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ABSTRACT 

Emergency Departments (EDs) represent a crucial component of any healthcare 

infrastructure. In today’s world, healthcare systems face growing challenges in delivering efficient 

and time-sensitive emergency care services to communities. Overcrowding within EDs represents 

one of the most significant challenges for healthcare quality that adversely impacts clinical 

outcomes, patient safety, and overall satisfaction.  Research in this area has resulted in creating 

several ED crowding indices, such as National Emergency Department Overcrowding Scale 

(NEDOCS) and Emergency Department Work Index (EDWIN) that have been developed to 

provide measures aimed at mitigating overcrowding. Recently, efforts made by researchers to 

examine the validity and reproducibility of these indices have shown that they are not reliable in 

accurately assessing overcrowding in regions beyond their original design settings. The 

shortcomings of such indices stem from their reliance upon the perspective and feedback of only 

clinical staff and the exclusion of other stakeholders. These limited perspectives introduce bias in 

the results of ED overcrowding indices.  

This study starts with confirming the inaccuracy of such crowding indices through 

examining their validity within a new healthcare system. To overcome the shortcomings of 

previous indices, the study presents a novel framework for quantifying and managing 

overcrowding based on emulating human reasoning in overcrowding perception. The framework 

of the proposed study takes into consideration emergency operational and clinical factors such as 

patient demand, patient complexity, staffing level, clinician workload, and boarding status when 

defining the crowding level. The hierarchical fuzzy logic approach is utilized to accomplish the 
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goals of this framework by combining a diverse pool of healthcare expert perspectives while 

addressing the complexity of the overcrowding issue. The innovative design of the developed 

framework reduces bias in the assessment of ED crowding by developing a knowledge-base from 

the perspectives of multiple experts, and allows for its implementation in a variety of healthcare 

settings. Statistical analysis of results indicate that the developed index outperform previous 

indices in reflecting expert subjective assessments of overcrowding.  
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CHAPTER 1  INTRODUCTION 

 

1.1 Introduction  

  

Hospital-based emergency departments (EDs) are a crucial component of any healthcare 

infrastructure. EDs provide emergency and urgent care services to patients, in addition to providing 

acute care to uninsured people, serving as “the safety net of the safety net” (IOM, 2007). However, 

in today’s complex world, healthcare systems face growing challenges in delivering efficient and 

time-sensitive emergency care services to communities. Healthcare expenditures continue to 

increase, and at the same time, several difficulties exist relating to community or individual access 

to proper care. Such issues continue to impact healthcare systems of a multitude of nations, 

prompting governments to take action both politically and academically to identify and assess 

problems. For instance, the American College of Emergency Physicians’ (ACEP) 2014 report card 

revealed that the USA’s emergency care environment is worsening, as it barely passed ACEP’s 

assessment with a D-Plus grade. The report asserted that the issues regarding access to EDs play a 

critical role in any effort to improve ED services. Other countries, including Saudi Arabia, Canada, 

France, China, Spain, Italy, Iran, United Kingdom, India, Australia, and Germany, have suffered 

from increasing demands on EDs, which has led to a congestion of patients in such EDs. Generally, 

due to growing demands and limited resources, EDs globally face serious issues related to potential 

patients’ access to emergency care, the ability to deliver needed services, as well as concerns with 

EDs congestion.  
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EDs crowding, which, as stated by the ACEP, “… occurs when the identified need for 

emergency services exceeds available resources for patient care in the emergency department 

(ED), hospital, or both” (Lin, Taira, Promes, & Regan, 2011), is a multidimensional dilemma 

(Crane, Zhou, Sun, Lin, & Schneider, 2014) facing healthcare legislators and healthcare decision 

and policy makers around the world. The ED crowding phenomenon adversely impacts patient 

safety, clinical care outcomes, and patient and staff satisfaction as well as the reputation of 

healthcare institutions. In a recent published report, the United States Government Accountability 

Office claimed that “emergency departments crowding continues to occur, and some patients wait 

longer than recommended time frames.” (GAO, 2009). To cope with this concern, interdisciplinary 

efforts have focused on reaching a consensus on a definition for the problem, developing measures 

of ED crowding, and investigating its influence on EDs’ operational and clinical outcomes.  

When an ED is crowded, decisions have to be made in a variety of areas to assure the ability 

of delivering safe emergency care services such as decisions regarding ambulance diversion and 

ED staffing. To evaluate an ED’s level of crowding, there had been a need for a quantitative 

instrument that determines ED overcrowding status. As a result, four ED crowding measurement 

scales were developed. Those scales are Emergency Analysis of Demand Indicators (READI) 

(Reeder & Garrison, 2001), Emergency Department Work Index (EDWIN) (Bernstein, Verghese, 

Leung, Lunney, & Perez, 2003), National Emergency Department Overcrowding Score 

(NEDOCS) (Steven J. Weiss et al., 2004), and Work Score (Epstein & Tian, 2006). Lately, 

research efforts have moved towards examining the reproducibility, reliability, and validity of such 

indices within different healthcare systems. Unfortunately, most of those efforts show that the 
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existing ED overcrowding measurement systems are not accurate in assessing overcrowding 

outside the settings where there were originally developed.   

In addition to these inaccuracies, it has been noticed that most of these ED measurement 

scales rely mainly on the perspective and feedback of physicians and nurses, for the subjective 

assessment of crowding, who represent only one type of ED stakeholder. Thus, those indices are 

biased toward healthcare giver perspective leaving researchers lacking a quantitative tool for 

assessing ED crowding that takes into consideration the other stakeholder’s perspectives, such as 

patients, and hospital administrators as well as healthcare experts.  

 

1.2 Emergency Care System: An Overview 

 

Hospital-based emergency departments (EDs), first emerging after World War II, are a 

relatively recent healthcare phenomenon (Morganti et al., 2013). By the early 1970’s, emergency 

care services had developed in many ways, such as changes in  ED staffing from existing as part-

time community physicians to being full-time emergency physicians (IOM, 2007). Since then, the 

demand on emergency care has increased dramatically, and the quality of emergency services has 

been negatively impacted.  

As Figure 1-1 illustrates, the conditions in EDs continues to worsen. The number of 

emergency department visits in the US reached 130 million visits in 2011, which is a 46% increase 

from 88.5 million visits two decades ago. Simultaneously, the number of emergency departments 

decreased by 12.7 % from 5,108 to 4,461. Moreover, the ED visits per 1000 persons increased 
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from 351 to 415, as shown in Figure 1-2, which indicates a growing demand on emergency care 

services.  

 

 

Figure 1-1: Number of ED visits and emergency departments in the USA, 1991-2011 

Source: U.S. Department of Health and Human Services. 
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Figure 1-2: US emergency department visits per 1,000 persons 

 Source: U.S. Department of Health and Human Services 

 

Every five years, the American College of Emergency Physicians (ACEP) reviews the 

emergency care environment and publishes a report card that provides more comprehensive 

information about the status quo of the emergency care services in the USA. The report card is 

divided into five categories and includes 136 objective measures. The categories, as illustrated in 

Table 1-1, include access to emergency care, quality and patient safety environment, medical 

liability environment, public health and injury prevention, and disaster preparedness. The report 

card evaluates the emergency care environment for each state. In addition, it evaluates the 
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According to the most recent report card, released in 2014, the USA’s emergency care 

received a D-plus. It also revealed that the emergency care system in the USA has worsened since 

the last assessment in 2009, when it earned a C-minus. Access to emergency care, which represents 

30% of the overall grade, is a vital factor in the evaluation. The overall grade for this factor is a D-

minus in both 2009 and 2014 (ACEP, 2014). 

 If the grade is broken down by state, however, as presented in Figure 1-3, it can be seen 

that the situation has worsened in that more states received a grade of F in 2014 compared to the 

number of states in 2009. The number of states that received a B or C decreased by 6 and 5 states, 

respectively. It is obvious that these results agree with the tenor of the 2009’s report of the United 

States Accountability office titled “Hospital Emergency Departments: crowding continues to 

occur, and some patients wait longer than recommended time frames.” (GAO, 2009).  
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Table 1-1: Emergency care environment’s report card 

Source: American College for Emergency Physicians (ACEP)  

Category Weight 
2009 

Grade 

2014 

Grade 

Access to emergency care 30 Percent D- D- 

Quality and patient safety environment 20 Percent C+ C 

Medical liability environment 20 Percent C- C- 

Public health and injury prevention 15 Percent C C 

Disaster preparedness 15 Percent C+ C- 

Overall grade 100 Percent  C- D+ 

 

 

Figure 1-3: Grades received by states (access to emergency care) 

  Source: American College for Emergency Physicians (ACEP) 

 

1

10

17

11 12

1

4

12 11

21

0

5

10

15

20

25

30

A B C D F

2009 2014



8 

 

The Institute of Medicine’s (IOM) 2001 report “‘Crossing the Quality Chasm’’ revealed 

that the healthcare system of the United States faces serious issues. To begin coping with such 

issues, six aims for healthcare improvement were proposed as follows: 

 Safety: avoiding risk of harming patients from care service  

 Effectiveness: avoiding overuse and underuse of care delivery.  

 Patient-centeredness: respecting patient choices and taking into account patient values.  

 Timeliness: reducing wait time for patients and care providers.  

 Efficiency: reducing waste associated with care provided to patients. 

 Equity: providing care to patients regardless of their racial or ethnic characteristics.  
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1.3 Testing NEDOCS and EDWIN Reliability: a Preliminary Study 

 

 

1.3.1 Introduction 

 

Crowding presents serious issues to EDs in any healthcare system, negatively impacting 

patient safety and clinical outcomes. Measurement tools play a critical role in addressing 

overcrowding by quantifying it and informing decision makers, however it is also important that 

they produce reliable results for multiple environments. Indices developed to quantify crowding 

vary in that they rely on unique perspectives from one type of stakeholder, in addition to utilizing 

different assessment approaches.  

Based on a preliminary review of academic research on ED overcrowding, two assessment 

approaches were identified, including identification of measures and indicators for ED 

overcrowding, and the development of multidimensional indices for quantifying overcrowding. 

Additionally, seventy-one ED crowding measures, indicators, and indices were identified among 

the related research, and their applications were studied. Among these measures, four 

multidimensional ED overcrowding indices were identified, which are the Real-time Emergency 

Analysis of Demand Indicators (READI) (Reeder & Garrison, 2001), the Emergency Department 

Work Index (EDWIN) (Bernstein et al., 2003), the National Emergency Department 

Overcrowding Score (NEDOCS) (Steven J. Weiss et al., 2004), and the Work Score (Epstein & 

Tian, 2006). 



10 

 

The preliminary review of literature indicated that the reliability and validity of NEDOCS 

and EDWIN indices vary from one healthcare system to another. For instance, in some emergency 

care settings, the indices showed acceptable levels of accuracy in evaluating ED crowding, while 

in other settings they were ineffective in determining crowding status. These ED overcrowding 

indices needed to be examined in a new healthcare system where they have not been validated yet 

to test their usefulness across different ED contexts. Research shows that the validity and accuracy 

of the existing ED overcrowding indices have not been examined in the region of Middle East, 

where patient congestion in EDs is a serious issue. Therefore, a preliminary study was conducted 

in Saudi Arabia to help fill the knowledge gap in the studied region. Hence, the preliminary study 

will entail evaluating the reliability and validity of NEDOCS and EDWIN in Saudi Arabian 

healthcare organizations, where no ED crowding measurement systems have been previously 

implemented. 

The objective of the preliminary study is to examine the accuracy and reproducibility of 

the National Emergency Department Overcrowding Scale (NEDOCS) and the Emergency 

Department Work Index (EDWIN) within the Saudi Arabian healthcare system.   

Specifically, this preliminary study aims to answer the following questions:  

 Is the National Emergency Department Overcrowding Scale (NEDOCS) valid and reliable 

in quantifying ED crowding within Saudi Arabian healthcare settings?  

 Is the Emergency Department Work Index (EDWIN) valid and reliable in quantifying ED 

crowding within Saudi Arabian healthcare settings?  
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The collected data will be analyzed to quantitatively examine the validity and 

reproducibility of NEDOCS and EDWIN within Saudi Arabian emergency care settings. 

  
 

1.3.2 Method 

 

Two hypotheses were developed to be tested in this preliminary study, and are as follows: 

 

 Hypothesis one: the National Emergency Department Overcrowding Scale (NEDOCS) 

cannot accurately quantify the ED overcrowding levels within Saudi Arabian 

emergency care settings.  

 Hypothesis Two: the Emergency Department Work Index (EDWIN) cannot accurately 

quantify the ED overcrowding levels within Saudi Arabian emergency care settings.  

 

Whether or not the NEDOCS index (Equation 6) is valid and reliable in Saudi Arabian 

emergency care settings will be examined. Both subjective and objective data will be collected 

from a distributed survey (seen in Appendix E) and analyzed to test hypothesis one. The qualitative 

section will involve collecting the opinions of physicians and nurses who work in the emergency 

department regarding the degree of overcrowding and about their feelings of being in rush at a 

given time. The quantitative section involves collecting information on five variables designed to 

count the number of patients and time of patient flow through the ED at a given time. In addition, 

the quantitative section takes into consideration two constants: the capacity of the hospital, and 

that of emergency department. The process of collecting the data will take place four times a day, 
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seven days a week, for four weeks. Table1-2 illustrates the eligibility criteria for participation, the 

sample size, and timeline of the NEDOCS study. 

 

Table 1-2: Eligibility criteria and timeline for NEDOCS and EDWIN study 

  Physician Survey  Nurse 

Survey  

Quantitative 

Section 

Eligibility Criteria for 
Participation  

ED Physician ED Nurse 
ED administrator, 
ED Nurse, or ED 
Physician 

The duration of an 
individual subject’s 
participation in the 
study 

One minute One minute Five minutes 

Number of participants  180 180 90 

Duration of the study  Four weeks 

 

 

In a similar manner, subjective and objective data from distributed surveys in appendix F 

will be used to analyze and test hypothesis two, to ultimately determine the validity and reliability 

of the EDWIN index in the same ED setting. In the qualitative section of the survey, the opinion 

of physicians and nurses is collected regarding the ED busyness level at a given time. The 

quantitative section will collect information on four variables designed to determine both the 

number of patients in each triage category and the total number of patients at a given time. Data 

will be collected four times a day, seven days a week, and the study will last for four weeks.  Table 

1-2 illustrates the eligibility criteria for participation, the sample size, and timeline of the EDWIN 

study. 
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Samples that do not follow the eligibility criteria shown in table 1-2, and surveys which 

are not completely filled out by participants will be excluded from the final results.  

The EDWIN score will be calculated using Equation 5, and the EDWIN Clinician 

Subjective Assessment (CSA) score will be determined using a five-point Likert scale as shown 

in Appendix F. The NEDOCS score will be calculated using Equation 6, and its CSA will be 

determined using a six-level Likert scale as shown in Appendix E.  

The reliability of the EDWIN and NEDOCS index will be measured by testing the 

agreement levels between the objective scores of the indices and their CSA subjective scores. 

Kappa statistics is a suitable method for evaluating such reliability. Cohen’s Kappa can be 

calculated using the following formula:   

 

𝜅 =  Pr(𝑎)−Pr (e)1−Pr (𝑒)                                                             (1) 

 

Where Pr(a) is the proportion of observations in agreement and Pr(e) is the proportion in 

agreement due to chance.  

 

1.3.3 Results and Discussion 

 

The preliminary study was conducted in the emergency department of a major public 

hospital in Saudi Arabia, which treats approximately 100,000 patients per year, and features 450 
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inpatient beds and 42 emergency care beds. The purpose of this section of this preliminary study 

was to test the objective scores from NEDOCS against the subjective assessment of clinicians on 

their perception of crowding in order to determine its accuracy in reflecting the level of ED 

crowding. Over the course of four weeks, 90 observations were randomly taken. Observations 

were conducted randomly to take measurements that correspond to the variables of the NEDOCS 

equation, including the number of admitted patients, the number of hospital beds, the waiting time 

for the last patient placed in an ED bed, the longest time among boarding patients since registration, 

and the number of occupied respirators. Simultaneously, surveys were distributed to two 

physicians who were available during an observation period, asking them to rate the degree of 

crowding in the ED, as well as their feeling of being rushed, on a Likert scale of 1 to 6. Two 

available nurses were also asked to rate the degree of crowding in the ED in each observation 

period. 

