
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2016 

A Neuroergonomics Study of Brain EEG's Activity During Manual A Neuroergonomics Study of Brain EEG's Activity During Manual 

Lifting Tasks Lifting Tasks 

Awad Aljuaid 
University of Central Florida 

 Part of the Industrial Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

Aljuaid, Awad, "A Neuroergonomics Study of Brain EEG's Activity During Manual Lifting Tasks" (2016). 

Electronic Theses and Dissertations, 2004-2019. 4914. 

https://stars.library.ucf.edu/etd/4914 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/307?utm_source=stars.library.ucf.edu%2Fetd%2F4914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4914?utm_source=stars.library.ucf.edu%2Fetd%2F4914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 

 

NEUROERGONOMICS STUDY: ANALYSIS OF BRAIN EEG’S ACTIVITY DURING 
MANUAL LIFTING TASKS 

 

 

 

 

 

 

 

 

by 

 

 

AWAD M. ALJUAID 

B.S. Systems Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Saudi 

Arabia, 2003 

M.S. Industrial Engineering King Abdulaziz University, Saudi Arabia, 2009 

 

 

 

A dissertation submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

in the Department of Industrial Engineering and Management Systems 

in the College of Engineering and Computer Science 

at the University of Central Florida 

Orlando, Florida 

 

 

 

 

Spring Term 

2016 

 

 

 

 

Major Professor: Petros Xanthopoulos, Waldemar Karwowski  

  



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2016 Awad M. Aljuaid 

  



iii 

ABSTRACT 

Electroencephalography (EEG) has been shown to be a reliable tool in neuroergonomics 

studies due to the relatively low cost of brain data collection and limited body invasion. The 

application of EEG frequency bands (including theta, alpha and beta), enjoyed a wide range of 

interest in physical and cognitive ergonomics. The psychophysical approach has been used for 

decades to improve safe work practices by understanding human limitations in manual materials 

handling. The main objective of this research project was to study the brain’s EEG activity 

expressed by the power spectral density during manual lifting tasks related to: 1) the maximum 

acceptable weight of lift (MAWL) and 2) isokinetic and isometric lifting strength tests 

measurement outcomes.   

The first study investigated the changes in EEG power spectral density during 

determination of MAWL under low, medium, and high lifting frequencies. A high-density wireless 

dry cell EEG device has been used to record EEG signals. Twenty healthy males participated in 

this study. Subjects repeated the same experiment after two weeks. Analysis of variance (ANOVA) 

showed significant differences in EEG power spectral density between different lifting frequencies 

at three main brain areas (frontal, central, and parietal).  The second study revealed differences in 

brain activities during isokinetic and isometric strength measurements, based on the recording and 

analysis of EEG power spectral density.   

 This research project is the first study of EEG activity during manual lifting tasks, including 

the assessment of MAWL by the psychophysical method, as well as the measurement of human 

isokinetic and isometric strengths.  The results of this project are considered critical to our 

increased understanding of the neural correlates of human physical activities, and consequently 
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should have a positive impact on workplace design that considers brain activity related to specific 

human capabilities and limitations in manual lifting tasks.  
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CHAPTER 1: INTRODUCTION 

1.1 Manual lifting in ergonomics 

Over the last five decades, the field of ergonomics has been playing an important role in 

minimizing occupational injuries by aiding in the design of safe work environments. One 

important area that has garnered thousands of studies in ergonomics is manual lifting. In manual 

lifting tasks, severe and long-term injuries could happen due to lack of proper job design and safe 

standardization. Manual material handling jobs are associated with two quarters of lower back 

disorders (Bigos et al., 1986). In order to control these remarkable injuries, material handling tasks 

have been ergonomically redesigned through studying human physiology and anthropometry. 

Body posture, heart rate, oxygen consumption, and muscular contraction were the major factors 

used to evaluate occupational manual lifting.  

Muscular strength is “the maximum force that [a] group of muscles can develop under prescribed 

conditions” (Chaffin, Andersson, & Martin, 1999). Muscular strength is necessary in jobs 

involving manual handling of heavy materials. If an operator’s strength is not enough to meet the 

loads of these jobs, then task related injuries are more likely to happen. Consequently, in order to 

reduce these injuries, it is important to define the capacity limits of workers (Nicholson & Legg, 

1986). This can be done through classification and definition of human muscular strengths by 

Mital and Kumar (1998); human muscular strengths can be broadly classified according to two 

criteria: 

1. Characteristics of the effort. 

(a) Static strengths (isometric strengths) 

(b) Dynamic muscle strengths 

i. Isotonic muscle strengths 

ii. Isokinetic muscle strengths 
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2. Characteristics of application. 

(a) Static functional strength 

i. Simulated job static strengths 

ii. Continuous static muscular strength. 

iii. Repetitive static muscle strengths 

(b) Dynamic functional strength. 

i. Isoinertial muscle strengths 

ii. Psychophysical muscle strengths 

iii. Simulated job dynamic strengths 

iv. Repetitive dynamic strengths 

1.1.1 Static muscle strengths 

Static or isometric muscle strength is the capability of producing force by a single maximal 

voluntary isometric exertion. It is a transformation of the internal effect of the mechanical 

advantage of the body to be measured as the external force. The static effect alternates in response 

to the quantity of the muscular force (Caldwell et al., 1974; Chaffin, 1975; Chaffin, Herrin, & 

Keyserling, 1978b; Karwowski & Mital, 1986; Mital & Kumar, 1998; Schanne, 1972). 

1.1.2 Dynamic muscle strengths 

Body segments’ motion and muscle length change significantly in dynamic exertions. The 

measured force is referred to as dynamic strength.  

Dynamic strength is more complex than static strength as per biomechanical studies; dynamic 

(psychophysical) limits will be most often less than static strength measured in similar postures 

(Chaffin et al., 1999; Mital & Vinayagamoorhty, 1984). 
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1.1.2.1 Isokinetic muscle strengths 

Isokinetic muscular exertion is a constant exertion rate shortening or lengthening the muscle either 

to a constant speed of the force being applied or resisted or to a constant angular velocity of the 

joint when the body parts involved move at a constant velocity (Pytel & Kamon, 1981). 

1.1.3 Psychophysical muscle strengths 

Ergonomic studies  relied on the psychophysical theory by  Stevens (1957) to redesign the tasks 

of material handling. This psychophysical theory has been applied to many areas, including the 

development of scales for useful attributes such as temperature, loudness, brightness, heaviness, 

and ratings of perceived exertion. The psychophysical power law describes the relationship 

between the strength of a perceived sensation (S) and the intensity of a physical stimulus (I)             𝑆 =  𝑘. 𝐼𝑛  

Where n is power of the equation and depends on the modality; n is about 1.6 for perception of 

muscular force and ranges between 0.33 and 3.5 in the case of brightness evaluation. The 

coefficient k is a constant percentage depending on the nature of measurement. For example, k is 

2.5% in weight measurement, 3% in brightness, and 7% in length (Krawczyk, 1996; Stevens, 

1957). 

Regarding material handling tasks, Snook and Irvine (1967) defined psychophysical muscle 

strength as “a person’s measure of psychophysically determined maximum acceptable level of 

force application. This maximum force is considered a measure of a person’s maximum dynamic 

strength in the category of activity.” 

For the past 40 years, the psychophysical approach has been used extensively to determine the 

load handling capacities of individuals and to measure the Maximum Acceptable Weight of Lift 

(MAWL) to reduce occupational risks and on-the-job injuries (Ayoub, 1978; Ayoub, Selan, & 
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Liles, 1983; Ciriello, Snook, Buck, & Wilkinson, 1990; Garg & Saxena, 1979; Karwowski & 

Yates, 1986; Mital & Manivasagan, 1983; Snook & Irvine, 1967). Several significant factors affect 

estimating the maximum acceptable weight to lift, including lifting zone, vertical distance, box 

width, and lifting frequency (Ciriello & Snook, 1983). 

The psychophysical method aims to measure lifting capacity depending on perception of exertion, 

assuming that workers have the capability to determine accurate MAWL under the highest 

acceptable workload. The psychophysical approach may lead to overestimation of lifting capacity 

even for limited tasks due to gender, stress, or motivation. As a result, taking into consideration 

the instantaneous perception of exertion, an assessment measure of MAWL should also take into 

consideration subjects’ cognitive judgment (Karwowski, 1991; Karwowski et al., 1999). However, 

in the last ten years, relatively little research has been done on brain activity during mental or 

physical tasks. 
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CHAPTER 2: REVIEW OF LITERATURE 

2.1 Introduction 

Neuroergonomics can be defined as “the study of brain and behavior at work. It combines two 

disciplines: neuroscience, the study of brain function, and human factors, the study of how to match 

technology with the capabilities and limitations of people so they can work effectively and safely” 

(Parasuraman & Rizzo, 2003). Neuroergonomics is an important area to study communication 

networks between humans and technology. There are many areas of research in neuroergonomics, 

including aviation, driving, neuroengineering, virtual reality, and physical neuroergonomics.  

2.2 Human Brain 

The human brain is the most complex part of the human body; every day something new is 

discovered about it. It is the part that makes us human, giving people the ability to do art, speak, 

make moral judgments, and think rationally. It is also responsible for each person's personality, 

memories, movements, and feelings about the world. The human brain uses 20% of the oxygen 

that enters the bloodstream even though it only makes up about 2% of human body mass. The 

brain consumes the most oxygen in comparison to any other organ in the body (Raichle, 2001).  

 

2.3 Electroencephalography (EEG) 

Electroencephalography (EEG) is “the recording of electrical activity along the scalp” An 

electroencephalogram (EEG) is a device or instrument that measures signals of voltage oscillations 

occurring with ionic current flows inside the brain’s neuron, Figure 2.1 (Niedermeyer & da Silva, 

2005). In medical perspectives, EEG relies on recording the brain's normal electrical activity over 

a limited period of time using electrodes attached to the scalp. EEG has been used for decades in 

the clinical diagnosis of epilepsy, coma, encephalopathies, brain death, and Alzheimer's. However, 
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the use of EEG has decreased nowadays after the invention of magnetic resonance imaging (MRI) 

and X-ray computed tomography (CT) (Freeman & Quiroga, 2012). 

Studying the human brain was a challenging task in the last century. Most recent research has 

concentrated on the applications of EEG in the medical arena, while fewer studies focus on EEG 

applications in ergonomics.  

Research on the human brain with the help of  EEG technology revealed diverse alterations in 

brain activity due to physical exertions , such as coherence between EEG and EMG, decrease or 

increments of the brain frequencies (alpha, beta, and gamma) from brain regions accountable for 

body movement; (C3 and C4). Also, new conclusions can be drawn about the high spatial 

scatterings of the brain’s activation center due to physical exertions. 

 

Figure 2.1: EEG locations by American Electroencephalographic Society redrawn from 

Sharbrough  (1991) 

 

2.4 Physical Neuroergonomics: 

The brain exerts control over its environment by creating behavioral control systems, which 

functionally spread out of the body, creating an archive of reliable properties of the environment 
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as well as the behavior of other creatures. These systems and the control they allow are the very 

reason for having a brain. “Application of the neuroergonomics approach can help assess 

suitability of the variety of designs of human-machine systems and determine possible workplace 

improvements. The functioning of our brain must be reflected in the system design and operational 

requirements for the human operators. The road to success in ergonomics depends, to a large 

extent, on our ability to embrace the most precious element of system design, the human brain” 

(Karwowski, Siemionow, & Gielo-Perczak, 2003). 

“Human physical capability may be extended in both strength and speed such that, with sufficient 

gain, minute muscular responses could produce physical activity beyond the limits of human-

range” (Hancock, 1997). “Individuals would gain the ability to execute physical behaviors directly 

from the brain, thereby expanding their ability to act on their environments beyond computer-

based information processing tasks to any physical task currently beyond their action capabilities” 

(Hancock & Szalma, 2003). 

2.5 Previous research in neuroergonomics 

Most studies on the human brain using the EEG in the last decades concentrated on the mental 

stress more than physical exertion; Lorist et al. (2009) studied the consequences of mental stress 

and effects on neural network behaviors which initiated in a particular  task. After two hours of a 

continuous task, mental stress could occur; coherence of EEG signals was adopted as a test of 

synchronization of behavioral activity of the brain. Most of the EEG bands (alpha, beta, and 

gamma) affected by the mental stress and the coherence and power were an example of that. 

An earlier study by Craing, et al. (2006) concentrated on driving problems which may involve 

injuries and accidents on drivers and innocent people. In their research, they investigated the 

relationship between mental stess and psychological factors. In the study, subjects volunteered and 
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after a period of time and a particular task experienced stress. The research recommended a future 

investigation in order to address the factors by measuring the outcomes of each factor. 

The use of EEG in physical physiological studies has increased significantly over the last twenty 

years. Some researchers used the relationship between the brain’s electrical signals at different 

frequencies (alpha, beta, and gamma) with muscle signals using electromyography (EMG); while 

others tried to analyze the EEG signals using statistical analysis before and after exertion.  

The objectrive of a study by Johnston, Rearick, and Slobounov (2001) was to discuss the general 

experiential topic considering the neurophysiological criteria and tools that contribute to 

counterbalance for physical exertion by testing isometric exercise and finding the correlation 

between EMG and EEG correlates during a particular task. As a result of this experiment, they 

found that there is an increment in (RMS) calculated from the EMG experimental data during 

physical exertion. Also, there was an increase in electrical signals activity over the motor cortex 

areas. 

One of the interesting studies was on peak alpha frequency: Using EEG, Ng and Raveendran 

(2007) investigated if Peak Alpha Frequency (PAF) would reduce when physical exertions set in. 

Eight volunteers, who were right-handed, healthy males 23-30 years old, were requested to close 

their eyes for two minutes, and open their eyes for two minutes. Electrooculogram (EOG) artifacts 

were collected to remove noise. Handgrip devices were used until the two ends touched as much 

as possible; subjects were requested to use both hands 30 times for 30 sec. After the experiment, 

they were requested to close their eyes for two minutes, and then open their eyes for two minutes 

to track the changes in the brain’s signals. EEG data was recorded using 64 channel electrodes 

(fifty-five on the scalp, two at earlobe, three around the eyes, and four on the forearms). Data was 
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segmented into 10-sec intervals with 1 sec steps; each step windowed using Gaussian 

window. Signal was transformed to frequency domain using Fourier Transform. They concluded 

in their experiments that there is indication of PAF decreases when physical exertion sets in. 

A more recent study by Gwin and Ferris (2012a) compared cortico-muscular coherence for 

isometric in addition to isotonic dwindling just as both dwindling varieties were self-paced and in 

the lack of external power feedback. They hypothesized that, despite related seen and sensual 

motor combination needs for the two tasks, the isotonic dwindling may evoke γ-range cortico-

muscular coherence whilst the isometric dwindling would evoke β-band coherence.  

Eight healthy right-footed and right-handed subjects (seven men and one woman) between 21–31 

years old participated in the study. EEG was recorded using high-density 264-channel active 

electrodes. EMG was recorded for the legs and coherence was calculated for EEG/EMG. 

Maximum coherence in the β-γ range was calculated to evaluate the impact of variances in total 

coherence’s average by applying a two-way ANOVA.  

Clear coherence between EEG/EMG was witnessed in the β-γ band, yet not in the band. Strong 

coherence was noticed between the leg’s EMG signals and contralateral motor cortex in the β-γ 

band for the two isotonic and isometric activities. Nevertheless, γ coherence was higher for isotonic 

exercises compared to isometric exercises. The β-γ shift was consonant among six of the eight 

subjects’ EMG signals. 

Focusing on the amplitude of Motor Related Cortical Potentials (MRCP), Slobounov, Hallett, and 

Newell (2004) ) conducted a group of tests in which subjects achieved isometric force tasks. The 

degree of force increment and signal gain were checked, as was degree of exercise for every task 

achieved. The hypotheses tested were: (a) force-related noticed exertion may selectively affect 



10 

MRCP, and (b) the MRCP may straight indicate the power of observed effort compared with 

produced force.  In their findings, they explained that: (a) observed exertion proportionally grows 

with the increase of degree of force increase and force error, however, not with the real force level; 

(b) the degree of the MRCP raised when a considerable value of force was completed by an 

improved degree of force increment; (c) the degree of initial elements of MRCP leading the force 

start developed as a use of expected effort, though, the degree of movement following the force 

raised as a use of original force level. 

Another approach in time-dependent relation between EEG data and MVC from the muscles, by 

Wang, Yang, Fan, Sun, and Yue (2009), estimated EEG data that may be the cause of power during 

the different levels of muscle contractions; later they developed “a functional random-effects 

model approach” that includes all selected effects in the records. Then a two-step method and 

linear mixed regression models was discussed in the study with the assessment of the ANOVA 

model.  

