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ABSTRACT 

 

Research results have shown that more than half of aviation, aerospace and aeronautics 

mishaps/incidents are attributed to human error.   Although many existing incident report 

systems have been beneficial for identifying engineering failures, most of them are not designed 

around a theoretical framework of human error, thus failing to address core issues and causes of 

the mishaps.  Therefore, it is imperative to develop a human error assessment framework to 

identify these causes.  

This research focused on identifying causes of human error and leading contributors to 

historical Launch Vehicle Ground Processing Operations mishaps based on past mishaps, 

near mishaps, and close calls.  Three hypotheses were discussed.  The first hypothesis 

addressed the impact Human Factor Analysis and Classification System (HFACS) 

contributing factors (unsafe acts of operators, preconditions for unsafe acts, unsafe supervision, 

and/or organizational influences) have on human error events (i.e. mishaps, close calls, incident 

or accidents) in NASA Ground Processing Operations.  The second hypothesis focused on 

determining if the HFACS framework conceptual model could be proven to be a viable analysis 

and classification system to help classify both latent and active underlying contributors and 

causes of human error in ground processing operations.  Lastly, the third hypothesis focused on 

determining if the development of a model using the Human Error Assessment and Reduction 

Technique (HEART) could be used as a tool to help determine the probability of human error 

occurrence in ground processing operations.   
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A model to analyze and classify contributing factors to mishaps or incidents, and generate 

predicted Human Error Probabilities (HEPs) of future occurrence was developed using the 

HEART and HFACS tools.   The research methodology was applied (retrospectively) to six 

Ground Processing Operations (GPO) Scenarios and 30 years of Launch Vehicle Related Mishap 

Data.   Surveys were used to provide Subject Matter Experts’ (SMEs) subjective assessments of 

the impact Error Producing Conditions (EPC) had on specific tasks.  

In this research a Logistic Binary Regression model, which identified the four most significant 

contributing HFACS human error factors was generated.  This model provided predicted 

probabilities of future occurrence of mishaps when these contributing factors are present.   

The results showed that the HEART and HFACS methods, when modified, can be used as an 

analysis tool to identify contributing factors, their impact on human error events, and predict the 

potential probability of future human error occurrence.  This methodology and framework was 

validated through consistency and comparison to other related research.  A contribution 

methodology for other space operations and similar complex operations to follow was provided 

from this research.  Future research should involve broadening the scope to explore and identify 

other existing models of human error management systems to integrate into complex space 

systems beyond what was conducted in this research. 

  



v 
 

 
 
 
 
 
 
 
 
 

This research is dedicated to my Family. 

-My parents Dorothy and Willie Miller and my sister Lakaysha Miller.  

 Thank you for your love and support! 

-To my phenomenal mother Dorothy, you are my biggest cheerleader and encourager.   

Thank you for being an awesome example to me.  I love you! 

-To my incredible husband Ervin, you are my best friend.   

Thank you for your love, patience, understanding and support.  You are a constant 

encouragement to me and I love you for being you! 

-To my beautiful children Javyn and Devan, thank you for being so understanding and 

supportive during the entire process.  You are wonderful and I’m excited to see what you will 

accomplish in the future with Christ as your guide.  I love you! 

 
 
 
 
 
 
 
 
 

  



vi 
 

ACKNOWLEDGMENTS 

 
 I would like to thank my Lord and Savior Jesus Christ for his blessings and this opportunity 

to pursue and complete my Doctorate degree.     

I would like to thank my committee:  Dr. Pamela McCauley, thank you so much for your 

willingness to be my advisor, for helping me, encouraging me and seeing me to the end.  Your life 

and accomplishments are such an amazing inspiration to me and so many others.  Dr. Luis Rabelo, 

thank you for your advice and guidance.  It was a blessing to me and I appreciated all of your 

honest feedback and direction throughout the entire process.  Dr. Jose Nunez, thank you for 

encouraging me over 10 years ago to pursue my PhD.  Who would have known then, that you 

would be a part of my committee.  I am so grateful for your encouragement throughout the process.   

Dr. Robert Hoekstra, thank you for being a part of my committee.  Your Innovation in Engineering 

Design Class was great and helped me see engineering from a different perspective.   Dr. Waldemar 

Karwowski, thank you for your willingness to be a part to my committee at the last moment.  I am 

so thankful for the expertise and insight you provided me.   

Dr. Liqiang Ni, thank you for the insightful statistical discussions.  

To my PhD colleagues: Dr. Aaron Yeaton, Susan Gaines and Charles W. Davis, thank you 

for your friendship and encouragement during my PhD journey.  

I would like to thank my NASA KSC family, Safety and Mission Assurance family, 

mentors and leaders who have encouraged me throughout the entire PhD process.  To all of the 

remarkable Shuttle Quality Engineers and Quality Assurance Technicians who participated in my 



vii 
 

surveys and my Subject Matter Experts; I truly appreciated all of your valuable knowledge, 

expertise, perspectives and input during my research.  Special thanks to: David L. Rainer, Dr. Gena 

M. Henderson, James H. Davis, Michael Shoup, Charles A. Mister, Daniel L. Jingle and Michael 

Milbert. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



viii 
 

TABLE OF CONTENTS 

LIST OF FIGURES ..................................................................................................................... xvi 

LIST OF TABLES ..................................................................................................................... xviii 

LIST OF ACRONYMS (or) ABBREVIATIONS ....................................................................... xxi 

CHAPTER ONE: INTRODUCTION ............................................................................................. 1 

Background ................................................................................................................................. 1 

Problem Statement ...................................................................................................................... 2 

Research Objective ..................................................................................................................... 2 

Contribution to the Body of Knowledge ..................................................................................... 3 

Two underlying human error factors ................................................................................... 3 

Significance of Research............................................................................................................. 5 

Research Question ..................................................................................................................... 5 

Research Hypotheses .................................................................................................................. 5 

Research Variables.................................................................................................................. 5 

Hypothesis 1............................................................................................................................ 6 

Hypothesis 2............................................................................................................................ 6 

Hypothesis 3............................................................................................................................ 6 

Theoretical Framework ............................................................................................................... 7 



ix 
 

CHAPTER TWO: LITERATURE REVIEW ............................................................................... 10 

Human Error ............................................................................................................................. 10 

Understanding Human Error/The Nature of Error .................................................................... 10 

Intentions............................................................................................................................... 11 

Actions .................................................................................................................................. 11 

Contextual Factors ................................................................................................................ 11 

Human Fallibility .................................................................................................................. 12 

Context .................................................................................................................................. 12 

Human Performance ................................................................................................................. 15 

Skill-Based ............................................................................................................................ 15 

Rule-Based ............................................................................................................................ 15 

Knowledge-Based ................................................................................................................. 15 

Human Error - Two Main approaches ...................................................................................... 17 

Person approach .................................................................................................................... 17 

Systems approach.................................................................................................................. 18 

Active Failures .......................................................................................................................... 19 

Latent Conditions ...................................................................................................................... 19 

Consequences of Human Error ................................................................................................. 20 



x 
 

Classification of Errors ............................................................................................................. 21 

Approaches to Identifying and Assessing Human Error........................................................... 23 

Human Reliability Analysis (HRA) Methods/Models .......................................................... 23 

Cognitive Reliability and Error Analysis Method (CREAM).......................................... 24 

The Technique for Human Error Rate Prediction (THERP) ................................................ 25 

Human Factors Analysis and Classification System (HFACS) ............................................ 26 

Human Error Analysis Reduction Technique (HEART) ...................................................... 33 

Human Error Risk Management for Engineering Systems (HERMES) ............................... 44 

Human Error Rate Assessment and Optimizing System (HEROS) ................................ 46 

Human Error in Aerospace Industry ......................................................................................... 48 

Causes of Aviation Mishaps ................................................................................................. 49 

Managing Human Error ............................................................................................................ 51 

Lessons Learned.................................................................................................................... 52 

Functional Analysis .............................................................................................................. 52 

Simulation ............................................................................................................................. 52 

Human Performance and Human Error Analysis ................................................................. 53 

Design Engineering Tools..................................................................................................... 53 

Management Systems ............................................................................................................... 56 



xi 
 

Incident reporting systems .................................................................................................... 56 

Accident investigation and analysis methods ....................................................................... 57 

Human error identification methods (HEI) ........................................................................... 57 

Human error analysis (HEA) ................................................................................................ 57 

Latent conditions identification methods .............................................................................. 58 

Error databases ...................................................................................................................... 58 

Effective Risk Management ...................................................................................................... 58 

KSC Mishap Data ..................................................................................................................... 60 

Mishap Types ........................................................................................................................ 62 

NASA Root Cause Analysis Tool (RCAT) .......................................................................... 64 

Research Gap Discussion .......................................................................................................... 65 

Human Reliability Analysis .................................................................................................. 65 

Taxonomy ............................................................................................................................. 66 

Framework ............................................................................................................................ 67 

Summary ............................................................................................................................... 72 

Justification for HEART and HFACS Methods ....................................................................... 74 

CHAPTER THREE: PRELIMINARY ANALYSIS .................................................................... 75 

Informal SME Discussions ....................................................................................................... 75 



xii 
 

HEART ................................................................................................................................. 75 

HFACS .................................................................................................................................. 79 

CHAPTER FOUR: METHODOLOGY ....................................................................................... 81 

Research Objective ................................................................................................................... 81 

Literature Review...................................................................................................................... 82 

Existing Gap.............................................................................................................................. 82 

Experiment Overview ............................................................................................................... 83 

Assessment Approach ........................................................................................................... 83 

Data Collection ......................................................................................................................... 84 

Mishap Data .......................................................................................................................... 84 

Survey Participant Data ........................................................................................................ 85 

Qualitative Study ...................................................................................................................... 85 

HEART Method .................................................................................................................... 85 

HFACS Method .................................................................................................................... 88 

Surveys ...................................................................................................................................... 93 

Quantitative Study .................................................................................................................... 95 

Human Error Assessment and Reduction Technique (HEART) Data Analysis ................... 95 

Calculating the Human Error Probability for GPO Tasks using the HEART method ......... 96 



xiii 
 

Human Factors Analysis and Classification System (HFACS) Data Analysis .................... 98 

Data Analysis - Validation ...................................................................................................... 101 

Triangulation ....................................................................................................................... 101 

CHAPTER FIVE: RESULTS AND DISCUSSION ................................................................... 103 

Summary ................................................................................................................................. 103 

HFACS Human Error Probability Results and Analysis ........................................................ 104 

Binary Logistics Regression Model Results ....................................................................... 104 

Binary Logistics Regression Model with Stepwise Backward Elimination ....................... 106 

Goodness-of-Fit Tests ......................................................................................................... 108 

Binary Fitted Plots .............................................................................................................. 108 

Prediction from the Regression Model ............................................................................... 110 

HFACS Factorial Plots ....................................................................................................... 112 

Participant Survey Results ...................................................................................................... 113 

HEART Human Error Probability (HEP) Results .............................................................. 116 

Model Validation .................................................................................................................... 120 

HFACS Model .................................................................................................................... 120 

Binary Logistics Regression Model .................................................................................... 124 

Survey One-Way ANOVA ................................................................................................. 124 



xiv 
 

HEART Human Error Probability (HEP) Validation ......................................................... 125 

Research Question and Hypothesis Tests/Results .................................................................. 127 

Question 1 ........................................................................................................................... 127 

Hypothesis 1........................................................................................................................ 128 

Hypothesis 2........................................................................................................................ 129 

Hypothesis 3........................................................................................................................ 130 

CHAPTER SIX: CONCLUSION ............................................................................................... 133 

Research Summary ................................................................................................................. 133 

Research Limitations .............................................................................................................. 136 

Research Contributions ........................................................................................................... 137 

Human Reliability Analysis ................................................................................................ 137 

Human Error Taxonomies................................................................................................... 138 

Human Error Framework .................................................................................................... 138 

Research Methodology ....................................................................................................... 139 

Recommendations for Future Research .................................................................................. 144 

APPENDIX A: NASA IRB APPROVAL .................................................................................. 148 

APPENDIX B: UCF IRB APPROVAL ..................................................................................... 150 

APPENDIX C: NASA SUBJECT CONSENT FORM .............................................................. 152 



xv 
 

APPENDIX D: UCF INFORMED CONSENT .......................................................................... 154 

APPENDIX E: SURVEY/VOTING INSTRUMENT ................................................................ 156 

LIST OF REFERENCES ............................................................................................................ 164 

 

  



xvi 
 

LIST OF FIGURES 

Figure 1:  Generic Error Modeling System – GEMS (Reason, 1990) ............................................ 9 

Figure 2:  Framework for Understanding Human Error and its Potential for Adverse 

Consequences ................................................................................................................................ 13 

Figure 3: Cheese Model, Successive Layers of Defenses (Public Domain) ................................. 20 

Figure 4: Example of Steps Encompassing THERP (Sharit, 2012). ............................................. 26 

Figure 5: Human Factors Analysis and Classification System (HFACS) Overview (Shappell, 

2012). ............................................................................................................................................ 28 

Figure 6: General HRA Process (Kirwan, 1994) .......................................................................... 34 

Figure 7: HEART Quantification Process, (Kirwan, 1996) .......................................................... 44 

Figure 8: HERMES Methodology (Cacciabue, 2013). ................................................................. 45 

Figure 9: NASA KSC Ground Processing Operations Human Error Framework........................ 80 

Figure 10: Research Methodology ................................................................................................ 81 

Figure 11: Power Curve for Paired t Test ..................................................................................... 94 

Figure 12: Binary Fitted Line Plots ............................................................................................ 109 

Figure 13: Main Effects Plot for Mishap/Incidents with Backward Elimination ....................... 112 

Figure 14: Survey Participants’ Job Function ............................................................................. 114 

Figure 15: Survey Participants’ Years at NASA KSC and KSC GPO ....................................... 115 

Figure 16: HEART Survey Questions with Highest Human Error Probabilities (HEPs)........... 118 

Figure 17: HFACS Human Error Factors Percentages for KSC GPO........................................ 121 



xvii 
 

Figure 18: Republic of China (ROC) Air Force Study Top 10 Frequency Counts and Inter-rater 

Reliability .................................................................................................................................... 122 

Figure 19: HFACS KSC GPO Frequency Counts ...................................................................... 123 

Figure 20: One-Way ANOVA - Minitab .................................................................................... 125 

Figure 21: Research Methodology Contribution ........................................................................ 143 

 

  



xviii 
 

LIST OF TABLES 

Table 1: Reason’s three Basic Error Types in relation to Rasmussen’s three Performance Levels         

(Reason, 1990) ................................................................................................................................ 8 

Table 2: Classification Error Types to Cognitive Stages at which they occur (Reason, 1990) .... 23 

Table 3: Selected Examples of HFACS Preconditions of Unsafe Acts (not an exhaustive list) 

(Shappell, 2012) ............................................................................................................................ 29 

Table 4: Selected Examples of Unsafe Acts (not an exhaustive list) (Shappell, 2012) ................ 30 

Table 5: Selected examples of Preconditions of Unsafe Supervision (not an exhaustive list) 

(Shappell, 2012) ............................................................................................................................ 31 

Table 6: Selected examples of Organization Influences (not an exhaustive list) (Shappell, 2012)

....................................................................................................................................................... 32 

Table 7: Kirwan’s HEART Process (Yang, et al., 2007) .............................................................. 36 

Table 8: HEART Nominal Human Error Probabilities (HEPs) (Williams, 1986) ....................... 38 

Table 9: HEART Error Producing Conditions (EPCs) (Williams, 1986) ..................................... 39 

Table 10: HEROS Process (Richei, 2001) .................................................................................... 46 

Table 11: HRA Advantage and Disadvantage Comparison Table ............................................... 47 

Table 12: 10 Highest Frequency of Occurrence (in ranking order of highest frequency) (Li, W., 

2006) ............................................................................................................................................. 50 

Table 13: Literature Review Gap Questions ................................................................................. 68 

Table 14: Literature Review Gap .................................................................................................. 70 



xix 
 

Table 15: HEART Survey VAB Scenario 1 ................................................................................. 76 

Table 16: HEART Survey VAB Scenario 2 ................................................................................. 77 

Table 17: HEART Survey OPF Scenario 1 .................................................................................. 77 

Table 18: HEART Survey OPF Scenario 2 .................................................................................. 77 

Table 19: HEART Survey Pad A/B Scenario 1 ............................................................................ 78 

Table 20: HEART Survey Pad A/B Scenario 2 ............................................................................ 78 

Table 21: NASA KSC Specific Modified Examples for HEART Nominal Human Error 

Probabilities (HEPs) (Williams, 1986) ......................................................................................... 87 

Table 22: NASA KSC SME Modified Selected examples of HFACS Preconditions of Unsafe Acts 

(not an exhaustive list) (Shappell, 2012) ...................................................................................... 89 

Table 23: NASA KSC SME Modified Selected Examples of Unsafe Acts of Operators (not an 

exhaustive list) (Shappell, 2012)................................................................................................... 90 

Table 24: NASA KSC SME Modified Selected examples of Preconditions of Unsafe Supervision

....................................................................................................................................................... 91 

Table 25: NASA KSC SME Modified Selected examples of Organization Influences (not an 

exhaustive list) (Shappell, 2012)................................................................................................... 92 

Table 26: Assessment of Affect (AOA) Range Table (McCauley-Bell & Baiduru, 1996) .......... 94 

Table 27: HEART Calculation Example (Kirwan, 1996) ............................................................. 97 

Table 28: Example of Binary Logistics Table for Statistical Analysis ....................................... 101 

Table 29: Identified HFACS Regression Model Values ............................................................. 106 

Table 30: Identified HFACS Regression Model with Backward Elimination P Values and Beta 



xx 
 

Coefficients ................................................................................................................................. 107 

Table 31: HFACS Regression Model with Backward Elimination Odds Ratio ......................... 107 

Table 32: HFACS Goodness-of-Fit Tests with Backward Elimination P Values ...................... 108 

Table 33: HFACS Factor with Backward Elimination Binary X Values ................................... 110 

Table 34: Binary Logistics Regression with Backward Elimination Prediction Y for given X 

value ............................................................................................................................................ 111 

Table 35: Identified HFACS Regression Model Fitted Probability with Backward Elimination 

Values ......................................................................................................................................... 111 

Table 36: HEART Survey Participants Assessed Proportion of Affect (AOA) ......................... 116 

Table 37: HEART Survey Calculated Human Error Probabilities (HEPs) ................................ 119 

  



xxi 
 

LIST OF ACRONYMS (or) ABBREVIATIONS 

AOA    Assessed Proportion of Affect 

CREAM   Cognitive Reliability and Error Analysis Method 

EPC    Error Producing Conditions 

FRANCIE  Framework Assessing Notorious Contributing Influences for Error 

GEMS   Generic Error Model System 

GO    Ground Operations 

GPO    Ground Processing Operations 

GSE    Ground Support Equipment 

HEA   Human error analysis 

HEART   Human Error Assessment and Reduction Technique 

HEI   Human Error Identification  

HEP    Human Error Probability 

HERMES  Human Error Risk Management for Engineering Systems 

HEROS  Human Error Rate Assessment and Optimizing System 

HFACS   Human Factors Analysis and Classification System 

HRA   Human Reliability Analysis 

HRO   High Reliability Organization 

IRB   Institutional Review Board 

KSC    Kennedy Space Center 



xxii 
 

LC 39 A/B   Launch Complex 39 

NARA   Nuclear Actions Reliability Assessment 

NASA    National Aeronautics Space Administration 

NMIS   NASA Mishap Information System 

OPF    Orbiter Processing Facility 

OSHA   Occupational Safety and Health Administration 

PRA   Probabilistic Risk assessments 

PSF   Performance shaping factors 

RCAT   NASA Root Cause Analysis Tool 

ROC   Republic of China 

RPA   Remotely Piloted Aircraft 

S&MA   Safety and Mission Assurance 

SLS   Space Launch System 

SME    Subject Matter Expert 

SPAR-H  Standardized Plant Analysis Risk HRA 

THEA   Tool for Human Error Analysis 

THERP  Technique for Human Error Rate Prediction 

VAB    Vehicle Assembly Building 

 

  



1 
 

CHAPTER ONE: INTRODUCTION 

Background 

In our world, we have unfortunately witnessed some disasters and incidents due to human 

error, such as the Space Shuttle Challenger Disaster on January 28, 1986 in which the United States 

lost the entire Space Shuttle Crew, the Chernobyl Nuclear Plant Disaster of April 26, 1986 where 

many lost their lives and thousands were impacted by a steam explosion and fires, resulting in 

radio activity released into the atmosphere, the Bhopal Industrial Disaster of December 1984, 

where at least 2,500 people were killed and more than 200,000 were injured due to a gas leak of a 

highly toxic chemical, methyl isocyanate (MIC) (Reason, 1990).  

One of the identified main contributors to these incidents has been rooted back to Human 

latent errors.  In this review, an overview of human error, the various types, approaches, models 

and methodologies that have been developed to help minimize these errors is discussed.  An 

assessment of what has and hasn’t been effective and a future potential work for determining the 

best types and approaches for Safety Critical domains is also discussed. In order to determine 

whether the current model and methods of minimizing human error is sufficient or identify where 

the gaps are, the current body of knowledge on this topic should be addressed. This review covers 

various aspects of this topic.   

The Literature review covers many aspects of human error including some of the following 

areas:  Human Error Defined, Understanding Human Error/The Nature of Error, Human Error 

Performance, Human Error - Two Main approaches, Active Failures and Latent Conditions, 
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Reasons’ Conceptual Model, Consequences of Human Error, Managing Human Error, 

Management Systems and Effective Risk Management. 

Problem Statement 

In 1993, NASA found that 78% of the incidents related to Space Shuttle Ground Processing 

Operations, since April 1991, was a result of human error (Perry et al., 1993). Unfortunately, most 

incident reports are not designed around a theoretical framework of human error.  Even though 

these types of report systems have been beneficial for identifying engineering and mechanical 

failures, they have failed to address the core issues and causes of failure due to human error.  This 

makes the intervention and integration of a strategy to reduce human error difficult, due to limited 

background and knowledge of human factors by the workers.  In this research, it is important that 

human factor issues are addressed and a comparative analysis of existing databases be conducted 

to determine the human factors responsible for the failures, mishaps, etc. (Wiegmann and Shappell, 

2001).   

Research Objective 

In this research the goal is to develop a model that can analyze and classify contributing 

factors to human error mishaps, close calls, or incidents during Launch Vehicle Ground Processing 

Operations and be used as a tool to accompany preexisting accident investigation and analysis 

systems in controlling and/or minimizing human error.   NASA KSC was utilized as the core data 

for this research, due to its premises being America’s major Spaceport.  
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The goal is also for the developed model to be sound from an ergonomic, mathematical 

and human factors standpoint.  This research adds to the human factors body of knowledge in the 

area of human factors, by providing the ergonomic mathematical results from the Human Error 

Assessment and Reduction Technique (HEART) and Human Factors Analysis and Classification 

System (HFACS) tools.   

Contribution to the Body of Knowledge 

This research adds to the body of knowledge by developing an innovative approach to 

evaluating Aerospace Industry mishap data for the purpose of gaining additional insight that can 

be applicable in mitigating future risks.   This involves modifying and validating a human error 

tool such as the Human Error Assessment and Reduction Technique (HEART) and Human 

Factors Analysis and Classification System (HFACS) model in order to assist in the 

identification and analysis of contributing factors to human error, resulting in mishaps, 

incident and close calls. There is a need to explore the use of HEART and HFACS as viable 

tools to use within the NASA Ground Processing Operations to effectively bridge the gap 

between theory and practice concerning the genesis of human error causation (Wiegmann, 

2001).  