As similar in the study by Steven J. Weiss et al. (2004), the Likert scale was assigned to 

six descriptive categories found in the NEDOCS scale, and was converted to a scale from 0 to 200, 

where 0 corresponded to “not busy”, 40 was “busy”, 80 was “extremely busy but not 

overcrowded”, 120 was “overcrowded”, 160 was “severely overcrowded”, and 200 was 

“dangerously overcrowded”. This would allow for the use of kappa statistics to determine the 

reliability and absolute agreement of the average of the six assessments taken.  

The results from the observation period in Appendix H were analyzed to determine the 

reliability for subjective evaluations provided by both physicians and nurses, and finally the 

averaged assessments were compared to the NEDCOS scores. The inter-rater reliability between 

physician assessments of the level of crowding was 0.297, with a 95% confidence interval of 
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[0.175, 0.419], showing fair agreement. Appendix H also includes the cross-tabulation of the two 

physicians’ responses, showing their agreement in each provided assessment. Among the 90 

observations made on the six point Likert scale, only 43% of the physician responses were in 

agreement. The most common score for the first physician was a score of five, provided 24 times, 

while the second physician responded most frequently with a score of four, doing so 32 times. 

When physicians were asked about their feeling of being rushed, the inter-rater reliability between 

physician responses was 0.179 with a 95% confidence interval of [0.063, 0.295], indicating poor 

agreement. In the cross-tabulation of responses from Appendix H, physician assessments for their 

feeling of being rushed agreed only 34% of the time, and no scores of “1” were issued by the 

second physician among the 90 observations. The first physician issued a score of “3” most 

frequently at 25 times, while the second physician issued a score of “4” most frequently, at 32 

times. For the agreement among nurse assessments of crowding, the inter-rater reliability was 

0.253 with a 95% confidence interval of [0.130, 0.376], showing fair agreement. The cross-

tabulated results from the nurse assessments show that nurse assessments agreed 39% of the time 

when issuing scores. The first responding nurse most frequently assigned a score of “5” at 22 

times, while the second nurse issued a score of “2” most often for 22 assessments.  

The agreement between the average physician response and average nurse response for the 

assessment of crowding was also found. The inter-rater reliability between the average clinician 

response on crowding was 0.204, with a 95% confidence interval of [0.073, 0.335], showing fair 

agreement. It was found that the averaged clinician responses resulted in no assessments issued in 

the first NEDOCS descriptive category of “not busy”. The cross-tabulation of these responses 

show that the average clinician response was in agreement 30% of the time. The average nurse 
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assessment most frequently assigned a score of “4” at 28 times. Similarly, the average physician 

response was most often “4” for 31 assessments. After calculating the objective scores from 

NEDOCS, it was found that the average was 132 on the 200 point scale. 

 To determine if NEDOCS accurately reflected the subjective assessment of clinicians, the 

averaged clinician assessments were compared to the objective NEDOCS scores across the six 

different descriptive categories using kappa statistics (Appendix H). It was found that among the 

90 observations, NEDCOS assessed the crowding level to be “not busy” 11% of the time, while 

providing evaluations of “busy” 19% of the time, “extremely busy but not overcrowded” 33% of 

the time, “overcrowded” 22% of the time, “severely overcrowded” 13% of the time, and 

“dangerously overcrowded” only 1% of the time. In comparison, the average clinician evaluation 

of crowding for the 90 observations consisted of 12% “busy”, 24% “extremely busy but not 

overcrowded”, 38% “overcrowded”, 21% “severely overcrowded”, and 4% “dangerously 

overcrowded”. Furthermore, the objective scores issued by NEDOCS agreed with the average 

clinician subjective assessment only 43% of the time, with no agreement occurring in the first and 

last descriptive classes. The inter-rater reliability for the NEDOCS scores and the average clinician 

assessment was 0.276 [95% CI (0.156, 0.395)], indicating fair agreement. These findings indicate 

that NEDOCS is ineffective in accurately reflecting the subjective clinician perception of ED 

crowding in Saudi Arabia ED settings. 

A similar methodology for the assessment of NEDOCS was carried out to determine 

accuracy of the EDWIN in reflecting the subjective assessment of crowding by clinicians. The 

findings in this section represent the second half of the preliminary study aimed at assessing the 

reliability and reproducibility of the mentioned indices. Data was collected for the testing of the 
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EDWIN index in the same hospital emergency department in Saudi Arabia in which the NEDOCS 

data was collected, during the same observational period of four weeks. In each observation, the 

recorded data included the number of patients in each triage category using the emergency severity 

index, the number of present physicians, the capacity of the ED, and the number of boarded 

patients. Simultaneously, subjective assessments were provided by two available physicians and 

two available nurses who rated crowding on a five point Likert scale. The clinicians were asked to 

rate the level of busyness in the ED, with one being the least crowded, and five being the most 

crowded.  

When all observations were completed, the average subjective scores were compared to 

the EDWIN objective scores. In accordance to the methods by Bernstein et al. (2003), the average 

of the four clinicians’ responses was determined, and assigned to the Likert scale, where three 

descriptive classes were assigned to three intervals on this scale to describe the average response. 

In keeping with Bernstein et al. (2003), the EDWIN scale similarly contained three descriptive 

classes on three intervals, where for scores between of 0 and 1.5, the ED crowding level 

corresponded to the class “active, but manageable”. For scores between 1.5 and 2, the ED was 

considered “busy”, and for scores higher than 2, the ED was “crowded”. Similarly, the Likert scale 

on which the subjective responses were provided was assigned these same classes on three 

intervals. An average subjective assessment between 1 and 2 would correspond to “active, yet 

manageable”, while an average assessment between 2 and 4 would be considered “busy”, and an 

assessment between 4 and 5 would be “crowded”. The average response from the four clinicians 

would then fall into one of these respective categories also used in the described EDWIN scale, to 

describe the average subjective assessment on crowding.  
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Reliability analysis (Appendix H) found that for the agreement among physician-physician 

assessments, the inter-rater reliability was 0.394, with a 95% confidence interval of [0.257, 0.531], 

indicating fair agreement. Among the cross-tabulation of the responses provided by physicians, it 

was found that physicians issued the same scores in 54% of their observations. The first responding 

physician in the observations issued scores of “4” most often, doing so for 34 such observations. 

The second responding physician also assigned a score of “4” on the five point Likert scale most 

frequently, doing so 28 times. The inter-rater reliability between nurses’ subjective assessment 

was 0.572, with a 95% confidence interval of [0.447, 0.697], which indicates moderate agreement. 

In the cross-tabulated results of the nurse assessments, it was found that nurses agreed in their 

evaluations 68% of the time. The first responding nurse assigned a score of “3” most often, doing 

so 31 times, while the second responding nurse also issued a score of “3” most often in 32 

assessments. The agreement between average subjective responses of physicians and nurses was 

also analyzed. The inter-rater reliability for the average clinician responses was 0.239, with a 95% 

confidence interval of [0.108, 0.370], indicating fair agreement. Among the cross-tabulation of 

results from the average clinician response, it was found that the average physician assessment 

assigned a score of “4” most often 37 times, while the average nurse assessment assigned a score 

of “3” at 34 times. The calculated EDWIN scores resulted in an average score of 1.87.  

Next, the subjective assessments of the clinicians was compared to the objective EDWIN 

scores in each of the three descriptive categories through the use of kappa statistics in order to 

determine if EDWIN accurately reflects the subjective assessments of clinicians. When EDWIN 

provided an assessment in the first category (active, but manageable), clinicians responded with 4 

assessments in the same category, 11 assessments in the second category (busy), and 4 in the third 
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category (crowded). In total, clinicians provided 19 assessments for this EDWIN category, 15 of 

which were higher than EDWIN’s assessment, indicating clinicians overestimate the level of 

crowding. When EDWIN provided an assessment in the second category, clinicians responded 

with 57 assessments. 35 of these assessments were assigned to the second category, indicating 

agreement with EDWIN, while 1 assessment was assigned to the first class, and 21 were assigned 

to the third class. In total, 22 provided assessments were higher or lower than EDWIN’s assessment 

in this category. When EDWIN assessed crowding as category three, clinicians provided 

assessments in the same category 11 times, while 3 assessments were provided in the second 

category. Out of the 14 assessments clinicians provided in this EDWIN category, only 3 were 

lower than EDWIN’s assessment. The overall measure of agreement was k=0.235  [95% C.I. 

(0.080, 0.390), indicating fair agreement between the EDWIN scores and those of clinicians 

(Appendix H). This reveals that EDWIN is inaccurate in reflecting the clinician subjective 

perception of ED crowding. 

The analysis of the results from the study carried out on the National Emergency 

Department Overcrowding Study and the Emergency Department Work Index shows that they 

were not accurate in assessing emergency department crowding in the Saudi Arabian healthcare 

setting. The shortcomings of these indices may be a result of their exclusion of important crowding 

indicators and stakeholder perspectives. For instance, NEDOCS does not consider the staffing 

level when evaluating crowding, and similarly EDWIN does not consider the nurse staffing level 

in its assessment. It can also be noted that the overall agreement for NEDOCS and the average 

clinician assessment within the studied Saudi Arabian ED (k=0.276) is comparable to the results 

of Raj, Baker, Brierley, and Murray (2006), who studied the accuracy of NEDOCS in an Australian 
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ED (k=0.31). The findings of this preliminary study confirm the inaccuracies in implementing the 

studied indices to measure ED overcrowding in settings outside their regions they were originally 

developed in.   

 

1.4 Research Problem Statement 

 

The demand on healthcare services continues to grow, and lack of access to care services 

has become a dilemma due to the limited capacity and inefficient use of resources in healthcare. 

This supply-demand imbalance and resulting access block is causing overcrowding in healthcare 

facilities, one type of which is emergency departments. These essential healthcare centers serve as 

a hospital’s front door and provide emergency care service to patients regardless of their ability to 

pay. According to the American Hospital Association (AHA) annual survey, the visits to 

emergency departments in the USA exceeded 130 million in 2011 (AHA, 2014). In Saudi Arabia, 

the Ministry of Health (MoH) reported nearly 21 million visits in 2012 (MOH, 2014). With this 

massive demand on emergency care services, emergency departments mostly operate over 

capacity and sometimes report ambulance diversion.  

When ED crowding started to become a phenomenon, a need appeared to quantify the 

problem as a way to offer support in making emergency care operational decisions. As a result, 

four ED crowding measurement scales were developed which are Emergency Analysis of Demand 

Indicators (READI) (Reeder & Garrison, 2001), Emergency Department Work Index (EDWIN) 

(Bernstein et al., 2003), National Emergency Department Overcrowding Score (NEDOCS) 

(Steven J. Weiss et al., 2004), and Work Score (Epstein & Tian, 2006). However, many criticized 
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the reliability, reproducibility, and validity of these crowding measurement scales when 

implemented in emergency settings outside of the regions they were originally developed in. 

Moreover, their efficiency has been a concern, especially with regards to their dependency solely 

on emergency physicians’ and nurses’ perspectives.  

 

1.5 Research Objectives 

 

ED crowding has become a serious issue in many healthcare organizations. It affects both 

operational and clinical aspects of emergency care systems. To evaluate such an issue, healthcare 

decision makers should be provided with a robust quantitative tool that measures the problem and 

aids in ED operational decision making. To achieve this, the proposed study aims to:  

 

 Develop a quantitative measurement tool of evaluating ED crowding that captures 

healthcare experts’ opinions and other ED stakeholder perspectives and has the ability to 

be applied in variety of healthcare systems.   

 

1.6 Research Questions 

 

This research aims to answer the following question:  

 What is an appropriate quantitative instrument to assess ED crowding which has the 

capability to be reproduced within different healthcare contexts?  
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1.7 Research Contributions 

 

This study will contribute to the existing knowledge of the field of quality systems 

engineering by proposing a robust framework for assessing crowding in healthcare facilities. The 

proposed research is unique in its application of fuzzy logic, which has the ability create a logical 

quantitative measurement tool founded upon the perspective of multiple subject matter experts and 

recognize patterns of bias. This will allow the developed index to overcome the problems 

associated with the indices founded upon singular stakeholder perspectives. An index created from 

the developed framework can be used by leading stakeholders to better assess crowding in EDs, 

and ultimately make better informed decisions when mitigating overcrowding. Moreover, the 

implementation of such an index developed from this research could contribute to achieving care 

providers’ overall goals of offering safe and timely care in ED settings. In addition to the benefits 

this study would offer to practitioners, researchers could additionally benefit from the creation of 

a robust quantitative instrument when studying the impact of ED overcrowding on a variety of 

operational and clinical outcomes. The developed index may also be utilized by researchers 

seeking to measure the effectiveness of patient flow for related improvement projects and 

initiatives in healthcare settings.    

 

1.8 Organization of the Dissertation 

 

The following is a description of the organization and content for the remaining elements 

of this dissertation. Chapter two reviews relevant literature on the subject of emergency department 
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overcrowding, and presents the existing conceptual and quantitative approaches for understanding 

and measuring ED overcrowding.  Moreover, this chapter sheds light on the subject of fuzzy logic 

and its applications in performance management. Chapter three describes the adapted research 

methodology, which encompasses the preliminary fuzzy logic framework for evaluating 

overcrowding in EDs. Chapter four describes the theory behind all conceptual and technical 

aspects of the proposed framework that are related to its design. It includes the architecture of the 

hierarchical fuzzy logic system, its mechanism, the methods of eliciting expert assessment, the 

procedures of expert knowledge acquisition, and the development of the proposed fuzzy system. 

Chapter five documents the construction of the knowledge base, where results from the inclusion 

of expert knowledge are analyzed. Additionally, the implementation and initial validation steps 

are discussed, and some reflections are made based upon analysis of the entire chapter. Finally, 

Chapter six concludes the dissertation by reviewing the background of the research topic, 

summarizing the implications of previous research on the defined research problem, and discussing 

the results from the novel index created in response to the research problem. This chapter 

additionally defines the success of the designed framework by assessing its ability to achieve its 

design goals. Lastly, limitations of the research are discussed, and recommendations are made for 

future research related to this study.  
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CHAPTER 2  LITERATURE REVIEW 

 

2.1 Introduction 

 

Healthcare systems today face a variety of challenges. Limited resources and growing 

demands on healthcare services as well as increasing costs have exacerbated the delivery of such 

services to communities. Crowding within hospital-based emergency department (EDs) is a 

growing challenge faced by healthcare systems worldwide. This phenomenon negatively impacts 

patient outcomes and satisfaction. Moreover, crowding can financially affects hospitals because it 

creates an environment where medical errors are more likely to occur. The World Health 

Organization (WHO) states that it is a priority for healthcare systems to concentrate on decreasing 

crowding levels in their facilities in order to minimize effects that crowding has on its patients, 

clinicians, and other stakeholders (WHO, 2014).  

This chapter reviews relevant literature on emergency department overcrowding, its 

operational definitions, and its impact on quality of care, patient safety and outcomes, patient and 

clinician satisfaction, and clinician workload. It also sheds light on the conceptual frameworks that 

have been developed to facilitate the understanding of the phenomenon of ED overcrowding as 

well as its root causes or determinants. In addition, this chapter reviews in detail the existing 

measures for assessing overcrowding, and their relation to each other and to clinician perspectives 

of overcrowding. Moreover, this chapter further reviews available approaches of assessing the 

status of overcrowding in emergency departments, as well as the applicability, reliability, and 
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validity of these approaches. Finally, chapter two includes a section that provides background on 

the fuzzy logic approach and its applications in management aspects.  

 

2.2 Definitions of Emergency Department Crowding 

 

Due to the seriousness of the problem of overcrowding and its adverse impact on both 

providers and seekers of health services, many definitions for emergency department crowding 

have been proposed in the literature. Nevertheless, there is no consensus on a standard universal 

definition for crowding in EDs (Anneveld, van der Linden, Grootendorst, & Galli-Leslie, 2013; 

Asplin, 2006; Asplin et al., 2003; Beniuk, Boyle, & Clarkson, 2012; Bernstein et al., 2003; 

Casalino et al., 2013; Eitel, Rudkin, Malvehy, Killeen, & Pines, 2010; Epstein & Tian, 2006; 

Green, Dawber, Masso, & Eagar, 2014; N. R. Hoot, Zhou, Jones, & Aronsky, 2007; Hwang & 

Concato, 2004; Hwang et al., 2011; Johnson & Winkelman, 2011; Morris, Boyle, Beniuk, & 

Robinson, 2012; Moskop, Sklar, Geiderman, Schears, & Bookman, 2009; Steven J. Weiss et al., 

2004; S. J. Weiss, Ernst, & Nick, 2006; Wiler, Griffey, & Olsen, 2011). 