The effect of physical exertion plus the contribution of other factors, such as heat (hyperthermia), 

on brain activity was the main focus of Ftaiti, Kacem, Jaidane, Tabka, and Dogui (2010), and a 

large scale of subjects participated (25 subjects) in a Nybo and Nielsen (2001) study to investigate 

the brain’s activity, especially the motor cortex (C3 , FC3) areas and track the changes of electrical 

signals of the EEG before and after physical exertion using the MVC simultaneously with the 

EMG signals. In their study, they analyzed the variations of (α, β, and γ) power from the EEG 

using the RMS method. They found that the RMS of α, β, and γ increased during physical exertion 

significantly with β band and slightly with the γ band. This increment probably comes from the 

motor cortex to compensate the desired energy of neural fatigue. Seven healthy women between 

22 and 24 years old participated in this study. A statistical model was used to analyze alpha and 
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beta (α, β) bands from the EEG with the consideration of other factors, according to their study. 

They suggested that the variation in α/β index was because of the physical exertion and other 

factors of temperature and environment.  

An example of time series analysis of EEG activity is the study by Ramanand, Nampoori, and 

Sreenivasan (2004); they used Sample Entropy Analysis in this study. The indicated statistic 

quantifies the consistency in data measured from methods that can change from deterministic to 

the stochastic area. In their investigation, measurement is carried out with the goal of getting 

insight into intricacy changes compared to varying brain dynamics for EEG shown from three 

events of influenced, eyes closed state, "a mental arithmetic task accepted after a physical exertion 

task". It is remarked that the statistic is a robust quantifier of intricacy readjusted for small 

physiological signals like the EEG in addition to pointing to the particular brain areas that show 

reduced intricacy as the case of mental task status as linked to a passive, relaxed mood. 

According to Feige, Aertsen, and Kristeva-Feige (2000), there is a synchronization between motor 

cortex areas of activation in beta frequency (16–28 Hz), seen by using the EEG data recording, 

and the muscle activity using EMG after the end of the movement. Seven healthy, right-handed 

subjects participated in this study (six males and one female), and analysis was done by applying 

phase-reference analysis to find the coherence between EEG/EMG.  

Liu et al. (2005) hypothesized that physical exertion has an impact on cortical electrical signals 

before exertion less than that of signals during the exertion. Eight subjects performed 200 handgrip 

MVCs until fatigue in the same time EEG data was recorded. The power of EEG bands did not 

change significantly before fatigue; however, it declined significantly during fatigue. The MRCP 

negative potential (NP) linked to motor task preparing only explained minimum differences. The 
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results propose that MVC encouraged fatigue has differential impacts on cortical electrical signals 

during motor task development corresponding to its performance and maintenance. 

Negro and Farina (2011) used a mathematical derivation besides motor unit record-keeping in vivo 

to study the source of direct frequency of cortical raw data to the neural approach to muscle. This 

technical origin explained that a general input expanded to a relatively small amount of 

motoneurons is partially carried in a linear trend, succeeding the resistance signal caused by the 

non-linearity. Then they estimated the corticomuscular coherence of EEG related to data of 

muscles of seven healthy individuals. The empirical outcomes point out that only 4-5 motor 

segments were enough to approach the corresponding coherence as expected from the exterior 

EMG. The outcomes illustrate that linearity in the frequency of the cortical data to motoneurons is 

obtained because (a) the present input is considerably common to every motoneuron, and (b) its 

signal content needs only a minor motoneuron to be correctly tested. Hence, the central nervous 

system can carry oscillations to the controller of signals to muscles for almost functionally related 

forces. 

A study by Slobounov, Johnston, Chiang, and Ray (2002) analyzed interactive and electro-cortical 

reactions in producing  deferent MVC levels at a stable rate of force increment with four fingers 

during ramp phase and static phase. They were interested in explaining in detail the interaction 

between force finger and power on different parts of movement-related potential (MRP) linked 

with the formation and exertion of isometric tasks. In conclusion, they compared the force and 

EEG time series by peak correlations observed in the weakest force with the related finger. The 

correlation was significantly decreased as the force level increased.  
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A study of time association between EEG and EMG was conducted by Yang, Liu, Sahgal, and Yue 

(2007), and a positive relationship between the EEG cause of power and handgrip force was seen 

as immediately as 891 ms before the EMG start. Those conclusions confirm motor control 

mechanism associated time reliant cortical activation in humans, as the initial are in line with 

earlier research that suggested a general population of cortical neurons is involved in controlling 

higher levels of voluntary muscle force.  This study shows that it is reasonable to detect the 

connection between the origin power of scalp EEG and muscle amount with high time analysis 

using the popular density rehabilitation technique. It is likely possible to identify the relevance of 

brain root power and muscle amount in the event setting using the current consistency repair 

method. This research additionally suggests that greater strength level corresponds to greater brain 

cause power or brain activation, and this happens as quickly as 891 ms before the start of muscle 

activation, turning active around EMG start time and remaining almost the whole course of the 

muscle flexing. 

Jiang, Wang, Kisiel-Sajewicz, Yan, and Yue (2012), tested the assumption by applying the cross-

correlation based useful connectivity analysis approach. Crossing is connecting the time series 

data of the least created activation maps and major fatigue steps across all the voxels. Histogram 

and quintile regression examination were done to examine the value between the minimum and 

important fatigue steps, and the effects explained a notable increment in value among various 

cortical areas. This increased value means that when fatigue degrades, several brain areas develop 

their link with the left area of M1, the prime motor output power midpoint for the right-handgrip, 

to counterbalance for reduced strength size of the muscle in a synchronized manner by improving 

the settling command for larger muscles to have similar force (Jiang et al., 2012). 

Halder et al. (2005) used 64-channel performance-related possible mapping to study these impacts 
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of changing recurrence on similar brain exercise in individuals. Ten healthy right-

handed subjects conducted a power grip task under seen force power to ensure consistent behavior 

during the test. The sitting consisted of two segments divided by a break. For study, each segment 

was divided into two series to control for possible alertness impacts, which would be assumed to 

leave during the rest.  

Yang et al. (2011) used high-density EEG and EMG simultaneously at various stages of MVCs 

on eight healthy subjects who completed isometric handgrip. Sources of the EEG were analyzed 

at several time points starting with preparation, then execution, ending with sustaining phases of 

the handgrip. A distributed current density model, low-resolution electromagnetic tomography 

LORETA L1 norm method was applied to the data that pre-processed by independent component 

analysis (ICA). Statistical analysis using a mixed-effects polynomial regression showed a 

consistent and significant dependent on time source strength variation pattern in different phases 

of the handgrip. The source strength increased at the preparation phase, peaked at the force at 

beginning time and decreased in the sustaining phase. Yang et al. (2011) concluded the results 

show a high time resolution increasing and decreasing pattern of activation at the sensorimotor 

areas which are the motor and primary receiving areas for general sensations, respectively with the 

maximum activity happened at the muscle activity onset. 

Recent research using technology was also used to study brain activity during physical exertion 

such as functional magnetic resonance imaging (fMRI), functional near-infrared topography 

(fNIRT), Magnetoencephalography (MEG), and X-ray computed tomography (CT); this research 

was consistent in results with the mentioned results of the EEG. In the research of the fMRI Liu, 

Dai, Sahgal, Brown, and Yue (2002) explained in their study the brain activation was included by 

fMRI during handgrip contraction during the time that handgrip force in addition to finger muscle 
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EMG signals were recorded. The results explained decoupled development in 

brain / muscle results at the same time the muscle was exerted and associated responses among the 

cortical zones were analyzed.  Throughout the time that handgrip force and EMG data decreased 

side by side during the development of muscle exertion, fMRI-measured brain actions first 

considerably developed and then declined. This related signal intonation happened not just in the 

original sensorimotor regions but additionally in the secondary and related cortices.  

Furthermore, Di Sante, Limongi, Ferrari, and Quaresima (2009) studied the application of fNIRT 

in brain activity during muscle exertion. The impact of exerted muscle training on the brain, and 

particularly on the ipsi- and contralateral frontal cortex has been proved. The study inspected 

fNIRT frontal cortex oxygenation reaction to a prolonged fatiguing handgrip exercise conducted 

at the MVC with two hands. As a result, they verified the earlier results by applying fMRI and 

presented additional proof for verifying the hypothesis that the frontal cortex acts as a supporting 

force of the forearm muscles, also assuring good finishing of motor tasks with motor coordination. 

Recent research on the human brain using magnetoencephalography (MEG) was done by Tanaka, 

Ishii, and Watanabe (2013). They attempted to explain the neural structure of central interference 

during physical exerting with the MEG and a standard conditioning method. Twelve 

subjects underwent MEG recording during the comparison of MVC hand grips. One day after, 

MEG recording during MVC was conducted. Degrees of the exertion in sympathetic nervure 

action on the next day were significantly greater than already stated on the opening day. The alpha-

band event-related desynchronization (ERD) level had positive correlation to the variation in 

individual levels of exertion. 
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2.6 Research Gap   

Most previous research covered the neuroergonomics and brain analysis during physical tasks of 

the upper or lower limbs. Most of the research used traditional linear analysis methods such as 

EEG and EMG coherence; Table 2.1 and Figure 2.1, 2.2. 

Table 2.1: Summary of recent studies on brain electrical activity during physical task 

Research 

# of 
subjects Age Type of Experiment Methodology 

(Ng & Raveendran, 2007) 8 23 29 

Upper 

Limb Handgrip  Liner Center Gravity 

(Liu et al., 2007) 7 24 42 

Upper 

Limb Handgrip  Other Dipole IRL 

(Yang et al., 2009) 9 33 63 

Upper 

Limb arm elbow flexion Liner EEG/EMG Coherence 

(Gwin & Ferris, 2012a) 8 21 31 

Lower 

Limb Isometric & Isotonic Liner EEG/EMG Coherence 

(Abdul-latif et al , 2004) 25 23 47 

Upper 

Limb 

Adductor Pollicis 

Muscle  Liner RMS 

(Wang et al., 2009) 8 29 33 

Upper 

Limb Handgrip  Other LORETA  IRL 

(Ftaiti et al., 2010) 7 22 24 Cycling 

Maximal aerobic 

power  Liner Bands and Ratios 

(Ramanand et al., 2004) 12 29 29 

Lower 

Limb 

Isometric leg 

extension  

Non-

Liner Sample entropy   

(Feige et al., 2000) 7 25 31 

Upper 

Limb Index finger  Liner EEG/EMG Coherence 

(Liu et al., 2005) 8 25 42 

Upper 

Limb Handgrip  Other Power spectrograms  

(Negro & Farina, 2011) 7 24 32 

Upper 

Limb Finger abduction Liner EEG/EMG Coherence 

(Johnston et al., 2001) 6 18 25 

Upper 

Limb Handgrip  Liner RMS/MRP correlation  

(Slobounov et al., 2002) 6 19 25 

Upper 

Limb Handgrip  Liner RMS/MRP correlation  

(Ushiyama et al., 2011) 7 20 24 

Lower 

Limb Right Foot Liner EEG/EMG Coherence 

(Yang et al., 2007) 8 18 18 

Upper 

Limb Handgrip  Other 

LORETA  IRL& 

MANOVA 

(Slobounov et al., 2004) 6 19 25 

Upper 

Limb Index finger  Liner RMS/MRP correlation  

(Tuncel et al.,2010) 10 23 23 

Upper 

Limb Hand biceps brachia Liner EEG/EMG Coherence 
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Research 

# of 
subjects Age Type of Experiment Methodology 

(Hilty et al., 2011) 16 22 29 Cycling 

Fatiguing cycling 

exercise Other sLORETA  IRL 

(Zhang, Zhou, & Song, 

2010) 20 22 29 

Lower 

Limb Quadriceps Femoris Liner EEG/EMG Coherence 

(Ng & Raveendran, 2011) 10 18 18 

Upper 

Limb Handgrip  Liner SPR, RMS & HGF 

 

 
Figure 2.2: Type of Experiment 

 
Figure 2.3: Method of analysis 

 

From the previous summary of brain analysis during physical tasks, only upper or lower limbs 

have been studied in depth, as a result, research in the area of neuroscience and manual tasks such 

as psychophysical manual lifting and strength measurements is almost non-existent currently.  
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The objectives of this research are to study the brain’s electroencephalographic activity during 

manual lifting tasks, the assessment of MAWL by psychophysical method, and the measurement 

of isokinetic and isometric strengths. 
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CHAPTER 3: STUDY I THE EFFECT OF LIFTING FREQUENCY ON BRAIN’S EEG 

3.1 Introduction 

For the past 40 years, the psychophysical approach has been used extensively to measure the 

MAWL to reduce occupational risks and on-the-job injuries. Snook found several significant 

factors that affect estimation of the maximum acceptable weight to lift. This method illustrated by 

Ciriello and Snook (1983) proposed the classical method of determining maximum acceptable 

weights using the psychophysical method. Subjects were given control on the following variables: 

 Lifting zone: (low) from floor to knuckle height, (center) from knuckle to shoulder height, 

and (high) from shoulder to arm reach.  

 Vertical distance: the height of lift.  

 Box width:  the distance of the lifted box away from the lifter. Lifting frequency: number 

of lifts per time interval (seconds, minutes, or hours).  

 Lifting frequency varies between 5 seconds to 8 hours on Liberty Mutual Manual Materials 

Handling Tables (Snook & Ciriello, 1991). 

The procedure of this test requires the individuals to adjust the load to the degree of physical strain 

that they feel. Simple tools and equipment have been used in psychophysical tests, such as a 

container (box), weights (lead shot, sand, rubber etc.), and a metronome to set consistent time 

frequency (Mital & Kumar, 1998). In this experiment, the high lifting frequency is one lift every 

9 seconds (6.7 lifts/min), medium lifting frequency is one lift every 14 seconds (4.3 lifts/min), and 

low lifting frequency is one lift every 60 seconds (1 lift/min).  

3.1.1 Objective 

The objective of study #1 is to test the effect of lifting frequency (high vs medium) and (low vs 
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medium) on EEG signals, and to test the effect of a lifting task repetition on EEG signals. 

3.1.2 Design of Experiments  

The experiment has been designed according to the following tables: 

Two independent variables are verified in this study (Table 3.1). The first independent variable is 

the lifting frequency; low vs medium lifting frequency in experiment 1 and high vs medium lifting 

frequency in experiment 2. The second independent variable is the two trials. 

 

Table 3.1: Independent variables 

Independent 

variables 

1. Lifting frequency 2. Trials 

Low vs medium  

(Experiment 1) 

High vs medium 

 (Experiment 2) 
First Second 

 

Two dependent variables were likewise verified to be measured in this study (Table 3.2). The first 

dependent variable is the EEG power spectral and the second dependent variable is MAWL. 

Table 3.2: Dependent variables 

Dependent 

variables 
1. EEG Power Spectral 2. MAWL 
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3.1.3 Hypothesis 

Hypothesis 1 

Ho : There is a difference between EEG signals 

 (high vs medium) lifting frequency 

 (low vs medium) lifting frequency 

H1 : There is no difference between EEG signals 

 (high vs medium) lifting frequency 

 (low vs medium) lifting frequency 

 Hypothesis 2 

Ho: There is a difference between EEG signals due to task repetition 

H1: There is no difference between EEG signals due to task repetition 

 

3.1.4 Subjects 

Twenty healthy right handed volunteers (ten males in Experiment 1, and ten males in Experiment 

2) passed medical screening of cardiovascular problems, such as heart disease or high blood 

pressure; back pain or hernia; or any mental or neurological disorders/diseases such as epilepsy, 

Alzheimer’s, multiple sclerosis, etc.. All subjects were provided with written informed consent 

prior to the experiment. All procedures were approved by The Institutional Review Board at the 

University of Central Florida IRB Number (SBE-14-10799) (Appendix A). 

3.2 Experiment I:  The Effect of Psychophysical Lifting Low Vs Medium Frequency On 

Brain’s Electroencephalography 

3.2.1 Introduction 

In this experiment the medium lifting frequency is one lift every 14 seconds (4.3  lifts / min) and 

low lifting frequency is one lift every 60 seconds (1 lift / min). 

The objective of this experiment is to test the effect of lifting frequency (low vs medium) on EEG 

signals and to test the effect of lifting task repetition on EEG signals. 
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3.2.2 Method 

3.2.2.1 Subjects 

Ten healthy volunteers underwent medical screening of cardiovascular problems, such as heart 

disease or high blood pressure; back pain or hernia; or any mental or neurological 

disorders/diseases such as epilepsy, Alzheimer’s, multiple sclerosis, etc. Then subjects were 

provided written informed consent prior to the experiment. All procedures were approved by The 

Institutional Review Board at the University of Central Florida IRB Number (SBE-14-10799). 

(Appendix A). 

3.2.2.2 Task 

This experiment includes medium and low frequency psychophysical weight lifting test in two 

replicates, with the total estimated time being three hours including rests. Tools of the experiment 

are lifting box with approximate dimensions of 20x14x14 in., iron/rubber weight plates and hit 

timer. Subjects were given a short illustration on how to perform the psychophysical test and given 

time to ask any related questions. The general procedure of the psychophysical weight lifting test 

can be found in Appendix B. 

3.2.2.2.1 Medium lifting frequency 

 

The following variables are considered: 

1. Lifting Zone: we applied only the low zone in this study (floor to knuckle) 

2. Vertical distance: between 20-32 in. from floor to table.  

3. Box dimensions:  Approximately 20x14x14 in. 

4. Frequency:  medium frequency is considered in lifting and the lifting frequency is 1 lift per 

14 seconds ( 1 lift / 4.3 min) 
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Half of the participants were started with low weight and the other half started with heavy weight. 

