its unique ancestor node as a(n) at stage j — 1. In
contrast, S,, denotes the set of successors of node n in stage j + 1. Hence, we can use Sy, to
denote the set of nodes that share the same ancestor node a(n) in stage j. The root node is denoted

as n = 1 which is in stage j = 1.

We assume that the electricity prices (at different time periods) are uncertain, and model them by
using discrete random variables. At each ancestor node a(n) (at time j), each node in the child
node set Sy(p,) is corresponding to an outcome/realization of the discrete random electricity price
(at time j + 1). We use p®™ and p" to represent the prices in ancestor node a(n) and node n,
respectively. Then, 0", a prefixed parameter, is used to generate the outcome/realization of price at

node n, through the equation,
P = p“(n) . (1 + 5”), Vn € Sa(n). 2.1

For different nodes, 0" is chosen differently. For example, in a binary tree, the two child nodes of

a(n) can have opposite values, e.g., £5%, to represent an increase and a decrease.
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2.3.2 Modeling the Decision-Dependent Probability

While a power market is embracing more deregulation and competition, electricity prices and
demands are directly influenced by the mix of the power generation capacity as in [32-34]. Wind
generation’s marginal cost (excluding its maintenance cost) is usually considered as zero. Hence
penetration of wind power will undoubtedly decrease the electricity price. However, electricity
prices are also considered as uncertain in many long-term expansion planning researches. It is
important to link the price uncertainty with the expansion planning decisions. As discussed in
Section ??, one of the key features of our decision-dependent stochastic model is the decision-
dependent probability distribution, which is modeled by a function of decision variables. In this

paper, we discretize the electricity price in a known and fixed sample range.

In addition, we assume that the probabilities associated with given levels of electricity prices are
not input parameters but are dependent on the investment decisions, as evidenced in the previous
literature [13, 15, 16, 35, 36]. For example, researchers found that the average electricity price
would decrease as the share of wind power in the generation portfolio increases. Moreover, a
low-electricity-price scenario is more likely to happen if wind power’s share is increasing. The
opposite occurs for a high-electricity-price scenario. This is largely due to the fact that wind-power
generation, compared to thermal generation, has a lower combined generation plus maintenance
cost (¢;) for every magawatt hour of electricity it generates, even when we factor in the levelized
investment cost (5;) [1]. To model these findings, we propose a decision-dependent model to link

probabilities of uncertain electricity price outcomes with investment decisions.

In our proposed model, we assume that the probability associated with any electricity price out-
come (at node n) is a multivariate function of the possible future electricity price itself, generation
portfolio (including both wind and thermal power capacity), combined generation and mainte-

nance cost and levelized investment cost (per megawatt hour). In the scenario tree, every node
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(e.g., n representing a price outcome) is associated with a transition probability from its parent
a(n). As investment is a vital factor driving the electricity prices, for the decision-dependent un-
certain electricity price, we assume that there is a positive relationship between the likelihood of a
price outcome and its return or profitability on the investment. Motivated by [37], this probability

1s modeled as follows,

Z al (p™—c;—By)
i€{1,2} " B; (a7 +a})

P?"Obn = tion ) vn € N_' (22)
3 » zp"—ci—Bi)
t€S,(n) i€{1,2} Bj(zl+l)

where S, is the set of nodes having the same parent node, a(n). Based on the real-world data

(see Table 2.4 from [1]), it is clear that Prob™ > 0. In addition, Ztesa(n) Probt = 1. As B, is the

(p"—ci—Bi)

= as a measure for the rate of the return on the invest-
K

levelized investment cost, we can use

ment of generation type ¢ when price is p”, and then ) (12} 7 of _ ptocioB

ni.n - ——p - canbe considered as
1 2 g

a measure for the average rate of return on the total generation capacity. Equation (2.2) then defines
the transition probability of a specific price outcome p" (i.e., node n in the scenario tree) from its
parent node a(n). It is positively related to the return or profitability on the composition of the total
generation asset. Note that Equation (2.2) presents the transition probability as a function of the
market price p" and the generation capacity z}', V. Unlike the traditional stochastic programming
models with exogenous uncertainties where probability is fixed as a model’s input parameters, the
decision-dependent probability changes according to the investment decisions, making the model
a decision-dependent stochastic programming model. In a nutshell, investment decisions affect the
random price through influencing the probabilities of the outcomes while having a prefixed/known

sample space of the price.
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Scenario Probability changes with Wind Capacity
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Figure 2.1: Price Probabilities vs. the Wind Capacity of the Power System