The U.S Government Accountability Office’s (GAO) 2003 report on ED crowding reveals 

the complexity of the issue, and how challenge measuring the problem is, although, hospital 

officials report that “they know it [crowding] when they see it” (GAO, 2003). The American 

College of Emergency Physicians (ACEP) reports that “crowding occurs when the identified need 

for emergency services exceeds available resources for patient care in the emergency department 

(ED), hospital, or both”  (Lin et al., 2011). This general definition, which has been adopted in 
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many studies, simply views the issue as a typical imbalance between supply and demand that 

widely occurs in many growing markets.  

Michael J. Schull, Slaughter, and Redelmeier (2002) consider ambulance diversion as a 

reasonable operational definition for urban ED crowding; however, this definition might not be 

generally accepted since ambulance diversion policies differ from one healthcare organization to 

another, and some healthcare policies do not allow initiation of ambulance diversion.  Jessie M. 

Pines (2007) considers EDs are crowded “when inadequate resources to meet patient care demands 

lead to a reduction in the quality of care.” Yet, this definition encounters challenges when 

considering how to measure quality of care in such an environment, where patients needs differ.  

Pines cleverly illustrates the problem of EDs crowding by describing it as “the elephant standing 

in the room; it is just very difficult to describe how heavy he is, how bad he smells, and just when 

the floor might give.” 

 

2.3 Consequences of Emergency Department Crowding 

 

Emergency department crowding is a multidimensional problem. The complexity of this 

phenomenon arises from the unique nature of the workflow in emergency departments. Unlike 

other service providers, emergency departments face increasing, and unstable demand resulting in 

overcrowded environment.  

The effects of ED crowding have been widely studied in related literature, both clinically 

and operationally. Many ED stakeholders are impacted by the overcrowding such as patients, 

physicians, nurses, administrators, and wards employees. It also affects the quality of care that is 
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provided within the emergency room. During overcrowding episodes, patients receive inferior care 

(Johnson & Winkelman, 2011), their safety and outcomes are adversely impacted, and patient 

satisfaction decreases (Johnson & Winkelman, 2011). In addition, satisfaction among physicians 

and nurses decreases.  

 

2.3.1 Crowding and Patient Safety and Outcomes 

 

 Overcrowding in emergency departments negatively affects care seeker safety and 

outcomes (Johnson & Winkelman, 2011). It causes delays in vital interventions such as cardiac 

intervention (Kulstad & Kelley, 2009; J. M. Pines, Hollander, Localio, & Metlay, 2006; Michael 

J. Schull, Vermeulen, Slaughter, Morrison, & Daly, 2004), antibiotic administration, and analgesia 

use (Fee, Weber, Maak, & Bacchetti, 2007; J. M. Pines et al., 2006; J. M. Pines, Localio, et al., 

2007). Moreover, the literature shows that long wait times for emergency care is significantly 

associated with poor pain management (Hwang et al., 2008; Hwang, Richardson, Sonuyi, & 

Morrison, 2006; Johnson & Winkelman, 2011; Mills, Shofer, Chen, Hollander, & Pines, 2009; J. 

M. Pines & Hollander, 2008; J. M. Pines, Shofer, Isserman, Abbuhl, & Mills, 2010).  

Mortality is a common measure for patient outcome and is a good indicator for evaluating 

the quality of care (Kane, Scalcucci, Hohmann, Johnson, & Behal, 2013).  Chalfin, Trzeciak, 

Likourezos, Baumann, and Dellinger (2007); Diercks et al. (2007); Fatovich (2005); Miró et al. 

(1999); Richardson (2006); Shenoi et al. (2009); and Sprivulis, Da Silva, Jacobs, Frazer, and 

Jelinek (2006) all studied the effects of overcrowding on mortality. Although each study use a 
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different method to measure ED overcrowding, their results agree that a strong correlation exists 

between ED overcrowding and increased mortality.  

Beniuk et al. (2012) investigated the effects of ED crowding on admitted patients. They 

found that patients admitted to inpatient wards through the emergency department on days of 

crowding as measured by ambulance diversion periods, were negatively impacted. Specifically, 

the likelihood of inpatient death and the length of patient stay increased under such conditions by 

5%, and 8%, respectively. 

According to another study by Epstein et al. (2012), when an ED experiences high levels 

of crowding, the risk of preventable medical errors increases. In yet another study, Watts, Nasim, 

Sweis, Sikka, and Kulstad (2013) assert that there exists a linear association between ED 

overcrowding and an increased number of medical errors arising from a disruption in physician 

focus, administrative mistakes, and physician miscommunication with patients. Within the same 

context, Epstein et al. (2012) found that frequency of medical errors positively correlates with ED 

overcrowding. The medical errors they found include prescribing incorrect medication doses, 

durations, frequencies or routes as well as giving patients contraindicated medications.  Such 

medical errors directly affect the quality of care, patient safety and outcomes, and the reputation 

of the healthcare institution.  
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2.3.2 Crowding and Patient Satisfaction 

 

To assess, manage, and improve the quality of emergency care services, it is important to 

investigate the impact of overcrowding on patients’ perceptions of the service. Patient satisfaction 

is a critical indicator of the quality of emergency care because it captures patients experience (Hall, 

1996).  

Benjamin C. Sun et al. (2000) identified determinant factors of patient satisfaction within 

the emergency care context and patients’ willingness to return to the same emergency service 

provider. Their study concludes that perception of waiting time is negatively associated with 

patient satisfaction. When patients leave the emergency department without being seen by 

physicians, it is an indicator of ED crowding and poor patient satisfaction (Johnson & Winkelman, 

2011).  McMullan and Veser (2004) list the department-dependent factors that patients report as 

reasons for their decision to leave, which include total hospital admissions through the ED, ED 

volume, the waiting room time, and the total resuscitations in the ED. Moreover, patients’ 

psychological distress and their perception of ED busyness are among the factors that increase the 

rate of patients who leave without being seen or treated.  

In another study, Vieth and Rhodes (2006) confirm the adverse impact of ED crowding on 

patient satisfaction. They state that patient satisfaction decreases significantly when the perceived 

wait time exceeds one hour, and is very low if a patient waits more than four hours. The results of 

this study indicate that even if patients were satisfied with the medical care, their overall visit 

satisfaction dropped when the wait time was excessively long. The study also investigated the 

reasons for patients leaving without being treated. The outcomes of the investigation reveal that 



30 

 

when patients are too sick to wait, the wait is too long, or they feel mistreated by the ED staff, they 

leave the ED before receiving care.  

Another study examined physicians, nurses, and patients perceptions on the association 

between ED crowding and the quality of care. In this study, all of these ED stakeholders report 

that crowding significantly impacts the quality of emergency care (J. M. Pines, Garson, et al., 

2007). In a relevant study, J. M. Pines et al. (2008) conclude that wait time and ED crowding are 

associated with lower patient satisfaction. In addition, they stated that the long wait time for 

boarding patients after care negatively impacts patient overall assessment of the hospital services.   

Recently, Tekwani, Kerem, Mistry, Sayger, and Kulstad (2013) studied the effect of ED 

crowding on discharged patients from emergency departments. The researchers used the EDWIN 

Index and ED occupancy rate to measure crowding while using Press-Ganey surveys to assess 

patient satisfaction. The results show that the patient satisfaction significantly decreases with 

higher EDWIN scores and ED occupancy rates. Moreover, it was found that patient satisfaction 

also slightly decreases in ambulance diversion episodes.  

Boarding patients in the emergency department contributes to the ED crowding because it 

is the responsibility of ED staff to continue providing them with adequate care until they move to 

appropriate wards. A recent study state that boarded patients prefer to stay in an inpatient hallway 

than emergency hallway (Viccellio et al., 2013). Viccellio et al. (2013)  add that these findings 

could be considered as an indicator of decreased patient satisfaction among emergency boarding 

patients.  
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2.3.3 Crowding and Clinician Workload and Satisfaction 

 

Like patients, clinicians are impacted by ED overcrowding but in a different way.  Coles 

(2010) tested whether ED overcrowding affects provider workload or not. The study used the 

EDWIN index and occupancy rate as two different objective methods to measure crowding and 

the National Aeronautics and Space Administration Task Load Index (NASA-TLX) to measure 

provider subjective workload. The results of this study reveal that ED crowding is significantly 

associated with variation in provider workload when using occupancy rate as a crowding measure, 

and is mildly correlated with workload when using the EDWIN index. Another study found a 

strong association between the number of boarded patients and decreased nurse job satisfaction 

(Bornemann-Shepherd et al., 2015).  In general, patient congestion in EDs affects the staff 

workload, and clinician satisfaction. It creates an environment where medical errors could occur 

which threatens clinician job security (Epstein et al., 2012).   

 

2.4 Conceptual Emergency Department Crowding Models  

 

In the literature, there currently exist only two conceptual models to describe the ED 

crowding phenomenon. The first and the most accepted one is the input-throughput-output model 

which divides patients flow in EDs into three stages. The other is the cardiac analogy model, which 

illustrates the problem by drawing an analogy to the cardiac system and compares ED 

overcrowding to a stroke, which limits its use to medical professionals. This section describes 

these conceptual models and their contribution to understanding the issue of ED crowding.  
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2.4.1 Emergency Department Input-Throughput-Output Model 

 

In order to comprehend ED crowding, Asplin et al. (2003) developed a framework that 

divides emergency care processes into three interdependent phases: input, throughput and output 

(Figure 2-1). 

The Input component is described as including any element or event that adds to the 

demand of emergency care service. The sources of demand on ED service are classified into three 

channels: emergency care, which includes patients from the community with serious conditions 

and referrals with emergency conditions; unscheduled urgent care; and safety net care, such as 

treatment of uninsured patients who have the right to receive emergency care services as a result 

of the Emergency Medical Treatment and Labor Act (EMTALA).  
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Figure 2-1: Asplin’s conceptual model for emergency department crowding 

Adopted from (Asplin et al., 2003) 

 

The throughput component includes two major stages. The first stage includes patient 

arrival, the triage process, room placement, and the initial treatment. The second stage is the 

diagnostic evaluation, which involves performing diagnostic tests and communication with 

different departments such as laboratories. In addition, patients boarded in EDs who are defined 

by the ACEP as “a patient who remains in the emergency department after the patient has been 

admitted to the facility, but has not been transferred to an inpatient unit” (Griffin et al., 2016), 

acquire more ED resources and their stay time affects throughput stage. The throughput component 

includes all internal processes that take place in the emergency department. Therefore, in order to 
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improve the efficiency of the ED, efforts should focus on this stage, which would reduce waiting 

time, and improve patient flow.  

The last stage in this model, the output stage, includes admitting patients to the hospital, 

transferring patients to other healthcare facilities, or transferring patients to ambulatory care 

providers. The output stage also includes patients who leave without being seen or treated. 

Typically, when a patient is admitted to the hospital, if there is an available bed, the patient move 

immediately; otherwise, the patient is boarded in the ED, which contributes to the ED 

overcrowding level. Moreover, if a patient is advised to visit an ambulatory care provider, and 

there is a lack of access to such service, the patient may return to the ED, which adds unnecessary 

workload to the ED.  Finally, in cases where a patient is transferred to another healthcare facility, 

typically the patient needs an ambulance pick-up. The wait time for an ambulance would contribute 

to the overcrowding level, according to this model.  

 

2.4.2 Cardiac Analogy Model 

 

 Laskowski-Jones (2005) first created the cardiac analogy model to illustrate ED crowding. 

In terms of the heart, when preload increases, so does cardiac output up to a certain level, “beyond 

which the myocardial fibers are overstretched and any further increase leads to a decrease in 

cardiac output.” 

When applying the cardiac analogy model, cardiac output is comparable to overall ED 

system performance, which includes total ED throughput, patient and staff safety and satisfaction, 

and quality of emergency care. Heart rate is comparable to the speed at which service is delivered, 
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which is related to the availability of staff members and their experience, knowledge, and 

efficiency. Stroke volume is comparable to the amount of total productivity in a given period. The 

stroke volume depends on preload, afterload, and contractility. Preload reflects the demand for ED 

services. Preload can be viewed as the resistance to ED outflow. Contractility is analogous to the 

flexibility and readiness of the ED staff to respond to unstable working conditions (Laskowski-

Jones, 2005).   

Although this model is useful in conceptualizing the phenomenon of ED crowding, it has 

not been widely used due to the medical concepts implements. They limit the understanding to 

people of medical expertise, who are familiar with the heart failure pathophysiology (Bellow & 

Gillespie, 2014).    

 

2.4.3 Determinants of ED crowding 

  

 Michael J. Schull et al. (2002) proposed four determinates of crowding in urban emergency 

departments related to characteristics of the community, the patients, the emergency department 

itself, and of its respective hospital.  

The community is an external factor that affects the emergency departments. The 

availability of home care services, availability of alternative choices for ER patients such as 

community-based care, and ambulance diversion that occurs in local EDs are among the 

community factors. This determinant is essential to consider when ED crowding is analyzed from 

a macro-level point of view. Interestingly, none of the existing ED crowding measurement indices 

has adopted any community factor.  
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The second of Schull’s proposed determinants is the patient, which is considered as an 

external factor as well. Patients differ in age, urgency level, discharge diagnosis, time of arrival to 

the ED, and the day of the week they seek ED services. Because each patient has unique 

characteristics, not just clinically but also personally, the delivery of ED services becomes even 

more complex.  

The internal factors are at the micro (emergency department level), or meso (hospital level). 

Emergency department factors such as number of admitted patients in the ED,  number of arrivals 

(through ambulance or walk-in), physicians and nurses staffing, response time, policies, ED layout, 

and access to diagnostic tests, can be used to evaluated the ED crowding internally.  

Moreover, hospital level factors such as number of beds (intensive critical unit beds, and 

acute beds), hospital occupancy rate, and inpatient length of stay, are significant in 

comprehensively analyzing the ED crowding issue. 

 

2.5 Quantitative Emergency Department Crowding Models 

  

Generally speaking, crowding is a problem that many industries experience. The factors 

that contribute to crowding in EDs are also contributing to crowding in other industries, which 

may include high demand, a lack of performance management, and limited systems capacity. The 

general impact of crowding ranges from physical damage to psychological effects on entities. The 

rail transportation industry (Mohd Mahudin, Cox, & Griffiths, 2012), retail (Mehta, 2013), parks 

and outdoor recreation centers (Manning, Valliere, Minteer, Wang, & Jacobi, 2000), and 

healthcare facilities (Moskop et al., 2009) are among the environments that experience crowding. 
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The crowding phenomenon has caught researchers’ attention, leading them to explore its causes, 

consequences, impact on customers’ behavior and influence on the quality of service and customer 

satisfaction. Research efforts also include the designing and developing of crowding measurement 

scales.    

In the literature, there are two different approaches regarding ED crowding measurement. 

One is to identify and create ED crowding measures such as waiting time and ED occupancy rate. 

Those measures mainly reflect real time observations of emergency care processes and some of 

them are not quantifiable. The second measuring approach focuses on developing 

multidimensional crowding measurement scales such as Emergency Department Work Index 

(EDWIN) and National Emergency Department Overcrowding Score (NEDOCS) (Beniuk et al., 

2012). The following sections extensively reviews these two approaches in the context of EDs 

crowding. 

 

2.5.1 ED Crowding Measures 

 

Ospina et al. (2007) identified the ten most important crowding indicators in Canadian emergency 

departments. The ten key indicators are as follows:  

 Total number of ED patients  

 Percentage of ED occupied by inpatients 

 Total time in the ED 

 Percentage of time spent in ED at or above stated capacity 
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 Overall bed occupancy 

 Time from bed request to bed assignment 

 Number of staffed acute care beds 

 Time from triage to EP 

 Time from bed ready to transfer to ward 

 Emergency Physician satisfaction 

 

In a recent comprehensive systematic review, Hwang et al. (2011) identified seventy one 

unique ED crowding measures. The author categorized those measures into clinician opinion of 

crowding, input measures, throughput measures, output measures, and multidimensional indices. 

The following section reviews the relevant literature on all identified measures of ED crowding. 

 

2.5.1.1 Measures of Clinician Opinion of ED Overcrowding 

 

Table 2-1 shows all measures of clinician opinions towards emergency department 

crowding. Five subjective measures were identified by (Hwang et al., 2011) namely, if physicians 

feel rushed, if nurses feel rushed, clinician opinion of crowding, clinician opinion of ED busyness, 

and emergency physicians satisfaction.  
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Table 2-1: Measures of clinician opinion on ED overcrowding.  