Two underlying human error factors 

According to James Reason, two underlying factors leading to accidents are: Active 

failures and Latent Conditions (Reason, 2000).    
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Active failures (also known active errors) effects are felt almost immediately and latent 

errors, whose adverse consequences may lie dormant within the system for a long time, only 

become evident when they combine with other factors to breach the systems’ defenses (Rasmussen 

& Pedersen, 1984; as cited in Reason, 1990).  Active failures are difficult to foresee and are directly 

created by the individual.  Active failures include slips, mistakes, oversights or direct violation of 

procedural requirements.   Latent conditions are considered “resident pathogens” that can produce 

a problem within the system. 

This research adds to the body of knowledge by analyzing and gaining knowledge by 

means of better understanding the contributing latent errors that impact or influence human 

error during ground processing operations.  System failures often occur when a combination 

of particular latent failures occur, thus causing a system to fail.  When isolated, occurrences 

have less impact or importance, but when strategically combined, even the most extraordinary 

safety-oriented systems can experience catastrophic results, as in the case of the Shuttle 

Challenger incident (Cook, 1994). 

As it relates to the Federal Aviation Administration (FAA) and the aviation industry, 

when describing errors in the cockpit, latent errors committed by officials within the 

management hierarchy are factors that directly influence the condition and decision of pilots 

(Reason 1990).  This shows that latent errors can impact workers’ decisions. 
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Significance of Research 

The data in this research was used with the intent that other organizations may be able to 

use it for similar complex processes.  The current processes used at NASA KSC is discussed 

further in the Literature Review chapter Research Gap discussion.  This research can be beneficial 

to the NASA S&MA Directorate by providing methods and techniques that can be used to help 

assess and classify causes of human errors, which are identified with specific KSC Ground 

Processing Operation tasks, from an ergonomic, organizational and management perspective.    

Research Question 

 With the objective of this research previously stated in this chapter, the specific 

research question is:  

1. What are the identified leading human error causes and contributors to historical 

Launch Vehicle Ground Processing Operations mishaps and findings based on past 

mishaps, near mishaps, and close calls?  Quantifying this data and identifying the 

leading cause is essential in the research analysis. 

Research Hypotheses 

Research Variables 

Independent variable: Contributing Factors (i.e. unsafe acts of operators, preconditions for 

unsafe acts, unsafe supervision, and/or organizational influences (multiple causes)).  

Dependent Variable: Human error event (i.e. mishaps, close calls, incident or accidents).   



6 
 

Hypothesis 1 

H0:  Contributing factors: unsafe acts of operators, preconditions for unsafe acts, unsafe 

supervision, and/or organizational influences (multiple causes) do not have an impact on human 

error events (i.e. mishaps, close calls, incident or accidents) in NASA ground processing 

operations.   

H1:  Contributing factors: unsafe acts of operators, preconditions for unsafe acts, unsafe 

supervision, and/or organizational influences (multiple causes) do have an impact on human error 

events (i.e. mishaps, close calls, incident or accidents) in NASA ground processing operations.  

Hypothesis 2 

H0:  The HFACS framework conceptual model can be proven to be a viable analysis and 

classification system to help classify both latent and active underlying contributors and causes of 

human error in NASA ground processing operations.  

H1:  The HFACS framework conceptual model cannot be proven to be a viable analysis 

and classification system to help classify both latent and active underlying contributors and causes 

of human error in NASA ground processing operations. 

Hypothesis 3 

The HEART technique is a quantitative tool that analyzes ergonomic factors that have a 

substantial negative impact on human performance.  This tool was used for KSC Ground 

Processing Operations and to help identify and calculate the human error probability. 

H0:  The development of a model using the HEART assessment can be used as a tool to 
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help determine the probability of human error occurrence in NASA ground processing operations.   

H1:  The development of a model using the HEART assessment cannot be used as a tool to 

help determine the probability of human error occurrence in NASA ground processing operations.   

Independent variable: Contributing Factors (identified by the SMEs for specific Scenarios 

of tasks performed for NASA KSC ground processing operations).  

Dependent Variable: Probability of a Human error event (i.e. mishaps, close calls, incident 

or accidents).   

Theoretical Framework  

The Theoretical Framework is a conceptual model used to establish a structure for 

understanding research, identifying the variables that will be measured, understanding their 

relationship and their significance to the research problem.  This guides the research, provides 

background support and justification for studying the research problem.    

A theoretical framework can provide a diagram to display the relationship between the 

variables involved.  What are the contributing factors that lead to human error mishaps? What is 

an effective way to classify, assess and categorize human error for future prediction and to reduce 

future human error mishaps?  Table 1 and Figure 1 outlines the dynamics of the Generic Error 

Modeling System (GEMS) used to relating Reasons’ three basic error types to Rasmussen’s three 

performance levels (Reason, 1990).   

 

 

 



8 
 

Table 1: Reason’s three Basic Error Types in relation to Rasmussen’s three Performance Levels         

(Reason, 1990) 

Performance Level Error Type Description 

Skill-based level Slips and lapses 

Automated non-cognizant errors of automatic 
processing (attention/memory) during regular 
routine actions that are identified quickly 
(Reason, 1990). 

Rule-based level 
Rule-based 
mistakes 

Errors of rule-based behavior.  For example:  
applying the wrong rule for a given situation (often 
with a tendency to keep repeating the same wrong 
actions “strong but wrong”). 

Knowledge-based 
level 

Knowledge-
based mistakes   

Errors of cognitive (knowledge-based) processing 
whereby a problem is not analyzed correctly (or not 
at all) and this results in an error (e.g. wrong 
response to a multitude of alarms based on an 
incomplete understanding of the actual problem). 

GEMS is a broad framework used for recognizing the origins of the basic human error 

types (Reason, 1990).  It is an effort to provide an integrated framework of the error types operating 

at all three levels of performance:  Skill based, Rule based and Knowledge based.  This is a hybrid 

of two sets of error theories proposed by Norman (1981) and Reason and Mycielska (1982) 

(Reason, 1987).  
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Figure 1:  Generic Error Modeling System – GEMS (Reason, 1990) 
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CHAPTER TWO: LITERATURE REVIEW 

Human Error 

Human Error - According to Reason (2008), “Although there is no one universal agreed 

definition of error, most people accept that it involves some kind of deviation” (p. 29). So, as there 

are different definitions for human error, there can also be various classifications. These 

classifications can be based on intention, action, the outcome and contextual factors (Reason, 

2008). 

Erik Hollnagel prefers the term “erroneous action” instead of human error, which he 

defines as “an action which fails to produce the expected results and which therefore leads to an 

unwanted consequence” (Hollnagel, 1993).  T.B. Sheridan defines it as “an action that fails to meet 

some arbitrary implicit or explicit criterion”.  Despite the difference in specific definition, these 

both allude to the subjective element that the definition of human error must incorporate (Sheridan, 

2008).  

Understanding Human Error/The Nature of Error 

Human error can typically be classified into four basic elements of error.  These elements 

depend on intention, action, the outcome and contextual factors (Reason, 2008).  Below are brief 

explanations of these classifications.   
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Intentions 

When we look from the perspective of intention, there are some questions that must be 

considered.  1. Was the error planned, was it an authentic oversight or was it a neglection of 

following designated procedures? 2.  If the action resulted in an unwanted resulted, then was the 

action a mistake of following directions? (Reason, 2008). 

Actions 

Errors in the action classification, deal with the behavior of the individual and the type of 

action that generated the error.  Some examples of this would be, the act of omission (a step that 

is planned, but is not performed), repetition (unnecessarily repeating steps that have previously 

been performed), and misordering (the correct actions are performed, but in the wrong order) 

(Reason, 2008). 

Contextual Factors 

Errors based on contextual factors have to deal with the situation or environment in which 

the error is generated.  Some of these situations or environments can be more prone to errors than 

others. Some contextual errors consist of: Interruptions and distractions (when an individual is 

following an individual, may believe they are ahead or behind in steps and could potentially repeat 

unnecessary or unwanted steps).  Stress can be another factor, in which the environment or task 

can create stress, fear, noise or fatigue, which can increase the likelihood of an error (Reason, 

2008).  Another factor is when an individual is in a process or procedure and is then unexpectantly 

interrupted or distracted.  When the individual returns to this process, they may not specifically be 
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aware of where they were in the process.  Joseph Sharit (2012) provides a basic human error 

framework.  This framework consists of: human fallibility, context and barriers (Sharit, 2012).   

Human Fallibility 

The human fallibility component deals with the essential sensory, cognitive, and motor 

limitation of humans and an abundance of other behavioral tendencies that put humans in a position 

to generate an error.  

Context 

The context component deals with situational variables that can have an influence, shape, 

force, form or have some type of impact on the human’s behavior and how their performance 

variability can lead to an error or unwanted consequences.   

James Reason (2008) states, “We cannot easily change human cognition, but we can create 

contexts in which errors are less likely and, when they do occur, increase their likelihood of 

detection and corrections” (p. 32). 

S.W. Dekker (2005) states that “Human actions are embedded in contexts and can only be 

described meaningfully in reference to the details of the context that accompanied and influenced 

them” (Dekker, 2005).  Joseph Sharit, goes on to state, “The attribution and expression of human 

error will thus depend on the context in which task activities occur” (p. 737). 

The barriers’ component deals with the various ways in which human errors or 

performance failures can be contained and human error is typically viewed as being produced by 

some form of interplay between human fallibility and context (Sharit, 2012).   
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Figure 2:  Framework for Understanding Human Error and its Potential for Adverse Consequences  

(Sharit, 2012) 

Another aspect of human fallibility is the possibility for human error to be affected by 

personality traits. A submissive or compliant personality may be hesitant to interject, probe or 

question an outgoing worker concerning the information that is being communicated or 

aggressively pursue information from that person, particularly if that working person is perceived 

to have an aggressive temperament or assumes a high job status, which could lead to false 

assumptions (Sharit, 2012). Personality behaviors that reflect temperaments toward self-

confidence, meticulousness, and insistence could also include the possibility for errors (Sharit, 

2012).  
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An overconfident personality can lead to being a risk risker and this behavior can and has 

been implicated as a contributing factor in a number of accidents or even having the predisposition 

to taking risks (Sharit, 2012).   

It is very important that we understand the types and aspects of human error or components 

that are related to human error.  Design Error is one of those aspects and deals with the role of 

automation in human error, human error in maintenance operations, and the use of incident 

reporting systems (Sharit, 2012).   

An example of design error can be illustrated in a case study presented by Cao and Taylor 

that dealt with the user’s adaptation to new technologies.  This case study focused on the effects 

of introducing a remote robotic surgical system for laparoscopic surgery on communication 

amongst the operating room team members (Cao and Taylor, 2004).  In this research, 

communication was examined using a framework denoted as common ground, which characterizes 

a person’s knowledge or expectations about what other people in the communication setting know 

(Clark and Schaefer, 1989). From this study Cao and Taylor suggested training to attain common 

ground, possibly through the use of rules or an information visualization system that could 

facilitate the development of a shared mental model among the team members (Stout et al., 1999). 

This was exemplified when a new technology was used such as a surgical robot and if issues arise 

if or when roles change and the use of the new technology are less familiar to particular team 

mates, which can compromise the expectations of communication from the team (Sharit, 2012). 
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Human Performance 

In the big picture of human performance, James Reason states that it is divided into three 

levels:  skill-based, rule-based and knowledge-based (Reason, 2008).   

Skill-Based  

Skill based performance is developed by the effort of practice and self-discipline.  With the 

readjusting of our perceptions, we can gradually develop and obtain the fundamental principles or 

practices of a skill (Reason, 2008). 

Rule-Based  

Rule based is an intermediation between the skill-based and the knowledge-based, due to 

the need to break away from a sequence of largely habitual (skill-based) activity to interact with 

some form of a problem, or in which our actions needs to be adjusted or modified to accommodate 

some change of circumstances (Reason, 2008). According to James Reason, there are considered 

three basic forms of Rule-based mistakes (Reason, 2008): 

1. We can misapply a normally good rule because we fail to spot the contra-indicators. 

2. We can apply a bad rule. 

3. We can fail to apply a good rule.  

Knowledge-Based  

Knowledge based is the knowledge that is considered the beginning level by which our 

actions are directed online by the slow, restricted, and arduous application of conscious attention.  
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This level is dependent upon conscious images or works to guide our actions, whether in the form 

of speech or the instructions of others.  According to James Reason (2008), “knowledge-based 

mistakes occur in entirely novel situations when we have run out of pre-packed problem-solving 

rules and have to find a solution ‘on the hoof’”  (p. 45). 

Overall James Reason states that mistakes at both the rule-based and knowledge-based 

levels are shaped by a variety of biases that are listed below (Reason, 2008): 

 Similarity bias – far from being random, errors tend to take forms that correspond to 

salient aspects of the problem configuration (Reason, 2008). 

 Frequency bias – when cognitive operations are under-specified, they tend to take 

contextually appropriate, high frequency forms (Reason, 2008). 

 Bounded rationality – the conscious workspace is extremely limited in its capacity 

(Reason, 2008). 

 Reluctant rationality – The principle of “least effort” acts to minimize cognitive strain 

(Reason, 2008). 

 Irrationality –Group dynamics can introduce genuine irrationality into the planning 

process.  Willful suppression of knowledge indicating that a certain course of action leads 

to disaster (Reason, 2008).  

Understanding the specification of the types of human errors are essential to understanding 

the types of errors, and their patterns which can help the organization move towards finding an 

effective tool to manage the human error.  It is important to make sure the organization is on the 

same page and understanding of human error and their roles in the organization. 
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Human Error - Two Main approaches 

 According to James Reason, the human error problem can be observed in two ways:  the 

person approach and the system approach with each model providing different causation and 

different philosophies of error management (Reason, 2000). 

Of these two approaches they each have their difference in explained causation and 

methods of managing their perspective of human error.  Understanding these approaches and 

properly identifying and applying the correct methodology to the operations systems will 

determine the impact and effect of the methodologies used to minimize human error.  Identifying 

the cause of the error is essential to identifying and implementing the correct or best managing 

method to help minimize human error (Reason, 2000).   

Person approach 

The person approach focuses on unsafe acts, errors, and procedural violations of people on 

the sharp end (Reason, 2000).  “At the sharp end” is defined as: involved in the area of any activity 

where there is most difficulty, competition, danger, etc. (English Dictionary, n.d.).  The person 

approach views human unsafe acts as a result of the human abnormal mental processes, and focuses 

on errors of individuals, such as forgetfulness, inattention or moral weakness. In an attempt to 

counteract this behavior, tactics such as fearful poster campaigns, adding to procedures, 

disciplinary measures, retraining, naming, blaming and shaming are used (Reason, 2000). 
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Systems approach 

The other approach is considered the System Approach in which errors are seen as 

consequences, rather than focusing on the human.  Counteracting methods consist more of 

changing the conditions under which humans are working instead of the human condition we 

cannot change. The goal is to build defenses to avert errors or mitigate their effects (Reason, 2000). 

 Evaluation of the two approaches - James Reasons states “The pursuit of greater safety is 

seriously impeded by an approach that does not seek out and remove the error proving properties 

within the system at large” (Reason, 2000).   

 When evaluating these approaches, the “person approach” continues to be the prominent 

choice of viewing human error.  With this approach, blaming the individual for the error or unsafe 

act is more convenient for the leadership than to blame or hold the organization responsible for 

making sure defenses are effectively in place to help minimize error.  The individual is held with 

total responsibility for the error.  However, one of the weaknesses in this approach is that directing 

total focus on the individual and the error can impede the attention or focus on the system as a 

whole.  This creates an overlooking neglect of two important features of human error, which is 

that error is not the monopoly of the unfortunate few and mishaps tend to fall into recurrent patterns 

(Reason, 2000). 

In the “systems approach”, defenses, barriers and safeguards occupy a key position.  

According to James Reasons’ “Swiss Cheese” Model, in an ideal world, the established defenses 

would be fully intact; however, reality is more like Swiss cheese, with unsafe actions continually 
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opening, closing and shifting.  As unsafe acts occur at various times, there are holes opening, 

closing and shifting in the Swiss cheese model.  When and if these holes momentarily line up, this 

is where hazards and accidents occur.  Two underlying factors creating the holes in the Swiss 

cheese model is: active failures and latent conditions (Reason, 2000).    

Active Failures   

The effects of active failures, also known as active errors, are felt almost immediately while 

latent errors, whose adverse consequences may lie dormant within the system for a long time, only 

becoming evident when they combine with other factors to breach the systems’ defenses 

(Rasmussen & Pedersen, 1984; cited in Reason, (1990)).  Active failures are difficult to foresee 

and are directly created by the individual.  This could be a slip, mistake, oversight or direct 

violation of procedural requirements.  

Latent Conditions   

 Latent conditions are considered “resident pathogens” that can produce a problem within 

the system.  In the Swiss cheese model, latent conditions can cause long-lasting holes and 

weaknesses in the deficiencies, which can create untrustworthy alarms and indicators, 

unmanageable procedures and design deficiencies.  Latent conditions can be identified and 

remedied before a hazard occurs. Unfortunately, these conditions can lie dormant for years before 

they combine with active failures to create a potential hazard (Reason, 2000). These conditions 

can be present from decisions by designers, builders, procedure developers, and leadership.  
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Fortunately, these conditions can be identified and rectified in the early stages, such as the design 

phase before any hazard effects or conditions arise.    

  

Some holes due to active failures, others due to latent conditions.

 

Figure 3: Cheese Model, Successive Layers of Defenses (Public Domain) 

  

 The system approach concentrates on the conditions under which the individuals work and 

tries to build defenses to avert errors or mitigate their effects.  

Consequences of Human Error 

One example of a consequence of human error is the Chernobyl Disaster - The Chernobyl 

Nuclear Disaster is known as the worst Nuclear Disaster in History.  It occurred in April 26, 1986 

at 1:24 a.m. in the morning in the Ukraine.  Due to a defective reactor, the concrete cap ceiling 

blew off and released molten core fragmentation into the area and atmosphere.  Thirty operators 
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and firemen were killed within months of the disaster and thousands of others died in the months, 

and years to come due to cancer and other side effects of the event.   This disaster is considered a 

man made one, due to the omission of procedure requirements and would fall into the category of 

a latent error (Reason, 1990).  

Upon investigation there were obvious design defects to the reactor and based on failure 

analysis it is believed that the disaster components that created this was not new to the Soviet 

Union.  It was determined that this was considered a system that was hazardous, complex, tightly-

coupled, opaque and an operation outside normal conditions (Reason, 1990).  According to James 

Reason (2000) “The complete absence of a reporting culture in the Soviet Union was the result of 

the Chernobyl Disaster” (p. 768).  The Soviet Union’s management structure was seen as weak, 

largely remote and slow to respond.  Safety was considered ranking low in the light of their 

organizations goals and the operators possess only a limited understanding of the system (Reason, 

1990).  

Classification of Errors 

 
When considering the classification of human error Reason (1990) explains that there are 

three levels of classification:  behavioral, contextual and conceptual.  The behavioral level is 

considered the least detailed level of the classifications.  The observable aspect of this level can 

include the conventional characteristics of error, such as:  omission, commission, repetition and 

misorders.  This also includes considering the immediate consequences, such as: the nature and 

extend of the damage or injury (Reason, 1990).  The second level is the contextual which deals 
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with limited assumptions as it relates to the cause of the error. This level recognizes the crucial 

connection between the type of error generated and the situation or task in which the error 

appeared. However, there is no direct relation to how the same environment or situation does not 

always generate the same type of error. The third level is called the conceptual level.  This level 

of classification relies on theoretical inferences than on observable characteristics of the error or 

its context (Reason, 1990).   

Reason (1990) provides two distinctions on error:  error type and error forms. “Error types” 

relate to the origin of an error within a category or stage, such as: the planning stage (goal and 

achieving a process), storage stage (framing the process actions) and execution stage 

(implementing the storage stage plan).  Reason also describes that mistakes can be divided into 

two entities of "failure of expertise” and "lack of expertise.”  Failure of expertise is when a plan 

or solution to a problem is inappropriately fulfilled.  Lack of expertise is when a person does not 

have the routine or knowledge to appropriately fulfill the task and is forced to rely on previous 

knowledge.  These two mistake categories are similar to the "rule" and "knowledge” based levels, 

described by Rasmussen (1983).  “Error Forms” are forms of fallibility that appear across the board 

of cognitive activities, regardless of the error type.   They can be apparent in types of errors such 

as mistakes, lapses and slips.  Because the forms are extensive it is improbable that these error 

formed incidents are connected to the fault of a single cognitive item (Reason, 1990).  
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Table 2: Classification Error Types to Cognitive Stages at which they occur (Reason, 1990)   

Cognitive Stage Primary Error Type 

Planning Mistakes 
  

Storage Lapses 
  

Execution Slips 

   

Approaches to Identifying and Assessing Human Error 

Human Reliability Analysis (HRA) Methods/Models 

Human Reliability Analysis is often referred to as “the probability of human failures”, as 

it pertains to critical system interactions. Quantitative risk assessment, particularly known as 

Probabilistic Risk Assessment (PRA) is one of two common tools used for ensuring the safety of 

systems that have hazardous potential.  PRAs are used as a safety analysis tool providing beneficial 

information for safety-related decision making (Salvendy, 2012).   

Analysts learned early on that affecting realistic evaluation of system operations risks, 

required integrating human reliability with hardware/software analysis. As it relates to Human 

Reliability Analysts, the Probabilistic Risk Assessment (PRA) serves as a tool for determining the 

contribution to predetermined system failures, by identifying, presenting and quantifying (if 

identified) human errors and/or failures (Salvendy, 2012).   

PRA human errors or actions typically considered in a Probabilistic Risk Assessment are 

frequently gathered into three categories:  Pre-initiator human events, Initiator human events and 

Post-fault human events (Salvendy, 2012): 

Pre-initiator human events – Events that occur within normal operations that can cause 
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hardware or systems to become unavailable once needed. 

Initiator human events – Events or actions that were originated on their own or in 

combination with other actions or failures that can initiate an event or occurrence.   

Post-fault human events – human actions that, due to inadequate assessment of a situation, 

a strategic approach to resolve the issue, leads to an inadequate repair.  

Despite the fact that a HRA is considered (and recognized) as an essential component of a 

Probabilistic Risk Assessment (PRA), it does not guarantee that this process will be integrated 

(effectively) into PRA analyses.  With research revealing that human reliability accounts for 60-

80% of total system risk, it is essentially imperative that the HRA analysis process be included and 

significantly involved in the PRA process (as cited in Salvendy, 2012). 

Cognitive Reliability and Error Analysis Method (CREAM) 

CREAM was proposed by Erik Hollnagel as a modified HRA tool to defining and 

analyzing human error causes (Yang, et al. 2007).  Its theoretical context is centered on the 

classification of the error mode elements of human, technological and organizational factors 

(Konstandinidou, et al. 2006). 

CREAM can be used by analysts for: recognizing tasks requiring human reasoning and 

hinge on cognitive reliability, determining the mental reliability state in which the reliability may 

be reduced, thus creating a reduced mental reliability and foundation of risk and lastly provide an 

assessment of the significant impact of human performance on system safety, which can be 

implemented in a Probabilistic Risk assessment (PRA) (Konstandinidou, et al. 2006).  Three major 

benefits to using the CREAM method include: maximizing the capabilities of the human 
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performance, minimizing the probabilities of human error and lastly maximizing the highest 

potential recovery from human error occurrences (Yang, et al. 2007).    

The Technique for Human Error Rate Prediction (THERP) 

The Technique for Human Error Rate Prediction (THERP) is considered one of the oldest 

and well-known HRA methods (Swain, 1990).  THERP was developed and proposed by Swain 

and Guttman in 1961.  The method’s development was backed by the U.S. Nuclear Regulatory 

Commission (Swain and Guttmann, 1983).   

 
THERP is a method used for predicting human error probabilities and their tendency to 

weaken a man-machine system due to isolated or a combination of human errors.  This 

combination of errors can include machine functions, practices, operations processes or any other 

human factors (Swain and Guttmann, 1983).  One of the major differences between the steps of 

THERP from other reliability analyses is the human events are replaced with machine outputs 

(Swain and Guttmann, 1983).  