Figure 2.1 shows an example of the two-outcome probability curves that change in response to
the installed wind capacity (i.e., the generation capacity mix as the thermal capacity is fixed)
according to our model (2.2). The vertical axis represents the probability value, and the horizontal
axis is the installed capacity of wind generation. The top and the bottom curves are representing
the probability values under high-price and low-price outcomes respectively while perturbing the
wind generation capacity from 50 GW to 250 GW. The thermal capacity is fixed at 306 GW.
The two price outcomes used are 0.12684 $/Kwh and 0.11476 $/Kwh. All other data regarding
levelized investment costs (53;) and combined generation plus maintenance costs (c;) for both types

of generations are obtained from EIA data [1] as shown in Table 2.4. From the plot, we can
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observe that the probability is affected by both the price level and the wind capacity (i.e., its share
of the total capacity as the thermal capacity is fixed). The two discrete outcome’s probabilities
are reflected by two separate curves on the plot. When the wind capacity is small, the high-price
outcome has a higher probability. When the wind capacity is increasing, the high-price outcome’s
probability starts to decrease and the low-price outcome’s probability starts to increase. In addition,

the expected value of electricity price decreases while wind capacity penetration increases.

All of the above observations can be shown as corollaries of the following theorem.

Theorem 2.3.1. In the two-outcome case with a high price outcome (P™) and a low price outcome
(PL), the ratio between the corresponding probabilities, Prob™ | Probr, is a decreasing function

of wind generation capacity, .

Proof. By plugging in the the formulas of probabilities of high and low prices defined in (2.2), we

can have

Prob" P —c,— By
ProbL N PL—CQ—BQ
l'l(Cl—‘rBl—CQ—BQ)(PH—PL)
+ b
z1(PL—c1—B1)(PL—co—Bs) + z2(PL—co—B3)?
B1 B2

Indices 1 and 2 are denoting thermal and wind generation respectively. Based on EIA data [1] (see
Table 2.4), c; + By — co — By > 0, i.e., that the thermal generation has a higher total sum of the

levelized operations cost and the levelized investment cost. Also we know that P# — P~ > (), and

Probf

propr decreases. ]

then when x5 increases, the ratio

Corollary 2.3.1.1. Prob” is a decreasing function of .

Proof. We know that Prob” + Prob” = 1. Hence 8%’;’2”11 — —6];;02“. By Theorem 1, we know
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ProbH
that ?‘TOQ”L < 0. In addition,

Dropll Lol propl — OBob” propi
Oy (Prob")?
dProbH
— 0w
~ (Probt)?
Hence, % < 0. This also means that Prob” is an increasing function of 5. O

Corollary 2.3.1.2. The average electricity price is a decreasing function of wind generation ca-

pacity, i.e., T.

Proof. Let AV P denote the expected price, and then AV P = Prob™ P2 + Prob* PL. The partial

derivative with respect to x5 is

0AV P pH dProb™ L pL dProb*

8x2 8[)32 a5(72
OProb'
= —— (PP - P <0
pEroa )
Hence, when x5 increases, the expected price decreases. [

This price dependence on capacity is consistent with the results from other studies on real-world
power systems. The long-term wind power investment study from [16] indicates that the average
expected value of price decreases as wind farms are added. Similarly, the study from [36] also
shows a decrease of average price due to the increasing wind power. Therefore, as mentioned in
many studies, the price dependency on wind capacity is important for investors in evaluating the

economic effects of power generation investments.
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2.3.3 Generating the Market Demands as Inputs to the Model