Partially Adapted from (Hwang et al., 2011)  

Measure Type                 Measure 

 

Clinician opinion 

 Physicians feel rushed 
 Nurses feel rushed  
 Clinician opinion of crowding 
 Clinicians opinion of ED busyness 
 Emergency Physicians satisfaction 

 

 

First, the physician perception of feeling rushed measure is a six-point Likert instrument 

that has been considered as a subjective measure of emergency department overcrowding, that was 

first used by (Derlet, Richards, & Kravitz, 2001; Richards, Navarro, & Derlet, 2000). Afterward, 

Steven J. Weiss et al. (2004) utilized this measure as a base when developing the NEDOCS scale. 

Currently, the physician’s feeling of being rushed is used to examine the validity and reliability of 

the NEDOCS scale in different healthcare systems by measuring the agreement between the 

subjective perception of physicians about their feeling and the quantitative NEDOCS results 

(Anneveld et al., 2013; Raj et al., 2006; Wang et al., 2014). Hwang et al. (2011) state that the 

physicians’ perception of feeling rushed is significantly associated with clinicians’ assessment of 

overcrowding.   

Second, the nurse perception of feeling rushed at a given time is another subjective measure 

of emergency crowding. It was used by (Anneveld et al., 2013), who tested its agreement with the 

measure “physicians feel rushed”. They found a good intra-rater agreement (𝜅=0.73) between the 

two measures.  
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Third, to measure the subjective perception of clinicians’ (emergency nurses and 

physicians) opinion of emergency department overcrowding, (Vieth & Rhodes, 2006)  introduced 

a five-point Likert scale for observing the physicians and nurses assessment of crowding. (Steven 

J. Weiss et al., 2004) used a six-point Likert scale for the same purpose. (Hwang et al., 2011) claim 

that the clinician opinion of crowding shows significant association with the number of patients 

who leave the emergency department without being seen by physicians. (Bernstein et al., 2003) 

explored the same concept, but called it “clinicians’ opinions of ED busyness” and used a five-

point Likert scale.  

Finally, because emergency department overcrowding increases the workload on 

emergency physicians, the job satisfaction level of physicians has been used as a measure that may 

reflect the level of crowding. Using the Delphi method, Ospina et al. (2007) identified ten key 

indicators of emergency department overcrowding in Canada, one of which was physician 

satisfaction, which supports the hypothesis of the association between the satisfaction of 

physicians and the physicians’ assessment of emergency department crowding. 

 

2.5.1.2 Input Measures  

 

Table 2-2 encompasses all measures of crowding in the literature that are associated with 

the inputs of emergency department. The identified 17 identified Input measures address all 

emergency department events prior to emergency treatment (Hwang et al., 2011). These measures 
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include factors such as the number of patients, their waiting times, and patient complexity and 

severity.  

Wait time is a very significant measure that reflects the busyness of ED (Hwang et al., 

2011). In a survey of emergency department directors, respondents claimed that waiting time is a 

common measure for overcrowding because long wait time is a result of overcrowding which 

directly affects patients’ experience (Derlet et al., 2001; Richards et al., 2000). N. R. Hoot et al. 

(2008, 2009) used the wait time measures in a discrete event simulation model for forecasting ED 

overcrowding. It shows a good two-hour-ahead forecast for overcrowding but is relatively poor at 

forecasting eight hours ahead. Wait time has also been used as a measure in conjunction with other 

measures to evaluate the level of overcrowding when implementing ED expansion projects (Han 

et al., 2007; Mumma, McCue, Li, & Holmes, 2014). Furthermore, one study states that wait time 

is a factor related to the emergency department itself (Miro et al., 2003). On one hand, (Han et al., 

2007) claimed that wait time does not correlate with ambulance diversion periods. Yet Gilligan et 

al. (2008) found that the number of patients who left without being seen was  strongly correlated 

with the long wait time. Interestingly, among the four ED crowding measurement indices, 

NEDOCS is the only system that utilized wait time measures in the index development (see Table 

2-6 for details).  

A waiting room that becomes filled more than six hours in a day is another input measure 

for ED crowding. Richards et al. (2000); Vieth and Rhodes (2006) found that ED directors are 

suggesting using this measure when evaluating overcrowding. Moreover, it has been found that 

this measure significantly associates with clinician opinion of crowding (Hwang et al., 2011). 
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“time to physician” measure is an interval time for assessing patient flow in EDs. Ospina 

et al. (2007) defined the time to physician measure as “Time (min or h) from assignment of triage 

category to examination by an EP”, and listed it among the ten important key indicators of ED 

overcrowding in Canadian healthcare settings. According to Asplin’s input-throughput-output 

framework (Figure 2-1), time to physician measure should be listed under the throughput section. 

Bullard et al. (2009) in their study support this placement by considering the time to physician as 

a throughput measure. Gilligan et al. (2008) studied the impact of a large number of boarded 

patients on many crowding measures, one of which was the time to physician. They show that time 

to physician was not impacted by the boarding practice. Time to physician has been found, 

however, to be significantly associated with physician opinion of crowding (Johnson & 

Winkelman, 2011) and patients who Leave Without Being Seen (LWBS) (Gilligan et al., 2008). 
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Table 2-2:  Input measures of ED overcrowding.  

Adapted from (Hwang et al., 2011). 

Measure Type Measure 

 
 
 
 
 
 
 
                           Input  

 Waiting time 
 Waiting room filled more than 6 hours / day 
 Time to physicians  
 Number of arrivals  
 Number of patients in waiting room 
 Number of patients registered  
 Number or percentage of ambulance patients 

registered 
 Number of patients awaiting triage  
 Number of low-complexity patients 
 Number of patients at each acuity level 
 Average triage acuity level 
 Number of new patients by usual care  
 Percentage of open appointments in ambulatory 

care clinics  
 Left without being seen (LWBS) 
 Average or percentage of patients who leave 

without treatment complete 
  Ambulance diversion episodes  
 Average Emergency Medical Services (EMS) 

waiting time 
  

 

 

 The number of arrivals to ED, which is defined by Spencer S. Jones et al. (2009) as “count 

of patients arriving to the ED during a given hour,” is a numerical count measure for evaluating 

the demand on emergency care services. Asaro, Lewis, and Boxerman (2007a) studied the factors 

that affect the rate of reneging (i.e. the rate of patient who leave without being seen by a physician). 

The study found that patient arrival rate is significantly associated with increased reneging rate. In 

another study, J. M. Pines, Localio, et al. (2007) investigated the impact of input and output factors 
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on the throughput of EDs. They found that arrival rate significantly affected wait time, ED length 

of stay, and boarding time. In addition, the arrival rate has been found to be a key indicator of 

determining emergency department census, and the needed diagnostic resources. Interestingly, the 

READI index is the only ED crowding instrument that uses arrivals per hour in assessing 

overcrowding (see Table 2-6).  

 The number of patients in waiting room is another important numerical count measure used 

in ED crowding assessment. From the patient’s perspective, the number of patients in the waiting 

room is the most evident indicator of ED crowding (N. R. Hoot et al., 2008). Some hospitals initiate 

ambulance diversion when all ED beds are occupied and the number of patients in the waiting 

room reaches 10 patients or more (N. R. Hoot et al., 2008). This measure has been used by different 

studies such as ones which developed an overcrowding sampling form (Steven J. Weiss et al., 

2002), investigated variables of ED crowding (Steele & Kiss, 2008), and determined the effect of 

crowding on ED process outcomes (McCarthy et al., 2009). The number of patients in the waiting 

room has been found to be significantly associated with physician opinions of crowding (Derlet et 

al., 2001; Richards et al., 2000; Steven J. Weiss et al., 2002), waiting room time, ambulance 

diversion (Miro et al., 2003), and ED length of stay (McCarthy et al., 2009). Despite its importance 

in evaluating crowding, the Work Score index is the only crowding measurement system that uses 

the number of patients in the waiting room in assessing ED overcrowding status (see Table 2.6).  

 Number of registered patients is also a measure used in evaluating crowding.  The total 

number of patients registered has been used in two studies which used it as a factor of ED crowding 

(Han et al., 2007; Steven J. Weiss et al., 2002). The percentage of ambulance patients registered 

has been identified as a potential measure of crowding (Solberg, Asplin, Weinick, & Magid, 2003). 



45 

 

Accordingly, Hwang et al. (2011) claim that these two measures associate significantly with 

clinician opinion of crowding. The number of patients awaiting triage is another potential measure 

for crowding, as Steven J. Weiss et al. (2002) found that it strongly correlates with clinician 

opinion of crowding. 

 The acuity level is a critical factor in determining the needed resources for emergency care 

services. For this reason, three measures were created in this context, including the number of low-

complexity patients, the number of patients at each triage, and average triage acuity level (Hwang 

et al., 2011). The emergency nurses assign patients to the appropriate triage category and prioritize 

them based on their acuity level. Low-complexity patients spend a longer time in the waiting room 

in the presence of high severity patients.  

 M. J. Schull, Kiss, and Szalai (2007) studied the impact of the number of low-complexity 

patients on waiting times in emergency department. They found that the number of low-complexity 

patients in the ED slightly increases time until other patients are seen by physicians and the ED 

length of stay. The number of patients at each triage level is a very important measure used in 

assessing overcrowding. The EDWIN and READI indices both use the number of patients at each 

triage category as a measure in evaluating the overcrowding status (see Table 2-6).  The acuity 

ratio is the average triage acuity level of all patients in the ED and it reflects the severity level and 

the needed resources for emergency patients (Solberg et al., 2003). The acuity ratio has been found 

to be significantly associated with physician opinion of crowding (Hwang et al., 2011).  

 The number of new patients by usual care and the percentage of available appointments in 

ambulatory clinics that serve ED patients have been suggested as to be potential measures for ED 
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overcrowding (Solberg et al., 2003). However, there currently exists no study that has used these 

two measures in assessing overcrowding.  

 The measure of leaving (the ED) without being seen (LWBS), which reflects a group of 

patients who could not wait longer to be seen by a physician, has been reported as a serious 

problem internationally (Clarey & Cooke, 2012). As such, the number of patients who left without 

being seen is a common measure for ED crowding (Bullard et al., 2009; Han et al., 2007). The 

majority of studies on LWBS has been conducted within the United States healthcare system. 

These studies show that the rate of LWBS varies from 0.84% to 15% in different cases (Clarey & 

Cooke, 2012). The rate of LWBS has been found to be significantly associated with wait times in 

EDs (Clarey & Cooke, 2012). However, it has been found that no association exists between the 

LWBS and ambulance diversion (Hwang et al., 2011). Another suggested crowding measure 

related to LWBS is the rate or percentage of patients who leave the ED without complete treatment 

(Solberg et al., 2003), because it correlates with clinician opinion on crowding (Hwang et al., 

2011). None of the existing ED measurement indices uses this measure in assessing overcrowding 

(see Table 2.6).   

 Periods of ambulance diversion has been suggested as a proxy measure for ED crowding, 

since it reflects working at overcapacity, and is an action taken as a direct result of ED 

overcrowding (Michael J. Schull et al., 2002; Solberg et al., 2003). Burt, McCaig, and Valverde 

(2006) state that about 501,000 ambulance diversions happened in 2003 in the United States, an 

average of one ambulance diversion per minute, making it a remarkable consequence of ED 

crowding. It has been noticed that ambulance diversion episodes are significantly associated with 

clinician opinion of crowding (Michael J. Schull et al., 2002). Solberg et al. (2003) suggest 
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measuring the average emergency medical service (EMS) waiting time, defined as “total time at 

hospital for ambulances delivering patients to ED during a defined period”, divided by the “number 

of ambulance deliveries within that period” which they claim reflects ED efficiency. Hwang et al. 

(2011) added that the average EMS wait time strongly correlates with clinician opinion of 

crowding.  

 

2.5.1.3 Throughput Measures  

 

Table 2-3 encompasses all measures of crowding in the literature that are associated with 

the throughput of an emergency department. The identified 22 unique throughput measures 

consider all emergency department events and processes after admitting patients (Hwang et al., 

2011). This includes ED capacity, ED workforce, and ED efficiency.  

ED beds fully occupied for more than 6 hours a day or hallway beds at capacity more than 

6 hours indicate a crowded ED. Derlet et al. (2001); Richards et al. (2000) list these two measure 

among potential measures for ED crowding. In addition, Ospina et al. (2007) suggest adding the 

percentage of time an ED works at or more than stated capacity to the ED throughput measures. 

The number ED rooms at full capacity is another measure that has been used is evaluating 

overcrowding (Steven J. Weiss et al., 2002). Such measures are significantly associated with 

physician opinion of overcrowding (Hwang et al., 2011).  

Counting the number of patients at different ED processes is a direct way to assess and 

manage patient flow and ED overcrowding. Total number of patients in an ED reflects the total 

workload within an ED. Bullard et al. (2009) assert that patient volume is an important variable 
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when tracking ED overcrowding, in addition to taking into consideration the acuity and complexity 

of patients’ health issue. The ED census has also been used as a critical factor in developing an 

ED forecasting model (Spencer S. Jones et al., 2009; S. S. Jones et al., 2008). In addition, Ospina 

et al. (2007) list total number of patients among key indicators of crowding. Flottemesch, Gordon, 

and Jones (2007) conclude that studying ED census patterns provides more insight about ED 

overcrowding, operational efficiency and daily surges. The total number of patients in an ED is 

strongly correlated with clinician opinion of crowding (Hwang et al., 2011). Despite the 

importance of this measure, Steele and Kiss (2008) state that ED patient volume encompasses 

many variables; therefore, counting patients in different emergency care stages provides clearer 

details than total ED volume in assessing overcrowding. The NEDOCS index is the only ED 

crowding measurement system that uses ED census as a key measure in assessing crowding level 

(see Table 2-6).  

Another suggested patient count measure is the number of hallways patients which has 

been found to be significantly associated with physician opinion of crowding (Steven J. Weiss et 

al., 2002).  In addition, the number of patients who are being treated are considered a crowding 

measure (Miro et al., 2003). McCarthy et al. (2009) found that increase in the number of patients 

being treated significantly increases treatment time and patient waiting time overall. When a 

patient arrives at the ED with a high-complexity case, a specialty consultant is required to provide 

a detailed diagnostic. The number of patients waiting for such a consultation are considered a 

measure for crowding because it is significantly associated with patient boarding time (Steele & 

Kiss, 2008). Moreover, the waiting time to consultation is a measure that can provide more insight 

about patient flow and ED overcrowding (Bullard et al., 2009).  
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ED occupancy rate, which is defined as “the total number of patients in ED beds divided 

by the number of licensed treatment beds” is widely used as an indicator of ED overcrowding (N. 

R. Hoot et al., 2008). In the early of 2000s, Solberg et al. (2003) suggested the use of ED occupancy 

rate as a clear and simple measure of overcrowding. Later on, another study reached consensus on 

the most important crowding measures, with one of them being ED occupancy rate (Ospina et al., 

2007). Another study by McCarthy et al. (2008) compared the efficiency of ED occupancy rate as 

a crowding index with the EDWIN index, and concluded that occupancy rate is not an ideal 

overcrowding index, yet it can be used as a simple real-time assessment tool of ED busyness. By 

itself, ED occupancy rate has been found to be significantly associated with physicians assessment 

of crowding, LWBS, and ambulance diversion (Hwang et al., 2011), and continually has been a 

main variable in developing ED overcrowding forecasting models (N. R. Hoot et al., 2009; N. R. 

Hoot et al., 2007; Schweigler et al., 2009).   
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Table 2-3: Throughput measures of ED overcrowding.  

Partially Adapted from (Hwang et al., 2011) 

Measure Type Measure 

 
 
 
 
 

 
Throughput 

 ED beds at capacity more than 6 hours or hallways 
filled more than 6 hours  

 Percentage of time ED at greater than or equal to 
stated capacity 

 Number of full rooms  
 Total number of patients in ED 
 ED occupancy rate  
 Number of hallway patients  
 Number of resuscitations in past 4 hours  
 Number of patients being treated  
 Number of patients waiting for specialty consult or 

disposition by consultant for more than 4 hours  
 Number of ED diagnostic orders 
 Number of patients awaiting test results 
 Number of nurses working  
 Number of physicians working  
 Patients treated by acuity per bed hours  
 Number of patients per physician or nurse  
 Number of patients admitted or discharged per 

physicians  
 Sum of patient care time per shift  
 ED ancillary service turnaround time  
 Time to consultation 
 Time to room placement  
 ED treatment time  
 ED length of stay (LOS) 

 
 

 

The total number of resuscitations within a four hour observation period is another ED 

throughput measure that can be used in assessing ED overcrowding. This measure indicates the 

number of high-complexity patients that arrive in the ED during a given interval of time (Steele & 

Kiss, 2008). Another form of this measure is used by the NEDOCS index as a measure in assessing 
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ED overcrowding (see Table 2-6), which is the number of “vent patients” in the ED at a given 

time.  