The heavy weight is the maximum acceptable weight of lift as per Snook and Ciriello in Liberty 

Mutual Manual Materials Handling tables (Snook & Ciriello, 1991). For example, the table 

assumed that more than 90% of the male population would consider the task of lifting 12 Kg (26 

lb) with hand distance away from body of 34cm (14 in) and with a frequency of once every minute 

between floor level to knuckle height for a distance of 51cm (20 in.) to be acceptable. Participants 

were  instructed to adjust the weight by adding and/or removing iron/rubber weight plates for 40 

minutes until they obtained the maximum weight that they could lift without “strain or discomfort 

and without becoming tired, weakened, over-heated, or out of breath.” 

3.2.2.2.2 Low lifting frequency 

 

The following variables are considered: 

1. Lifting Zone: we applied only the low zone in this study (floor to knuckle) 

2. Vertical distance: between 20-32 in. from floor to table.  

3. Box dimensions:  Approximately 20x14x14 in. 

4. Frequency:  low frequency is considered in lifting, and the lifting frequency is one lift per 

60 seconds ( 1 lift / min) 

 

 

3.3 Experiment II: The Effect of Psychophysical Lifting High Vs Medium Frequency On 

Brain’s Electroencephalography 

3.3.1 Introduction 

In this experiment the medium lifting frequency is one lift every 14 seconds ( 4.3 lifts / min) and 

high lifting frequency is one lift every 9 seconds ( 6.7 lifts / min). 
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The objective of this experiment is to test the effect of lifting frequency (high vs medium) on EEG 

signals and to test the effect of lifting task repetition on EEG signals. 

3.3.2 Method 

3.3.2.1 Subjects 

Ten healthy volunteers underwent medical screening of cardiovascular problems, such as heart 

disease or high blood pressure; back pain or hernia; or any mental or neurological 

disorders/diseases such as epilepsy, Alzheimer’s, multiple sclerosis, etc. The subjects were 

provided with written informed consent prior to the experiment. All procedures were approved by 

The Institutional Review Board at the University of Central Florida IRB Number (SBE-14-10799) 

(Appendix A). 

3.3.2.2 Task 

This experiment includes a high and medium frequency psychophysical weight lifting test in two 

replicates, with total estimated time being three hours including rests. Tools of the experiment are 

a lifting box with approximate dimensions of 20x14x14 in., iron/rubber weight plates, and a hit 

timer. Subjects were given a short illustration on how to perform the psychophysical test and given 

time to ask any related questions. General procedure of psychophysical weight lifting test can be 

found in Appendix B. 

3.3.2.2.1 Medium lifting frequency 

 

Ciriello and Snook (1983) proposed the classical method of determining maximum acceptable 

weights using psychophysical methods; the following are the variables: 

1. Lifting Zone: we applied only the low zone in this study (floor to knuckle) 

2. Vertical distance: between 20-32 in. from floor to table.  
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3. Box dimensions:  Approximately 20x14x14 in. 

4. Frequency:  medium frequency is considered in lifting and the lifting frequency is 1 lift 

every 14 seconds (4.3  lifts /  min) 

The experimental procedure was the same as described in section 3.2 

3.3.2.2.2 High lifting frequency 

 

Ciriello and Snook (1983) proposed the classical method of determining maximum acceptable 

weights using psychophysical method; the following are the variables: 

1. Lifting Zone: we applied only the low zone in this study (floor to knuckle) 

2. Vertical distance: between 20-32 in. from floor to table.  

3. Box dimensions:  Approximately 20x14x14 in. 

4. Frequency:  high frequency is considered in lifting, and the lifting frequency is one lift 

every 9 seconds (6.7 lifts / min) 

Half of the participants started with low weight, and the other half started with heavy weight. The 

heavy weight is the maximum acceptable weight of lift as per Snook and Ciriello in Liberty Mutual 

Manual Materials Handling Tables (Snook & Ciriello, 1991). For example, the table assumed that 

more than 90% of  the male population would consider the task of lifting 10 Kg (22 lb) with hand 

distance away from body of 34cm (14 in) and with a frequency of once every minute between floor 

level to knuckle height for a distance of 51cm (20 in.) to be acceptable. Participants were instructed 

to adjust the weight by adding and/or removing iron/rubber weight plates for 40 minutes until they 

obtained the maximum weight that they can lift without “strain or discomfort and without 

becoming tired, weakened, over-heated, or out of breath.” 
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The experimental procedure was the same as described in section 3.2. Figure 3.1 illustrates the 
three lifting tasks. 
 

 
Figure 3.1: Illustration of three lifting tasks 

 

3.4 MAWL Measurements 

Maximum acceptable weight of lift of each participant was determined using the psychophysical 

approach. Then subjects repeated the test after a period of time of about two weeks.  

3.4.1 Anthropometry  

Anthropometry relates to the measurement of the human body. It has been used to understand 

human physical variation in psychophysical weight lifting and the estimation of MAWL. Various 

anthropometries have been measured such as body weight, shoulder height, hip height, knee 

height, arm length, knuckle height, and body height for all subjects before conducting the 

psychophysical weight test. Table 3.3 shows the anthropometry of all subjects. 
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Table 3.3: Twenty subjects’ anthropometry measures 

Age 

Body 

weight 

(kg) 

Shoulder 

height  

(cm) 

Hip height  

 

(cm) 

Knee 

height 

(cm) 

Arm 

length 

(cm) 

Knuckle 

height 

(cm) 

Body 

height 

(cm) 

27 52.6 141.0 99.0 41.0 72.0 70.0 171.0 

27 72.6 144.0 101.0 55.0 75.0 76.5 172.0 

28 77.1 148.0 103.0 51.5 74.0 74.0 179.0 

30 59.9 149.0 107.5 52.5 80.0 74.5 175.0 

27 76.7 150.0 100.0 53.0 70.0 72.0 178.0 

29 56.2 134.0 92.0 45.5 67.0 69.5 163.0 

29 101.2 148.5 104.5 57.0 74.0 78.5 177.5 

28 88.5 146.0 107.0 52.0 71.0 76.0 174.0 

29 95.3 153.0 109.0 57.0 77.0 80.0 180.0 

27 92.1 142.0 93.0 49.0 68.0 76.0 169.5 

21 79.4 141.5 104.5 52.5 71.5 74.0 169.5 

20 65.8 143.5 99.5 51.5 72.0 70.5 171.0 

40 67.1 150.0 106.0 54.5 72.0 78.0 177.0 

32 76.2 136.0 92.0 45.5 67.0 61.0 161.5 

31 79.4 141.5 99.0 54.5 70.0 74.0 170.0 

28 65.8 158.0 113.0 56.5 81.0 83.0 187.0 

25 72.6 140.0 93.5 48.5 70.0 63.5 163.0 

29 75.7 144.5 101.0 48.0 73.0 75.5 174.0 

34 97.5 157.0 104.0 57.0 75.0 85.0 184.0 

26 68.9 148.0 104.0 56.0 76.0 80.0 175.5 

28.4 ± 4.1 76.0 ± 13.2 145.8 ± 6.1 101.6 ± 5.7 51.9 ± 4.3 72.8 ± 3.7 74.6 ± 5.7 173.6 ± 6.5 

 

The selected participants in this study were consistent in most of the anthropometry measures with 

low variation and normally distributed with no outliers except the age; one of the subjects was 

forty years old, but most of the subjects were within a 95% confidence interval (Figures 3.2 and 

3.3). 
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Figure 3.2: Histogram of the anthropometry 
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Figure 3.3: Normal probability plot of age 
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3.5 EEG data acquisition 

 

EEG was recorded using a (Cognionics Data Acquisition Software Suite) and a Cognionics High-

Density 64-channel Dry Headset 64-channel EEG (COGNIONICS, Inc. San Diego, CA). 

Electrodes were attached to the scalp using a custom subset of the 10-5 configuration. The flex 

sensor is designed to touch through hair with proper pressure while maintaining the ability to 

flatten for safety and comfort. Patent-pending materials and construction techniques to reduce 

contact impedances and noise without using electrolytic gels were employed. During the 

experimental setup, electrode impedance was monitored within the acceptable resistance limits; 

contact impedances with both sensors typically range from 100 k to 1 M Ohm (Mullen et al., 2013). 

EEG signals were sampled at 500 samples/sec. All processing and analysis was performed in 

Matlab (The Mathworks, Natick, MA) using EEGLAB 13 scripts based on (toolbox) from 

(sccn.ucsd.edu/eeglab), an open source environment for processing electrophysiological  data 

(Delorme and Makeig, 2004). 

Subjects were given a five-minute training of how to minimize artifacts such as eye blinking, 

chowing, and any other facial movements.  The experiment started with 10-15 sec resting before 

any physical task. After that, participants were requested to evaluate the weight as to whether it 

was optimum for a 40 minute lifting interval. This evaluation was marked by a manual triggering 

procedure during the whole session and EEG recording marked by #2 in Figure 3.2. After that, the 

timer was set for a 40 minute interval with a beep every 9 seconds for the high lifting frequency 

and every 14 seconds for the medium lifting frequency. The total EEG recording time for this 

experiment for all participants was approximately 40 hours. For every single observation, EEG 
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signals were subject to visual monitoring of any suspicious artifacts, and EEG cap movement led 

to high impedance using triggering procedure with #4 of each lift without errors. 

 

Figure 3.4: Manual triggering procedure at psychophysical test 

3.6 EEG data pre-processing 

During the experimental setup, electrode impedance was monitored within the acceptable 

resistance limits. EEG was recorded at 500 Hz with a bandpass filter of 0.03-100 Hz. All 

processing and analysis is performed in Matlab (The Mathworks, Natick, MA) using EEGLAB 13 

scripts based on (toolbox) from (sccn.ucsd.edu/eeglab), an open source environment for processing 

electrophysiological data (Delorme & Makeig, 2004). 

3.6.1 Artifacts correction using ASR 

The artifacts correction in experimental EEG data was done using the Artifact Subspace 

Reconstruction method (ASR) by Mullen et al. (2013). ASR uses an algorithm to remove non-

stationary high-variance signals from EEG and rebuilds the missing data with a spatial mixing 

matrix (assuming volume conduction). Calibration statistics are estimated in a robust manner (to 
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minimize any effect of artifacts). Using the Geometric Median (3.1) by Haldane (1948) over 

windowed (1-second) estimates. It also uses iteratively reweighted least square (3.2)  by (Green, 

1984).  

𝓖(x) 



m

i

i
y

yx
1

2
minarg         (3.1) 

𝑦𝑖+1 = ( ∑ 𝑥𝑗∥𝑥𝑗−𝑦𝑖∥𝑚𝑗=1 )∑ 1∥𝑥𝑗−𝑦𝑖∥𝑚𝑗=1           (3.2)          

Five minutes recording includes: resting with closed eye, eye blinking, chowing body motion 

(walking), and physical task (lifting): Figure 3.3, 3.4, 3.5, 3.6, and 3.7.  

 

Figure 3.5: Recording at rest (setting and closed eye) 



32 

 

Figure 3.6: Eye blinking 

 
Figure 3.7: Chowing 

 
Figure 3.8: Body motion (walking) 
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Figure 3.9: Physical task (lifting) 

 

The criteria of ASR was in channels where tolerated flat line duration of more than 5 seconds is 

considered a bad channel and then rejected. Transition band for the initial high-pass filter is in Hz. 

This was formatted as [0.25 Hz-start, 0.75Hz-end]. If a channel is correlated at less than 80% to 

its robust estimate (based on other channels), it is considered abnormal if a channel has more line 

noise relative to its signal than 4 standard deviations from the channel population mean, and it is 

considered abnormal and then rejected. 

Deviation cutoff was set for removal of bursts using ASR algorithm so data portions whose 

variance is larger than this threshold relative to the calibration data are considered missing data 

then removed. If the artifact in a window was composed of too many simultaneous uncorrelated 

sources, this is the maximum fraction of contaminated channels that are tolerated in the final output 

data for each considered window. Figure 3.8 shows EEG recording for one subject during low 

lifting task (one left every one minute) before and after ASR. 
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Figure 3.10:EEG recording before and after ASR for one lift             

3.6.2 Additional artifacts removal based on epochs rejection 

All EEG recordings were segmented, time-locked to starting lift onset of the extracted epoch start 

from time 0 which is the onset of lifting event up to 1 second. After that, epochs with extreme 

values of ±100 µV were rejected using standard thresholding of potential values. Improbable data 

channels vs epochs were represented using joint log probability Je (i) of the activity (Ai) per 

epoch i and electrode/channel e by the equation 𝐽𝑒(𝑖) = −log(∏ 𝑝𝐷𝑒(𝑥))𝑥∈𝐴𝑖         (3.3) 

 

Where, pDe (x) is the probability of detecting the value x in the probability distribution De of (Ai) 

at electrode/channel e; any epoch with more than 5 standard deviation limits is rejected.  

Abnormally distributed peaked observed using kurtosis statistical measure  𝐾 = 𝑚4 − 3𝑚22           (3.4) 𝑚𝑛 = 𝐸[(𝑥 − 𝑚1)𝑛]         (3.5) 



35 

Where, m1 is the mean, and mn are the nth central moments of all activity values in the epoch, 

and E is an expected average. A high positive kurtosis value (leptokurtic) indicates an abnormal 

distribution in a data epoch, whereas a high negative kurtosis (platykurtic) value indicates 

abnormally flat activity distribution; any epoch 5 standard deviation limits is rejected. Finally, 

epochs with suspicious muscle artifacts were rejected based on power spectral pattern. Spectra 

should not deviate from the mean by ± 50 dB in the 0-2 Hz frequency window and should not 

deviate by +25 or -100 dB in the 20-50 Hz frequency window (Delorme, Sejnowski, & Makeig, 

2007). 

All the above described artifact detection methods performed by add-ons within the EEGLAB 

toolbox  (Delorme & Makeig, 2004). 

Visual inspection was the final step in artifacts detection and removal (Figure 3.11); all EEG 

recordings were inspected for any bursts or abnormal trends and manually rejected. After these 

aggressive processes of artifact correction and removal, most of the subject’s EEG recordings 

passed except one subject in experiment 1 (low vs medium) lifting frequency. The missing 

channels at each dataset were rejected because they contained high artifacts, or due to loss of 

contact during the experiment nature were substituted using the spherical interpolation algorithm 

with data of its four nearest neighbors’ channels (Perrin, Pernier, Bertrand, & Echallier, 1989), 

which was sourced from an EEGLAB toolbox. 
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Figure 3.11: Visual inspection 

 

3.7 Data Analysis 

The brain’s areas of interest are the frontal, which is responsible for attention, judgment, and motor 

planning; the central, which is initiates sensorimotor control; and the parietal which performs 

cognitive processing (Figure 3.12). 

 
Figure 3.12: Brain's area of interest 

 

The EEG frequency bands of interest are Theta θ-band 4-8 Hz , Alpha α-band 8-13 Hz, Beta β-

band 13-30 Hz, and Gamma γ band 30-50 Hz. Theta and  lower alpha or alpha 1 activity may be 

related to attention, cognition, and memory (Klimesch, 1999, 2012). Theta is also associated with 

workload and other cognitive processing such as self-monitoring (Sammer et al., 2007). 



37 

Alpha α-band, Beta β-band 13-30 Hz, and Gamma γ band 30-50 Hz are associated to movement  

and sensorimotor areas (Durka, 2003; Durka, Ircha, Neuper, & Pfurtscheller, 2001; Niedermeyer 

& da Silva, 2005). 

EEG recordings were analyzed based on  the frequency domain; all channels’ Power Spectral 

Density (PSD) was computed using Fast Fourier Transform (FFT) using MATLAB (The 

Mathworks, Natick, MA); computing all frequency bands (theta, alpha, beta, and gamma) in 

Figures 3.13, 3.14, and 3.15. 

 
Figure 3.13: low lifting task PSD 

 

 
Figure 3.14: Medium low lifting task PSD 
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Figure 3.15: Example of MATLAB command to compute PSD at theta band at channel 1 

 

All subjects’ mean PSD was computed then filtered based on EEG channels and frequency band. 

Table 3.4 shows an example of PSD at one channel all bands. EEG was reported in the form of log 

transformed power spectral values or decibels (dB or µV2/Hz). 

Table 3.4: Example of PSD (dB) filtering per channel for all subjects 

 Theta Alpha Beta Gamma 

Subject Low Med Low Med Low Med Low Med 

1 -3.972 9.063 -4.399 4.164 -10.380 -1.535 -16.230 -6.751 

2 2.123 6.084 -0.521 2.718 -5.728 -2.877 -9.829 -8.237 

3 3.611 1.854 1.758 2.049 -4.844 -5.399 -10.614 -10.992 

4 -2.623 10.155 -1.015 6.570 -5.387 0.710 -10.480 -4.203 

5 -3.168 6.090 -3.314 6.417 -8.926 1.115 -13.440 -3.845 

6 -0.952 1.401 -1.595 -1.420 -7.248 -7.382 -11.259 -11.684 

7 0.988 4.399 0.872 3.590 -4.721 -1.273 -8.401 -5.381 

8 2.483 8.002 0.778 4.463 -6.491 -4.352 -10.781 -8.255 

9 1.300 8.473 1.624 6.296 -2.100 0.668 -6.843 -4.980 
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The normality assumption of all mean PSD within every band and for each channel were tested in 

order to apply any statistical test. Therefore, most of the channels tested (Figure 3.16 and 3.17) 

show the normal probability plot for all subjects performing low and medium lifting tasks of FCCz 

channel at theta band. The probability plots showed no significant outlier within subjects; as a 

result, we proceeded to the next step. 