THERP Steps:  1) Describe the system failures, 2) Itemize and examine the associated 

human operations, 3) Calculate/determine the significant error probabilities, 4) Determine the 

human error effects on the system failure events, and 5) Discuss change considerations to the 

system and reevaluate the system failure. 
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Phase 1: Familiarization 
Phase 2: Qualitative Assessment 
Phase 3: Quantitative Assessment 

Phase 4: Incorporation 
 

 

Figure 4: Example of Steps Encompassing THERP (Sharit, 2012).  

 

Human Factors Analysis and Classification System (HFACS)  

Human Factors Analysis and Classification System (HFACS) is primarily based on James 

Reason’s Generic Error Modeling systems (GEMS) conceptual framework.  The purpose of this 

framework is to identify the origin of basic human error types (Reason, 1990).  Created from 

Reason’s model, the HFACS lists human errors at each of the four levels of failure: 1) unsafe acts 

of operators, 2) precondition for unsafe acts, 3) unsafe supervision, and 4) organizational 
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influences (which can be multiple causes) (Wiegmann, 2001).  Nineteen (19) causal categories 

within the four categories of level of failures are also established for human failure. 

HFACS was developed by Dr. Scott Shappell (Civil Aviation Medical Institute) and Dr. 

Doug Wiegmann (University of Illinois) as a response to data from the Navy and Marine Corp that 

identified human error as the leading primary cause for approximately 80% of all of their flight 

accidents.  HFACS is used to categorize human causes of accidents and serves as a means to assist 

in the investigation of those causes.  It also helps identify human causes of accidents, with the 

objective of establishing training and prevention efforts (Wiegmann and Shappell, 2001).   

Below is a diagram (Figure 5) of the HFACS four levels of human failure and selected 

examples (Tables 3, 4, 5 and 6) from the Nineteen (19) causal categories within the four categories. 
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Figure 5: Human Factors Analysis and Classification System (HFACS) Overview (Shappell, 2012).   
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Table 3: Selected Examples of HFACS Preconditions of Unsafe Acts (not an exhaustive list) (Shappell, 2012) 

Condition of Operators Personnel Factors 

Adverse Mental State Crew Resource Management 
  

Loss of situational awareness Failed to conduct  
 adequate brief 

Complacency Lack of teamwork 

Stress Lack of assertiveness 

Overconfidence 
Poor communication/coordination 

with and between aircraft, ATC, etc.  

Poor flight vigilance Misinterpretation of traffic calls 

Task Saturation Failure of Leadership 

Alertness (Drowsiness) Personal Readiness 

Get-Home-Itis 
Failure to adhere to crew rest 

requirements  

Mental Fatigue Inadequate training 

Circadian dysrhythmia Self-medication 

Channelized attention Overexertion while off duty 

Distraction Poor dietary practices 

Adverse Physiological State Pattern of poor risk judgment 

Medical Illness Environmental Factors 

Hypoxia Physical Environment 

Physical fatigue Weather 

Intoxication Altitude 

Motion sickness Terrain 

Effects of Over the Counter (OTC) 
mediations 

Lighting 

Physical/Mental Limitations Vibration 

Visual Limitations Toxins in the Cockpit 

Insufficient reaction time Technological Environment 

Information overload Equipment/controls design 

Inadequate experience for complexity 
of situation 

Checklist layout 

Incompatible physical capabilities Display/interface characteristics 

Lack of aptitude to fly Automation 

Lack of sensory input  
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Table 4: Selected Examples of Unsafe Acts (not an exhaustive list) (Shappell, 2012) 

Errors Violations 

Skilled Based Errors Routine Violations 

Breakdown in visual scan Inadequate briefing for flight 

Inadvertent use of flight controls 
Failed to use air traffic controls 

(ATC) radar  advisories 

Poor technique/airmanship Flew an unauthorized approach 

Over-controlled the aircraft Violated training rules 

Omitted checklist item 
Failed Visual Flight Rules (VFR) in 

marginal weather conditions 

Omitted step in procedure 
Failed to comply with departmental 

manual 

Over-reliance on automation 
Violation of orders, regulations, 
Standard Operating Procedures 

Failed to prioritize attention 
Failed to inspect aircraft after in-

flight caution light 

Task overload Exceptional Violations 

Negative habit 
Performed unauthorized acrobatic 

maneuver 

Failure to see and avoid Improper takeoff technique 

Distraction Failed to obtain valid weather brief 

Decision Errors Exceeded limits of aircraft 

Inappropriate maneuver/procedure 
Failed to complete performance 

computations for flight 

Inadequate knowledge of systems, 
procedures 

Accepted unnecessary hazard 

Exceeded ability Not current/qualified for flight  

Wrong response to emergency 
Unauthorized low-altitude canyon 

running 

Perceptual Errors   

Due to visual illusion   

Due to spatial 
disorientation/vertigo 

  

Due to misjudged distance, 
altitude, airspeed, clearance 
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Table 5: Selected examples of Preconditions of Unsafe Supervision (not an exhaustive list) (Shappell, 2012) 

Inadequate Supervision 
Failed to Correct a Known 

Problem 

Failed to provide proper training 
Failed to correct inappropriate 

behavior   

Failed to provide professional 
guidance/oversight 

Failed to identify risky behavior    

Failed to provide current 
publication/adequate technical 

data and/or procedures 
Failed to correct a safety hazard 

Failed to provide adequate rest 
period 

Failed to initiate corrective action 

Lack of accountability Failed to report unsafe tendencies 

Perceived lack of authority Supervisory Violations 

Failed to track qualifications 
Authorized unqualified crew for 

flight 

Failed to provide operational 
doctrine 

Failed to enforce rules and 
regulations 

Failed to track performance Fraudulent documentation 

Over-tasked/untrained supervisor 
Failed to enforce rules and 

regulations 

Loss of supervisory situational 
awareness 

Violated procedures 

Planned Inappropriate 

Operations 
Authorized unnecessary hazard 

Poor crew pairing 
Willful disregard for authority by 

supervisors 

Failed to provide adequate brief 
time /supervision 

Inadequate documentation 

Risk outweighs benefit  

Failed to provide adequate 
opportunity for crew rest 

  

Excessive tasking/workload   
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Table 6: Selected examples of Organization Influences (not an exhaustive list) (Shappell, 2012) 

Resource Management Organizational Process 

Human resources Operations 

Selection  Operational tempo 

Staffing/manning Incentives 

Training  Quotas 

Background checks Time pressure  

Monetary/Budget Resources Schedules 

Excessive cost cutting Procedures 

Lack of funding Performance standards 

Equipment/Facility Resources Clearly defined objectives 

Poor aircraft/aircraft cockpit 
design 

Procedures/instructions about 
procedures 

Purchasing of unsuitable 
equipment 

Organizational Climate 

Failure to correct known design 
flaws 

Structure 

Organizational Process 

Oversight 
Chain of command 

Established safety programs/risk 
management programs 

Communication 

Management's monitoring and 
check of resources, climate and 
process at ensure a safe work 

environment.  

Accessibility/visibility of 
supervisor  

Organizations Climate Culture Delegation of authority 

Norms and rules Formal accountability for actions 

Organization customs Polices 

Values, beliefs, attitudes Promotion 

 Hiring, firing, retention 

 Drugs and alcohol 

 Accident investigations 
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Human Error Analysis Reduction Technique (HEART)  

The Human Error Assessment and Reduction Technique (HEART) is a Human Reliability 

Analysis (HRA) developed by J. C. Williams in 1986, which uses a set of generic error 

probabilities that have been adjusted by Subject Matter Expert (SME) assessors along with 

controlled performance shaping factors to evaluate the likelihood of human errors that may occur 

within a system (Kirwan, 1996). Performance shaping factors (PSF) encompass a variety of factors 

that can directly or indirectly influence a human’s performance.  In the HEART tool the PSFs are 

called Error Producing Conditions (EPCs). 

HEART has been suggested to be one of the most well-known HRA techniques used in 

the United Kingdom (Kirwan, 1996).  Through a validation of three reliability quantification 

techniques performed by Kirwan (1996), HEART provides precise number estimates of the 

likelihood of failure founded on the practical use of the Quantification Process (Kirwan, 1996).   

The HEART method also proposes remedial measures to combat or help minimize the 

likelihood of the error from occurring in a general sense (Williams, 1986).  

 

HEART and HRA 

The HRA process (see Figure 6) encompasses various risks, probability assessments and 

methods that follow a 10-step model process.  This ranges from the first step of defining the 

problem to the final step of documentation, once the accepted human reliability is high (Sharit, 

2012).          
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 Figure 6: General HRA Process (Kirwan, 1994) 

Amongst the various HRA methods for analyzing human error, the Human Error 

Assessment and Reduction Technique (HEART), created by J. C. Williams in 1986 evaluates the 

probability of human errors as it occurs throughout the completion of a specific task (Williams, 

1988).  This technique can be useful for assisting in reducing the likelihood of errors that may 

occur within a system, leading to an overall reduction of error, mishaps, and other safety aspects 

(Williams, 1988).   

One of the benefits of using the HEART technique it that it is capable of answering both 

qualitative and quantitative questions, by identifying methods to reduce human  
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error impact during risk analysis (qualitative) and then the reduced risk if such an error decreasing 

measure is implemented (quantitative) (Kirwan, 1997).   

HEART was originally established for nuclear power and chemical process industries 

(Kirwan, 1994), but for this research it was modified to fit the needs of complex space operations, 

such as KSC ground processing operations. 

With emphasis on more of a holistically appraisal of the reliability of human task 

performance, this method originally defined the limited set of  “generic” tasks by describing 

nuclear power plane activities from which analysts can select.  For this method, various resources 

were reviewed in order to develop a limited set of “generic” tasks performed by operators of 

various complex systems, including power plants.  From this list the common factor tasks were 

generated (Sharit, 2012). 

This HRA technique is based on human performance literature, with a central premise that 

when dealing with reliability and risk equations, ergonomic analysts are interested in the factors 

that have a large impact on performance.  The HEART method concentrates on the factors that 

have a significant impact on this performance (Kirwan, 1994).  This technique allows an 

ergonomist to assist engineers by identifying how important the ergonomic aspects are 

quantitatively (Kirwan, 1994). 

This method is considered relatively easier to apply than the Technique for Human Error 

Rate Prediction (THERP) due to the fact that it is not forced to quantify large numbers of basic 

subtasks (Sharit, 2012).   
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Table 7: Kirwan’s HEART Process (Yang, et al., 2007) 

a. Categorize tasks into one of the generic categories.  
   

b. Allocate a nominal Human Error Probability (HEP) to the task. 
   

c. Verify the Error Producing Conditions (EPCs: effectively PSFs) which will 
      influence task reliability 

d. Decide the Assessed Proportion of Affect (AOA) for each EPC. 
   

e. Compute the task HEP.  
 

 

HEART Human Error Probability (HEP)   

The HEART assessment begins by taking a specific task or activity of interest performed 

by the human operator and assigning it a nominal human error probability by classifying it under 

a predefined generic task.  This method is based on the standard that every time a task is 

performed, there is a potential for some probability of error, defined as the Error Producing 

Conditions (EPCs) (Kim, 2006).     

The Human Error Probability (HEP) is the probability that an error will occur during the 

performance of a given task (Kim, 2006).   

The HEP is defined as the ratio of committed errors to the number of opportunities that are 

available for errors to be made (Kim, 2006).   

 

(1) 

                                   HEP =            Number of committed errors (Ne)_____   
Number of opportunities for errors to occur (No)  
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HEART classifies 9 generic task types, with projected nominal Human Error Probability 

(HEP) values (see Table 8) and their proposed bounding values along with 38 EPCs.  An EPC can 

be:  tiredness, noise, inexperience, stress, etc., all with varying degrees (Williams, 1988).  Each of 

the 38 Error Producing Conditions (EPCs) have a maximum predicted value called the “nominal 

amount” that the nominal HEP can be multiplied by.  This “EPC nominal amount” of how much the 

unreliability of the condition might change (going from “good” to “bad”) was established on an 

wide-ranging analysis of human performance literature (Williams, 1998).  

  The generic tasks used for classification may be one or more of, but are not limited to, the 

38 Error Producing Conditions (EPCs) defined by this technique (see Table 9).  These EPCs are 

then specified for a given situation (as cited in Eastman, 2004).   

The EPC(s) with the greatest negative impacts are of the greatest concern.  Once the 

greatest impacting EPC(s) are identified, a final error chance can be calculated from the failure 

probability under the ideal condition (Williams, 1988).   

Below (Table 8) are the Generic Task listed in the HEART process along with the Nominal 

Error Probabilities.   
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Table 8: HEART Nominal Human Error Probabilities (HEPs) (Williams, 1986) 

Letter Generic Task 
Nominal HEP 

(5th-95th percentile) 

A Totally unfamiliar, performed at speed with no real  0.55 
 idea of likely consequences. (0.35-0.97) 

B Shift or restore system to a new or original state on a 0.26 
 single attempt without supervision or procedures. (0.14-0.42) 

C Complex task requiring high level of comprehension 
and 

0.16 
 and skill. (0.12-0.28) 

D Fairly simple task performed rapidly or given scant 0.09 
 attention. (0.06-0.13) 

E Routine, highly-practiced, rapid task involving 
relatively 

0.02 
 relatively low level of skill. (0.007-0.045) 

F Restore or shift a system to original or new state 
following 

0.003 
 following procedures with some checking. (0.0008-0.007) 

G 
Completely familiar, well-designed, highly practiced 
routine task occurring several times per hour, 
performed to highest possible standards by highly-
motivated, highly-trained and experienced person, 
totally aware of implication of failure, with time to 
correct potential error, but without the benefit of 
significant jobs aids.  

0.0004 
(0.0008-0.009) 

 Respond correctly to system command even when 
there is 

0.00002 

H an augmented or automated supervisory system 
providing accurate interpretation of system state.    

(0.000006-
0.0009) 
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Table 9: HEART Error Producing Conditions (EPCs) (Williams, 1986) 

Number Error Producing Condition (EPC) 

Nominal 
amount 

by which 
unreliability 

might change 

1 

Unfamiliarity with a situation which is 
potentially important, but which only 
occurs infrequently, or which is novel. 

X 17 

2 
A shortage of time available for error 
detection and correction. X 11 

3 A low signal to noise ratio. X 10  

4 

A means of suppressing or overriding 
information or features which is too easily 
accessible. 

X 9 

5 

No means of conveying spatial and 
functional information to operators in a 
form which they can readily assimilate. 
(e.g. Spatial and functional 
incompatibility) 

X 9 

6 

A mismatch between an operator’s model 
of the world and that imagined by a 
designer. 

X 8 

7 
No obvious means of reversing an unintended 
action. 

X 8 

8 

A channel capacity overload, particularly 
one caused by simultaneous presentation of 
non-redundant information. 

X 6 

9 

A need to unlearn a technique and apply one 
which requires the application of an 
opposing philosophy. (e.g. Operation 
technique) 

X 6 
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Number Error Producing Condition (EPC) 

Nominal 
amount 

by which 
unreliability 

might change 

10 

The need to transfer knowledge from task 
to task without loss. X 5.5 

11 
Ambiguity in the required performance 
standards. 

X 5 

12 
A mismatch between perceived and real risk. 
(e.g. Risk misperception) 

X 4 

13 
Poor, ambiguous or ill matched system 
feedback. 

X 4 

14 

No clear, direct and timely confirmation of 
an intended action from the portion of the 
system over which control is to be exerted. X 4 

15 
Operator inexperience. (e.g., a newly qualified 
tradesman, but not an expert) 

X 3 

16 

An impoverished quality of information 
conveyed by procedures and person-person 
interaction. 

X 3 

17 
Little or no independent checking or testing of 
output. 

X 3 

18 

A conflict between immediate and long 
term objectives. (conflict of 
objectives) 

X 2.5 

19 
No diversity of information input for veracity 
checks 

X 2.5 

20 

A mismatch between the educational 
achievement level of an individual and the 
requirements of the task. 

X 2 
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Number Error Producing Condition (EPC) 

Nominal 
amount 

by which 
unreliability 

might change 

21 
An incentive to use other more dangerous 
procedures. 

X 2 

22 

Little opportunity to exercise mind and body 
outside the immediate confines of a job. 
(e.g. need for postural change)  X 1.8 

23 
Unreliable instrumentation (enough that it is 
noticed). 

X 1.6 

24 

A need for absolute judgments which are 
beyond the capabilities or experience of an 
operator. 

X 1.6 

25 
Unclear allocation of function and 
responsibility. 

X 1.6 

26 
No obvious way to keep track or progress 
during an activity. X 1.4 

27 
A danger that finite physical capabilities will 
be exceeded.  
 

X 1.4 

28 Little or no intrinsic meaning in a task.  
 

X 1.4 

29 High level emotional stress.  
 

X 1.3 

30 
Evidence of ill-health amongst operatives 
especially fever.  
 

X 1.2 

31 Low workforce morale.  
 

X 1.2 

32 
Inconsistency of meaning of displays and 
procedures.  
 

X 1.2 

33 
A poor or hostile environment. (e.g. likely to 
impair performance) 
 

X 1.15 
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Number Error Producing Condition (EPC) 

Nominal 
amount 

by which 
unreliability 

might change 

34 

Prolonged inactivity or highly repetitious 
cycling of low mental workload tasks (1st 
half hour) 
 

X 1.1 

34 (thereafter)  
 

X 1.05 

35 Disruption of normal work sleep cycles.  
 

X 1.1 

36 
Task pacing caused by the intervention of 
others.  
 

X 1.06 

37 

Additional team members over and above 
those necessary to perform task normally and 
satisfactorily (per additional team member). 
 

X 1.03 

38 
Age of personnel performing perceptual 
tasks.  
 

X 1.02 

 
 

HEART Process (Williams, 1988) 

1. Identify the complete range of sub-tasks that would be necessary for a human operator   to 

complete within in a given task.   

2. The tasks are then classified into the generic tasks provided within the HEART process with 

proposed nominal human unreliability for these tasks.  These are the nominal Human Error 

Probability (HEP) scores for the particular task with calculated 5th – 95th percentage bounds 

(see Table 8).   
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3. The obvious EPCs that have high possibility or probability to have a negative effect on the 

particular situation are considered.  The EPCs that show evidence of having a significant affect 

in this particular situation will be used by the assessor (Williams, 1988). To what extent each 

EPC applies to the given task of concern is then discussed and agreed upon again by local 

SMEs.  EPCs should be considered as not beneficial to a work task.   

4. The Assessed Proportion of Affect (AOA) for each tasks will be determined by consulting 

local subject matter experts (SMEs), in which the affect proportions range from 0 to 1.   The 

AOA is a subjective assessment of the Error Producing Condition’s (EPC) affect or impact on 

a specified Generic Task.  The AOA range represents the percentage of this affect (e.g. 0.26 = 

26% of the EPC maximum effect). This value will be a part of the assessed effect for each error 

producing condition of the given task.   

5. A final HEP is then calculated, by multiplying the HEART nominal HEP of the task by each 

of the calculated assessed effects.  The calculated effect is determined below:   

(2) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑠𝑠𝑒𝑠𝑠𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 𝐸𝑓𝑓𝑒𝑐𝑡= ((𝑀𝑎𝑥 𝐸𝑓𝑓𝑒𝑐𝑡 − 1)  × 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑓𝑓𝑒𝑐𝑡) + 1 𝐻𝐸𝑃 = (𝑇𝑦𝑝𝑒 𝑜𝑓 𝑇𝑎𝑠𝑘 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑒𝑟𝑟𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) × (𝐴𝑠𝑠𝑒𝑠𝑠𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 𝑒𝑓𝑓𝑒𝑐𝑡(𝑠)) 

 

6.  From here a HEP value can identify the EPCs that cause a higher probability for an error to 

occur and possible remedial or strategies to minimize the occurrence risk of future human 

errors can be developed. 
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Figure 7: HEART Quantification Process, (Kirwan, 1996) 

 

Human Error Risk Management for Engineering Systems (HERMES) 

The Human Error Risk Management for Engineering Systems (HERMES) is a Human 

Factors methodology that provides a guide to applying pertinent human factors methods for a 

specific problem (Cacciabue, 2004). In its system’s approach to applying correct Human Factors 

methods, it also provides a framework of methods, models and techniques to address the issues of 

Classify generic task (Categories A-H)

e.g Procedural tasks with some checking, category F

Assign nominal Human Error Probability 
(HEP)

e.g. Use median: HEP = 0.003

Identify Error Producing Conditions          
(EPCs or PSF)

e.g. Effects of time pressure, maximum effect = x11

Assess proportion of affect of each EPC on the 
nominal HEP

e.g.  Use 50% of this maximum effect

Calculate final HEP

e.g. HEP=0.003 x [(11-1) x 0.50 + 1] = 0.018
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Human Risk Assessments (HRA), such as Human Error Management and the cognitive process 

(Cacciabue, 2004).   

The steps for the HERMES method consists of:  

 

Figure 8: HERMES Methodology (Cacciabue, 2013). 
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Human Error Rate Assessment and Optimizing System (HEROS) 

The Human Error Rate Assessment and Optimizing System (HEROS) is built on a fuzzy 

set concept that was developed to perform probabilistic assessments and optimization of man-

machine systems (Richei, 2001). When using the HEROS method, the calculation of the 

probabilities of human error can be performed by the following processes. 

 

Table 10: HEROS Process (Richei, 2001) 

HEROS Processes 

(a) Description of the present environment. 

 
(b) Description of the objective action. 
 

(c) Assessment of associated records. 

(d) Description of active employees. 

(e) Assessment of supervision leadership. 

(f) Development of the order of steps for task analysis. 

(g) Depiction by a fault tree. 

(h) Assessment of PSFs. To identify the impacts of 
PSFs on assignment components can validate the 
impact on actions. 

(j) Calculation of human error probabilities. 
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Below is an Advantage and Disadvantage Comparison Table of the seven HRAs 

discussed in this Literature Review.       

Table 11: HRA Advantage and Disadvantage Comparison Table 

Human Error 

Identification Methods 
Advantages Disadvantages 

Humane Error 

Assessment and 

Reduction Technique 

(HEART) 

Useful for prediction and quantifying 
human error likelihood or failure within 
complex systems; Easy to use; Minimal 
training required. 

HEART Methodology is subjective to 
SME assessment, thus affecting the 
consistency. 

The Cognitive Reliability 

and Error Analysis 

Method (CREAM) 

Considered organized system approach 
to quantifiably identifying human error; 
very detailed. 

Time consuming to implement; May be 
considered complicated to a novice 
analyst; appears complicated in 
application.  

Human Factors Analysis 

and Classification 

System(HFACS) 

Helps categorize and classify human 
error into four levels of failures.  

Originally developed for Navy and 
Marine Corp. Will need to be modified 
for use in other fields. 

Technique for Human 

Error Rate Prediction 

(THERP) 

THERP can be used for task 
performance Prediction while designing 
the Human System Integration (HSI) 
interaction (Yang, et al. 2007). 

THERP does not offer clear processes for 
performing error identification (Chandler, 
2006). 

Human Error Risk 

Management for 

Engineering Systems 

(HERMES) 

The HERMES methodology has 
presented proficiency and usefulness in 
an actual and complex application 
(Yang, et al. 2007). 

The application of HERMES is restricted 
to the identification of safety critical 
factors, or Indicators of Safety (IoS), and 
their dissemination into RSA-Matrices 
that serve the resolution of outlining the 
present level of safety within the 
organization and describing the position 
methods for audits in the future (Stanton, 
2013). 

Human Error Rate 

Assessment and 

Optimizing System 

(HEROS)  

The importance of the Performance 
Shaping Factors (PSF) and Performance 
Influence Factor (PIF) values can be 
easy calculated for optimizing the man-
machine system (Richei, 2001).  