During the emergency diagnostic phase, many orders are sent to supporting departments, 

and the number of these diagnostic orders may be used as a measure for assessing the workload 

and overcrowding within EDs. This includes ED laboratory orders, ED radiography orders, and 

ED computer tomography orders (Spencer S. Jones et al., 2009). Moreover, the number of patients 

waiting for test results of such orders is considered to be another throughput measure that reflects 

the workflow within an ED (Miro et al., 2003). These measures are significantly associated with 

physician opinion of overcrowding (Hwang et al., 2011). In addition, turnaround time of ED 

ancillary time, which is the average time from placing the diagnostic order to the result report, has 

been suggested as another measure for use in evaluating ED throughput and overcrowding (Steven 

J. Weiss et al., 2002). (Solberg et al., 2003) found that this measure is associated with physician 

opinion of crowding.   

ED staffing and the staff’s productivity play a major role is the assessment quality of 

emergency care. The number of emergency nurses on duty is based upon many factors such as the 

size of the hospital, the capacity of the ED, and the daily volume of emergency care demand. The 

American Academy of Emergency Medicine suggests an appropriate nurse-to-patient ratio of 1:3 

(AAEM, 2015). Due to their influence on ED outcomes, the number of nurses working in an ED 

has been used as a measure of assessing ED crowding in two previous studies (Bernstein et al., 

2003; Steele & Kiss, 2008). Currently, the Work Score index is the only measurement instrument 

that uses number of nurses at a given time to assess ED overcrowding (see Table 2-6). The number 

of physicians is another factor that has determined the level of overcrowding in indices. The 
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EDWIN Index in one such measurement tool which uses the number of on duty emergency 

physicians in evaluating the ED overcrowding status (Steven J. Weiss et al., 2004) (See Table 2-

6). Moreover, the number of patients per nurse and per physician can offer more insight about the 

workload, level of crowding and appropriate ED staffing strategies (Schneider, Gallery, 

Schafermeyer, & Zwemer, 2003; Solberg et al., 2003). Hwang et al. (2011) note that this measure 

is significantly associated with clinician perspective of overcrowding. Another suggested measure 

that relates to ED throughput is the number of patients who are admitted or discharged per 

physician (Solberg et al., 2003). Hwang et al. (2011) found that this measure correlates with 

physician opinion of overcrowding. In general, this measure indicates the productivity of 

emergency physicians. However, to assess the ED productivity of a given time which takes into 

consideration the productivity of all emergency staff, the total of patient care time in a given shift 

is an appropriate measure which could also be used in assessing overcrowding (Richardson, 2006).  

The time from triage to room placement is another time interval measure that has been 

suggested for evaluating patient flow and ED overcrowding (Bullard et al., 2009; Solberg et al., 

2003). Hwang et al. (2011) state that the time to room placement is associated with physician 

opinion of overcrowding. In addition, ED treatment time is another ED throughput measure that 

has been used in assessing overcrowding (Hwang et al., 2011). Solberg et al. (2003) also suggest 

using the number of patients treated, and considering their complexity level and bed hours as a 

potential measure of overcrowding. Hwang et al. (2011) state that this measure associates with 

physician opinion toward crowding.  

Finally, the length of stay (LOS) in an ED has been used in many studies to evaluate the 

ED throughput and ED crowding. Ospina et al. (2007); Solberg et al. (2003) suggest LOS as a 



53 

 

potential measure for crowding, and it is considered an important measure in constructing ED 

crowding forecasting models (N. R. Hoot et al., 2008, 2009). Han et al. (2007) studied impact of 

ED extension projects on overcrowding. Using LOS as an outcome measure of such a project. It 

has been found that LOS is associated with physician opinion of overcrowding (Hwang et al., 

2011).  

 

2.5.1.4 Output Measures  

 

Table 2-4 includes all measures of crowding in the literature that are associated with the 

output of emergency departments. The identified 21 unique output measures are associated all 

emergency department events and processes after emergency treatment is completed (Hwang et 

al., 2011). Some important measures include boarding, hospital occupancy rate, in addition to 

hospital or transfers to another healthcare facility, and availability of other care options.  

When emergency care is completed, patients are either discharged and recommended to 

receive ambulatory care, admitted to inpatient beds, or transferred to another appropriate 

healthcare facility (Asplin et al., 2003). The number or percentage of admissions is a common 

measure of ED output. Nearly half of hospital admissions in the USA come from the emergency 

department (Schuur & Venkatesh, 2012). Asaro et al. (2007a); Asaro, Lewis, and Boxerman 

(2007b) found that the number of admissions negatively influences ED throughput because the 

admitted patients usually result in an increase in the number of boarded patients, who typically 

occupy more emergency diagnostic and treatment resources, thereby affecting the ability of ED 

staff to meet of the needs of new arrival patients. In addition, they found that the number of 
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admitted patients increases the wait time for new emergency patients. Other investigators found 

that the percentage of daily admitted patients positively correlated with ED LOS (Lucas et al., 

2009), and the findings from Rathlev et al. (2007) agree. The number of admitted patients is also 

significantly associated with waiting room time (Asaro et al., 2007b), and LWBS (Asaro et al., 

2007a). 

In cases where a patient is admitted to the hospital and there is no available bed, the patient 

must stay in the ED and keep receiving care from the ED until a bed becomes available. This 

situation which Kishore, Abraham, and Sinfield (2011) express as “backpropagation of congestion 

within hospital wards”, exhausts ED resources. Nolan et al. (2015) state that boarding in ED is a 

major cause of ED overcrowding. A number of studies have been conducted on of boarding at 

emergency departments and its effects on patient flow and overcrowding. Due to the negative 

impact of boarding, measurements such as the number of and average number of the percentage 

of boarding within the ED, and the length of boarding duration have been listed as among the 

important measures of ED overcrowding (Asaro et al., 2007b; Ospina et al., 2007; Solberg et al., 

2003; Steven J. Weiss et al., 2002). In a crowding forecasting study, N. R. Hoot et al. (2008, 2009) 

used boarding count and boarding time with other operational measures to develop forecasting 

models finding that the forecasted overcrowding moderately correlated with the number of 

boarded patients and their boarding time. In another study, investigators found that the more 

patients become boarded in an ED, the longer a patient’s LOS in the ED will be. Because longer 

boarding times negatively impact patient outcomes and satisfaction in addition to patient flow, 

Solberg et al. (2003) suggest breaking down the boarding time into the time for bed assignment, 

bed cleaning, and transfer arrival to evaluate the efficiency of each process, which would help in 
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improving such processes. Hwang et al. (2011) state that the number of boarded patients is 

associated with ambulance diversion, waiting room time, LWBS, clinician opinion of 

overcrowding, boarding time, treatment time, and ED LOS. Moreover, they state that the boarding 

time is associated with ambulance diversion, clinician opinion of overcrowding, and the rate of 

LWBS.  

When analyzing the causes of overcrowding, it is obvious that ED crowding is not just the 

responsibility of the emergency department. The healthcare system as a whole contributes to this 

dilemma, and fourteen measures that deal with external sources of ED overcrowding have been 

identified. 

Two potential measures that are relevant to boarding time are time from bed request to bed 

assignment, and time from which the bed is ready to ward transfer (Ospina et al., 2007). These 

measures, which are also associated with physicians opinion of overcrowding (Hwang et al., 2011), 

reflect the efficiency of the hospital operational management.  

Another non-ED related crowding factor is the number of patients who are waiting for 

ambulance pick-up (Miro et al., 2003). When high-complexity patients are transferred to another 

healthcare facility, they typically need an ambulance to move between facilities. The wait time for 

such a service is an additional load to the ED, as patients in waiting for transfer will impact the ED 

capacity for new patients. Therefore, counting the number of patients waiting for an ambulance 

may be useful as a measure for overcrowding. This measure is associated with physician opinion 

of overcrowding (Miro et al., 2003). Solberg et al. (2003) also suggest using the rate of ED 
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transferred patients as a measure for evaluating overcrowding because it shows a significant 

association with clinician opinion of overcrowding.   

In addition, Solberg et al. (2003) suggest six additional output measures that contribute to 

ED overcrowding, including observation unite census, hospital admission source, hospital supply-

demand forecast, ratio of ED volume to inpatient bed capacity, number of inpatients ready for 

discharge, and inpatient processing times. According to Hwang et al. (2011), these six measures 

are significantly associated with physicians opinion of overcrowding.   

Bed management plays a critical role in hospital operations. One of the significant 

measures that bed management decision makers consider is inpatient occupancy rate. High 

occupancy rate increases the chances that an ED will have to work to overcapacity (Asaro et al., 

2007b). For this reason, it is suggested that occupancy rate be taken into consideration when 

assessing ED efficiency, in addition to the level of overcrowding (Spencer S. Jones et al., 2009; 

Lucas et al., 2009). Previous studies found that the hospital occupancy rate is significantly 

associated with LWBS (Asaro et al., 2007a), boarding and treatment time (Asaro et al., 2007b), 

clinician opinion of overcrowding (Solberg et al., 2003), and LOS in EDs (Lucas et al., 2009).  

The number of staffed acute care beds is a critical measure of hospital capacity that may 

also be used in assessing the level of crowding (Ospina et al., 2007). The NEDOCS index is the 

only ED crowding measurement system that uses number of staffed acute care beds as a measure 

in assessing overcrowding status (see Table 2-6). Hwang et al. (2011) state that this measure is 

significantly associated with physician opinion of overcrowding. Another non-ED factor related 
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to overcrowding is the number of inpatient radiology, laboratory, and computed tomography 

orders (Spencer S. Jones et al., 2009).  

 

Table 2-4: Output measures of ED overcrowding.  

Adapted from (Hwang et al., 2011) 

Measure Type Measure 

 
 
 
 
 

 
 

 
 
 

Output 

 Number or percentage of admissions 
 Number, mean number, or percentage of boarders 
 Boarding time  
 Boarding time components  
 Observation unit census 
 Number of patients awaiting discharge or 

ambulance pick-up    
 ED admission transfer rate  
 Hospital admission source  
 Inpatient occupancy level 
 Hospital supply/demand forecast 
 ED volume/inpatient bed capacity  
 Number of inpatients ready for discharge  
 Number of staffed acute care beds 
 Inpatient processing time  
 Inpatient laboratory, radiology, computed 

tomography (CT) orders     
 Time from request to bed assignment  
 Time from bed ready to ward transfer  
 Agency nursing expenditures 
 Local home care service availability  
 Alternate level of care bed availability 
 Nearby EDs diverting ambulances  

   
 

 

J. M. Pines et al. (2011) reveal in their multi-country study that Scandinavian countries do 

not report overcrowding as a major problem. They state that such countries do not experience ED 
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overcrowding because of the availability of alternative care centers outside of EDs. For this reason, 

the availability of local home care services, and availability of alternative level of care beds have 

been suggested as important indicators of ED overcrowding (Hwang et al., 2011). Michael J. 

Schull et al. (2002) found that these two indicators are significantly associated with ED clinician 

opinion of overcrowding.  

Finally, when nearby EDs are experiencing ambulance diversion, it indicates a high 

demand on the ED within a specific urban area. This may delay ambulance pick-up for recently 

discharged patients and contribute more to overcrowding. Consequently, the number of nearby 

EDs which are on ambulance diversion episodes should be taken into consideration in assessing 

overcrowding (Michael J. Schull et al., 2002).   

 

2.5.1.5 Prioritization of ED Overcrowding Measures 

 

In a recent study, the previously identified 71 ED crowding measures were prioritized, using 

the Delphi method. The results show that the following eight measures are believed to provide a 

comprehensive view of the ED crowding status (Beniuk et al., 2012):  

 Ability of ambulances to offload  

 Number of patients who leave without being seen or treated 

 Time until triage 

 ED occupancy rate 

 Patients’ total length of stay in the ED 

 Time to see a physician 

 ED boarding time 
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 Number of patients boarding in the ED 

 

 

2.5.2 ED Crowding Indices 

 

Since thee ED crowding phenomenon has gained increased attention, there have been some 

initiatives to develop measurement scales to quantify it. The aim of such scales has been to evaluate 

whether an emergency department is overcrowded or not.  Reeder and Garrison (2001) developed 

the Real-time Emergency Analysis of Demand Indicators (READI) model, a simple formula-based 

model, which is composed of three ratios to detect situations when demand exceeds supply. 

Bernstein et al. (2003) developed the Emergency Department Work Index (EDWIN) to measure 

emergency department busyness. Steven J. Weiss et al. (2004) also developed the National 

Emergency Department Overcrowding Score (NEDOCS), a simple linear regression model, to 

quantify ED crowding in academic medical centers. Epstein and Tian (2006) developed the Work 

Score, a regression-based model, to quantify ED crowding and staff workload. Table 2-5 includes 

all of existing developed and modified ED crowding related indices. This section reviews the 

literature on these four ED crowding scales, seeking to analyze them and provides more insight 

into their applicability, validity, and reliability.      
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Table 2-5: Multidimensional indices of ED overcrowding.  

Adapted from (Hwang et al., 2011) 

Measure Type Measure 

 
 
 

Multidimensional indices 

 EDWIN  
 NEDOCS  
 Pediatric NEDOCS (PEDOCS) 
 READI 
 EDCS 
 ED Work score  
 Critical Bed Status (CBS) 
 System complexity  
 Overcrowding Hazard Scale  

 

 

 

2.5.2.1 Real-time Emergency Analysis of Demand Indicators (READI) 

  

The READI index was the first multidimensional index designed to measure ED crowding, 

composed of three parts that represent the ED fixed assets (beds), the current acuity level (triage 

category), and the efficiency of physicians.  

The bed ratio (Equation 2) quantifies the availability of ED treatment spaces. The 

calculation of this ratio depends on four variables: the number of patients in the ED, the number 

of predicted arrivals, the number of predicted departures, and the total ED treatment spaces. The 

predictions are based on historical arrival and departure data. The bed ratio determines the 

availability of ED treatment spaces  (Reeder & Garrison, 2001).  A bed ratio of less than one 

indicates that the ED is not busy, while, a bed ratio of greater than one is a signal of ED 

overcrowding.  
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 𝐵𝑒𝑑 𝑅𝑎𝑡𝑖𝑜 (𝐵𝑅) =  (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑖𝑛 𝐸𝐷+𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑠)𝐸𝐷 𝑠𝑝𝑎𝑐𝑒𝑠                ( 2 ) 

                                                                                                                                                                                   

The second part of the READI index analyzes the current acuity level. EDs use a triage 

system such as the Emergency Severity Index (ESI) to sort and prioritize patients (see Appendix 

H). Equation 3 consists of three ED crowding measures: the triage category, the number of patients 

in each category, and the number of patients in the ED  (Reeder & Garrison, 2001). When using 

the ESI, which is a 5 points acuity scale, a score of 5 represents the most acute level, and 1 the 

least. The READI index assumes a 4-point triage system. Therefore, an acuity ratio closer to 4 is 

an indication of high acuity.  

 

 

𝐴𝑐𝑢𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜 (𝐴𝑅) =  ∑(𝑡𝑟𝑖𝑎𝑔𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦)(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦)𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑖𝑛 𝐸𝐷                            ( 3 ) 

                                                                                                                                                                                                           

The third factor considered in the READI index, physician staffing, plays a critical role in 

efficient ED patient flow. Therefore, it is essential to consider the productivity of physicians in the 

process of evaluating ED crowding. The third component of the READI index is the Provider Ratio 

(Equation 4), which quantifies the relationship between physician productivity and patient arrival 

rate. Equation 4 is composed of two variables: patient arrivals per hour and the average number of 

patients treated by each physician. A provider rate of less than 1.5 expresses appropriate staffing, 

while a rate greater than 1.5 indicates inadequate staffing (Reeder & Garrison, 2001).  
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One shortcoming of the READI index is that it ignores the role of nurses as factor in 

evaluating the ED crowding (Reeder, Burleson, & Garrison, 2003).    

   

𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑅𝑎𝑡𝑖𝑜 =  𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟∑𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛                                               ( 4 ) 

 

The READI Demand Value, or DV (Equation 5) measures the overall demand on an ED. 

The DV can be used to determine if the demand exceeds ED capacity, which is an indicator of 

potential crowding. The three ratios mentioned above -- the bed ratio, the provider ratio, and the 

acuity ratio -- are the main components of the DV. When the DV is greater than 7, the ED decision 

maker should investigate each ratio to detect the source of the ED supply-demand imbalance 

leading to congestion in the ED (Reeder & Garrison, 2001).   