 

 

Figure 3.16: Normal probability plot of PSD (dB) for all subjects who performed low lifting task 

of FCCz channel at theta band 

 

 

Figure 3.17: Normal probability plot of PSD (dB) for all subjects who performed medium lifting 

task of FCCz channel at theta band 
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After assuming the normality of PSD data within subjects per channels, one-way Analysis Of 

Variance (ANOVA) was used to test the study hypothesis. Finally, before we carry on to the results, 

we verified the ANOVA model adequacy by testing the most common graphical techniques such 

as histogram, normal probability plot, and residual fits plot (Figure 3.18). 
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Figure 3.18: Example of ANOVA model adequacy used in data analysis 

 

3.8 Results 

Two independent variables were verified in this study, which are lifting frequency and trials: Low 

vs medium lifting frequency in experiment 1 and high vs medium lifting frequency in experiment 

2. Correspondingly, two dependent variables were verified to be measured in this study. The first 

dependent variable is the EEG power spectral and the second dependent variable is MAWL. 

3.8.1 Experiment I 

EEG power spectral and MAWL varies between subjects at low and medium lifting frequencies. 

ANOVA shows significant differences between the two lifting frequencies at several bands; also 

ANOVA shows a few differences between the same lifting tasks at different trials. The following 

sections will cover all results in details. 
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3.8.1.1 Power Spectral Density (PSD) 

The grand average of PSD from all subjects and all channels resulting from both low and medium 

lifting frequencies was computed, and Figure 3.19 shows the first trial of this experiment; EEG 

was reported in the form of linear power spectral values µV2/Hz. This graph shows a remarkable 

difference between the medium lifting task and low lifting task, especially at theta band (between 

4-8 Hz). The detailed results for each band at the first trial are the following: 

 

Figure 3.19: Grand average of PSD at low and medium lifting frequencies from all participants 

and all channels 1st trial 

 

Table 3.5 and (Figure 3.20, 3.21, and 3.22) shows significant changes between low and medium 

lifting tasks in theta activity power were found in most of the brain regions: frontal, central, and 

parietal. As well, significant changes in alpha activity power were found in the frontal and central 

regions. No significant changes in beta and gamma activity power were found in most of the brain 

regions: frontal, central or parietal. 
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Table 3.5: Averaged power spectral values (dB) for all bands activity in brain regions for all 

participants in Experiment I 1st trial 

Region Band Low lifting mean PSD  Medium lifting mean PSD p-value 

Frontal 

theta 2.71 7.12 0.002 

alpha 2.09 4.87 0.009 

beta -3.16 -0.96 0.079 

gamma -7.62 -5.51 0.102 

         

Central 

theta 2.10 6.20 0.008 

alpha 1.51 4.08 0.047 

beta -3.68 -1.75 0.188 

gamma -8.11 -6.43 0.249 

         

Parietal  

theta 2.15 6.05 0.012 

alpha 1.45 3.84 0.079 

beta -3.70 -2.03 0.282 

gamma -8.05 -6.66 0.354 

 

 
Figure 3.20: Averaged power spectral values (dB) for all bands activity in frontal region for all 

participants in Experiment I 1st trial 
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Figure 3.21: Averaged power spectral values (dB) for all bands activity in central region for all 

participants in Experiment I 1st trial 

 

 
Figure 3.22: Averaged power spectral values (dB) for all bands activity in parietal region for all 

participants in Experiment I 1st trial 

 

Detailed analysis on the channel level at theta, alpha, beta, and gamma bands as per the following 

sections: 

3.8.1.1.1 Theta band results at first trial  

 

Significant changes in theta activity power were found in most of the brain regions: frontal, central, 

and parietal. Table 3.6 shows the data for the low lifting versus medium lifting EEG average power 

EEG band

Lifting Frequency

D) GammaC) BetaB) AlphaA) Theta

MedLowMedLowMedLowMedLow

10

5

0

-5

-10

d
B

Averaged power spectral values (dB)

Experiment I 1st trial

All participants all EEG bands

95% CI for the Mean

Brain region = Central

Individual standard deviations are used to calculate the intervals.

EEG band

Lifting Frequency

D) GammaC) BetaB) AlphaA) Theta

MedLowMedLowMedLowMedLow

10

5

0

-5

-10

d
B

Averaged power spectral values (dB)

Experiment I 1st trial

All participants all EEG bands

95% CI for the Mean

Brain region = Parietal

Individual standard deviations are used to calculate the intervals.



44 

spectral densities across 32 selected channels, and the significant level (p-value). All the channels 

recorded a greater average value of PSD at medium compared to low lifting task; Figure 3.23 

shows a topographical head map of the significant areas and the significant level of changes for 

theta activity during low lifting task vs medium lifting task for all participants. 

Table 3.6:Averaged power spectral values (dB) for theta band activity across 32 channels all 

participants 

channel Theta averaged PSD  (dB) channel 
 

Theta averaged PSD  (dB) 

Low Med P-value Low Med P-value 
AF5h 4.85 9.29 <0.001 ↑ FCC2 0.76 5.09 0.004 ↑ 
Afpz 5.19 10.17 0.001 ↑ FCC4 2.13 6.37 0.023 ↑ 
AF6h 4.81 9.00 0.005 ↑ CCP3 1.77 6.25 0.009 ↑ 
AFF3 3.06 7.38 0.004 ↑ CCP1 2.60 6.71 0.026 ↑ 
AFFz 2.06 7.24 0.002 ↑ CCP1h 2.03 5.84 0.051 ↑ 
AFF4 3.63 7.85 0.010 ↑ CCPz 1.54 5.83 0.036 ↑ 
FFC3   NS  CCP2h   NS  
FFC3h 2.61 6.06 0.035 ↑ CCP2   NS  
FFCz 0.55 6.40 0.018 ↑ CCP4 1.87 6.02 0.040 ↑ 

FFC2h 2.55 7.08 0.034 ↑ CPP3h 2.41 6.08 0.041 ↑ 
FFC4   NS  CPP1h   NS  
FCC3   NS  CPPz 1.86 7.01 0.001 ↑ 
FCC1   NS  CPP2h 2.01 6.04 0.034 ↑ 
FCC1h   NS  CPP4h   NS  
FCCz -0.02 6.17 <0.001 ↑ Poz 2.30 6.45 0.016 ↑ 

FCC2h -0.51 5.57 <0.001 ↑ Oz 2.02 6.46 0.010 ↑ 
Notes. The arrows (↑) show the direction of change, medium lifting task compared to low lifting 

task. (NS) No significant change 

 

 
Figure 3.23:Topographical head map of the significant areas of changes for theta activity during 

low lifting task vs medium lifting task for all participants 

 

3.8.1.1.2 Alpha band results at first trial 
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Significant changes in alpha activity power were found mostly in the frontal and central regions 

with few in the parietal. Table 3.7 shows the data for the low lifting versus medium lifting EEG 

average power spectral densities across 32 selected channels, and the significant level (p-value). 

All the channels recorded a greater average value of PSD at medium compared to low lifting task; 

Figure 3.24 shows a topographical head map of the significant areas and the significant level of 

changes for alpha activity during low lifting task vs medium lifting task for all participants. 

Table 3.7: Averaged power spectral values (dB) for alpha band activity across 32 channels all 

participants 

channel Alpha averaged PSD  (dB) channel 
 

Alpha averaged PSD (dB) 

(dB) Low Med P-value Low Med P-value 
AF5h 3.89 6.26 0.010 ↑ FCC2 0.54 3.23 0.023 ↑ 
Afpz 4.08 7.09 0.033 ↑ FCC4 1.48 4.62 0.045 ↑ 
AF6h 3.58 6.16 0.024 ↑ CCP3 0.77 4.00 0.025 ↑ 
AFF3 2.30 4.92 0.020 ↑ CCP1   NS   
AFFz 1.45 4.91 0.015 ↑ CCP1h   NS   
AFF4 2.80 5.50 0.012 ↑ CCPz   NS   
FFC3   NS   CCP2h   NS   

FFC3h   NS   CCP2   NS   

FFCz   NS   CCP4   NS   
FFC2h   NS   CPP3h   NS   
FFC4   NS   CPP1h   NS   

FCC3   NS   CPPz 1.30 4.50 0.054 ↑ 
FCC1   NS   CPP2h   NS   
FCC1h   NS   CPP4h   NS   

FCCz -0.65 3.87 0.001 ↑ Poz   NS   
FCC2h -1.33 3.38 <0.001 ↑ Oz     NS   

Notes. The arrows (↑) show the direction of change, medium lifting task compared to low lifting 

task. (NS) No significant change 

 

 
Figure 3.24: Topographical head map of the significant areas of changes for theta activity during 

low lifting task vs medium lifting task for all participants 
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3.8.1.1.3 Beta band results at first trial 

 

Significant changes in beta band activity power were found at a few frontal areas such as channels 

AFFz at low lifting (PSD = -4.14 dB), medium lifting (PSD= -1.02 dB) with p-value 0.03. Also a 

few areas at central regions such as FCCz at low lifting (PSD = -6.20 dB), medium lifting (PSD= 

-2.26 dB) with p-value equals 0.007; and FCC2h at low lifting (PSD = -6.48 dB), medium lifting 

(PSD= -2.59 dB) with p-value equals 0.003. These channels recorded a greater average value of 

PSD at medium compared to low lifting task, with a trend for the increase in beta significance 

change level to become greater towards the central region of the brain. Figure 3.25 shows a 

topographical head map of the significant areas and the significant level of changes for beta activity 

during low lifting task vs medium lifting task for all participants. 

 

Figure 3.25: Topographical head map of the significant areas of changes for beta activity during 

low lifting task vs medium lifting task for all participants 

 

3.8.1.1.4 Gamma band results at first trial 

 

Significant changes in gamma band activity power were found at a few frontal areas such as 

channels AFF3 at low lifting (PSD = -7.05 dB), medium lifting (PSD= -5.05 dB) with p-value 

0.049, and AFFz at low lifting (PSD = -8.79 dB), medium lifting (PSD= -6.00 dB) with p-value 

0.043. Also included were a few areas at central regions such as FCCz at low lifting (PSD = 10.88 
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dB), medium lifting (PSD= -7.15 dB) with p-value equals 0.012; and FCC2h at low lifting (PSD 

= -10.94 dB), medium lifting (PSD= -7.44 dB) with p-value equals 0.006. These channels recorded 

a greater average value of PSD at medium compared to low lifting task, with a trend for the increase 

in gamma significance change level to become greater towards the central region of the brain. 

Figure 3.26 shows a topographical head map of the significant areas and the significant level of 

changes for gamma activity during low lifting task vs medium lifting task for all participants. 

 

 
Figure 3.26: Topographical head map of the significant areas of changes for gamma activity 

during low lifting task vs medium lifting task for all participants 

 

The second trial of the same experiment shows a consistent result to the first trial. Figure 3.27 

shows the second trial of this experiment and the grand average of PSD all subjects all channels 

resulting from both low and medium lifting frequencies. 
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Figure 3.27: Grand average of PSD at low and medium lifting frequencies from all participants 

and all channels 2nd trial 

Table 3.8 and (Figure 3.28, 3.29, and 3.30) shows significant changes between low and medium 

lifting tasks in theta activity power were found in most of the brain regions: frontal, central, and 

parietal. No significant changes in alpha, beta, or gamma activity power were found in most brain 

regions: frontal, central, or parietal. 

Table 3.8: Averaged power spectral values (dB) for all bands activity in brain regions for all 

participants in Experiment I 2nd trial 

Region Band Low lifting mean PSD  Medium lifting mean PSD p-value 

Frontal 

theta 2.86 7.91 <0.001 

alpha 3.20 5.07 0.059 

beta -1.68 -0.87 0.534 

gamma -5.94 -5.40 0.681 

      

Central 

theta 2.66 7.37 <0.001 

alpha 3.01 4.68 0.165 

beta -1.75 -1.22 0.722 

gamma -6.07 -5.81 0.855 

      

Parietal  

theta 2.72 7.30 <0.001 

alpha 3.08 4.52 0.263 

beta -1.71 -1.41 0.851 

gamma -6.05 -5.90 0.925 
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Figure 3.28: Averaged power spectral values (dB) for all bands activity in frontal region for all 

participants in Experiment I 2nd trial 

 
Figure 3.29: Averaged power spectral values (dB) for all bands activity in central region for all 

participants in Experiment I 2nd trial 

 
Figure 3.30: Averaged power spectral values (dB) for all bands activity in parietal region for all 

participants in Experiment I 2nd trial 
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Detailed analysis on the channel level at theta, alpha, beta, and gamma bands as the following 

sections: 

3.8.1.1.5 Theta band results at second trial 

 

Significant changes in theta activity power were found in most brain regions: frontal, central, and 

parietal. Table 3.9 shows the data for the low lifting versus medium lifting EEG average power 

spectral densities across 32 selected channels, and the significant level (p-value). All the channels 

recorded a greater average value of PSD at medium compared to low lifting task. Figure 3.31 

shows a topographical head map of the significant areas and the significant level of changes for 

theta activity during low lifting task vs medium lifting task for all participants. 

Table 3.9: Averaged power spectral values (dB) for theta band activity across 32 channels all 

participants 

channel Theta averaged PSD  (dB) channel 
 

Theta averaged PSD  (dB) 

Low Med P-value Low Med P-value 
AF5h 4.00 9.15 <0.001 ↑ FCC2 3.01 6.80 0.001 ↑ 
Afpz 4.68 10.37 <0.001 ↑ FCC4 2.36 8.23 0.003 ↑ 
AF6h 3.95 9.69 <0.001 ↑ CCP3 1.68 7.29 <0.001 ↑ 
AFF3 2.00 6.94 0.002 ↑ CCP1 3.31 7.55 0.014 ↑ 
AFFz 2.03 8.20 <0.001 ↑ CCP1h 3.53 7.78 0.007 ↑ 
AFF4 3.84 8.44 0.009 ↑ CCPz 3.83 6.77 0.051 ↑ 
FFC3 2.84 8.75 0.004 ↑ CCP2h 3.48 7.39 0.016 ↑ 
FFC3h 2.03 7.95 <0.001 ↑ CCP2 3.13 8.46 <0.001 ↑ 
FFCz 1.91 6.29 0.014 ↑ CCP4 3.45 7.12 0.015 ↑ 

FFC2h 2.49 6.89 0.007 ↑ CPP3h 2.73 6.39 0.014 ↑ 
FFC4 2.79 6.75 0.041 ↑ CPP1h 1.74 7.54 <0.001 ↑ 
FCC3 4.42 8.53 0.017 ↑ CPPz 0.99 6.92 0.002 ↑ 
FCC1     NS   CPP2h 2.12 7.31 0.005 ↑ 
FCC1h 2.19 6.94 0.007 ↑ CPP4h 1.85 6.96 0.008 ↑ 
FCCz 0.18 6.39 0.001 ↑ Poz 1.39 7.30 0.003 ↑ 

FCC2h 2.26 8.24 0.003 ↑ Oz 1.32 6.29 0.018 ↑ 
Notes. The arrows (↑) show the direction of change, medium lifting task compared to low lifting 

task. (NS) No significant change 
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Figure 3.31: Topographical head map of the significant areas of changes for theta activity during 

low lifting task vs medium lifting task for all participants 

3.8.1.1.6 Alpha band results at second trial 

 

Significant changes in alpha band activity power were found at a few areas of the frontal region, 

such as channels AF6h at low lifting (PSD = 3.78 dB), medium lifting (PSD= 5.96 dB) with p-

value 0.006; and AFFz at low lifting (PSD = 2.75 dB), medium lifting (PSD= 5.39 dB) with p-

value equals 0.023. Also a few areas at central regions such as FCCz at low lifting (PSD = 0.09 

dB), medium lifting (PSD= 3.71 dB) with p-value equals 0.043. These channels recorded a greater 

average value of PSD at medium compared to low lifting task, with a trend for the increase in 

alpha significance change level to become greater towards the frontal region of the brain; Figure 

3.32 shows a topographical head map of the significant areas and the significant level of changes 

for alpha activity during low lifting task vs medium lifting task for all participants. 

 

 
Figure 3.32: Topographical head map of the significant areas of changes for alpha activity during 

low lifting task vs medium lifting task for all participants 
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3.8.1.1.7 Beta band results at second trial 

 

No significant changes occurred in the beta band associated with low and medium lifting for all 
brain areas: frontal, central, or parietal (Figure 3.33). 
 

