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ABSTRACT

In this dissertation, various optimization problems from the area of transportation and power sys-

tems will be respectively investigated and the uncertainty will be considered in each problem.

Specifically, a long-term problem of electricity infrastructure investment is studied to address the

planning for capacity expansion in electrical power systems with the integration of short-term op-

erations. The future investment costs and real-time customer demands cannot be perfectly forecast-

ed and thus are considered to be random. Another maintenance scheduling problem is studied for

power systems, particularly for natural gas fueled power plants, taking into account gas contracting

and the opportunity of purchasing and selling gas in the spot market as well as the maintenance

scheduling considering the uncertainty of electricity and gas prices in the spot market. In addition,

different vehicle routing problems are researched seeking the route for each vehicle so that the total

traveling cost is minimized subject to the constraints and uncertain parameters in corresponding

transportation systems.

The investigation of each problem in this dissertation mainly consists of two parts, i.e., the for-

mulation of its mathematical model and the development of solution algorithm for solving the

model. The stochastic programming is applied as the framework to model each problem and ad-

dress the uncertainty, while the approach of dealing with the randomness varies in terms of the

relationships between the uncertain elements and objective functions or constraints. All the prob-

lems will be modeled as stochastic mixed-integer programs, and the huge numbers of involved

decision variables and constraints make each problem large-scale and very difficult to manage. In

this dissertation, efficient algorithms are developed for these problems in the context of advanced

methodologies of optimization and operations research, such as branch and cut, benders decompo-

sition, column generation and Lagrangian method. Computational experiments are implemented

for each problem and the results will be present and discussed. The research carried out in this
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dissertation would be beneficial to both researchers and practitioners seeking to model and solve

similar optimization problems in transportation and power systems when uncertainty is involved.
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CHAPTER 1: INTRODUCTION

Extensive efforts have been made by scientists and researchers for optimizing the use of transporta-

tion and power systems. An electric power system is a network of electrical components, including

generators, transmission lines, storage facilities and end users, to generate, transmit, supply and

use electric power. Consider the 7-bus system shown in Figure 1.1, where there are 7 nodes and 10

arcs. Each node represents a region that supplies or uses the electricity, and power generators are

located in those labeled with G. Various sources of power could be applied for the power genera-

tion, such as fossil fuel (including coal, gas and oil), nuclear energy, falling water and wind. The

amount of electricity generated by each unit is restricted by its capacity. Each arc in the system is a

transmission line, a cable that can carry electric energy and transmit it from one region to another.

The vehicle routing problem (VRP), which seeks to minimize the transport cost, is among the most

important transportation problems. The VRP was firstly proposed by Dantzig and Ramser in 1959

[34] in order to transport a number of customers with a fleet of vehicles in a minimum-cost way.

All vehicles start and end at the same depot and each node except for the depot is visited exactly

once by exactly one vehicle. Some side constraints may be additionally included, such as capacity

restrictions, total time restrictions and time window requirement for visiting each node [77]. As

a special case of the VRP when there is only one vehicle, the Traveling Salesman Problem (TSP)

has also attracted a lot of research interest in operations research because of its close connection

to other optimization problems and wide practical applications. Given a list of cities, the objective

of TSP is to find the minimum-cost Hamiltonian cycle of visiting each city exactly once. Similar

to the VRP and/or TSP, the shortest path problem (SPP) is also seeking the least-cost path within

a network with deterministic arc costs and topology, while there is no need to visit each node and

the origin node differs from the destination node. In contrast to the NP-hardness of VRP and TSP,

the SPP can be solved in polynomial time with the well-known Dijkstra’s algorithm [43].
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Figure 1.1: A 7 bus power system

While for many optimization problems that have been studied in these two areas are modeled to

be deterministic, in reality most contain elements of uncertainty or randomness. For example, the

cost of constructing a new generator would be unknown when the capacity expansion plans are

made; A road could be disconnected due to inclement weather conditions or natural disasters; and

the number of customers to be picked up at some location would be uncertain before a vehicle

driver arrives there. Without considering the uncertainty in these cases, decision makers could ob-

tain solutions that have much lower expected profits or are exposed of extremely high risks when

the solutions are implemented in real applications. The stochastic programming has been widely

used as a framework to model the problems in which the uncertainty is involved. Specifically,

the uncertain parameters are assumed to be unknown before they are realized at some time point.

Their probability distributions, however, are known or can be estimated in advance. By taking

advantage of this statistical information, decision makers can develop a stochastic programming

model aiming to find a solution which maximizes the expected profit or minimizes expected cost

and also satisfies all (or most of all) the possible scenarios. The method of modeling the stochastic

programming for a particular problem, however, could vary due to different circumstances and
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requirements. For the two-stage unit commitment problem, for example, the first-stage decisions

of switching generators on/off are firstly made, followed by the second-stage decisions of power

dispatch which are subject to the unknown real-time customer demands. The goal is to minimize

the current cost in the first stage plus the expected values of the future recourse actions, with all

the scenarios of electric demands being taken into account. In other instances, however, managing

and controlling the risk associated with the uncertainty would be desired. For example, consider

the routing problem in the case that a city is struck by an earthquake or other disasters. A quick

emergency response is then required to send the relief and rescue workers and humanitarian sup-

plies to the damage zones via the most efficient route. The consequence of not considering the

possibility that the roads may be broken due to uncertain factors such as aftershocks, heavy traffic

and weather conditions, however, could be crucial as significant resources would be trapped and

not be delivered in time. Therefore a more reliable route needs to be planned in advance to prevent

the route failure with a desired level of confidence. The uncertainty of the network topology can

then be considered and a chance constraint can be modeled for the purpose of risk management. In

this dissertation, we develop different stochastic programming models and will show the variety of

the approach in terms of managing the uncertainty. Both continuous and integer decision variables

will be included in each model, and each problem would have a large scale because of the large

numbers of variables and/or constraints. These make the problem extremely hard to solve, and

some algorithms and strategies need to be developed to address the computational difficulty.

Each of the investigated optimization problems in this dissertation falls into either of the two cate-

gories, i.e., power systems and transportation. One of the most important problems in the electric

power systems is the capacity expansion problem, which seeks the minimum-cost process of pro-

viding new facilities of similar type or expanding the capacities of existing ones over time to meet

a rising demand for their services [37]. The planning of capacity expansion has been widely stud-

ied in operations research and more examples can be found in other areas, such as water resource
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facilities, communication networks and heavy process industries. It has been suggested that uncer-

tainty must be treated to achieve effective expansion planning [93], and uncertain parameters may

include investment costs, operational costs and customer demands. Another important problem is

the unit commitment problem, which refers to finding an optimal schedule for each of the facilities

over a given period of time. The objective of the problem is to minimize the production cost of

committing the units to supply the load. The unit commitment decision indicates which units are to

be in use at each time point over a scheduling horizon [98] to meet real-time electricity demands.

The problem might be modeled with deterministic approaches and a mix integer linear problem can

be formulated to include the binary variables indicating the on/off status and start-up/shut-down

action of each generating units, as well as the continuous variables representing the levels of gener-

ation and transmission. However in reality, the customer demands are not known in advance with

certainty and thus a stochastic model would be more accurate to determine the unit commitment.

The results in [135] indicates that significant savings can be achieved by including stochasticity.

The first optimization problem we proposed for the power systems is an electricity infrastructure

investment problem, which refers to the capacity expansion for the facilities in the electric power

systems. The problem is modeled stochastic to address the uncertainty elements including invest-

ment costs, operational costs and demands. Unit commitment will be incorporated in the model so

that the customer demands will be satisfied by well operating the expanded infrastructures.

The second optimization problem studied for the power systems is a long-term (1-3 years) opera-

tion, that is, the preventive maintenance scheduling for a power plant. The equipments in a power

plant are generally under great pressure to minimize operating costs and to meet the electricity de-

mands in real time. We aim to find the optimal schedule of periodically inspecting the equipments

to minimize possible breakdowns and malfunctions during normal running and attain the relia-

bility of the whole power system. The maintenance schedule affects many short and long-term

operations-planning functions, including unit commitment and fuel scheduling [99]. On the oth-
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er hand, these operations would also influence the maintenance schedule. For example, a natural

gas power plant would prefer to schedule the inspection to the time periods when the fuel price is

high and/or the electricity price is relatively low. Therefore we propose a model which integrates

the natural gas purchase into the maintenance scheduling problem for power plants. We will also

include stochasticity in the model to address the uncertainties of gas and electricity prices and the

objective is to optimize the purchasing and scheduling for the purpose of profit maximization.

Three different stochastic TSPs are studied in this dissertation and various uncertain parameters

will be respectively considered for each problem. The goal is to find the route with the minimum

expected total travel cost while the risk associated with the uncertainty can be well managed. We

also assume that the route is determined before the random travel costs are known with certainty

and no route re-optimization is allowed due to time constraints or applicability; The priori optimal

route must be followed once selected. As the total cost is just a summation of costs on all utilized

arcs, we can use the mean costs of arcs to construct the objective function, producing a model equal

to its deterministic counterpart. In the presence of the described uncertainty, however, it might not

be appropriate to simply pursue the optimal expected total cost. For example, when the arc costs

are uncertain and the costs of one or more selected arcs are higher than their expected values, the

risk would exist and the total cost might exceed the limit that can be accepted. Under the uncertain

network topology, on the other hand, the selected route might be heavily exposed to the risk that

the route will fail. Thus, a solution with a higher expected cost but lower risk would be preferred

over ones with much higher risk of being overcostly. The problem then cannot be modeled by a

deterministic TSP without the risk management.

Of particular interest is the fact that many public transportation systems have been constructed and

operated in urban areas to satisfy the high travel demand. However, a public system may cost a

lot to maintain a satisfactory level of service for its customers and it is of primary concern that

the public system is to be operated in the optimal way that the travel cost is minimized without
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sacrificing the system performance. In addition to the three TSPs, therefore, we also investigate

an optimal scheduling problem to address this concern for one of the public transport systems,

in which all vehicles are electrically powered and provided point-to-point services to fulfill the

real-time demand.

This dissertation would benefit other researchers and practitioners who seeks optimal solutions

for similar problems in these two areas when the stochasticity or uncertainty is involved. Various

advanced solution algorithms are developed and can be referred to for managing the intractability

of the problems. The structure of the dissertation is as follows. In Chapter 2 we will briefly re-

view related works in both areas of transportation and power systems. The models, optimization

methodologies and solution algorithms for the proposed problems in power systems will be de-

scribed in Chapter 3 and those for transportation problems will be discussed in Chapter 4. The last

chapter concludes with a discussion of future work. In specific, the problems that are studied in

the dissertation are listed as follows,

(1) Electricity infrastructure investment problem.

(2) Maintenance Scheduling problem for Natural Gas Powered Plants.

(3) Stochastic TSP with each arc cost discretely distributed.

(4) Stochastic TSP with each arc cost continuously distributed.

(5) Reliable routing problems under uncertain topology.

(6) Optimal Scheduling problem of personal rapid transit system
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CHAPTER 2: REVIEW OF ALGORITHMS FOR SOLVING

STOCHASTIC MIXED-INTEGER PROGRAMS

Solving large-scale stochastic mixed integer programming (SMIP) could be challenging and in-

tractable. Many solution methods have been developed in the past to address the computational

difficulty. In this chapter, we briefly review those that will be used as the foundation for solving our

problems. Consider the general formulation in (2.1), where bothX and Y might contain integrality

restrictions on x and y, respectively.

min cᵀx+ dᵀy (2.1a)

s.t. Ax+Dy ≥ b (2.1b)

x ∈ X, y ∈ Y (2.1c)

L-shaped method [138] or Benders decomposition [14] have been applied to solve the problems

where no integrality constraints are involved or integer variables exist only in the first stage. The

basic idea is to build a master problem with the first-stage variables x only, and to formulate a

subproblem evaluating the recourse function dᵀy with the x being fixed in the second stage. The

method has been successfully used for solving two stage SMIP problems when integer variables

are included only in the first stage. Specifically in the Benders decomposition algorithm, the master

problem and the subproblem for the general formulation (2.1) are modeled as follows,

[MP:] min cᵀx+ θ (2.2a)

s.t. θ ≥ (b− Ax)ᵀûp, p = 1, 2, · · · , Q (2.2b)

0 ≥ (b− Ax)ᵀûr, r = 1, 2, · · · , Q′ (2.2c)

x ∈ X (2.2d)
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[SP:] min dᵀy (2.3a)

s.t. Dy ≥ b− Ax̂ (2.3b)

y ∈ Y (2.3c)

where (2.2c) are optimality cuts and (2.2d) are feasibility cuts, and {ûp, p = 1, 2, · · · , Q} is the set

of extreme points of the dual space of SP, and {ur, r = 1, 2, · · · , Q′} is that of extreme directions

if the dual space is unbounded. Specifically, The MP is initialized by including only a subset of

the extreme points and/or extreme ray. The value of θ is then obtained from solving the relaxed

master problem (RMP) to form a lower bound for the recourse function. The objective function

value of the second stage problem, i.e., SP, is an upper bound. An optimality cut is added to the

RMP if there is any gap between the two bounds is achieved. Should the SP be infeasible the

feasibility cut will be added. These cuts are iteratively added to the RMP until the converge of the

bounds is achieved. When the uncertainty is involved, multiple subproblems could be formulated

to evaluate the recourse cost functions corresponding to different scenarios, and the solution with

the minimum expected cost over all the scenarios is desired. In this case, multiple cuts can be

added in each iteration to accelerate the converge of the algorithm.

The second stage value function would become non-convex when there are integer decision vari-

ables in the second stage as discussed in [23]. This makes Benders decomposition [14] or gen-

eralized Benders decomposition [53] not readily applicable because of the duality gap of integer

programs. Within the last two decades, a lot of research has been done to solve SIMPs with integer

variables in the second stage. In [73], a decomposition-based branch-and-cut method is proposed,

where both feasibility and optimality cuts are applied, for SMIP with pure binary variables in the

first stage. In [30], a generalized L-shape method is proposed by generalized Benders decompo-
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sition [53], where both Gomory cuts and branch-and-bound algorithm are applied. In [126] and

[128], modified Benders decomposition methods are developed by sequentially convexifying the

discrete subproblem using reformulation-linearization technique [125]. In [121], [105] and [104],

decomposition methods are proposed for SMIP with random recourse and discrete second stage

based on disjunctive programming [9]. Recently, a finite branch-and-cut solution algorithm is de-

veloped for SMIP with pure integer decision variables in the second stage, and a cutting plane

framework for multi-stage stochastic integer program is studied in [59].

Column generation has been found as a promising method to deal with some multistage SMIP

problems via using variable splitting techniques [122]. Assume in the general formulation (2.1)

that Y is a nonempty and bounded polyhedral set. Let y1, y2, ..., yQ denote all the extreme points

of the polytope Y . Note that each point y ∈ Y can then be represented as a convex combination of

these extreme points:

y =

Q∑
i=1

λiy
i,

Q∑
i=1

λi = 1, and λi ≥ 0∀i

Then the original problem can be rewritten to the following problem:

[MP:] min cᵀx+

Q∑
i=1

(dᵀyi)λi (2.4a)

s.t. Ax+

Q∑
i=1

(Dyi)λi ≥ b (2.4b)

Q∑
i=1

λi = 1 (2.4c)

x ∈ X,λi ≥ 0 for i = 1, 2, ..., Q (2.4d)

A general principle behind the column generation is that, because there are a huge number of

columns (e.g., extreme points) in a problem, we want to avoid to deal with the extensive model.

It is also unnecessary to enumerate all the columns since most of them would be nonbasic. We

therefore include a subset of columns and formulate a restricted master problem first, and add only
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the columns that can most likely improve its objective function value. Recall that in the simplex

method we iteratively select a nonbasic variable with negative reduced cost to enter the basis.

Similarly in the column generation, one can compute the most negative reduced cost by solving

the following subproblem (SP) or oracle:

[SP:] min
y∈Y

dᵀy − ûᵀDy − v̂ (2.5)

where û and v̂ are dual solutions associated with the constraints (2.4c) and (2.4d), respectively. The

column The idea of column generation was firstly proposed by [52], which dealt only implicitly

with the non-basic variables included in a maximal multicommodity network flow problem. [35]

extended the fundamental idea to a linear program by an appropriate generalization of the duality

theorem. The technique was firstly applied by [54] to obtain an approximate solution for the

well-known cutting-stock problem, the problem of filling an order at minimum cost for specified

numbers of lengths of materials to be cut from given stock lengths of given cost. A branch-

and-price algorithm was developed by embedding the column generation within the scheme of

branch-and-bound algorithm to respectively solve a vehicle routing problem under time window

constraints [42] and a generalized assignment problem [118], which were formulated as integer

programs.

One of the most computationally useful ideas of the 1970s is the observation that many hard integer

programming problems can be viewed as easy problems complicated by a relatively small set of

side constraints [50]. Multistage stochastic SMIP problems, for instance, are very difficult to man-

age because of the nonanticipativity constraints. Dualizing these constraints produces Lagrangian

problems that are easy to solve and even decomposable in many cases. For (2.1), the constraint

(2.1c) can be dualized to form the following Lagrangian problem:

ZD(u) = min
x∈X,y∈Y

cᵀx+ dᵀy + uᵀ(Ax+Dy − b) (2.6)
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The Lagrangian problem provides a lower bound (for minimization problems) on the optimal value

of the original problem. The Lagrangian method can thus be used in place of a linear programming

relaxation to provide bounds in a branch and bound algorithm. It is clear that that the best choice

for u would be an optimal solution to the dual problem:

ZD = max
u

ZD(u) (2.7)

The drawback of the Lagrangian method is that only the lower bound of the original problem can

be obtained. Some heuristic algorithms are therefor needed to obtain an implementable solution.

In the context of one or more of these algorithms, we develop the solution approaches with respect

to each particular problem that is modeled in this dissertation. More details will be shown and

discussed in following chapters.
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CHAPTER 3: LARGE-SCALE STOCHASTIC MIXED-INTEGER

PROBLEMS IN POWER SYSTEMS

3.1 Electricity Infrastructure Investment

A long-term problem of electricity infrastructure investment problem is proposed in this section

to address the planning for capacity expansion in electrical power systems integration with hourly

resolution of electricity markets’ operation. The research objective of this study is to solve the

long-term problem of electricity infrastructure expansion and clean energy integration with hourly

resolution of electricity markets’ operation through multiscale stochastic programming approach-

es. This research directly responds to the challenge of the new generation of electricity power

systems, with high penetration of renewable energy, energy storage, electrical vehicles and de-

mand response. Currently neither the current infrastructure nor the modeling tools are designed

to handle the uncertainty arising from incorporating the new challenges. In this research, we will

study and solve a multistage and multiscale stochastic programming model for electricity system

expansion planning while considering all various features of the new generation electricity power

systems. The model will minimize the costs from both expansion planning and daily generations

operations. This model combine the long-term expansion model and the short-term unit commit-

ment model, and actually co-optimize these two operations. However, this leads to a huge mixed

integer programming problem. Decomposition algorithms, which decompose both sub models and

integrate the sub decompositions, are developed to solve the problem.
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3.1.1 Introduction

The electricity sector, while vital to support our modern society and economic growth, is also a

main culprit for air pollution and natural resource depletion. Various renewable energy sources and

new clean technologies have emerged in response to the grand challenges. To reach the new tech-

nologies’ full environmental and economic benefits, they need to be integrated into the electricity

grid.

The integration is of two folds. On one hand, large-scale network infrastructures are needed to con-

nect clean generation resources to demand centers. As majority of U.S. wind and solar resources

are located in sparsely-populated areas, new transmission lines are needed to reach high pene-

tration of renewables. On the other hand, the leading renewable energy sources, wind and solar,

together with demand-side resources such as plug-in hybrid vehicles (PHEVs), exhibit consider-

able variability in their electricity outputs (or consumption). Such variability requires additional

generation resources and sophisticated system operations to ensure system reliability.

To address the integration issues, a coordinated planning process among various authorities and

organizations is needed [107]. However, existing planning models are not designed to handle the

mounting uncertainties from the increasing variable-output resources and unsettled environmental

policies, or to model the exceedingly large-scale electricity system with great engineering details

of system operation. As a result, only suboptimal solutions can be obtained in the sense that the

infrastructure investments suggested by the models are not cost minimizing or the system is not

sufficiently reliable to meet future demand.

To fill this research gap, [151] firstly proposed a next-generation planning model through a mul-

tistage, multiscale stochastic mixed integer programming (SMIP) approach, which combines the

long-term generation, energy storage and transmission expansion and short-term unit commitment
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problems. The model directly addresses two pressing issues faced by existing planning models:

(i) endogenously accounting of various sources of uncertainty, and (ii) detailed modeling of engi-

neering and operational characteristics of a power system. The resulting model will be tested using

real data from U.S. regional electricity markets, which will lead to extremely large-scale stochastic

mixed-integer problems of multi-million variables and constraints. The proposed SMIP model is

discussed and explored in this dissertation. The multistage and multiscale features of the model,

which makes it highly structured and decomposable, are fully exploited by the developed solution

method: the nested decomposition algorithm with parallel computation. With the presence of in-

teger variables in both the planning level and the unit commitment level of the SMIP problem, the

solution approach is expected to greatly enhance computing speed compared to the algorithms that

solve the deterministic equivalent problem of the SMIP.

3.1.2 Literature Review

3.1.2.1 Generation and Transmission Capacity Planning Expansion Models

A planning process is to identify infrastructure needs to serve future electricity demand reliably

and economically while minimizing environmental impacts. There is an extensive literature on

capacity expansion and long-term planning in general [3, 13, 38, 62, 83, 88, 112] and specific ap-

plications in energy systems [24, 46, 90, 127, 141]. Using optimization models for planning is also

an established practice in industry over decades, with available industrial-scale models including

NEMS [1], MARKAL[57], IPM [2], ReEDS [130] and META*Net [71], to name a few. The in-

dustry and early academic papers focus on the deterministic aspects of long-term planning. While

the restructuring of U.S.’s electricity sector in recent years has introduced tremendous uncertainty

and poses new challenges to the long-term planning process. Stochastic models are designed to

address such challenges, with stochastic programming [129, 141, 146] and dynamic programming
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[46, 97, 144] being the two primary approaches. Robust optimization is also used to focus on

the reliability issue of the planning process [90]. Few of the long-term models (except for [144]),

however, account for the detailed engineering operations of an electricity system. Such details

become increasingly important as more variable-output resources such as wind and solar plants

are entering the marketplace. Their impacts to a power system can only be accurately accounted

and fully understood with a short-term model with detailed modeling of power plants’ engineering

characteristics. Such impacts in turn will have effects over long-term capacity expansion decisions.

[144] introduces a novel modeling and solution approach through approximate dynamic program-

ming and employs multiscale modeling to integrate long-term expansion and short-term operation

models. It is in line with this research work, but our proposed model can provide finer resolutions

of transmission expansion down to the substation level, which will be more informative to plan-

ning authorities than models that only have zonal resolutions. In addition, the proposed model can

explicitly handle integer variables, which are important to model assets with significant sunk costs

(such as coal and nuclear plants) and to model the flexibility of fossil fuel plants as how fast they

can be turned on or shut down. Such flexibility is key in a power system with large penetration of

variable-output resources and demand fluctuations (say, caused by PHEVs).

In addition to generation capacity expansion, transmission capacity expansion is a problem spe-

cific to electricity systems as it requires detailed accounting of physical rules of electricity over a

network structure. [79] provides a comprehensive survey on this subject. We will consider both

the location and voltage level of transmission capacity expansions with transmission losses in a

direct-current (DC) network.
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3.1.2.2 Short-term Unit Commitment Models

Unit commitment is one of the key optimization problems in power system operations and control.

The objective of the unit commitment problem is to minimize the production cost from the gen-

erators to supply the load. This optimization problem is a mixed integer nonlinear programming

(MINLP) problem in nature, with integer variables indicating the on/off statuses of generation u-

nits and technical linear constraints such as capacity limits, minimum on/off hours and ramping

constraints [10, 123]. However, nonlinear fuel cost functions can be approximated very well by

piecewise linear functions, which lead the problem to a mixed integer linear program (MILP). Var-

ious optimization techniques including priority list, dynamic programming, Lagrangian relaxation

and MILP based methods have been used to solve the problem [63, 123]. A detailed survey of the

methods in 1980s was given by [124]. Along with the dramatic improvement of MILP solvability,

MILP based methods prevailed recently [63].

In the past several years, more advanced power system operations methods have been proposed to

address the variability and uncertainty brought by uncertain demand and increasing penetration of

renewable energy sources. Stochastic unit commitment has emerged as one of the most promising

tools [12, 115, 137, 142, 143]. The idea of stochastic unit commitment is to capture the uncertain-

ty and variability of the underlying factors by simulating a number of scenarios. By simulating

(optimizing) the scenarios, the uncertainty can be represented to a large extent. However, the large

number of scenarios also increases the computational requirement dramatically. More advanced

optimization techniques need to be applied in these cases. Other than stochastic optimization, there

are other modeling approaches by Markovian decision processes, such as [103], where the stochas-

tic unit commitment is represented in the form of factored Markov decision process models. Also

stochastic unit commitment models are used within agent based models of the electricity markets

under uncertainties [145].
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Most of current models only considered unit commitment in the master problem. In this research,

the unit commitment problem is embedded in a long-term planning model as a lower level prob-

lem. Because binary variables are needed to model the commitment statuses of the units in the

second stage (lower level) of the integrated model, the problem becomes a stochastic mixed inte-

ger program (SMIP) with discrete decision variables in both the first and the second stages. This

problem is very difficult to solve directly by the state-of-the-art commercial optimization software

when a large number of scenarios in the second stage are simulated.

3.1.3 Model Description

We begin this section by presenting the stochastic programming model that integrates long-term

planning and short-term unit commitment models. Both the long-term and short-term models are

mulitstage decision problems in nature. However, the time scales for the decision-making are not

the same. Infrastructure expansions are usually planned several years ahead due to their long lead

time (development, construction, obtaining permits, etc). On the other hand, the time scales for

unit commitment decisions are in hours (or even in minutes). This is so because to maintain system

reliability, electricity generation and consumption must be balanced at all time. An system opera-

tor must ensure system reliability by running the unit commitment model repeatedly with updated

system information to decide which units to dispatch to meet real-time demand and to manage the

variability of electricity generation from intermittent resources. Since electricity transmission and

generation capacity expansions are mainly driven by reliability needs, even the hourly-scale deci-

sions can have critical impacts to long-term planning. Hence, to accurately study the infrastructure

needs of an electricity grid to maintain reliability and to support high penetration of variable-output

resources, it is imperative to incorporate the detailed unit commitment operations to the long-term

model. The different decision-making time scales render the proposed multiscale modeling ap-

proach. In such an approach, long-term expansion decisions are represented in a multistage ‘here-
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and-now’ model, which will provide a single system expansion plan with all future uncertainties

in consideration. Short-term unit commitment decisions are derived from a ‘wait-and-see’ model,

which provides the expected costs of various unit commitment schedules along different scenario

paths. The next subsection presents the integrated stochastic long-term and short-term model.

3.1.3.1 Multiscale Long-term/Short-term Model

In the long-term planning/expansion process, investment decisions need to be made before future

events and uncertainties are realized. We seek the optimal decisions that minimize total system

costs regardless of the realization of future uncertainties, which are achieved through solving a

multistage stochastic programming problem with nonantipativity constraints (here-and-now). We

refer to this problem the upper-level (or decision-level) model in the integrated model to be pre-

sented. The decision variables in the upper-level model are the expansion (or retrofit) decisions

of transmission lines, electricity power plants (both fossil fuel and renewable plants) and energy

storage, while the major constraint is for the total installed capacity to exceed a certain percent-

age of the projected peak demand (i.e., the resource adequacy requirement). The parameters and

variables related to the long-term model are summarized in Table 3.1 and 3.2, respectively. The

parameters in Table 3.1 with (ω) indicating that they are random variables in the model.

The total system cost to be minimized consists of the total investment cost, incurred by infrastruc-

ture expansion decisions in the upper level, and total operation cost, incurred by the short-term

unit commitment operation. The formulation of the total investment cost (denoted as TIC) in time

period t is given below.

TICt(x;ω) :=
N∑
j=1

Y∑
y=1

[
V Ct

jy(ω)xtjy + FCt
jy(ω)σtjy

]
︸ ︷︷ ︸

generation/storage investment costs

+
L∑
l=1

Y∑
y=1

[
V Ct

ly(ω)x0
ly + FCt

ly(ω)σtly
]

︸ ︷︷ ︸
transmission investment costs

.