 𝐷𝑒𝑚𝑎𝑛𝑑 𝑉𝑎𝑙𝑢𝑒 (𝐵𝑉) = (𝐵𝑒𝑑 𝑅𝑎𝑡𝑖𝑜 + 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑅𝑎𝑡𝑖𝑜) × 𝐴𝑐𝑢𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜                                 (5)                         

 

A study by (Reeder et al., 2003) demonstrates that the READI index may not correlate with 

the ED physicians and nurses’ subjective assessment of crowding. However, S. S. Jones, Allen, 

Flottemesch, and Welch (2006) show that the bed ratio on its own can be used as an indicator for 

crowding since it yields a good results for predicting perceived crowding. As a crowding 

measurement scale, READI has a low discriminatory power for anticipating ambulance diversion 

(N. R. Hoot et al., 2007).  
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2.5.2.2 Emergency Department Work Index (EDWIN) 

 

Bernstein et al. (2003) developed the EDWIN instrument, another quantitative tool for 

evaluating ED crowding. The main objective for designing this index was to quantify the crowding 

and busyness at EDs, where numbers could be used as a way to help affect quality improvement 

and inform administrative activities. This observational study was specially aimed at developing 

an index that would agrees with physicians and nurses subjective assessment of ED busyness. 

Equation 6 defines the EDWIN index.   

 

                                                 𝐸𝐷𝑊𝐼𝑁 = ∑𝑛𝑖𝑡𝑖 𝑁𝑎(𝐵𝑇−𝐵𝐴)                                                      ( 6 ) 

 

Where:  

ni = the number of ED patients in triage category i. 

ti = the triage category (ESI, a five-point scale).  

Na= the number of ED physicians at a given time.  

BT = the number of available beds in the ED.  

BA= the number of admitted patients.  

 

The developers of EDWIN suggest interpreting their index scores as follow: a score less 

than 1.5 indicates indicate an active but controllable ED; a score between 1.5 and 2.0 indicates a 

busy ED; a score more than 2.0 indicates a crowded ED (Bernstein et al., 2003).   

The EDWIN index is significantly associated with physicians’ and nurses’ subjective 

assessment of crowding (Bernstein et al., 2003; S. S. Jones et al., 2006; S. J. Weiss et al., 2006). It 
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also has been found that a correlation exists between EDWIN results and ambulance diversion 

status (Bernstein et al., 2003; N. Hoot & Aronsky, 2006; N. R. Hoot et al., 2007). However, the 

EDWIN’s accuracy with respect to identifying diversion is only considered to be moderate 

(McCarthy et al., 2008). Moreover, the EDWIN can detect hours when patients leave without being 

seen with a moderate accuracy (McCarthy et al., 2008).   

 

2.5.2.3 National Emergency Department Overcrowding Score (NEDOCS) 

 

Steven J. Weiss et al. (2004) developed a multiple linear regression crowding measurement 

scale to quantify overcrowding in academic-based emergency centers. Like the EDWIN index, the 

NEDOCS objective scores mainly reflects the subjective assessment of ED physicians and nurses 

for ED crowding. The authors validated the index by comparing the objective scores with the 

subjective perspectives of the ED staff. Equation 7 defines the NEDOCS index as follows:  

 

𝑁𝐸𝐷𝑂𝐶𝑆 = 85.8 × 𝑃𝑏𝑒𝑑𝐵𝑡 + 600 × 𝑃𝑎𝑑𝑚𝑖𝑡𝐵ℎ + 5.64 × 𝑊𝑡𝑖𝑚𝑒 + 0.93 ×  𝐴𝑡𝑖𝑚𝑒 + 13.4 ×  𝑅𝑛 − 20  

( 7) 

Where:  

Pbed = number of patients in ED beds and other treatment spaces such as hallways beds.  

Bt = number of ED treatment beds.   

Padmit = number of admitted patients   

Bh = number of licensed hospital beds 

Wtime = waiting time for last patient placed in an ED bed.  
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Atime = longest time among boarding patients since registration.   

Rn = number of occupied respirators.  

 

0 – 20 

not busy 

20-60 

busy 

60-100 

Extremely 
busy but not 
overcrowded 

100-140 
overcrowded 

140-180 

severely 
overcrowded 

180-200 
dangerously 
overcrowded 

 

Figure 2-2: NEDOCS scores. 

 Adapted from (Steven J. Weiss et al., 2004) 

 

Attempts to test and validate the NEDOCS scale have been carried out in different ED 

settings within different countries. Raj et al. (2006) claim that NEDOCS is not a valid ED crowding 

index in some settings such as Australian EDs, adding that it is a good instrument, but needs 

refinement. On the other hand, a recent study found that the NEDOCS has acceptable agreement 

with the subjective physicians and nurses assessment of crowding in the Netherlands, but it has 

not been validated yet in a busy ED (Anneveld et al., 2013).  

A problem with the NEDOCS formula is that it does not take into consideration triage 

category, which thus gives patients of different acuity level the same weight. To put it another 

way, suppose that five patients with triage category one, who usually acquire a massive amount of 

resources, arrive at an ED at the same time. In such a case, the NEDOCS will just consider them 

as if they are triage category five. Such a weakness is identified by researchers as worthy of more 

investigation (B. C. Sun et al., 2013). Moreover, in a recent study, (Wang et al., 2014) examined 

the reliability and validity of the NEDOCS tool in quantifying overcrowding in extremely high-
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volume EDs. The results show that the NEDCOS index is inaccurate in determining ED crowding 

in a high-volume ED setting.    

 

2.5.2.4 Work Score 

 

Epstein and Tian (2006) developed a quantitative instrument, the Work Score, to quantify 

ED crowding and to determine the root cause of crowding, that is, whether it is due to input, 

throughput, or output factors as laid out in Asplin’s conceptual model for ED crowding (Figure 2-

1). Equation 8 defines the Work Score.  

 𝑊𝑜𝑟𝑘 𝑆𝑐𝑜𝑟𝑒 = 3.23 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑖𝑛 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑟𝑜𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝐷 𝑡𝑟𝑎𝑡𝑚𝑒𝑛𝑡 𝑎𝑟𝑒𝑎𝑠 + 0.097 ∑𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑 𝐸𝑆𝐼𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑟𝑠𝑒𝑠+        10.92 𝑏𝑜𝑎𝑟𝑑𝑒𝑟𝑠𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝐷 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑎𝑟𝑒𝑎𝑠 

                                                                                                                                                     ( 8 ) 

 

The index consists of three major parts. Part one, representing the input factors of an ED, 

encompasses the ratio of the number of patients in the waiting room to the number of ED treatment 

areas. Part two, representing the throughput factors of an ED, is the ratio of the sum of patient-

complexity level to the number of ED nurses. It can be noticed that this model does not take into 

consideration the number of ED physicians on duty, which is a critical factor in evaluating the 

efficiency of ED processes. Part three, representing ED output factors, includes the ratio of number 

of boarding patients in the ED to ED capacity. Ambulance diversion was chosen as a base for 
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building the model, since when the ED department starts diverting ambulances it is considered 

crowded. Ambulance diversion episodes are initiated when a clinician decides that the ED is 

overcrowded (Epstein & Tian, 2006). Therefore, Work Score essentially depends on physicians 

and nurses perspectives of ED crowding.   

Table 2-6 illustrates the components of all the above-mentioned ED crowding indices to 

provide a side-by-side comparison.  
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 Table 2-6: Indicators of emergency department crowding indices 
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READI  x x  x   x    x x    x 

EDWIN    x   x x   x   x   

NEDOCS   x   x x   x   x x x  

Work Score     x  x  x  x   x   
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2.6 ED Crowding in Saudi Arabia 

 

Since most of the ED crowding research has taken place in the United States, J. M. Pines 

et al. (2011) studied the extent of the ED crowding in fifteen other countries learn more facts about 

overcrowding from different healthcare systems and environments. One of the countries they 

examined is Saudi Arabia, where ED crowding has been identified as a major problem and a 

serious challenge to the Ministry of Health. According to this study, Saudi Arabia’s public 

healthcare system recorded more than 15 million ED visits in 2006. With this massive demand on 

ED services, 70% of EDs reported greater than 100,000 annual ED visits. In a recent survey of 

administrators of 10 different EDs in Riyadh city conducted by J. M. Pines et al. (2011), 50% 

reported that their departments are always overcrowded, and 40% reported crowding was often a 

problem. According to Tashkandy, Gazzaz, Farooq, and Dhafar (2008), the primary causes of ED 

crowding in Saudi Arabia are delays in discharging patients, unavailability of inpatient beds, 

boarding patients in EDs, a growing demand on ED services, and delays in preparing disposition 

plan. 

Data obtained from the King Faisal Specialist Hospital and Research Center reveal that 

more than 50% of admitted patients are boarded in the ED are present for over 6 hours, and 15% 

of patients wait more than 24 hours in total (J. M. Pines et al., 2011). According to the 2012 

Statistics Report of the KSA Ministry of Health, EDs reported 20,881,477 visits (MOH, 2014). J. 

M. Pines et al. (2011) indicated that no initiatives to cope with ED crowding in Saudi Arabia were 

being developed.  
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2.7 Fuzzy Logic 

 

Fuzzy logic is a reasoning system derived from the fuzzy sets theory. In the mid-1960s, Dr. 

Lotfi Zadeh introduced the concept of fuzzy sets; unlike traditional binary variables which can 

only take on true and false values, fuzzy sets consider classes and structures with uncertain 

boundaries (Zadeh, 1965). A Fuzzy Logic System (FLS) is a modeling approach that combines 

linguistic variables and a set of fuzzy rules utilizing fuzzy logic philosophies and fuzzy sets 

principles. It is the only approximation approach that can simultaneously handle linguistic and 

numerical data (Mendel, 1995). In general, a FLS consists of four main components: a fuzzifier, 

rules base, inference engine, and defuzzifier (Öztürk, 2013). Figure 2.3 illustrates the general 

structure and the main blocks of a fuzzy logic system.   

 

 

Figure 2-3: Structure of a fuzzy logic system. 

 Adapted from (Shin & Xu, 2009) 

 

These fuzzy system components perform sequentially to achieve the designed goals of the 

system. First, the fuzzifier transforms numerical quantities of input parameters to fuzzy values 

(Shin & Xu, 2009). Fuzzy values are represented by linguistic terms, such as “busy”, “crowded”, 
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“overcrowded” and so on, and the terms have a certain level of membership to fuzzy sets. Next, 

the fuzzifier feeds the fuzzy inference engine with membership values. A fuzzy inference engine 

is a tool that maps fuzzy inputs to fuzzy outputs using defined fuzzy rules. The fuzzy rule base 

works as a knowledge system that directs all procedures in the fuzzy inference engine. Finally, the 

defuzzifier converts the fuzzy values back into numerical values or crisp outputs.  

The very real advantages of the fuzzy logic approach include its ability to deal with vague, 

imprecise, and missing information, its capability of converting ambiguous  human judgments into 

mathematical models (Dotoli, Epicoco, Falagario, & Sciancalepore, 2015), and its use of linguistic 

variables (Singh, Kainthola, & Singh, 2012).   

  

2.7.1 Applications of Fuzzy Logic in Industrial Engineering  

 

Because of its ability to stimulate human reasoning, fuzzy logic systems have been used as 

a modeling approach for assessing and evaluating situations that involve subjective aspects. The 

fuzzy logic approach has been integrated with many analytical and decision methods. For example, 

Tsourveloudis and Phillis (1998), claiming that flexibility is a vague concept because human 

perception and belief are involved in its measurement process, used a neural network that utilized 

fuzzy logic in measuring manufacturing flexibility. Boninsegna, Coianiz, and Trentin (1997) also 

developed a neuro- fuzzy system for estimating the levels of crowding in a scene.  

In the risk management domain, many studies have applied fuzzy logic concepts to 

evaluate the amount of risk in different fields. For instance, in their recent work, Aras, KarakaA, 

and Bicen (2014) introduced a novel fuzzy-logic-based risk management model that takes into 
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consideration human factors such as attention and fatigue to assess risks. The fuzzy logic approach 

has also been used in maritime risk and safety research, with notable examples including its use to 

assess risk associated with loading and offloading liquefied natural gas at terminals (Elsayed, 

2009), to evaluate risk and hazards on fishing vessels (Pillay & Wang, 2002), and to assess and 

manage the risks of port security (Ung, Williams, Bonsall, & Wang, 2009). Essentially, the fuzzy 

logic approach has been proven as a suitable method in the field of risk assessment (Aras et al., 

2014). Moreover, in construction management, Marzouk and Amin (2013) utilized fuzzy logic and 

neural networks to develop a system that can accurately predict prices of construction materials.  

 

2.8 Literature Review Summary 

 

In review, this chapter has examined information from previous studies regarding 

definitions and impacts of ED overcrowding, conceptual models of patient flow within emergency 

centers, quantitative and qualitative measures and indicators that have been used or suggested in 

evaluating ED overcrowding levels, and the existing ED overcrowding measurements indices. In 

addition, the literature review presented related studies on the validity and reliability of the ED 

overcrowding measurement indices, within different healthcare systems and the criticisms of their 

reproducibility outside of settings where they were originally developed in. It ends with a review 

of the related literature on the fuzzy logic system and its practical applications in the field of 

industrial engineering such as risk measurement and management to show its ability as a 

quantitative tool in measuring vague situations.  
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2.9 Research Gap Analysis 

 

Based on the literature review conducted, two existing crowding assessment approaches 

were identified, which include the identification of measures and indicators for ED overcrowding, 

and the development of multidimensional indices for quantifying crowding. After an extensive 

review of the related literature, sixty-five ED crowding measures and indicators were identified, 

and their uses were studied. In addition, four ED multidimensional overcrowding indices were 

identified. Those indices are the Real-time Emergency Analysis of Demand Indicators (READI) 

(Reeder & Garrison, 2001), the Emergency Department Work Index (EDWIN) (Bernstein et al., 

2003), the National Emergency Department Overcrowding Score (NEDOCS) (Steven J. Weiss et 

al., 2004), and the Work Score (Epstein & Tian, 2006).  

Two of the indices, the READI, and EDWIN index used simple mathematical equations, 

while the NEDOCS index used multiple linear regression, and the Work Score used logistic 

regression in the index development stage. The READI, EDWIN, and NEDOCS overcrowding 

indices were developed based on clinician opinion of crowding, while the Work Score index was 

developed based on ambulance diversion episodes (see Table 2-7). The dependence on the 

perspective and feedback of physicians, who are only one of the multiple EDs’ stakeholders 

present in EDs, and upon nurses’ perspectives and subjective assessment of crowding, make 

READI, EDWIN, and the NEDOCS index biased toward healthcare giver perspectives. 

Consequently, there is a lack of a proper quantitative tool for assessing ED crowding which takes 

into consideration other stakeholder’s perspectives, such as patients, and hospital administrators 

as well as the opinion of healthcare experts.  
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The literature shows, however, that the reliability, reproducibility, and validity of these 

crowding measurement scales in other emergency care settings has been subject to much criticism. 

Four critical studies examined the validity of those indices in the United States, The Netherlands, 

and Australia. The results of these studies conclude that the NEDOCS and the EDWIN indices 

could not be validated outside the settings where they originally developed. The READI and the 

Work Score could not be applied in different healthcare systems due to the fact that the READI 

uses a four-level triage system which limits it use to healthcare systems that uses the same triage 

system, and the Work Score deals with ambulance diversion which limits its use to hospitals that 

allow ambulance diversion.  

To bridge the gap between the needed effective quantitative tool for assessing ED crowding 

and existing ones, the intensive literature review shows that fuzzy logic is a robust approach for 

developing quantitative assessment tools due to its ability to deal with vague, imprecise, and 

missing information; and its use of linguistic variables. In addition, the fuzzy logic approach is 

capable of converting ambiguous human judgments into mathematical models. According to the 

author’s knowledge, the fuzzy logic approach has not been utilized yet to develop a 

multidimensional ED overcrowding scale. Therefore, it is a potential approach for fulfilling the 

aims of this research.  
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Table 2-7: Gap analysis 

   

Index (Author, 

year) 

 

Method 

 

Basis of the Index  

 

Simple 

mathematical 

formula   

Regression 

Model  

Fuzzy 

Logic  

Ambulance 

Diversion 

Clinician 

Opinion 

Expert 

opinion 

READI (Reeder 

& Garrison, 

2001) 

X    x  

EDWIN 

(Bernstein et al., 

2003) 

X    x  

NEDOCS (Steven 

J. Weiss et al., 

2004) 

 X   x  

Work Sore 

(Epstein & Tian, 

2006) 

 x  x   

 

 

The identified research gap reveals that although there are several indices designed to 

quantify ED crowding, they are ineffective when implemented in some healthcare systems. 