 
Figure 3.33: Topographical head map of the significant areas of changes for beta activity during 

low lifting task vs medium lifting task for all participants 

3.8.1.1.8 Gamma band results at second trial 

 

No significant changes occurred in the gamma band associated with low and medium lifting for 
all brain areas: frontal, central, or parietal (Figure 3.34). 
 

 
Figure 3.34: Topographical head map of significant areas of changes for beta activity during low 

lifting task vs medium lifting task for all participants 

3.8.1.2 Difference between trials 

No significant differences between the two trials at low lifting tasks was found, except in channels 

FCC2 and FCC2h at the central area of the brain at alpha, beta, and gamma. In alpha band FCC2 

channel at low lifting 1st trial was (PSD = 0.54 dB), 2nd trial was (PSD= 4.14 dB) with p-value 

0.014; and FCC2h channel at low lifting 1st trial was (PSD = -1.33 dB), 2nd trial was (PSD= 2.42 

dB) with p-value 0.018. In beta band FCC2 channel at low lifting 1st trial was (PSD = -4.84 dB), 
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2nd trial was (PSD= -0.70 dB) with p-value 0.018; and FCC2h channel at low lifting 1st trial was 

(PSD = -6.48 dB), 2nd trial was (PSD= -2.30 dB) with p-value 0.011. In gamma band FCC2 channel 

at low lifting 1st trial was (PSD = -9.26 dB), 2nd trial was (PSD= -5.10 dB) with p-value 0.015; and 

FCC2h channel at low lifting 1st trial was (PSD = -10.94 dB), 2nd trial was (PSD= -7.05 dB) with 

p-value 0.020. A topographical head map of the significant areas of changes for alpha, beta, and 

gamma activity during 1st trial of low lifting vs 2nd trial of low lifting for all participants can be 

seen in Figure 3.35. 

 

Figure 3.35: Topographical head map of the significant areas of changes for alpha, beta, and 

gamma activity during 1st trial vs 2nd trial of low lifting for all participants 

On the other hand, medium lifting task resulted in almost no significant difference between trials; 

however PSD was slightly greater at the 2nd trial than the 1st trial at all bands. 

 

3.8.1.3 MAWL 

The maximum acceptable weight for all tasks and all trials in this experiments is presented in Table 

3.10. The data was analyzed using ANOVA to test if there is a significant difference between trials. 

In the first trial, low lifting MAWL was significantly higher than medium lifting for all participants 

with average (MAWL =15.42 Kg) verses average (MAWL =7.16 Kg) at medium lifting; the 

significant difference between the two lifting tasks was (p-value =0.001). In the second trial, low 
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lifting MAWL also was significantly higher than medium lifting for all participants with average 

(MAWL =13.41 Kg) verses average (MAWL =7.26 Kg) at medium lifting; the significant 

difference between the two lifting tasks was (p-value < 0.001). These results are consistent with 

Liberty Mutual Manual Materials Handling Tables. Snook and Ciriello (1991) found that in one 

lift per minute lifting frequency MAWL is 16 kg; in 4.3 lifts per minute lifting frequency MAWL 

is 12 kg. No significant differences were found between trials at low or medium lifting. In low 

lifting task, the two trials are equals with (p-value = 0.348); and in medium lifting task the two 

trials are also equals with (p-value = 0.930). 

Table 3.10: Maximum acceptable weights (kg) for all participants performing low and medium 

lifting for 40 min 

  Low lifting 1st trial  Medium lifting 1st trial  Low lifting 2nd  trial  Medium lifting 2nd  trial  

  10.89 7.26 9.07 6.35 
  9.07 5.44 10.89 6.35 
  19.05 7.26 13.61 9.98 
  27.22 9.07 15.42 8.16 
  15.42 9.98 11.79 4.54 
  17.24 10.89 13.61 10.89 
  10.89 3.63 12.7 4.54 
  17.24 3.63 18.14 8.16 
  11.79 7.26 15.42 6.35 
Mean 15.42 7.16 13.41 7.26 
S.D 5.31 2.44 2.56 2.1 

          Note: S.D is the standard deviation 

In addition, participant’s age and body weight found to have a significant effect on the estimation 

of MAWL at low and medium lifting frequency respectively. MAWL is significantly increase with 

the increase of participant age with (p-value = 0.007) and the regression equation is: 

MAWL Low lifting = -52.6 + 2.384 Age                                                                                             (3.6) 

Figure 3.36 shows the effect of age on MAWL at low lifting frequency; also, no significant effect 

of the age on MAWL at medium lifting frequency with (p-value = 0.466). 
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Figure 3.36: The effect of age on MAWL at low lifting frequency 

 

 

MAWL is significantly decrease with the increase of participant body weight with (p-value = 

0.015) and the regression equation is: 

MAWL Medium lifting = 13.05 - 0.0769  Body weight                                                                    (3.7)                                                                       

Figure 3.37 shows the effect of body weight on MAWL at medium lifting frequency; also, no 

significant effect of the body weight on MAWL at low lifting frequency (p-value =0.870). 

 
Figure 3.37: The effect of body weight on MAWL at medium lifting frequency 
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3.8.2 Experiment II 

EEG power spectral and MAWL varies between subjects at medium and high lifting frequencies. 

ANOVA shows significant differences between the two lifting frequencies at several bands; also 

ANOVA shows a few differences between the same lifting tasks at different trials. The following 

sections will cover all results in details. 

3.8.2.1 Power Spectral Density (PSD) 

 

The grand average of PSD from all subjects and all channels resulting from both medium and high 

lifting frequencies was computed, and Figure 3.38 shows the first trial of this experiment; EEG 

was reported in the form of linear power spectral values µV2/Hz. This graph presents a remarkable 

difference between medium lifting task and high lifting task, especially at theta band; then a swap 

between the two powers starting at alpha band. The detailed results for each band at the first trial 

is the following: 

 
Figure 3.38: Grand average of PSD at medium and high lifting frequencies from all participants 

and all channels 1st trial 

Table 3.11 and (Figure 3.39, 3.40, and 3.41)  shows significant changes between medium and high 
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lifting tasks in alpha and beta activity power were found in central and parietal brain regions. No 

significant changes in theta and gamma activity power were found in most brain regions: frontal, 

central, or parietal. 

Table 3.11: Averaged power spectral values (dB) for all bands activity in brain regions for all 

participants in Experiment II 1st trial 

Region Band Medium lifting mean PSD  High lifting mean PSD p-value 

Frontal 

theta 7.19 6.90 0.822 

alpha 5.43 3.86 0.127 

beta 0.12 -1.63 0.089 

gamma -4.12 -5.72 0.111 

      

Central 

theta 6.98 6.32 0.563 

alpha 5.36 3.47 0.042 

beta -0.12 -2.04 0.044 

gamma -4.65 -6.30 0.074 

      

Parietal  

theta 6.98 6.36 0.575 

alpha 5.29 3.46 0.039 

beta -0.32 -2.17 0.048 

gamma -4.79 -6.41 0.077 

 

 
Figure 3.39: Averaged power spectral values (dB) for all bands activity in frontal region for all 

participants in Experiment II 1st trial 
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Figure 3.40: Averaged power spectral values (dB) for all bands activity in central region for all 

participants in Experiment II 1st trial 

 

 
Figure 3.41: Averaged power spectral values (dB) for all bands activity in parietal region for all 

participants in Experiment II 1st trial 

 

 

Detailed analysis on the channel level at theta, alpha, beta, and gamma bands as per the following 

sections: 

3.8.2.1.1 Theta band results at first trial 

 

No significant changes occurred in the theta band associated with medium and high lifting for all 

brain areas frontal, central, and parietal Figure3.42. 
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Figure 3.42: Topographical head map of significant areas of changes for theta activity during 

medium lifting task vs high lifting task for all participants 

3.8.2.1.2 Alpha band results at first trial 

 

Significant changes in alpha activity power were found mostly in parietal regions, with few at 

central. Table 3.12 shows the data for the medium lifting versus high lifting EEG average power 

spectral densities across 32 selected channels, and the significant level (p-value). All the channels 

recorded a greater average value of PSD at medium compared to high lifting task; Figure 3.43 

shows a topographical head map of the significant areas and the significant level of changes for 

alpha activity during medium lifting task vs high lifting task for all participants. 

Table 3.12: Averaged power spectral values (dB) for alpha band activity across 32 channels all 

participants 

channel Alpha averaged PSD  (dB) channel 
 

Alpha averaged PSD (dB) 

(dB) Med High P-value Med Hig

h 

P-value 
AF5h   NS  FCC2     NS  
Afpz   NS  FCC4     NS  
AF6h   NS  CCP3     NS  
AFF3   NS  CCP1     NS  
AFFz   NS  CCP1h     NS  
AFF4   NS  CCPz     NS  
FFC3   NS  CCP2h     NS  
FFC3h   NS  CCP2 5.64 3.12 0.026 ↓ 

FFCz   NS  CCP4     NS  

FFC2h   NS  CPP3h 6.24 3.77 0.045 ↓ 

FFC4   NS  CPP1h     NS  

FCC3   NS  CPPz     0.055  

FCC1   NS  CPP2h 6.01 3.69 0.004 ↓ 

FCC1h   NS  CPP4h 6.37 3.80 0.037 ↓ 

FCCz   NS  Poz     NS  

FCC2h   NS  Oz     NS   

Notes. The arrows (↓) show the direction of change, high lifting task compared to medium lifting 

task. (NS) No significant change 
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Figure 3.43: Topographical head map of significant areas of changes for alpha activity during 

medium lifting task vs high lifting task for all participants 

 

3.8.2.1.3 Beta band results at first trial 

 

Significant changes in beta activity power were found mostly in parietal regions with few at frontal 

and central. Table 3.13 shows the data for the medium lifting versus high lifting EEG average 

power spectral densities across 32 selected channels, and the significant level (p-value). All the 

channels recorded a greater average value of PSD at medium compared to high lifting task; Figure 

3.44 shows topographical head map of the significant areas and the significant level of changes for 

beta activity during medium lifting task vs high lifting task for all participants. 

Table 3.13: Averaged power spectral values (dB) for beta band activity across 32 channels all 

participants 

channel Beta averaged PSD  (dB) channel 
 

Beta averaged PSD  (dB) 

Med High P-value Med High P-value 
AF5h     NS   FCC2     NS  

Afpz     NS   FCC4     NS  

AF6h     NS   CCP3     NS  

AFF3     NS   CCP1     NS  

AFFz     NS   CCP1h     NS  

AFF4     NS   CCPz     NS  

FFC3     NS   CCP2h     NS  

FFC3h -0.01 -2.37 0.046 ↓ CCP2 0.01 -2.65 0.034 ↓ 

FFCz     0.054   CCP4     NS  

FFC2h     NS   CPP3h 0.91 -1.50 0.026 ↓ 

FFC4     NS   CPP1h     NS  

FCC3     NS   CPPz     NS  

FCC1     NS   CPP2h -0.02 -2.19 0.017 ↓ 
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channel Beta averaged PSD  (dB) channel 
 

Beta averaged PSD  (dB) 

Med High P-value Med High P-value 
FCC1h     NS   CPP4h 0.65 -1.91 0.047 ↓ 

FCCz     NS   Poz     NS  

FCC2h     NS   Oz     NS   

Notes. The arrows (↓) show the direction of change, high lifting task compared to medium lifting 

task. (NS) No significant change 

 

 
Figure 3.44: Topographical head map of significant areas of changes for beta activity during 

medium lifting task vs high lifting task for all participants 

 

3.8.2.1.4 Gamma band results at first trial 

 

Significant changes in gamma activity power were found mostly in parietal regions with few at 

frontal and central. Table 3.14 shows the data for the medium lifting versus high lifting EEG 

average power spectral densities across 32 selected channels, and the significant level (p-value). 

All the channels recorded a greater average value of PSD at medium compared to high lifting task; 

Figure 3.45 shows a topographical head map of the significant areas and the significant level of 

changes for gamma activity during medium lifting task vs high lifting task for all participants. 

 

Table 3.14: Averaged power spectral values (dB) for gamma band activity across 32 channels all 

participants 

channel Gamma averaged PSD  (dB) channel 
 

Gamma averaged PSD (dB) 

(dB) Med High P-value Med High P-value 
AF5h   NS  FCC2   NS  
Afpz   NS  FCC4   NS  

AF6h   NS  CCP3   NS  

AFF3   NS  CCP1   NS  

AFFz   NS  CCP1h   NS  

AFF4   NS  CCPz   NS  
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channel Gamma averaged PSD  (dB) channel 
 

Gamma averaged PSD (dB) 

(dB) Med High P-value Med High P-value 
FFC3   NS  CCP2h   NS  

FFC3h   NS  CCP2 -4.72 -7.13 0.051 ↓ 

FFCz -4.12 -6.89 0.050 ↓ CCP4   NS  

FFC2h   NS  CPP3h -3.28 -5.44 0.019 ↓ 

FFC4   NS  CPP1h   NS  

FCC3   NS  CPPz   NS  

FCC1   NS  CPP2h -4.69 -6.64 0.039 ↓ 

FCC1h   NS  CPP4h -3.79 -6.33 0.044 ↓ 

FCCz   NS  Poz   NS  

FCC2h   NS  Oz   NS  

Notes. The arrows (↓) show the direction of change, high lifting task compared to medium lifting 

task. (NS) No significant change 

 

 
Figure 3.45: Topographical head map of significant areas of changes for gamma activity during 

medium lifting task vs high lifting task for all participants 

 

The second trial of the same experiment shows a result consistent with the first trial; also the 

same swap between the two powers accrued at alpha band. Figure 3.46 shows the second trial of 

this experiment and the grand average of PSD all subjects all channels resulting from both 

medium and high lifting frequencies. 
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Figure 3.46: Grand average of PSD at medium and high lifting frequencies from all participants 

and all channels 2nd trial 

Table 3.15 and (Figure 3.47, 3.48, and 3.49) shows significant changes between medium and high 

lifting tasks in gamma activity power were found in both the central and parietal brain regions. No 

significant changes in theta, alpha, or beta activity power were found in most brain regions: frontal, 

central, or parietal. 

Table 3.15: Averaged power spectral values (dB) for all bands activity in brain regions for all 

participants in Experiment II 2nd trial 

Region Band Medium lifting mean PSD  High lifting mean PSD p-value 

Frontal 

theta 6.94 9.02 0.057 

alpha 5.35 5.03 0.662 

beta 0.06 -0.87 0.219 

gamma -4.35 -5.58 0.118 

      

Central 

theta 6.95 8.44 0.128 

alpha 5.51 4.71 0.282 

beta 0.18 -1.17 0.115 

gamma -4.36 -5.98 0.037 

      

Parietal  

theta 7.15 8.37 0.234 

alpha 5.64 4.67 0.251 

beta 0.24 -1.28 0.108 

gamma -4.25 -5.98 0.030 
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Figure 3.47: Averaged power spectral values (dB) for all bands activity in frontal region for all 

participants in Experiment II 2nd trial 

 

 
Figure 3.48: Averaged power spectral values (dB) for all bands activity in central region for all 

participants in Experiment II 2nd trial 
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Figure 3.49: Averaged power spectral values (dB) for all bands activity in parietal region for all 

participants in Experiment II 2nd trial 

 

 

Detailed analysis on the channel level at theta, alpha, beta, and gamma bands as per the following 

sections: 

3.8.2.1.5 Theta band results at second trial 

 

Significant changes in theta band activity power were found in few areas of the frontal region, like 

channel AFF3 at medium lifting (PSD = 5.56 dB), high lifting (PSD= 8.66 dB) with p-value 0. 

052. Also a few areas at central regions such as FCCz at medium lifting (PSD = 5.70 dB), high 

lifting (PSD= 8.75 dB) with p-value equals 0.031. Similarly a few areas at parietal regions such as 

CPP4h at medium lifting (PSD = 7.09 dB), high lifting (PSD= 9.69 dB) with p-value equals 0.038. 

These channels recorded a greater average value of PSD at high compared to medium lifting task. 

Figure 3.50 shows a topographical head map of the significant areas and the significant level of 

changes for theta activity during medium lifting task vs high lifting task for all participants. 
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Figure 3.50: Topographical head map of significant areas of changes for theta activity during 

medium lifting task vs high lifting task for all participants 

 

3.8.2.1.6 Alpha band results at second trial 

 

Significant changes in alpha band activity power were found at few areas of the frontal region like 

channel FFC3 at medium lifting (PSD = 7.73 dB), high lifting (PSD= 3.89 dB) with p-value 0. 

005. Also a few areas at central regions such as CCP2 at medium lifting (PSD = 5.76 dB), high 

lifting (PSD= 4.00 dB) with p-value equals 0.047. These channels recorded a greater average value 

of PSD at medium compared to high lifting task, with a trend for the increase in alpha significance 

change level to become greater towards the frontal region of the brain; Figure 3.51 shows a 

topographical head map of the significant areas and the significant level of changes for alpha 

activity during medium lifting task vs high lifting task for all participants. 

 
Figure 3.51: Topographical head map of significant areas of changes for alpha activity during 

medium lifting task vs high lifting task for all participants 
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3.8.2.1.7 Beta band results at second trial 

 

Significant changes in beta band activity power were found at few areas of the frontal region like 

channel FFC3 at medium lifting (PSD = 2.73 dB), high lifting (PSD= -1.85 dB) with p-value 0. 