(3.1)
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Table 3.1: Long-Term Related Parameters and Indices

t = 1, . . . , T time periods (or stages) in the upper-level model
j = 1, . . . , N locations; (ĵ = 1, . . . , N̂ : reserve margin regions)
y = 1, . . . , Y generation types (including storage) or transmission voltage typ
l = 1, . . . , L number of transmission line segments in a network (existing or potential)
V Ct

jy(ω) variable investment costs for generation capacity type y built at j in stage t; [$/MW]
FCt

jy(ω) fixed investment costs for generation capacities type y built at j in stage t; [$]
V Ct

ly(ω) variable investment costs for line segment l with voltage type y built in t; [$/MW]
FCt

ly(ω) fixed investment costs for line segment l with voltage type y built in t; [$]
M t

jy max capacity expansion of generation type y at location j in time t; [MW]
M t

ly max expansion capacity of line segment l with voltage type y in time t; [MW]
PKt

ĵ
(ω) peak demand in reserve margin ĵ in time t; [MW]

RM t
ĵ

reserve margin requirement for region ĵ in time t; [%]
DFjy derating factors of generation unity/type y at location j; [%]
δ(ω) discount factor
s = 1, . . . St possible realizations of uncertainties (i.e., scenarios) at stage t
a(t, s) the predecessor of scenario s in time t
πts the probability of realization s in time t;

∑St
s πts = 1

Table 3.2: Decision Variables in the Long-Term (Upper-Level) Model

κtsjy cumulative generation capacity of type y at node j in t under the scenario s; [MW]
κtsly cumulative transmission capacity of segment l and voltage y in t under the scenario s; [MW]
xtsjy incremental capacity of generation type y built at node j in stage t under the scenario s; [MW]
xtsly incremental line capacity of segment l and voltage type y built in t under the scenario s; [MW]
σtsjy binary variable for generation capacity expansion
ϕtsly binary variable for transmission expansion
φtsijy binary variable indicating the existence of transmission line i− j of voltage type y in t under s

The time scale t in the decision-level model is in years, which can be of different length over the

planning horizon T . For example, tmay represent every year at the beginning, with bigger intervals

(5-year, 10-year, etc) towards the end of T . Within each t, we consider the hourly unit commitment

(UC) process, which is to determine the most economic and reliable schedule to commit units to
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meet the the demand in real time. We refer to the UC model as the lower-level (or recourse-level)

model, in which the time scale is in hours. It is not practical, nor is it necessary, to optimize the

UC operation over all the hours within a t. System operators in real-world typically solves the

UC problem on a rolling basis from one-hour to at most one-week ahead [64]. We consider a

weekly UC problem for the operational level. Let Kt denote the set of weeks within an decision-

level time interval t. Then in each t we have |Kt| unit commitment optimization problems. We

assume that the weekly UC problems are independent across weeks. Such an assumption may

cause discrepancy of unit commitment schedules at the end or beginning of a week. However,

since we consider a long-term model over decades and our main interests are on the upper-level

investment decisions, the solution distortion caused by the discrepancy should be negligible. An

additional benefit of the assumption is that the weekly UC problems can be solved in parallel. The

UC problem can be of a here-and-now type of multistage stochastic program as well, which would

make the overall integrated problem impossible to solve. It may not be necessary though, as we

do not really want to know which unit is operating at a certain hour many years from today. In

stead, we are interested to know what the capacity mix and transmission infrastructure are like

in the future. As a result, we propose to model the weekly UC problem as a wait-and-see-type

stochastic program, and use Monte Carlo approach to simulate real time uncertainties such as

demand fluctuation, wind and solar plants’ intermittence, and forced outage events.

In a UC problem, the system operator minimizes total operational costs subject to a series system

reliability and resource constraints. The detailed formulation of a UC model is presented in the next

subsection. Here we define the total operation cost (denoted as TOC) in the objective function.

Given an upper-level t, let zkl denote the vector of all variables in the lower-level UC problem with
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k ∈ Kt, and let Hk be the set of hours in week k. Then the TOC function in week k is as follows.

TOCk(zkl ;µ;ω) :=
∑
h∈Hk

∑
j∈N

∑
g∈Gj∪G′j

[
SCh

jgγ
h
jg(µ;ω)

]
︸ ︷︷ ︸

start−up costs

+
∑
h∈Hk

∑
j∈N

∑
g∈Gj∪G′j

Cg
[
phjg(µ;ω)

]
︸ ︷︷ ︸

generation costs

, (3.2)

where γg is a binary variable to determine if a unit g is turned on, and pg is the real (versus

reactive) power generated from unit g. SCg represents the start-up costs for unit g and Cg(·) is a

generic operation cost function, including fuel and other O&M costs. More detailed definition of

UC-related sets, parameters and variables are in Table 3.3 and 3.4.

As the upper and lower-level models have different time scales, they have different sources of

uncertainty as well. Let ξt(ω) denote a generic random vector1 containing all the random variables

in the decision-level. ξt(ω) is defined on the probability space (Ωω,Σ
t
ω, Pω). Let µ denote the

underlying uncertainties in the unit-commitment-level problem, and we use the vector ζk(µ) to

represent lower-level’s random variable with k ∈ Kt. ζk(µ) is defined on (Ωµ,Σ
k
µ, Pµ).

1The dimension of the vector depends on the sources of uncertainty to be modeled.
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Now we can present the multiscale multistage stochastic programming model as follows.

min
zu

F(zu; ξ) := TIC0(z0
u)+

+ Eξ1

{
min
z1u

δ

[
TIC1(z1

u(ω)) +
∑
k∈K1

Eζk min
zkl

TOCk(zkl (µ;ω))

]
+ · · ·

+ EξT |ξT−1···ξ1

{
min
zTu

δT

[
TICT (zTu (ω)) +

∑
k∈KT

Eζk min
zkl

TOCk(zkl (µ;ω))

]}
· · ·

}
(3.3)

s.t. Generation, transmission, storage capacity expansion accounting and upper bound constraints

Zonal resource adequacy constraint.

In (3.3), the notation Eζk minzkl TOCk(zkl (µ;ω)) represents a wait-and-see type of unit commit-

ment model because the minimization is done with each realization of ζk, and the expectation is

then taken with respect to ζk, exactly as in a what-if type of analysis. The bolded expectation

(and summation) operations in (3.3) highlight the difference of this model to a regular a multistage

here-and-now-type stochastic program.

Suppose that the support of the random vector ξt (denoted as Ξt) is discrete and finite. It is shown

in [129] that energy capacity expansion problems possess the special property called block sep-

arability [84], which allows to transform the multistage model (3.3) into a two-stage stochastic

problem with recourse. By writing out the scenarios (a realization of ξt) explicitly, the reduced
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two-stage problem is as follows.

min
zu

TIC0(z0
u) + δ

S1∑
s=1

πs1TIC1(z1
u) + δT

ST∑
s=1

πsTTICT (zTu )

+ δ

S1∑
s=1

πs1Q1s(z0
u) + δT

ST∑
s=1

πsTQTs(zT−1,a(T,s)
u ) (3.4a)

s.t. Capacity expansion accounting constraints

κtsjy = κ
t−1,a(t,s)
jy + xtsjy, κ

ts
ly = κ

t−1,a(t,s)
ly + xtsly, ∀ j, y, l, s, t (3.4b)

Capacity expansion upper bound constraints

xtsjy ≤ σtsjyM
t
jy, x

ts
ly ≤ σtslyM

t
ly, ∀ j, l, y, s, t (3.4c)

Zonal resource adequacy constraint∑
j∈ĵ

Y∑
y=1

DFjyκ
t,a(t,s)
jy ≥ (1 +RM t

ĵ
)PKts

ĵ
(ω), ∀ ĵ, s, t, a.s. (3.4d)

Nonnegativity and binary constraint

κtsjy, κ
ts
ly ≥ 0, σtsjy, σ

ts
ly ∈ {0, 1}, ∀ j, l, y, s, t. (3.4e)

where Qts(ztsu ) is the optimal value function of the lower-level unit commitment model. The

nonanticipativity of the expansion decisions is implicitly enforced by the tracking parameter a(t, s).

3.1.3.2 Unit Commitment Model

This subsection describes the details of the UC model in the lower-level problem within the inte-

grated model (3.3). There are several features of the proposed model. First, we consider the unit

commitment process that co-optimizes an energy and reserve market. The energy market is where

generation units are dispatched to meet demands; while the reserve market runs back-up genera-
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tion resources to maintain system reliability. The co-optimization mechanism has recently been

adopted by several system operators in the U.S., and is believed to provide more economic value

to flexible generators that can be used to compensate the variability of outputs from intermittent

renewable resources. Second, we explicitly consider energy storage resources, which again offers

flexibility to a system with large-scale variable-output resources. Third, we have model (nonlinear)

transmission losses in a DC-approximation of an AC-transmission network. As certain renewable

resources locate in the rural part of this country, long transmission lines are needed to connect

such resources to the consumers, which will incur transmission losses that should not be ignored

and may impact long-term expansion decisions. For the ease of arguments, the parameters and

variables related to the lower-level UC problem are summarized in Table 3.3 and 3.4.

Table 3.3: Parameters, Sets and Indices for short-term UC model

P j
min minimum amount of power generated by bus j

P j
max maximum amount of power generated by bus j
SR

j

t spinning reserve of bus j at hour h
RU j

h ramp-up requirements of bus j at hour h
RDj

h ramp-down requirements of bus j at hour h
Dj
h (ξ) real-time demand at bus j at hour h
∆ij
h susceptance between bus i and bus j at hour h
θj phase angle at hour h at generating unit j
Gj set of existing generating units in bus j; G′j: set of potential units at j
N set of generating nodes
A set of all lines among buses in the network
Lg required run time of generator g
T set of all possible time periods t

For a given upper-level stage t, a week k, and a given upper-level scenario s, the unit commitment

model is as follows.

minimize
∑
h∈Hk

∑
j∈N

∑
g∈Gj∪G′j

(
SU t

jgγ
h
jg

)
+
∑
h∈Hk

∑
j∈N

∑
g∈Gj∪G′j

Fg
(
ptjg
)

(3.5a)
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Table 3.4: Short-term Decision Variables

αjgh commitment decision on power generator unit g in hour h at bus j
pjgh amount of power generated from power generator unit g in hour h at bus j
γjgh whether power generator unit g is turned on starting from hour h at bus j
pjgh amount of power generated from generator unit g in hour h at bus j
pjh total amount of power generated from generator bus j in hour h
f ij power flow between bus i and bus j
sjgh spinning reserve of power generator unit g in hour h at bus j
qjh actually power utilized from bus j at hour h
ujh total power utilized from storage facilities of bus j at hour h
vjh total power saved into storage facilities of bus j at hour h
rjh total remaining power in storage facilities of bus j at the beginning of time hour h

subject to Generation unit availability constraint given the upper level expansion decision κksjg

αtjg ≤
κksjg
mjg

, ∀g ∈ G′j, j ∈ N, h ∈ Hk, (3.5b)

Minimum up and down constraints of all generators

ατjg − 1 ≤ αtjg − αt−1
jg ≤ ατjg, τ = t, . . . ,min{t+ Lg − 1, T}, g ∈ Gj ∪G′j, j ∈ N, h ∈ Hk,

(3.5c)

Startup action indicator constraint where γtjg denote the startup action

γhjg ≥ αtjg − αt−1
jg , ∀g ∈ Gj ∪G′j, j ∈ N, h ∈ Hk, (3.5d)

Total Generation at bus/node j∑
g∈Gj∪G′j

ptjg = ptj, ∀j ∈ N, h ∈ Hk, (3.5e)

Upper bound on the total of power dispatch and spinning reserve

0 ≤ phjg + stjg ≤


Pmax
g αtjg, ∀g ∈ Gj, j ∈ N, h ∈ Hk,

κksjg , ∀g ∈ G′j, j ∈ N, h ∈ Hk,

Mk
jgα

t
jg, ∀g ∈ G′j, j ∈ N, h ∈ Hk,

(3.5f)

25



Nodal spinning reserve constraint∑
g∈Gj∪G′j

sjgt ≥ SRt
j, ∀j ∈ N, h ∈ Hk, (3.5g)

Maximum ramping up and down limit

ptjg − pt−1
jg ≤ RUjg, pt−1

jg − p
j
gt ≤ RDjg, ∀g ∈ Gj ∪G′j, j ∈ N, h ∈ Hk, (3.5h)

Nodal electrical power consumption from both generation and storage

qhj = ρju
t
j + phj − vtj, ∀j ∈ N, h ∈ Hk, (3.5i)

Limit of power consumed from the storage

utj ≤ rtj, ∀j ∈ N, h ∈ Hk, (3.5j)

Available power in storage

rtj = rt−1
j + vt−1

j − ut−1
j , ∀j ∈ N, h ∈ Hk, (3.5k)

Power storage capacity

0 ≤ rtj ≤ Rks
j , ∀j ∈ N, h ∈ Hk, (3.5l)

DC-OPF Kirchoff’s Current Law (including power transmission loss)∑
(i,j)∈A+

i

fhij −
∑

(j,i)∈A−i

(
f tji − ltji

)
= qtj −Dt

j, ∀i ∈ N, h ∈ Hk, (3.5m)

Calculating the power loss

ltij = Bij

(
f tij
)2
,∀(i, j) ∈ A ∪ A′, h ∈ Hk, (3.5n)

DC-OPF Kirchoff’s Voltage Law (including potential new lines)

∣∣f tij −∆t
ij

(
θti − θtj

)∣∣ ≤


0, ∀ (i, j) ∈ A, h ∈ Hk,

M(1− φksij ), ∀(i, j) ∈ A′, h ∈ Hk

(3.5o)

0 ≤ fhij ≤


Mij, ∀ (i, j) ∈ A, h ∈ Hk,

Mk
ijφ

ks
ij , ∀(i, j) ∈ A′, h ∈ Hk,

(3.5p)
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Lower and upper bounds on power dispatch

Pmin
g αtjg ≤ phjg ≤ Pmax

g αtjg, ∀g ∈ Gj, j ∈ N, h ∈ Hk, (3.5q)

Binary restriction on unihcommitmenhstatus

αtjg, γ
h
jg ∈ {0, 1}, ∀g ∈ Gj ∪G′j, j ∈ N,∀j ∈ N, h ∈ Hk, (3.5r)

Nonnegativity restriction

ptj, q
t
j, r

t
j, u

t
j, v

t
j ≥ 0, ∀j ∈ N, h ∈ Hk, (3.5s)

0 ≤ θtj ≤ 360o, j ∈ N, h ∈ Hk, (3.5t)

where A is the set of the existing transmission lines, A′ is the set of candidate transmission to be

built, Uj is the set of existing generation units, G′j is the set of new generation units/types built

in the node (k, s) of the scenario tree. In (3.5b), mjg is small value that is less than any possible

accumulative capacity. Then unit g at j is available (αtjg can choose 1) if the right hand side is

bigger than 1. γgt in (3.5d) and takes binary values 0 and 1, representing the startup action at

power generator g at bus j at time t. The value of “1” for γ corresponds to a generator g turning

on at time t at bus j, and the value zero indicates the turning off of this generator. Constraint (3.5f)

calculate the spinning reserve of each generator, where last two cases are just a linearization of the

previous right hand side κksjgM
k
jgα

t
jg for the newly added generators.

(3.5m) is the DC approximation of Kirchhoff’s Current Law (KCL), where A+
i is the set of out-

going arcs from bus i and A−i is the set of incoming arcs to bus i since we model each power line

by two arcs with opposite directions. (3.5o) is the DC approximation of Kirchhoff’s Voltage Law

(KCL). (3.5n) is the equation to calculate power loss, where Bij =
Rij

(Uij)2
, and Rij and Uij are the

resistance and voltage of this power transmission line respectively. This is because the power loss

of transmission is equal to the resistance of the power line multiplied by the square of the current,

which is equal to the transmitted power divided by the voltage, as follows, lijt = Rij ×
(
f ijt /Uij

)2
.

Even though this is a nonlinear function, we can use piecewise linear function to approximate
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Figure 3.1: Structure of the Original Problem

it very well and use only continuous variables since it is a convex function. Also, in the objec-

tive function, Fg
(
ptjg
)

is usually a quadratic function of positive second derivative (convex). We

then can use a piecewise linear function to replace it, which will lead to very close to the real

optimal value [63][150]. Then the deterministic UC problem is a mixed integer program with

2|T |
∑

j∈N{|Gj| + |G′j|} binary variables, and the number of continuous variables are partly de-

pending on the number of segments in the piecewise linear approximation.

3.1.4 Algorithm

The problems studied in this section are of multiple scales in terms of both time and uncertainties;

this is because stochastic capacity expansion is considered in the upper level and stochastic unit

commitment is embedded in the lower level, and they have planning horizons of different time

scales and under different types of uncertainties. The structure of the original problem is shown

in Figure 3.1. In this figure, the problem of each node in the scenario tree of the upper level is a

stochastic mixed integer program by itself. This make the whole problem extremely hard to solve,

since each subproblem of an outcome in the lower level is a mixed integer program, and the upper

level is also multiple period stochastic mixed integer program.
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Without the help of decomposition algorithm, an example of even a small size is difficult to solve

directly by the start of the art commercial mixed integer optimization solvers, such as CPLEX,

EXPRESS, etc., due to a huge number of integer variables and constraints. Just in the lower level,

the total number of integer variables for unit commitment problems is 1−SK+1

1−S |Ξ||T ||G|, where

G = ∪i∈N {Gi ∪Hi}. However, it is interesting to note that the UC problems will be separat-

ed to independent UC problems if the expansion planning decisions on generation, transmission

and storage are fixed. This opens the opportunity to apply parallel computing decomposing this

problem to 1−SK+1

1−S |Ξ| independent individual UC problems and one stochastic expansion planning

problem with linear constraints carrying the information of all UC problems.

3.1.4.1 Column Generation

The expansion planning (strategic level) is a multistage stochastic mixed integer program in its

own right. We adopt variable splitting techniques to obtain a stronger formulation in the sense

of having a tighter linear programming relaxation and to enable the nodal decomposition. The

simplified reformulation is shown as follows,

min
xn∈Xn,zmn∈{0,1}

∑
n∈N

Probn(cnxn + Eξdn(ξ)yn) (3.6a)

s.t. zmn ≤ xm m ∈ Pn, n ∈ N (3.6b)∑
m∈Pn

Amnzmn +Bn(ξ)yn ≥ bn(ξ) ∀n ∈ N, ξ ∈ Ξ (3.6c)

where N is the set of nodes of the strategic-level scenario tree, and xn and yn are the strategic

planning variables and operational scheduling variables at node n respectively,zmn denotes the

expansion made at node m for node n, Pn is the set of nodes in the unique path from the root node

to node n.
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Although we have a tighter formulation for the strategic level SMIP, directly solving will still be

prohibitive as it is not the convex hull and large scale. We adopt the Dantzig-Wolfe decomposition

method to reformulate the large-scale intractable problem into a master problem and a set of sub-

problems to make the problem solvable. Specifically, the strategic-level primary master problem,

[PMP], is shown as follows

[PMP]: min
xn∈Xn,λin≥0

∑
n∈N

Probn · cnxn +
∑
n∈N

∑
i∈Fn

Probn · EGCi
n · λin (3.7a)

s.t. xm ≥
∑
i∈Fn

zimnλ
i
n ∀m ∈ Pn, n ∈ N, ← ψmn (3.7b)∑

i∈Fn

λin = 1 ∀n ∈ N, ← ψ0
n (3.7c)

λin ≥ 0 ∀n ∈ N, i ∈ Fn (3.7d)

whereFn is the set of all feasible expansion solutions for node n, ψmn and ψ0
n are the dual variables,

and EGCi
n is the expected generation cost of the whole year of Tn of node n corresponding to

expansion solution zi(zimn;∀m ∈ Pn, n ∈ N), which are calculated by the following primary

subproblem, [PSP], of node n as follows,

[PSPn] : min
zmn∈{0,1}

∑
m∈Pn

ψ̂mnzmn +
∑
ξ∈Ξn

Probnξ ·GCnξ(ynξ)− ψ̂0
n (3.8a)

s.t.
∑
m∈Pn

Amnzmn +Bnξynξ ≥ bnξ, ∀ξ ∈ Ξn (3.8b)

ynξ ∈ Ynξ, ∀ξ ∈ Ξn (3.8c)

Note that there would be a extremely large number of feasible expansion plans in the set Fn for

each scenario node n. It is neither applicable nor necessary to include all the columns λin, ∀n ∈

N, i ∈ Fn in the [PMP]. We instead initialize the expansion problem with a subset of expansion

plan columns. In specific each column represents the maximum capacity expansion that can be

made for each infrastructure. The resulting restricted problem is then solved and an upper bound
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on the total cost is obtained. All the excluded columns in the model are nonbasic. We evaluate them

based on their reduced costs by solving the [PSP] to determine those eligible to enter the basis. We

iteratively solve the two problems and update the restricted [PMP] by adding the columns with the

most negative reduced cost, until the converge of the column generation is achieved.

In addition to avoiding solving the intractable SMIP model, another advantage of applying the

column generation is that, the Dantzig-Wolfe reformulation can solve a much better lower bound

than the linear relaxation. Moreover in our problem the coefficients and right hand sides are either

1’s or 0’s. This makes the problem pseudo-modularity, and integer solutions might be obtained

from directly solving the linear master problem and consequently the branching can be avoided. In

the instances that we tested, we can either directly achieve an implementable solution or one that

provides a very reasonable approximation for the total cost.

The standard column generation algorithm, however, often exhibits slow convergence in particular

for large and degenerate problems. The main reason lies in the unstable behavior of dual variables.

To overcome this drawback, variations of the standard technique have been developed by stabiliz-

ing the dual variables of the master problem. Primal-dual column generation method (PDCGM)

based on an interior point approach is used in [58] for the stabilization by preventing them from

taking extreme values. For the stabilization techniques based on the simplex method, the stabiliza-

tion can be obtained by penalizing the distance between the current and previous dual solutions,

such as boxstep method [92], polyhedral penalty method [44] and bundle method [27]. A different

approach to restrict large steps in the dual space does not need any modification to the restricted

master problem, but convex combines the current and previous dual solutions. More details of the

column generation and its stabilization can be referred to in [86, 87]. Here we apply at first the

primal-dual column generation method (PDCGM) based on the interior point method. The CPLEX

Barrier algorithm is used with the crossover parameter disabled to solve the master problem. We

solve the problem to a certain relative gap and then use the bundle method thereafter to address
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the tailing-off effect of the PDCGM. The bundle method stabilizes the dual variables via the use of

Euclidean penalties, in which the restricted master problem is modified as,

min
xn∈Xn

∑
n∈N

Probn · cnxn +
∑
n∈N

k∑
i=1

Probn · EGCi
n · λin +

∑
n∈N

∑
m∈Pn

(ψcmngmn +
t

2
g2
mn)(3.9a)

s.t. xm −
k∑
i=1

zimnλ
i
n + gmn ≥ 0, ∀m ∈ Pn, n ∈ N (3.9b)∑

i∈Fn

λin = 1, ∀n ∈ N (3.9c)

where ψcmn is the dual center selected in each iteration; gmn represents a slack variable in the

corresponding constraint; and t is the penalty coefficient. We will demonstrate in the computational

results that the combination of these two methods exhibits the better performance than separately

applying either stabilization method.

3.1.4.2 Integer L Shaped Method

Although the nodal decomposition is enabled by the Dantzig-Wolfe reformulation with the splitting

variables, the set of primary subproblems (PSP) are still intractable due to the large number of

scenarios in the operational level. Here We propose to further decompose each subproblem with

the integer L shaped method or generalized Benders decomposition. Specifically we consider

the expansion plan z as the first-stage decisions and the operations y as the second-stage ones,

respectively. We then formulate the following secondary master problem as the master problem

for the PSP,

[SMPn] : min
zmn∈{0,1}

∑
m∈Pn

ψ̂mnzmn − ψ̂0
n + θ (3.10a)

s.t.
∑
m∈Pn

αjmnzmn + βjθ ≥ γj, j = 1, 2, . . . , J (3.10b)
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and a set of unit commitment problems are formulated to include a subset of scenarios and serve

as the subproblems in the Benders decomposition method:

[SPnξ] : min Probnξ ·GCnξ(ynξ) (3.11a)

s.t. Bnξynξ ≥ bnξ −
∑
m∈Pn

Amnẑmn, ← ρnξ (3.11b)

ynξ ∈ Ynξ, ← φnξ (3.11c)

The constraints (3.10b) are feasibility and optimality cuts, which are added iteratively to approxi-

mate the value function of the unit commit problems and include:

Benders feasibility cuts

0 ≥ (bnξ −
∑
m∈Pn

Amnzmn)Tρjnξ + φjnξ (3.12)

Integer L shaped feasibility cuts: once an expansion is applied for a potential facility, a minimum

capacity has to be reached. These cuts guarantees the feasibility of [SPnξ] when its linear relaxation

is feasible.

∑
m∈Pn

Amnzmn ≥ mδ (3.13a)

Mδ ≥
∑
m∈Pn

zmn (3.13b)

δ ∈ {0, 1} (3.13c)

Total capacity requirement constraints: the total capacity of generators and storage facilities should

exceeds the maximum electrical demand

∑
m∈Pn

(
∑
g∈G

Agmnz
g
mn +

∑
r∈R

Armnz
r
mn) ≥ max{Dξ|ξ ∈ Ξn} (3.14)
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Benders optimality cuts

θ ≥ (bnξ −
∑
m∈Pn

Amnzmn)ᵀρjnξ + φjnξ (3.15)

Integer L shaped optimality cuts

θ ≥ (qS − L)(
∑
l∈S

zl −
∑
l 6∈S

zl − |S|+ 1) + L (3.16)

The proposed nested decomposition algorithm, that is, solving the strategic-level master problem

with column generation and the corresponding subproblems with integer L shaped method, is

summarized as follows,

Algorithm 1 Nested decomposition algorithm for electricity infrastructure investment problem
1: Initialize: UB(P)=+∞, LB(P)=−∞, LB’(P) = 0, i = 1.

2: while UB(P)>LB(P) do

3: Initialize the restricted primary master problem with i×N columns.

4: Solve the reduced problem and update UB(P) with its optimal objective function value (OFV).

5: Get the dual solutions and model relaxed SMPn,∀n ∈ N .

6: for <n ∈ N> do

7: Initialize the bounds for the SMPn: UB(S)=+∞, LB(S)=−∞.

8: while UB(S)>LB(S) do

9: Solve the secondary master problem and update LB(S) with the OFV.

10: Model and solve the SPnξ,∀ξ ∈ Ξn.

11: Add Benders feasibility or optimality cuts to the SMP.

12: end while

13: Update: LB’(P) += UB(S),i← i+ 1.

14: Generate new column λin and add them to the restricted PMP.

15: end for

16: LB(P) = max{LB(P), LB’(P)}.

17: end while
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3.1.5 Algorithm Implementation and Solution Assessment

3.1.5.1 Parallel computation

As described in Section 3.1.4, the proposed electricity infrastructure investment problem is decom-

posed to a primary master problem and a set of primary subproblems via nodal decomposition;

each primary subproblem is further decomposed to a secondary master and a set of subproblems

via scenario decomposition. The nested decomposition breaks down the large-scale intractable

problem into problems that are independent to each other. This allows us to apply the parallel

computation to concurrently solve the problems simultaneously. The elapsed time for solving the

problem can therefore largely reduced.

We perform the parallel computation in a computer cluster in which all the nodes have 20 pro-

cessor cores, 64 GB of RAM, and 56 Gbps Infiniband interconnects. Each node runs Red Hat

Enterprise Linux 6 (RHEL6) and use Moab Workload Manager 8 and TORQUE Resource Man-

ager 5 as the portable batch system (PBS) for resource and job management. The parallel C++

code is compiled with Intel MPI. The parallelization for our problem is designed as shown in Fig-

ure 3.2. Specifically, the communicator, MPI COMM WORLD, is automatically created by the

MPI (message passing interface) program and consists of all the processors that are initially called.

The primary master problem (PMP) is assigned to one that is called master processor. In each

iteration of the column generation, the dual solution is obtained from solving the PMP and sent

to all other processors. A set of other communicators, SUB COMM, are created by partitioning

MPI COMM WORLD to N groups with respect to the scenario nodes. In each of these commu-

nicators, the corresponding secondary master problem (SMP) is assigned to one processor and the

unit commitment subproblems are assigned to all other processors.
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Figure 3.2: Parallelization architecture for the electricity infrastructure investment problem

3.1.5.2 Numerical Experiment and Computational Results

The developed algorithm for solving the electricity infrastructure investment problem is tested

on various power systems respectively, including IEEE 7-, 57-, and 118-bus systems. For each

system Table 3.5 shows the numbers of infrastructures, such as generators, renewable energy (RE)

generators, transmission lines and storage facilities, to be expanded.
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Table 3.5: Test Instances

System Generators RE generators Transmission lines Storage facilities

7-bus 4 1 10 2

57-bus 7 2 80 5

118-bus 54 13 186 10

We firstly test the IEEE 7-bus system to compare the performance of the proposed nested decompo-

sition algorithm with that of directly solving the extensive SMIP model. The computational results

are present in Table 3.6. The column ‘’UC Scenarios” indicates the number of operational-level

scenarios, and column ‘’Stages” shows the number of time periods for making the strategic-level

investment decisions. The wall-clock time of directly solving the SMIP model for each test in-

stance with the commercial solver (CPLEX) is present in the column ‘’Direct”; and that of using

the decomposition algorithm is shown in the column ‘’Decomposition”. The relative gap is given

in the table if the problem has not been solved to optimality before the 4-hour time limit is reached.
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Table 3.6: Direct vs Decomposition for the IEEE 7-bus test case.

UC Scenarios Stages Direct Decomposition

20

2 43.24 348.06

3 564.40 947.11

4 6165.00 3166.51

5 (4.09%) 13905.20

6 (19.46%) (3.07%)

100

2 1973.4 1951.3

3 (20.68%) 5251.82

4 (17.45%) 6791.32

5 (32.51%) 13825.10

6 (53.27%) (3.54%)

Note: The percentage contained in each parenthesis represents the

relative gap that is obtained when the 4 hour time limit is reached.

Our computational results show that the extensive models of small cases (2 or 3 stages with 20 UC

scenarios) can be managed by the solver and exhibits the better performance than the decomposi-

tion algorithm. When the number of either strategic-level scenarios or operational-level scenarios

increases, however, no converge but a considerably large gap is observed from solving the exten-

sive model for each case with CPLEX within the time limit. With the decomposition algorithm,

all the cases can be solved to either optimality or a very reasonable gap before the time limit is

reached.

For larger power systems, such as IEEE 57- and 118- bus systems, the result of our experiments

with ‘’Direct” is that either no feasible solutions are found within the defined time limit or the prob-
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lem is too large to be managed by the machine. The computational difficulty of each test instance,

however, is well managed by the nested decomposition method. The parallelization results in a

very reasonable wall-clock time for solving the case. Table 3.7 exhibits the computational results

from solving the instances in all tested power systems. The column ‘’Time/Gap” gives the total

wall-clock time for solving each case to optimality while a percentage represents the gap obtained

within the time limit. Column ‘’ Optimal” lists the optimal total expected costs for all problems.