Since the early seminal study of US electricity demand [38], electricity price and demand are
founded closely linked. The relationship is depicted by the elasticity equations between electricity
demand and price. Various research efforts have been taken to understand this relationship at both
national and regional levels [39-41]. In this paper, we generate the demands as input parameters
by assuming that the load/demand is affected by the electricity price variation. When price is
increasing, the customer’s desire to consume is lower, and therefore the load demand should be
decreasing. Conversely, a large amount of demands could be stimulated by cheap prices. In this
paper, we assume an elasticity model based on the well-known Tellis’s econometric model [42].
The elasticity of demand to price is defined as £ = (AD/Ap)-(p/D), where p is the market price,
E is the elasticity level, and D is the elastic demand. Based on this elasticity relation, we generate
the demands in each node by using the following numerical expression of demand variation with

respect to the corresponding price outcome (p"), i.e.,

(M- (1 +e). (2.3)

In addition, this equation constructs the connection between D™ and D™ which are the demand
in node n and in its ancestor node a(n), respectively. The parameter F represents the elasticity
which is usually a negative value between —0.13 and —0.15 based on the study in [40], which
covered the data of electricity price and demand relationship in US for more than two decades.
Because E is chosen greater than —1 but negative, meaning the demand is not change much while
price is varying, it is generally considered as inelastic (as opposed to the perfectly inelastic case,
i.e., ¥ = 0). The incremental level representing other factors (e.g., population growth, new elec-

tricity appliances) between demands in node n and its direct ancestor a(n) is represented by e.
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2.4 Mathematical Formulation

In this section, we propose a multi-stage decision dependent stochastic generation expansion in-

vestment model.

Table 2.1: Sets and Indices

The ancestor of node n.

Index for types of generator: 1 for thermal, 2 for wind.

Ji Index for stage, j = 1,..., J.

[ Index for the binary variables introduced for linearization, [ = 1,.. ., L.

N The complete set all nodes of the scenario tree.

N~ The set of nodes excluding the one in the first stage.

N’ The set of nodes excluding those in stage J.

n Index for each node n € N.

Sn The successor set of node n in the next stage.

Table 2.2: Parameters

B; Levelized investment cost of thermal or wind i € {1, 2}, in $Billion/TWh.
b; Unit investment (overnight capital) cost of thermal or wind, ¢ € {1, 2}.
Bi Capacity factor of thermal or wind 7 € {1, 2}.
Ci Levelized operation and maintenance cost ¢ € {1, 2}, in $Billion/TWh.
D" The elastic demand in scenario tree node Vn € A, in TWh.
on Price variation level at node n, Vn € N.
E Elasticity level of demand.
e Incremental level between demands of two consecutive stages.
H Number of hours in a planning stage, in Hour.
L The number of binary variables used to represent the probability.
M, A large number to bound all continuous decisions.
p" Market price offered in scenario tree node n, Vn € N, in $Billion/TWh.
Rev™ Total revenue in scenario tree node n, Vn € A, in $Billion.
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Table 2.3: Variables

i Future investment on capacity of thermal/wind in scenario tree node n, Vn € NV, in TW.

cor Total operation cost in scenario tree node n, ¥n € N, in $Billion.

" The error term when using binary variables to represent probability at node 7.
n

gi Thermal or wind power production in scenario tree node n, ¥n € A/, in TWh.

ncr Total investment cost in scenario tree node n, Yn € N, in $Billion.

Prob™  Probability function of scenario tree node n, Vn € N.

R" The total profitability of power generation asset composition in scenario tree node n.
Swn The profit in scenario tree node n, ¥n € N, in $Billion.

o The variable to replace the bilinear term associated with the probability at node n.

xy Installed capacity for thermal/wind producer in scenario tree node n,Vn € N, in TW.
2 The [™ binary variable used to represent the probability at node n.

¢ The variable to replace the bilinear term representing the current profit.