003. Also a few areas at central regions such as CCP2 at medium lifting (PSD = 0.40 dB), high 

lifting (PSD= -1.85 dB) with p-value equals 0.018. These channels recorded a greater average 

value of PSD at medium compared to high lifting task, with a trend for the increase in beta 

significance change level to become greater towards the frontal region of the brain; Figure 3.52 

shows a topographical head map of the significant areas and the significant level of changes for 

beta activity during medium lifting task vs high lifting task for all participants. 

 
Figure 3.52: Topographical head map of significant areas of changes for beta activity during 

medium lifting task vs high lifting task for all participants 

3.8.2.1.8 Gamma band results at second trial 

 

Significant changes in gamma band activity power were found at few areas at frontal like channel 

FFC3 at medium lifting (PSD = -1.91 dB), high lifting (PSD= -6.51 dB) with p-value 0.003. Also 

a few areas at central regions such as CCP2 at medium lifting (PSD = -4.04 dB), high lifting (PSD= 

-6.71 dB) with p-value equals 0.003. Similarly a few areas at parietal regions such as Poz at 

medium lifting (PSD = -4.54 dB), high lifting (PSD= -5.74 dB) with p-value equals 0.048. These 

channels recorded a greater average value of PSD at medium compared to high lifting task, with a 

trend for the increase in gamma significance change level to become greater towards the frontal 
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and central regions of the brain; Figure 3.53 shows topographical head map of the significant areas 

and the significant level of changes for gamma activity during medium lifting task vs high lifting 

task for all participants. 

 

Figure 3.53: Topographical head map of significant areas of changes for gamma activity during 

medium lifting task vs high lifting task for all participants 

3.8.2.2 Difference between trials 

In general, no significant differences were found between the two trials at high lifting tasks, except 

theta at frontal, central, parietal, and occipital. In theta, Table 3.16 shows the data for the high 

lifting in 1st trial versus high lifting in 2nd with EEG average power spectral densities across 32 

selected channels, and the significant level (p-value). All the channels recorded a greater average 

value of PSD 2nd trial compared to the 1st trial. 

Table 3.16: Averaged power spectral values (dB) for theta band activity across 32 channels all 

participants 

channel Theta averaged PSD  (dB) channel 
 

Theta averaged PSD (dB) 

(dB) High 1 

1 1s 

High 2 P-value High 1 

1 1s 

High 2 P-value 

AF5h   NS  FCC2 5.63 9.38 0.015 ↑ 

Afpz   NS  FCC4   NS  

AF6h   NS  CCP3   NS  

AFF3   NS  CCP1   NS  

AFFz   NS  CCP1h   NS  

AFF4   NS  CCPz   NS  

FFC3   NS  CCP2h   NS  

FFC3h   NS  CCP2   NS  

FFCz   NS  CCP4   NS  
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channel Theta averaged PSD  (dB) channel 
 

Theta averaged PSD (dB) 

(dB) High 1 

1 1s 

High 2 P-value High 1 

1 1s 

High 2 P-value 
FFC2h 5.49 9.05 0.048 ↑ CPP3h   NS  

FFC4 5.48 9.03 0.027 ↑ CPP1h   NS  

FCC3   NS  CPPz 6.64 8.86 0.034 ↑ 

FCC1   NS  CPP2h 6.79 9.69 0.014 ↑ 

FCC1h   NS  CPP4h   NS  

FCCz   NS  Poz   NS  

FCC2h   NS  Oz 5.88 8.52 0.049 ↑ 

Notes. The arrows (↑) show the direction of change, 1st high lifting task compared to 2nd high 

lifting task. (NS) No significant change 

 

In alpha band CPP2h channel at high lifting 1st trial was (PSD = 3.69 dB), 2nd trial was (PSD= 6.02 

dB) with p-value 0.017. In beta band CPP2h channel at high lifting 1st trial was (PSD = -2.19 dB), 

2nd trial was (PSD= 0.14 dB) with p-value 0.036. A topographical head map of the significant areas 

of changes for theta, alpha, and beta activity during 1st vs 2nd trial of high lifting for all participants 

in Figure 3.54. 

 

Figure 3.54: Topographical head map of the significant areas of changes for theta, alpha, and 

beta activity between 1st trial vs 2nd trial of high lifting for all participants 

On the other hand, medium lifting task showed almost no significant difference between trials; 

however PSD was slightly greater at 2nd trial than 1st trial at all bands. 

3.8.2.3 MAWL 

The maximum acceptable weight for all tasks and all trials in this experiment is presented in Table 
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3.17. The data was analyzed using ANOVA to test if there is a significant difference between trials. 

In the first trial, medium lifting MAWL was significantly higher than high lifting for all 

participants with average (MAWL =9.89 Kg) verses average (MAWL =6.99 Kg)). In the second 

trial, medium lifting MAWL also was significantly higher than high lifting for all participants with 

average (MAWL =7.89 Kg) verses average (MAWL =5.53 Kg) at medium lifting; the significant 

difference between the two lifting tasks was (p-value =0.015). These results are consistent with 

Liberty Mutual Manual Materials Handling Tables.  Snook and Ciriello (1991) found in 4.3 lifts 

per minute lifting frequency MAWL is 12 kg, and in 6.6 lifts per minute lifting frequency MAWL 

is 10 kg. No significant differences were found between trials at medium or high lifting. In medium 

lifting task, the two trials are equals with (p-value = 0.111); and in high lifting task the two trials 

are equals with (p-value = 0.220). 

Table 3.17: Maximum acceptable weights (kg) for all participants performing medium and high 

lifting for 40 min 

  Medium  lifting 1st trial High lifting 1st trial Medium  lifting 2nd  trial High lifting 2nd  trial 

  5.44 3.63 6.35 4.54 
  13.61 9.07 10.89 8.16 
  12.7 9.98 6.35 5.44 
  7.26 6.35 6.35 5.44 
  11.79 6.35 10.89 6.35 
  9.07 4.54 8.16 4.54 
  12.7 14.51 10.89 7.26 
  9.07 4.54 5.44 3.63 
  6.35 4.54 4.54 4.54 
  10.89 6.35 9.07 5.44 
Mean 9.89 6.99 7.89 5.53 
S.D 2.88 3.34 2.42 1.38 

Note: S.D is the standard deviation 

Furthermore, participant’s body weight found to have a significant effect on the estimation of 

MAWL at medium lifting frequency. No significant effect of the participant’s age on MAWL 

found at medium and high lifting frequencies.  MAWL is significantly decrease with the increase 
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of participant body weight with (p-value = 0.016) and the regression equation is: 

MAWL Medium lifting = 20.79 - 0.1590 Body weight                                                                    (3.8)                                                                       

Figure 3.55 shows the effect of body weight on MAWL at medium lifting frequency; also, no 

significant effect of the body weight on MAWL at high lifting frequency (p-value =0.153). 

 

 
Figure 3.55: The effect of body weight on medium lifting frequency 

 

 

3.9 Discussion and conclusion 

This study investigated the brain EEG power spectral activity changes associated with manual 

lifting frequencies and repetition during the assessment of Maximum Acceptable Weight of Lift 

(MAWL) by psychophysical method. In experiment I two lifting frequencies were used, medium 

lifting frequency is one lift every 14 seconds (4.3  lifts / min) and low lifting frequency is one lift 

every 60 seconds (1 lift / min). In experiment II two lifting frequencies were used,  medium lifting 

frequency is one lift every 14 seconds ( 4.3 lifts / min) and high lifting frequency is one lift every 
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9 seconds ( 6.7 lifts / min). Twenty healthy right handed volunteers participated; ten males 

participated in experiment I, and ten males participated in experiment II. 

MAWL is known to decrease with the increase of lifting frequency, as was proven by many studies 

over the last 40 years (Ayoub, 1978; Ayoub et al., 1983; Ciriello et al., 1990; Garg & Saxena, 

1979; Karwowski & Yates, 1986; Mital & Manivasagan, 1983; Snook & Irvine, 1967). Likewise, 

this study confirmed the findings of prior research in MAWL; we found that MAWL is greater in 

low lifting than MAWL in medium lifting which is greater than MAWL in high lifting frequency. 

Also MAWL results in this study are consistent with Liberty Mutual Manual Materials Handling 

Tables Snook and Ciriello (1991) found that in one lift per minute lifting frequency MAWL is 16 

kg, in 4.3 lifts per minute lifting frequency MAWL is 12 kg, and in 6.7 lifts per minute lifting 

frequency MAWL is 10 kg. Similarly, this study confirmed that repeating the lifting task after a 

period of time does not significantly affect the measurements of MAWL. Moreover, we found that 

MAWL is significantly decrease with the increase of participant body weight at two different 

groups in experiment I and II ; also MAWL increases with the increase of participants age at low 

lifting frequency. 

EEG was recorded using a (Cognionics Data Acquisition Software Suite) and Cognionics High-

Density 64-channel Dry Headset 64-channel EEG. Sources of artifact in the EEG signal, such as 

body movement and eye blinks, were successfully removed by using ASR algorithm with 

additional artifact removal based on epoch rejection.  

Power Spectral Density (PSD) was used to quantify the EEG variability between lifting tasks and 

task repetition. 
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Table 3.18: Summary of Experiment I  

Brain 
Region 

Comparison between low and 
medium lifting frequency  in PSD  Associated with 

Frontal θ (Medium > Low) 
α (Medium > Low) 

Attention, judgment, and motor planning 

Central α (Medium > Low) Sensorimotor control 

Parietal θ (Medium > Low) Cognitive processing 

Low: Low lifting frequency (1 lift/ min) ;Med: Medium lifting frequency (4.3 lifts/ min) ;θ : Theta band (4-8 Hz);α 

:Alpha band (8-13 Hz) 

 

 In experiment I we found that brain’s EEG power in medium lifting is significantly greater than 

it is in low lifting task in all bands: theta θ, alpha α, beta β, and gamma γ at frontal, central, and 

parietal areas in channels level. Also, brain’s EEG power in medium lifting is significantly greater 

than it is in low lifting task in theta θ at frontal, central, and parietal areas in region level; it is also 

significantly greater than it is in low lifting task in alpha α at the frontal area; summary of 

experiment 1 is presented in Table 3.18. The increase in theta and alpha at medium lifting is due 

to increase of attention;  Klimesch (1999) found that the 4–13 Hz band associated with alert 

functioning. Theta increases with workload and is associated with cognitive processes such as self-

monitoring (Sammer et al., 2007).  

Table 3.19: Summary of Experiment II 

Brain 
Region 

Comparison between medium and 
high lifting frequency  in PSD  Associated with 

Frontal θ (High > Medium) Attention, judgment, and motor planning 

Central α (High < Medium) 
β (High < Medium) 
 γ (High < Medium) 

Sensorimotor control 

Parietal α (High < Medium) 
β (High < Medium) 
 γ (High < Medium) 

Cognitive processing 

High : High lifting frequency (1 lift/ min) ;Med: Medium lifting frequency (4.3 lifts/ min) ;θ : Theta band (4-8 Hz);α 

:Alpha band (8-13 Hz); β :Beta band (13-30 Hz); γ :Gamma band (30-50 Hz) 
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In experiment II we found that brain’s power in medium lifting task is significantly greater than it 

is in high lifting task in alpha α, beta β, and gamma γ bands at central and parietal; however, it is 

less in theta at frontal and central areas in channels level. Also, the brain’s EEG in medium lifting 

task is significantly greater than it is in high lifting task in alpha α, beta β and gamma γ in region 

level; summary of experiment 1 is presented in Table 3.19. Limited significant differences between 

trials were found at low and high lifting. No significant difference between trials at medium lifting 

even with different group at experiment I and experiment II were found. Also, we found that 2nd 

trial was always greater in EEG power -- but not significantly -- than the 1st trial at all bands in all 

lifting tasks. 

One of the remarkable findings in this study is the brain’s power at high lifting task (6.7 lifts /min) 

found to be less than medium lifting task (4.3 lifts /min) in alpha α, beta β and gamma γ bands. 

Studies which relate changes in the electroencephalogram with fatigue revealed that brain’s 

activity changes significantly as a person fatigues (Craig et al., 2006; Craig, Tran, Wijesuriya, & 

Nguyen, 2012). A study by Ng and Raveendran (2007) found that peak alpha frequency is 

decreasing after physical task leads to fatigue. Another study revealed that the power of 

frequencies between (11 to 35 Hz) is decreased significantly with fatigue during the sustained 

phase of the muscle contraction  (Liu et al., 2005) (Jap, Lal, Fischer, & Bekiaris, 2009). Tuncel, 

Dizibuyuk, and Kiymik (2010) conducted analyses and found that with increased fatigue level, the 

alpha (8–13 Hz) band activity is decreased relatively, and they found an increasing in theta (4–8 

Hz) bands in medium and high fatigue stage and the alpha (8–13 Hz). Tuncel et al. (2010) stated 

in their findings, “with increased fatigue level, the alpha (8–13 Hz) band activity is decreased 

relatively due to the learning effect or central adaptation counteracting the decrease of cortical 

efficiency during repetitive contractions.” Other studies show that deterioration in performance is 
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related to increased theta and decreased alpha power (Carriero, 1977; Ftaiti et al., 2010; Gale, 

Davies, & Smallbone, 1977). These results supported similar physiological results in old MAWL 

research; they concluded that “Psychophysical should not be used to set lifting standards for 

frequency's higher than 6 lifts/min due to high oxygen consumption 33% VO2” because it is not 

recommended based on the National Institute for Occupational Safety and Health (NIOSH)  

(Ciriello et al., 1990; Karwowski & Yates, 1986). From the above findings we conclude that the 

decline of the brain’s power at high lifting (6.7/min) may be because of fatigue induction. 
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CHAPTER 4: STUDY II EEG-BASED STUDY OF ISOKINETIC  

AND ISOMETRIC STRENGTH TESTS 

The static or dynamic muscular strength tests of individuals can deliver a process of pre assessment 

as to whether individuals are capable of carrying out a physical task at the job without experiencing 

injurious strain. If a person’s strength is not satisfactory to meet job working load and demand, 

then exertion-associated injuries are more likely to accrue. The objective of study II is to determine 

the association between EEG signals during isokinetic strength test and isometric strength test at 

two different lifting positions (arm and leg) and identify the activation area of the brain during a 

strength test. 

4.1 Method 

4.1.1 Subjects 

Twenty healthy volunteers (the same subjects who participated in study I) underwent medical 

screening of cardiovascular problems, such as heart disease or high blood pressure; back pain or 

hernia; or any mental or neurological disorders/diseases such as epilepsy, Alzheimer’s, multiple 

sclerosis, etc. All subjects were provided written informed consent prior to the experiment. All 

procedures were approved by The Institutional Review Board at the University of Central Florida 

IRB Number (SBE-14-10799) (Appendix A). 

4.1.2 Task 

This experiment includes an isometric strength test and an isokinetic strength test in three 

replicates with the total estimated time being 20-30 min including rests.  

4.1.2.1 Isometric strength test: 

Isometric strength tools in this experiment included The Jackson Strength Evaluation System. This 

system consists of a wooden stand, a chain, a handle, a hand dynamometer, and a control unit. The 
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system is designed to meet the needs of National Institute of Occupational Safety and Health 

(NIOSH). Time duration of this experiment is between 3-10 min. Participants were asked to lift 

the chain in multiple positions to measure isometric strength in two areas: arm and leg (Chaffin, 

Herrin, & Keyserling, 1978a). 

 

Figure 4.1 arm, and leg isometric strength test by Chaffin (1978) 

Participants were instructed to increase the exertion for each arm and leg test to maximum without 

jerk for 1-4 sec, then maintain a steady state of exertion for 3-4 sec (Caldwell et al., 1974; Stobbe, 

1982) (Schanne, 1972). Adequate rest intervals between tests were given, between 30 sec to two 

min (Schanne, 1972) (Stobbe, 1982). General procedure of the isometric lifting can be seen in 

Figure 4.1 and Appendix B.  EEG of brain activity was recorded, and this task is also recorded on 

video simultaneously to track the brain signal during participant body motion. Figure 4.2 shows 

the triggering procedure. 
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Figure 4.2: Manual triggering procedure at isometric strength tests 

 

4.1.2.2 Isokinetic strength test: 

Time duration of this experiment was between 5-10 min. The Mini-Gym system first used by  Pytel 

and Kamon (1981) was used to measure the maximum isokinetic lift in this experiment. This tool 

consists of a handle coupled by a rope to a winch that spins at a quantified constant speed at pulling. 

The first element of this system is an electronic load cell and velocity transformer attached to a 

display device to control both velocity and instant forces over the period of motion. The second 

component is a constant-velocity motor with adaptable speed control approximately 0.86 m/s. 

Participants performed one task of movement called dynamic lift strength (DLS), which is similar 

to the low zone lifting task from floor to knuckle starting from 5 cm above the ankle with bent 

knees and ending the pull at chest level (Figure 4.3).  