Table 3.7: Computational results for IEEE 7-, 57, and 118- bus systems

Bus UC Scenarios Stages Time/ Gap Optimal

7 100

2 1951.3 5.58E+005
3 5251.82 5.848E+05
4 6791.32 6.34E+005
5 13825.10 6.607E+05
6 (3.54%) 7.123E+05

57 100

2 3160.12 1.08E+006
3 6475.9 1.183E+06
4 12826.0 1.27E+006
5 (1.83%) 1.237E+06
6 (5.19%) 1.388E+06

118 100

2 4406.93 5.054E+06
3 8187.09 5.966E+06
4 (8.39%) 6.90E+006
5 (13.16%) 7.978E+06
6 (20.19%) 9.932E+06

In addition, different stabilization methods are respectively applied to deal with the tailing-off

effect of the column generation algorithm. Their performance are compared and present in Ta-

ble 3.8. Specifically, the cases with 100 operational-level scenarios and different strategic-level

stages in 118-bus system are tested, and columns ‘’IPM”, ‘’Bundle” and ‘’Combo” correspond to

the computational results of using interior point method (IPM) based stabilization, bundle method

and combination of the two methods, respectively. In particular for the combination, we at first
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apply the CPLEX Barrier algorithm with ‘’crossover” disabled to solve each problem to 15% gap

and then use the bundle method to penalize the dual variables. Our experiments showed that more

iterations of column generation can be implemented in the IPM stabilization than bundle method.

This is because the master problem in this method is not modified and thus can be solved faster.

However, the IPM exhibits the heavier tailing-off effect than the bundle method. We therefore use

the combination of the two methods which has the better performance as shown in the table.

Table 3.8: Comparison of stabilization techniques

Bus UC Scenarios Stages IPM Bundle Combo

118 100

2 8451.07 4864.31 4406.93

3 (10.31%) 12498.30 8187.09

4 (10.54%) (7.30%) 8.39%

5 (13.16%) (24.63%) (14.90%)

6 (20.19%) (29.50%) (20.19%)

3.2 Maintenance Scheduling of Natural Gas Powered Plants

A profit maximization problem is present in this manuscript for natural gas fueled power plants

taking into account gas contracting and the opportunity of purchasing and selling gas in the spot

market as well as the maintenance scheduling. We consider the uncertainty of electricity and gas

prices in the spot market, and model the problem as a multistage stochastic mixed integer program

seeking the optimal dispatch for the plant over a time horizon. The multistage stochastic program

is known to be intractable and integrity constraints involved make it more difficult to handle. To

this respect, we apply the Lagrangian relaxation to enable the scenario-based decomposition and

develop a heuristic algorithm to obtain a feasible solution at each iteration of solving Lagrangian
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multipliers. Numerical experiments are performed and the results show the ability of the proposed

methods in improving the manageability of the problem.

3.2.1 Introduction

Fossil fuels, including oil, coal and natural gas are the main resources for world energy supply.

Natural gas has its advantage over other fuels as it is more environmentally friendly. More and

more gas fueled power plants are being built in the United States due to its high productivity and

low price. It is forecasted by U.S. Energy Information Administration (EIA) that the gap between

the electricity generation of coal and that of natural gas will be diminishing because of environ-

mental regulations such as the the U.S. Environmental Protection Agency’s (EPA) implementation

of Mercury and Air Toxics Standard (MATS), which is resulting in some coal plant retirements.

Maximizing the return on gas plant assets, however, becomes increasingly difficult. The main

challenge to gas plant profitability comes from the volatility of spot gas prices. In addition to

generating electricity, natural gas is also used as energy resource in other ways such as heating

homes and business which would be highly affected by weather conditions. The demand and thus

the spot price of natural gas tend to fluctuate more than other fuels. As a consequence, a fuel supply

agreement is normally made between a fuel producer and a gas plant as the stabilization strategy

to hedge the risk of the high volatility. Take-or-pay (ToP) contract is one of the most commonly

practice fuel contract type for natural gas as it can not only reduce the risk of the supplier but also

offer the purchaser (gas plant) the prices that are usually lower than market prices. In the contract,

a purchaser of gas agrees to take a minimum quantity and pay the supplier at the contract price.

Specifically, a volume of natural gas is established to define the maximum amount, M , that can be

withdrawn from the supplier per month, and the plant must purchase at least X% of the amount

in each month. The plant, however, can choose not to consume some of the purchased gas but
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to ”virturally” stored for future use within a specified period (e.g. one year). The contract also

include an annual minimum withdraw percentage, Y%(Y ≥ X), of the total annual volume based

on the contracted monthly amount to determine the amount that the plant is obliged to purchase in

each year. This means that if the cumulative purchase in the end of the year is less than (Y%)12M

then the plant must purchase the difference. In addition to the contract, a gas plant would also

consider to purchase and sell the gas in the spot market to sustain a higher degree of operational

flexibility in the seek of profit maximization. It can purchase gas from the market for generation

when the gas price is low and the electricity price is high; on the other hand it can withdraw the

gas from the ToP supplier and sell it at the spot price to easily achieve financial benefits. It has

been widely studied to determine the described items included in the contract. [60] considered an

optimization problem to seek the optimal option value of the contract from the buyer’s view, while

[110] developed a pricing model to find the optimal offered price from the seller’s view respecting

the buyers’s reaction to the offer. [69] proposed a bilevel optimization problem to address the fact

that both agents would like to take optimal decisions which are related to each other. We consider

the ToP clauses as input data and aim to find the optimal dispatch for a gas plant based on the given

contract for profit maximization.

Maintenance is another important factor that affects the profit of a power plant. Equipment, such as

turbines, combustors and electronic controllers in a power plant are generally under great pressure

to minimize operating costs and to meet the electricity demands in real time. Periodically inspect-

ing the equipment is thus necessary to minimize possible breakdowns and malfunctions during

normal running and attain the reliability of the whole power system. Since maintenance would

have the equipment be taken off from the system, resulting in no electricity generation until the

completion of the maintenance, its schedule should be well planned to minimize the financial loss.

In deterministic case, a gas plant can simply choose to implement the maintenance and shut down

the plant when the electricity price is low and that of natural gas is high. In reality, however, the
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maintenance scheduling could be very challenging due to various uncertain resources over a time

horizon. A stochastic programming model was developed by [132] taking into account inter-area

transfer limitations and stochastic reliability constraints and the Benders decomposition was ap-

plied as the solution approach. [29] considered uncertain electric demands and unit commitment

was incorporated in their model to minimize the total cost of generation and maintenance.

In this manuscript, we present a profit maximization problem integrating the gas contracting and

the opportunity of purchasing and selling gas in the spot market as well as the maintenance schedul-

ing for natural gas fueled power plants, and denote it as [GMP]. Decisions made at each time pe-

riod, such as the amount of gas withdrawn from suppliers with the gas contract and whether to

implement the maintenance for each type of equipment, would affect those at the following pe-

riods, and therefore the problem is modeled as a multistage mixed integer program (MIP). The

uncertainties of spot gas and electricity prices are considered in the problem, and the value of each

uncertain parameter is unknown in advance until the beginning of each stage. We assume that

the spot prices are not affected by the production of the thermal plant, which is reasonable since

the plant generation capacity is significantly smaller than the total capacity of the power system

in general. The gas plant considered could have different types of equipment each with a dis-

tinct maintenance interval within which at least one maintenance must be performed to attain the

reliability for the plant.

Our paper provides several contributions. In Section 3.2.2, we introduce and define the proposed

multistage stochastic problem with gas contract and maintenance scheduling for a natural gas fu-

eled plant and formulate its mathematical model. To address the intractability of the multistage

stochastic MIP problem, we apply the lagrangian relaxation algorithm to decompose the prob-

lem into subproblems each including a subset of the scenarios, and use the subgradient method

to iteratively update the lagrangian dual. A heuristic method is developed to obtain a feasible so-

lution in each iteration by taking advantage of the special structure of the model; the algorithms
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Figure 3.3: ToP contract modeled by two virtual reservoirs

are described in Section 3.2.3. Computational experiments and numerical results are presented in

Section 3.2.4.

3.2.2 Problem definition

Over a finite time horizon, the objective of the proposed multistage stochastic optimization problem

is to maximize the expected profit by optimize the dispatch of a natural gas fueled power plant

taking into account the ToP contract as well as the maintenance scheduling. Let t ∈ T denote

the time periods on a monthly basis and ξ ∈ Ξ represent the scenarios of uncertain parameters.

The spot prices of electricity and natural gas are unknown in advance except for their probability

distributions, and will be realized at the beginning of each time period.

A ToP gas contract can be modeled by two virtual reservoirs, A and B, as shown in Figure 3.3.

Reservoir B receives the annual gas volume, i.e., Y%×12M , which is pushed into the reservoir at

the first month of each year and can be transferred to reservoir A in every month. Reservoir A re-

ceives both the gas transferred from B and that directly purchased from the distributors, and sends

gas to the power plant for electricity generation. A mathematical model can then be formulated to
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seek the profit maximization (i.e., cost minimization) for the power plant subject to flow balance

constraints in the reservoir model:

min
∑
ξ∈Ξ

Probξ
∑
t∈T

[
dξt (m

ξ
t + f ξt )− hξt (g

ξ
t + sξ−t )− pξts

ξ+
t + qξt s

ξ−
t

]
(3.17a)

s.t. aξt = aξt−1 +mξ
t + f ξt − s

ξ+
t − g

ξ
t , ∀t ∈ T, ξ ∈ Ξ (3.17b)

bξt = bξt−1 − f
ξ
t , ∀t ∈ T\T0, ξ ∈ Ξ (3.17c)

X%M ≤ mξ
t + f ξt ≤M, ∀t ∈ T, ξ ∈ Ξ (3.17d)

bξt = Y%(12M)− f ξt , ∀t ∈ T0, ξ ∈ Ξ (3.17e)

bξt = 0, aξt = 0, ∀t ∈ TE, ξ ∈ Ξ (3.17f)

aξt , b
ξ
t , g

ξ
t , s

ξ+
t , sξ−t ,mξ

t , f
ξ
t ≥ 0 ∀ξ ∈ Ξ, t ∈ T (3.17g)

where all the parameters and decision variables are defined with respect to each scenario ξ, of

which the probability is represented by Probξ. The variables f ξt and mξ
t denote the amount of gas

transferred from B to A and that purchased from distributors at the time period t, respectively.

The variables aξt and bξt indicate the gas level in reservoir A at the end of period t. The amount

of gas used to power generation is denoted by gξt . s
ξ+
t and sξ−t are the variables representing the

gas sold to and bought from the spot market at time t, respectively. The parameters dt defines

the contracted gas price at time t, hξt is the profit gained from per unit gas when used to generate

electricity, and pξt and qξt are the respective spot prices of selling out and buying in. The model aims

to maximize the expected profit for the natural gas power plant over the time horizon T . The mass

balance constraints for reservoir A are modeled by (3.17b), and the constraints (3.17c) and (3.17e)

model the mass balance for reservoir B at the first month (T0) of each year and the rest months,

respectively. The constraint (3.17d) indicates that the amount of gas received by A is bounded

below by the monthly ToP volume, X%M , and above by M . Both reservoirs are restored to full

capacity at the end of each year (TE), which is defined by the constraint (3.17f).
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Let I be the set of all equipment for which periodic maintenances are needed and ui(∀i ∈ I)

represents the maintenance cost for equipment i. Assume that ∆i and σi represent the maximal

length of time without maintenance (i.e.,frequency) and the duration of the maintenance if applied

for equipment i, respectively. The length of time period t for equipment i is denoted by δi,t(δi,t <<

∆i,∀i, t). Each unit of equipment in the plant must be cyclicly inspected and the time interval

between two consecutive maintenances must not exceed ∆i for the reliability of the system. We

define the variable ri,t that indicates the remaining time before next required maintenance at the

end of period t for equipment i, and restrict it to be nonnegative to address this requirement. The

remaining time ri,t decreases by δi,t for each period t until a new maintenance is implemented,

which resets the time to maximum. We assume that the maintenance is made at the beginning of

each time period for simplicity, and the following constraints are used to demonstrate the change

in the maintenance status of equipment over the time horizon:

ri,t ≤ ri,t−1 − δi,t + (∆i + σi)zi,t, ∀t ∈ T, (3.18a)

ri,t ≤ ∆i + σi − δi,t, ∀t ∈ T (3.18b)

ri,t ≥ 0 (3.18c)

We assume that the initial maintenance status for each unit of equipment is known and represented

by ri,0(ri,0 ≥ 0). zi,t is a binary variable defined as:

zi,t =


1, if a maintenance is scheduled in period t for equipment i,

0, otherwise;

The dispatch for the plant would be affected by the maintenance scheduling because its generator

is turned off for the time length of σi during the maintenance. Therefore, the gas to be consumed

for electricity generation, including that withdrawn from the supplier of the ToP contract and that
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purchased from the spot market, would be reduced in the result of the maintenance, which is

indicated by the constraint .

gt + s−t ≤ C(δi,t − σizi,t) ∀i ∈ I,∀t ∈ T (3.19)

where C is the gas consumption rate of the plant, determined by the power generation capacity.

Here we assume that the profit can be obtained from every unit gas when used for power generation,

which is reasonable because the amount of the electricity generated from the plant is significantly

smaller than the total demand in the market. However, we note that our model is extendable to

considering the impact of demand fluctuation by changing the length of each time period for each

unit of equipment and the gas consumption rate.

To determine the optimal dispatch for the plant for the profit maximization, we take into account

both the ToP contract and the maintenance scheduling and integrate them to create the first [GMP]

model shown as follows,

[GMP1] min
∑
ξ∈Ξ

Probξ
∑
t∈T

[dξt (m
ξ
t + f ξt )− hξt (g

ξ
t + sξ−t )− pξts

ξ+
t + qξt s

ξ−
t

−
∑
i∈I

uiz
ξ
i,t] (3.20a)

s.t. (3.17b)− (3.17g) (3.20b)

rξi,t ≤ rξi,t−1 − δi,t + (∆i + σi)z
ξ
i,t, ∀ξ ∈ Ξ,∀i ∈ I,∀t ∈ T (3.20c)

rξi,t ≤ ∆i + σi − δi,t, ∀ξ ∈ Ξ, ∀i ∈ I,∀t ∈ T (3.20d)

gξt + sξ−t ≤ C(δi,t − σizξi,t) ∀ξ ∈ Ξ,∀i ∈ I,∀t ∈ T (3.20e)

rξi,t ≥ 0, zξi,t ∈ {0, 1} ∀ξ ∈ Ξ, t ∈ T, i ∈ I (3.20f)

xξt = xηt , ∀ξ ∈ Ξ, (ξ, η) ∈ Sξ,t, t ∈ T (3.20g)

The objective function in [GMP1] is equal to that in (3.17a) subtracted by the cost incurred by the
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maintenance implementation. The constraint (3.20g) is non-anticipativity constraints to link the

scenarios in the multistage stochastic problem and indicates that the decisions made at period t for

scenario ξ should be the same as that for scenario η, and Sξ,t represents the set of scenarios that

are indistinguishable with scenario ξ until the end of time period t.

The use of the remaining time variables and restricting them to be nonnegative to define the main-

tenance requirement, however, is limited as it involves more decision variables into the model

specially in large-scale problems. We therefore propose the following theorem of applying the

preprocessing on the input maintenance data to address this limitation.

Theorem 3.1. The nonnegativity condition of each variable rξi,t and thus the maintenance require-

ment are satisfied if and only if at least one maintenance is implemented during its previous φi,t

time periods (including period t), such that
∑φi,t−1

τ=0 δi,t−τ ≤ ∆i + σi and
∑φi,t

τ=0 δi,t−τ > ∆i + σi.

Proof. If any maintenance is performed during the described φi,t time periods, the earliest time

for it would be at period (t − φi,t + 1), resulting in ri,t−φi,t+1 = ∆i + σi − δi,t−φi,t+1. Then,

ri,t ≥ ri,t−φi,t+1 −
∑φi,t−2

τ=0 δi,t−τ = ∆i + σi −
∑φi,t−1

τ=0 δi,t−τ ≥ 0, which proves the sufficiency

condition.

If no maintenance is implemented during the periods, then the latest time to perform one would be

at period (t−φi,t), resulting in ri,t−φi,t = ∆i+σi−δi,t−φi,t . Then, ri,t ≤ ri,t−φi,t−
∑φi,t−1

τ=0 δi,t−τ =

∆i + σi −
∑φi,t

τ=0 δi,t−τ < 0, and thus the necessarily condition is probed.

An alternate [GMP] model is therefore developed with the remaining time variables being removed

as shown below:

[GMP2] min
∑
ξ∈Ξ

Probξ
∑
t∈T

cξtx
ξ
t (3.21a)

s.t. (3.20b), (3.20e), (3.20g) (3.21b)
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φi,t−1∑
τ=0

zξi,t−τ ≥ 1 ∀ξ ∈ Ξ, t ∈ T, i ∈ I (3.21c)

zξi,t ∈ {0, 1} ∀ξ ∈ Ξ, t ∈ T, i ∈ I (3.21d)

Recall that xξt is the vector of all variables at stage t for scenario ξ and cξt is that of their respective

coefficients in the objective function. The constraints (3.21c) is used to force that at least one

maintenance is performed between time period t − φi,t + 1 and t to maintain the reliability for

each unit of equipment in the power plant. Note that the historical maintenance data, i.e., whether

a maintenance was performed before the first time period, are known and can be used to construct

the constraints in the cases of t < φi,t. Although [GMP1] and [GMP2] share optimal solutions

for the proposed problem, their linear programming (LP) relaxations differ from each other and

thus different computational performance would be expected from solving the two models. The

comparison of the LP relaxation tightness is demonstrated by Theorem 3.2.

Theorem 3.2. A tighter LP relaxation is obtained from the reformulated [GMP2] model compared

to the [GMP1].

Proof. Assume that ẑ is an arbitrary feasible solution for maintenance obtained from solving the

[GMP2] LP relaxation. Then we can easily generate a solution for the remaining time variables

in [GMP1] such that ri,t = min{ri,t−1 − δi,t + (∆i + σi)ẑi,t,∆i + σi − δi,t},∀i ∈ I, t ∈ T ,

satisfying the constraints (3.20c) and (3.20d), with respect to each unit i. If, for time period t,

ri,t−τ = ri,t−τ+1 − δi,t−τ + (∆i + σi)ẑi,t−τ ,∀τ ∈ [0, φi,t − 1], then the remaining time before next

required maintenance for unit i at the end of this period satisfies:

ri,t = ri,t−φi,t −
φi,t−1∑
τ=0

δi,t−τ + (∆i + σi)

φi,t−1∑
τ=0

ẑi,t−τ

≥ ri,t−φi,t + (∆i + σi)(

φi,t−1∑
τ=0

ẑi,t−τ − 1)
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≥ ri,t−φi,t

For each unit i at each periodt, the validity of ri,t ≥ 0 is therefore confirmed by recursively

applying the inequations above.

If, on the other hand, there exists at least one remaining time variable takes the other value (∆i +

σi − δi,t) during the φi,t periods, assume that the latest one is at time period k such that, ri,k =

∆i + σi − δi,k and ri,τ = ri,τ−1 − δi,τ + (∆i + σi)ẑi,τ ,∀k < τ ≤ t, then we would have, ri,t =

∆i + σi −
∑t

τ=k δi,τ + (∆i + σi)
∑t

τ=k+1 ẑi,τ ≥ 0, satisfying the nonnegativity constraints.

Therefore we claim that any feasible solution obtained from the LP relaxation of [GMP2] is also

feasible for that of [GMP1] and thus the theorem is proved.

3.2.3 Solution approaches

Multistage stochastic programs are known to be computationally intractable unless in very small

instances. The plan for withdrawing natural gas from the supplier of the ToP contract and the

schedule of maintenance for equipments need to be made months or even years ahead, and there-

fore the problem to be solved is generally in a moderate or large scale. The integer variables

included at every stage make the problem more difficult to solve. Although the [GMP2] provides

the stronger formulation than [GMP1], it is still extremely hard to solve the realistic-size problem

directly using commercial MIP solvers, e.g., CPLEX. Some solution algorithms, therefore, need

to be developed to increase the manageability of our problem.

Decomposition is a method of choice to handle the enormous size of the models in multistage

stochastic programs. With an adaption of Benders decomposition (cf. [15]), the L-shaped method

is developed by [139] and have been widely used to solve two-stage stochastic programs [e.g.,[22,
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31, 78]]. [85] extended it to multistage stochastic programs and proposed that a multistage s-

tochastic program with block-separable recourse is equivalent to a two-stage stochastic program

where the first-stage is the extensive form of the aggregate level problems and the second stage

is that of the detailed level recourse functions. Consider the [GMP2] described in (3.21), the L-

shaped method could be used to solve the problem by transforming it to a two-stage program, with

the integer variables (i.e.,whether to perform the maintenance) included in the first stage and the

continuous variables (e.g., the amount of gas purchased from the spot market) in the second stage.

The convergence is then obtained by iteratively generating feasibility cuts and optimality cuts from

the second-stage problem and adding them to the first-stage relaxed problem. This decomposition

of splitting the problem to a master problem and a subproblem, however, is very limited as the

nonanticipativity constraints would still be included in both stages, resulting in the intractability of

each problem. Another way of using Benders decomposition is to use it as a nested application to

solve linear case, as in [21], and [109], using backward and forward induction. The backbone of

this primal decomposition method is, however, the convexity of the problem at each stage, while

the integrity requirements are included in our problem and feasibility and optimality cuts can no

longer be obtained.

Extensive attention has been paid to dual decomposition methods for the multistage stochastic

programs with discrete probability distribution of uncertainty. The dualization of nonanticipa-

tivity constraints enables scenario decomposition as in the use of augmented Lagrangian method

(e.g.,[100]), and that of dynamic constraints results in nodal decomposition (e.g.,[133]). A non-

zero duality gap is encountered due to the impact of integrity and [40] show that the scenario

decomposition technique provides a better lower bound than the nodal decomposition. [50] sum-

marize the percentage of problems for which a Lagrangian multiplier was discovered such that the

upper bound and the lower bound converged.

In this section we dualize the nonanticipativity in the [GMP2] model to enable the scenario based
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decomposition and formulate the Lagrangian dual problem to obtain a lower bound. Both the

subgradient method and the primal simplex method with column generation are considered to

solve the Lagrangian dual problem with different approaches to update the Lagrangian multipliers.

A heuristic algorithm is developed to iteratively obtain a upper bound for the problem.

3.2.3.1 Lagrangian relaxation

Consider [GMP2], and we formulate the Lagrangian relaxation by dualizing the nonanticipativity

constraints (3.20g) as follows,

[LRπ] min
∑
ξ∈Ξ

Probξ
∑
t∈T

cξtx
ξ
t +

∑
η:(ξ,η)∈Sξ,t

< πξ
η,t,x

ξ
t − xηt >

 (3.22a)

s.t. (3.20b), (3.20e), (3.21c), (3.21d) (3.22b)

where πξ
η,t denotes the Lagrange multipliers associated with the nonanticipativity constraints link-

ing decisions for scenarios ξ and η at stage t. Note that the constraints (3.22b) can be partitioned

into the sets with respect to the scenarios and the Lagrangian relaxation is decomposable into a

set of subproblems. Let ZD(π) denote the optimal objective function value of [LRπ], which would

provide a lower bound of the [GMP2]. It is then clear that the best choice of π would be an optimal

solution to the Lagrangian dual problem:

[LD] ZD = max
π

ZD(π) (3.23)

We consider the column generation and subgradient methods as two respective schemes for deter-

mining the multiplier π.
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3.2.3.2 Column generation

Column generation has been a successful approach to solve large scale optimization problems with

a long history ([55]). It begins with an initial Lagrangian multiplier obtained from solving a re-

stricted Dantzig-Wolfe reformulation ([36]) including only a subset of columns, and iteratively

solves a pricing problem to generate appropriate entering columns for determining the best multi-

plier. Consider the [GMP2], and the Dantzig-Wolfe reformulation can be viewed as the dual of the

LD and is present as follows,

[MP] min

Q∑
j=1

(∑
ξ∈Ξ

Probξ
∑
t∈T

cξt (x
ξ
t )
j

)
λj (3.24a)

s.t.
Q∑
j=1

(
(xξt )

j − (xηt )
j
)
λj = 0, ∀ξ ∈ Ξ, t ∈ T, (ξ, η) ∈ Sξ,t (3.24b)

Q∑
j=1

λj = 1 (3.24c)

λj ≥ 0 ∀j = 1, ..., Q (3.24d)

(explain more about the model, e.g., what does the lambda mean, etc.)

The column entering the basis of the MP on each iteration is obtained by solving the pricing

problem, in which the objective function is to minimize the reduced cost. The pricing problem can

be decomposed into a set of subproblems with respect to the scenarios ξ ∈ Ξ, shown as follows,

[SP(ξ)] min
∑
t∈T

cξtx
ξ
t −

∑
η:(ξ,η)∈Sξ,t

< π̂ξ
η,t,x

ξ
t − xηt > −ρ̂ (3.25a)

s.t. aξt = aξt−1 +mξ
t + f ξt − s

ξ+
t − g

ξ
t , ∀t ∈ T (3.25b)

bξt = bξt−1 − f
ξ
t , ∀t ∈ T\T0 (3.25c)
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X%M ≤ mξ
t + f ξt ≤M, ∀t ∈ T (3.25d)

bξt = Y%(12M)− f ξt , ∀t ∈ T0 (3.25e)

bξt = 0, aξt = 0, ∀t ∈ TE (3.25f)

aξt , b
ξ
t , g

ξ
t , s

ξ+
t , sξ−t ,mξ

t , f
ξ
t ≥ 0 ∀t ∈ T (3.25g)

Recall that for scenario ξ, xξt is the vector of all decision variables at stage t. π̂ξ
η,t represents the

vector of current duals associated with the constraints (3.24b) and ρ̂ is the dual solution of the con-

vexity constraint (3.24c). The simplex-based column generation frequently exhibits ”oscillation”

and slow convergence. It is also time consuming to prove the optimality of a degenerate optimal

solution of the MP. Various stabilization and acceleration techniques ([27, 44, 92]) have been de-

veloped to overcome the difficulty by restricting the distance travelled by the dual solution in the

dual space of the restricted MP (RMP). As one of the most efficient and promising methods for

non-smooth optimization, the bundle method is used for the column generation stabilization in this

article by a quadratic penalty on the distance. More details of the method can be seen in [89].

3.2.3.3 Subgradient method

It is well known that [LR π] is concave, piecewise linear and subdifferentiable everywhere. The

vector (xξt − xηt ) is a subgradient at any πξ
t . The subgradient method can therefore be applied

as a hill-climbing algorithm to obtain the best Lagrangian multipliers. Given an arbitrary initial

Lagrangian multiplier, π0, and the sequence of positive scalar step sizes {tk}, the sequence {πk}

is obtained iteratively by

πk+1 = πk + tkν(xk) (3.26)
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where xk is the vector of an optimal solution to [LRk
π], and ν(πk) is the subgradient at πk which

is determined by the violation of nonanticipativity at the kth iteration:

ν(πk) = [(xξt − xηt )
k,∀ξ ∈ Ξ, t ∈ T ] (3.27)

Theoretically ZD(πk) will converge to its maximum ZD if the conditions of tk → 0,
∑∞

k=0 tk =∞

are satisfied. In practice, however, an alternate choice of step size is used most commonly and also

in our study:

tk = λk
Z̄ − ZD(πk)

‖ν(πk)‖2
(3.28)

where λk is a scalar satisfying 0 < λk ≤ 2 and Z̄ is an upper bound on ZD, obtained by applying

the heuristic algorithm described in Section 3.2.3.4. We initialize λ = 2 and successively halve it

every n iterations where n is dependent on the problem size. The validation of this step size choice

is provided by [61].

The difficulty encountered by the subgradient method is that there is no way to prove optimality

of a Lagrangian multiplier, unless we obtain a feasible solution with its cost equals the Lagrangian

function value of the multiplier. To resolve this difficulty, we terminate the method after a fixed

number of iterations or a time limit, which ever is reached first. In each iteration, an primal solution

xk is obtained by solving [LRπ] and then used in the heuristic algorithm described in the following

section to get a feasible solution satisfying the nonanticipativity.

In contrast, the convergence of [LD] is observable in the column generation as the upper bound

can be obtained and iteratively updated with more columns entering the master problem. However,

the number of rows in the master problem would equal to that of nonanticipativity constraints to

be relaxed in (3.22), making the method hard to implement when the problem size increases. The

performance of the column generation and subgradient method will be demonstrated and compared

for some instances of our proposed [GMP] problem in the next section.
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3.2.3.4 Heuristic algorithm

Although a better lower bound can be obtained from solving the Lagrangian dual problem (3.22)

than using LP relaxation, it is very rare to discover a feasible solution satisfying the nonanticipativ-

ity constraints in the [GMP2] by using either the column generation or the subgradient algorithm.

Note that all the uncertain parameters are included only in the objective function while none of

them exists in any constraint. A heuristic algorithm is then developed to obtain feasible solutions

by taking advantage of this special structure of the problem. The cost resulted from the feasible

solution is also used as Z̄ in (3.28) to determine the step size at each iteration of the subgradient

method.

Recall that the Lagrangian relaxation (3.22) can be decomposed into a set of subproblems with

respect to the scenarios of uncertainty. Given any two scenarios ξ and η, and the stage ti until the

end of which the two scenarios are indistinguishable, let x̂ξ and x̂η represent the optimal solutions

of their respective subproblems. Because no uncertain parameters are included in the constraints,

both the coefficient matrices and right hand sides would be the same between the two scenario

subproblems, resulting in the same feasible regions. The optimal solution of one subproblem is

thus feasible but not necessarily optimal to the other due to the difference of the objective functions.

Assume that x̂tξ = x̂tη,∀t = 1, ..., (ti − 1) and x̂tiξ 6= x̂tiη (the solutions for the first (ti − 1) stages

are the same while the difference is observed at stage ti), violating the nonanticipativity. We apply

one of the solutions, x̂tiξ or x̂tiη , to both subproblems so that the nonanticipativity is forced to be

satisfied while the feasibility of other constraints are still attained. The expected cost of using

either solution in both scenarios is computed and compared, and we greedily select the one with

the lower cost.