Furthermore, this gap outlines the need for a more robust quantitative measurement tool which can 

measure ED crowding that produces consistent and reliable results in a variety of healthcare 

settings. The fuzzy logic approach was identified as a viable method for measuring ED crowding, 

as it is capable of using data provided form subjective human assessment and linguistic variables. 

This potential approach for quantifying crowding has properties identified in table 3-1 as being 
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important to appropriately modeling the problem of overcrowding, given its interconnected nature 

and variables.   
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CHAPTER 3  RESEARCH METHODOLOGY 

 

3.1 Introduction 

 

The importance of research methodology in scientific research and investigation is 

highlighted by the role it plays in achieving objectives and aims.  It sets forth a design plan for the 

course of the research, and can be compared to a production line which has to be appropriately 

designed and configured to manufacture the intended product. Therefore, this chapter describes 

the research methodology that is implemented in this dissertation to achieve the stated aims and 

objectives. It details all stages that must be completed in order to develop and validate a novel 

emergency department crowding measurement system. Additionally, this chapter provides more 

information on the proposed framework by providing a conceptual explanation of the proposed 

framework upon which chapter four will develop. The designed methods will ultimately guide the 

creation of the described ED crowding index, which would contribute to the fields of knowledge 

of quality systems engineering and healthcare systems engineering.  

 

3.2 Research Methodology 

 

The research methodology is illustrated in Figure 3-1. This research began with an inquiry 

on how the overcrowding in EDs could be objectively measured. The research idea has been 

influenced by insights from different sources of information, such as recent technical reports which 

reveal that emergency departments are facing growing demand while experiencing limitations in 

emergency care resources, leading an unbalanced relationship between supply and demand. After 
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identifying the problem, the next step was to review the related literature on ED crowding in more 

detail, including the impacts crowding has on EDs, and how this phenomenon is being assessed. 

A review of research was essential to understand what studies have been conducted within the 

contexts of this problem to gain more insight about it and identify shortcomings and opportunities 

for development. In the review of literature, careful analysis is done through presenting and 

discussing the findings of studies that investigated the impact of ED crowding on the different ED 

stakeholders, proposed definitions of ED crowding, existing conceptual models, the different 

approaches to measuring ED crowding, and developed measurement systems. After this step, a 

gap analysis is performed to determine what research within the area of measuring ED crowding 

might have potential contributions to this research domain.  
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Figure 3-1: High level research methodology 

 

The gap analysis showed that the existing ED overcrowding measurement scales have not 

been able to be reproduced outside the settings where they were originally developed. To further 

explore the cause of this and investigate an appropriate method for this study, more background 

information was required. Several requirements for studying the research problem were identified, 

and several quantitative approaches for modeling crowding in similar contexts were reviewed. The 

advantages and limitations between these studied approaches were analyzed, which include 

formula based approaches, regression modeling, queuing theory, discrete event simulation, and 

fuzzy logic. Fuzzy logic, which has been applied to similar problems such as measuring risk, 
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appeared to be the most appropriate approach in modeling the problem, since it offers the ability 

to handle ambiguous human judgment and interconnected factors, in addition to its ability to 

provide scale based evaluations. After this review of modeling approaches, fuzzy logic was 

adapted to be included in the design of the proposed framework to measure ED crowding. In the 

next stage, the system architecture will be described in detail, which will identify the type of fuzzy 

system to be used, while addressing the organization of the subsystems architecture. In addition, 

the crisp inputs and outputs will be identified, and the interconnected nature of the identified 

crowding factors will be discussed.  

Once all of the fuzzy system requirements are identified, the next step will include the 

process of developing the fuzzy system, consisting of four main components. The fuzzy system 

architecture will be discussed in detail, where the crisp inputs, inference engine, expert knowledge, 

and crisp outputs will be developed. In this stage, the knowledge base will be constructed through 

the elicitation of knowledge from experts to create both the membership functions and rule base 

for the fuzzy system. The elicitation method used to construct the knowledge base will also be 

described, including a discussion of identified elicitation methods. In addition, the fuzzification 

and defuzzification processes will be described. After constructing the framework, a validation 

study will be conducted in an ED to verify the accuracy of the proposed framework in quantifying 

the ED overcrowding status. Once its accuracy is determined, conclusions, recommendations, and 

future research opportunities will be presented. 
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3.3 Research Idea 

 

Emergency departments and centers are a crucial component of any healthcare system. 

Many healthcare systems around the world are experiencing growing demands on emergency care 

services in the presence of limited resources. This increasing demand has led to an unbalanced 

relationship between resource supply and demand, resulting in overcrowding in EDs. As The 

United States Government Accountability Office recently reported, “Emergency Departments 

crowding continues to occur, and some patients wait longer than recommended time frames.” 

Moreover, the World Health Organization recently revealed that it is a priority for healthcare 

systems to concentrate on decreasing crowding levels in healthcare facilities in order to mitigate 

or eliminate its adverse influence on both patients and clinicians. In addition, the American College 

of Emergency Physicians’ (ACEP) 2014 report card revealed that the USA’s emergency care 

environment is worsening, and barely passed ACEP‘s assessment with a D-minus grade. The 

report asserted that the issues regarding access to EDs play a critical role in any effort to improve 

ED services. These technical reports confirm the impact of growing demand on EDs, and outline 

the need for effective measures. These reports were the starting point for this research, and led to 

a review of scientific research based literature to enable a full investigation of the situation so as 

to gain a multitude of perspectives. 
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3.4 Literature Review  

 

The review of literature conducted in this study covers academic works on emergency 

department overcrowding, including its operational definitions, and the impact it carries on quality 

of care, the satisfaction of patients and clients, patient safety and outcomes, and clinician workload. 

This section also sheds light on the conceptual frameworks that have been developed to facilitate 

the understanding of the phenomenon of ED overcrowding as well as on the determinants of the 

problem. In addition, it reviews the existing measures that have been used in assessing 

overcrowding in detail, explores their similarities of their results, and compares their results with 

clinician perspectives of overcrowding. It also reviews all approaches available to assess the status 

of overcrowding in emergency departments and examines their applicability, reliability, and 

validity. Based on the intensive literature review, a literature gap was identified, which is discussed 

in detail in the following section.  

 

3.5 Literature Gap Analysis 

  

 The literature review started with a simple question: What approaches for measuring 

emergency department overcrowding are available? Two existing approaches were identified, 

namely identification of measures and indicators for ED overcrowding, and the development of 

multidimensional indices for quantifying crowding levels. The next question was: What ED 

overcrowding measures, indicators, and indices exist? After an extensive review of the related 

literature, sixty-five measures and indicators were identified, and their uses were studied. In 
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addition, four ED multidimensional overcrowding indices were identified which are Emergency 

Analysis of Demand Indicators (READI) (Reeder & Garrison, 2001), Emergency Department 

Work Index (EDWIN) (Bernstein et al., 2003), National Emergency Department Overcrowding 

Score (NEDOCS) (Steven J. Weiss et al., 2004), and Work Score (Epstein & Tian, 2006). Next, 

the methods which were used in each of those models were identified, and the bases used for 

developing those indices were explored. 

Among the former methods, two used simple mathematical equations; one used multiple 

linear regression, and one used logistic regression in developing the indices. For bases of 

development, the READI, EDWIN, and NEDOCS overcrowding indices were developed based on 

clinician opinion of crowding, while the Work Score index was developed based on ambulance 

diversion episodes.  

The literature shows, however, that the reliability, reproducibility, and validity of these 

crowding measurement scales in other emergency care settings has been subject to much criticism. 

Four critical studies examined the validity of those indices in the USA, Netherlands and Australia. 

The results of these studies conclude that NEDOCS and EDWIN could not be validated outside 

the settings where they originally developed. In addition to these results, those of the preliminary 

study confirms the criticisms of these models. READI and Work Score could not be applied in 

different healthcare systems due to the fact that READI uses a four-level triage system, which 

limits it use to healthcare systems that uses the same triage system, and Work Score addresses 

ambulance diversion, which limits its use to hospitals that allow ambulance diversion.  
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At this point, the research gap was identified. The gap indicates that although many indices 

have been developed to measure ED crowding, they are not effective when implemented in some 

health care systems due to the described criticisms. Thus, there is a need for the development of 

an appropriate method that could be used to develop a measurement instrument for this situation 

in a variety of ED contexts.  

The next critical question was: What approach that has the ability to deal with ambiguous 

human judgments can be utilized to develop a quantitative tool for assessing ED overcrowding? 

The literature review shows that fuzzy logic is a robust approach for developing quantitative 

assessment tools due to its ability to deal with vague, imprecise, and missing information; its 

capability of converting ambiguous human judgments into mathematical models and its use of 

linguistic variables. Moreover, the review of literature indicated that the fuzzy logic approach has 

not been utilized yet to develop a multidimensional ED overcrowding scale. Therefore, it is a 

potential approach for fulfilling the aims of this research. According to table 3-1, fuzzy logic 

possesses all properties which were identified as necessary for modeling the problem, which 

includes three properties that no other approach possessed. As such, fuzzy logic is identified as the 

most appropriate modeling approach.  
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Table 3-1: Comparison among modeling approaches 

                          Approach           

Properties  

Formula-
based 
Method 

Regression 
Modeling 

Queuing 
Theory 

Discrete-
Event 

Simulation 

Fuzzy 
Logic  

Statistical basis      

Expert Subjective Assessment        

Linguistic variable      

Dealing with ambiguous human 
judgments 

     

Interconnected factors      

Scalability      

 

 

3.6 Fuzzy Logic System Architecture  

 

 To construct the fuzzy system, the different components must be identified and defined. 

First, the inputs and outputs must be defined according to insights gained from the literature 

review, in addition to Asplin’s conceptual model for overcrowding. This comprehensive definition 

of overcrowding from literature based sources will allow for a more effective application of fuzzy 

logic as it applies to a complex and subjective problem. Next, the method for implementing the 

fuzzy logic system will be identified, whether it be a standard fuzzy system, or hierarchical fuzzy 

system. The interconnectedness between the determinants of crowding will also be discussed to 

offer an effective system design. As each determinant affects other determinants in addition to the 
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crowding level, it may become necessary to develop a logical structure of fuzzy subsystems to 

isolate the determinants and more accurately define inputs and outputs of the system.  

 Expert knowledge is another key part of the fuzzy system architecture, as the knowledge 

base will play a key role in obtaining outputs. The discussion of the knowledge base construction 

will include the defined fuzzy classes, the types of membership functions, and the fuzzy numbers. 

The completed architecture will accomplish the task of creating a logical system defined by the 

combination of the determinants of crowding, the designed inputs, and components built with 

expert knowledge.   

  

3.7 Fuzzy Logic Framework Development  

 

As shown in Figure 3-2, the proposed framework encompasses four components, including 

the crisp inputs, a fuzzy logic system, the expert knowledge, and crisp outputs. The figure further 

shows the relation between these components by showing the steps an input goes through to obtain 

an output. While a fuzzy system alone may be simple to design in general, what  makes this 

framework novel is its integration of expert knowledge in the form of a knowledge base with the 

fuzzy system.   

The crisp inputs include identified measures and indicators that reflect many ED and 

hospital operational aspects that affect ED crowding levels. The crisp inputs feed the second 

component of the framework, the fuzzy logic system, with numerical information. The fuzzy logic 

system includes the fuzzifier, fuzzy inference engine, knowledge base, and defuzzifier, at which 
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the crisp ED crowding measures are converted to crisp output. Expert knowledge is used to 

construct knowledge base, consisting of the fuzzy rules and the database, which fuzzifies inputs, 

provides supporting decision making information to the inference engine, and defuzzifies outputs. 

The resulting crisp output reflects the level of overcrowding in the ED. 

 

 

Figure 3-2: Proposed framework 

 

The output of the framework is an index of ED overcrowding that aids in measuring patient 

congestion and patient flow within EDs. It is a quantitative instrument that evaluates the ED 
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crowdedness based on the input of healthcare experts. The output can be utilized with a decision 

support system to inform and aid an ED in coping with ED crowding.  

3.8 Validation 

 

 The purpose of the validation is to evaluate the accuracy and sensitivity of the proposed 

ED overcrowding measurement system in determining the levels of crowding. The proposed 

framework will be implemented at an ED in Saudi Arabia and the performance of the index will 

be monitored. From the data obtained from the implementation period, it will be possible to assess 

the impact of each observed input on the major operational scores and overall crowding. At the 

same time, the subjective perception of healthcare experts towards the level of crowding will be 

assessed using a subjective assessment tool. 

 The objective results of the index and the subjective assessment of the healthcare experts 

will be discussed in an analysis of the validity and accuracy of the proposed framework. 

Specifically, Kappa statistics will be utilized to perform this analysis.    

  The mentioned Kappa statistical analysis will be conducted specifically to evaluate the 

level of agreement between the index scores of the crowding level and the experts’ perspective on 

the crowding level. The Kappa statistical analysis will be performed using equation 1. Finally, this 

Kappa score will be compared with the Kappa scores from the application of NEDOCS and 

EDWIN in Saudi Arabia from the preliminary study to further determine the accuracy of the prosed 

index. The determined accuracy of the proposed index will provide insight on its capability to 

emulate human reasoning in perceiving overcrowding. 
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3.9 Conclusion 

 

The conclusion to the dissertation will recall patterns recognized in data from the analysis 

of the model, and draw upon them to make a conclusion on the constructed model. The discussion 

of these findings will aid in assessing the quality of the results from the framework development, 

in addition to contributing to the identification of bias in expert assessment.  

Overall, the conclusion will review the research problem in its context and the framework 

developed in accordance to an identified need. With the discussion of the results, it will be possible 

to assess the developed overcrowding index, and its benefits to stakeholders can be highlighted. 

Any identified limitations will contribute to recommendations for future researchers.  

 

3.10 Future Research 

 

As a first research attempt to use a fuzzy logic system in assessing the vague crowding 

situations in healthcare facilities, the proposed framework will open up new research opportunities 

in the domain of patient flow studies and crowding measurement and improvement. A potential 

opportunity for future research could focus on linking and integrating the results of the scores of 

the proposed index to a decision making system. The implementation of the proposed index in 

other healthcare settings could be another potential research effort, which could further test the 

reproducibility of results from the index.  
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3.11 Summary 

 

In review, chapter three explains the methodology that is followed in this research to 

achieve its stated objectives. It begins by introducing an overview on the origins of the research 

idea. Then, it describes the intensive literature that has been reviewed to lead the identification of 

the literature gap. The gap analysis was then discussed in detail, which led to an identified need 

within the context of EDs. The architecture of the proposed framework, designed in response to 

the identified literature gap, is then discussed. The components and technical aspects of the 

framework are explained in the discussion of the fuzzy logic framework development. This chapter 

also describes the design of the validation study and the statistical method that will be applied to 

examine the accuracy of the proposed model and its predecessors. The objectives for the 

conclusion are briefly discussed, and finally projections for future research are provided, which 

will conclude the dissertation. 

The methodology section represents an accumulation of reviewed literature, information 

for the proposed framework, and its anticipated outcomes which will provide a basis for a several 

types of analysis. With the proposition of the fuzzy system sufficiently discussed, the next chapter 

will provide more discussion of the specified components, and detail all specific aspects of the 

system’s design.   
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CHAPTER 4  FRAMEWORK DESIGN  

 

4.1 Introduction  

 

Chapter four of this dissertation describes the technical aspects of the proposed framework, 

expanding on the theory behind its construction, while showing the design process for the fuzzy 

systems. First, a conceptual comparison is drawn between the hierarchical and standard fuzzy logic 

systems, and the choice of utilizing a hierarchical fuzzy system in this research is justified. Next, 

the architecture of fuzzy logic is described, encompassing the overall system, the subsystems, and 

the components of each subsystem. The relation of the proposed fuzzy system and its inputs and 

outputs is elaborated upon in the four different subsystems. In another section, the procedure for 

developing the main components of each subsystem is described, starting with the knowledge base 

which contains the fuzzy rule base and database. The designed survey and assessment forms are 

also discussed, which are important instruments for constructing the knowledge base. Finally, the 

fuzzification and defuzzification processes and methods are presented.  

 

4.2 Hierarchical Fuzzy System   

 

Hierarchical fuzzy systems (HFSs) are implemented by researchers for two main purposes. 