Participants were asked to pull the handle as quickly and as much as they can with no pain or 

discomfort, and adequate resting time was given between trials; general procedure of isokinetic 

lifting is in Appendix B. 
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Figure 4.3 Dynamic Lift Strength (DLS) Pytel (1981) 

EEG of brain activity is recorded, and this task is also recorded on video simultaneously to track 

the brain signal during participant body motion.  

4.2 Strength pre measurements 

Various anthropometries have been measured such as body weight, shoulder height, hip height, 

knee height, arm length, knuckle height, and body height for all subjects before conducting the 

psychophysical weight test. Table 3.3 in section 3.4 shows the anthropometry of all subjects. The 

selected participants in this study were consistent in most of the anthropometry measures with low 

variation and were normally distributed with no outliers except the age; one subject was forty years 

old, but most of the subjects were within a 95% confidence interval (Figures 3.2 and 3.3 in section 

3.4). 

4.3 EEG data acquisition 

EEG was recorded using a Cognionics Data Acquisition Software Suite and Cognionics High-

Density 64-channel Dry Headset 64-channel EEG (COGNIONICS, Inc. San Diego, CA). 

Electrodes were attached to the scalp using a custom subset of the 10-5 configuration. The flex 

sensor is designed to touch through hair with proper pressure while maintaining the ability to 

flatten for safety and comfort. Patent-pending materials and construction techniques to reduce 

contact impedances and noise without using electrolytic gels was utilized. During the experimental 
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setup, electrode impedance was monitored within the acceptable resistance limits; contact 

impedances with both sensors typically range from 100 k to 1 M Ohm (Mullen et al., 2013). EEG 

signals were sampled at 500 samples/sec. All processing and analysis was performed in Matlab 

(The Mathworks, Natick, MA) using EEGLAB 13 scripts based on (toolbox) from 

(sccn.ucsd.edu/eeglab), an open source environment for processing electrophysiological  data 

(Delorme and Makeig, 2004). 

Subjects were given a five-minute training on how to minimize artifacts such as eye blinking, 

chowing, and any other facial movements.  The experiment started with 10-15 sec resting before 

any physical task. After that, the timer was set to beep every 5 seconds (3 seconds for the exertion 

plus 2 seconds to maintain exertion). Figure 4.4 shows the triggering procedure. The total EEG 

recording time for this experiment is approximately 20 hours. 

 

Figure 4.4: Manual triggering procedure at isokinetic strength tests 

4.4 EEG data pre-processing 

During the experimental setup, electrode impedance was monitored within the acceptable 

resistance limits. EEG was recorded at 500 Hz with a bandpass filter of 0.1-100 Hz. All processing 

and analysis is performed in MATLAB (The Mathworks, Natick, MA) using EEGLAB 13 scripts 
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based on (toolbox) from (sccn.ucsd.edu/eeglab), an open source environment for processing 

electrophysiological  data (Delorme & Makeig, 2004). 

4.4.1 Artifacts correction using ASR 

The artifacts correction used in experimental EEG data was done using the Artifact Subspace 

Reconstruction method (ASR) by Mullen et al. (2013). ASR uses an algorithm to remove non-

stationary high-variance signals from EEG and rebuilds the missing data with a spatial mixing 

matrix (assuming volume conduction). Calibration statistics are estimated in a robust manner (to 

minimize any effect of artifacts) using the Geometric Median (3.1) by Haldane (1948)  over 

windowed (1-second) estimates. It also uses iteratively reweighted least square (3.2)  by (Green, 

1984).  

All EEG records were epoched, time-locked to starting lift onset (#1 Figure 4.4). The criteria of 

ASR was in channels where tolerated flat line duration of more than 5 seconds was considered as 

a bad channel and then rejected. Transition band for the initial high-pass filter was in Hz. This was 

formatted as [0.25 Hz-start, 0.75Hz-end]. If a channel is correlated at less than 80% to its robust 

estimate (based on other channels), it is considered abnormal if a channel has more line noise 

relative to its signal than 4 standard deviations from the channel population mean, and it is 

considered abnormal then rejected. 

Deviation cutoff for removal of bursts using ASR algorithm so data portions whose variance is 

larger than this threshold relative to the calibration data are considered missing data then removed. 

If the artifact in a window was composed of too many simultaneous uncorrelated sources, this is 

the maximum fraction of contaminated channels that are tolerated in the final output data for each 

considered window. Figure 4.5 shows five seconds of EEG recording for one subject during 

isometric testing for arm before and after ASR.   
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Figure 4.5: Five seconds of EEG recording for one subject during arm isometric test before and 

after ASR 

4.4.2 Additional artifacts removal based on epochs rejection 

The artifacts removal based on epochs rejection procedure was the same as described in section 

3.6.2. After these aggressive processes of artifacts correction and removal, most of the subject’s 

EEG recordings passed except for one subject whose data was rejected in the isokinetic strength 

test due to high artifacts. 

4.5 Data Analysis 

The brain’s areas of interest are frontal (which is responsible for attention, judgment, and motor 

planning); central (which is responsible for the sensorimotor), and parietal (which performs 

cognitive processing). EEG recordings were analyzed based on the frequency domain, targeting 

simply the bands associated to movement and sensorimotor areas which are Alpha α-band, Beta 

β-band, and Gamma γ band (Durka, 2003; Durka et al., 2001). All channels Power Spectral Density 

(PSD) was computed using Fast Fourier Transform (FFT) using MATLAB (The Mathworks, 

Natick, MA)  for all frequency bands (theta, alpha, beta, and gamma). 
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4.6 Results 

4.6.1 Strength results 

Nineteen participants performed three strength tests in three replications presented in Table 4.1, 

with the average of the three replicates of each strength.  

Table 4.1: Isometric and Isokinetic strength measurements in kg for 19 participants 

 
 

 

One-way ANOVA showed that the three replications of isometric leg test are not significantly 

different for all participants; Table 4.2 and Figure 4.6 present the results. 

Table 4.2: Replications of isometric leg test in (kg) 

Replication # of participants Average Standard deviation Significant between replications (p-value) 

R1 19 82.50 34.15 

0.83 R2 19 88.64 31.37 

R3 19 87.27 28.05 

Average R1 R2 R3 Average R1 R2 R3 Average R1 R2 R3

34.96 30.35 33.70 40.82 20.82 18.82 24.40 19.23 30.95 24.22 33.70 34.93

90.34 98.75 90.72 81.56 30.54 28.71 30.80 32.11 46.61 46.72 48.44 44.68

92.74 88.86 99.06 90.31 31.74 33.25 31.75 30.21 62.34 57.11 65.41 64.50

83.07 67.00 84.64 97.57 37.26 37.65 38.74 35.38 40.45 45.45 38.46 37.42

47.08 41.00 51.98 48.26 30.77 29.85 29.03 33.43 38.27 33.34 36.15 45.31

70.59 65.05 70.44 76.29 28.29 32.70 27.40 24.77 44.85 43.77 46.22 44.54

75.46 71.99 69.54 84.87 31.86 32.75 28.94 33.88 42.06 43.50 40.14 42.55

94.69 102.97 95.12 86.00 26.22 29.89 23.45 25.31 47.61 48.99 48.58 45.27

88.31 90.17 83.05 91.72 30.07 25.63 31.89 32.70 47.79 45.31 52.16 45.90

53.31 34.47 59.65 65.82 21.49 19.05 20.50 24.90 43.59 41.91 47.85 41.00

139.43 130.73 144.83 142.75 41.62 42.55 41.14 41.19 65.83 54.29 66.86 76.34

93.61 99.97 97.48 83.37 27.02 29.30 25.08 26.67 43.74 40.60 40.10 50.53

34.73 33.93 32.02 38.24 16.44 15.42 16.74 17.15 28.97 22.50 32.57 31.84

126.84 141.75 127.37 111.40 48.23 49.40 46.27 49.03 48.08 48.63 47.04 48.58

92.06 71.21 95.75 88.36 28.94 30.53 28.53 27.76 50.73 49.90 50.30 51.98

98.84 71.44 95.71 101.97 43.77 41.59 44.13 45.59 60.51 50.17 65.14 66.22

75.42 70.94 85.18 70.13 26.69 26.90 27.17 25.99 46.83 45.18 49.71 45.59

147.05 149.23 148.78 143.15 49.62 45.31 52.12 51.44 86.20 87.91 79.51 91.17

114.12 107.68 119.07 115.62 29.71 28.98 27.85 32.30 51.66 48.13 54.34 52.53

86.98 ± 30.53 31.64 ± 8.68 48.79 ± 12.64

Isometric strength (Arm) (kg) Isokinetic Strength (kg)Isometric strength  (leg) (kg)

Replication Replication Replication
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Figure 4.6: Replications of isometric leg test  

One-way ANOVA showed that the three replications of isometric arm test are not significantly 

different for all participants; Table 4.3 and Figure 4.7 present the results. 

Table 4.3:Replications of isometric arm test 

Replication # of participants Average Standard deviation Significant between replications (p-value) 

R1 19 31.49 8.69 

0.97 R2 19 31.36 8.93 

R3 19 32.05 9.09 

 

 
Figure 4.7:Replications of isometric arm test 

 

One-way ANOVA showed that the three replications of isokinetic test are not significantly 
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different for all participants; Table 4.4 and Figure 4.8 present the results. 

Table 4.4: Replications of isokinetic test 

Replication # of participants Average Standard deviation Significant between replications (p-value) 

R1 19 46.19 13.07 

0.58 R2 19 49.61 12.06 

R3 19 50.57 14.25 

 

 
Figure 4.8: Replications of isokinetic test 

The average of all replications per each strength test was computed taking the assumption of 

replicates equivalence; Figure 4.9 shows that the average of the isometric leg test is greater than 

all test for all participants, then the isokinetic test, then the isometric arm test. This result of 

isometric strength tests are consistent and similar to the findings of Chaffin et al. (1978a) ; they 

found the isometric leg strength 69.07±34.70 kg and isometric arm strength 38.92 ±12.97 kg. 

Likewise, the results of isokinetic strength test (dynamic lift strength DLS) are similar to Pytel and 

Kamon (1981) results; they found the isokinetic strength 49.90 ±12.25 kg taking into consideration 

the speed differences of the isokinetic measurement device (Mini-Gym system) by interpolating 

the speed 0.73m/s and 0.97 m/s in our device speed 0.86 m/s. 
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Note: (leg) isometric leg test, (arm) isometric arm test, and (isok) isokinetic test 

 
Figure 4.9: Average of three replications at strength tests for all participants 

4.6.2 EEG results 

The grand average of PSD from all subjects and all channels resulting from three strength tests 

was computed and is shown in Figure 4.10; EEG was reported in the form of linear power spectral 

values µV2/Hz. This graph shows similarities between isometric leg strength test and isokinetic 

strength test in PSD at most frequencies, however isometric arm strength test show a low PSD 

compared to other tests in all frequencies. 

Note: (leg) isometric leg test, (arm) isometric arm test, and (isok) isokinetic test 

 
Figure 4.10: Grand average of PSD from all subjects and all channels from three strength tests 
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Topographical head map of the power spectral density in (dB) at three strength tests isometric leg 

test, isometric arm test, and isokinetic test  at theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and 

gamma (30-50 Hz) bands are shown in Figure 4.11; EEG changes were localized  mostly over the 

sensorimotor area. In isometric arm test, the activation areas were clearly seen at the sensorimotor 

area especially C3 and C4 locations, represented in our device custom 10-5 configuration the 

channels FCC1, FCC1h on left side and FCC2, FCC2h, CCP2, CCP2h on the right side. 

 
Note: Top row is (isok) isokinetic test, middle row is (arm) isometric arm test, and bottom row is (leg) isometric leg test 

 
Figure 4.11: Topographical head map of the power spectral density in (dB) at three strength tests 

at theta, alpha, beta, and gamma bands. 

 

In isometric leg test, the activation areas were clearly seen at the sensorimotor area, especially the 

Cz location, represented in our device custom 10-5 configuration the channels FCCz, FCC1, 
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FCC1h, and FCC2h. In isokinetic test, the activation areas were separated between the frontal, 

sensorimotor, and parietal areas. Comparison between power spectral densities in (dB) at isometric 

arm and isometric leg tests is shown in Table 4.5. One-way ANOVA showed that the power 

spectral densities in isometric leg strength test is significantly higher than it is in isometric arm 

strength test at all brain areas (frontal, central, and parietal) and all frequency bands (theta, alpha, 

beta, and gamma). 

Table 4.5: Averaged power spectral values (dB) for all bands activity in brain regions for all 

participants in isometric arm and isometric leg tests 

Region Band Isometric arm mean PSD Isometric Leg mean PSD p-value 

Frontal 

theta 1.82 4.70   0.01 

alpha 1.01 4.61 <0.01 

beta -3.94 0.90 <0.01 

gamma -7.90 -2.97 <0.01 

     

Central 

theta 1.44 3.94   0.03 

alpha 0.81 4.00   0.01 

beta -3.93 0.27 <0.01 

gamma -7.88 -3.66 <0.01 

     

Parietal  

theta 1.18 3.70   0.04 

alpha 0.55 3.81   0.01 

beta -4.11 0.07 <0.01 

gamma -7.93 -3.76 <0.01 

 

Comparison between power spectral densities in (dB) at isometric leg and isokinetic tests is shown 

in Table 4.6. One-way ANOVA showed that the power spectral densities in isometric leg strength 

test is not significantly different than it in isokinetic strength test at all brain areas (frontal, central, 

and parietal) or all frequency bands (theta, alpha, beta, and gamma). Nevertheless, it was noted 

that PSD in isometric leg strength test is slightly higher. 

 



89 

Table 4.6: Averaged power spectral values (dB) for all bands activity in brain regions for all 

participants in isometric leg and isokinetic tests 

Region Band Isometric Leg mean PSD Isokinetic mean PSD p-value 

Frontal 

theta 4.70 4.05 0.54 

alpha 4.61 4.67 0.96 

beta 0.90 0.86 0.98 

gamma -2.97 -3.48 0.64 

     

Central 

theta 3.94 3.02 0.38 

alpha 4.00 3.86 0.90 

beta 0.27 0.06 0.85 

gamma -3.66 -4.26 0.58 

     

Parietal  

theta 3.70 2.81 0.42 

alpha 3.81 3.63 0.87 

beta 0.07 -0.11 0.88 

gamma -3.76 -4.35 0.60 

 

 

Finally, comparison between power spectral densities in (dB) at isometric arm and isokinetic tests 

is shown in Table 4.7. One-way ANOVA showed that the power spectral densities in isokinetic 

strength test is significantly higher than it is in isometric arm strength test at all brain areas (frontal, 

central, and parietal) and all frequency bands (theta, alpha, beta, and gamma), except that the theta 

band at central and parietal is higher but not significant. 

Table 4.7: Averaged power spectral values (dB) for all bands activity in brain regions for all 

participants in isometric arm and isokinetic tests 

Region Band Isometric arm mean PSD Isokinetic mean PSD p-value 

Frontal 

theta 1.82 4.05   0.05 

alpha 1.01 4.67 <0.01 

beta -3.94 0.86 <0.01 

gamma -7.90 -3.48 <0.01 

     

Central 

theta 1.44 3.02   0.16 

alpha 0.81 3.86   0.02 

beta -3.93 0.06 <0.01 

gamma -7.88 -4.26 <0.01 
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Region Band Isometric arm mean PSD Isokinetic mean PSD p-value 

Parietal  

theta 1.18 2.81   0.17 

alpha 0.55 3.63   0.03 

beta -4.11 -0.11 <0.01 

gamma -7.93 -4.35   0.01 

 

 

4.7 Discussion and conclusion 

This study investigated the brain EEG power spectral activity differences during three lifting 

strength measurements: isometric arm and leg strength tests, and isokinetic strength test. 

Participants performed the three lifting strength tests in three replications, then the average of all 

replications per each strength test was computed taking the assumption of replicates equivalence. 

The average of isometric leg test is greater than all other tests for all participants, then the isokinetic 

test, then the isometric arm test. These results of isometric strength tests are consistent and similar 

to Chaffin et al. (1978a), and the results of isokinetic strength test are similar to Pytel and Kamon 

(1981). 

EEG was recorded using a Cognionics Data Acquisition Software Suite and Cognionics High-

Density 64-channel Dry Headset 64-channel EEG. Sources of artifacts in the EEG signal, such as 

body movement and eye blinks, were successfully removed by using ASR algorithm with 

additional artifacts removal based on epoch rejection. 

Previous studies in brain activity associated with body movement applied many methods such as 

Event-Related Synchronization (ERS); ERS is bands time-locked to an event or a task, 

representing increased activation of the corresponding cortical area during a power increase 

(Durka, 2003; Durka et al., 2001; Pfurtscheller & Aranibar, 1977; Pfurtscheller & Da Silva, 1999). 