The heuristic algorithm is then developed based on this idea of enforcing the nonanticipativity

and implemented after each iteration of the column generation or subgradient method. Given the
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Algorithm 2 Heuristic algorithm to get a feasible solution of [GMP]
1: Initialize the heuristic solution x̄ = null and the cost Z̄ = +∞
2: Let x̂ be the optimal solution of [LRπ] and x̂ξ be the solution for scenario ξ, ∀ξ ∈ Ξ.
3: for t ∈ T do
4: for ξ ∈ Ξ do
5: Let s ∈ Sξ,t be the set of scenarios which are indistinguishable with scenario ξ at stage t.
6: Compute

ẐS(x̂s) =
∑
η∈Sξ,t

Probηcηx̂s, ∀s ∈ Sξ,t (3.29)

7: Find s∗ such that
ẐS(x̂s∗) = arg min

s∈Sξ,t
ẐS(x̂s)

8: Fix xts = x̂ts∗ ,∀s ∈ Sξ,t, in [LRπ].
9: end for

10: Solve the Lagrangian relaxation [LRπ].
11: Set x̄tξ ← x̂tξ.
12: end for
13: Update the cost: Z̄ = min{Z̄,

∑
ξ∈Ξ cξx̄ξ}.

solution of the Lagrangian relaxation x̂, a heuristic solution is obtained in the forward direction of

time periods, i.e., from the first stage to the last one. Specifically for each period t, we partition

all the scenarios into groups each representing the set of scenarios that are indistinguishable with

each other at this stage. The expected cost as of applying each scenario solution (x̂s) to all the

scenarios in the same group is then computed as shown in (3.29). The scenario solution with the

lowest expected cost is identified and its elements at the stage t is used as the heuristic solution.

The algorithm can be summarized as follows,

We want to note that the performance of all the described algorithms could be improved by decom-

posing to bundles of scenarios rather than individual ones. Larger subproblems can be formulated

to include multiple scenarios and the nonanticipativity links between the scenarios are not relaxed

but treated directly as constraints in each subproblem, and the number of subproblems is thus

reduced. Particularly for the column generation, significant decrease in the size of its master prob-
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lem size can be achieved due to the decrease of the number of nonanticipativity constraints to

be relaxed. However, the number of bundled scenarios must be well balanced with the increased

computationally difficulty of the subproblems.

3.2.4 Computational experiments and results

3.2.4.1 Experiment setup

Numerical experiments and computational results are presented in this section on solving vari-

ous instances of the [GMP] model seeking to maximize the profit for a natural gas fueled power

plant taking into account the gas contracting and the opportunity of purchasing and selling gas in

the spot market as well as the maintenance scheduling, subject to uncertain electricity and spot

gas prices. The Lagrangian relaxation is applied to address the intractability of the problem by

enabling scenario-based decomposition. The column generation and subgradient methods are re-

spectively used to solve the Lagrangian dual and obtain a lower bound, and the results will be

shown and compared. A heuristic algorithm is developed to obtain a feasible solution at each

iteration, providing an upper bound for the problem.

An arbitrary power plant is defined with the gas consumption rate at each time period being de-

termined by its capacity and used for the computational experiments. We assume that all the

equipment in the plant can be categorized according to the time needed for accomplishing the

maintenance for each of them. Various instances are generated to respectively include 10, 50 and

100 units of equipment for which the periodic maintenance need to be planned. The duration of

each maintenance could be less than one week, between one and two weeks, or more than two

weeks. We randomly generate the data of duration for each equipment from a uniform distribution

on [1,7],[8,14], or [15,21] days to address this, respectively. The plant can either withdraw the
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natural gas from the supplier with whom a ToP agreement is made or purchase the fuel in the spot

market for generating electricity. The [GMP] is solved to obtain the optimal dispatch for the plant

over a time horizon of 6 months or one year, resulting in 6- or 12-stage instances, respectively.

The electricity and gas prices are randomly and respectively generated from uniform distributions

of [10,12] and [2,6] (based on historical data from EIA; unit:dollars per MMBtu) to form a set of

scenarios at each stage. The scenario statistics can be seen in Table 3.9.

All programs are implemented in Microsoft Visual C++ 2010 while calling the commercial MIP

solver, CPLEX 12.5 (Concert Technology). All computational experiments are run in Microsoft

Windows 7 Professional operating system on a Dell Desktop with Intel Core i7-2600 CPU 3.40GHz

and 8GB RAM.

3.2.4.2 Computational results and discussion

The two MIP formulations to the problem, [GMP1] and [GMP2], are first solved with CPLEX and

the comparison results are shown in Table 3.9. In the table, columns ”OFV” show the objective

function value associated with the best integer solution that is achieved for each instance within

a time limit (1 hour), and the objective function value of the LP relaxation of each formulation is

present in the columns named ”LR”. The computational time are recorded in seconds and displayed

in the columns ”time(sec)”. It can be observed that the solutions with the same objective function

values are obtained from the two different formulations for the small instances (6 stages), which

confirms the equality between [GMP1] and [GMP2] demonstrated by Theorem 3.1. The higher

values observed in the column ”LR” of [GMP2] than that of [GMP1] for all instances show the

tighter LP relaxation of the former formulation, which is accordant with Theorem 3.2. The stronger

formulation renders [GMP2] the better performance. As shown in the table, the small instances

can be solved to optimality at lower computational cost and the better solutions are obtained within
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the time limit for the large instances, when the [GMP2] is applied.

Table 3.9: The comparison of two formulations for [GMP]

stages scenarios units GMP1 GMP2
OFV LR time(sec) OFV LR time(sec)

6 32
10 -1.806 -1.997 1.89 -1.806 -1.859 1.22
50 -1.804 -1.996 6.38 -1.803 -1.857 2.59
100 -1.800 -1.995 13.49 -1.800 -1.853 7.85

12 2048
10 -3.575 -3.983 3600.00 -3.576 -3.790 3600.00
50 -2.024 -3.977 3600.00 -3.339 -3.748 3600.00
100 -1.918 -3.970 3600.00 -2.987 -3.727 3600.00

Note: The time limit is set as 3600 seconds. The extensive forms of [GMP1] and [GMP2] can be solved to optimality
with CPLEX in the small instances (6 stages) and ”time(sec)” show the computational times; The objective function
value (OFV, unit: 1× 107) of the best feasible solution that is obtained within time limit is given otherwise. ”LR”
gives the LP relaxation of each formulation.

The computational results of using different solution algorithms in large instances (12 and 18

stages) are shown in Table 3.10, where columns ”ub” and ”gap” present the upper bounds and

relative MIP gap obtained from various methods, respectively. It can be observed that, within a

time limit (5 hours), the upper bounds (in the columns ”ub”) obtained from the developed heuristic

are better than that from directly using CPLEX (column ”Direct”). In addition, smaller lower

bounds can be achieved by using the subgradient method or column generation, resulting in the

smaller MIP gaps. Note that the comparison of different solution methods is not made for small-

size problems (6 stages) as their extensive forms can be easily handled and thus no decomposition

is needed. Alternatively, the proposed methods can be used by bundling all the scenarios and

formulating only one subproblem, which would render them the same performance as directly

using CPLEX.

Our results also show that the extensive forms become unmanageable when the problem size keeps

growing to longer time horizon and thus more scenarios. The extremely large number of variables

and constraints makes the machine run out of memory. The same difficulty is encountered by
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the column generation. This is because its master problem has the same number of constraints as

that of the nonanticipativity constraints in the [GMP], making the method hard to implement in the

huge instances. The subgradient, on the other hand, is able to resolve the difficulty as it analytically

updates the Lagrangian multipliers in each iteration after the decomposed subproblems are solved.

The heuristic algorithm can also provide an upper bound for each instance by fixing the solutions

in the forward direction of the time periods to enforce the nonanticipativity linking the scenarios

among subproblems.

Table 3.10: Performance of various solution approaches.

stages scenarios units
Direct Subgradient Column generation

ub(e07) gap ub(e07) gap ub(e07) gap

12 2048

10 -3.596 1.68% -3.594 1.06% -3.590 1.16%
50 -3.404 7.23% -3.460 1.38% -3.459 1.38%

100 -3.282 12.39% -3.438 1.59% -3.429 1.83%

18 131072

10 LoM -4.737 14.89% LoM
50 LoM -4.332 21.44% LoM

100 LoM -4.140 25.06% LoM

Note: LoM represents that the machine is out of memory.

Recall that any solution that is feasible for one scenario is feasible for others as the uncertain

parameters are included in the objective function only. Therefore an alternate approach the plant

may have would be to assume the expected gas and electricity prices and always implement the

dispatch according to these expected values, which however would result in significant loss by not

considering the stochasticity in the model. For a 12-stage instance with 2048 scenarios, Figure 3.4

(left) shows two scenario representatives as well as the expected values of electricity and natural gas

prices across all the scenarios. Our results of expected value solution indicate that the maintenance

is scheduled to the 3rd and 8th stages when a small amount of electricity is generated due to the low

expected price of electricity, as shown in Figure 3.4(right). Some natural gas is withdrawn from

gas supplier and then sold to the market in the 3rd and 5th stages at relatively high expected prices.
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According to our stochastic solution, on the other hand, different decisions could be made with
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Figure 3.4: Expected value solution vs. stochastic solution. Left: the expected values of electricity
and gas prices, and their particular values in two arbitrary scenarios (scenarios 1 and 2); Right: the
expected value solution as well as the stochastic solution respectively for scenarios 1 and 2

respect to specific scenarios. As shown in Figure 3.4, the maintenance for scenario 1 is schedul

ed to the 5th when more profit can be achieved from selling the gas than generating electricity

and 9th stages because of the low electricity price, while for scenario 2 it is scheduled to the 3rd

and 8th stages. In contrast to the expected value solution in which no gas purchase is made, the

stochastic solution indicate that a decent amount of gas can be bought from spot market for power

generation when the spot price is considerably low. The comparison between using the expected

value solution and the stochastic solution for each instance is shown in Table 3.11, where the loss

by not considering the stochasticity in the model is demonstrated by the relative difference between

the profit gained from the two solutions.
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Table 3.11: Deterministic vs. Stochastic.

stages scenarios units
deterministic(×107) stochastic(×107)

difference
with expected value

6 32
10 -1.650 -1.806 9.47%
50 -1.648 -1.803 9.46%

100 -1.644 -1.800 9.48%

12 2048
10 -3.158 -3.594 13.80%
50 -3.020 -3.460 14.36%

100 -2.998 -3.438 14.68%
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CHAPTER 4: LARGE-SCALE STOCHASTIC MIXED-INTEGER

PROBLEMS IN TRANSPORTATION

In this chapter, we aim to study various transportation problems, formulate their mathematical

models, develop the optimization methodologies to respectively solve them and present the com-

putational results.

4.1 Stochastic Traveling Salesman Problem with Discretely Distributed Random Arc Costs

Recently increasing attentions have been given to uncertainty handling in network optimization

research. Along this trend, this section discusses the traveling salesman problem with discrete

random arc costs while incorporating risk constraints. Minimizing expected total cost might not be

enough because total costs of some realizations of the random arc costs might exceed the resource

limit. To this respect, a model is present here incorporating risk constraints based on Conditional

Value at Risk to evaluate those worst-cost scenarios. Exact solution methods are developed and

applied on the risk-constrained traveling salesman problem. Numerical experiments are conducted,

and the results show the ability of the proposed methods in reducing the computational complexity.

4.1.1 Introduction

Traveling salesman problem (TSP) is one of the most widely researched network optimization

problems in operations research because of its wide applications and close connection to other

optimization problems. Standard TSP assumes a deterministic network of nodes linked by arcs.

Each of the arcs has a cost of travel, analogous to time or distance. TSP aims to find a Hamiltonian

cycle that visits all nodes one and exactly one time with the minimal total cost. A brief survey
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of the TSP, as well as integer linear programming (ILP) formulations of both the symmetrical and

the asymmetrical TSP, can be found in [72]. Additionally, the survey reviewed different exact and

heuristic methods employed to solve symmetrical and asymmetrical instances.

While in many applications, the TSP’s parameters are modeled deterministically, in reality most

contain elements of uncertainty. A variety of research efforts have been taken on TSP and other

network optimization problems with various stochastic parameters. A mean-variance model was

studied in [26] for the network flow problem with stochastic arc costs by minimizing the weighted

average of the mean and variance of total traveling cost. Interval uncertain weights of edges were

considered in a graph partitioning problem by [47] and robust optimization with decomposition

algorithms were introduced to solve it. Nondeterministic distances between the nodes were con-

sidered in TSP by [81]. Uncertain arc capacities were modeled by [56] in a multiperiod dynamic

network flow problem using scenario aggregation. Other uncertain parameters such as arc failures

and node demand are also investigated, e.g., [20, 25, 95, 149].

Solving the stochastic TSP could be beneficial in many applications. Particularly for the military

or military-related applications of TSP, e.g., [8, 82, 91, 106, 116, 147], many uncertain factors

could exist in the route that is planned for a military manned or unmanned aerial vehicle to visit or

monitor a series of targets and then to return to the base. When the traveling time of one or more

arcs in the selected route is much longer than expected due to bad weather condition or enemy’s

presence and interference, the resources to support the mission (e.g. fuel in the tank, or battery

level) might be exhausted before the mission is accomplished. By formulating and solving the

problem from a stochastic perspective, we would consider the uncertainty and analyze the arc cost

scenarios. The risk will then be measured and well controlled so that, at a specified confidence

level, the mission can be accomplished before the resource is running out and the expected total

travel cost or time is minimized as well.
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In this dissertation a risk-constrained TSP model is proposed in which the arc costs are assumed to

be discrete random variables. The model aims to minimize the expected total travel cost. Because

the total cost is just a summation of costs on all utilized arcs, we can use the mean costs of arcs

to construct the objective function, producing only a deterministic model. In the presence of the

described uncertainty, however, it might not be appropriate to simply pursue the optimal expected

total cost. When the costs of one or more arcs are higher than their expected values, the risk

would exist and the total cost might exceed the limit that can be accepted. Thus, a solution with a

higher expected cost but lower risk would be preferred over ones with much higher risk of being

overcostly. The problem then cannot be modeled by a deterministic TSP after adding the risk

requirements. Hence risk constraints are added in the expected total cost minimization problem

so that the risk of the solution is well controlled at a specified confidence level with Conditional

Value-at-Risk (CVaR), which is a common coherent risk measure. Although there exist many

other risk measures (e.g., Value at Risk (VaR), Entropic Value at Risk, etc.), we choose to use

CVaR because of it computational tractability, modeling flexibility and close relationship to VaR,

which makes it a popular risk measure widely used in multiple areas (e.g., [6, 117, 148]). Different

from our approaches, many other studies also have focused on the stochastic TSP with random

arc costs. Solving stochastic routing problems were proposed by [140] via the sample average

approximation method, where random samples are used to generate estimates for the expected

objective function. With limited scenarios generated, however, the true optimal solution might not

be achieved by this sampling method. A dynamic TSP is considered by [136] where arc costs are

unknown ahead of time except its distribution but are revealed dynamically before the decision is

executed. An approximate linear programming model was employed to help a salesman choose

his next destination. A heuristic solution instead of an exact optimal solution was also applied in

this case.

In this dissertation, an exact algorithm that is based on decomposition and scenario aggregation is
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proposed to evaluate the risk (in terms of total cost) of each route by effectively analyzing a set of

relevant scenarios. Benders feasibility cuts are developed to iteratively remove infeasible solutions

with an unacceptable risk level. The proposed approach can avoid the enumeration of all possible

scenarios and hence is able to deal with large-scale cases, which are supported by the numerical

results. In addition to the application in the TSP, the algorithm could be further generalized to

benefit other stochastic network optimization problems in which some information regarding the

arcs/links can be modeled as discrete random variables.

The remaining of the section is organized as follows. Section 4.1.2 will give the formulation of

risk-constrained traveling salesman problem. Exact solution algorithms based on Benders decom-

position will be presented in Section 4.1.3. Section 4.1.4 will show the numerical experiments by

using the proposed algorithms.

4.1.2 Problem Formulation

Given a network G = (N ,A), where N denotes the set of nodes and A represents the set of arcs;

we assume that the nodes are indexed by i = 1, 2, ..., n.

A classical (deterministic) traveling salesman problem is shown as follows,

[TSP]: min
∑

(i,j)∈A

cijxij (4.1a)

s.t.
∑

j:(i,j)∈A

xij = 1, i = 1, 2, ..., n (4.1b)

∑
i:(i,j)∈A

xij = 1, j = 1, 2, ..., n (4.1c)

wi − wj + nxij ≤ n− 1, 1 < i 6= j ≤ n (4.1d)

xij ∈ {0, 1}, ∀(i, j) ∈ A (4.1e)

wj ≥ 0, ∀j(j > 1) (4.1f)
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where all parameters (e.g., arc cost cij) are assumed to be deterministic. The objective function

(4.1a) in this formulation is the total travel cost, z, for the traveling salesman. Constraints (4.1b)

and (4.1c) ensure that each node is visited exactly once and constraint (4.1d) is used to eliminate

isolated subtours. Constraints (4.1e) and (4.1f) requires routing variables xij’s to be binary (with 1

meaning chosen and 0 otherwise) and node potentials wj’s to be nonnegative respectively.

In this section, we aim to study a stochastic version of the classic TSP shown in (4.1), where we

assume that the arc/link costs are random variables, denoted by Cij . In addition, we assume that

once the decision/route is made, the traveling salesman will not have further changes en route.

This is reasonable for many real application cases such as disaster rescue routing, military mission

routing, some commercial deliveries, etc., where real-time adjustment is costly, time consuming,

or simply not possible. In this setting, the objective becomes the expected total cost (or travel time)

as follows,

E(Zx) = E

 ∑
(i,j)∈A

Cijxij

 =
∑

(i,j)∈A

E(Cij)xij =
∑

(i,j)∈A

eijxij (4.2)

where Zx, a random variable, is the random total cost given routing decisions x = [xij, (i, j) ∈

A]T; E denotes the expectation function of a random variable; eij , a constant, is the expected cost

of arc (i, j).

Many of stochastic programming models are optimizing the expected values. In this case, the s-

tochastic problem (simply minimizing total expected cost) is nothing different from a deterministic

one, just using the mean cost for each arc. However, the optimal solution/route x̂ from such a pro-

gram could be risky, i.e., that Zx̂ could have a heavy-tailed distribution in favor of the worst cases.

Risk-averse decision makers might prefer to avoid such type of decisions. Hence it is important to

consider and control the risk when making decisions.

One way is to control the variance of Zx, which is one risk measure of the decision. In this

respect, additional constraint, V ar(Zx) ≤ v̄, can be added, or weighted average of the expectation
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and variance of the total cost can be used as the objective function. The two approaches are not

significantly different from the deterministic TSP shown in (4.1), as the former one simply includes

one more constraint, and the latter one is as same as a deterministic case (using different constant

costs), when the costs of each arc are independent. The main disadvantage of using variance as

the risk measure is that it cannot provide many quantitative details on risk evaluations, e.g., the

risky value, the risky probability (or confidence level), the maximum allowed total cost, etc. For

example, the model cannot guarantee avoidance of decisions with possible extreme large total

costs (over the cost threshold) by simply including variance either in the objective function or in

the constraints.

However, those risk evaluation details are usually provided by many other risk measures, such as

Value at Risk (VaR), Conditional Value at Risk (CVaR), Entropic Value at Risk (EVaR), etc. In

this paper, we choose CVaR as the risk measure to fend off risks. Conditional Value at Risk is

a coherent risk measure, which is popular in financial mathematics and risk management, and is

also referred as Expected shortfall (ES), Average Value at Risk (AVaR), or Expected Tail Loss

(ETL). Formulation of CVaR is tractable in terms of computation because it only involves linear

constraints and continuous variables. In addition, solutions from a CVaR-based model also can

provide information of VaR [113, 117], because CVaR is defined upon VaR. In our case, we would

add the following constraints to the original TSP model (4.1) to control the α-level CVaR of total

cost Zx below a certain cost threshold, i.e., L.

η = min
q
{q|P (Zx ≤ q) ≥ α} (4.3a)

ζ = E[Zx|Zx ≥ η)] ≤ L (4.3b)

where η denotes the α-level VaR, i.e., VaRα(Zx), which is also the α-quantile of the random

variable Zx as in (4.3a); ζ represents CVaRα(Zx), which is bounded above by L as shown in

(4.3b). Note that Zx is a function of multiple random variables (the arc costs) and the routing
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decisions, and then constraint (4.3) will require the selection of routes x meet the threshold limit

with a given confidence level, i.e., α.

We assume each individual arc cost, Cij , follows a discrete probability distribution, which has a

sample space Sij = {c1
ij, c

2
ij, . . . , c

|Sij |
ij }. The whole sample/scenario space for the TSP problem

(or the random vector [Cij, ∀(i, j) ∈ A]T) is S =
∏

(i,j)∈A Sij , in which each of the realiza-

tion/outcome indexed by s is a combination of costs of all arcs [cij(s), ∀(i, j) ∈ A]T, and is

associated with probability Ps. Upon these assumptions and notations, by bounding the α-level

CVaR, the Risk-Constrained TSP model is formulated as follows,

[TSP-R]: min
∑

(i,j)∈A

eijxij (4.4a)

s.t. (4.1b) − (4.1f) (4.4b)

η +
1

(1− α)

∑
s∈S

Psts ≤ L (4.4c)

ts ≥
∑

(i,j)∈A

cij(s)xij − η, ∀s ∈ S (4.4d)

ts ≥ 0, ∀s ∈ S (4.4e)

where (4.4c) bounds CVaRα(Zx) (the left hand side) above by threshold L and η is a variable

representing VaRα(Zx). ts, a positive variable, represents the surplus (in terms of total cost) beyond

the threshold for scenario s, and is 0 when the total cost
∑

(i,j)∈A cij(s)xij of scenario s is below the

α-level quantile, i.e.,VaRα(Zx). These special requirements and features are ensured by constraints

(4.4d)-(4.4e).

Note that we need to obtain the surplus ts for all possible scenarios within S as shown in (4.4d). In

addition, all scenarios are involved in the summation to calculate CVaRα(Zx). This will be a hurdle

for applying off-the-shelf commercial optimization solvers (e.g., CPLEX) directly. As discrete

random costs are assumed on the arcs, the size of S grows exponentially as graph size (number of
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arcs) increases. For example, if there are 2 possible costs for each arc, and then |S| = 2|A|, which

means 1 million scenarios for a 20-arc instance, and 1 billion scenarios for a 30-arc instance. Most

computers will not be able to handle the problems even in moderate-sized networks. Therefore, a

better strategy needs to be developed to bypass the size hurdle so that [TSP-R] can be solved at

an acceptable computational cost. First we need to face the fact that it is not possible to get all

possible scenarios involved. Hence we need to resort some novel approach to reduce or aggregate

the scenarios but still yield the exact optimal solution of [TSP-R]. Note that CVaRα(Zx) is also

a function of x, and only part of the elements are nonzeros in a feasible solution (a Hamiltonian

cycle). This means only part of the elements are the sources of uncertainties, because zero elements

(unselected arcs) do not contribute to the total cost. Hence this fact hints that a decomposition

algorithm could be able to reduce the problem size significantly. In the following section, we will

discuss the details of this approach and how this fact can be taken advantage to develop efficient

exact solution algorithms based on decomposition.

4.1.3 Exact Solution Algorithms

Once a TSP solution (a Hamiltonian cycle) is found, the evaluation of its risk level only requires

information of the arcs within the cycle and is easier than checking all possible scenarios. Hence

it is enough to know the joint distribution of the costs of arcs in the Hamiltonian cycle. As many

common assumptions, we also treat that the random arc costs are independent of each other.

4.1.3.1 Generating Benders feasibility cuts by solving subproblem

Benders decomposition (BD) in this situation is a good fit as it can separate TSP and risk evalu-

ation. BD is a common row generation method which involves splitting a problem into a master

problem and a subproblem and reaches the optimal solution iteratively. Here we utilize the same
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idea to see by generating feasibility cuts to be incorporated in the solution space of the TSP while

looking into a risk evaluation problem.

The original problem is relaxed first by eliminating the CVaR constraints to form the relaxed master

problem [RMP] which includes variables x = {xij|(i, j) ∈ A} and {wi|i ∈ N\{1}} only, shown

as follows,

[RMP]: min

 ∑
(i,j)∈A

eijxij

∣∣∣∣(4.1b)− (4.1f),
∑

(i,j)∈A

bijxij ≤ b0

 . (4.5)

The [RMP] is almost identical to a standard TSP (except the additional feasibility cuts), which can

be solved by the off-the-shelf commercial solvers and let the optimal solution be x̂ = {x̂ij|(i, j) ∈

A}.

Given the solution from a [RMP], x̂, the remaining task is to evaluate the risk associated with the

route defined by the solution. Subproblem [SP] evaluates the risk by calculating its corresponding

α-level CVaR to determine the feasibility of the route. Note that only continuous variables are

involved in the [SP], which is the following feasibility check problem.

[SP]: min 0 (4.6a)

s.t. η +
1

(1− α)|S̄|
∑
s∈S̄

ts ≤ L (4.6b)

ts + η ≥
∑

(i,j)∈A

cij(s)x̂ij, ∀s ∈ S̄ (4.6c)

ts ≥ 0, ∀s ∈ S̄ (4.6d)

η ≥ 0 (4.6e)

where, for convenience, we assume all arc costs’ sample spaces are equally big and follows discrete

uniform distribution. S̄ denotes the set of all related scenarios when x̂ is given, and |S̄| = 2|N |

since any [RMP] solution would include exactly |N | arcs, assuming that the cardinality of the

72



sample spaces are 2. Then for each arc, there are a high cost hij and a low cost lij . Let v and

u = {ui|i = 1, 2, ...} be the dual variables associated with the constraints (4.6b) and (4.6c),

respectively. Then the dual subproblem [DSP] is given as follows,

[DSP] max
∑
s∈S̄

∑
(i,j)∈A

cij(s)x̂ijus − Lv (4.7a)

s.t. us −
1

(1− α)|S̄|
v ≤ 0, ∀s ∈ S̄ (4.7b)∑

s∈S̄

us − v ≤ 0 (4.7c)

us ≥ 0, ∀s ∈ S̄ (4.7d)

v ≥ 0 (4.7e)

A lower bound (LB) of [TSP-R] is obtained by solving the [RMP]. An upper bound (UB) of [TSP-

R] is then given by the summation of the LB and the objective function value of [SP], which

is solved with x̂ fixed to be the optimal solution of [RMP]. Apparently the UB is always equal

to LB, which means the optimal condition is always satisfied in regards to optimal solutions of

[RMP]. However, when the [RMP] generates the solutions which render the [SP] infeasible, which

means the CVaR of route exceeds loss of limit, the solutions are then infeasible to [TSP-R]. It can

be observed that the [DSP] cannot be infeasible since the trivial solution u = 0, v = 0 is always

feasible. Therefore, the infeasible [SP] would correspond to an unbounded [DSP], and infeasibility

cuts need to be developed to remove these solutions.

It’s easy to calculate the total travel cost of scenario s, cs =
∑

(i,j)∈A cij(s)xij , when the route is

known. Sort the indices of these scenario costs so that c1 ≥ c2 ≥ ... ≥ c|S|, and C = [cs, ∀s ∈ S]T.

Let b = d−1 = 1
(1−α)|S̄| and bdc and dde represent the integer part of d and d+1, respectively. Then

we have the following theorem.
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Theorem 4.1.

b

bdc∑
s=1

∑
(i,j)∈Ā

cij(s)xij + (1− bbdc)
∑

(i,j)∈Ā

cij(dde)xij − L ≤ 0 (4.8)

is a valid Benders feasibility cut to the [TSP-R], where Ā denotes a set of arcs included in the

given route.

Proof. Note that only linear programming (LP) is considered in the [DSP] model with all the

integer variables determined by [RMP]. In addition, the feasible region of the dual formulation

does not depend on the solution of [RMP]. An extreme direction can be found: r = (ru, rv) =

(b, b, ..., b, (1 − bbdc)b, 0, ..., 0, 1) where the number of b is bdc. Based on Bender decomposition,

when the [DSP] has an unbounded feasible region, the Benders feasibility cut

C ru − Lrv ≤ 0 (4.9)

has to be satisfied to make the [DSP] bounded.

As discussed before, the [DSP] is unbounded if an infeasible solution is obtained. The feasibility

of a solution can be determined by comparing the CVaR at a specified probability α with the cost

limit L. Note that the CVaR is exactly equal to the objective function value of a reformulated

subproblem, which has the objective function as the left hand side of (4.6b) and constraints of

(4.6c)-(4.6e). The dual of this subproblem is formed as the [DSP] with the term Lv removed in

(4.7b) and v fixed to be 1 in (4.7c) and (4.7d). By solving the reformulated dual subproblem we

have:

CVaRα(Zx) = b

bdc∑
s=1

cs + (1− bbdc)cdde. (4.10)

It can be observed that the equation (4.10) is in accordance with the definition of CVaR: the ex-
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pected cost of worst scenarios.

Apparently if a route obtained from [RMP] has CVaRα(Zx) > L, the inequality (4.8) is violated

and thus the [DSP] is unbounded. As in the BD algorithm, the feasibility cut of (4.9), i.e. (4.8) will

be generated and added to [RMP]. While being used in our problem, this method would encounter

two difficulties. One is in regard to determining the feasibility of a solution. In order to do this,

we compute the CVaR value of its total cost based on the sets of scenarios which have the worst

costs, as shown in (4.10). When the size of problem increases, however, it would take a plenty

of computational time to obtain the exact CVaR value. In a 20-node network, for example, any

Hamiltonian route would contain exactly 20 arcs and there are 220 cost scenarios in total. Assume

that the confidence level is 90%. It’s then needed to construct as many as 220×(1−90%) ≈ 104858

worst-cost scenarios and calculate their expected cost to obtain the CVaR. The other difficulty with

the method is that, it is impractical to enumerate the cost of each arc in the worst scenarios, which

is required to generate the coefficients in the feasibility cut (4.8). To overcome these difficulties,

we propose another method to more efficiently evaluate the feasibility of [RMP] solutions and

generate corresponding feasibility cuts.