Even though is it minimized, there is still 
some level of subjectivity when vague 
linguistic statements on PSFs are selected 
and modified, then conveyed into 
expressions of fuzzy numbers or intervals 
to allow mathematical operations to be 
performed on them  (Richei, 2001). 
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Human Error in Aerospace Industry 

When considering human error in the Aerospace and Aeronautics Industry, it is imperative 

to define what the terms aerospace and aeronautics mean.  Merriam Webster defines aerospace as 

“an industry that deals with travel in and above the Earth's atmosphere and with the production of 

vehicles used in such travel:  space comprising of the earth's atmosphere and the space beyond” 

(Merriam-Webster, 2015).  Aeronautics is defined as “a science that deals with airplanes and 

flying:  a science dealing with the operation of aircraft” (Merriam-Webster, 2015).   

In this research, various literature journals were reviewed in order to identify the leading 

contributing factors to human error in the aerospace and aeronautics industry.   Unfortunately, 

from what was found, there was very limited research information from a space operations 

perspective; however, research information was provided for the aeronautical industry with 

considerable focus on pilot error.  The aeronautical industry information found in this research 

review was used as a “closely related area” to “aerospace” science that deals with the earth’s 

atmosphere and the manufacture of vehicles used in space.  NASA KSC Ground Processing 

Operations deals with processing launch vehicles and space-craft used in the earth’s atmosphere 

and beyond.  This data was used as a reference benchmark for leading contributing factors, which 

was used in developing the categorization for the human errors listed in the KSC Mishap Data 

within the 30 year time span (October 1984 – May 2014). 
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Causes of Aviation Mishaps  

 To identify the most common human error causes as it relates to the casual categories of 

Human Error taxonomies, research of Aviation/aircraft operation Mishaps were reviewed.  Mishap 

research shows that of the Human Error taxonomies related to operations (aeronautics industry), 

the Human Factors Analysis and Classification System (HFCAS) was  found to be one of the 

prominent theoretical established instruments for evaluating and examining human error as it 

relates to accidents and incidents (Wiegmann et al., 2005).   

A study of 523 accidents within the Republic of China (ROC) Air Force from 1978-2002 

(24 years), revealed several significant associations between errors at the operation level and 

organization inadequacies. These were both found at the immediate HFACS adjacent level 

“Preconditions for unsafe acts” and higher levels of the “unsafe supervision and organizations 

influences.”  From the analysis, the greater frequencies and higher percentages of the frequency 

counts and inter-rater reliability status for each HFACS category were found in the following:  

Resource management (subcategories of organizational influence), Inadequate supervision 

(subcategories of Unsafe supervision), Crew resource management and adverse mental states 

(subcategories of Preconditions for unsafe acts), Violations, Perceptual errors, Skilled-based 

errors, and Decision errors (subcategories of Unsafe acts of operators) (Li, W., 2006).  

Frequency counts for the Republic of China (ROC) Air Force’s study were generated for 

each HFACS category for all 523 accidents. Of the four levels and subcategories, the sublevel 

errors that had the 10 highest frequency of occurrence (when ranking order of highest frequency) 

are in the table below, with “Unsafe Acts” and “Preconditions for unsafe acts” being the leading 
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HFACS Categories.  

Level 1: Unsafe Acts (of Operators) 
Level 2: Preconditions for unsafe acts (e.g. latent conditions)  
Level 3: Unsafe supervision 
Level 4: Organization Influences 

 
Table 12: 10 Highest Frequency of Occurrence (in ranking order of highest frequency) (Li, W., 2006) 

1. Skilled-based errors (Level 1) - Highest 

2. Decision errors (Level 1) 

3. Adverse mental state (Level 2) 

4. Resource management (Level 2) 

5. Inadequate supervision (Level 3) 

6. Violations (Level 1) 

7. Crew resource management (Level 2) 

8. Perceptual errors (Level 1) 

9. Organization process (Level 4) 

10. Physical environment (Level 2) - Lowest 

 
The HFACS tool was used in a research study concerning General Aviation accidents, in 

which the focus was on the unsafe acts of aircrew.  When the research constrained the analysis to 

those causal categories, results indicated that Skill-based errors comprised the largest percentage 

of General Aviation accidents.  Following Skilled-based errors, was Decision errors, Violations 

and Perceptual errors.  Many of the identified accidents were linked with several HFACS causal 

categories. Thus an accident could have been linked with either a Decision, Skill-based, Perceptual 

error, Violation or a combination of errors.  The identified accident may have also been linked 

with numerous occurrences of the same type of unsafe act.  The results consisted of accidents that 

involved at least one occurrence of a particular unsafe act category (Wiegmann et al., 2005).    
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Managing Human Error   

The primary goal of managing human error is to limit the incident of dangerous errors and 

producing systems that are able to endure occurrences of these errors and contain their destructive 

effects (Reason, 2000).  When managing human error from the “person approach”, efforts are 

made to direct management resources to make individuals less fallible.  From the “systems 

approach” the effort is geared towards the management of several targets:  the person, team, 

task, workplace and institution as a whole (Reasons, 2000). 

When observing Human Reliability Analysis as it applies to aviation, William Nelson 

(Nelson at el., 1998) discussed an effective framework to apply human performance and 

human reliability methods to the full system development cycle, so that the full effectiveness 

of the methods to enhance design quality and system performance can be realized.  Applying 

these human factor methods as early as possible within the system development, will help 

accomplish this effectiveness.  This integrated design environment for human reliability 

analysis was developed at the Idaho National Engineering and Environmental Laboratory 

and its framework is comprised of five major elements (Nelson at el. 1998).  Below are the 

elements and a brief explanation.  

• Lessons Learned 

• Functional Analysis 

• Simulation 

• Human Performance and Human error analysis 

• Design engineering tools 
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 Lessons Learned  

 Collecting and gathering lessons learned from relevant qualitative contextual information 

from operation experience can be used to learn more about the influences or contributions that lead 

to human error.  This can also be effective in guiding the designs to help eliminate or mitigate any 

possibility of human error within those potential situations (Nelson at el. 1998).      

 Functional Analysis 

This analysis is used to identify critical functions that must be realized and draws attention 

to the design phase and maintaining this during the operation phase in order to ensure the system 

objectives will be met.  This system can identify the critical functions, maintenance of the 

performed tasks, the resources used to maintain these functions, and the required support systems 

for the operation of these resources.  When a function model has been developed, system 

vulnerabilities can be identified as it relates to human error and the performance of the system can 

be explored in a variation of operation scenarios for various alternative designs from an either 

function or assess human performance in simulation or operation tests (Nelson at el. 1998).     

 Simulation   

 Nelson’s (1998) research states that “Simulation should be viewed as a powerful tool with 

which to try our various design alternatives in a tightly-coupled feedback loop to investigate design 

options” (p. 211).  Simulation allows the reenactment of various design alternatives and allows the 

investigation of the advantages and disadvantages of the varying design features as it relates to 

human performance and reliability (Nelson at el., 1998).       
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 Human Performance and Human Error Analysis    

 This analysis can be used as a tool to help identify and predict potential human errors and 

how they interact with other errors and component failures which can lead to unwanted 

consequences, and provide potential counteractions to help prevent or mitigate the consequences 

of specific errors (Nelson at el., 1998).        

 Design Engineering Tools    

 This is considered the final element of the integrated design environment for human 

performance and human reliability analysis.  These tools allow systematic application of the other 

design environment elements in the system development process (Nelson at el., 1998).          

 Of the management tools to manage and minimize human error, identifying and utilizing 

the correct tool is essential to minimizing human error.  In this review, human error was discussed 

to help understand the current and proposed management methods and which principles of 

methods could be used help minimize human error in ground support operations for space 

operations at KSC.  This study took a look into the various methods and if they could be used or 

modified for use in ground processing operations.  

An essential part of effective risk management relies on creating a reporting culture. James 

Reasons (2000) states that “Without a detailed analysis of mishaps, incidents, near misses and 

lessons learned, we have no way of uncovering recurrent error traps or of knowing where the 

“edge” is until we fall over it” (p. 768). 

Karl Weick observed that “reliability is a dynamic non-event” (Reason, 2008), which 
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conveys that stable outcome is an expression of constant change rather than continuous repetition.  

To create this stability, a change in one system must be compensated by another change in another 

parameter (Reason, 1997). Reliability is considered dynamic because the process remains within 

boundaries due to constant moment by moment adjustments and compensations by the operator or 

individual.  It is considered a “non-event” because safety nonevents typically draw little, if any, 

attention to them (Reason, 2008).  Accidents are the events that are noticed and draw attention to 

them.  The ongoing stable safety status is expected and although actions are generated in order to 

maintain it, the safe or stable act within itself is unnoticed.  

The attributes of an organization’s reliability heavily depends on an unchanging 

consistency in the procedures and processes.   Due to the structure, High Reliability Organizations 

(HROs) are able to cope with consistent performance and the ability to manage the unexpected.   

HROs are considered to have two distinguishing organization function aspects: cognition and 

activity (Reason, 2008).  Research has shown that high reliability organizations provide an 

important model of what a resilient system consists of (Reason, 2000).   

High Reliability Organizations, such as US Navy Nuclear aircraft carriers, Nuclear Power 

plants, and Air traffic control centers are models of HROs (Reason, 2000).  All of these are serious 

jobs where depending on the type of error made, an error can be catastrophic. There are some 

similar distinct characteristics and challenges that were found within these organizations when 

these organizations were observed:  Organization challenges, managing multifaceted challenging 

technologies to avoid major failures and sustaining the capacity for meeting periods of very high 

peak demands (Reason, 2000).   
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Organization defining characteristics consist of: Multifaceted, internally dynamic, 

sporadically, extremely collaborative, performing thorough tasks under extensive time pressure, 

fulfilling challenging activities with small incident rates and an almost near total absence of 

disastrous failures over several years (Reason, 2000).   

High reliability organizations can reconfigure themselves.  They have a repetitive mode 

(organized in orthodox ordered manner).  During high temporary emergencies, the control shifts 

to the experts on the spot and then the organization reverts seamlessly back to repetitive controls 

once the disaster has passed (Reason, 2000).  From James Reason’s study, the value of High 

Reliability Organizations (HRO) can be summarized in the following four bullets: 

• High reliability organizations are considered primary examples of the system approach, 

because they prepare for the worst and equip themselves to handle the situation at all 

levels of the organization (Reason, 2000). 

• For these organizations, the quest of safety is about making the system as strong as 

possible in the mist of its human and operational hazards (Reason, 2000). 

• HRO’s have developed the skill of converting occasional setbacks into the improved 

flexibility of the system (Reason, 2000). 

• High reliability organizations have a high awareness of the possibility of failure 

(Reason, 2000). 
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Paradox of High Reliability - With the study of high reliability there are some paradoxes.  

In research we typically gain knowledge and learn more about the negative outcomes or results of 

not having a high reliable system.  For example, with medicine we understand more about the 

disease, than how it can be best avoided or in safety, more about unwanted events than the causes 

to avoid.  These efforts have led some studies to learn more about the success in organizations, 

rather than the failures (Reasons, 2000). 

When looking at how methodologies for managing error on the open road, Paul Salmon et 

al (2012) identified several forms of error management systems, methods that could be used to 

generate information regarding errors, their causation, their eradication, decrease or mitigation.  

These have been broadly broken down into the five methodological groups: incident reporting 

systems, accident investigation and analysis methods, human error identification methods, latent 

conditions identification methods and error databases (Salmon at el., 2010). 

Management Systems 

Incident reporting systems 

This type of system collects near miss incidents, errors and safety concerns within the 

safety critical domain.  These near misses can be indicators of potential hazards that are just 

waiting to happen.   Evaluating and determining what the causes allow for preventative measures 

to be taken or incorporated into the system before a real accident occurs, is essential.  

Unfortunately, some workers are often reluctant to report near misses, due to the threat of personal 

consequences or retaliation (Salmon at el., 2010).  This is an example of how the person approach 
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may affect an individual’s desire to feel comfortable with reporting close calls. 

Accident investigation and analysis methods    

By recreating the accident, these methods investigate the cause of the accidents, in an 

attempt to recognize the human and system contributors.  Identifying the causes using this method 

can help mitigate future accidents from occurring.  Applying the right system based accident 

analysis can assist in the development of system based counteracting measure to minimize or 

prevent future accidents from occurring (Salmon at el, 2010).      

Human error identification methods (HEI)  

This analysis tool serves as an error predictor to identify potential errors, in order to 

determine and provide a preemptive strategy for investing human error in complex sociotechnical 

systems and determine their contributing factors.  One of the benefits of the HEI method is that in 

its predictions, it allows measures to be taken proactively before an accident occurs, allowing these 

counteractions to be in place earlier in the design process, before the development of the 

operational system (Salmon at el., 2010). 

Human error analysis (HEA) 

This analysis is similar to the HEI; however, its analysis is performed from a retrospective 

viewpoint.  The analysis observes errors made by humans during accidents, both qualitatively and 

quantitatively (Salmon at el., 2010).  One of the benefits of this analysis is that prior accidents can 

be thoroughly dissected and the causal factors determined for mitigating potential errors in future 

operations (Salmon at el., 2010). 
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Latent conditions identification methods 

Inspired by James Reason, this method attempts to recognize and eradiate error-causing 

conditions and the scope to which latent or error-causing conditions are a problematic  concern   in 

the developed  countermeasures created  to remove latent conditions.  The procedure generally 

involves safety leaders using failure checklists, error types and latent conditions to evaluate the 

risks related to a particular system.  Once the areas of concern have been identified, remedial 

measures are then proposed and implemented (Salmon at el., 2010).  

Error databases 

This database type contains data related to various errors that have transpired within a 

particular system, their related causal factors and consequences.  These databases can be used for 

in-depth study, error trending, development of domain specific error taxonomies, quantitative error 

analysis, and the development of error counter measures (Salmon at el., 2010). 

Effective Risk Management 

James Reason (2000) says “Effective risk management depends crucially on establishing a 

reporting culture.  Without a detailed analysis of mishaps, incidents, near misses, and “free 

lessons,” we have no way of uncovering recurrent error traps or knowing where the “edge” is until 

we fall over it” (p. 768).  Free lessons are considered inconsequential unsafe actions that could 

result in an unwanted outcome in other circumstances.  Lessons like these provide opportunities 

to learn from near misses and help the individual and organization (Reason, 2008).  
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In recent studies concerning managing error in the transport domain, it was determined that 

in comparison to other safety critical domains, where human error is a problem, systems based 

error methodologies and managing tools have not been widely used (Salmon at el., 2010). 

Amongst the various human error models that have been developed and been around for 

over 20 years, a study of selected error management approaches, as it pertains to road 

transportation, was performed (Salmon et al., 2010).  As a part of this study, three questions were 

asked in an effort to determine if any of the human error models previously mentioned (Incident 

Reporting systems, Accident Investigations systems, Human Error Identification methods, Human 

Error analysis, Latent Conditions and Error Databases) have made any significance to the 

transportation domain when considered amongst other safety critical domains (Salmon et al., 

2010). 

1. What contributions have human error models and methods provided within road 

transport? 

2.  Do the current models and methods deliver adequate knowledge and tools to take action 

and fight the problem within the road transportation system? 

3. In consideration of technology advancement, policy and system design, what are the 

potential error models and method contributions for the future? 

After a Driver Behavior questionnaire was given to 520 drivers asking about their 

frequency of committing various errors and violations while driving, an assessment of the human 

error manage methods and their application in safety critical domains was performed.  The 

development of a Driver error causation factor chart was created and the answers to the previous 
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three questions were determined (Salmon et al., 2010). 

Answers to the three questions to define whether valuable safety advances have been, and 

can continue to be made through the application of current error models and methods are below: 

1. Compared to other fields in which human error has been recognized as an issue, there 

has only been restricted systems based human error related research directed within the 

road transport field (Salmon et al., 2010).  

2. The degree to which practitioners are adequately prepared to approach an issue, is the 

research’s view that the prevailing models and methods described offer adequate 

information and resources to combat an error issue within road transport. Error 

administration methods are significantly underutilized within road transport, and so the 

question remains why is this so? (Salmon et al., 2010). 

3. The probable influence of the error management methods defined within road transport 

is substantial. Incident reporting systems, in which drivers report errors and error related 

near miss incidents, could produce significant insights into various types of errors that 

road users make.  This also included the environments that encourage errors and 

regaining approaches used in the event of occurring errors (Salmon et al., 2010). 

 

KSC Mishap Data 

Mishap report data can be useful for exploring the important correlations between a human 

error event and its contributing factors, as well as the development of a hypothesis (Rouse, 1983). 

It is significant to get in-depth of knowledge of human error for analyzing valuable information 
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leading up to the actual human error event.  It also is important to collect data from as many sources 

available (including historical data) to assist in effectively analyzing the human error and its 

contributing factors (Rouse, 1983).  This section provides a brief overview of KSC Mishap Data 

procedural requirements, types and tools used to assess mishaps. 

Per the NPR 8621.1 “NASA Procedural Requirements for Mishap and Close Call 

Reporting, Investigating, and Recordkeeping”, a NASA Mishap is defined as “an unplanned event 

that results in an injury to non-NASA personnel, caused by NASA operations, damage to 

public/private property, occupation injury/illness to NASA personnel, NASA mission failures 

prior to scheduled completion of missions, and destruction of or damage to NASA property” 

(NASA, 2013). 

 The NASA Procedural Requirements (NPR) provide the requirements for reporting, 

investigating and documenting mishaps, close calls, and previously unknown severe workplace 

hazards to preclude the repetition of related accidents (NASA, 2013). 

Mishaps Types 

 There are six (6) NASA mishap types.  These terms are defined from the NASA Procedural 

Requirements for Mishap and Close Call Reporting, Investigating, and Recordkeeping. 
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Mishap Types 

Type A Mishap 

A mishap event causing either death or total permanent disability as a result of a job related 

damage or sickness, a complete cost of a failed mission and asset damage equivalent to or greater 

than $2 Million, exterior loss of an aircraft with a crew inside, and/or an unanticipated aircraft with 

a crew inside parting from a controlled flight (NASA, 2013). 

Type B Mishap 

A mishap event causing either partial permanent disability as a result of a job related 

damage or sickness or requiring admission into a hospital for 3 or more people within 30 work 

days of the occurrence, or a complete cost of a failed mission and asset damage equivalent to or 

greater than $500,000 but less than $2 Million (NASA, 2013). 

Type C Mishap 

A mishap event resulting a nonfatal job related damage or sickness, that caused days missed 

from work, with the exception of the day or shift of occurrence, limited work of relocation to 

another job with the exception of the day or shift of occurrence, requiring admission into a hospital 

for 1 or 2 people within 30 work days of the occurrence, or a complete cost of a failed mission and 

asset damage equivalent to or greater than $50,000 but less than $500,000 (NASA, 2013). 
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Type D Mishap 

A mishap event resulting in any nonfatal Occupational Safety and Health Administration 

(OSHA)  documentable job related damage and/or sickness that doesn’t satisfy the definition of a 

Type C or a complete cost of a failed mission and asset damage equivalent to or greater than 

$20,000 but less than $50,000 (NASA, 2013). 

Incident 

A mishap or close call event. 

Close Call 

An event resulting in no physical damage or only insignificant damage that required first 

aid, no asset damage or insignificant asset damage of less than $20,000, no physical and/or only 

insignificant physical damage requiring first aid, but has a potential to result in a Mishap (NASA, 

2013).  Anything that does not fall under the Occupational Safety and Health Administration 

(OSHA) recordable Injury category is considered a Close call.   

Per Occupational Safety and Health Administration (OSHA) recordable injury reporting 

requirements, the following events must be reported to OSHA by employers.  All occupation 

related fatalities, all occupation related injuries resulting in “in-patient” hospitalization for a  

minimum of one (or more) employee(s), all occupation related injuries that result in amputation 

and all occupation related injuries that result in a loss of an eye (OSHA, 2014).  Fatalities must be 

reported within 8 hours of incident awareness and within 24 hours of incident awareness for the 

remaining requirements (OSHA, 2001).    According to OSHA requirements (2001): “If any injury 
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results in any of the following, it must also be reported: death, days away from work, restricted 

work or transfer to another job, medical treatment beyond first aid, or loss of consciousness. It 

must also be considered a case to meet the general recording criteria if the injury involves a 

significant injury or illness diagnosed by a physician or other licensed health care professional, 

even if it does not result in death, days away from work, restricted work or job transfer, medical 

treatment beyond first aid, or loss of consciousness” (29 CFR Part 1904). 

NASA Root Cause Analysis Tool (RCAT)  

 The NASA Root Cause Analysis Tool (RCAT) is used by NASA to assess Mishaps.  It 

was created to assist in the analysis of anomalies, close calls, and accidents along with identifying 

the necessary corrective actions to help avoid future occurrences (NASA Safety Center).   

The RCAT uses a repeatable method that is quick, simple, precise to execute and document 

root cause analysis, develop trending data, identify needed corrective actions and produce data that 

is usable in the beginning stages of analyzing and risk assessments from a probabilistic perspective 

(NASA Safety Center). 

The RCAT was developed after a widespread review of tools and methods that were 

commercially available was found unable to support a complete root cause analysis of the unique 

NASA environment and complications it deals with on Earth, in space, in the oceans, in the air, on 

the moon and on planetary forms.  NASA found that the prevailing current tools were developed 

based on special areas such as aviation or a particular type of active or human error type, with 

inadequate causal codes.  This tool is a paper-based tool that works with software to deal with the 

inadequacies recognized in the current exiting tools (NASA Safety Center). 
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The RCAT was developed to consider the entire system, in order to address all possible 

types of activities and accident causes, regardless if they originated by: the environment, wonders 

of nature, software, hardware, weather, human or outside event, or could be integrated into a 

timeline, a fault tree and event/causal factor tree (NASA Safety Center).  

Research Gap Discussion 

During this research, questions were asked in order to identify the research gaps concerning 

retrospectively analyzing Mishaps relating to complex space systems such as NASA Ground 

Processing Operations.  The research questions were in areas of: Human Reliability Analysis, 

Human Error Taxonomies and Human Error Frameworks.   

The following questions were asked:  

Human Reliability Analysis 

1. What techniques are capable of answering both qualitative and quantitative questions, by 

classifying human error producing conditions (qualitative) and calculating future probability 

of human error occurrence (quantitative)?     

2. What techniques are easy to use and can be performed by novice analysts?    

3. What developed Human Reliability Analysis (HRA) methodologies classify human error 

contributing factors and error producing conditions to human error related mishaps?    

4. What HRA methods provide a quantitative ergonomic approach through analysis of 

ergonomic factors that may have substantial, negative effects on human performance for 

Mishaps?    
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5. What are the identified leading human error causes and contributors to historical 

Launch Vehicle Ground Processing Operations mishaps and findings based on past 

mishaps, near mishaps, and close calls?    

6. What methodologies have the ability to determine quantifiable human error probability 

(HEP)? 

7. What methodologies have specific performance shaping factors (PSF) or Error 

Producing Conditions (EPC) that are in line with complex space operations, such as 

Space Ground Processing Operations?   

8. What HRA method(s) are not more resource intensive than others, have low application 

time and are an ease in its application?    

9. Is there a Human Error probability methodology modified specifically for aerospace 

complex operations, such as NASA KSC Ground Processing Operations? 

Taxonomy 

10. Is there a Human Error Classification system modified specifically for aerospace complex 

operations, such as NASA KSC Ground Processing Operations? 

11. Is there a taxonomy that provides a comprehensive human error analysis that 

considers multiple causes of human failure (Wiegmann and Shappell, 2001)?  

12. What Aerospace industry methodology can ergonomically and cognitively,   

classify mishap data for complex operations, such as NASA KSC Ground 

Processing Operations?   
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Framework 

13. What framework conceptual model can be proven to be a viable analysis and 

classification system to help identify both latent and active underlying contributors and 

causes of human error in complex operations, such as KSC ground processing 

operations?    

14. Is there a Framework developed for retrospective Mishap analysis and the prediction of 

potential future human error related mishaps for complex operations, such as KSC ground 

processing operations?   

15. What Framework covers ergonomic, cognitive and organizational factors in human error 

related mishaps? 