The objective of power generation expansion planning is to maximize the total expected profit
(based on the whole scenario tree), which is calculated as the difference between total revenue
(Rev) and the total cost. The total revenue at each node n can be calculated by Rev" = p"D"™.
The total cost consists of two parts: the total investment cost and the total operational cost (fuel
costs plus maintenance costs). In our model, the investment costs (/C") are calculated on all nodes
except the nodes associated with the last stage .J. This is because the investment decisions are made
to accommodate the future power system operations, and we assume an invested infrastructure at
the current time period will be available starting from the next time period. For convenience, we
use N to denote the set of nodes having investment costs. The operating costs are calculated at
each node of the scenario tree and include both generation costs (mainly thermal generators) and
maintenance costs (both generation types). Hence, the objective function is a weighted sum of
these revenues and costs, where the weights are simply the probabilities of the associated nodes in

the scenario tree. Then we propose a multistage stochastic investment [MSI] model as follows,

max SW! (2.4a)
st (2.2)

Swem — oo 4 Z Prob' -

tESa(n>
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(Rev' — CO'+ SW'), Vn e N~ (2.4b)

IC" = " b, VneN (2.4¢)
ie{1,2}

CO"= > cgl, VneN~ (2.4d)
1€{1,2}

2t =22 4 o™ e (1,2}, Vne N (2.4¢)

g < HBixl!, i€ {1,2}, Vn e N~ (2.41)

gt +gy=D", Vne N~ (2.4¢)

g, ol wk Prob™, x >0, Vi,n e N (2.4h)

The decision variables o', ', and w' respectively represent the future invested capacity, currently
total, installed, cumulative capacity, and electricity generation of type ¢ at node n. The cost param-
eter b;, B; ,c;, represent the unit investment cost, levelized investment cost, and levelized operation
and maintenance cost of generation type i, respectively. Note that ¥ is the initial installed capaci-
ties, which are given as parameters for both types of generators. The objective function (2.4a) has
only one term: STV, which represents the total expected profit of the whole planning horizon, be-
ing calculated in a recursive way. Constraint (2.4b) defines the profit of the ancestor node a(n) in
stage j — 1 that includes two terms: the investment cost /C'*™ and the expected total cost of node
n’s successors. The expected cost part consists of three terms: the operation cost CO?, the revenue
Rev’, and the profit SW* at node ¢, which is the immediate successor of node a(n). Constraint
(2.4¢) defines the investment cost /C™, which is determined by unit investment cost b; and the new
generation capacity . The operational cost CO", given by constraint (2.4d), is determined by
production level g;*. We assume that capacity expansion investment decisions made at time 7 will
be ready to use at time 7 + 1. Then the relation between current installed capacity and the future in-
vestment amount is given by constraint (2.4e). The power generation amount is also limited by the

capacity factor in (2.4f). The capacity factors 3; represent the average ratio of currently installed
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capacity that can be utilized for generation. The power generation amount is enforced by (2.4g) to
meet the load demand. According to Section 2.3.2, the decision-dependent price-capacity settings

are included in (2.2) to capture the decision-dependent probability distributions.

2.5 Solution Approach

Since the constraints (2.4b) and (2.2) contain bilinear terms and fractional terms of decision vari-

ables, [MSI] is therefore a nonlinear optimization model. We first rewrite constraint (2.2) to

be Prob™ -y, s . R" = R" to eliminate the fractional terms defining the probabilities, where
x (p™—ci—Bi)

R = Zz’e (1.2} BT In this way, the constraints (2.4b) and (2.2) both contain bilinear

terms, Prob" - (Rev" — CO" + SW") and Prob" - 37,5~ R'. A bilinear term is the

nES,(n)
product of two decision variables and therefore makes the problem nonconvex and hence diffi-
cult to solve. As discussed in Section 2.1, linear-reformulation is widely used to solve noncon-
vex nonlinear optimization problems [21,43-45]. We employ a quasi-exact method [26] to deal
with the bilinear terms of our model. This method has a close link to Meyer and Floudas’s [21]
reformulation-linearization technique that reformulates the bilinear program (BLP) into mixed-
integer linear programs (MILP). In both methods, the BLP is augmented with a set of binary vari-
ables. However, note that in our BLP model, the bilinear terms are very special which contain a
continuous variable between 0 and 1, i.e., Prob". The quasi-exact method is specifically designed
for this particular format. Unlike the reformulation-linearization technique that needs additional
linear relaxation preprocessing, the quasi-exact approach uses a more straightforward approach
that directly transforms the BLP to a series of bilinear products containing a binary variable and a
continuous variable. Eventually, these products can be further linearized and therefore transformed

to a series of mixe