4.1.3.2 Alternative valid Benders feasibility cuts (TBC) using an LB of CVaR

We note that a [RMP] solution would be infeasible if an LB of its CVaR exceeds the limit L.

We construct a set of scenarios from S̄ as follows to generate this LB: The worst-cost scenario

occurs when high costs are spent on all the arcs in a given route, and the corresponding total

cost is c =
∑

(i,j)∈Ā hij , where Ā denotes the set of arcs included in the route. Other scenarios

are generated by taking high costs for a subset of Ā and low costs for others. For example, |N |

scenarios can be found when exact one arc has low cost and the others has high costs, and
(
|N |
2

)
scenarios are produced when low costs are spent on two arcs. So on so forth and dde scenarios can
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then be generated by selecting up to k(k < |N |) arcs at low costs.

Note that the expected cost of these scenarios would be no more than that of the worst scenarios,

i.e. CVaR. Let δij = hij − lij be the difference between high and low cost for each arc. Assume

that the arc from node i to node j has low cost in βij out of dde scenarios and high cost in the

others. The following LB of CVaR is then generated to determine the infeasibility of a solution:

LCVaRα(Zx) =
1

dde
∑

(i,j)∈Ā

(ddehij − βijδij) ≤ CVaRα(Zx) (4.11)

An alternative feasibility cut is then developed as follows:

Theorem 4.2.
1

dde
∑

(i,j)∈Ā

(ddehij − βijδij)xij − L ≤ 0 (4.12)

is a valid Benders feasibility cut to our problem.

Proof. As described in the Section 4.1.3.1, the Benders feasibility cut (4.9) has to be satisfied

to make the [DSP] bounded or the [SP] feasible. Reorder the indices of C so that c1, c2, ..., cdde

represent the costs of the scenarios that are constructed for the LCVaR. The feasibility cut (4.12)

can then be derived from (4.9). When a [RMP] solution has LCVaRα(Zx) > L, the inequality

(4.12) is violated and will be added to the [RMP].

Although the LCVaR is not exactly equal to the expected cost of the highest-cost scenarios, its good

approximation of the CVaR can still be applied to efficiently determine if a solution is infeasible

or not.

The calculation of the exact CVaR is necessary if and only if the LCVaR of its cost does not exceed

L but the exact CVaR does. Due to the difficulty of generating the coefficients in (4.8), we generate
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the following combinatorial cut for the purpose of route elimination:

∑
(i,j)∈Ā

xij ≤ |N | − 1 (4.13)

Apparently the arcs in the set Ā are not allowed to be included in one Hamiltonian route in the

presence of (4.13). Although this combinatorial cut would be expected to suffer low efficiency,

our computational experiments in the next section demonstrate that it is not necessary to calculate

the exact CVaR in most iterations while the LCVaR can be alternatively used to evaluate solutions

more efficiently and generate the stronger cut (4.12).

4.1.3.3 Improved Benders feasibility cuts (IBC)

The Benders feasibility cut described above is constructed based on the set of arcs included in the

given route. The improvement of the cut can be made by introducing the other binary variables

regarding the other set of arcs.

Theorem 4.3.
1

dde
∑

(i,j)∈Ā

(ddehij − βijδij)xij +
∑

(i′,j′)∈A\Ā

li′j′xi′j′ − L ≤ 0 (4.14)

is a valid improved Benders feasibility cut to our problem.

Proof. Assume that a route satisfies the constraint (4.8), and the total dde scenarios is generated for

computing the LB of CVaR as follows: For the arc which is also included in the presolved route,

i.e. (i, j) ∈ Ā, low cost occurs in βij out of dde scenarios and high cost in the others. For the other

arcs, i.e. (i′, j′) ∈ A\ Ā, low cost occur in all dde scenarios. The expected cost of these generated

scenarios is also no more than CVaR. Thus the cut (4.14) would be also satisfied for the route.
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4.1.3.4 Implementing Benders Decomposition in the Branch-and-cut scheme

The BD algorithm can be implemented in two ways with the developed Benders feasibility cuts

(TBC and IBC). One is regard to the traditional BD approach. Specifically, the [RMP] is solved

with the branch and cut algorithm to optimality in each iteration. The solution is optimal to the

[TSP-R] should the CVaR requirement be satisfied; otherwise, a feasibility cut is generated and

added to the [RMP]. Within this method, however, a lot of candidate (binary) solutions would be

revisited in the search tree of solving [RMP] in each iteration. Additionally, the optimal solution

of our original problem would probably have been visited and discarded for many times, since its

objective function value is usually worse than that of the current [RMP]. Another approach is now

generally performed for the BD algorithm in the solvers, like CPLEX, by using callback functions.

Along the branch-and-cut process of solving the [RMP], every candidate solution in the search tree

is evaluated according to the CVaR requirement. The feasible one with the objective value better

than that of the current incumbent is considered as the new incumbent and produces a new upper

bound (UB). Otherwise, a TBC or IBC is added if any infeasible candidate solution is found with

an unsatisfactory CVaR, giving the problem a new LB. The convergence of the LB and UB would

then lead to the optimal solution.

The second approach that keeps the BD algorithm in only one search tree would be expected to be

more efficient than the first one. This has also been confirmed by our computational test. In the

next section, we only report the computational results of implementing the BD algorithm in the

second way. The method is summarized as follows,
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Algorithm 3 BD algorithm for TSP with CVaR constraints.
1: Set UB = +∞, LB = −∞ and the optimal route x∗ = null

2: while (UB − LB > 0) do

3: Solve [RMP] and obtain a candidate integer solution: x̂ = {x̂ij|(i, j) ∈ A} with the objec-

tive value ẑ.

4: Ā ={the set of arcs included in the route defined by x̂}

5: Compute the LB of CVaR, i.e. LCVaRα(Zx̂), with (4.11).

6: if LCVaRα(Zx̂) > L then

7: Reject the incumbent and add the Benders feasibility cut (4.12) or (4.14) to the model.

8: Update LB by solving the updated [RMP].

9: else

10: Compute the exact CVaR value.

11: if CVaRα(Zx̂) ≤ L then

12: Accept (x̂, ẑ) as the new incumbent and set UB ← ẑ,x∗ ← x̂.

13: else

14: Add the combinatorial cut (4.13) to the [RMP] to remove the current infeasible solu-

tion.

15: end if

16: end if

17: end while
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4.1.4 Numerical Experiments and Results

4.1.4.1 Experiment Setup

Numerical experiments and computational results are presented in this section on solving the [TSP-

R]. The described BD algorithm is used to solve the problem in a set of directed graph networks

with different numbers of nodes and arcs. The two different cuts, traditional Benders feasibility

cut (TBC) and improved Benders feasibility cut (IBC), are applied in the algorithm to respectively

solve the problems. The computational cost of using these two cuts will be shown and compared.

A set of graphs with different sizes of 5, 10, 15 and 20 nodes are used for the computational

experiments. By assigning different outgoing degrees ni to each node i, we form respective graphs

with low, medium and high densities. Then the tail nodes are randomly and repeatedly generated

for each node until the degree is fulfilled. We manually connect all the nodes in each graph with

arcs to form a cycle route to avoid the existence of isolated nodes. The expected traveling cost of

each arc is randomly generated from a uniform distribution on [30,40] for all sizes of graphs. In

addition, we randomly generate a value between 1 and 29 for each arc representing the deviation

between its low cost or high cost and the expected cost. The levels of confidence are set as α =

0.90, 0.95 and 0.99, respectively. The limits of cost are set as 250, 400, 600 and 800 for the graphs

with the sizes of 5, 10, 15 and 20 nodes, respectively.

All programs are implemented in Microsoft Visual C++ 2010 while calling CPLEX 12.5 (Con-

cert Technology). All computational experiments are run in Microsoft Windows 7 Professional

operating system on a Dell Desktop with Intel Core i7-2600 CPU 3.40GHz and 8GB RAM.
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4.1.4.2 Computational Results

The computational results obtained by using different methods or feasibility cuts are shown in

Table 4.1, where computational time (in columns named “Time”) are recorded in seconds, and

OFV denotes the optimal objective value.

In the table, column “DIRECT” shows the results when we call CPLEX to solve [TSP-R] directly

with no decomposition strategy applied. We can quickly obtain the optimal solution in a small-

sized network up to 15 arcs. However, the problem size becomes too large to be handled by our

computer as the number of arcs is increased to 20 or more.

In contrast, the problem in all the generated networks can be solved at a reasonable cost by ap-

plying the the BD algorithm. By checking the LB of CVaR for current [RMP] optimal solution

to generate TBC or IBC to the [RMP] and computing the exact CVaR to generate combinatorial

cuts, the BD algorithm can iteratively solve the problem to obtain the optimal solution satisfying

the cost limit requirement given a specified confidence level. Columns “BD-TBC” and “BD-IBC”

in Table 4.1 show the computational results based on applying Traditional Benders cuts (TBC)

discussed in Section 4.1.3.2 and Improved Benders cuts (IBC) in Section Section 4.1.3.3 respec-

tively. Figure 4.1 shows the lower bounds of CVaR values in the process of solving the problem

in a 15 × 150 network (15 nodes and 150 arcs) at the confidence level of 0.99. In most iterations,

the LB of CVaR can be used to more efficiently evaluate the current solution and generate a corre-

sponding cut. The exact CVaR is calculated only when its LB is found below the limit of total cost

as shown in the figure at 18th, 31st, and 40th iterations.

The optimal objective function value (OFV) of the reliable routing problem in each network is also

shown to demonstrate the lowest cost we could spend in satisfying the requirement of specified

confidence level.
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Table 4.1: Computational results for [TSP-R] by using Benders Decomposition algorithm

Nodes Arcs Confidence Level
DIRECT BD-TBC BD-IBC

Time(sec) OFV Time(sec) OFV Time(sec) OFV
0.90 0.078 ? 0.078 ? 0.09 ?

10 0.95 0.109 ? 0.094 ? 0.09 ?
0.99 0.109 ? 0.14 ? 0.08 ?
0.90 41.996 180 0.156 180 0.12 180

5 15 0.95 115.59 ? 0.203 ? 0.19 ?
0.99 87.605 ? 0.187 ? 0.16 ?
0.90 ∗ 0.093 171 0.09 171

20 0.95 ∗ 0.374 173 0.41 173
0.99 ∗ 0.234 173 0.39 173

0.90 ∗ 0.765 350 1.107 350
50 0.95 ∗ 1.904 ? 1.544 ?

0.99 ∗ 1.794 ? 1.246 ?
0.90 ∗ 1.28 335 1.111 335

10 70 0.95 ∗ 1.716 341 1.31 341
0.99 ∗ 11.591 349 5.819 349
0.90 ∗ 0.203 317 0.156 317

90 0.95 ∗ 0.64 319 0.78 319
0.99 ∗ 1.966 326 3.651 326

0.90 ∗ 1.155 498 1.154 498
90 0.95 ∗ 13.937 513 12.745 513

0.99 ∗ 1158.05 ? 137.467 ?
0.90 ∗ 1.732 489 2.028 489

15 120 0.95 ∗ 1.779 489 1.935 489
0.99 ∗ 22.822 500 16.437 500
0.90 ∗ 1.092 470 1.139 470

150 0.95 ∗ 1.217 470 1.295 470
0.99 ∗ 6.287 476 10.111 476

0.90 ∗ 64.436 695 138.731 695
100 0.95 ∗ 10809.5 ? 3534.05 ?

0.99 ∗ 2501.97 ? 186.716 ?
0.90 ∗ 173.466 621 172.366 621

20 200 0.95 ∗ 52.213 621 52.182 621
0.99 ∗ 11.482 623 10.514 623
0.90 ∗ 61.121 619 61.457 619

300 0.95 ∗ 16.395 619 16.317 619
0.99 ∗ 214.372 625 2061.54 625

∗ Problem size is too large to be solved by our computer
? The problem is infeasible

Figure 4.2 shows the process of bound contraction in the instances of 15× 120 and 15× 90 at the

confidence level of 0.99, respectively. The UB of the problem is initialized as +∞ and changed

while the first incumbent solution is found. Then CPLEX keeps updating the incumbent until the

82



0 5 10 15 20 25 30 35 40

560

580

600

620

640

660

680

700

720

Iteration

C
V

aR

LB of CVaR
Exact CVaR
Limit of Loss

Figure 4.1: Using CVaR and its LB to evaluate the feasibility of current [RMP] solution
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Figure 4.2: Bound contraction process in the instances of 15× 120 (left) and 15× 90 (right) with
α = 0.99

optimal solution is obtained. Although no obvious difference of the computational time between

the use of TBC and IBC is observed, the higher efficiency of the IBC can still be confirmed by

its fewer-iteration convergence. Our results show that the developed IBC can also identify those

infeasible problems (e.g. in the 15 × 90 and 20 × 100 networks) more efficiently than the TBC.

This is because the improved cuts can remove the infeasible integer solutions and reduce the search

space in a faster way.
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Figure 4.3: Computational results of reliable routing problem in the 10× 70 network

Figure 4.3 shows the relation among the optimal expected cost, limit of loss and confidence level

in the generated 10 × 70 graph. Given a confidence level, the route with less expected total cost

can be selected when more resource, i.e. extended limit of loss, is available. Also, higher cost

would be expected to investigate on the routes with higher reliability. The problem turns out to be

infeasible when it is impossible to reach the required reliability with the available resource.

4.2 Stochastic Traveling Salesman Problem with Continuously Distributed Random Arc

Costs

This section considers the risk-constrained stochastic traveling salesman problem with random

arc costs. In the context of stochastic arc costs, the deterministic traveling salesman problem’s

optimal solutions would be ineffective because the selected route might be exposed to a greater risk

where the actual cost can exceed the resource limit in extreme scenarios. We present a stochastic

model of the traveling salesman problem that incorporates risk management. Value at Risk and
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Conditional Value at Risk are respectively applied to measure and control the risk experiencing

overly costly scenarios. We propose a novel cutting plane method to find the minimum-cost route

in the stochastic environment while the risk level of the route is controlled by bounding the risk

measures. Computational experiments are conducted to demonstrate the properties of the proposed

models and the performance of the proposed cutting plan algorithm.

4.2.1 Introduction

Traveling Salesman Problem (TSP) has been extensively studied in operations research because of

its close connection to other optimization problems and wide practical applications. Given a list

of cities, the objective of TSP is to find the minimum-cost Hamiltonian cycle of visiting each city

exactly once. The history and early works on the TSP can be seen in [33, 51, 77, 119], while recent

reviews are found in [7, 94, 108].

While a number of TSP’s parameters such as node and arc failures have been modeled as random

variables to address various uncertainties in real-world problems, we consider travel cost as the

uncertain element in this paper. In the stochastic context, the random cost of each arc is assumed

to follow a given/konwn probability distribution. The stochastic TSP, seeking the minimal expected

total cost, is essentially a deterministic TSP which uses the expected cost for each arc because of

the homogeneity and additivity of the expectation function. However, the expectation only tells one

aspect of the total travel cost. For any two routes with the same expected total cost, the variabilities

of travel costs can be very different. For example, it is better to take a road with a lower speed

limit but few traffic jam other than a road that has a higher speed limit but is frequently subject

to constructions and accidents, given that the two road has the same expected travel time. In the

presence of stochastic travel costs with such different variabilities, simply minimizing the expected

total travel cost or time would be inadequate in these cases. When the costs of one or more arcs
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have very large variances, it would increase the risk that the total cost exceeds the acceptable limit.

A solution with a slightly higher expected cost but a much lower risk would be preferred other than

the one with a low cost but much higher risk of being overcostly.

In this section, we study a risk-constrained stochastic TSP model to help find the route with the

least expected total cost while the risk of exceeding the budget is controlled at a certain level. We

assume that a directed graph is available and the travel cost/time incurred to move from one node

to another is an independent random variable following a distribution with fixed parameters, i.e.,

distinct mean and variance. All the other parameters in the graph are considered deterministic. In

addition, we assume that the route is determined before the random travel costs are known with

certainty and no re-route optimization is allowed due to time constraints or applicability; the a

priori optimal route must be followed once selected. To be general and as the first step, from the

various continuous distribution families (e.g., gamma, exponential, student’s t, etc.), we choose to

use normal distribution for the random arc cost because it has been the most widely applied of all

distributions and developed as a standard of reference for many statistic problems. Moreover, we

will discuss how our models and solutions algorithm are actually general and can be used to treat

cases with other probability distributions.

For controlling the risk associated with the route, one way is to control the fluctuations of its

total travel cost by modeling a variance-constrained TSP. However, the main disadvantage of this

approach is that it cannot provide quantitative details on risk evaluations such as the risky value and

the risky probability (or confidence level), etc., to perform the risk management. For example, the

model cannot quantify how bad the cost or loss could be in a planned route. As the cost of each arc

is independently and normally distributed, we will demonstrate in Section 4.2.3 that the total travel

cost is also a random variable with a normal density and the risk management in the stochastic TSP

can be achieved by controlling the possible heavy tail in the total cost distribution. With the ability

of quantifying worst-cost scenarios for the outcomes of a random variable, value at risk (VaR) and
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conditional value at risk (CVaR) can be applied as another risk measures for the stochastic TSP.

Both VaR and CVaR are commonly used in many engineering areas involving uncertainties, such

as military, airspace, and finance [117]. Given a confidence level α ∈ (0, 1), the VaR at confidence

level α is given by the smallest number l such that the probability that the loss exceeds l is at most

(1− α). By calculating the expectation/average of the outcomes that exceed VaR, CVaR provides

a more conservative measure to manage the risk of having extreme loss or being overcostly.

We consider our main contributions as follows. We introduce a risk-constrained stochastic TSP

with independent arc costs normally distributed, and address its advantages in real-world applica-

tions over deterministic TSP. We model the risk-constrained stochastic TSP to control the risk of

planned routes by using explicit risk measures, i.e., VaR or CVaR. In addition, we study cutting

plane methods for exact solution algorithms to solve the risk-constrained stochastic TSP, and com-

pare its computational performance with other methods including linear reformulation and general

branch and cut algorithms. In addition to the application in the TSP, the algorithm could be further

generalized to benefit other stochastic network optimization problems in which some information

regarding the arcs/links can be modeled as normally distributed random variables.

As follows is the structure of this section. In Section 4.2.2 we review related works. Section 4.2.3

models the mathematical formulation of the STSP with a risk constraint included to bound the

VaR or CVaR. Various exact algorithms are derived in Section 4.2.4 for solving the problem. In

Section 4.2.5, we introduce our numerical experiment setup and report computational results.

4.2.2 Literature Review

Researchers have studied the TSP under various uncertain parameters. [65] considers uncertain

demand from the nodes, and allow the agent to skip nodes with no demand, and aims to find a

priori tour with the minimal expected travel cost. [76] formulate this a priori TSP with uncertain
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demands as a two-stage stochastic program and solve it using a branch-and-cut approach.

The TSP with random arc cost have also been widely researched. [81] and [18] consider the dis-

tances between the nodes nondeterministic. [70] apply the random link TSP with large node size

in statistical physics where each arc is weighted as a Boltzmann factor. [68] model vehicle routing

problems in which both arc travel times and node service times are stochastic. A branch-and-

cut scheme embedded in a Monte Carlo sampling-based procedure is proposed as their solution

method. A dynamic TSP with stochastic arc costs are proposed by [136] to allow the salesman

to observe outgoing arc realizations at each city before deciding what place to visit next. A prob-

abilistic TSP with deadlines is studied in [28] and time constraints in the context of stochastic

customer presence is addressed.

Related studies to our work can be seen in [66], [134], and [32], which also considers a stochastic

TSP with independent and normally distributed arc times. Their objective is to maximize the prob-

ability of completing the tour by a deadline, which would be inappropriate when it is unnecessary

to achieve the lowest risk. We address in the following sections that the expected total cost could

be largely increased as the probability increases a little. By using the risk management tool, VaR

or CVaR, we can obtain the minimum expected cost route with the risk controlled at a desired

level. Another related work is in [77] which considers vehicle routing problems with stochastic

service and travel times. A chance constrained model is proposed to minimize the routing costs

while ensuring that the probability of the total cost exceeding a given number is at most equal to

a confidence level. A general branch and cut algorithm is described to solve the problem. Specifi-

cally, if a violation is detected at a candidate integer solution, i.e. the total cost exceeding budget,

route or subtour elimination constraints are added to exclude the infeasible solution. Although the

method can solve moderate problems to optimality, we demonstrate in the following sections that

it would suffer from low efficiency of eliminating infeasible routes in large networks.
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The pros and cons of VaR and CVaR for risk management are discussed by [117] regarding sta-

bility, simplicity, or specific problems, etc. [45] present an overview of VaR and its usage in

finance and optimization. [114] optimize VaR and CVaR simultaneously. [120] present a two-

stage stochastic integer program using CVaR. In this paper we model VaR or CVaR constraints to

estimate and control the risk associated with the optimal route planned for the traveling salesman.

Our model can reduce to deterministic TSP when the risk management constraint is relaxed.

4.2.3 Problem Description

Given a network G = (N,A), where N denotes the set of nodes indexed by i or j = 1, 2, ..., n and

A represents the set of arcs. In this paper we aim to study the risk-constrained TSP where the cost

of each arc (i, j) is independently and normally distributed and denoted by Cij . The objective is to

minimize the expected total cost as follows,

E(Zx) = E

 ∑
(i,j)∈A

Cijxij

 =
∑

(i,j)∈A

E(Cij)xij =
∑

(i,j)∈A

eijxij (4.15)

where Zx is a random variable representing the random total cost given routing decisions x =

[xij, (i, j) ∈ A]T; Cij is the random variable normally distributed with mean eij and variance vij , E

denotes the expectation function of a random variable. Without the requirement of risk controlling,

therefore, the stochastic TSP minimizing the expected total travel cost/time can be modeled by its

deterministic counterpart as follows,

[DTSP]: min
∑

(i,j)∈A

eijxij (4.16a)

s.t.
∑

j:(i,j)∈A

xij = 1, i = 1, 2, ..., n (4.16b)

∑
i:(i,j)∈A

xij = 1, j = 1, 2, ..., n (4.16c)
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∑
i∈S,j∈S

xij ≤ |S| − 1, S ( N, |S| > 1 (4.16d)

xij ∈ {0, 1}, ∀(i, j) ∈ A (4.16e)

where all parameters except the arc costs are assumed to be deterministic. Constraints (4.16b) and

(4.16c) ensure that each node is visited exactly once and constraint (4.16d) is used to eliminate

isolated subtours. Constraints (4.16e) require routing variables xij’s to be binary (with 1 meaning

chosen and 0 otherwise).

Note that a feasible route for the TSP would include a set of arcs to form a Hamiltonian cycle.

As described above, the costs of the arcs in the network are random variables which have normal

probability densities with distinct means and variances. The probability distribution of the random

total cost, Zx, can be obtained from the summation of costs of all the arcs included in the route.

For independent normally distributed arc costs, we have the following remark regarding Zx.

Remark 4.1. In the stochastic TSP with arc costs independently and normally distributed, the total

travel cost has a normal probability density with the mean and variance respectively equal to the

summation of the expected value and variance of the costs incurred in all included arcs, i.e., that

Zx ∼ N

 ∑
(i,j)∈A

eijxij,
∑

(i,j)∈A

vijxij



Note that for normally distributed random variables, both VaR and CVaR are proportional to the

standard deviation (see [114]). Given a TSP solution (a Hamiltonian cycle), we can express the the

VaR and CVaR of its total travel cost in terms of means and variances on individual arcs as follows,

VaRα(Zx) = min
l
{l|P (Zx ≤ l) ≥ α} =

∑
(i,j)∈A

eijxij + k1(α)(
∑

(i,j)∈A

vijxij)
1
2 (4.17)

CVaRα(Zx) = E[Zx|Zx ≥ VaRα(Zx)] =
∑

(i,j)∈A

eijxij + k2(α)(
∑

(i,j)∈A

vijxij)
1
2 (4.18)
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where VaRα(Zx) denotes the α-level VaR, i.e., the α-quantile of the random variableZx; CVaRα(Zx),

i.e., the α-level CVaR, equals the average of worst-case costs that exceeds the α-level VaR. k1(α)

and k2(α) are constants and their values are determined by following two equations,

k1(α) =
√

2erf−1(2α− 1)

k2(α) = (
√

2πexp(erf−1(2α− 1))2(1− α))−1

where erf(t) = 2√
π

∫ t
0
e−τ

2
dτ is the error function based on normal distribution, and erf−1(t) is its

corresponding inverse function.

In addition to the [DTSP], we would model VaR or CVaR contraints for risk-constrained stochastic

TSP to fend off the risk of having extreme loss or being overcostly. Specifically, the VaR constraint,

VaRα(Zx) ≤ L, is modeled so that the probability of the total cost exceeding a certain cost thresh-

old, L, is below the confidence level α; the CVaR constraint, CVaRα(Zx) ≤ L, is modeled to

control the α-level CVaR of total cost below the threshold L.

A nonlinear programming model, [STSP-NLP], is then formed to find the minimum-expected-cost

route with the risk of loss being managed by the either VaR or CVaR constraint.

[STSP-NLP] min
n∑
i=1

n∑
j=1

eijxij (4.19a)

s.t. (4.16b)− (4.16e) (4.19b)

∑
(i,j)∈A

eijxij + k(α)

 ∑
(i,j)∈A

vijxij

 1
2

≤ L (4.19c)

The objective function (4.19a) in this formulation also seeks to minimize the expected total cost

for the problem. The constraints (4.19b), which are equivalent to that in the [DTSP], are used

to ensure that a Hamiltonian cycle is planned for the traveling salesman. The risk management
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constraint (4.19c) is included where the parameter k(α) is equal to k1(α) when the VaR technique

is applied and k2(α) for CVaR, respectively.

4.2.4 Algorithms for solving the STSP

We note that the difficulty of solving the proposed [STSP-NLP] mainly comes from the risk man-

agement constraint (4.19c), without which the problem would reduce to the deterministic TSP. In

this manuscript we will propose and discuss various strategies to deal with this constraint in order

to address the difficulty. First we consider a special case for the constraint, that is, the variances of

arc costs are proportional to the means and propose Theorem 4.4 which indicates that in this case

the problem becomes a mixed integer linear program (MILP).

Theorem 4.4. Let f(x) =
∑

(i,j)∈A eijxij + k(α)
(∑

(i,j)∈A vijxij

) 1
2 −L : x ∈ R. Then f(x) = 0

defines a hyperplane in the affine space of x ∈ R, if vij
eij

= h, where h is a scalar constant.

Proof. Substitute vij with heij and we have, f(x) =
∑

(i,j)∈A eijxij+k(α)
√
h
(∑

(i,j)∈A eijxij

) 1
2−

L. Solve f(x) = 0 and we can obtain

∑
(i,j)∈A

eijxij = L+ [k(α)2h− k(α)
√

4Lh+ k(α)2h2]/2 (4.20)

which defines a hyperplane.

It can be observed that the hyperplane (4.20) defined by the risk management constraint is a contour

of the objective function in our proposed risk-constrained stochastic TSP. Therefore, the optimal

solution of [DTSP] would be optimal to the [STSP-NLP] if the solution is within the half space

below the hyperplane, and otherwise the [STSP-NLP] would be infeasible.
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When the special case is not applied, on the other hand, the feasible region of the [STSP-NLP] LP

relaxation is then neither concave nor convex as indicated by Theorem 4.5. It is then unlikely to

adopt the idea of approximating a convex set with a joint half-space combination, as used in the

Kelley’s cutting plane method [67], to solve the problem.

Theorem 4.5. f(x) =
∑

(i,j)∈A eijxij+k(α)
(∑

(i,j)∈A vijxij

) 1
2−L : x ∈ P̃ is a concave function,

where P̃ is the feasible region of [DTSP] LP relaxation.

Proof. Let v = [vij, (i, j) ∈ A]T. The Hessian matrix of the function f(x) is,

H(x) = −k(α)

4

 ∑
(i,j)∈A

vijxij

− 3
2

vvT

the following observation is straightforward:

xTH(x)x < 0, ∀x ∈ P̃

which indicates that H(x) is negative definite and thus f(x) is concave.

In the rest of this paper we will consider that the variances of arc costs are not proportional to

the means and propose and compare various strategies to address the difficulty of the proposed

problem.

4.2.4.1 A Linearization Approach

The first method we present here is to develop and solve a mixed integer linear programming

(MILP) model by linearizing the risk management constraint in the [STSP-NLP]. Since we only

have binary variables, we can take advantage of properties of bilinear and quadratic functions of
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binary variables. First, we move the expectation on the left of nonlinear constraint (4.19c) to

the right. Second, we square both sides as they are all nonnegative. These two steps will create

bilinear and quadratic terms, i.e., xijxi′j′ and x2
ij respectively. The bilinear term can be linearized

by introducing additional binary variables yij,i′j′ while enforcing constraints (4.21d)–(4.21e). The

quadratic term is equivalent to the binary variable itself. Hence, we can transform the [STSP-NLP]

to an equivalent mixed integer linear program, [STSP-MILP], formulated as follows,

[STSP-MILP] min
n∑
i=1

n∑
j=1

eijxij (4.21a)

s.t. (4.16b)− (4.16e) (4.21b)∑
(i,j)∈A

aijxij − 2
∑

(i,j)∈A

∑
(i′j′)∈A′

eijei′j′yiji′j′ ≤ L2 (4.21c)

xij − yiji′j′ ≥ 0 ∀(i, j) ∈ A, (i′, j′) ∈ A′ (4.21d)

xi′j′ − yiji′j′ ≥ 0 ∀(i, j) ∈ A, (i′, j′) ∈ A′ (4.21e)∑
(i,j)∈A

eijxij ≤ L (4.21f)

yiji′j′ ≥ 0 ∀(i, j) ∈ A, (i′, j′) ∈ A′ (4.21g)

where aij = k2(α)vij + 2Leij − e2
ij is a constant determined by the arc (i, j), cost threshold or

budget limit L and the confidence level α, and A′ = A\{(i, j)} denotes a set of arcs so that

A′
⋃
{(i, j)} = A and A′

⋂
{(i, j)} = ∅. The risk management constraint (4.19c) in the [STSP-

NLP] is linearized and replaced by the constraints (4.21c)-(4.21g) with a new set of continuous

variables y included. Note that we add constraint (4.21f) to ensure the right side (when we take the

sqaure) is a nonnegative value. This is in accordance with the original model, because any solution

with
∑

(i,j)∈A eijxij > L would violate the risk constraint (4.19c).