 

 

 

 

 

 



68 
 

Table 13: Literature Review Gap Questions 
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1. What techniques are capable of answering both qualitative and 
quantitative questions, by classifying human error producing 
conditions (qualitative) and calculating future probability of human 
error occurrence (quantitative)?     

 

X 

 

X 

 

2. What techniques are easy to use and can be performed by novice 
analysts?   

X   

3. What developed HRA methodologies classify human error 
contributing factors and error producing conditions to human 
error related mishaps?   

X   

4. What HRA methods provide a quantitative ergonomic approach 
through analysis of ergonomic factors that may have substantial, 
negative effects on human performance, for mishaps?    

X   

5. What are the identified leading human error causes and 
contributors to historical Launch Vehicle Ground Processing 
Operations mishaps and findings based on past mishaps, near 
mishaps, and close calls?    

 

X 

  

6. What methodologies have the ability to determine quantifiable 
human error probability (HEP)? 

X   

7. What methodology has specific performance shaping factors 
(PSF) or Error Producing Conditions that are in line with 
complex operations, such as Space Ground Processing 
Operations?   

X   

8. What HRA methods are not more resource intensive than others, 
have low application time and are an ease in application.     

X   

9. Is there a Human Error probability methodology modified 
specifically for aerospace complex operations, such as NASA 
KSC Ground Processing Operations? 

 

 

X 
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10. Is there a Human Error Classification system modified 
specifically for aerospace complex operations, such as NASA 
KSC Ground Processing Operations? 

 

 X  

11. Is there a taxonomy that provides a comprehensive human error 
analysis that considers multiple causes of human failure 
(Wiegmann and Shappell, 2001)?   

 X  

12. What Aerospace industry methodology    can ergonomically and 
cognitively, classify mishap data for complex operations, such 
as NASA KSC Ground Processing Operations?   

 X  

13. What framework conceptual model can be proven to be a viable 
analysis and classification system to help identify both latent and 
active underlying contributors and causes of human error in 
complex operations, such as KSC ground processing operations?    

   

 

X 

14. Is there a Framework developed for retrospective Mishap 
analysis and the prediction of potential future human error related 
mishaps for complex operations, such as KSC ground processing 
operations?   

   

X 

15. What Framework covers ergonomic, cognitive and organizational 
factors in human error related mishaps?   

   

X 

 
Table 14 provides a summary of the Literature Review and Research Gap.  The table 

shows the Literature Review researchers and the human error areas that are expected to provide 

answers to the questions in this research.  

 

 

 



70 
 

Table 14: Literature Review Gap 
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Cacciabue, P. C. (2004) X  X 

Cacciabue, P. C. (2013) X  X 

Cao, C. G., & Taylor, H. (2004)   X  X 

Chandler, F., Chang, Y., et al. (2006). X   

Clark, H. H., & Schaefer, E. F. (1989) X   

Hollnagel, E. (1993).    X  X 

Kirwan, B. (1994).   X  X 

Kirwan, B., Scannali, S., & Robinson, L. (1996)   X  X 

Kirwan, B. (1996)  X  X 

Kirwan, B. (1997)  X  X 

Kim, B., & Bishu, R. R. (2006)  X   

Konstandinidou, M., Nivolianitou, Z., et al. (2006).   X  X 

Li, W., & Harris, D. (2006)    X   

Nelson, W. R., Haney, L. N., et al. (1998)  
X  X 

Norman, D. A. (1981)  X  X 

Rasmussen, J. (1983) X   

Reason, J. (1990)    X 

Reason, J. T. (1997)    X 

Reason, J. (1987)    X 
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Reason, J. (2000)    X 

Reason, J. T. (2008)    X 

Reason, J. T. &  Mycielska, K  (1982)    X 

Reinach, S., & Viale, A. (2006)   X  

Richei, A., Hauptmanns, U., & Unger, H. (2001)  X  X 

Rouse, W. B., & Rouse, S. H. (1983)   X  

Salmon, P. M., Lenne, M. G., Stanton, et al. (2010) X  X 

Salvendy, G. (2012) X    

Shappell, S., Detwiler, C et al.  (2007)  X  

Shappell, S. A., & Wiegmann, D. A. (2012)  X  

Sharit, J. (2012)  X  X 

Stanton, N. A.  (2013)  X  X 

Swain, A. D. (1990) X  X 

Swain, A. D. & Guttman, H. E. (1983)  X  X 

Wiegmann, D., Faaborg, T., et al. (2005)   X  

Wiegmann, D. A., & Shappell, S. A. (2001)   X  

Williams, J. (1986, April)  X  X 

Williams, J. C. (1988, June)  X  X 

Yang, C., Lin, C. J., Jou, Y., et al. (2007)  X  X 
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Alexander, T. (2016) X X X 
 

Summary 

In 2006, a study was conducted by the NASA Office of Safety and Mission Assurance to 

assess current Human Risk Assessments (HRA) methods and their applicability in the aerospace 

industry for potential use and adaptation for current and future NASA systems and missions 

(Chandler, 2006).  Even though the study evaluated the various HRA methods and their 

applicability to human interfacing for hardware preservation activities, such as ground processing 

and flight operations, launch, mission control and space flight teams, its primary focus was to offer 

recommendations for the “quantitative analysis of space flight crew human performance in the 

support of Probabilistic Risk Assessments (PRAs)” (Chandler, 2006).   

The HRA methods identified from this research as suitable for aerospace application when 

conducting NASA PRAs were:  THERP, CREAM, Nuclear Actions Reliability Assessment 

(NARA) and Standardized Plant Analysis Risk HRA Method (SPAR-H) (Chandler, 2006). 

However, these methods were identified for PRAs performed on new space flight vehicles system 

designs and not ground processing hardware and operations that support the vehicle maintenance 

and processing (Chandler, 2006).  

Research shows that organizations such as the Federal Aviation Administration (FAA) 

and NASA have studied and examined the use of HFACS as a complement to preexisting 
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accident investigation and analysis systems.  Results of the HFACS framework have 

demonstrated that it can be a viable tool for use within the civil aviation arena.  However, there 

are still few system efforts that have examined whether HFACS is a viable tool with the civil 

aviation industry (Wiegmann and Shappell, 2001).   

To date, no documented research has specifically used the HFACS as a model to verify 

if it is a viable tool for assessing human error within NASA Launch Vehicle Ground 

Processing Operations.  This research will bridge the gap of using this analysis to verify its 

validity in classifying, assisting, investigating and analyzing human causes of accidents.  This 

works as a part of a larger process to help minimize risks and human error in NASA Ground 

Processing Operations (Wiegmann, 2001). 

In 1998, the Idaho National Engineering and Environmental Laboratory showed that 

the NASA Ames Research Center and the Boeing Commercial Airline Group developed a 

human error framework (Framework Assessing Notorious Contributing Influences for Error 

(FRANCIE)) and a software tool (Tool for Human Error Analysis (THEA)), that were used 

in analyzing human error in respect to the design of commercial air transportation (Nelson at 

el., 1998).  These methods and tools were recommended for future NASA ground processing 

operations, but were not applied to Launch Vehicle Program Ground Processing Operations, 

the new Space Launch System (SLS), International Space Station or any manned or unmanned 

space missions.   

In my thorough research on Human Reliability Analysis and the Human Error 

assessments and reduction technique (HEART), no documented research to date shows that 



74 
 

this technique has been used specifically for assessing human error for NASA Ground  

Processing Operations.     

Justification for HEART and HFACS Methods 

  For this research, two Human Factor tools were used to classify and assess human error:  

The Human Error Assessment and Reduction Technique (HEART) (which is a part the Human 

Reliability Analysis (HRA)) and the Human Factor Analysis Classification System (HFACS).     

HEART was chosen for this research because of its quantitative ergonomic approach through 

analysis of ergonomic factors that may have substantial, negative effects on human performance.  

This technique can provide human factor specialists with quantitative supported data for design and 

other recommendations for overall improvement (as cited in Eastman, 2004).   

HFACS was chosen for this research because it is considered a comprehensive analysis of 

human error that takes into account multiple causes of human failure (Wiegmann and Shappell, 

2001).  One of the advantages to using HFACS is that the generic terms and descriptors allow it to 

be used for a range of industries and activities (Reinach, 2006).  Both methods are explained in 

further detail in the Methodology chapter.  

This introductory chapter provides the background, research gaps, objectives of this study 

and research variables.  The literature review provides a more detailed analysis of the human error 

performance levels and approaches to identifying and assessing human error. 
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CHAPTER THREE: PRELIMINARY ANALYSIS 

Informal SME Discussions 

HEART 

Subsequent to the Literature Review and prior to the Experimental procedure, informal 

Subject Matter Experts (SMEs) discussions were conducted to help identify and categorize 

examples of historical Launch Vehicle specific ground processing operations tasks generally 

performed during Ground Processing Operations, with the Generic Tasks listed in the HEART 

Nominal Human Error Probabilities (HEPs) (Table 8) found in the Literature Review chapter.  

These specific tasks will match the associated HEART proposed nominal human unreliability 

probability, which includes their 5th – 95th percentile boundaries.   At the same time that we are 

calculating the HEP, we are also using the EPCs to match with the HFACS conditions to see what 

umbrella it falls under: unsafe acts, preconditions, etc. 

Three (3) KSC Launch Vehicle Ground Processing Operations SMEs, with 34 years, 31 

years and 30 years of NASA KSC Ground Processing Operations experience, reviewed the 

HEART Generic Tasks and provided examples of equivalent related tasks to the 8 HEART Generic 

Tasks.  This modified table is provided in the Methodology chapter (Table 21).   

The specific ground processing operation tasks are based on a select number of 

Scenarios/Locations that have been identified from the greatest frequency of generated mishaps 

(recorded from the NASA KSC Mishap Data) located within the Launch Complex 39 Ground 

Processing Operations area. 



76 
 

Launch Vehicle Ground Processing Operation Areas found in the Mishap Data with the 

highest frequency of occurrence were:  Vehicle Assembly Building (VAB), Launch Complex Pad 

A/B (LC39 A/B) and Orbiter Processing Facilities (OPFs) 1, 2 or 3.   These locations were also 

independently validated by Subject Matter Experts as the locations where the majority of Launch 

Vehicle Ground Processing Operations work was performed and was used as locations of 

occurrence for this research’s human error related Mishaps.   

The Mishap Data includes both NASA and Contractor employees and encompasses, Type 

B, C, D, and Close Calls Incidents.  

The SMEs contributed to the development of the Scenarios’ Tasks, Subtasks, and Error 

Producing Conditions and was used for the subjective AOA assessment of the Error Producing 

Condition’s (EPCs) impact on the Scenario’s Ground Processing Operations Tasks. The SMEs 

also identified corresponding Error Producing Conditions for each Scenario subtask.  Some Tasks 

received more than one Error Producing Condition (EPC). These are identified in Tables 15-20 

below.     

Table 15: HEART Survey VAB Scenario 1 

Task:  Performing Booster Hold Down Posts  

Subtasks Error Producing Conditions HEART 

Generic Task 

(Table 21) 

HEART 

EPC(s) 

(Table 9) 

Arming the Booster   Tiredness – Long hours – 3rd 
Shift 

C 35 

Connecting the Booster 
Segments  

Accessibility limitations C 22 

Installing Safety Wires Poor lighting  C 33 
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Table 16: HEART Survey VAB Scenario 2 

Task: Orbiter lift and mate to stack 

Subtasks Error Producing Conditions HEART 

Generic Task 

(Table 21) 

HEART 

EPC(s) 

(Table 9) 

 Attaching sling and cranes Heat (Orbiter lifting required 
doors to be closed and coveralls 
worn) 

 
C 

 
27 

Lifting and lowering Orbiter 
into position for mate 

Heights, climbing ladders to 
access platforms 

C 27 

Install and attaching hardware Tripping hazards  C 33 

 
Table 17: HEART Survey OPF Scenario 1 

Task: Wire Inspections inside the Vehicle, Cargo Bay, under the Floor Board 

Subtasks Error Producing Conditions HEART 

Generic Task 

(Table 21) 

HEART 

EPC(s) 

(Table 9) 

Performing electrical tests Accessibility limitations – 
Crawling around on wires 
bundle 

 
E 

 
22, 27 

Repairing/replacing wiring Physical Stress - twisting and 
turning  

E 27 

Installing/removing protective 
tubing 

Confined working space - 
breakable parts in or on way 
to/from work area (air ducts, 
phenolic brackets, tubing)   

 
E 

 
5, 22, 38 

 
Table 18: HEART Survey OPF Scenario 2 

Task:  Wing Closeouts  

Subtasks Error Producing Conditions HEART 

Generic Task 

(Table 21) 

HEART 

EPC(s) 

(Table 9) 

Elevon actuator servicing Claustrophobic F 27 

Scheduled inspections Physical Stress - twisting and 
turning 

F 27 

Modifications and repairs Confined working space - 
Accessing and backing out of 
small tight areas with; wire 
harnesses, tubing, and struts. 

 
F 

 
5, 22, 38 
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Table 19: HEART Survey Pad A/B Scenario 1 

Task: Pad Aft Closeouts 

Subtasks Error Producing Conditions HEART 

Generic Task 

(Table 21) 

HEART 

EPC(s) 

(Table 9) 

Removing access platforms 
and nonflight items 

Confined working space - 
accessibility limitations; 
crawling and climbing 
around/near; wiring 
bundles/connectors, 
hydraulic/pneumatic lines, air 
ducts, etc. Physical stress - 
twisting and turning 

 
 
 

F 

 
 
 

5, 22, 27 

Inspections, repairs Noise (air purge) F 3 

Repairs Poor lighting F 13, 27, 
33 

 
Table 20: HEART Survey Pad A/B Scenario 2 

Task: Installing Engines at Pad 

Subtasks Error Producing Conditions HEART 

Generic Task 

(Table 21) 

HEART 

EPC(s) 

(Table 9) 

Installing and torqueing 
hardware 

Accessibility limitations –when 
open below, required to wear 
safety harness and lanyard 

 
C 

 
22 

Connecting lines (inspect, 
clean, install seals, hardware 
install and torque) 

Physical stress due to installing 
vertically 

 
C 

 
22, 27 

Electrical connects Tiredness – 3rd Shift Work  C 35 
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HFACS 

SME discussions were also conducted for identifying possible contributing factors, based 

off of their expertise and experience in Launch Vehicle Ground Processing Operations.  Three 

SMEs independently reviewed and analyzed the HFACS four levels of human error selected 

examples of “unsafe acts”, “preconditions of unsafe acts”, “unsafe supervision”, and 

“Organizational Influences” provided in the literature review of this research.  Then their results 

were discussed and validated collectively.  From their assessments, the SMEs determined that the 

list of selected examples were closely related to the possible Error Producing Conditions that can 

influence and be a factor is human error generated mishaps.  The SMEs also determined that the 

direct references to aircraft and flight should be omitted and replaced with standards, processes, 

and procedures which reflect Ground Processing Operations (GPO) historically performed at the 

Kennedy Space Center.   Interestingly, the SMEs stated they felt one of the biggest potential 

influences to human error mishaps in GPO is confined spaces.   

The modified HFACS four levels of human failure and selected examples from the nineteen 

(19) HFACS causal categories, is provided in the Methodology chapter.   

Below is a NASA KSC Ground Processing Operations Human Error Framework of the 

three (3) Scenarios in this research, the Ground Processing Operations (GPO) Tasks performed at 

the Kennedy Space Center, the HFACS four levels of human error categories and their relation to 

the common errors, HFACS sublevels and specific Error Producing Conditions that lead to Human 

Error mishaps at NASA.   
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Figure 9: NASA KSC Ground Processing Operations Human Error Framework 
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CHAPTER FOUR: METHODOLOGY 

Research Objective  

The purpose of this experiment was to develop a model that can analyze and classify 

contributing factors to human error mishaps, close calls, or incidents during Launch Vehicle 

ground processing operations and be used as a tool to accompany preexisting accident 

investigation and analysis systems in controlling and/or minimizing human error.   

For this research, historical data was retrieved from NASA KSC mishaps, close calls, 

incidents, or accidents and was used to identify contributing factors associated with NASA Ground 

Processing Operations.   

 

Figure 10: Research Methodology 
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Literature Review 

The literature review in Chapter Two provides a comprehensive review of human error 

literature, detailed analysis of the human error performance levels, approaches to identifying and 

assessing human error and a review of existing models of human error and mitigation.    

To this date, no documented research has specifically used a standalone or hybrid form 

of the Human Factor Analysis Classification System (HFACS) and the Human Error 

Assessments and Reduction Technique (HEART) as a model to verify whether it is a viable 

tool for assessing human error within NASA Ground Processing Operations (Wiegmann and 

Shappell, 2001).   

Existing Gap 

In the Literature Review chapter of this research, questions were asked in order to identify 

the research gaps concerning retrospectively analyzing mishaps relating to complex space systems 

such as NASA KSC Ground Processing Operations.  The research questions were in the areas of: 

Human Reliability Analysis, Human Error Taxonomies and Human Error Frameworks. These 

questions recognized a weakness within the current literature which lacks a proven analysis 

framework for classifying, assessing, investigating and analyzing human causes of accidents 

in complex space systems such as NASA KSC Ground Processing Operations. 
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Experiment Overview  

Assessment Approach 

 Statistically, 70-80% of all aviation mishaps and near mishaps involve human factors 

(Strauch, 2004), and a study by the U.S. Bureau of Mines also found that nearly 85% of all mining 

accidents identified human error as a causal factor (Rushworth et al., 1999).  For this reason, it is 

essential to have good assessment approaches and tools to effectively analyze human error 

research data.   For this research,   both the Human Error Assessment and Reduction Technique 

(HEART) (which is a part the Human Reliability Analysis (HRA)) and the Human Factor Analysis 

Classification System (HFACS) was used as the assessment approaches.   

The proposed methodology developed a model to represent the relationship between 

human error events (i.e. mishaps, incidents, or close calls) and its contributing factors.  An 

experimental design using a modified hybrid HEART and HFACS model to address human error 

producing conditions during NASA Ground Processing Operations was generated to identify 

significant contributing factors, and determine Human Error Probabilities and Predicted 

Probabilities.   

The HEART proposed remedial measures, to combat or assist in minimizing the likelihood 

of the error from occurring, will not be used for this research (Williams, 1986).   

The primary focus of this research was to use the HEART method to calculate the Human 

Error Probability (HEP) and the HFACS method to categorize historical launch vehicle mishap 

data and build a regression model to predict the probability of future mishaps.      
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A binary logistics regression was the regression model used to predict the probability of 

future mishaps based on retrospective historical Launch Vehicle Ground Operation Mishap Data.    

The human error potential contributing factors were coded from the HFACS four (4) levels of human 

error and selected examples of human error causes. 

Data Collection 

Mishap Data  

The data was collected from past NASA Launch Vehicle Mishap Reports (from October 

1984 – May 2014) entered into the Incident Reporting Information System (IRIS), which is now 

known as the NASA Mishap Information System (NMIS).  This data was used for determining 

significant contributing factors and predicted probabilities.   

Launch Vehicle related Ground Processing Operations data performed in the Vehicle 

Assembly Building (VAB), Launch Complex Pad A/B (LC39 A/B) and Orbiter Processing 

Facilities (OPFs) 1, 2 or 3 was identified and pulled from this data.  Human error related data was 

isolated from these data entries to identify the leading occurrence of specific types of human errors 

at NASA.   

Identifying the human error causes that led to the Mishaps recorded in the NASA Mishap 

Information System (NMIS) is only identifiable by the detail of the data provided in the “Detail 

Description” portion of the NMIS system.  Therefore, each Mishap was individually read and 

categorized by the “human error” information provided in the description.  The qualification of what 

is considered a “human error” was provided by the HFACS “human error” types.  From this data, 
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the occurrences of “human error” identified was the focus of this Dissertation.   

Survey Participant Data 

To assist with objective data and subjective data for this research’s qualitative study, SME 

surveys were conducted, collected and used for analysis (Rouse, 1983).  The survey requested 

participants’ subjective Assessed Proportion of Affect (AOA) values for Human Error Probability 

calculations.   

The survey participants (aka subjects) were strategically selected from their years of 

experience in NASA KSC Ground Processing Operations, Human Factors background and Mishap 

Control Board experience.   This includes engineering, safety and mission assurance personnel and 

“on the floor” technicians.  This will help ensure a balanced response to properly represent the 

workforce.  

Qualitative Study 

HEART Method 

 As previously stated, the survey data collected from Launch Vehicle Ground Processing 

Operations subjects was used with the HEART method to determine the Human Error Probability 

of select Ground Processing Operations. 
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Scenarios/Locations  

As stated in the Preliminary Analysis chapter, Scenarios from the Vehicle Assembly 

Building (VAB), Launch Complex Pad A/B (LC39 A/B) and Orbiter Processing Facilities (OPFs) 

1, 2 or 3, was used for this research.    

SME Preliminary Analysis 

Subject Matter Expert discussions performed in the previous Preliminary Analysis chapter 

provided examples of specific Ground Processing Operation tasks which were categorized within 

the eight (8) HEART generic tasks and their associated proposed nominal Human Error Probability 

(nominal human unreliability) 5th – 95th percentile range.    When determining the categorized tasks, 

the tasks were identified in relation to the three (3) ground processing operations scenarios (VAB, 

OPFs and Pads A/B).   

Below, (Table 21) represents the NASA KSC specific modified examples (in bold, 

underlined and italicized) provided by the three (3) SMEs from the Preliminary Analysis chapter.  

This modified table was used with the HEART Error Producing Conditions (Table 9) to calculate 

the Human Error Probability of the specific KSC Ground Processing Operations tasks. 
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Table 21: NASA KSC Specific Modified Examples for HEART Nominal Human Error Probabilities (HEPs) 

(Williams, 1986) 

Letter Generic Task 
Nominal HEP 

(5th-95th percentile) 

A 

Totally unfamiliar, performed at speed with no real idea of 
likely consequences. 
 
NASA KSC: OJT Trainee working with experienced 

Technician  

NASA KSC: Startracker Removal and Replacement 

0.55 
(0.35-0.97) 

B 

Shift or restore system to a new or original state on a 
single attempt without supervision or procedures. 
 
NASA KSC: Operating Procedure Special Instructions 

allowing flexibility or rework.   

0.26 
(0.14-0.42) 

C 

Complex task requiring high level of comprehension and 
skill. 
 
NASA KSC: Launch Vehicle Main Engine bolt 

stretching  

NASA KSC: LH2/LO2 Monoball Installations 

NASA KSC: Certified Turbo Pump Operations 

  

0.16 
(0.12-0.28) 

D 

Fairly simple task performed rapidly or given scant 
attention.  
 
NASA KSC: Housekeeping, area cleaning 

NASA KSC:  Bonding Tile Cleaning 

NASA KSC:  Thermal Blanket Installation 

0.09 
(0.06-0.13) 

E 

Routine, highly-practiced, rapid task involving  
relatively low level of skill. 
 
NASA KSC: Cleaning a GSE cover or panel 

NASA KSC: Torque or tighten GSE cover 

NASA KSC: GSE connector mates*  

0.02 
(0.007-0.045) 
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Letter Generic Task 
Nominal HEP 

(5th-95th percentile) 

 
 
 

F 

Restore or shift a system to original or new state following 
procedures with some checking. 

NASA KSC: Return to print Problem Report (PR), 

Material Review (MR) Repair, and Non-conformance 

(N/C) repair. 

NASA KSC: Ordnance installation, requiring electrical 

check prior to installation 

0.003 
(0.0008-0.007) 

 
 
 
 
 

G 

Completely familiar, well-designed, highly practiced 
routine task occurring several times per hour, performed to 
highest possible standards by highly-motivated, highly-
trained and experienced person, totally aware of 
implication of failure, with time to correct potential error, 
but without the benefit of significant jobs aids.  
NASA KSC:  Area access Monitor for confined space. 

NASA KSC:  Physical aid, payload  blanket installations* 

0.0004 
(0.0008-0.009) 

 Respond correctly to system command even when there is 
an augmented or automated supervisory system providing 
accurate interpretation of system stage.   