After finger, arm, and foot movement ERS in beta band is dominant over the contralateral primary 

sensorimotor area. The gamma band appears as maximum just prior to movement-onset and during 
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execution of movement (Pfurtscheller & Da Silva, 1999). For the arm (left and right) movement, 

studies revealed that the movement-specific locations are C3 and C4 which are the right and left 

sides of EEG central area (Divekar & John, 2013; Feige et al., 2000; Ng & Raveendran, 2007; 

Pfurtscheller, Brunner, Schlögl, & Da Silva, 2006; Pfurtscheller & Da Silva, 1999; Pfurtscheller 

& Neuper, 1997). These results support the results of isometric arm strength test as shown in Figure 

4.11  EEG channels FCC1, FCC1h on left side and FCC2, FCC2h, CCP2, CCP2h on the right side. 

Also for the legs movement, studies found the movement-specific location at the medial 

sensorimotor cortex area, which is the center of EEG central area (Gwin & Ferris, 2012b; 

Pfurtscheller et al., 2006; Pfurtscheller & Da Silva, 1999). These results are similar to the results 

of isometric leg strength test in this study as shown in Figure 4.11 with channels FCCz, FCC1, 

FCC1h, and FCC2h. 

Power Spectral Density (PSD) was used to quantify the EEG variability between the three lifting 

strength measurements. One-way ANOVA showed that the power spectral densities in isometric 

leg strength test is not significantly different than it in isokinetic strength test at all brain areas 

(frontal, central, and parietal) or in all frequency bands (theta, alpha, beta, and gamma). 

Table 4.8: Summary of Study II isometric leg vs. isometric arm in PSD 

Brain Region isometric leg vs. isometric arm in PSD  Associated with 

Frontal (leg> arm)  
at all bands θ, α ,β , γ  

Attention, judgment, and 
motor planning 

Central (leg> arm)  
at all bands θ, α ,β , γ  

Sensorimotor control 

Parietal (leg> arm)  
at all bands θ, α ,β , γ  

Cognitive processing 

 

leg: isometric leg test; arm : isometric arm test;θ : Theta band (4-8 Hz);α :Alpha band (8-13 Hz); β :Beta band (13-30 

Hz); γ :Gamma band (30-50 Hz) 
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Table 4.9: Summary of Study II isokinetic vs. isometric arm in PSD 

Brain 
Region 

isokinetic vs. isometric arm in PSD  Associated with 

Frontal   (isokinetic > isometric arm )  
at all bands θ, α ,β , γ  

Attention, judgment, and motor planning 

Central α (isokinetic > isometric arm )  
β (isokinetic > isometric arm )  
γ (isokinetic > isometric arm )  

Sensorimotor control 

Parietal α (isokinetic > isometric arm )  
β (isokinetic > isometric arm )  
γ (isokinetic > isometric arm )  

Cognitive processing 

Isokinetic: isokinetic strength test; arm : isometric arm test;θ : Theta band (4-8 Hz);α :Alpha band (8-13 Hz); β :Beta 

band (13-30 Hz); γ :Gamma band (30-50 Hz) 

 

 

Also, the power spectral densities in isometric arm strength test were significantly less than 

isometric leg strength test at all brain areas (frontal, central, and parietal) and all frequency bands 

(theta, alpha, beta, and gamma) (Table 4.8); and were significantly less than isokinetic strength 

test at all brain areas and all frequency bands, except that the theta band at central and parietal is 

less but not significant (Table 4.9). 

The static or dynamic muscular strength tests of individuals can deliver a process of pre-

assessment as to whether individuals are capable of carrying out a physical task at the job without 

experiencing injurious strain. Herrin, Chaffin, and Mach (1974) summarize the major components 

affecting manual material handling system which related to workers such as physical efforts, 

sensory and psychomotor task. In addition to those components, personality, training, experience, 

health status and leisure time activities are also considered major elements that affect the material 

handling system. Interestingly, psychomotor measures of operative abilities combine mental and 

motor practice, such as coordination, reaction-response time, and information processing. 
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This study revealed that during physical exertion not only the physiological aspects changes play 

a role, but also human brain activities vary based on the type of strength and the lifting position. 

In addition, brain areas associated with attention, motor planning, sensorimotor and cognitive 

processing at different brain regions frontal central and parietal have seen a remarkable activity 

during maximum strength tests. Consequently, precautions should be considered in the design 

stages of work environment that requires a high level of physical exertion by minimizing the tasks 

which involve a high level of cognitive and complicated mental decision to avoid falling into 

mistakes lead to accidents.  
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CHAPTER 5:  SUMMARY AND FUTURE RESEARCH DIRECTIONS 

5.1 Summary of Research 

This dissertation research is considered to be the first study in the field of neuroergonomics 

that focuses on the understanding of human brain activity during physical exertions. Manual lifting 

tasks and lifting strength measurements were investigated using electroencephalographic 

recordings and analysis of brain waves, including theta, alpha, beta, and gamma frequency bands. 

The results showed significant differences in EEG power spectrum density at three main brain 

areas which have been attributed to different levels of lifting frequency, as well as different lifting 

strength measurements. 

First, in the MAWL study the brain’s EEG power in medium lifting is significantly greater 

than it is in the low lifting task in all bands (theta θ, alpha α, beta β, and gamma γ) at the frontal, 

central, and parietal areas in channels level. Similarly, brain’s EEG power in medium lifting is 

significantly greater than it is in low lifting task in theta θ at frontal, central, and parietal areas in 

that region; it is also significantly greater than it is in the low lifting task in alpha α at the frontal 

area. The increase in theta and alpha at medium lifting may be due to increase of attention. The 

brain’s power in medium lifting task is significantly greater than it is in high lifting task in alpha 

α, beta β, and gamma γ bands at central and parietal; however, it is less in theta at frontal and 

central areas in channels level. Similarly, the brain’s EEG in medium lifting task is significantly 

greater than it is in high lifting task in alpha α, beta β, and gamma γ in region level. Limited 

significant differences between trials were found at low and high lifting, and no significant 

difference between trials at medium lifting were found even with different groupings at experiment 

I and experiment II. The decline of brain power at high lifting (6.7 lifts/min) may be because of 
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fatigue induction. 

Second, in the strength measurements the power spectral densities in isometric leg strength 

test were not significantly different than in isokinetic strength test at all brain areas (frontal, central, 

and parietal) or all frequency bands (theta, alpha, beta, and gamma). Moreover, the power spectral 

densities in isometric arm strength test were significantly less than isometric leg strength test at all 

brain areas (frontal, central, and parietal) and all frequency bands (theta, alpha, beta, and gamma); 

and it is significantly less than isokinetic strength test at all brain areas and all frequency bands, 

except that the theta band at central and parietal is less but not significant.  

The results of this project are considered to be critical to our understanding of the neural 

correlates of human physical activities, and consequently, should have a profound impact on the 

success of workplace design that considers human capacity and limitations in manual lifting tasks. 

 

5.2 Future Research Directions 

From the results presented and the conclusion drawn from this research investigation, there 

is sufficient motivation for the following extensions of this research investigation. 

The first extension of this study to justify the appearance of fatigue during MAWL 

estimation especially in high lifting frequency, it is recommended to use dynamic changes of 

fatigue-related functional coupling in the α/β band by calculating mean lagged phase 

synchronization. 

One of the limitations of this experiment was the difficulty to track adding and removing 

of the weight during MAWL estimation. New solutions and technology may help to resolve this 

issue. Furthermore, in manual materials handling, several tasks may possibly be investigated in 
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addition to lifting, such as pushing, pulling, and lowering; besides, several positions among these 

tasks can be investigated. 

One of the important ways of analysis to understand the relationship between strength 

measurement and brain activity is to find the correlation between EEG power spectral density and 

strength. It is also recommended to find the correlation between MAWL, strength, and EEG power 

spectral density to give a more comprehensive understanding of human body strengths and 

limitations. 
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         FWA00000351, IRB00001138 
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Date:              February 17, 2015 
 

Dear Researcher: 
 

On 2/11/2015, the IRB approved the following human participant research until 02/10/2016 inclusive:  

 

Type of Review: UCF Initial Review Submission Form  

Project Title: Linear and non-linear EEG analysis of the brain’s activity during 
lifting tasks: determination of the maximum acceptable weights 

using the psychophysical method, and isokinetic and isometric 

strength measurements 

Investigator:  Awad Aljuaid, PhD student 

IRB Number:  SBE-14-10799 

Funding Agency:   

Grant Title:  N/A 
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must be submitted 30days prior to the expiration date for studies that were previously expedited, and 60 days prior 

to the expiration date for research that was previously reviewed at a convened meeting.  Do not make changes to the 

study (i.e., protocol, methodology, consent form, personnel, site, etc.) before obtaining IRB approval.  A 

Modification Form cannot be used to extend the approval period of a study.   All forms may be completed and 

submitted online at https://iris.research.ucf.edu .   
 

If continuing review approval is not granted before the expiration date of 02/10/2016, 

approval of this research expires on that date. When you have completed your research, please submit a  

Study Closure request in iRIS so that IRB records will be accurate. 
 

Use of the approved, stamped consent document(s) is required.  The new form supersedes all previous versions, 

which are now invalid for further use.  Only approved investigators (or other approved key study personnel) may 

solicit consent for research participation.  Participants or their representatives must receive a copy of the consent 

form(s).  
 

All data, including signed consent forms if applicable, must be retained and secured per protocol for a minimum of five years 

(six if HIPAA applies) past the completion of this research.  Any links to the identification of participants should be 

maintained and secured per protocol.  Additional requirements may be imposed by your funding agency, your department, or 

other entities.  Access to data is limited to authorized individuals listed as key study personnel.   
 

In the conduct of this research, you are responsible to follow the requirements of the Investigator Manual. 
 

On behalf of Sophia Dziegielewski, Ph.D., L.C.S.W., UCF IRB Chair, this letter is signed by: 

 

University of Central Florida Institutional Review Board 

Office of Research & Commercialization 

12201 Research Parkway, Suite 501 

Orlando, Florida 32826-3246 

http://iris.research.ucf.edu/
http://www.research.ucf.edu/compliance/IRB/Investigators/IRB%20Policies%20&%20Procedures/HRP-103_INVESTIGATOR_MANUAL_2009.pdf
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APPENDIX B FORMS AND INSTRUCTIONS 
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Instructions 

Psychophysical weight lifting test  

 

“We are attempting to find out how much an individual can be expected to lift while they 
are performing their regular job. We are not interested in the maximum amount of 
weight that can be lifted, but only the amount that can be lifted comfortably and without 
strain”.  
 

 
“In other words, WE WANT YOU TO WORK AS HARD AS YOU CAN without straining 
yourself or becoming unusually tired, weakened, overheated, or out of breath”. 
 
“YOU WILL ADJUST YOUR OWN WORK LOAD. You will work only when the timer 
beeps. Your job will be to adjust the load; that is, to adjust the weight of the box that you 
are lifting. Adjusting your own work load is not an easy task. Only you know how you 
feel”. 
 
“IF YOU FEEL YOU ARE WORKING TOO HARD, reduce the load by removing weight 
from the box”. 
 
“WE DON’T WANT YOU LOAFING EITHER If you that you can work harder, as you 
might on piece work, put in more weight” 
 
“DON’T BE AFRAID TO MAKE ADJUSTMENTS. You have to make enough 
adjustments so that you get a good feeling for what is too heavy and what is too light 
you can never make too many adjustments - but you can make too few”. 
 
 
“WE WANT YOUR JUDGMENT ON HOW HARD YOU CAN WORK WITHOUT 
BECOMING UNUSUALLY TIRED”. 
 

"The test will be demonstrated to you. If you do not understand what to do, ask 
questions. " 
 
 
 

1. Low Frequency psychophysical weight lifting test will consider the following 

variables 
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a) Lifting Zone: we will apply only the low zone in this study (floor to knuckle) 

b) Vertical distance: between 20-32 in. from floor to table.  

c) Box dimensions:  Approximately 20x14x14 in. 

d) Frequency:  in this session, low frequency will be considered in lifting as per 

Snook criteria. The lifting frequency will be 1 lift per minute. 

2. High Frequency psychophysical weight lifting test will consider the following 

variables 

a) Lifting Zone: we will apply only the low zone in this study (floor to knuckle) 

b) Vertical distance: between 20-32 in. from floor to table.  

c) Box dimensions:  Approximately 20x14x14 in. 

d) Frequency:  in this session, high frequency will be considered in lifting as per 

Snook criteria. The lifting frequency will be 1 lift per 14 seconds (4.3 min -1 ). 

You will start with either low weight or heavy weight. The heavy weight will be the 

maximum acceptable weight of lift as per Snook and Ciriello in Liberty Mutual Manual 

Materials Handling Tables. You will be instructed as per (Ciriello & Snook, 1983) method  

to adjust the weight by adding and removing iron/rubber weight plates for 40 minutes until 

you obtain the maximum weight that you can lift without “strain or discomfort and without 

becoming tired, weakened, over-heated, or out of breath.”  
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MEDICAL SCREENING QUESTIONNAIRE 

 

Please circle your answer to the following health-related questions. Your answers will help determine your 

eligibility to participate in the study. Keep in mind that your participation is voluntary and you may choose not to 

answer questions you do not wish to answer. Please refer to your copy of the Consent Form for more details. 
 

Yes | No Do you presently have any known heart disease which could limit 

the amount of exertion (physical activity) you should expend? 

Yes | No Do you presently have or have you ever been diagnosed with high 

blood pressure? 

Yes | No Do you presently have any chest or breathing conditions which 

could restrict your physical activity? 

Yes | No In the last six months, have you recently had any surgery which 

could limit your physical activity? 

Yes | No Are you currently taking any medications that may cause physical 

weakness and/or may impede you from performing or limit your 

physical activities? 

 

Yes | No In the last six months, have you been administered any injections 

that may cause physical weakness and/or may impede you from 

performing or limit your physical activities? 

Yes | No Musculoskeletal Disorders (MSDs) refer to injuries or conditions 

that may develop over time and that often affect the back, neck, 

shoulders and/or upper limbs (e.g., carpal tunnel syndrome, 

tendonitis). In the last six months, have you developed any known 

musculoskeletal problems or conditions? 

If YES, please explain 

___________________________________________ 

___________________________________________ 

Yes | No Have you ever had incidences of low back pain or been diagnosed 

with any back condition? 

Yes | No Have you ever been diagnosed with a hernia? 

Yes | No Do you presently have any known mental or neurological 

disorders/diseases such as Epilepsy, Alzheimer, Multiple sclerosis, 

etc.? 
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Participant Initial: ______           

Participant Number: (      ) 

 
Data Collection Form 

Participant Initial: ______ 
Participant Number: (      ) 

Variable  Magnitude 

Age (year)  

Body weight (kg/lb)  

Shoulder height (cm)  

Hip height (cm)  

Knee height (cm)  

Arm length (cm)  

Knuckle height (cm)  

Body height (cm)  

Hart Rates (beats/min)  

Oxygen Consumption (ml min-1 )  

Static leg Strength (N) / Lb.    

Static arm Strength (N) / Lb.    

Dynamic Lift Strength (N) / Lb.    

Dynamic back Strength (N) / Lb.    

Low Frequency psychophysical MAWL Lb. 

 

  

High Frequency psychophysical MAWL Lb. 
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Instructions 
Isometric Strength Test  

Prior to administering the first test, you will be given the following instructions: 

"We are going to measure the maximum strength of your arm, and leg with isometric tests. This 

means you will be exerting force, but there will not be any movement. We will measure your 

maximum force with this apparatus. For each test, please follow these instructions. " 

You will be asked to lift the chine in multiple positions to measure your isometric strength in two 

areas (Arm,and Leg)  

 
Arm, and leg isometric strength test by chaffin (1978) 

"The test will be demonstrated to you. If you do not understand what to do, ask questions. " 

''We will give you four attempts. The first attempt will not count; we want you to try at only half 

(50%) effort. This attempt is a warm-up, and will help you figure out if you understand what to 

do. If you do not fully understand what to do, let me know." 

''Next, you will be given three attempts on each test. Try your best on both as your score will be 

the average of the three measurements."  

"When a test is to be given, I will ask you if you are ready. Shortly after the command "ready," 

start to exert maximum force without jerk for 1-4 seconds then maintain a steady state of 

exertion for 3-4 seconds. You will have rest intervals between tests between 30 sec to two min” 

''Always stop a test if I tell you to, even if there is no apparent reason to do so. Also, if you feel 

pain or discomfort, stop exerting force immediately. But do not change your specified position or 

the muscle groups used during the test, even if you believe that you could apply a greater force 

and/or reduce discomfort with such changes." 

 
                                                 The Jackson Strength Evaluation System 
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Instructions 

Isokinetic Strength Test  
 

 

You will be asked to perform one task of movement called dynamic lift strength (DLS), which is 

similar to the low-zone lifting task from floor to knuckle.  

 

This method will be demonstrated to you before you start the task. You will be asked to pull the 

handle as quickly and as much as you can with no pain or discomfort, and adequate resting time 

will be given to you between trials. 

 

 “Three trails Starting from 5 cm above the ankle with bent knees and ending the pull at chest 

level, Pull the handle as quick as much you can” 

 “Adequate resting time will be given between trails” 

''Always stop a test if I tell you to, even if there is no apparent reason to do so. Also, if you feel 

pain or discomfort, stop exerting force immediately 

                          

                                                         DLS PyteL (1981) 

                                                                      

 

                                       
                                     A schematic internal preview of Mini-Gym 
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Liberty Mutual Manual Materials Handling Tables z Snook and Ciriello (1991) 
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