It can be easily observed that in the [STSP-MILP], the total number of constraints (4.21d) and

(4.21e) equals |A| ∗ (|A| − 1) and would largely increase with the number of arcs. For small-sized

networks, many off-the-shelf commercial MILP optimization solvers (e.g., CPLEX) can efficiently
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solve the model to optimality. When the problem size keeps growing, however, a huge number of

constraints would be generated, and it would take an unacceptable computational cost even just to

obtain a feasible route.

4.2.4.2 The Branch and Cut Algorithm

A general branch and cut algorithm is introduced in [77] to solve chance constraint vehicle routing

problems with stochastic travel times. The problems are firstly solved with the chance constraint

relaxed. Integer solutions are evaluated, and marked as illegal routes while the relaxed constraint

is violated. A cut is then added to the problem to eliminate the illegal solution. Here we utilize

the same idea to iteratively generate route elimination constraints by separating TSP and risk eval-

uation. Specifically, the [STSP-NLP] is first relaxed by removing the risk management constraint

(4.19c) to form the relaxed master problem [RMP] as follows,

[RMP] min
∑

(i,j)∈A

eijxij (4.22a)

s.t. (4.16b)− (4.16e) (4.22b)∑
(i,j)∈A

bijxij ≤ b0 (4.22c)

The [RMP] is almost identical to the deterministic TSP [DTSP] except the additional route elim-

ination constraints (4.22c), which can be solved by the off-the-shelf commercial solvers. Given

the solution from a [RMP], x̂ = {x̂ij|(i, j) ∈ A}, the risk evaluation is performed with the route

defined by the solution. Note that when the TSP solution or a Hamiltonian route is known, the VaR

and CVaR of the random total cost Zx can be easily obtained by (4.17) and (4.18), respectively.

When the VaR or CVaR exceeds the cost threshold, the route is marked to be infeasible and we
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generate the following combinatorial cut for the purpose of route elimination:

∑
(i,j)∈Ā

xij ≤ |N | − 1 (4.23)

where Ā represents the set of arcs included in the route and |N | is the number of nodes in the

input graph. The validity of the cut (4.23) is straightforward. Specifically, |N | arcs would be

included in any TSP route to form a Hamiltonian cycle; when the route is infeasible according to

the risk management constraint, the arcs in the set Ā are not allowed to be simultaneously included

in one Hamiltonian route in the presence of (4.23); any other solutions with at least one of xij’s

((i, j) ∈ Ā) equal to 0, would not be eliminated by the combinatorial cut.

A branch and cut algorithm can then be applied to solve the STSP. Specifically, in the branch-and-

cut scheme of solving the [RMP], every candidate solution in the search tree is evaluated according

to the VaR or CVaR requirement. The feasible one with the objective value better than that of the

current incumbent is considered as the new incumbent and produces a new upper bound (UB).

Otherwise, the combinatorial cut (4.23) is added should the VaR or CVaR constraint be violated,

giving the problem a new LB. The convergence of the LB and UB would then lead to the optimal

solution. The algorithm is summarized as follows,
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Algorithm 4 Branch and Cut algorithm.
1: Set UB = +∞,LB = −∞ and the optimal route x∗ = null

2: while (UB− LB > 0) do

3: Solve the [RMP], and get a candidate integer solution x̂ = {x̂ij : (i, j) ∈ A} and its

objective function value ẑ.

4: Compute VaR or CVaR by the (4.17) or (4.18), respectively.

5: if VaRα(Zx̂) ≤ L or CVaRα(Zx̂) ≤ L then

6: Accept (x̂, ẑ) as the new incumbent and set UB← ẑ,x∗ ← x̂.

7: else

8: Reject the incumbent and add the combinatorial cut (4.23) to the model.

9: Update LB by solving the updated [RMP].

10: end if

11: end while

This branch and cut algorithm could be expected to solve small-sized and some moderately-sized

network problems to optimality by iteratively removing the infeasible nodes in the branching tree.

While in large-sized networks, there could be a huge number of infeasible routes needed to be

assessed and eliminated before reaching the optimal route with desired reliability, which renders

the method very low efficiency.

4.2.4.3 A Cutting Plane Algorithm

In this paper we mainly propose a cutting plane (CP) algorithm to more efficiently remove those

“risky” routes that violate the risk management constraint by taking advantage of the structure of

the constraint. Given an arbitrary lower bound of the original problem which is denoted as z̄, a

valid cut can be generated as described in the following proposition.
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Proposition 4.1. ∑
(i,j)∈A

vijxij ≤ [(L− z̄)/k(α)]2 (4.24)

is a valid cut to the STSP.

Proof. Denote the optimal objective value of STSP as z∗ and apparently we have z∗ =
∑

(i,j)∈A eijxij ≥

z̄. The cut (4.24) is more relaxed than the constraint (4.19c) and is then valid to be included in our

problem.

It can be observed that the strength of cutting plane (4.24) increases as its right hand side decreases

(i.e., the lower bound z̄ increases). The cut is the strongest when z̄ = z∗ but invalid when z̄ > z∗. A

bisection method can therefore be considered to find the target right hand side so that the strongest

and valid cut is achieved. Specifically, a window [l, r] is first initialized with l = [(L − z̄)/k(α)]2

and r = [(L− ẑ)/k(α)]2 to define the interval for the binary search, where z̄ is the optimal cost and

ẑ is the highest cost of the deterministic TSP, respectively. Assume that the [DTSP] feasible region

is close and bounded, then both z̄ and ẑ are finite numbers. The cut with the right hand side equal

to the middle value within the window is then evaluated, that is,
∑

(i,j)∈A vijxij ≤ (l + r)/2, by

solving the [RMP] with this cut being added. If a feasible solution is obtained from the [RMP] and

satisfies the risk management constraint, then the search continues on the left half of the window

and the solution provides an UB for the STSP; The right half of the window is also eliminated

when the [RMP] is infeasible; The search continues on the right half and a LB is obtained, on the

other hand, should the solution obtained from [RMP] violates the VaR or CVaR requirement. This

process is repeatedly performed until UB−LB < ε.

While the convergence of UB and LB is expectable from the bisection method by iteratively elim-

inating half interval of the searching window, the performance of the method is limited because a

large number of iterations would be required when the window is considerably large. To address
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this limitation, we develop a CP method to iteratively add a route elimination constraint to (4.22c),

which continuously decreases the size of the [RMP] feasible region until its optimal solution sat-

isfies the VaR or CVaR requirement, and obtain the following proposition.

Proposition 4.2. The STSP can be solved within a finite number of iterations by iteratively solving

the [RMP] and adding the cut (4.24), with z̄ equal to the optimal objective function value of

[RMP], as a route elimination constraint in (4.22c).

Proof. Let x̄ν denote the optimal solution of the [RMP] in the νth iteration and z̄ν be the corre-

sponding objective function value, providing an LB for the STSP. Apparently the solution is also

optimal to the STSP should it satisfy the constraint (4.19c). Otherwise, the [RMP] is updated with

the cut
∑

(i,j)∈A vijxij ≤ [(L − z̄ν)/k(α)]2 being added, which would cut off the solution x̄ν as

well as other points that violate the cut from the [RMP] feasible region. Because of the close-

ness and boundedness of the [RMP] feasible region, a finite number of cuts need to be generated

to continuously reduce the size of the feasible region until the optimal solution to the STSP is

achieved.

As the route elimination constraint (4.24) is invalid if z̄ is replaced with an upper bound, we are

unable to incorporate the cut in the branch and cut scheme. Instead of evaluating the candidate

integer solutions in the branch and cut algorithm, the CP algorithm iteratively measure the risk of

[RMP] optimal solutions by computing their VaRs or CVaRs. The solution is optimal to the STSP

should the VaR or CVaR requirement be satisfied; otherwise, the cut (4.24) is generated and added

to the [RMP] to be solved in the next iteration. The method is summarized as follows,
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Algorithm 5 Cutting Plane Method
1: while (1) do

2: Solve the [RMP], and get the optimal solution x̄ = {x̄ij : (i, j) ∈ A} and its objective

function value z̄.

3: Compute VaR or CVaR by the equations (4.17) or (4.18), respectively

4: if VaRα(Zx̄) ≤ L or CVaRα(Zx̄) ≤ L then

5: The current solution is optimal and break the loop.

6: else

7: Generate the cut (4.24) and add it to the [RMP].

8: end if

9: end while

We note that the cut (4.24) used in the CP method has a higher dimension (dim = |A|−1) than the

combinatorial cut (4.23)(dim = |N |−1). In addition, it eliminates from solution space not only the

current [RMP] optimal solution with unsatisfying risk level but also those with the cost variance

exceeding its right hand side value. The strength of the proposed cutting plane is therefore expected

to be improved compared to the combinatorial cut. Let conv(P ) represent the convex hull of the

[RMP] feasible region and x̄ be the optimal solution violating the risk management constraint with

the objective function value z̄. Then the developed cut is added as illustrated in Figure 4.4. A larger

lower bound z̄′ can be obtained in the next iteration, resulting in a stronger cut (10′) as shown in

the figure. We repeatedly solve the [RMP] and generate the cuts until achieving the optimal route

x∗ which satisfies the VaR or CVaR requirement.

It can be observed that the CP algorithm seeks to find the optimal route with the risk well man-

aged by controlling the variance of the random total travel cost. However, the method differs

from modeling a variance-constrained TSP, that is, simply including a variance constraint (i.e.,

Var(Zx) ≤ v∗) to the deterministic TSP, in both measuring and controlling the risk. Specifically,
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Figure 4.4: Developed cutting plane.

Note: conv(P ) is the convex hull of the feasible region of [RMP]; (4.19c) represents the concave
set defined by the risk management constraint. x̄ is the optimal solution of the current [RMP] and
z̄ is the corresponding cost; The cut (4.24) is generated and added to the [RMP], which is then
solved to obtain a new optimal solution x̄′ with a larger cost z̄′, leading to a stronger cut (10′).

the variance-constrained TSP measures the risk by evaluating the cost fluctuations or how much the

cost deviates from its expected outcome, but what decision makers are really concerned would be

how bad the worst-cost scenarios could be, which on the other hand can be quantified by the VaR

or CVaR technique in the CP algorithm. While in both methods the risk associated with the route

is controlled by bounding the variance of the travel cost, the threshold, v∗, cannot be appropriately

determined in the variance-constrained model according to the information on risk evaluations.

The CP method, however, can well analyze the risk evaluation details, including the confidence

level, the mean and variance of total cost of the route evaluated, and cost limit in each iteration,

and repeatedly updates and reduces the threshold until the optimal route is eventually found with

the α-VaR or α-CVaR of its total cost controlled below the cost limit.

Compared to the cut (4.24) controlling only the variance for the purpose of risk management, here

we propose another cut to manage the risk by taking into account both the expected value and the
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variance of total travel cost, as stated in the following proposition.

Proposition 4.3. Let z̄ denote the optimal cost of the [RMP], then the cut

∑
(i,j)∈A

[eij + k(α)2vij/(L− z̄)]xij ≤ L (4.25)

is valid and stronger than the cut (4.24).

Proof. The risk management constraint (4.19c) can be reformulated to

∑
(i,j)∈A

eijxij + k(α)

 ∑
(i,j)∈A

vijxij

 ∑
(i,j)∈A

vijxij

− 1
2

≤ L

According to (4.24), the validity of the inequality (4.25) can be confirmed by substituting the

second
∑

(i,j)∈A vijxij above with [(L − z̄)/k(α)]2. Assume that an arbitrary point x̃ ∈ conv(P )

is removed from solution space by the cut (4.24), which indicates that
∑

(i,j)∈A vijx̃ij > [(L −

z̄)/k(α)]2. It is straightforward that
∑

(i,j)∈A eijx̃ij ≥ z̄ since z̄ is the optimal cost within conv(P ).

Therefore the solution x̃ also violates the inequality (4.25), proving that the cut (4.25) is stronger

than (4.24).

Although a stronger route elimination constraint can be generated from the cut (4.25), the updated

[RMP] still provides a LB for the STSP because of the validity of the constraint to the proposed

problem. Therefore Proposition 4.2 and Algorithm 5 are both valid when (4.25) is used in place of

the weaker cut (4.24), while the better performance of the CP method can be expected.
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4.2.5 Numerical Experiments and Results

Numerical experiments and results of different methods are presented in this section on solving

the STSP. The algorithms are coded in Microsoft Visual C++ linked with CPLEX 12.5. All the

programs are run in Microsoft Windows 7 Professional operating system on a Dell Desktop with

Intel Core i7-2600 CPU 3.40GHz and 8GB RAM.

4.2.5.1 Input data generation.

We consider different settings to precisely evaluate the performance of each algorithm. The STSP

are modelled in a set of networks which are generated with different numbers of nodes and arcs. For

each size of 10-,50-,100- and 200-nodes, we respectively produce the networks with low, medium

and high densities. In order to do so, we randomly generate an integer value from three different

value ranges, as shown in 4.2 and assign it as the outgoing degree to each node. To provide an

initially connected graph, we manually generate a cycle route that uses all nodes in N .

Table 4.2: Input graphs.

Nodes
Density of outgoing degrees

Low Medium High

10 4-6 6-8 8-9
50 5-15 20-30 35-45
100 10-20 45-55 80-90
200 20-30 90-110 160-180

The mean and variance of arc costs in the graphs are produced to define their normal distributions.

Specifically, the mean cost of each arc is randomly generated in the range of [30,40] and the

variance in [1,1600]. The levels of confidence are set as α = 0.90, 0.95 and 0.99, respectively.
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4.2.5.2 Computational results.

The computational results obtained by using different methods on the STSP are shown in Table

4.3, where computational times are recorded in seconds. We would note that the only difference

between the STSP with VaR and CVaR requirements regards to the constant k(α), whose value

would not significantly affect the performance of each algorithm. Therefore, in Table 4.3 we

only report the results of solving the problem with the CVaR constraint included to compare the

algorithms present in Section 4.2.4.

In the table, columns “Node” and “Density” describe the size of each input graph for the STSP

and column “L” gives each problem the cost threshold which is arbitrarily determined. Column

“Linearize” shows the results when we call CPLEX to solve the linearized model [STSP-MILP].

For the small-sized networks with 10 nodes and various densities, the number of arcs is at most 90

according to Table 4.2. We can solve the problems to optimality at accepted computational costs.

When the network grows to 50 nodes or more, hundreds or thousands of arcs would be included

and the number of constraints (4.21d) and (4.21e) would be enormous. As a consequence, the

problem size would become too large to be handled by our computer.

Column “Branch and cut” shows the computational time of using the branch and cut algorithm as

described in Section 4.2.4.2. No significant improvement is observed compared to calling CPLEX

to solve the [STSP-MILP]. The algorithm can solve small-sized networks at low computational

costs but is limited while the network size or the level of confidence increases. The reason is that,

along the process of branch and bound to solve the relaxed problem, the generated combinatorial

cut is not efficient enough to prune infeasible solutions in the search tree. Our computational

results show that in most networks even a feasible solution cannot be found after exhaustive search

(after 3600 seconds).
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Table 4.3: Solution times, in CPU seconds, for solving the STSP with different algorithms.

Node L Density α Linearize B&B&C
CP(I) CP(II)

Itn time(sec.) Itn time(sec.)

10 450

Low
0.9 2.762 0.203 2 0.318 2 0.312
0.95 5.882 5.819 3 0.487 3 0.375
0.99 5.569 5.959 2 1.344 2 0.281

Medium
0.9 2.964 0.109 1 0.135 1 0.14
0.95 5.912 0.14 2 0.281 2 0.296
0.99 138.461 1178.2 3 0.398 2 0.296

High
0.9 9.079 0.156 1 0.638 1 0.296
0.95 631.244 - 5 1.255 3 0.608
0.99 628.198 - 3 0.661 2 0.375

50 1800

Low
0.9 - - 5 4.852 2 0.767
0.95 - - 3 3.083 2 0.768
0.99 - - 2 1.344 2 0.568

Medium
0.9 - 4.555 2 4.375 2 4.496
0.95 - - 4 10.897 4 9.139
0.99 - - 11 31.56 6 17.463

High
0.9 - 0.811 1 2.02 1 2.589
0.95 - - 2 4.162 2 4.94
0.99 - - 6 31.766 6 27.581

100 3300

Low
0.9 - - 3 4.995 2 6.505
0.95 - - 2 6.061 2 7.285
0.99 - - 2 3.836 2 4.165

Medium
0.9 - - 7 186.582 7 102.539
0.95 - - 6 90.691 3 28.439
0.99 - - 4 48.683 2 10.826

High
0.9 - - 2 19.484 2 17.503
0.95 - - 6 164.509 3 64.631
0.99 - - 10 274.526 5 115.676

200 6500

Low
0.9 - - 5 73.742 2 19.032
0.95 - - 4 49.948 2 15.803
0.99 - - 3 19.299 2 21.118

Medium
0.9 - - 2 42.369 2 71.979
0.95 - - 2 170.582 2 47.284
0.99 - - 6 563.774 4 170.889

High
0.9 - - 2 101.782 2 136.383
0.95 - - 2 103.124 2 97.61
0.99 - - 2 244.25 2 368.985

Note: The dash in the table indicates that no feasible solution is obtained within 3600 sec.

The performance of the cutting plane algorithm is shown in columns “CP(I)” and “CP(II)” in the

table with the cuts (4.24) and (4.25) being respectively applied. The number of iterations as well as

the computational time of the method are shown in the columns “Itn” and “time”. Compared to the
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branch and cut algorithm that is expected to obtain the optimal solution by visiting the search tree

only once, the cutting plane method would visit the tree for more times before finding the optimal

solution. The generated cutting planes, however, is much more efficient than the combinatorial

cut and can quickly remove infeasible solutions. Our computational results show that only a few

iterations are needed to find the optimal solution and the problem in each generated network with

up to 200 nodes can be solved at a reasonable cost. The better computational performance obtained

from “CP(II)” for most instances confirms the higher strength of the cut (4.25).

The process of using the CP method is well demonstrated in Figure 4.5. The optimal objective

values (OFV) of the [RMP] in each iteration is shown when the VaR and CVaR are respectively

used for the risk management. The network with 50 nodes and medium density is applied and the

level of confidence is set as 99%. The CVaR technique is known to be more conservative than

VaR; this means that at the same confidence level, the higher total travel cost would be expected to

select the route that satisfies the CVaR requirement than VaR. In addition, the more conservative

method (i.e., CVaR) would expect more iterations in the CP algorithm before reaching optimality

as shown in the figure. However, this is not the necessary scenario as the route elimination cuts

(4.24) and (4.25) generated in each iteration of the algorithm is stronger when the CVaR is applied.

Figure 4.6 shows the change in the probability distributions of total travel cost when the VaR or

CVaR risk management is applied to the STSP, respectively. It can be observed that the route

solved from the deterministic TSP [DTSP] is highly exposed to the risk that the actual cost can

exceed the cost limit. The risk is well managed as the stochastic model is applied while expected

total cost is not significantly increased as shown in the figure. The probability that the total travel

cost exceeds the cost limit is controlled below the confidence level α by the VaR requirement.

When the CVaR is applied, the risky level is further reduced so that the average of the percentage,

1−α, of worst cases is bounded by the cost limit. Along the process of running the CP algorithm,

the change in the standard deviations (square root of variances) of total costs is represented by the
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Figure 4.5: The change in objective function values of updated [RMP]. Input graph: 50 nodes with
high density.

dash lines in Figure 4.6(right) while the VaR and CVaR techniques are respectively applied. Each

solid line in the figure shows the decrease of VaR or CVaR achieved from the CP method until the

cost limit (1800) is crossed.

Figure 4.7 shows the relation between the optimal expected cost and confidence level in the gen-

erated network with 200 nodes and medium density. Higher cost would be expected to investigate

on the routes with higher reliability. The problem turns out to be infeasible when it is impossi-

ble to reach the required reliability with the available resource. The expected total cost is largely

increased as the probability increases a little from 97% to 98%, which indicates that it would be

inappropriate to maximize the probability of completing the tour by a deadline (or a cost limit) in

our case.
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4.2.6 Conclusions

In this paper, we proposed a STSP with the travel cost of each arc independently and normally

distributed. A nonlinear programming model is formulated for the STSP to find the route with

minimum expected cost while the risk is controlled at a confidence level. Both VaR and CVaR

were respectively applied as the risk measures to evaluate the reliability of selected routes. A CP

algorithm was developed to address the computational difficulty of the problem, and our computa-

tional results demonstrated that it can solve the STSPs in all the generated networks at reasonable

computational costs and has overwhelming performance beyond the linearization method and the

branch and cut algorithm.

4.3 Reliable Routing Problems under Uncertain Topology

Network routing problems are often modeled with the assumption that the network structure is

deterministic, though it is often subject to uncertainty in many real-life scenarios. In contrast, we

study the traveling salesman and the shortest path problems with uncertain topologies modeled by

arc failures. We present the formulations that incorporate chance constraints to ensure reliability

of the selected route considering all arc failure scenarios. Due to the computational complexity

and large scales of these stochastic network optimization problems, we consider two cutting plane

methods and a Benders decomposition algorithm to solve them. We also consider to solve the

reformulations of the problems obtained by taking the logarithm transformation of the chance

constraints. Numerical experiments are performed to obtain results for comparison among these

proposed methods.
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4.3.1 Introduction

In this paper, we consider two stochastic routing problems: the traveling salesman problem (TSP)

and the shortest path problem (SPP), with deterministic arc costs but uncertain topologies. TSP

and SPP have been extensively studied and used in a wide range of applications, while both of them

could face the challenges from the uncertainty of arc existence. A road that links two cities might

become impassable due to severe accidents or road constructions. Inclement weather might cause

significant delays or cancellations of flights between airports. A wired connection might physically

break between computers and hence cut off the communication. It is easy to name quite a few more

similar cases involving uncertain topology or connectivity. In the presence of such uncertainty, the

solutions of deterministic TSP/SPP could be un-implementable or lead to tremendous losses if

they are implemented in practice. In this perspective, we propose chance-constrained stochastic

TSP/SPP models and develop exact solution algorithms to find the optimal routes that are reliable

enough when experiencing the uncertain topologies. In each chance-constrained model, we assume

that the route are determined before the topology is known with certainty and after knowing the

topology no re-routing is allowed due to time constraints or applicability.

Both TSP and SPP are among the most widely researched network optimization problems because

of their close connections to other optimization problems and practical applications. In determinis-

tic cases, the objective of each problem is to seek the least-cost route given a network with certain

arc costs and topology. In the TSP, the route (also a cycle) should pass each and every node ex-

actly once (cf. [72]), while the SPP, which solves the optimal path from the origan to destination,

does not have such requirement (cf. [5]). The parameters of the networks in many real-world ap-

plications are usually uncertain. Many researchers have devoted efforts to handle the uncertainty

issues from different perspectives. [19] try to find the optimal location of an agent’s home in the

stochastic TSP with nondeterministic arc travel costs. [65] considers uncertain demands from the
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nodes, allows the agent to skip nodes with no demand, and aims to find an a priori a tour of all

nodes with minimum expected travel cost. [74] formulate this a priori TSP with uncertain de-

mands as a two-stage stochastic program and solve it using the integer L-shaped method ([75]).

In addition to the stochastic TSP, researchers have also studied the SPP under various uncertain

network parameters. [96] proposes a method to calculate the shortest expected distance when the

arc travel times are independently distributed and the method can simultaneously compute the path

reliability. [131] define path optimality with the probability that a path is shorter than any other

path in the network. [11] use an approximation approach based on the combination of dynamic

programming and heuristics to solve the SPP with random arc costs and additional budgetary con-

straints. [111] use a dynamic programming algorithm to solve the SPP in which the arc costs are

accumulated while the graph is traversed. [48] study a formulation based on the adaptive feedback

control for the SPP with correlated arc costs. [102] develop a label-correcting algorithm and a

pseudo-polynomial approximation scheme for the SPP with on-time arrival probability.

In contrast to these works on uncertain arc costs or node demands, we study the two routing

problems (i.e., TSP and SPP) with uncertain network topologies. Our models assume that any arc

exists with a certain probability, and there are only two possible scenarios for a route connected by

a set of arcs: success or failure. The nonexistence or failure of any single arc within the selected

route a priori would result in the failure of the entire route due to the lack of recourse. Our

objective is to measure the risk of failure and to find the lowest-cost route with an acceptable level

of reliability, with the assumption that the Bernoulli trial of each arc’s existence is independent of

each other for convenience. Similar uncertain topology is studied by [25] and [152], while both

of them investigate risk-constrained stochastic network flow problems and modeled them as linear

programs in which the arc flows are continuous rather than binary. In particular, they both aim

to find the minimum-cost flows that meet the risk requirement of losing flows as some arcs might

be unavailable, where conservative upper bound loss and exact flow loss are respectively used.
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However, in this paper, the flow loss is discrete (either 1 or 0), because the route is not applicable

(the flow loss being 1) if there is any arc becoming unavailable while implementing the routing

decision and no loss would be incurred otherwise. Another difference between this paper and the

aforementioned two is that this paper considers complete information (i.e., 2|A| scenarios) of the arc

failure uncertainty while the aforementioned two use sampled scenarios (i.e., a subset of {0, 1}A).

In this paper, we design cutting plane algorithms and reformulations to handle the exponentially

growing number of scenarios.

Our models are useful in situations where both the travel cost and the reliability are important to

the decision makers. Consider the case that a city is struck by some natural disasters, as described

in Chapter 1, where a more reliable route needs to be planned in advance to prevent the route

failure with a desired level of confidence. In addition we would note that there is always a tradeoff

between minimizing the total cost and maximizing the reliability. Solving our proposed models

would benefit decision makers to find a good balance in between. By setting different confidence

levels, the corresponding optimal costs can be obtained and therefore the tradeoff between the total

cost and the risk level can be achieved. We will show in the following sections that the cost could

be significantly saved by slightly decreasing the route reliability, and on the other hand, the risk

could be largely reduced by selecting another route with only a little higher total cost.

While considering independent failures of all arcs, the number of scenarios of a reliable routing

problem would exponentially increase as the number of arcs in the input network increases, and

the problem of a large-sized or even moderate-sized network would be very difficult to be solved.

[140] propose solving stochastic routing problems via the sample average approximation method,

where random samples are used to generate estimates for the expected objective function. With

limited scenarios generated, however, this sampling method would not expect to find the exact

optimal solution 100% of the time. In this paper, we aim to develop exact solution algorithms for

the routing problems under uncertain topologies.
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We summarize the contributions of this paper as follows: (1) We introduce and model the reliable

routing problems with arc failures and address its real-world applications; (2) We develop exact

algorithms for solving the chance-constrained routing problems, e.g., stochastic TSP and SPP; (3)

In order to avoid directly dealing with the exponentially growing number of scenarios, we take

advantage of implicit scenario enumeration, scenario aggregation and disaggregation and design

efficient cutting plane algorithms to solve the problems; (4) We reformulate the problems by taking

the logarithm transformation of chance constraints and replacing them with a knapsack constraint;

and (5) We apply the sensitivity analysis while perturbing the level of confidence to show the

tradeoff between the total cost and the reliability.

Following is the structure of the section. In Section 4.3.2, we present mathematical formulations

of the chance-constrained TSP and SPP with uncertain topologies. Exact algorithms are then

developed in Section 4.3.3 to solve the proposed problems; their efficiencies are also discussed.

In Section 4.3.4, we introduce our numerical experiment settings and report computational results.

We compare the proposed algorithms in solving the reliable routing problems.

4.3.2 Problem Formulation

Given a network G = (N,A), where N denotes the set of nodes and A represents the set of arcs,

we assume that the nodes are indexed by i = 1, 2, ..., n for convenience. As we are focusing

on routing problems in this paper, we use a binary variable, xij , to denote whether arc (i, j) is

chosen as a part of the route (1: yes; 0: no). In this paper, we assume that every arc has only

two states: normal operation or failure (with probability pij), therefore making it a Bernoulli trial.

Since we assume that all arc failures are independent to each other, the whole sample space S for

all possible topologies (structure of the problem’s network) is {0, 1}A. Each scenario is indexed

by s and the occurring probability is denoted by Probs. In order to model this uncertainty, we
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introduce a parameter Y s
ij to denote whether the arc (i, j) fails in scenario s ∈ S (1: yes; 0: no),

and then Probs =
∏

(i,j)∈A(pij)
Y sij(1− pij)1−Y sij . In the stochastic setting, we assume that the route

will fail if any arc within the route fails. Hence we introduce another binary variable ls to denote

whether the route will fail in scenario s (1: yes; 0: no). Because both xij and Y s
ij only take binary

values, we can use the following constraint to define the route failure indicator,

xijY
s
ij ≤ ls, ∀(i, j) ∈ A, s ∈ S,

where the left hand side is true (being 1) if and only if the arc is not only selected in the route

but also fails. As the left hand side only takes binary values, the binary requirement on ls can be

relaxed. Once we can determine the state of each possible route for any scenario, we can easily

evaluate the risk indicating how likely the selected route will fail if the decision is implemented,

by calculating
∑

s∈S Probsls. In particular, we will define our stochastic routing problems in the

two following subsections. For convenience, sets, parameters and variables are summarized in

Table 4.4.
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Table 4.4: Summary of Parameters, Sets, and Variables.