NASA KSC: System State Alarm or Alert 

NASA KSC: Automated Alarm for improper switch 

activation  

0.00002 
(0.000006-0.0009) 

 
 

H 

 

HFACS Method 

 The SME modified NASA KSC HFACS examples of Human Error Contributing Factors 

for all four levels of the HFACS are provided in Tables 22, 23 24 and 25.   

The SMEs independently reviewed, analyzed and modified the HFACS four levels of 

human error selected examples of “Unsafe acts”, “Preconditions of unsafe acts”, “Unsafe 

supervision”, and “Organizational Influences” provided in the Literature Review of this research.  

These modified levels were used to categorize the historical KSC Ground Processing 

Operations Mishaps.   
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Table 22: NASA KSC SME Modified Selected examples of HFACS Preconditions of Unsafe Acts (not an 

exhaustive list) (Shappell, 2012) 

Condition of Operators Personnel Factors 

Adverse Mental State Crew  Resource Management 
  

Loss of situational awareness Failed to conduct  
adequate brief briefbrief  adequate brief 

Complacency Lack of teamwork 

Stress Lack of assertiveness 

Overconfidence 
Poor communication/coordination with 

and between tasks.  

Poor situational awareness 
Misinterpretation of procedures and 

processes 

Task Saturation Failure of Leadership 

Alertness (Drowsiness) Personal Readiness 

Get-Home-Itis 
Failure to adhere to crew rest 

requirements  

Mental fatigue Inadequate training 

Circadian dysrhythmia Self-medication 

Channelized attention Overexertion while off duty 

Distraction Poor dietary practices 

Adverse Physiological State Pattern of poor risk judgment 

Medical Illness Environmental Factors 

Acrophobia Physical Environment 

Physical fatigue Weather 

Intoxication Altitude 

Effects of Over the Counter (OTC) 
mediations 

Terrain 

Physical/Mental Limitations Lighting 

Visual Limitations Vibration 

Insufficient reaction time Confined Space 

Information overload Toxins in the Hazardous Areas 

Inadequate experience for complexity of 
situation 

Technological Environment 

Incompatible physical capabilities Equipment/controls design 
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Lack of sensory input Checklist layout 

 Display/interface characteristics 

  
Table 23: NASA KSC SME Modified Selected Examples of Unsafe Acts of Operators (not an exhaustive list) 

(Shappell, 2012) 

Errors Violations 

Skilled Based Errors Routine Violations 

Breakdown in visual scan Inadequate briefing for operations 

Inadvertent  action Failed to use area access control 

Poor technique/preparation Flew an unauthorized approach 

Inadvertent switch management Violated  rules 

Bypass checklist item 
Failed Visual Flight Rules (VFR) in 

marginal weather conditions 

Omitted step in procedure 
Failed to comply with procedures and 

processes 

Over-reliance on automation 
Violation of orders, regulations, 
Standard Operating Procedures 

Failed to prioritize attention 
Failed to inspect vehicle after in flight 

anomalies 

Task overload Exceptional Violations 

Negative habit 
Performed unauthorized acrobatic 

maneuver 

Failure to see and avoid Improper task technique 

Distraction Failed to obtain valid weather brief 

Decision Errors Exceeded specified limits   

Inappropriate action/not per 

procedure 
Failed to complete procedure steps 

Inadequate knowledge of systems, 
procedures 

Accepted unnecessary hazard 

Exceeded ability Not current/qualified for task 

Wrong response to emergency  

Perceptual Errors   

Due to visual illusion   

Due to spatial disorientation/vertigo   

Due to misjudged distance, altitude, 
airspeed, clearance 
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Table 24: NASA KSC SME Modified Selected examples of Preconditions of Unsafe Supervision 

(not an exhaustive list) (Shappell, 2012) 

 
Inadequate Supervision Failed to Correct a Known Problem 

Failed to provide proper training 
Failed to correct inappropriate 

behavior   

Failed to provide professional 
guidance/oversight 

Failed to identify risky behavior    

Failed to provide current 
publication/adequate technical data 

and/or procedures 
Failed to correct a safety hazard 

Failed to provide adequate rest period Failed to initiate corrective action 

Lack of accountability 
Failed to stop work due to 

safety/hazard concern 

Perceived lack of authority Failed to report unsafe tendencies 

Failed to track qualifications Supervisory Violations 

Failed to provide operational doctrine 
Failed to ensure qualified crew task 

(e.g. repair, inspection) 

Failed to track performance Failed to enforce rules and regulations 

Over-tasked/untrained supervisor Fraudulent documentation 

Loss of supervisory situational 
awareness 

Failed to enforce rules and regulations 

Planned Inappropriate Operations Violated procedures 

Poor crew pairing Authorized unnecessary hazard 

Failed to provide adequate brief time 
/supervision 

Willful disregard for authority by 
supervisors 

Risk outweighs benefit Inadequate documentation 

Failed to provide adequate 
opportunity for crew rest 

 

Excessive tasking/workload   
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Table 25: NASA KSC SME Modified Selected examples of Organization Influences (not an exhaustive list) 

(Shappell, 2012) 

Resource Management Organizational Process 

Human resources Operations 

Selection  Operational tempo 

Staffing/manning Incentives 

Training  Quotas 

Background checks Time pressure  

Monetary/Budget Resources Schedules 

Excessive cost cutting Procedures 

Lack of funding Performance standards 

Equipment/Facility Resources Clearly defined objectives 

Poor access 
Procedures/instructions about 

procedures 

Purchasing of unsuitable equipment Organizational Climate 

Failure to correct known design flaws 

(e.g. Operational Procedure 

workaround, EOs to follow that 

never get updated, etc.) 

Structure 

Organizational Process Oversight Chain of  command 

Established safety programs/risk 
management programs 

Communication 

Management's monitoring and check 
of resources, climate and process at 

ensure a safe work environment.  
Accessibility/visibility of supervisor  

Organizations Climate Culture Delegation of authority 

Excessive Task Loading Formal accountability for actions 

Organization customs Polices 

Values, beliefs, attitudes Promotion 

Norms and rules Hiring, firing, retention 

 Drugs and alcohol 

 Accident investigations 
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Surveys 

Survey subjects were asked to evaluate three (3) NASA KSC Ground Processing Operations 

Scenarios involving the VAB, OPFs and Pads A/B.  The table below (Table 26) was used as a Likert 

survey scale for the subjects to provide an Assessment of Affect (AOA) value based on the Error 

Producing Conditions identified for the Scenarios.   

Table 26 is a modified Aggregate Risk Value table from a previous study.  The table was 

modified for the Assessment of Affect (AOA) percentage range, proportions of affect and their 

descriptions (McCauley-Bell and Baiduru, 1996).  

The subjects’ assessment was based on the level of affect an Error Producing Condition (EPC) 

has on a specific Ground Processing Operations task (very low, low, moderate, high, and very high).  

The values were used to determine the Human Error Probability of those tasks.   

Survey data for this research was collected on the NASA KSC site via hard copies. The pool 

of employee candidates were strategically selected from their years of experience in NASA Launch 

Vehicle Ground Processing Operations, Human Factors background, Mishap Control Board 

experience, Engineering, Safety and Mission Assurance, and “on the floor” Technicians 

A power and sample size for a Paired t Test was used for the survey sample size 

determination.  Due to the fact that there are no past research studies with HEART Assessment 

proportion of Affects (AOA) for complex systems, a conventional statistical significance value of  

α = .05, power of .80 (Cohen,1992), and a standard deviation 0.5 was used for this research.   

The result of the Power curve for Paired t test, indicated a minimum sample size of eighteen 

(18) participants.   
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Figure 11: Power Curve for Paired t Test 

 
Table 26: Assessment of Affect (AOA) Range Table (McCauley-Bell & Baiduru, 1996) 

Percentage Range 
(Median) 

 
Proportions of 

Affect 

 
Description 

 
(.10) 

0.00 – 0.20 

 
Very Low Affect 

 
Human error is very unlikely to occur.  

Strong Controls may be in place. 

(.305) 
0.21 – 0.40 

 
Low Affect 

 

 
Human Error is not likely to occur.   

Controls have minor limitations and uncertainties. 

(0.510) 
0.41 - 0.60 

 
Moderate Affect 

 
Human Error may occur. 

Controls exist with some uncertainties. 
 

(0.7) 
0.61 - 0.80 

 
High Affect 

 
Human Error is highly likely to occur.  
Controls have significant uncertainties. 

 

(0.9) 
0.81 – 1.00 

 
Very High Affect 

 
Human Error is certain to occur.   
Controls have little to no affect. 
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Quantitative Study 

Human Error Assessment and Reduction Technique (HEART) Data Analysis 

As stated in the Preliminary Analysis chapter, Survey subjects will provide their 

subjective Assessed Proportion of Affect (AOA) to help determine the negative affect each Error 

Producing Condition (EPC) has on the tasks performed during the three (3) Scenarios.  This data 

was collected and used to calculate the Human Error Probability for each Scenario question.   

Determining the AOA involves providing a percentage rating between 0 and 1 (0.0 

representing 0% of the maximum EPC effect and 1 representing 100% of the maximum EPC 

effect) for each EPC.  The ratings offered are based upon the subjective judgment of the SMEs 

and survey subjects involved (Stanton, 2013). 

To determine if there is a statistical difference between the AOA values generated by the 

SMEs, an ANOVA test on the mean values for the AOAs was used.  This test was performed to 

compare the mean values of the Assessed Proportion of Affect (AOA) values generated by the 

Survey Subjects.   

The null hypothesis is that all AOA means are equal and the null alternative is that at 

least 1 mean is not equal. 

H0: µ AOA 1 = µ AOA 2 = µ AOA 3 = µ AOA 4, etc. 

H1: At least 1 not equal. 
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Calculating the Human Error Probability for GPO Tasks using the HEART method 

HEART Process for Experiment (Williams, 1988) 

1. The full range of sub-tasks that a human operator would be required to complete within 

in a given task were identified.  During the Preliminary process, tasks were identified 

from the three (3) scenarios (VAB, OPFs and Pad A/B).  

2. The tasks were then classified into the generic tasks provided within the HEART 

process with proposed nominal human unreliability for these tasks.  These are the 

nominal Human Error Probability (HEP) scores for the particular task with calculated 

5th – 95th percentage bounds (see Table 21).  Specific details to these generic task 

categories were determined by consulting local subject matter experts (SMEs).    

3. The obvious EPCs that had a high possibility or probability to have a negative effect 

on a particular situation was considered.  This   indicated that the EPCs with the greatest 

negative impact are the EPCs that need to be addressed for risk reduction and 

mitigation.  The EPCs identified was also compared to the equivalent HFACS 

conditions.   

4. The Assessed Proportion of Affect (AOA) for each task was determined by SME 

Survey Participants (aka subjects), in which the affect proportions ranged from 0 to 1.   

The AOA is a subjective assessment of the Error Producing Condition’s (EPC) affect 

or impact on a specified Generic Task.  The AOA Table range (Table 26) represents 

the percentage of this affect (e.g. 0.1 = 10% of the EPC maximum effect). This value 
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was a part of the assessed effect for each error producing condition of the given task.   

This was established in the survey given to the SMEs. 

5. A final HEP was then calculated, by multiplying the HEART nominal HEP of the 

task by each of the calculated assessed effects.  The calculated effect was determined 

below:   

            (3) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑠𝑠𝑒𝑠𝑠𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 𝐸𝑓𝑓𝑒𝑐𝑡= ((𝑀𝑎𝑥 𝐸𝑓𝑓𝑒𝑐𝑡 − 1)  × 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑓𝑓𝑒𝑐𝑡) + 1 𝐻𝐸𝑃 = (𝑇𝑦𝑝𝑒 𝑜𝑓 𝑇𝑎𝑠𝑘 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑒𝑟𝑟𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)× (𝐴𝑠𝑠𝑒𝑠𝑠𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 𝑒𝑓𝑓𝑒𝑐𝑡(𝑠)) 

6.  From here a HEP value can identified the EPCs that cause a higher probability for 

an error to occur and possible remedial strategies to minimize the risk of future 

human error occurrence. 

HEART HEP Calculation Example 

Below is an example of calculating the HEP using the HEART method. The AOA is what 

affect EPCs #1 and #2 (Unfamiliarity and Time Pressure) have on Generic Task F (Restore/Shift 

to original/new state following procedures, with some checking).  The AOA ranges from 0.0 to 

1.0, in which the 0.0 represents a 0% affect and the 1.0 represents a 100% affect.  

Table 27: HEART Calculation Example (Kirwan, 1996) 

EPC Maximum Effect 
Assessed Proportion of 

Affect Assessed Factor – Calculation 

Unfamiliarity 
Inexperience 

X 17 0.1 ((17-1)0.1) + 1 = 2.6 

Time Pressure 
Technique 

X 11 0.3 ((11-1)0.3) +1 = 4.0 

HEP = 0.003 (Task type F probability) x 2.6 x 4.0 = 0.03 
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(4) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑠𝑠𝑒𝑠𝑠𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 𝐸𝑓𝑓𝑒𝑐𝑡= ((𝑀𝑎𝑥 𝐸𝑓𝑓𝑒𝑐𝑡 − 1)  × 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑓𝑓𝑒𝑐𝑡) + 1 𝐻𝐸𝑃 = (𝑇𝑦𝑝𝑒 𝑜𝑓 𝑇𝑎𝑠𝑘 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑒𝑟𝑟𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) × (𝐴𝑠𝑠𝑒𝑠𝑠𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 𝑒𝑓𝑓𝑒𝑐𝑡(𝑠)) 

Human Factors Analysis and Classification System (HFACS) Data Analysis 

Binary Logistics Regression 

To identify the significant factors that contributed to human error related Ground 

Processing Operations mishaps, a binary logistic regression was used for the statistical analysis 

approach.  From the binary logistics regression method, significant factors were identified and a 

regression model created and evaluated in order to determine its validity.  The regression model 

was be analyzed to determine if the model is adequate. 

 The binary logistics regression dependent variable was the Mishap, with Mishaps (Type B, 

C, D or incident) equaling a value of 1 and Close Calls equaling a value of 0.    

Y, was the binary response variable, presence or absence of a mishap 

Y = 1 if a Mishap/Incident occurred 

Y = 0 if a Close Call occurred 

X = (X1, X2, X3, …..Xk) 

The p value results (less than 0.05) from the binary logistic regression results was analyzed 

to determine the significant factors contributing to the human error mishaps during ground 

processing operations.  The Goodness-of-Fit test was assessed to determine how effective the 

model is.    
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Simple Linear Regression (Probabilistic) Model 
(5) 𝑦 =  𝛽0 +  𝛽1𝑥 +  𝜀 

y: dependent variable 

β0: interception at y axis 
β1: Line gradient 

x: Predictor variable, independent variable 𝜀: Error 

x predicts y 
 

Mean value of y, for a given value of x 
(6) 

 𝐸(𝑌\𝑥) =  𝛽0 +  𝛽1𝑥 

In this equation, the Y represents the outcome variable, the x represents the value of the 

independent variable, and the β represents the model parameters.   

Binary Logistic Regression Model equations 

The equation below is probability the outcome will occur (e.g. mishaps) is: 

(7) 

 ln ( �̂�1 − �̂�) = 𝛽0 +  𝛽1𝑥 

Or 

 

           (8)  𝑝 ̂ =  exp(𝛽0 +  𝛽1 𝑥)1 +  exp (𝛽0 +  𝛽1 𝑥)  =  𝑒𝛽0+ 𝛽1 𝑥1 + 𝑒𝛽0+ 𝛽1 𝑥 
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The probability of the outcome not occurring is:  

(9) 1 −  𝑝 ̂ =  11 +  exp (𝛽0 +  𝛽1 𝑥)  
Once the various HFACS sub-preconditions were classified, a binary logistics table was 

generated for the year and the occurrence of the error producing conditions.  Below is an example 

chart of the collected data. 

Binary Logistics Table (Example only) 

Y = 1 or 0 

X1 = Physical Environment (Lighting) 

X2 = Adverse Mental State (Get Home It-is) 

X3 = Adverse Physiological States (Physical Fatigue) 

X4 = Skilled Based Error (Distraction) 

X5 = Skilled Based Error (Task Overload) 

X6 = Failure to Correct a Known Problem (Failed to initiate corrective action) 

X7 = Failure to Correct a Known Problem (Failure to correct safety hazard) 

X8 = Supervisory Violation (Failed to enforce rules and regulations) 

X9 = Planned Inappropriate Operations (Poor Crew Planning) 

X10 = Equipment/Facility Resources (Poor Access) 

X11 = Organizational Process (Time Pressure) 

X12 = Resource Management (Staffing/Manning) 
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Table 28: Example of Binary Logistics Table for Statistical Analysis 

  Unsafe Acts 
Preconditions of 

Unsafe Acts 
Unsafe Supervision 

Organizational 

Influences 

MISHAP/

CLOSE 

CALL 

Year X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Y 

                            

1985 1 0 0 1 0 0 0 1 0 0 1 1 1 

1986 0 1 0 1 0 0 0 0 0 0 0 0 0 

1987 0 0 0 0 0 0 0 0 0 0 0 1 1 

1988 0 0 1 0 0 0 0 1 0 0 1 0 1 

1989 0 0 0 1 1 0 0 0 0 0 0 1 0 

1990 0 0 0 1 0 1 0 0 0 0 0 0 0 

1991 0 0 0 0 0 0 1 0 0 0 0 0 1 

1992 0 0 0 0 0 0 0 1 1 0 1 0 1 

1993 0 0 0 0 0 0 0 0 0 1 1 1 1 

2013 0 0 1 1 0 0 0 1 1 0 0 0 0 

2014 0 0 0 0 0 0 0 0 0 0 0 1 1 

 

Data Analysis - Validation 

Triangulation 

Triangulation, which is defined as “cross checking” information and conclusions 

through multiple procedures of sources, data and research methods (Johnson, 1997), was used 

for model validation.   

The binary logistics regression model was used to analyze contributing factors to Mishap 

occurrence and was compared to the results of the Human Error Probability (HEP) values 

calculated from the HEART methodology.   
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As a secondary comparison for the HEART Human Error Probability (HEP) values, 

an ANOVA One-Way test and repeated measures of data was performed to compare the mean 

values of the Assessed Proportion of Affect (AOA) values generated by the SMEs.   

The binary logistic regression model “Goodness-to-Fit” tests, “Odds Ratios” and “Binary 

Fitted plots” was analyzed to determine if the model is adequate.   
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CHAPTER FIVE: RESULTS AND DISCUSSION 

Summary 

This chapter provides an overview of the research question, hypothesis and discusses the 

research findings and results.   

Using the HFACS tool to categorize the Ground Processing Operations (GPO) human error 

related mishaps from October 1984 – May 2014, two binary logistics regression models were 

generated. The first binary logistics regression model with eight (8) categorized human error 

contributing factors, identified two (2) as significant factors (perceptual error and decision based 

error).  To simplify the model, the binary logistics regression analysis was performed again with 

stepwise backward elimination.  As a result, four (4) human error contributing factors were 

identified as statistically significant (skilled based error, perceptual error, decision based error, and 

exceptional violation).  

The Goodness-to-Fit tests, Odds Ratios, and Main Effect Plots in both Regression models, 

all indicated that they were good models.  Predicted probabilities were calculated from both 

generated binary logistics regression model equations.  The predicted probabilities calculated the 

probability of a mishap for each contributing factor’s occurrence, in which a “1” indicated an 

occurrence and a “0” indicated a nonoccurrence of that event.  

These predicted values were compared and confirmed as consistent with related Mishap 

literature reviews and research performed in similar fields, such as the Aviation and Aeronautics 
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industry.  Generated Binary Fitted Plots from the regression analysis also confirmed and validated 

the predicted probabilities.   

The HEART Method was also used to calculate predicted Human Error Probabilities 

(HEP).  The HEART HEP values generated from the survey data identified “Physical Limitations” 

related Error Producing Conditions (EPCs) as the contributors to the highest Human Error 

Probabilities (22% - 26%).   In comparison, this is also in line with the predicted probably of 33% 

from the HFACS binary logistics regression model (see Table 29) for “Physical Environment” 

Contributing Factors (e.g. Confined Space).   

Together these two methods were used to determine predicted human error probability 

within NASA Ground Processing Operations (GPOs), in order to identify areas that need 

attention for mitigating future potential Mishap occurrences.    

The remainder of this chapter will explain the process and predicated probabilities that 

were generated, provide information on the survey results and demographics of the survey 

participants. 

HFACS Human Error Probability Results and Analysis 

Binary Logistics Regression Model Results 

In this research, binary logistics regression was used to analyze contributing factors to 

Mishap occurrence.   

The p value results from the binary logistic regression results were analyzed to determine 

the significant factors contributing to the human error mishaps during ground processing 
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operations.  The Goodness-to-Fit tests were assessed to determine how good the model was.    

When performing the binary logistics regression analysis, the occurrence of a Mishap 

(represented by and “0” or “1”) was identified as the “response” and “response event.”   Each of 

the HFACS sub level categories from the HFACS four levels of human failure were selected as 

categorical (non-continuous) predictors. However, when entering all 19 categorical predictors into 

Minitab for the binary logistic regression model, an error was generated, due to the requirement 

that the categorical predictors must have more than one distinct value.  Subsequently, eleven (11) 

sublevel categories were removed from the binary regression analysis and classified as having no 

significant impact on human error related mishaps during Launch Vehicle ground processing 

operations during the recorded data time period.  This was due to the fact that there were no events 

for eleven (11) of the HFACS factors.  

Performing the regression analysis generated a model in which the predicted probability of 

each occurrence was calculated.  Below are the HFACS regression model values.  Three Goodness-

of-Fit tests were performed in this analysis: Deviance, Pearson and Hosmer-Lemeshow.   

The Deviance and Pearson Goodness-of-Fit models assess the discrepancy between the 

current model and full model.  The Hosmer-Lemeshow Goodness-of-Fit test compares the 

observed expected frequencies of events and non-events to assess how well the model fits the data.  

For this analysis the Deviance p value is 0.723, Pearson p value is 0.380 and the Hosmer-

Lemeshow p value is 0.897.  For all three Goodness-to-Fit tests the p values are greater than 0.05, 

indicating there is no significant deviation and the model fits the data. 
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Table 29: Identified HFACS Regression Model Values 

HFACS Human Error Factor 

Fitted 

Probability P value 
Odds 

Ratio 

 
 

Beta 

Coefficient 
(N=414) 

β0 = -3.31 

Skilled Based 27% 0.070 10.15 β1 = 2.32 

Decision Based 41% 0.037 18.72 β2 = 2.93 

Perceptual Errors 47% 0.009 24.25 β3 = 3.20 

Routine Violation 9% 0.444 2.67 β4 = 0.98 

Exceptional Violation 36% 0.052 15.67 β5 = 2.75 

Crew Resource Management 14% 0.283 4.38 β6 = 1.48 

Physical Environment 33% 0.138 13.72 β7 = 2.62 

Supervisory Violation 24% 0.226 8.61 β8 = 2.15 

  

Binary Logistics Regression Model with Stepwise Backward Elimination  

For the original binary logistics expression in this research all factors with events were 

used.  In an effort to simplify the model, Stepwise Backward elimination was used.  Backward 

elimination, is a process that begins with all candidate variables, then tests the deletion of each 

variable using a selected model comparison criterion.  This deleting process is repeated, until no 

further improvement is possible (Fox, 2015).  Below are the results from the backward elimination 

process.  

For the Beta coefficients of the regression model, the constant (which is the β0) is -2.242 

and the HFACS Human Error factor Beta coefficients (βx) are:  Skill Based β1 = 1.264, Decision 

Based β2 = 1.887, Perceptual Errors β3 = 2.335, Exceptional Violation β4 = 1.682.    

For the factors in this regression model, the p values are:  Skilled Based p = 0.000, Decision 

Based p = 0.005, Perceptual Errors p = 0.000, Exceptional Violation p = 0.013. From the p values, 
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the Skilled Based Error, Decision Based Error, Perceptual Error and Exceptional Violation p 

values are < 0.05, thus all statistically significant.   