Sets and Parameters

N The set of all nodes in the network, indexed by i = 1, 2, . . . , n

A The set of all arcs in the network, indexed by (i, j)

S The set of all possible scenarios of the network topologys, i.e., {0, 1}A

Y s
ij The arc-status parameter which equals 1 if arc (i, j) fails in scenario s

pij The parameter denoting the failure probability of arc from node i to node j

Probs The probability that the scenario s will occur

α The constant denoting the level of confidence that the path will be successful

cij The cost of travelling from node i to node j

Decision Variables

xij The binary variable that equals 1 if travelling from node i to node j

uj The node potential variable that eliminates subtours

ls The binary variable that equals 1 if the selected route fails in scenario s

4.3.2.1 Chance-constrained TSP

The chance-constrained TSP (CCTSP) can be formulated as follows:

[CCTSP] min
∑

(i,j)∈A

cijxij (4.26a)

s.t.
∑

j:(i,j)∈A

xij = 1, i = 1, 2, ..., n (4.26b)

∑
i:(i,j)∈A

xij = 1, j = 1, 2, ..., n (4.26c)

ui − uj + nxij ≤ n− 1, 1 < i 6= j ≤ n (4.26d)
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xij = {0, 1}, ∀(i, j) ∈ A (4.26e)

uj ≥ 0, ∀j(j > 1) (4.26f)

xijY
s
ij ≤ ls, ∀(i, j) ∈ A, s ∈ S (4.26g)∑

s∈S

Probsls ≤ 1− α (4.26h)

The objective function (4.26a) in this formulation seeks to minimize the cost for the problem. The

constraints (4.26b)-(4.26d) are identical to the standard TSP constraints, where (4.26b) and (4.26c)

ensure that each node is visited exactly once and the Miller-Tucker-Zemlin constraint (4.26d) is

used to exclude subtours (cf. [41]). While alternative models could be used for the subtour elimi-

nation, in this paper we mainly focus on the comparison of different cutting planes in dealing with

the uncertainty in the problem.

Chance constraints are modelled in (4.26g) and (4.26h). Specifically, as mentioned previously, the

left hand side of constraint (4.26h) calculates the probability that the route fails by summing up the

occurrence probability of all failure scenarios. By restricting this probability less than or equal to

(1−α), we can obtain the optimal and reliable route, of which the failure probability is controlled

at a desired level.

4.3.2.2 Chance-constrained SPP

Assuming node 1 and n as the origin and destination nodes respectively, the chance-constrained

SPP (CCSPP) can be formulated as follows:

[CCSPP] min z =
∑

(i,j)∈A

cijxij (4.27a)

s.t.
∑

j:(1,j)∈A

x1j = 1 (4.27b)
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∑
i:(i,n)∈A

xin = 1 (4.27c)

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = 0, i = 2, 3, ..., n− 1 (4.27d)

xij = {0, 1}, ∀(i, j) ∈ A (4.27e)

xijY
s
ij ≤ ls, ∀(i, j) ∈ A, s ∈ S (4.27f)∑

s∈S

Probsls ≤ 1− α (4.27g)

The objective function (4.27a) is identical to that of the CCTSP (4.26a). Constraints (4.27b)-

(4.27d) comprise the SPP. The first two constraints ensure that only one arc on the path comes

from the origin node (4.27b) and one arc goes to the destination node (4.27c). Next, constraint

(4.27d) balances the arcs entering and leaving each node in the network that is neither the origin

nor destination node. The final two constraints (4.27f)-(4.27g) form the chance constraints as

explained previously.

4.3.2.3 Computational Challenges

As is mentioned in the introduction, we assume that the arc failures are independent to each other

in both CCTSP and CCSPP. Let |A| represent the number of arcs in the given network. The total

number of scenarios is then equal to 2|A| since there are two outcomes for each arc, “success” and

“failure”. In the result, the number of constraints of type (4.26g) or (4.27f), which is equal to

|A| · 2|A|, would be exponentially increased with the number of arcs. For example, the number of

the constraints increases from 160 as |A| = 5, to 10,240 as |A| = 10, and to around 20 million as

the network includes only 20 arcs. Most computer solvers will not be able to handle the problems

even in a moderate-sized network. In this paper, we propose exact algorithms to solve the reliable

routing problems at reasonable computational costs.
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4.3.3 Exact methods for solving CCTSP and CCSPP

Note that the reliability or feasibility of a given route can be easily evaluated via computing its

failure probability, as shown in Theorem 4.6. The validity of the theorem can be proved by the fact

that the selected route would fail unless all the included arcs succeed, which has the probability

equal to the product of their success probabilities. Let x̂ be a routing solution to the routing

problems, and Â = {(i, j) ∈ A|x̂ij = 1}, and L(x̂) or LÂ be the Bernoulli random variable of the

route failure, with 1 being a failure and 0 being a success.

Theorem 4.6. The failure probability of a given route is

Prob(LÂ = 1) = 1−
∏

(i,j)∈Â

(1− pij).

The route is unreliable or infeasible if the probability greater than 1− α.

Dealing directly with the exponentially growing number of chance constraints (4.26g-4.26h) and

(4.27f – 4.27g) will be computationally intractable. In this paper, we consider to replace these

direct chance constraints with feasibility cutting planes (i.e., (4.28c), (4.29c)) which are not as

many but still can remove all the infeasible routes and we formulate the master problems (MP) for

both the proposed problems as follows:

[MP-CCTSP] min z =
n∑
i=1

n∑
j=1

cijxij (4.28a)

s.t. (4.26b)− (4.26f) (4.28b)∑
(i,j)∈A

ηξijxij ≤ βξ ξ = 1, 2, ...Ξ (4.28c)
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[MP-CCSPP] min z =
n∑
i=1

n∑
j=1

cijxij (4.29a)

s.t. (4.27b)− (4.27e) (4.29b)∑
(i,j)∈A

µωijxij ≤ νω ω = 1, 2, ...Ω (4.29c)

The constraints (4.28b) and (4.29b) are identical to those in deterministic routing problems. We

include a set of constraints (4.28c) and (4.29c), where ηξij and µωij are the coefficients of correspond-

ing variables, and βξ and νω are the right hand side values, respectively. Different algorithms will

be applied to generate these constraints cutting away all the infeasible or risky routes which are

however feasible for the deterministic TSP or SPP. Algorithms’ performance will be compared and

discussed in a later section.

Building the constraints (4.28c) and (4.29c), however, is challenging because 1) the number of

infeasible routes may be too huge to be enumerated, and 2) it is hard to find the similarity among

these infeasible routes to generate a few of cuts that can remove all the routes. However, actually it

is not needed to initially include all of these constraints in the problems. With them being removed,

we can form relaxed master problems (RMP) for both CCTSP and CCSPP. The initial RMP, which

is identical to the deterministic routing problems, are smaller and easier to be solved. We then

iteratively implement the callbacks and add each of the removed “lazy constraints” as soon as

it becomes violated until the convergence between the upper bound and the lower bound of the

problem is achieved. In this paper, we propose the following methods to construct and add the

cutting planes in different ways.
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4.3.3.1 Combinatorial Cutting Plane

The first method presented here is a combinatorial cutting plane (CCP) method. While the mixed

integer linear programming (MILP) RMP is being solved with the branch-and-bound-and-cut al-

gorithm, the feasibility of any incumbent candidate (i.e., a route) can be evaluated according to

Theorem 4.6. A combinatorial cut will be added to the model should the route be exposed to an

unacceptable risk (i.e., a loss probability higher than 1− α ), as follows,

∑
(i,j)∈Â

xij ≤ |Â| − 1, (4.30)

where, as mentioned earlier, Â is set of arcs representing the currently selected route. Otherwise

the new incumbent will be accepted, resulting in an updated upper bound (UB) of the problem.

The following statement describes the algorithm of CCP method.
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Algorithm 6 Combinatorial cutting plane algorithm
1: Set UB = +∞, LB = −∞

2: while (UB > LB) do

3: Solve the RMP model and get a candidate incumbent: ˆ|vx = {x̂ij : (i, j) ∈ A} and ẑ

4: Let Â = The set of arcs included in the path defined by the incumbent.

5: Calculate P = the failure probability of the incumbent.

6: if P ≤ 1− α then

7: Accept (x̂, ẑ) as the new incumbent and set UB ← ẑ, x∗ ← x̂.

8: else

9: Reject the incumbent and add the combinatorial cut to the model:∑
(i,j)∈Â xij ≤ |Â| − 1.

10: Update LB with the new cut added to RMP

11: end if

12: end while

The CCP algorithm could be applied as an accessible method for moderate-sized network problems

by iteratively removing the “infeasible” incumbent candidate in the solution tree of RMP. While in

large-sized networks, there would be an extremely large number of incumbents in the solution tree

to be visited and evaluated before reaching the optimal and feasible one. The weak combinatorial

cut cannot efficiently remove these routes, and thus a slow convergence of UB and lower bound

(LB) is expected.

4.3.3.2 Combinatorial Cutting Plane using Local Branching

One of the major reasons for the slow converges of CCP method is that the combinatorial cutting

plane (4.30) only cuts off one feasible routing solution (i.e., Â) at each iteration. In order to ac-

121



celerate the speed of combinatorial cutting plane algorithm, we can seek to add multiple or tighter

cuts at each iterations. One way to find multiple infeasible solution is through local branching

(i.e., checking the local solutions, which may be infeasible, around the current solution). We name

this method Combinatorial Cutting Plane Algorithm using Local Branching (CCPLB). In order to

facilitate the discussion, we need to first introduce the following definition, Minimal Infeasible Set

(MIS).

Definition 1. A Minimal Infeasible Set, Ω, is a collection of arcs such that setting xij = 1, ∀(i, j) ∈

Ω will violate the chance constraints (4.26g–4.26h) or (4.27f-4.27g), and excluding any arc from

Ω will satisfy the chance constraints.

In this method, instead of only eliminating the current infeasible node from the solution tree, the

CCPLB method removes the minimal infeasible sets (MIS), allowing the algorithm more efficient

to cut risky routes away.

In order to find the MIS for the network problems in each iteration, we need to resort to a specially

designed solutions space tree, which is constructed in the following manner. Considering that

each arc could be included or not, there are totally 2|A| potential solutions (feasible and infeasible)

in our problem. The tree consists of all these |A|-tuples each of which represent one node. All

the arcs in the network are reordered in the descendant order of failure probabilities. Each tuple

(i.e., a node) is then formed to contain |A| binary numbers and each number indicates whether

the corresponding arc is selected or not (1:yes; 0:no). The left most digit (i.e., binary number) is

representing the arc with the highest failure probability and the right most digit is corresponding

to the arc with the lowest failure probability. There are |A| levels and the γth level represents all

the routes of exactly γ arcs being included (γ ∈ Γ ={the set of all levels in the tree}). In addition,

the tuples that have all the “1”s except for the rightmost “1” in the same positions are branched

from the same parent tuple and form a group. They are placed in the tree so that for any neighbour

child nodes the failure probabilities of the routes in the left are greater than those in the right as
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in Remark 2. From another angle, performing a depth-first search from right to left on this tree

actually is equivalent to counting binary numbers from 0 to 2|A|− 1. A specially designed solution

space tree for a network with 4 arcs is shown in Figure 4.8.

 
0 0 0 0 

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 

1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 

1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 

1 1 1 1 

Level 0 

Level 1 

Level 2 

Level 3 

Level 4 

Figure 4.8: The special solution space tree for CCPLB Algorithm for a network with 4 arcs

Remark 1. In the special solution space tree, the failure probabilities of child tuples (the deeper

level) are always higher than their ancestor nodes.

Remark 2. For any two consecutive nodes/tuples in the same group (i.e., from the same parents),

the failure probability of the left node is higher than the one on the right.

Remark 3. If the current solution, x̂, from relaxed master problem, does not satisfy the chance

constraints, then solutions corresponding to the sibling node(s)/tuple(s) on the left side of the

tuple/node based on x̂ also does not meet the chance constraints.
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Algorithm 7 Combinatorial cutting plane with local branching
1: Set UB = +∞, LB = −∞

2: while (UB > LB) do

3: Solve the RMP model and get a candidate incumbent x̂ and ẑ, and find the corresponding

tuplet ĉ.

4: Let Ĝ ={The set of tuplets in the group which contains ĉ}.

5: Let ĉp = the parent tuple of ĉ.

6: Compute Pĉ = the failure probability of the tuple ĉ.

7: if Pĉ ≤ 1− α then

8: Accept (x̂, ẑ) as the new incumbent and set UB ← ẑ,x∗ ← x̂.

9: else

10: Reject the incumbent. Compute Pĉp = the failure probability of ĉp.

11: while Pĉp > 1− α do

12: Set ĉ← ĉp, and update Ĝ.

13: end while

14: Add MIS Cuts based on all the infeasible tuples CB ⊂ Ĝ.

15: end if

16: end while

Assume that an integer solution x̂ was obtained by solving the RMP and the solution corresponds

to the tuple (1011) in the tree. Then the failure probability of the tuple is calculated as in Theorem

4.6. If the probability is smaller than the allowed level 1 − α, x̂ is accepted as an incumbent.

Otherwise, the feasibility of the local tuples will be checked and more constraints will be added to

the relaxed master problem. In general, the parent tuple (1010) will be firstly considered. If (1010)

is feasible, a series of combinatorial cuts will be generated from the tuple (1011) and the infeasible

sibling tuples (if there is any). On the other hand, if (1010) is infeasible, we will continue to go up
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until a feasible tuple is obtained. As a result, a series of MIS will be found by locally exploring the

solution space of RMP by taking advantage of the special solution space tree, and the combinatorial

cuts will be added to the problem to remove these MIS’s. The algorithm is described as Algorithm

7.

4.3.3.3 Benders Decomposition Method

As is discussed in previous section, the binary restriction on ls can be removed because there are

already binary requirements on xij and failure status Y s
ij . Once xij is fixed, the feasibility checking

problem (chance constraints) is reduced to checking the feasibility of a linear program. Hence it is

natural to consider another well-known and powerful algorithm, Benders Decomposition. Benders

decomposition (BD) is a common constraint generation method which also splits a problem into

a relaxed master problem and a subproblem (SP) and reaches the optimal solution by iteratively

adding cutting planes. Here we utilize the same idea to generate feasibility cuts which will be

incorporated in the solution space of the routing problems by looking into a risk evaluation prob-

lem. Also, the original problem is relaxed first by eliminating the chance constraints in the CCTSP

and CCSPP. Because the subproblem is a feasibility checking problem, we can simply choose a

fixed-value objective function (e.g., 0). Hence the subproblem is formulated as follows,

[SP] min 0 (4.31a)

s.t. ls ≥ x̂ijY
s
ij, ∀(i, j) ∈ A, s ∈ S (4.31b)∑

s∈S

Probsls ≤ 1− α (4.31c)

ls ≥ 0, ∀s ∈ S (4.31d)

Let π and uij be the dual variables associated with the constraints (4.31b) and (4.31c) respectively.
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Then the dual problem of [SP] is formulated as follows,

[DSP] max
∑
s∈S

∑
(i,j)∈A

x̂ijY
s
iju

s
ij + (α− 1)π (4.32a)

s.t.
∑

(i,j)∈A

usij − Probsπ ≤ 0 ∀s ∈ S (4.32b)

usij ≥ 0 ∀(i, j) ∈ A ∀s ∈ S (4.32c)

π ≥ 0 (4.32d)

Note that [DSP] is always feasible as it has a homogeneous form, i.e., all right hand sides are

0. Hence, the only occasion of [SP] being infeasible is when [DSP] has recession directions or

extreme directions. Recall that we can easily determine whether a solution x̂ satisfies the chance

constraints through Theorem 4.6. Once we know x̂ is making [SP] infeasible, we can use a reces-

sion or extreme direction of [DSP] to construct a feasibility cut to be added into the relaxed master

problem in order to eliminate this current infeasible solution and hope to cut off some other infea-

sible solutions. Hence, next, we will focus on how to efficiently construct a recession or extreme

direction of [DSP] without solving any optimization problem.

4.3.3.4 Constructing a Benders’ Feasibility Cut via Scenario Aggregation without Solving Any

Optimization Problem

In the objective function (4.32a), the coefficients of usij is 1 if and only if both x̂ij and Y s
ij are

assigned as 1. This motivates us to focus on special arcs instead of all arcs when solving [DSP].

To facilitate the discussion, we first introduce the following definition of reordered arc set based

on the current solution from [RMP], x̂.

Definition 2. Assume that x̂ is a solution of the [RMP], which represents a route including k

arcs. Let m denote the total number of arcs in the given network. An x̂-reordered arc set is
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a set in which arcs 1(x̂), 2(x̂), ..., k(x̂) corresponds to those included in the route, Â, and the

remaining m − k arcs are given random orders after k. Equivalently, the followings hold for the

un-ordered sets that {1(x̂), 2(x̂), . . . , k(x̂)} = {(i, j) ∈ A|x̂ij = 1} and {k + 1(x̂), . . . ,m(x̂)} =

{(i, j) ∈ A|x̂ij = 0}.

Because handling all scenarios individually is very time consuming, we aggregate the scenarios in

the sample space {0, 1}A into m subsets (i.e., S1(x̂), S2(x̂), S3(x̂), . . . , Sm(x̂)) in the following way:

(a) the first subset includes all the scenarios in which arc 1(x̂) fails, i.e., Y s
1(x̂) = 1, and appar-

ently the occurring probability of this subset is equal to ProbS1(x̂) = p1(x̂);

(b) the second subset includes all the scenarios in which arc 1(x̂) succeeds and arc 2(x̂) fails,

i.e., Y s
1(x̂) = 0, Y s

2(x̂) = 1, and the occurring probability of this subset is ProbS2(x̂) = (1 −

p1(x̂))p2(x̂);

(c) the third subset include all scenarios where arc 1(x̂) and 2(x̂) succeed but arc 3(x̂) fails, i.e.,

Y s
1(x̂) = Y s

2(x̂) = 0, Y s
3(x̂) = 1, and the probability of this subset is ProbS3(x̂) = (1−p1(x̂))(1−

p2(x̂))p3(x̂);

(d) we perform this selection process until the mth subset, which would includes the scenarios

in which arcs 1(x̂), 2(x̂), . . . ,m − 1(x̂) succeed and arc m(x̂) fails and its probability is

ProbSm(x̂) =
∏m−1(x̂)

t=1(x̂) (1− pt(x̂))pm(x̂).

The following Theorem 4.7 summarizes our scenario aggregation scheme.

Theorem 4.7. S1(x̂), S2(x̂), . . . , Sm(x̂) is a partition of the sample space {0, 1}A, where

St(x̂) =
{

(Y1, Y2, . . . , Ym) ∈ {0, 1}A
∣∣∣

Yτ = 0, τ = 1, . . . , t− 1;Yt = 1;Yτ ∈ {0, 1}, τ = t+ 1, . . . ,m
}

(4.33)
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In addition, ProbSt(x̂) = pt(x̂)

∏t−1
τ=1(1− pτ(x̂)).

Upon the scenario aggregation, we construct a recession direction as described in Theorem 4.8 for

the [DSP].

Theorem 4.8. If the [SP] is infeasible, then its dual problem [DSP] is unbounded along the reces-

sion direction r = [ru rπ]T = [rsij, (i, j) ∈ A, s ∈ S, 1]T, where

∀s ∈ S, (i, j) ∈ A, rsij =


Probs, if (i, j) ≡ t(x̂) and s ∈ St(x̂),

0, otherwise;

(4.34)

Proof. As is discussed previously, [DSP] constraints are homogeneous and 0 is an obvious feasible

point. Hence when [SP] is infeasible, [DSP] is unbounded. An arbitrary point along direction r

starting from 0 is δr = (δru, δrπ) where δ is an arbitrary positive number. δr certainly satisfies

constraint (4.32c) and (4.32d). Plugging this point into the left hand side (4.32b), for any scenario

s ∈ S, we obtain the following,

δ

 ∑
(i,j)∈A

rsij − Probs

 (4.35)

Any s ∈ S belongs to one and only one subset among S1(x̂), S2(x̂), . . . , Sm(x̂) as they are an

partition of S according to Theorem 4.7. Suppose that s ∈ St(x̂). Based on the definition of r,

i.e., (4.34), there is at most one arc, (i, j) ≡ t(x̂), of which the decision variable rsij is assigned

as Probs. Hence
∑

(i,j)∈A r
s
ij ≤ Probs. Therefore, (4.35) is always less than 0 since δ > 0. This

concludes that any point δr is feasible (δ > 0) for [DSP].

In the following, we will show that the objective value of the point δr is positive. Plugging this

point into the objective function, we obtain the following,

∑
s∈S

∑
(i,j)∈A

x̂ijY
s
ijr

s
ij − (1− α) =

m(x̂)∑
t=1(x̂)

∑
s∈St

x̂tY
s
t Probs − (1− α)
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=

k(x̂)∑
t=1(x̂)

ProbSt − (1− α) =

k(x̂)∑
t=1(x̂)

pt

t−1∏
τ=1

(1− pτ )− (1− α)

=

1−
∏

(i,j)∈Â

(1− pij)

− (1− α) > 0

In above, the first equality sign is due to definition (4.34); the second equality sign is due to the

definition of S1(x̂), S2(x̂), . . . , Sm(x̂); the third equality sign is due to the definition of ProbSt

in Theorem 4.7; the greater-than inequality sign is due to the definition of failure probability in

Theorem 4.6 and the fact that [SP] with x̂ is infeasible. Therefore, because for any δ > 0 the

objective value is positive and proportional to δ, r is a recession direction of [DSP], and we can

use it to generate a feasibility cut that at least will eliminate the current solution, x̂.

With the newly obtained recession ray, we can construct a feasibility cut. In the following propo-

sition, we will show a concise form of this cut.

Proposition 4.4.
m(x̂)∑
t=1(x̂)

[
t∏

τ=1

(1− pτ−1)

]
ptxt ≤ 1− α (4.36)

is a valid Benders feasibility cut to our reliable routing problems.

Proof. This proof is very similar to the proof showing r is a solution with positive objective value.

We just need to plug r = [ru, 1] into the objective function in [DSP], and show the aggregated

form (4.36) based on the definition of S1(x̂), S2(x̂), . . . , Sm(x̂) and Theorem 4.7 and 4.8.

In the definition of x̂-reordered arc set, we mainly distinguish arcs with x̂ij = 1 from arcs with

x̂ij = 0. Then the x̂-reordered arc set can be divided into two parts: the first part containing all

arcs with x̂ij = 1 and second part containing all arcs with x̂ij = 0. Within each part, the arcs
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can be randomly sorted. However, with different order with the two parts, we can derive cuts

with different strengths. Note that, (4.36) has a fixed right hand side and positive coefficients on

the left hand side. Hence the larger are the coefficients, the stronger the constructed cuts will be.

This is actually controlled by the order of arcs within the x̂-reordered arc set. Usually we sort

the first part by the failure probabilities of arcs in Â in descending order because of the way the

coefficients are calculated in (4.36). Similarly we will sort the second part. Upon the aggregation

scheme, the recession ray construction method, and cutting planes, we can implement the Benders

decomposition in Algorithm 8.

Algorithm 8 Benders decomposition
1: Set UB = +∞, LB = −∞

2: while (UB > LB) do

3: Solve the RMP model and get a candidate incumbent: x̂ = {x̂ij : (i, j) ∈ A} and ẑ

4: Let Â = The set of arcs included in the path defined by the incumbent.

5: Calculate P = the failure probability of the incumbent.

6: if P ≤ 1− α then

7: Accept (x̂, ẑ) as the new incumbent and set UB ← ẑ, x∗ ← x̂.

8: else

9: Reject the incumbent and add the Benders feasibility cut (4.36) to the model.

10: Update LB with the new cut added to RMP

11: end if

12: end while

4.3.3.5 Discussion on Cutting Planes’ Strength

The performance of each algorithm presented above is dependent upon how efficiently the added

lazy constraints can eliminate infeasible routes. We consider the following example to illustrate
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the comparison of the proposed algorithms. Suppose that we are given a network with nodes and

arcs denoted by letters and numbers respectively, as shown in Figure 4.9. Arc failure probabilities

are shown inside the parentheses. A reliable shortest path is requested departing from the starting

node and arriving at the destination one. A 98% confidence level is required.

1(1.0%) 3(4.0%) 

2(3.5%) 

4(2.5%) 
5(2.0%) 

6(1.0%) 

a 

b 

c d 

Figure 4.9: A network under uncertain topology with arc failures. Starting node: a; Destination
node: d.

Assume that in the process of branch-and-cut search, we are currently at the incumbent which

represents the path of 2-4-6. We can then compute its failure probability, P = 1− (1− 0.035)(1−

0.02)(1− 0.01) = 6.4% > 2%, which renders the incumbent infeasible. With the CCP algorithm,

we generate the combinatorial cut, x2 +x4 +x6 ≤ 2, to remove the current solution from the search

tree. Higher efficiency is observed from CCPLB method, in which we first find the corresponding

tuple: 010101, in the probability tree. Then we keep going up until arriving at the tuple whose

parent is feasible: 010000. Finally we generate the following MIS cuts: x3 ≤ 0 and x2 ≤ 0.

In addition of only removing the current infeasible solution as in the CCP, the CCPLB algorithm

identifies all the infeasible paths containing arcs 2 or 3 and removes them from the search tree with

the MIS cuts. We notice that there are only two possible paths left: 1-4-5 and 1-6. With the BD

algorithm, we generate the following Benders feasibility cut : 0.035x2 +0.0193x4 +0.009457x6 +

0.009362x1 + 0.037075x3 + 0.013347x5 ≤ 0.02. With the failure probability of each arc involved,

the cut can identify more infeasible routes than the current one itself. For example, neither arc 2
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nor 3 can be selected in the optimal route according to the cut. Moreover, the combinations of

some arcs are also excluded, such as arcs 1,4 and 5. In the result, the only possible path of 1-6 is

left in the search tree. Hence, we expect that the BD algorithm would have a better performance

than the others to obtain the reliable shortest path.

4.3.3.6 Compact Reformulation

In [16], it is shown that integer programming problems under probabilistic constraints involving

discrete distributions can be reformulated as integer problems with knapsack constraints. In [17]

and [4], the logarithm is taken for both sides of chance constraints in set covering problems and

a compact formulation is then obtained with the chance constraints being replaced by a knapsack

constraint. Here we will use the method to both the CCTSP and CCSPP, as demonstrated in

Theorem 4.9.

Theorem 4.9. The chance constraints (4.26g – 4.26h) and (4.27f – 4.27g) are identical to the

following knapsack constraint,

∑
(i,j)∈A

xijlog(1− pij) ≥ log(α) (4.37)

Proof. According to the facts that a route would fail unless all the included arcs succeed and that

the arcs not included in the route will not affect its risk level, it is straightforward to rewrite the

chance constraints (4.26g – 4.26h) and (4.27f – 4.27g) as,

P (LÂ = 0) =
∏

(i,j)∈Â

(1− pij)xij ≥ α

which can be reformulated to (4.37) by taking the logarithm transform.
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The compact formulations for the CCTSP and CCSPP can then be written as follows,

[CF-CCTSP] min z =
n∑
i=1

n∑
j=1

cijxij (4.38a)

s.t. (4.26b)− (4.26f), (4.37) (4.38b)

[CF-CCSPP] min z =
n∑
i=1

n∑
j=1

cijxij (4.39a)

s.t. (4.27b)− (4.27e), (4.37) (4.39b)

The cutting plane methods proposed in Sections 4.3.3.1-4.3.3.3 are all about reducing the feasible

set of a given optimization problem by cutting risky solutions away, whereas the compact formula-

tion extends the original model with an additional knapsack constraint. Both approaches have pros

and cons, which were discussed by [49] in an uncertain set covering problem. In the next section,

we will computationally compare the practical behaviors of all the proposed methods for dealing

with the uncertainty in the two routing problems, i.e., CCTSP and CCSPP.

4.3.4 Numerical Experiment and Results

Numerical experiments and results of different algorithms are presented in this section on solving

both the CCTSP and the CCSPP. The algorithms are coded in Microsoft Visual C++ linked with

CPLEX 12.5. All the programs are run in Microsoft Windows 7 Professional operating system on

a Dell Desktop with Intel Core i5-2400 CPU 3.10GHz and 4GB RAM.
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4.3.4.1 CCTSP Experimental Setup

In our computational experiments of solving CCTSP, we generate instances of the directed graph

G = (N,A) in different sizes with 20, 30 and 50 nodes. For every node i ∈ N , we randomly pick

an integer between the minimum and the maximum outgoing degrees required for every node inG,

of which the values are indicated in Table 4.5 for the corresponding graph sizes and density levels

(Density 1, 2 and 3). This integer value represents a target degree of node i. We then repeatedly

generate nodes adjacent to every node i from all nodes in N \ {i} until reaching the degree target.

After this, to provide an initially connected graph we manually add arcs connecting each pair of

nodes if they are not connected, checked by using a search algorithm.

Table 4.5: The outgoing degree and probability ranges assumptions for CCTSP instances

Node Density 1 Density 2 Density 3 Probability Range

20 [4, 6] [6, 8] [9, 11] [0, 1.5%]

30 [4, 6] [6, 8] [9, 11] [0, 1.0%]

50 [4, 6] [9, 11] [14, 16] [0, 0.5%]

For each arc (i, j) ∈ A, the cost cij is randomly generated based on a uniform distribution in [1, 20]

for all instances. Because the number of arcs in a TSP route is equal to that of nodes in the graph,

we tune the ranges of uniform distributions for generating failure probabilities, as shown in Ta-

ble 4.5 for corresponding graph sizes, to ensure the existence of feasible solutions. (We also tried

to solve the problem with higher failure probabilities, and it turned out that either the problem is

infeasible or the optimal cost is unrealistically high.) In Section 4.3.4.2 we will show the experi-

mental results for each instance and for each value of confidence level α ∈ {0.85, 0.90, 0.95}. The

algorithm for generating our random instances is summarized as follows,
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Algorithm 9 Random instance generation
1: Initialize the set of arcs: A = ∅.
2: Determine the outgoing degree range [dl, du] and the failure probability range [pl, pu] according

to Table 4.5.
3: for each node i ∈ N do
4: Randomly generate an integer d ∼ U(dl, du).
5: Let the set Γ = {i}.
6: while (d) do
7: Generate an arc (i, j) after randomly picking an integer j ∈ N \ Γ.
8: Update the sets: A = A ∪ {(i, j)}, Γ = Γ ∪ {j}.
9: d← d− 1.

10: end while
11: end for
12: for each arc (i, j) ∈ A do
13: Generate the arc cost cij ∼ U(1, 20).
14: Generate the failure probability pij ∼ U(pl, pu).
15: end for

4.3.4.2 CCTSP Computational Results

The computational results of proposed methods are shown in Table 4.6 on the CCTSP, where the

first column gives the graph instances that have been generated and tested(e.g., 20-d1 represents

the graph with 20 nodes and density level 1). Column “α” indicates the values of confidence levels

for each instance and “OFV” represents the objective function value or optimal cost for each graph

size and each value of α. The columns of CCP, CCPLB, BD and CF show the computational time

of solving the CCTSP with corresponding algorithms.

Our computational experiments showed that our machine is unable to handle the problem while

calling the MILP solver to directly solve the extensive formulation (4.26a)-(4.26h) of each CCTSP

instance. On the other hand, most of test instances including large-sized ones can be solved at

a reasonable cost by the three proposed cutting plane methods, including CCP, CCPLB and B-

D algorithms. All of these methods obtain optimal solutions by evaluating the risk of candidate

incumbents while iteratively adding different cuts to reduce solution spaces. The CCP method
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Table 4.6: Computational results for CCTSP

Instance α OFV CCP CCPLB BD CF

0.85 99 0.858 0.952 1.451 0.66
20-d1 0.90 165 - 1096.27 1.919 1.131

0.95 ◦ - 9.469 0.234 0.016
0.85 91 0.094 0.093 0.218 0.287

20-d2 0.90 101 2.34 2.808 0.811 0.385
0.95 190 - - 8.111 1.044
0.85 88 0.14 0.14 0.312 0.686

20-d3 0.90 100 1818.38 352.119 5.522 1.771
0.95 153 - - 1646.97 1.674

0.85 172 0.218 0.218 0.335 1.015
30-d1 0.90 212 184.982 50.356 4.212 1.312

0.95 ◦ - - 0.415 0.024
0.85 154 0.733 0.81 1.345 1.307

30-d2 0.90 165 4.954 14.067 3.89 1.147
0.95 ◦ - - 4.844 0.458
0.85 120 0.687 0.687 0.933 1.507

30-d3 0.90 130 6867.76 2529.88 19.906 1.167
0.95 191 - - 4660.22 1.832

0.85 233 0.297 0.277 0.242 0.348
50-d1 0.90 268 1273.47 403.988 6.305 1.488

0.95 ◦ - - 1.248 0.483
0.85 232 0.218 0.218 0.405 0.624

50-d2 0.90 240 - - 53.576 2.013
0.95 382 - - - 1.358
0.85 217 0.296 0.297 0.296 1.614

50-d3 0.90 217 32.65 7.098 4.056 1.328
0.95 289 - - - 1.612

Note: The columns of CCP, CCPLB, BD, and CF show the computational time of solving the CCTSP with the
respective algorithms, where a dash indicates that the time limit of 3 hours is reached. OFV represents the objective
function value of each instance, where a circle indicates that the instance is infeasible.

prunes infeasible incumbents with combinatorial cuts. It can be observed that the efficiency of

this method is limited when the value of confidence level is increased from 0.85 to 0.95 due to

the weakness of the cut generated in each iteration. Our results show that it takes a lot of com-

putational time to reach the optimal solutions in the instances with larger-sized networks or high

confidence level requirements. Moreover, the algorithm is unable to find any route that can satisfy

the reliability requirement even after an exhaustive search (for 3 hours) for some instances (e.g.,
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20-d1 with α = 0.90).

By evaluating the subsets locally branched from candidate incumbents, the CCPLB would expect

to generate much stronger cuts in each iteration than the CCP and thus cost less computational

time. However, this algorithm is still limited when the graph size or the requirement of reliability

is increased. The BD algorithm, which produces Benders feasibility cut in each iteration, suc-

cessfully solve the problem in most of the instances that we have generated. It takes acceptable

computational time to find the reliable route with optimal cost for each instance and the method

exhibits much higher efficiency than the CCP and CCPLB. Similar to the CCPLB algorithm, the

BD algorithm generates the Benders feasibility cuts that removes not only the current infeasible

solution but also other sets which violate cuts as discussed in the last section. Figure 4.10 compares

the efficiency of the cutting plane algorithms for the instance of “30-d1” and the confidence level

of 90%. It takes only a few seconds for the lower bound and upper bound in the BD algorithm

to converge, while longer time is observed when the CCP or CCPLB method is applied. As the

network size and value of confidence level keep growing, however, the algorithm still struggles to

solve the problem (e.g. 50-d3 with α = 0.95).

Computational results show that the compact formulation is able to solve all the CCTSP instances

with a reasonable average computing time. For the instances in which the confidence level is rela-

tively low (e.g. 0.85) such that the addition of a limited number of cuts is enough to cut risky routes

away, the three cutting plane methods exhibit better performance than the compact formulation. As

confidence levels are increased, which leads to increasingly difficult problems, many candidate in-

cumbents violate the reliability requirement and thus the callback function is repeatedly executed

within the MILP solver. With the modeled knapsack condition, the compact formulation is able

to more efficiently prune away these infeasible incumbents and thus is preferable to the cutting

plane methods. Furthermore, it is also interesting to note that for both BD algorithm and compact

formulation, a large speedup is achieved in the infeasible cases as a smaller number of iterations
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Figure 4.10: The efficiency of each cutting plane algorithm in the instance of 30-d1 with α = 90%

would be enough to prove that no reliable route exists.

In addition to solving the CCTSP at a reasonable computational cost for either small-sized or large-

sized network, decision makers can benefit more from solving the proposed model. An important

one is the sensitivity analysis regarding the change in confidence levels. Figure 4.11 shows the

optimal cost that a TSP route in the graph instance of “30-d3” can have to satisfy the requirement

of each confidence level.

As expected, more cost would be needed to increase the route reliability. But sometimes the cost

can be dramatically decreased by reducing the confidence level even slightly. As shown in the

figure, the total cost is reduced from 230 to 160 when the confidence level drops from 96% to

94%. According to these data, a decision maker probably would like to spend less by taking an

acceptable risk rather than simply pursuing the predetermined reliability requirement. On the other

hand, the reliability that the traveling salesman can achieve can be enhanced a lot via spending a
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Figure 4.11: Optimal cost vs. confidence level in the instance of 30-d3

little more to select an alternate route. For instance, it costs less than 1% more to increase the level

of confidence from 85% to 90%. Another information demonstrated by the data is the feasibility of

the problem. Out results show that it is impossible to reach the confidence level ≥ 97% no matter

how much resource is investigated in the given 30-d3 network. In this case, the decision maker

could alternatively select the last safe solution before infeasibility in practice.

4.3.4.3 CCSPP Experimental Setup

The same approach is applied as in the CCTSP to generate all the CCSPP instances of the directed

graph G = (N,A), in different sizes with 20, 50 and 100 nodes. For each graph size, Table 4.7

shows the ranges of outgoing degree for each density level and the failure probability associated

with each arc, respectively. The cost of each arc is randomly generated from a uniform distribution

in [1, 20]. Again, a set of different confidence levels α ∈ {0.85, 0.90, 0.95} are respectively applied

in each instance, and to provide an initially connected graph and ensure the existence of paths

between origins and destinations, we manually add arcs connecting each pair of nodes if they are
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not connected.

Table 4.7: The outgoing degree and probability range assumptions for CCSPP instances

Node Density 1 Density 2 Density 3 Probability Range

20 [2, 3] [3, 4] [6, 8] [0, 4.0%]

50 [3, 4] [4, 6] [9, 10] [0, 2.0%]

100 [3, 4] [4, 8] [7, 10] [0, 1.0%]

4.3.4.4 SPP Computational results

Similar computational results are observed for solving the CCSPP with the presented algorithms,

as shown in Table 4.8. Reliable shortest paths can be obtained in small-sized graphs when no

specific strategy is used. When the network is lightly enlarged, the number of scenarios that need

be generated is exponentially increased to make the problem unsolvable.

Our experiments show that the CCP method performs well in the instances with low reliability

requirement. As the network size and confidence level value increase, however, it takes consider-

ably longer or even unacceptable computational cost to achieve the optimal solutions. The CCPLB

method performs much better in some of the instances but is still limited in the others.

The BD algorithm, which costs much shorter time to reach the optimal solution for either small-

sized or large-sized networks, exhibits the better performance to obtain the reliable shortest paths.

The comparison between cutting plane methods is well demonstrated by Figure 4.12, which shows

the bound contraction process for each algorithm for the instance of “50-d3” and the confidence

level of 90%. Our results confirmed the ability of developed Benders feasibility cuts in effectively

removing a large number of infeasible routes from the solution tree than the combinatorial cuts.
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Table 4.8: Computational results for CCSPP

Instance α OFV CCP CCPLB BD CF

0.85 140 5.514 1.123 0.218 0.218
20-d1 0.90 ◦ 9.116 0.312 0.249 0.187

0.95 ◦ 8.643 0.266 0.14 0.031
0.85 67 0.272 0.427 0.218 0.125

20-d2 0.90 106 114.452 0.764 0.156 0.125
0.95 ◦ - - 0.063 0.187
0.85 41 0.171 0.187 0.156 0.219

20-d3 0.90 46 0.827 0.234 0.265 0.234
0.95 ◦ - - 0.359 0.234

0.85 115 0.374 0.515 0.437 0.375
50-d1 0.90 163 - - 1.217 0.25

0.95 ◦ - 3.189 0.249 0.327
0.85 95 0.265 0.296 0.858 0.406

50-d2 0.90 118 - 178.012 3.541 0.265
0.95 ◦ - 1552.29 1.217 0.405
0.85 40 0.343 0.359 0.343 0.327

50-d3 0.90 48 13.19 7.613 1.045 0.375
0.95 72 - - 32.279 0.344

0.85 160 0.271 0.303 0.281 0.297
100-d1 0.90 165 5.611 1.872 0.452 0.358

0.95 ◦ - - 10.254 0.702
0.85 88 0.39 0.359 0.405 0.39

100-d2 0.90 99 26.029 3.844 1.622 0.453
0.95 188 - - - 1.155
0.85 89 0.39 0.359 0.421 0.499

100-d3 0.90 97 29.063 66.346 8.611 1.326
0.95 158 - - - 0.546

Note: The columns of CCP, CCPLB, BD, and CF show the computational times of solving the CCSPP with the
respective algorithms, where a dash indicates that the time limit of 3 hours is reached. OFV represents the objective
function value of each instance, where a circle indicates that the instance is infeasible.

By iteratively evaluating incumbent solutions, however, the BD method needs to generate a large

number of cutting planes to the solution space of RMP before reaching the optimal solution. With

the chance constraint transformed to the knapsack constraint, the compact formulation of each

CCSPP instance can be solved with with a reasonable average computational cost as shown in the

table.

Figure 4.13 shows the smallest cost that a path from the origin to the destination in the graph of
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Figure 4.12: The efficiency of each cutting plane algorithm in the instance of 50-d3 with α = 90%
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Figure 4.13: Optimal cost vs. confidence level in the instance of 50-d3(The problem is infeasible
while α ≥ 98%.)

“50-d3” can have for each confidence level, which is similar to the result of our CCTSP model.

The information of the tradeoff between the cost and reliability obtained from solving our model
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would be helpful for making the decisions accordingly.

4.4 Optimal Scheduling of Rapid Transit Routes

Personal rapid transit (PRT) is a public transport mode featuring small automated vehicles on a

network of specially built guideways. In this section, we will study a PRT system in which the

point-to-point transportation service is provided for customers by a fleet of vehicles that are driven

by electricity. A dynamic vehicle routing problem with soft time window requirement is modeled

for solving the optimal schedule of the system. Numerical experiments and computational results

will be present and demonstrated.

4.4.1 Introduction

PRT is a public transport mode. A fleet of vehicles are distributed in a set of stations which

are connected by specially built guideways, and provide customers direct service from origin to

destination. The system is operated on-demand and the real-time responses need to be made upon

customer requests. A few PRT systems are operational, including the oldest one in Morgantown,

WV since 1975, one at Masdar City in UAE since 2010, the Ultra PRT system at London Heathrow

Airport since 2011 and another one in South Korea since 2014.

In spite of the great need of scheduling optimal routes for public transport systems, there are

few studies that have been conducted in this area until recently. A dynamic scheduling model for

Beijing urban rail transit network with capacity constraints is developed in [153]. In [39], the transit

routing problem is studied for computing all Pareto-optimal journeys in a dynamic public transit

network for multiple criteria, such as arrival time and number of transfers. A heuristic method

is discussed in [101] for the urban transit routing problem. [80] develops three lower bounds on
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achievable mean passenger waiting time, one based on queuing theory, one based on the static

problem, in which it is assumed that perfect information is available, and one based on a Markov

Decision Process model. In this study, we focus on finding the routes for all the vehicles based at

various stations in the PRT system so that the overall routing cost is minimized. This is actually

in accordant with the definition of the classic vehicle routing problem (VRP). In addition to the

typical VRP settings, we consider soft time windows while considering the cost for the routing.

Specifically, each customer should be picked up at the origin station during a specific time frame

and a penalty would be applied otherwise.

We aim to model a dynamic routing problem for the PRT system respecting the fact that the future

customer demand are unknown with certainty and will be revealed dynamically. At the time point

when the problem is being solved, the requests made during its past time period are collected and

the schedule of each vehicle in future time periods are determined accordingly. All the vehicles

are identical and have finite capacity. Each vehicle is driven by electricity and its battery can

be charged when it stays at any station. Note that during peak hours, the load of guide roads

could be extremely heavy in order to satisfy the real-time demands and thus need be controlled

below a limit to avoid traffic jams. We therefore consider the capacity of any road connecting two

adjacent stations at any time. Although the perfect future demands cannot be obtained, we assume

that the stochastic information, e.g., the expected customer demands, is available. The stochastic

knowledge of the future input can be used for us to make the better arrangement of all the vehicles

systematically.

4.4.2 Problem Formulation

Before formulating the dynamic VRP for the PRT, we list all the sets, parameters and decision

variables in Table 4.9.
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Table 4.9: Summary of Parameters, Sets, and Variables.

Parameters and Sets

N The set of all nodes
A The set of all arcs
T The set of time periods
K The set of all vehicles
L The set of all tracks (guideways that connect any pairs of adjacent stations)
C The capacity of each vehicle
Wt The set of time periods within the time window for time t
MC The maximum charging amount for each vehicle during a time period
ECk The electricity capacity for vehicle k
CDi The node capacity ∀i ∈ N
CTl The track capacity ∀l ∈ L
Dt
ij The demand of request for pickup at node i and dropoff at node j at the beginning of t

sk The departing station for vehicle k
tij Travel time from i to j
FCij Fixed travel cost from i to j
V Cij Variable travel cost from i to j
dij Penalty incurred if customer demand hasn’t been met within the time window
cr Travel cost incurred if a vehicle takes the route r

Decision Variables

zktij The binary variable indicating whether vehicle k starts to travel at time t from i to j;
the vehicle stays in the station i during the time period t if i = j

xktij The number of customers transported from i to j by vehicle k at time t
etk The remaining electricity level of vehicle k at the beginning of time period t
stij The number of customers who haven’t been served at time period t
ytij The number of customers who haven’t been served within the time window

The electricity consumption of a vehicle when transporting customers consists of fixed and variable

parts. Specifically the fixed usage is incurred once the vehicle is assigned to travel from one

node to another regardless of how many customers it carries. The variable consumption, however,

is dependent on and generally linearly related to the number of customers on the vehicle. As

mentioned above, a penalty cost would be applied if any customer is not picked up at his/her

origin station within a specific time window. This penalty can be considered as the bad customer

experience, potential loss of customers and/or the selection of an alternate transportation tool with

less fuel efficiency. The objective function can then be formulated as follows to minimize the total
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consumption of electricity plus the cost penalty:

min
∑

(i,j)∈A

∑
k∈K

∑
t∈T

(FCijz
kt
ij + V Cijx

kt
ij ) +

∑
(i,j)∈A

∑
t∈T

dijy
t
ij (4.40)

The electricity level of the vehicles at the current time point should be considered. The vehicle

short of electrical power cannot be selected to move customers. While staying at a node, the

vehicle can be charged and its accumulative battery level is limited by the maximum electricity

capacity of each vehicle and by the charging capacity within a time period at each node. The

constraints of electricity for travel are described in (4.41a)-(4.41b).

etk ≤ et−1
k −

∑
(i,j)∈A

t−1∑
τ=t−tij

FCijz
kτ
ij + V Cijx

kτ
ij

|i− j|
+MC ·

∑
i

z
k(t−1)
ii ,

∀k ∈ K, t ∈ T (4.41a)

etk ≤ ECk, ∀k ∈ K, t ∈ T (4.41b)

All the vehicles in the PRT system are identical and have finite capacity to define the maximum

number of customers that can be carried by each vehicle. The corresponding constraints are:

xktij ≤ Czktij , ∀(i, j) ∈ A, k ∈ K, t ∈ T (4.42)

The following vehicle-flow balance constraints are included to describe that the number of vehicles

which arrive at node i at time t should be equal to that of vehicles which leave or stay at the node.

∑
j

zktij = 1, ∀k ∈ K, i = sk, t = 0 (4.43a)∑
i

zktij −
∑
i

zkτji = 0, ∀j ∈ N, k ∈ K, t ∈ T \ {0}, τ = t− tji ≥ 0 (4.43b)

A timely response need to be made for each customer request to avoid the high penalty cost.
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We model the following demand satisfaction constraints where (4.44) defines the customer-flow

balance in the system and (4.45) indicates that at the end of the planning time horizon, all the

customers have to be picked up and sent out from their origin stations.

xktij + stij = Dt
ij + st−1

ij , ∀(i, j) ∈ A, t ∈ T (4.44)

stij = 0, ∀(i, j) ∈ A, t = TE (4.45)

The buffer capacity of a station and the capacity of a track restrict the number of vehicles staying

at each node and traveling on the track at any time, which are respectively defined by (4.46) and

(4.47). CDi represents the buffer capacity of depot i and CTl is the capacity of road l. L(l) is the

set of arcs which go through road l and Tl(t) is the set of times from which if the vehicle starts

then it will go through road l at time t.

∑
k

zktii ≤ CDi, ∀i ∈ N, t ∈ T (4.46)∑
k

∑
(i,j)∈A,(i,j)⊃l

zkτij ≤ CTl, ∀l ∈ L, t ∈ T, τ = t− tii′ (4.47)

4.4.3 Numerical Experiments and Computational Results

The formulated model is numerically tested on the PRT system at West Virginia University in

Morgantown, for which the network can be seen in Figure 4.14. There are 5 stations in the system,

including Medical (MD), Towers (TW), Engineering (ER), Downtown (DT) and Walnut (WN),

which are connected by the guideways with the total length of 8.65 miles. 71 vehicles are available

in the system to fulfill customer requests in real time. The travel time between any two adjacent

stations is 5 min and each vehicle receives its routing command from the computer system every

5 min. The customer requests that were made during the past 5 min are collected to the computer
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Figure 4.14: The PRT system at WVU

system and the demands in the future one hour are forecasted. The system keeps monitoring the

status of each vehicle, including the battery level and the location, for determining whether it

can be assigned for particular requests. The routes for all the vehicles within an hour are then

determined by solving our model. The solution with respect to the current time period (t = 0) will

be implemented. The state of the PRT system is then updated. When the exact customer demands

are revealed in the future (t = T \{0}), the routes can be adjusted by re-optimizing the model with

the updated information.

The settings of our experiments and some PRT system characteristics are summarized and shown
in Table 4.10, and the state of each vehicle at t = 0 is shown in Table 4.11. As shown in

Table 4.10: PRT system characteristics.

Time periods 12× 5 min
Time window 2× 5 min

Stations 5
Arcs 20

Tracks 8
Node capacity 25
Track capacity 5

Table 4.10, there are in total 20 arcs connecting all pairs of stations in the system, and the distance
between any two adjacent nodes is 2 miles. The customer demands are randomly generated from
poisson distributions as shown in Table 4.12. Specifically the demand corresponding to arc (i, j)

represents the number of requests from customers at node i whose destination is j. The routes
for all vehicles are obtained after solving the developed model on the generated scenario. The
optimal cost (electricity consumption) is 490.2 kWh, which consists of the actual energy use and
the penalty cost incurred when any customer are not served within the defined time window. In
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Table 4.11: Vehicle info in the PRT system.

Quantity 73
Capacity (passengers) 10

Minimum Battery level (kWh) 5
Maximum Battery level (kWh) 30

fixed cost(kwh/mile) 0.5
variable cost(kwh/mile×passenger) 0.05

Table 4.12: Randomly generated customer demands for one hour.

Arc
Time period

1 2 3 4 5 6 7 8 9 10 11 12
1 6 0 6 2 8 12 2 2 8 6 10 4
2 8 2 2 4 6 4 4 2 4 8 2 0
3 2 6 4 2 2 4 2 2 12 0 0 4
4 12 6 4 4 10 6 4 8 6 10 2 6
5 10 4 0 8 6 2 2 0 8 12 4 4
6 6 4 14 0 10 4 6 2 10 0 6 2
7 0 8 4 6 0 4 6 2 4 2 0 4
8 8 2 4 2 2 8 6 4 8 0 2 4
9 2 6 6 2 12 6 2 4 10 4 4 4
10 2 4 0 6 10 6 6 4 6 8 2 4
11 10 6 8 4 4 8 2 8 8 2 6 2
12 12 0 4 6 18 0 2 4 12 4 0 8
13 12 6 2 0 10 4 6 6 6 6 6 4
14 8 6 0 4 6 2 4 4 10 4 2 4
15 12 8 4 4 10 10 2 2 4 8 8 8
16 10 0 6 4 4 4 6 4 2 2 6 6
17 8 10 0 4 8 8 2 6 4 2 4 4
18 2 2 2 2 10 6 0 6 8 4 4 2
19 10 4 6 2 2 6 6 6 12 6 8 2
20 8 2 0 2 2 4 0 4 4 8 8 4

particular, the route for one vehicles is shown as follows,
DT → DT → DT → ∗ → TW → TW →MD →MD → ∗ → ER→ ER→ ER→ ∗ →WN

where the stations represent the locations of vehicles at the beginning of each time period; ∗ indi-

cates that the vehicle is moving toward its destination.
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The numbers of customers who are not immediately served with respect to each arc at each time pe-

riod are listed in Table 4.13, and those not picked within the time window are shown in Table 4.14,

respectively. It can be observed that, although many passengers are not assigned to any vehicles

right after their requests are submitted to the system due to the capacity limit of the system, most

of them are served within the time window to avoid the penalty.

Table 4.13: Number of customers not immediately served.

Arc
Time period

1 2 3 4 5 6 7 8 9 10 11 12
1 6 6 6 0 8 0 2 4 4 0 0 4
2 8 10 2 6 2 0 4 6 0 8 0 0
3 2 8 2 4 6 0 2 4 0 0 0 4
4 12 8 2 6 6 2 6 4 10 10 2 8
5 10 14 4 2 8 0 2 2 0 2 0 4
6 6 10 14 14 4 8 4 6 6 6 2 4
7 0 8 12 0 0 4 0 2 6 0 0 4
8 8 10 4 6 0 0 6 10 8 8 0 4
9 2 8 4 6 8 6 8 2 2 6 0 4
10 2 6 0 6 6 4 10 4 0 8 0 4
11 0 6 4 8 2 0 2 0 0 2 0 2
12 10 0 4 0 18 8 0 4 6 0 0 8
13 12 18 0 0 10 4 10 6 12 8 0 4
14 0 6 6 0 6 8 2 6 6 10 2 6
15 12 10 4 8 8 18 10 2 6 4 2 10
16 10 0 6 10 4 8 6 0 2 4 0 6
17 8 18 8 2 10 8 10 7 1 3 0 4
18 2 4 6 0 10 6 6 2 0 4 0 2
19 10 4 0 2 4 0 6 2 4 2 0 2
20 8 0 0 2 4 0 0 4 4 2 0 4

For solving the proposed PRT problem, however, it often takes considerably long time to achieve

the optimal solution, especially when the customer demands are high. Particularly for the instance

generated above, we only obtain around 3% gap after solving the model for 5 min with CPLEX

and less than 1% after 30 min. No feasible solution has been obtained if the time limit is set to 30

seconds. The route for each vehicle, however, needs to be provided efficiently and effectively, so
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Table 4.14: Number of customers not served within the time window.

Arc
Time period

1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 2 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0
10 1 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0
18 2 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0

that the PRT system is well scheduled and operated to satisfy the customer demands in real time.

To this respect, we developed a greedy heuristic algorithm to get a feasible solution very quickly,

which can then be used to warm start the MIP in CPLEX. The algorithm is described as follows,

The greedy algorithm can easily give a feasible and implementable solution for the PRT system.

Our result shows that for the generated test instance the total cost of the system solved from this

algorithm is 554.2 kWh, 13% higher than the real optimal value. We observed that the number

of passengers who are not served within the time window is the same as the optimal solution.

However, the optimal schedule uses the vehicles for 117 times to fulfill the demands while the

greedy algorithm uses 157 times. The use of more vehicles for meeting the same amount of

demands consumes more electricity in the system and thus increase the total cost.
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Algorithm 10 PRT Routing Greedy Algorithm
1: Let Ωt = {ωdt, ωlt, ωnt, ωkt} be the status of the PRT system at time t, where
ωdt, ωlt, ωnt, ωkt represents the unsatisfied demands, track load, station load and vehicle s-
tatus, respectively.

2: Initialize Ω0 by obtaining the initial status of the system.
3: for every time period t ∈ T do
4: Set the status of all arc demands as unassigned.
5: while any arc demand is unassigned do
6: Find the unassigned arc (i, j) = argmax(i,j) V Cijdij .
7: Assign the arc demand to a vehicle located in the station i at time twith enough electricity

level and set status of the arc (i, j) as assigned.
8: if any track is overloaded then
9: Cancel the assignment.

10: end if
11: end while
12: Update the system status Ωt,∀t ∈ T .
13: Check the station load status ωnt, send vehicles out from i to other stations if the load

exceeds the buffer capacity.
14: Cancel vehicle assignments if needed to avoid the track overload.
15: Update the system status Ωt,∀t ∈ T .
16: end for
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CHAPTER 5: CONCLUSIONS

In summary, the stochastic mixed-integer programming models have been developed for various

large-scale problems in the area of power systems and transportation. The problems were respec-

tively solved with optimization algorithms and methodologies.

A multistage SMIP was firstly modeled in Chapter 3 to address the capacity expansion planning

in power systems. The integration of hourly unit commitment into the strategic-level investment

makes the problem multiscale. A nested decomposition algorithm was developed and performed

in the context of parallel computation. The algorithm was tested on various instances in IEEE

7-, 57-, and 118- bus systems, respectively, and the computational results showed the efficiency

of the method in managing the intractability of the formulated large-scale problem. As an en-

vironmentally friendly fuel, natural gas is being extensively used for electricity generation while

seeking the optimal profit is challenging for gas plants due to the volatility of the gas and electricity

prices. Therefore another multistage SMIP model was developed to solve the optimal dispatch for

a natural gas fueled power plant in the seek of profit maximization. The benefit from considering

the stochasticity is demonstrated by the results obtained from numerical experiments. Scenario

decomposition is enabled to enhance the manageability of the problem by using the Lagrangian

relaxation. Both the column generation and subgradient method have been applied in order to

determine the best Lagrangian multipliers. Compared to the former in which a master problem

includes an extremely large number of constraints in large instances, the latter uses an analytic

hill-climbing algorithm to iteratively update the multipliers, making the method easier to imple-

ment. A heuristic algorithm was developed to obtain a feasible solution at each iteration and the

quality is evaluated by the lower bound achieved from solving the Lagrangian relaxation. Our

results demonstrated the better performance of the proposed methods compared to solving the

problem directly with the commercial MIP solver, i.e., CPLEX.
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Four different routing problems were investigated in Chapter 4. Specifically two respective s-

tochastic traveling salesman problems with discretely-distributed and continuously-distributed arc

costs were modeled. In the context of stochastic arc costs, the deterministic traveling salesman

problem’s optimal solutions would be ineffective because the selected route might be exposed to

a greater risk where the actual cost can exceed the resource limit in extreme scenarios. We there-

fore presented stochastic variations that incorporate risk management and developed algorithms

for solving the optimal routes. Another SMIP models of reliable routing problems under uncer-

tain topology are then derived in which the risk is controlled with chance constraints. Various

cutting plane methods were developed and applied to solve the problems and their performances

were compared. we also demonstrated that the results of the tradeoff between confidence level

and optimal cost can be obtained from solving the models and such sensitivity analysis can be of

help to practitioners seeking the best way to deal with the uncertainty in the routing problems. The

last problem that was studied in the dissertation is a dynamic vehicle routing problem with soft

time window for a PRT system. A fleet of vehicles are available in the system and provide each

customer non-stop transportation service in real time, subject to the capacity limits of the system.

We simulated a PRT system based on the one at West Virginia University and generated customer

demand data for testing our model. The computational result showed that an efficient solution can

be obtained and used to well schedule all the vehicles such that most customer requests can be

satisfied within the defined time window.
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