Table 30: Identified HFACS Regression Model with Backward Elimination P Values and Beta Coefficients 

HFACS Human Error Factor P value 

Beta 

Coefficient 

(N=414) 

β0 = -2.242 

Skilled Based 0.000 β1 = 1.264 

Decision Based 0.005 β2 = 1.887 

Perceptual Error 0.000 β3 = 2.335 

Exceptional Violation 0.013 β4 = 1.682 

 

For the Odds Ratio, each Human Error Factor Beta coefficient indicates that for each 

additional occurrence of a HFACS Human Error factor, the odds of this measurement falling into 

the “1” category (which represents a Mishap/Incident Occurrence), increases by that value.  This 

value is derived by calculating the exponential of the Beta Coefficient.  So, for the Skilled Based 

Error β1, the additional occurrence on this factor increases the odds of a mishap/incident 

occurrence by 3.54 (e1.264 = 3.54).  The odds ratios for β1 through β4   are: Skilled Based 3.54, 

Decision Based 6.60, Perceptual Errors 10.33, and Exceptional Violation 5.38.   

 

Table 31: HFACS Regression Model with Backward Elimination Odds Ratio 

HFACS Human Error Factor 

Odds 

Ratio 

Perceptual Errors 10.33 

Decision Based 6.60 

Exceptional Violation 5.38 

Skilled Based 3.54 
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Of these odds ratios, the highest values rank from Perceptual Errors at 10.33, followed by Decision 

Based Errors at 6.60, Exceptional Violations at 5.38, and Skilled Based at 3.54, in which they are 

all statistically significant.  

Goodness-of-Fit Tests 

For all three Goodness-to-Fit tests, the p value was greater than 0.05, indicating that we 

want to reject the null hypotheses (H0), which states H0:  Contributing factors: unsafe acts of 

operators, preconditions for unsafe acts, unsafe supervision, and/or organizational influences 

(multiple causes) do not have an impact on human error events (i.e. mishaps, close calls, incident 

or accidents) in NASA ground processing operations.  This indicates that there is no significant 

deviation and the model fits the data. 

Table 32: HFACS Goodness-of-Fit Tests with Backward Elimination P Values 

Goodness-of-Fit tests  P value 

Deviance 0.725 

Pearson 0.458 

Hosmer-Lemeshow 0.795 

 

Binary Fitted Plots   

The Binary Fitted Line Plots for each Human Error Factor are listed below.  From the plot 

observations, the x axis displays the impact of error an occurrence (either “0” indicating no 

occurrence, or “1” indicating an occurrence).  The Y-axis displays the Probability of a Mishap 

Event occurrence. All of the observations (which are represented by the blue dots) have a 
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probability of either a “1” indicating a Mishap occurred or “0” a Mishaps did not occur.  The 

burgundy line on the graph reveals the probability that a mishap will occur based on the type of 

human error factor manifested.  From the Skilled Based Error Binary Fitted Plot it is observed that 

when a Skilled Based Error occurs (1), there is about a 25% probability of a Mishap occurrence, 

around 40% for Decision Based, 50% for Perceptual Errors and 35% for Exceptional Violation.   

  

  

Figure 12: Binary Fitted Line Plots 
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Prediction from the Regression Model 

 The Binary Logistic Regression Expression for this Model is P (1) = e (Y’) / (1 + e (Y’)), with the Yˊ 
equal to:                (10) 𝑌′ =  −2.242 + 1.264 𝛽1 (𝑠𝑘𝑖𝑙𝑙𝑒𝑑 𝑏𝑎𝑠𝑒𝑑) + 1.887 𝛽2 (𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑)+ 2.335 𝛽3 (𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠) + 1.682 𝛽4 (𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠) 

In order to use this model for probability prediction, the occurrence of human error events 

are entered into the equation. Using the model equation, which is the same as Equation 8 for 

calculating the binary regression model probability we have:  

            (11)   𝑝 ̂ =  exp(𝛽0 +  𝛽1 𝑥)1 +  exp (𝛽0 +  𝛽1 𝑥)  =  𝑒𝛽0+ 𝛽1 𝑥1 + 𝑒𝛽0+ 𝛽1 𝑥
=  𝑒−2.242+ 1.264 𝑆𝑘𝑖𝑙𝑙𝑒𝑑 𝐵𝑎𝑠𝑒𝑑+1.887 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐵𝑎𝑠𝑒𝑑+⋯+1.682 𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑎𝑙1 + 𝑒−2.242+ 1.264 𝑆𝑘𝑖𝑙𝑙𝑒𝑑 𝐵𝑎𝑠𝑒𝑑+1.887 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐵𝑎𝑠𝑒𝑑+⋯+1.682 𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑎𝑙  

 

To predict the probability of a Mishap occurrence based on the HFACS Human Error Factor 

“Skilled Based” occurrence (1), the following values were entered into the Equation.  

Table 33: HFACS Factor with Backward Elimination Binary X Values 

 HFACS Factor  X Values 

Skilled Based 1 0 0 0 

Decision Based 0 1 0 0 

Perceptual Errors 0 0 1 0 

Exceptional Violation 0 0 0 1 
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Table 34: Binary Logistics Regression with Backward Elimination Prediction Y for given X value 

Logistic Regression with Backward Elimination Prediction Y for given X Value 

          

X-Variables Coefficients 

X-values 

(For: Skilled 

Based) Product   

Intercept -2.242 1 -2.242   

Skilled Based 1.264 1 1.264   

Decision Based 1.887 0 0   

Perceptual Errors 2.335 0 0   

Exceptional Violation 1.682 0 0   

      -0.978 
log(p/(1-p)) = Sum of 

products in column  

          

      0.273288808 

Probability Formula = 
exp(-0.978)/(1+exp(-
0.978)) 

          

      27%   

 

The Remaining Probability Values were calculated and are in Table 35 below.  When comparing 

the calculated Fitted Probability, the values are consistent with the Binary Fitted Line Plots.    

 

Table 35: Identified HFACS Regression Model Fitted Probability with Backward Elimination Values 

HFACS Factor  

Fitted 

Probability 

SE 
(Standard 
Error) Fit 

Lower 95% 
Confidence 
Interval 

 
Higher 
95% 
Confidence 
Interval 

Skilled Based 27% 3% 21% 34% 

Decision Based 41% 15% 17% 71% 

Perceptual Errors 52% 13% 29% 75% 

Exceptional Violation 36% 15% 14% 66% 
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HFACS Factorial Plots 

Figure 13 displays the main effects plots for this research’s mishaps/incidents data. When 

analyzing the slopes of the main effects plots, the slope indicates the presence and significance of 

a main effect.  The more the slope line is non horizontal, the more of a main effect is present.  The 

greater the difference in the positions of the plotted point, indicates the greater the significance of 

the main effect.  The Skilled based, Decision based, Perceptual and Exceptional Errors have strong 

(non-parallel to the x axis) slopes, low p values and a range of 27% - 52% probability of mishap 

occurrence when present, etc.  This indicates that as the Human Error event increases, the 

probability of the mishap event increases.   

 

 

Figure 13: Main Effects Plot for Mishap/Incidents with Backward Elimination 
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Participant Survey Results  

For this research survey, the subjects were asked to answer a total of 21 questions.  Of the 21 

questions, they were asked to evaluate and answer 18 questions from 3 NASA Launch Vehicle 

Ground Processing Operations Scenarios involving the VAB, OPFs and Pads A/B.  There were a 

total of 41 survey participants.  Table 26 was used as a survey scale for the subjects to provide an 

Assessment of Affect (AOA) value based on the Error Producing Conditions identified for the 

Scenarios.  The subjects were asked to provide their assessment based on the level of affect an Error 

Producing Condition (EPC) may have on a specific Ground Processing Operations task (very low, 

low, moderate, high, and very high).   

Below are graphs depicting the survey participants’ job function titles, years/experience 

working at the Kennedy Space Center, and their years/experience working in Ground Processing 

Operations (GPO).  Survey participant #39 did not record their demographic data on their survey, 

so it was removed from the years at KSC and in GPO line graphs.  The survey participants’ average 

years working at KSC is 23.9875 years and their average years working at KSC supporting Ground 

Processing Operations is: 19.8125 years. 
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Figure 14: Survey Participants’ Job Function 

 

 

Quality Assurance 

Specialist (QAS)

42%

Inspector (Quality 

Control)

10%

QAS and Safety 

Specialist

15%

Quality 

Engineer/Systems 

Engineer

2%

Technican

27%

Human Factors 

Modeling, QAS and 

Safety Specialist

2%

Unidentified

2%

SURVEY PARTICIPANTS' JOB FUNCTION



115 
 

 

 

Figure 15: Survey Participants’ Years at NASA KSC and KSC GPO 
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HEART Human Error Probability (HEP) Results  

Below in Table 36 are the values and Assessed Proportion of Affects (AOA) generated by 

the survey participants to calculate the Human Error Probability (HEP).  

 
Table 36: HEART Survey Participants Assessed Proportion of Affect (AOA)  

 

Survey 

Question 

Number  

Scenarios 

Generic 

Task, 

HEART 

Nominal 

HEPs 

(Table 

21) 

Error Producing 

Conditions 

HEART  

EPC(s) 

(Table 9) 

 

Survey 

Participant’s 

Average 

Assessment 

(AOA) 

4 VAB - Scenario 1  C 
Tiredness – Long hours – 3rd 
Shift. 

35 
 

0.55641026 

5 VAB - Scenario 1  C Accessibility limitations. 22 
 

0.495 

6 VAB - Scenario 1  C Poor lighting.  33 
 

0.529872 

7 VAB - Scenario 2   C 
Heat (Orbiter lifting required 
doors to be closed and 
coveralls worn). 

27 

 

0.421711 

8 VAB - Scenario 2   C 
Heights, climbing ladders to 
access platforms. 

27 
 

0.397179 

9 VAB - Scenario 2   C Tripping hazards.  33 
 

0.463077 

10 OPF - Scenario 1   E 
Accessibility limitations – 
Crawling around on wires 
bundle. 

22, 27 

 

0.62561 

11 OPF - Scenario 1   E 
Physical Stress - twisting and 
turning.  

27 
 

0.538902 

12 OPF - Scenario 1   E 

Confined working space - 
breakable parts in or on way 
to/from work area (air ducts, 
phenolic brackets, tubing).   

5, 22, 38 

 

 

 

0.597195 

13 OPF - Scenario 2 F Claustrophobia. 27 0.603125 
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Survey 

Question 

Number  

Scenarios 

Generic 

Task, 

HEART 

Nominal 

HEPs 

(Table 

21) 

Error Producing 

Conditions 

HEART  

EPC(s) 

(Table 9) 

 

Survey 

Participant’s 

Average 

Assessment 

(AOA) 

14 OPF - Scenario 2  F 
Physical Stress - twisting and 
turning. 

27 
 

0.529 

15 OPF - Scenario 2  F 

Confined working space - 
Accessing and backing out of 
small tight areas with; wire 
harnesses, tubing, and struts. 

5, 22, 38 

 

 

0.58475 

16 
Pad A/B - Scenario 
1  

F 

Confined working space - 
accessibility limitations; 
crawling and climbing 
around/near; wiring 
bundles/connectors, 
hydraulic/pneumatic lines, air 
ducts, etc. Physical stress - 
twisting and turning. 

5, 22, 27 

 

 

 

 

0.529146 

17 
Pad A/B - Scenario 
1  

F Noise (air purge). 3 
 

0.412683 

18 
Pad A/B - Scenario 
1  

F Poor lighting. 13, 27, 33 
 

0.552439 

19 
Pad A/B - Scenario 
2  

C 

Accessibility limitations –
when open below, required to 
wear safety harness and 
lanyard. 

22 

 

0.47622 

20 
Pad A/B - Scenario 
2  

C 
Physical stress due to 
installing vertically. 

22, 27 

 

0.448205 

21 
Pad A/B - Scenario 
2  

C Tiredness – 3rd Shift Work.  35 
 

0.573415 
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Of the Human Error Probability (HEP) values calculated from the surveys, there were three 

values that had the highest probability. The HEP values were from survey questions 5, 19, and 20, 

which all had a probability above 20%.  These three questions and their scenario are below.    

VAB Scenario 1 

Task:  Performing Booster Hold-down Posts  

Subtasks Error Producing Conditions 

Arming the Booster   Tiredness – Long hours – 3rd Shift. 

Connecting the Booster Segments  Accessibility limitations. 

Installing Safety Wires Poor lighting.  

 
Question 5:  What proportion of affect would “Accessibility Limitations” affect performing Booster 

Hold-down Posts and any of its Subtasks?  

Pad A/B - Scenario 2 
 
Task: Installing Engines at Pad 

Subtasks Error Producing Conditions 

Installing and torqueing hardware Accessibility limitations –when open below, 
required to wear safety harness and lanyard. 

Connecting lines (inspect, clean, install seals, 
hardware install and torque) 

Physical stress due to installing vertically. 

Electrical connects Tiredness – 3rd Shift Work.  

 
Question 19:  What proportion of affect would “Accessibility limitations –when open below, required 

to wear safety harness and lanyard” affect performing the Installation of Engines at the Pad and any of 

its Subtasks?  

Question 20:  What proportion of affect would “Physical stress due to installing vertically” 

affect performing the Installation of Engines at the Pad and any of its Subtasks? 

  Figure 16: HEART Survey Questions with Highest Human Error Probabilities (HEPs) 
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Within these three questions with the highest HEP value, there is a commonality between 

them.  Each of the questions have error producing conditions that deal with accessibility 

limitations, physical stress and tiredness.  Poor lighting deals with the physical environment 

contributing factor. 

Table 37: HEART Survey Calculated Human Error Probabilities (HEPs) 

Survey 

Question  

EPC(s) 

(Table 

9) 

Max. 

Effect 

#1 

Max. 

Effect 

#2 

Max. 

Effect 

#3 

Assessed 

Proportion 

of Affect  

(average) 

Assessed 

Factor – 

Calc. #1 

Assessed 

Factor – 

Calc. #2 

Assessed 

Factor – 

Calc. #3 

Generic 

Task, 

HEART 

Nominal 

Human 

Error 

Prob. 

(HEPs) 

(Table 21) 

Generic 

Task, 

HEART 

Nominal 

Human 

Error 

Prob. 

Value 

(HEPs) 

(Table 21) 

HEP 

% 

4 35 1.1     0.556410 1.055641     C 0.16 17% 

5 22 1.8     0.495 1.396     C 0.16 22% 

6 33 1.15     0.529872 1.079481     C 0.16 17% 

7 27 1.4     0.421711 1.168684     C 0.16 19% 

8 27 1.4     0.397179 1.158872     C 0.16 19% 

9 33 1.15     0.463077 1.069462     C 0.16 17% 

10 22, 27 1.8 1.4   0.62561 1.500488 1.250244   E 0.02 4% 

11 27 1.4     0.538902 1.2155608     E 0.02 2% 

12 

5, 22, 

38 9     0.597195 5.77756     
E 0.02 

12% 

13 27 1.4     0.603125 1.24125     F 0.003 0% 

14 27 1.4     0.529 1.2116     F 0.003 0% 

15 

5, 22, 

38 9 1.8   0.58475 5.678 1.4678   
F 0.003 

3% 

16 

5, 22, 

27 9 1.8 1.4 0.529146 5.233168 1.423317 1.211658 
F 0.003 

3% 

17 3 10     0.412683 4.714147     F 0.003 1% 

18 

13, 27, 

33 4 1.4 1.15 0.552439 2.657317 1.220976 1.082866 
F 0.003 

1% 

19 22 1.8     0.47622 1.380976     C 0.16 22% 

20 22, 27 1.8 1.4   0.448205 1.358564 1.179282   C 0.16 26% 

21 35 1.1     0.573415 1.057342     C 0.16 17% 
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Model Validation 

HFACS Model  

The HFACS model was verified by consistency and comparison to other research 

conducted with the HFACS Classification system and data in the aeronautics field.    

Research performed on Human Factors in Remotely Piloted Aircraft (RPA) Operations, 

conducted a HFACS analysis on 221 Mishaps over a 10 year period (Tvaryanas, 2006).  In this 

study, the HFACS model was modified specifically for the Department of Defense and was used 

to code their mishaps.  A binary regression model was created and used for predicting Operator 

Error (Tvaryanas, 2006).   

Within the Human Factors Remote Pilots Aircraft (RPA) study’s summary of prior RPA 

mishap studies, 3 of the 5 studies’ largest percentage of mishaps fell into the “Unsafe Acts” 

(Skilled Based, Decision Based, Routine Violation, Exceptional and Perceptual) Category 

(Tvaryanas, 2006).  This is consistent with the overall percentage levels of HFACS Factor Events 

in this study.  Figure 17 below shows the percentages of the eight categories that the Ground 

Processing Operations Mishaps fell into.  The “Unsafe Acts” HFACS categories (Skilled Based, 

Decision Based, Routine Violation, Exceptional and Perceptual) comprise the majority of the 

Ground Processing Operations Mishaps.  

Overall, of the 221 Mishaps reviewed in the RPA Study, 60.2% of the mishaps were 

associated with operations-related human causal factors (Tvaryanas, 2006).     
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Figure 17: HFACS Human Error Factors Percentages for KSC GPO 

 

As discussed in the Literature Review chapter, a study of 523 accidents within the Republic 

of China (ROC) Air Force from 1978-2002 (24 years), revealed several significant associations 

between errors at the operation level and organization inadequacies (Li, W., 2006). 

The frequency counts and inter-rater reliability statistics for the Republic of China (ROC) 

Air Force’s study were generated for all 523 accidents. Of the four categories and subcategories, 

the sublevel errors that had the ten (10) highest frequencies of occurrence (when ranking order of 

highest frequency) are in the graphs below, with “Unsafe Acts (Level 1)” and “Preconditions for 

unsafe acts (Level 2)” being the leading HFACS Categories.  
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When comparing the highest frequency of occurrences between the Republic of China 

(ROC) Air Force study and the KSC Ground Processing Operations (GPO) study, the highest 

frequencies of occurrence are consistent, due to the majority of human error occurrence falling 

within the “Unsafe Acts (Level 1)” and “Preconditions for unsafe acts (Level 2)” HFACS 

Categories.   Two graphs comparing the studies are presented below.     

Level 1: Unsafe Acts (of Operators) 
Level 2: Preconditions for unsafe acts (e.g. latent conditions)  
Level 3: Unsafe supervision 
Level 4: Organization Influences 

 
 
 

 
 

Figure 18: Republic of China (ROC) Air Force Study Top 10 Frequency Counts and Inter-rater Reliability  
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Figure 19: HFACS KSC GPO Frequency Counts 

 
 In another research study on recurrent error pathways in HFACS Data, the research focused 

on an analysis of 95 Remotely Piloted Aircraft Mishaps.  In this research, the Perceptional and 

Skilled Based Error pathways, which both fall under the HFACS “Unsafe Acts” Level 1, had 

common latent failures associated with each other and together were accountable for the majority 

of crewmember related mishaps (Tvaryanas, 2008).   This result is consistent with the four factors 

in this study’s binary logistics regression Stepwise Backward Elimination Model (Skilled Based, 

Perceptual Error, Decision Based and Exceptional Violation) in which Skilled Based and 

Perceptual Error were the two most statistically significant with a p value of 0.000 (reference Table 

36) and with the majority of human error factors identified, which fall under the HFACS “Unsafe 

Acts” Level 1.   
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Binary Logistics Regression Model 

 The Goodness-to-Fit tests were within acceptable range for fitting the data.  For 

both the binary logistics regression equation and equation with backward elimination all 

Goodness-to-Fit p values were greater than 0.05. This indicates that there is no significant 

deviation and the model fits the data, and indicates to us that we should reject the null hypotheses 

(H0), which states Contributing factors: unsafe acts of operators, preconditions for unsafe acts, 

unsafe supervision, and/or organizational influences (multiple causes) do not have an impact on 

human error events (i.e. mishaps, close calls, incident or accidents) in KSC ground processing 

operations.   

Survey One-Way ANOVA 

In order to determine if there is a statistical difference between the Assessed Proportion of 

Affect (AOA) values generated by the survey participants, an ANOVA on the mean values for the 

AOAs was used.  A One-Way ANOVA was performed to compare the mean values of the 

Assessed Proportion of Affect (AOA) values generated by the SMEs.   

The null hypothesis is that all AOA means are equal and the null alternative is that at least 

1 mean is not equal. 

H0: µ AOA 1 = µ AOA 2 = µ AOA 3 = µ AOA 4, etc. 

H1: At least 1 not equal. 

 Based on the One-Way ANOVA performed on the survey data, the p value of 0.00 indicates 

that there is a statistically significant difference between the SME’s response to the survey 
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questions.  With a p value of 0.000, which is less than the 0.05 significance level, the null 

hypothesis, which reads: H0: µ AOA 1 = µ AOA 2 = µ AOA 3 = µ AOA 4, etc., is rejected. 

 

One-way ANOVA: Response versus Question  
Method 

 

Null hypothesis         All means are equal 

Alternative hypothesis  At least one mean is different 

Significance level      α = 0.05 
Rows unused             18 

 

Equal variances were assumed for the analysis. 

 

Factor Information 

 

Factor    Levels  Values 

Question      18  4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 

18, 19, 20, 21 

 

Analysis of Variance 

 

Source     DF  Adj SS   Adj MS  F-Value  P-Value 

Question   17   3.240  0.19061     4.84    0.000 

Error     702  27.659  0.03940 

Total     719  30.900 

 

Model Summary 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.198496  10.49%      8.32%       5.83% 

Pooled StDev = 0.198496 
Figure 20: One-Way ANOVA - Minitab 

 

HEART Human Error Probability (HEP) Validation 

 The three highest HEP values from the survey data had an “Accessibility Limitations”, 

“Physical Stress” and “Tiredness” Error Producing Condition as commonalities between them.   

When comparing the EPCs of the HEART method to the NASA KSC Modified Levels of 

the HFACS, the HEART EPCs “Accessibility Limitations,” “Physical Stress” and “Tiredness” are 
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best matched with HFACS Preconditions of Unsafe Acts sublevels “Physical Environment 

Confined Space” and “Adverse Physiological States - Physical Fatigue.”     

When reviewing the result values of the Binary Logistics Model (prior to the backward 

elimination) Predicted Human Error Probabilities, the “Physical Environment” had a Fitted 

Probability of 33%.   

There is no correlation between all of the calculated HEART HEP values to all of the 

HFACS predicted binary logistics regression values.  However, there is some correlation between 

the 3 highest HEP values (22%, 22%, and 26%) from the survey data to the Physical Environment 

Fitted Probability of 33% from the binary logistics regression (before Backward Elimination) to 

draw statistically valid conclusions.   Due to survey participants providing their subjective Assessed 

Proportion of Affect (AOA) for each EPC, it is difficult to directly compare remaining HEART HEP 

values to the remaining HFACS binary logistic regression signification factors. 

It can be noted that all of the SMEs contributions to the developed Scenarios, tasks, subtasks 

and identified EPCs developed all fall under the HFACS Preconditions of Unsafe Acts Levels 

(Physical Environment Factor and Adverse Physiological States).  In the Preliminary Analysis of 

this study, it was also noted that many of the SMEs stated that they felt one of the biggest influences 

to human error mishaps in Ground Processing Operations (GPO) is confined spaces, which is a 

physical environment limitation.   

 

 



127 
 

Research Question and Hypothesis Tests/Results 

The Research Question and Hypotheses and results are below.    
 

Question 1: What are the identified leading human error causes and contributors to historical Launch 

Vehicle Ground Processing Operations mishaps and findings based on past mishaps, near mishaps, and 

close calls?  Quantifying this data and identifying the leading cause is essential in the research analysis. 

 
 

Question 1  

Both binary regression logistics equations in this study identified leading human error 

causes and contributors to the historical Launch Vehicle Ground Processing Operations 

mishaps and findings based on past mishaps, near mishaps, and close calls.  

The binary logistics regression equation with stepwise backward elimination 

(simplified) equation identified the significant causes and contributors as: Skilled Based Errors, 

Decision Based Errors, Perceptual Errors, and Exceptional Violations. 

Hypothesis 1 

H0:  Contributing factors: unsafe acts of operators, preconditions for unsafe acts, unsafe supervision, 

and/or organizational influences (multiple causes) do not have an impact on human error events (i.e. mishaps, close 

calls, incident or accidents) in NASA ground processing operations.   

H1:  Contributing factors: unsafe acts of operators, preconditions for unsafe acts, unsafe supervision, 

and/or organizational influences (multiple causes) do have an impact on human error events (i.e. mishaps, close 

calls, incident or accidents) in NASA ground processing operations.  



128 
 

Hypothesis 1 

Results of the Binary Logistics Model provides support that when mishaps are categorized 

using the modified NASA KSC HFACS Model, the model does show there are significant 

contributing factors to KSC Ground Processing Operations (GPO) Human Error.  

The fact that KSC’s GPO related Mishaps were able to be sorted into the HFACS Levels 

and sub-categories support the idea that the HFACS tool could be used for complex operations 

such as KSC GPOs.  Of the four (4) HFACS Levels, the only level that did not have any KSC GPO 

mishaps was “Organizational Influences.”  This may be due to the difficulty of identifying latent 

conditions, which are considered “resident pathogens” that can produce a problem within the 

system, and can lie dormant for years before they combine with active failure to create a potential 

hazard (Reason, 2000). 

The binary logistics regression model Goodness-to-Fit Tests all met the criteria for validity.   

For all three Goodness-to-Fit tests the p value was greater than 0.05, indicating that we should 

reject the null hypotheses (H0), which states H0:  Contributing factors: unsafe acts of operators, 

preconditions for unsafe acts, unsafe supervision, and/or organizational influences (multiple 

causes) do not have an impact on human error events (i.e. mishaps, close calls, incident or 

accidents) in KSC ground processing operations.  This indicates that there is no significant 

deviation and the model fits the data.   

When comparing the HFACS Fitted Probability values to the HEART Human Error 

Probability values, there is a similar probability concerning physical limitations (confined space) 

for the HFACS Factors and HEART EPCs.  
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Therefore, the H0 null Hypothesis is REJECTED.  Contributing factors: unsafe acts of 

operators, preconditions for unsafe acts, unsafe supervision, and/or organizational influences 

(multiple causes) DO have an impact on human error events (i.e. mishaps, close calls, incident or 

accidents) in KSC ground processing operations.  

Hypothesis 2 

H0:  The HFACS framework conceptual model can be proven to be a viable analysis and classification 

system to help classify both latent and active underlying contributors and causes of human error in NASA ground 

processing operations.  

H1:  The HFACS framework conceptual model cannot be proven to be a viable analysis and classification 

system to help classify both latent and active underlying contributors and causes of human error in NASA ground 

processing operations. 

 

Hypothesis 2  

The HFACS framework conceptual model used in this research revealed both active and 

latent failures.  The majority of the significant contributing factors were from HFACS Levels 1 

and 2, which encompass both active and latent failures.  Figure 19 shows the frequency count of 

KSC Ground Processing Operations Mishaps that were categorized into the HFACS framework. 

Tables 29 and 35 show the Human Error underlying contributors and causes based on the 

HFACS framework identified with the binary logistics regression equations.   

In the model validation of this chapter, the HFACS model was verified by consistency and 

comparison to other research conducted with the HFACS Classification system and data in the 

aeronautics field.    
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Therefore, the H0 null Hypothesis is ACCEPTED.  The HFACS framework conceptual 

model CAN be proven to be a viable analysis and classification system to help identify both latent 

and active underlying contributors and causes of human error in KSC ground processing 

operations. 

Hypothesis 3 

H0:  The development of a model using the HEART assessment can be used as a tool to help determine 

the probability of human error occurrence in NASA ground processing operations.   

H1:  The development of a model using the HEART assessment cannot be used as a tool to help determine 

the probability of human error occurrence in NASA ground processing operations.    

 

Hypothesis 3  

A NASA KSC Specific Modified HEART assessment tool was used to calculate the 

Human Error Probability (HEP) based on Assessment of Affect (AOA) values provided by survey 

participants with years of experience and a background with NASA KSC Ground Processing 

Operations.  

Based on the Model Validation section of this research, when comparing the Error 

Producing Conditions (EPCs) of the HEART method to the NASA KSC Modified Levels of the 

HFACS, the HEART EPCs “Accessibility Limitations,” “Physical Stress” and “Tiredness” are 

best matched with HFACS Preconditions of Unsafe Acts sublevels “Physical Environment - 

Confined Space” and “Adverse Physiological States - Physical Fatigue.”   

There is no correlation between all of the calculated HEART HEP values to all of the 
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HFACS predicted binary logistics regression values.  However, between the 3 highest HEART 

HEP values (22%, 22% and 26%) from the survey, there is a correlation with the HFACS data for 

the Physical Environment Fitted Probability of 33% (which was generated from the binary logistics 

regression, before stepwise backward elimination).  

It can be noted that from the Preliminary chapter of this Research, the developed Scenarios, 

tasks, subtasks and identified EPCs all fall under the HFACS Preconditions of Unsafe Acts Levels 

(“Physical Environment” and “Adverse Physiological States” contributing factors).  It is also  noted 

from the Preliminary Analysis of this study that many of the SMEs stated they felt one of the 

biggest influences to human error mishaps in Ground Processing Operations (GPO) is confined 

spaces, which is a “Physical Environment” limitation.   

As a part of the statistical approach, one of the goals of this research was to use the HEART 

model to compare the HEP generated values from survey participants’ data to the HFACS 

significant factors and predicted probability values. After the surveys were completed and the 

HEART HEPs were calculated, there was no correlation to all of the significant factors and 

predicted probabilities identified with the HFACS binary logistics regression model, except for the 

“Physical Environment” significant factor and its fitted probability of 33%.  

There was also no sufficient HEART Human Error Probability (HEP) calculated research 

data conducted in relation to the aeronautics or aerospace field for verification through consistency 

or comparison.   

However, the fact that all of the SME generated HEART Survey Scenarios, tasks, subtasks 

and EPCs all fell under the HFACS Preconditions of Unsafe Acts Levels, is consistent with 
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previous studies discussed in this research identifying the highest frequency of occurrences and 

the majority of human error occurrences falling within the “Unsafe Acts (Level 1)” and 

“Preconditions for unsafe acts (Level 2)” HFACS Categories.     

The 3rd hypothesis for this research is to determine if the development of a model using the 

HEART assessment can be used as a tool to help determine the probability of human error 

occurrence in NASA ground processing operations.   

After conducting the survey, gathering the data, and calculating the HEART Human Error 

Probabilities (HEP), the HEART tool was successful in determining the probability of human error 

occurrence from the generated Scenarios.   

Therefore the H0 null hypothesis is ACCEPTED due to consistency with related HFACS 

aerospace studies identifying the majority of human error occurrences falling with the “Unsafe 

Acts” and “Preconditions of Unsafe Acts” categories.   The development of a model using the 

HEART assessment CAN be used as a tool to help determine the probability of human error 

occurrence in NASA ground processing operations.   
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CHAPTER SIX: CONCLUSION 

Research Summary 

Chapter 1: This established the context and motivation for this research.   

The goal was to also develop a sound model from an ergonomic, mathematical and human 

factors standpoint and to add to the body of knowledge in the area of human factors, by providing 

ergonomic and mathematical results from the Human Error Assessment and Reduction Technique 

(HEART) and Human Factors Analysis and Classification System (HFACS) tools.   

Chapter 2: Research shows through a literature review that statistically human error is 

identified as the leading primary cause of aviation, mining and other mishaps.  Unfortunately, most 

incident reports are not designed around a theoretical framework of human error.  In this research, 

it was important that human factor issues were addressed and a comparative analysis of existing 

databases be conducted to determine the human factors responsible for the failures, mishaps, etc. 

(Wiegmann and Shappell, 2001).   

Chapter 3: A preliminary analysis was performed by SMEs to modify the HEART Generic 

Tasks and the HFACS four levels of human error to be more in line with NASA KSC Ground 

Processing Operations.  The SMEs also played a significant role in the development of the  six (6) 

scenarios that were used for the HEART Survey, which identified the Tasks, Sub-tasks and Error  

Producing Conditions (EPCs) used for assessing the EPCs’ affect on NASA Ground Processing 

Operations tasks.    

 



134 
 

Chapter 4: Initial data was collected from recorded NASA KSC Mishap Data from October 

1984 – May 2014.  Launch Vehicle related Ground Processing Operations (GPO) mishaps from 

the OPF, VAB and Pad A/B were identified and pulled from this data.  These mishap data entries 

were read one by one and categorized by the HFACS Human Error Levels and sublevels.  Any 

ambiguous mishap data entries were reviewed and consulted by Subject Matter Experts to assist in 

appropriately assigning the mishaps to the best fitting HFACS Level or subcategory. 

Survey participants were asked to evaluate 3 NASA KSC Ground Processing Operations 

Scenarios involving the VAB, OPFs and Pads A/B.  The participants were given a survey scale to 

provide their Assessed Proportion of Affect (AOA) of the Error Producing Conditions identified for 

the Scenarios.  These values were recorded and calculated using the Human Error Assessment and 

Reduction Technique (HEART) Human Error Probability (HEP) Formula.   

From the experiment process, a binary logistics regression model was generated.  Fitted 

probabilities of future mishap occurrences based on the regression model and Human Error 

Probabilities were calculated based on the survey participants’ assessed values.  The binary logistics 

regression model was also performed a second time with Stepwise Backward Elimination to simplify 

the equation. 

Chapter 5: The results of the binary regression equation identified several significant 

contributors to NASA GPOs. These significant contributors were consistent with the literature 

review and research performed in similar fields, such as Aviation and Aeronautics.   
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Results from the HEART Human Error Probability (HEP) values, did not directly compare 

with all of the HFACS binary logistics regression identified significant contributors, but there was a 

comparable probability of occurrence as it relates to the Physical Environment and Confined Spaces.   

Chapter 6: Based on the HFACS and HEART results and validation, the KSC Ground 

Processing Operations Framework is confirmed as a valid approach for mishap analysis. The 

Framework is flexible in that it allows modification for various unique operations that it will be 

used for.  In this research, the Scenarios can be changed and/or selected from diverse Operations 

and locations.  Due to the fact that the HEART tool has Generic Tasks, this can be modified to 

specific tasks performed in the Operation.    

 Although all of the HEART HEP values did not have a direct correlation to all of the 

HFACS binary logistic regression signification factors, the framework still encompasses the 

HEART Generic Tasks that can be modified to meet unique job functions.  The final stage of the 

framework encompasses both HFACS human error levels and HEART Error Producing 

Conditions, which from previous studies mentioned in the Model Validation section of Chapter 5, 

indicate that the majority of human error related incidents fall under the “Unsafe Acts (Level 1)” 

and “Preconditions for unsafe acts (Level 2)” HFACS Categories. 

The literature review also reveals that from historical and research data the HFACS four 

(4) Levels of Human Error encompasses the common categories that most mishaps fall into.  

Lastly, the HFACS Sublevels, Common Errors and HEART Error Producing Conditions cover a 

broad scope of errors that can occur during complex Operations. All of the error producing 

conditions in the final stage of the NASA KSC GPO framework (Figure 9), cover contributing 
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factors for both models.  

Research Limitations 

One of the limitations of this research framework is the subjectivity of the Assessed 

Proportion of Affect (AOA).  The Calculated Human Error Probability (HEP) can vary, due to its 

dependency on the survey participants.  The modification of the HEART and HFACS model is 

also subject to the Subject Matter Experts’ recommendations for the models’ modification, in order 

to make it more in line with NASA KSC Operations.    

Identifying the human error related causes that led to the Mishap is limited by the detail of 

the data provided in the “Detail Description” portion of the Mishap Data entry system.  Therefore, 

if a person entering the data leaves out any pertinent human error related information, this affects 

the categorization of the Mishap.   There is also a potential opportunity for “latent error” related 

information to not be entered into the database, due to the fact that latent errors can be hidden and 

may lay dormant within a system, in comparison to active errors, which effects are sensed almost 

immediately, and are more visible and identifiable.  

In this research general slips, trips and falls (e.g. someone tripping and falling as they are 

getting out of a vehicle) annotated in the Mishap reports were not included in the categorization.  

Only slips, trips and falls that occurred or were related to the execution of Ground Processing 

Operations tasks were included.  
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Research Contributions 

The central contribution of this research is a unique complex operations framework that 

incorporates three aspects:  Human Reliability Analysis, Human Error Taxonomy and Human 

Error Framework. 

In the Literature Review chapter, questions were asked in order to identify the research 

gaps concerning retrospectively analyzing mishaps relating to complex space systems such as 

NASA KSC Ground Processing Operations.  The research questions were in areas of: Human 

Reliability Analysis, Human Error Taxonomies and Human Error Frameworks.  This research 

addressed all three areas.   

Human Reliability Analysis    

From the literature review we learned that Human Reliability Analysis is often referred to 

as “the Probability of human failures,” as it pertains to critical system interactions (Salvendy, 

2012).  Literature research reveals that human reliability accounts for 60-80% of total system risk, 

which makes it imperative that the HRA process be included and significantly involved in the 

Probabilistic Risk Assessments (PRA) process (as cited in Salvendy, 2012).   

In this research, two HRA tools were used: HFACS and HEART.  The HFACS was used 

to categorize retrospective Ground Processing Operations (GPO) Human Error related mishaps. A 

binary logistics regression model was used for the statistical approach and a regression equation 

was generated, which identified the significant factors to the occurrence of the human error related 

Mishaps.  This equation was then used to perform a Probability prediction of future Mishaps based 
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on the presence of a specific contributing factors.   

The HEART tool was used to generate a Human Error Probability based on survey 

participants providing their Assessment of Affect that select Error Producing Conditions had on 

select Ground Processing Operations Scenarios.  

The contribution of this Human Reliability Analysis methodology, utilized both HRAs that 

can be modified and used on other organizations and their retrospective historic mishap 

occurrences.   

Human Error Taxonomies  

The HFACS was used to classify the Launch Vehicle Ground Processing Operations 

Mishap Data.  With the help of experienced Subject Matter Experts, the HFACS Taxonomy level 

examples were modified to match the complex operations of NASA Ground Processing.  The four 

levels were kept the same; however, the sublevel examples were modified to match KSC Ground 

Processing Operations. This model was used to categorize all of the Mishap data that corresponded 

to Human Error.  From this categorization, a binary logistics regression model was used to identify 

the significant contributing factors.    

Human Error Framework 

The NASA KSC Ground Processing Operations Human Error Framework was developed 

for the three (3) Scenarios that were the focus of this research.  The Framework was built from the 

first stage of the Scenarios, then to the Ground Processing Operations (GPO) Tasks performed at 

the Kennedy Space Center, next the HFACS four levels of human error categories and their relation 
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to the common errors, and finally the HFACS sublevels and specific Error Producing Conditions 

that lead to Human Error mishaps at NASA.  This framework was created specifically for KSC 

Ground Processing Operations; however, it can be modified and used for complex operations, such 

as other Space Operations and Space Programs on an International Level. 

The advantage of this framework is that this study’s literature review found no known 

framework that covers all three Human Reliability Analysis, Human Error Taxonomies and 

Human Error Frameworks aspects, as it relates to Space Operations.  This research study 

contributes to the Human Error body of knowledge by developing a model/framework that can be 

used to address all three aspects.  The framework uses a Human Reliability Analysis process 

(HRA), that can classify and categorize human error causes (Human Error Taxonomy), generate a 

binary logistics regression equation and provide generic tasks and common EPCs that can be used 

and modified for other complex operations (Human Error Framework).  

Research Methodology 

This research also provides a methodology contribution. The following set of steps is a 

research methodology approach that Space Operations and other complex organizations may use 

to modify and apply to their unique processes.    

1. Data Collection 

a. Gather and/or collect Mishap data.  Once the Mishap data is collected, determine if 

all recorded mishaps will be included in the study or if mishaps during a specific 

time frame, specific location, etc. will be included.  This information will be used 

for HFACS categorization.   
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2. Qualitative Study  

a. Using the HEART Methodology, develop specific modified examples of the 

HEART “Generic Tasks” (From Table 8: Nominal Error Probability Table Generic 

Tasks).  This can be done by identifying equivalent specific tasks for the Operations 

identified for the study. Modified examples may also be developed for the HEART 

Error Producing Conditions (EPCs) (Table 9).  Note: This was not implemented 

for this research, but it is recommended for future research.    

b. HEART Survey Development  

i. Develop “operations related” scenarios in which Subject Matter Experts 

(SMEs) can provide their subjective Assessment of Affect (AOA) (e.g. 

Tables 15-20).  This will be used to calculate Human Error Probabilities 

(HEPs) based on SMEs’ experience.  

ii. Develop SME survey questions to gather data for Assessment of Affect 

(AOA) values (e.g. Appendix E: Survey/Voting Instrument).  This is a 

requirement for the HEART Method.  Assign corresponding Error 

Producing Conditions (EPCs) and HEART Generic Tasks to the Survey 

questions.   

iii. Develop a Range Table/Chart scale (e.g. Table 26) for SMEs to provide 

their AOA.  The range of values must be in percentage form (e.g. 0.1 = 10% 

of the EPC maximum effect) values. 



141 
 

iv. Strategically select survey participants from “operations related” 

experience.  Determine statistical sample size for sufficient data (e.g. Figure 

11). 

v. Prior to conducting surveys, obtain appropriate Institutional Review Board 

(IRB) approval.  Once approved, conduct surveys and gather data results. 

vi. Perform Survey One-Way ANOVA to determine statistical difference 

between the SME AOA responses. If no difference, then go back and verify 

survey data.    

c. HFACS  

i. Take the HFACS method’s four (4) Levels of human error contributing 

factors and modify the examples to correspond with specific operations 

identified for the study (e.g. Tables 22-25). 

3. Quantitative Study 

a. HEART 

i. Using data from the SME Surveys, input the corresponding data (Generic 

Task and EPC Values) into the HEART Human Error Probability (HEP) 

Equation (reference Table 27). 

ii. Use the HEART HEP results to identify areas of focus for priority or 

potential mitigation.  Note:  May consider focusing on higher HEP values 

first. 

 



142 
 

b. HFACS 

i. Sort the collected mishap data into the HFACS categories. 

ii. Build a table to identify “1” for a Mishap/Incident event and “0” for a non-

event (e.g. Table 28).  

iii. Use the binary logistics regression statistical analysis to generate a 

regression equation. Note: Binary logistics model may need to be 

performed again with stepwise backward elimination for simplicity. 

iv. Verify the regression results to validate a good model by assessing the “p 

values,” “Goodness-to-Fit” and “Odds ratio.”  If validation requirements are 

not met (see Results and Discussion chapter), then go back and review data 

to verify data inputs, accuracy and no duplications.   

v. Use the binary logistics regression equation to plug in “1” for an event, to 

predict the probability of a future occurrence, if a contributing factor occurs. 

vi. Review HFACS Fitted Probability values and Factorial Plots for validity.  

If factorial plots are not consistent with probability value, then go back and 

check the input data. 

4. Data Validation 

a. Use Triangulation to cross check and validate information (reference Methodology 

chapter).  

5. Research Objective Achieved 

a. If achieved, the research is complete. If not achieved, return to Data Collection step. 
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Figure 21: Research Methodology Contribution 
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Recommendations for Future Research 

After completing this study, below are proposed recommendations for future research:  

 The literature review of this research recognized a weakness within the area of a proven 

analysis framework for classifying, assessing, investigation and analyzing human causes 

of accident in complex space systems, such as NASA KSC Ground Processing Operations.  

Future research can broaden the current scope to explore and identify what other existing 

models of human error management can be integrated into complex space systems, 

beyond what was conducted with the NASA KSC Ground Processing Operations.   

This would provide further research and knowledge about other models and/or the 

combination of their use.   

 This research identified contributing factors and the prediction of future potential 

human error related mishaps; however, it did not provide mitigation measures for 

controlling future occurrences.  Broadening the focus of the current research to identify 

what current methodologies or tools would be most effective in minimizing human 

error related mishaps.  With this focus, determine if a new methodology needs to be 

established and if so, why.  This would be essential to developing a robust controlled 

method.    

 Future research can also focus on determining if the categorized leading contributors 

in this analysis can be controlled by designing a methodology, model or tool to address 

the entire Ground Processing Operations process, in lieu of focusing on only 3 areas 



145 
 

(VAB, Pads A/B and OPFs), and if so, can this model be effective in creating an impact 

on minimizing human error? 

 During the Literature Review, studies showed that the Human Error Assessment and 

Reduction Technique (HEART) has remedial measures which are design considerations 

for combating Error Producing Conditions (EPC) and tasks in a general sense (Williams, 

1986).  These remedial measures were not used or modified for this research.  It is 

recommended for future research, that if the HEART technique is incorporated, that these 

remedial measures be reviewed and modified to effectively match NASA Aerospace tasks 

and be considered as measures for combating NASA Operations EPCs or any Aerospace 

Organization.    

 It is recommended that the HEART Generic tasks be expanded to cover more aerospace 

human activities.  The expansion will assist in creating more aerospace specificity to the 

generic task types, which may enable easier assignments of detailed tasks for Human Error 

Probability (HEP) calculations.  

 Modify the Error Producing Conditions (EPCs) weighted values to be more in line with the 

NASA Aerospace tasks.  This will assist in improved accuracy with HEP calculations. 

 Compare the results of HEART Human Error Probabilities (HEP) to research study  results 

from the Cognitive Reliability and Error Analysis Method (CREAM), Standardized 

Plant Analysis Risk HRA Method (SPAR-H) and Technique for Human Error Rate 

Prediction (THERP), which were recommended methods for flight crew operations per a 

2006 study conducted by the NASA Office of Safety and Mission Assurance to assess 
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current Human Risk Assessments (HRA) methods and their applicability in the aerospace 

industry for potential use and adaptation for current and future NASA systems and missions 

(Chandler, 2006).   

 For use in Aerospace Operations, incorporating the THERP, CREAM, NARA, or SPAR-

H HRA techniques (or any combination) in place of the HEART Method, in this research’s 

framework can be considered.  Per the 2006 Chandler Study, these methods were 

acknowledged as most pertinent to NASA’s HRA needs, for Space Missions (which 

excludes ground process and command and control) (Chandler, 2006).  Using these HRAs 

within this research framework could identify beneficial analysis data for future use in 

minimizing human error in ground processing operations and beyond.   

 For future research, it is recommended to focus more on identifying and analyzing latent 

failures (which ultimately lead to active failures), when using this research’s framework.  

As previously stated in the Literature Review chapter, active failures (also known active 

errors) effects are felt almost immediately and latent errors, whose adverse consequences 

may lie dormant within the system for a long time, only become evident when they combine 

with other facts to breach the systems’ defenses (Rasmussen & Pedersen, 1984; as cited in 

Reason, 1990).  In the Results and Discussion chapter, research performed on Human 

Factors in Remotely Piloted Aircraft (RPA) Operations used root categories of latent errors 

and associated Nano codes with a binary logistic regression model for their analysis.  Two 

binary regression logistics models from this study were proven to be good (Army and 



147 
 

Navy/Marines).  Both had common latent error with a p value less than 0.05, relating to 

two common root causing factors: “Organizational Process” and “Psycho-Behavior” 

(Adverse Mental States).  Future work focusing on these two latent factors, may be 

something to consider for future research in addressing and attacking latent human errors 

(Tvaryanas, 2006).  
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APPENDIX A: NASA IRB APPROVAL 
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APPENDIX B: UCF IRB APPROVAL 
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APPENDIX C: NASA SUBJECT CONSENT FORM 
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APPENDIX D: UCF INFORMED CONSENT 
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APPENDIX E: SURVEY/VOTING INSTRUMENT  
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