First, they help in minimizing the total number of fuzzy rules in the knowledge base which feed 

into the fuzzy inference engine. Second, the HFSs are effective in building the logical relationship 

among different crisp input variables in complex systems, unlike Standard Fuzzy Systems (SFSs), 

which become exponentially complicated as the number of variables and their fuzzy sets’ levels 
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increase. Figure 4-1 and 4-2, where On stands for the crisp output of fuzzy subsystem n, and Of 

stands for the crisp output of the main fuzzy system, illustrate the difference between applying 

traditional standard fuzzy logic approach versus applying hierarchical fuzzy logic approach to 

construct and determine the relationship between a fuzzy subsystem’s crisp outputs and the main 

fuzzy system (Aly & Vrana, 2007).  

 

 

 

Figure 4-1: Standard fuzzy logic system. 

 Adapted from (Aly & Vrana, 2007). 

 

In the case of SFSs, the total number of fuzzy rules related to the number of crisp inputs is 

exponentially proportional, whereas it is linearly proportional in HFSs.  For instance, supposing 

that the number of crisp variables equal five, and each variable encompasses five fuzzy sets, then 

when utilizing a SFS, the total number of fuzzy rules for the whole fuzzy system is (55 = 3125 

rules), whereas in a four-level HFS with four fuzzy subsystems, each encompassing two crisp 

inputs, the total number of fuzzy rules for the complete fuzzy system is (52 = 100 rules). It is clear 
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that utilizing HFSs significantly reduces the total number of fuzzy rules necessary to construct the 

knowledge bases for the whole fuzzy system. Thus, utilizing HFSs in this study makes it possible 

to analyze the complicated nature of emergency health care systems, which if studied through 

SFSs, could involve too many fuzzy rules and computations for an effective analysis. It is also 

notable that using HFSs detailed in Figure 4-2, will help in determining the relationship between 

outputs of the fuzzy subsystems and the main fuzzy system, and in specifying the relationship 

among fuzzy subsystems as well.     

 

 

 

Figure 4-2: Hierarchical fuzzy systems. 

Adapted from (Aly & Vrana, 2007). 
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4.3 Fuzzy System Architecture  

 

In order to define the fuzzy subsystems, Asplin’s comprehensive ED overcrowding 

conceptual model (Figure 2-1) was utilized, which divides emergency care processes into three 

interdependent phases: input, throughput and output. Each phase in Asplin’s model contributes 

significantly to the level of ED crowding, and this research adapts these phases in Asplin’s 

conceptual model in developing the ED overcrowding quantification tool.  Many previous studies 

take into consideration three ED operational aspects (emergency care demand, ED workload, and 

discharge status) in developing quantitative instruments for crowding (Table 2-6). These same 

operational aspects are adapted into the framework developed in this study, as shown in Figure 4-

3. By utilizing fuzzy logic, this study overcomes the limitations of previous studies, by quantifying 

the opinion of experts with different perspectives, to reduce the introduction of bias in the final 

assessment of crowding.  

 

 

Figure 4-3: Determinants of ED crowding level 
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In addition to the three phases of Asplin’s model, information from ED professionals and 

experts is integral to the framework used in this study. This research proposes a three-level 

hierarchical fuzzy logic system which is developed based on available information and knowledge 

from experts. The purpose of this proposed fuzzy system is to accurately determine the level of 

ED crowding. Like the fuzzy system as shown in Figure 4-2, the proposed fuzzy logic system 

includes seven inputs, four fuzzy inference systems (fuzzy subsystems), and one output. The seven 

inputs of the proposed fuzzy logic system are developed corresponding to four subsystems, related 

to Asplin’s three interdependent phases, and are defined as follows: 

Input 1: Patient Demand; Ratio of Waiting Patients to ED Capacity 

Input 2: Patient Complexity (Waiting Area)  

Input 3: ED Physician Staffing  

Input 4: ED Nurse Staffing  

Input 5: ED Occupancy Rate  

Input 6: Patient Complexity (Emergency Room) 

Input 7: Boarding Status; Ratio of Boarded Patients to ED Capacity 
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Figure 4-4: Three-level hierarchical fuzzy expert system 

 

Figure 4-4 further illustrates the relation of these inputs to the proposed fuzzy logic system. 

Level one of the hierarchical fuzzy expert system contains two fuzzy subsystems.  

The first fuzzy subsystem aims to assess the ED demand status by evaluating the ratio of 

patients in an ED waiting area to that emergency room’s capacity, and the average patient 

complexity. Figure 4-5 illustrates the components of fuzzy subsystem I. the first input to the fuzzy 

subsystem I is the ratio of waiting patients to ED capacity which is characterized by four fuzzy 

membership functions; “Low”, “Medium”, “High”, and “Very High”.  To assess this input 

variable, trapezoidal functions are utilized to evaluate the membership degree on an interval [0, 2]. 

The patient complexity, the second input to the fuzzy subsystem I, is represented by three 

membership functions; “Low”, “Medium”, and “High”. Similarly, a trapezoidal function is used 

for this input, evaluating the membership degree on the interval [1, 5], which is adapted from the 
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five levels of the emergency severity index (Appendix G). Given these fuzzy classes, the total 

number of fuzzy rules from this subsystem will be 12 fuzzy rules (4×3). The output of fuzzy 

subsystem I is ED demand status, which is represented by five membership functions; “Very 

Low”, “Low”, “Medium”, “High”, and “Very High”. This output is evaluated with a triangular 

function for the interval [0, 100]. The demand status is an intermediate variable rather than a final 

indicator, which feeds the fourth and final fuzzy subsystem with a crisp value, to contribute to the 

final assessment of the ED crowding level.                

 

 

Figure 4-5: Fuzzy logic subsystem I 

 

The second fuzzy logic subsystem, with two inputs and one output, is designed to 

determine the level of ED staffing. Figure 4-6 presents the components of fuzzy subsystem II. ED 

staffing status is subjective in nature and the membership functions that represent this aspect of 

crowding reflect this subjectivity based on the knowledge from health care experts. The two inputs 

of this fuzzy subsystem are the level of ED physician staffing and ED nurse staffing. Both inputs 
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are represented by three membership functions; “Inadequate”, “Partially adequate”, and 

“Adequate”, which are assessed on the intervals [0, 0.32], and [0, 50], respectively, with 

trapezoidal functions. With these membership functions, the total number of fuzzy rules in this 

subsystem will be 9 rules (32). The output of the fuzzy subsystem two is ED staffing status. The 

output is represented by the same three membership functions; “Inadequate”, “Partially adequate”, 

and “Adequate”, and is evaluated on a trapezoidal function with the interval [0, 100]. The ED 

staffing status is an intermediate variable that feeds the third fuzzy subsystem with a crisp value, 

which will serve as another variable for the assessment of the ED workload. Finally, the ED 

workload will feed into the fourth fuzzy subsystem.                

 

 

Figure 4-6: Fuzzy logic subsystem II 

 

The third fuzzy logic subsystem evaluates the ED workload. The three inputs of this fuzzy 

subsystem are ED staffing level, ER occupancy rate, and average complexity of patients who are 
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being treated in the emergency room. It should be noted that the third input shares the same 

characteristics of the second input of subsystem one, with the difference being that the populations 

of these similar inputs are separate. Figure 4-7 illustrates the components of fuzzy subsystem III. 

The ED staffing status, input one, is the output from subsystem II, and is represented by three 

membership functions; “Inadequate”, “Partially adequate”, and “Adequate”. Using the same 

membership function, this input is evaluated with a trapezoidal function on the interval [0, 100]. 

The ER occupancy rate, which is an independent input, is characterized by four membership 

functions; “Low”, “Medium”, “High”, and “Very High”. The occupancy rate is evaluated with a 

trapezoidal function in the interval [0, 100]. The third input, patient complexity shares 

characteristics from the second input to the fuzzy subsystem I, as previously mentioned. Therefore, 

this third input is represented by three membership functions; “Low”, “Medium”, and “High”, and 

is evaluated with a trapezoidal function in the interval [1, 5]. With the three sets of membership 

indicators in this subsystem, the number of fuzzy rules will now reach 36 rules (32×4). The single 

output of the third fuzzy logic subsystem is the ED workload. It is represented by four membership 

functions; “Low”, “Medium”, “High”, and “Very High”. As other outputs are evaluated in this 

interval of [0,100], this output is evaluated in the same interval, and its membership value is 

assessed with a triangular function. The ED workload is an intermediate variable that feeds the 

fourth fuzzy subsystem, and represents a major determinate of crowding by containing four of the 

seven inputs alone. Combined with the output of subsystem I and the final input, the output of 

subsystem III will contribute to subsystem IV’s assessment of emergency department crowding.  
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Figure 4-7: Fuzzy logic subsystem III 

 

In review, the first level of the hierarchical fuzzy expert system was composed of two fuzzy 

logic subsystems, with the second level containing one subsystem, which is also detailed in figure 

4-4. Level three of the hierarchical fuzzy expert system contains the fourth and final fuzzy logic 

subsystem, which receives inputs in some manner from every previous subsystem.  

This fourth fuzzy logic subsystem is the main component of this hierarchical fuzzy expert 

system which aims to assess the ED crowding level. The three inputs of this fuzzy subsystem 

include the two previously mentioned indicators ED demand status and ED workload, and the 

third, new input, which is the seventh independent input of the entire hierarchical system, is ED 

boarding status. The components of fuzzy subsystem IV are illustrated in Figure 4-8. The first 

input to this subsystem, the ED demand status, as previously described, is represented by five 

triangular membership functions; “Very Low”, “Low”, “Medium”, “High”, and “Very High”, with 

an interval of [0, 100]. The second input, the ED workload is represented by four triangular 

membership functions; “Low”, “Medium”, “High”, and “Very High”. Its interval of the crisp value 
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is [0,100]. The third input, ED boarding status, is an independent variable, which is derived from 

the ratio of boarded patients to the capacity of the emergency room. This input has four fuzzy 

classes as the second input, but is evaluated with a trapezoidal membership function on an interval 

of [0, 0.4]. With the three sets of membership indicators in this subsystem, the number of fuzzy 

rules is 80 (42×5). The output of the fourth fuzzy logic subsystem is the ED crowding level, and is 

the final output for the entire hierarchical system. It is represented by five membership functions; 

“Insignificant”, “Low”, “Medium”, “High”, and “Extreme”, which are used to indicate the degree 

of crowding in emergency departments. Like other outputs, the interval of the crisp value for the 

final output is [0,100], and is evaluated with a triangular function.  

Utilizing the hierarchical fuzzy system appears to be the most appropriate approach for this 

study, rather than the standard fuzzy system. This approach creates different indicators, such as 

demand status, workload, and staffing indicators, while reducing the total number of fuzzy rules 

from 5184 (under the standard fuzzy system) to just 137 rules. This difference represents a great 

reduction in calculation and simplifies the process of acquiring knowledge from experts, and 

potentially reduces the threshold for academic access to meaningful results.  
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Figure 4-8: Fuzzy logic subsystem IV 

 

4.4 Fuzzy Logic System Development 

 

This section describes the technical process of developing the proposed fuzzy expert 

system, which would equip the designed framework with a knowledge base, a fuzzy inference 

engine, fuzzifier and defuzzifier. The knowledge base consists of a fuzzy database and a fuzzy rule 

base, in order to fuel the fuzzifier, defuzzifier, and inference engine portions of the fuzzy 

subsystems.   

First, the elicitation of expert knowledge for building the fuzzy database is described. 

Secondly, this section also describes the process of developing fuzzy rules. Finally, the 

fuzzification and the defuzzification processes are conceptually and mathematically represented.  
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4.4.1 Knowledge Base 

 

The knowledge base is an indispensable component of any fuzzy logic system, as it 

contains both the fuzzy rules base and the database. The development of the knowledge base is 

keystone for the fuzzy system, and is the most challenging aspect of designing the proposed model. 

The importance of this knowledge base stems from the dependency of the other component of the 

system on it, including the fuizzifier, defuzzifier, and fuzzy inference engine. Effectively, the 

knowledge base is the brain of the fuzzy system, simulating reasoning from a human perspective. 

The creation of the knowledge base involves systematic collection of qualitative and quantitative 

data from subject matter experts. These experts have to meet the following criteria in order to be 

eligible to participate in the membership intervals determination and fuzzy rules evaluation:  

 The expert works or has recently worked in Saudi Arabia healthcare institutions for at least 

five years, or has conducted research in the field of Saudi healthcare.  

 The expert has deep experience in the daily operations of emergency care centers.  

 The expert has solid knowledge in staffing, performance management, healthcare 

administration, patient flow analysis, and bed management.  

 

To create a robust knowledge base for the proposed fuzzy system, a minimum of ten experts 

are required who meet these qualifications. While discussing these experts here for the purposes 

of analyzing their data, and elsewhere in this study, an assigned code “HCE-k” will be issued for 

each participated expert, where HCE stands for Healthcare Expert, and k stands for the expert 

number.  
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4.4.1.1 Database 

 

The database is one of two components of the knowledge base, which contains the fuzzy 

sets and their membership functions of all fuzzy variables of the system. This information feeds 

the fuzzifier and defuzzifier, stating the degree of membership and the type of the membership 

function of the crisp input and output values. 

 In order to develop the database and construct the membership functions, different 

approaches for eliciting expert knowledge were considered.  Each considered approach is based 

on different assumptions for assigning membership degree of an element to a fuzzy set, and these 

approaches vary in terms of question length, and response length and confidence. Five elicitation 

methods are identified (Mendel & Wu, 2010). The methods include, point estimation (or polling) 

(Hersh & Caramazza, 1976), direct rating, interval estimation, reverse rating, and transition 

interval estimation.  

Point estimation allows experts to indicate whether a specific crisp value belongs to a 

certain fuzzy class in their responses. For example, an expert may be asked: “Do you consider a 

30% ED occupancy ratio be classified as medium?” Although this method of elicitation does not 

require membership function knowledge, and poses relatively simple questions, the number of 

questions required to obtain an interval of data would be prohibitively large.  

Direct rating requires either multiple experts providing numerical values for a membership 

function in a single instance, or a single expert providing the values for the function multiple times. 

A question associated with this approach could be written as “To what degree of high occupancy 
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would you attribute a 30% ED occupancy rate?” This elicitation method would require experts to 

have knowledge of both fuzzy logic and membership functions prior to the study, and there would 

be many questions required to construct the function, as one question would be required for each 

crisp value. Moreover, there will be increased difficulty in providing precise answers as the 

number of questions increase, introducing uncertainty.  

In the approach of interval estimation, multiple experts identify crisp intervals with a range 

of associated linguistic terms. When the intervals are analyzed, membership degrees are assigned 

to construct membership functions. A question utilizing this approach could ask responders “What 

range of occupancy rates characterize low occupancy in an emergency room?” This elicitation 

method does not require any prior knowledge on fuzzy logic and membership functions, because 

the questions do not directly ask for membership degree. Another advantage of interval estimation 

is that there is only one question assigned per fuzzy class.  

Reverse rating asks experts to determine a single crisp value that is associated with a fuzzy 

class at a given membership degree. A question created with this method may ask “What is an 

occupancy rate that is considered ‘high’ at a degree of 0.4?” This elicitation method requires 

responding experts to have knowledge on membership functions and fuzzy logic, utilizing a large 

number of questions, and the questions could be challenging to accurately answer.  

For the transition interval rating method, the expert provides interval values in a given 

membership class at a given membership degree. Utilizing this approach, a question could be 

written as “What is a range of ED occupancy rates which are ‘very high’ to a degree of 0.7?” This 

method is the most difficult one to implement, as it requires deep knowledge of both fuzzy logic 
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and membership functions, and the number of questions required to obtain expert knowledge 

would be large.  

 This study adapts the indirect interval estimation elicitation method. Such a method carries 

advantages such as allowing responses from multiple subject matter experts, while not requiring 

knowledge of membership functions. Additionally, under this approach, fewer questions may be 

used, and given questions may be easier to answer than those in other approaches. 

To elicit the degrees of membership for a fuzzy class, let [𝑥𝑗𝑖, 𝑦𝑗𝑖] represent the interval 

values of the fuzzy class j that is determined by expert i. The steps to elicit and analyze expert 

knowledge are described as follows:   

- Determine all interval values for each j obtained from experts.  

- Perform an intersection for j subset intervals to obtain expert consensus.        

- Find ambiguous areas among determined intervals.  

 

The obtained intervals and the ambiguous areas among them will be utilized in constructing 

the membership functions. The elicitation method involves a survey (Appendix J) including five 

questions for subject matter experts, which are derived from scenarios in emergency departments, 

citing specific numbers to characterize the capacity and patient flow in a given question. The 

objective of the survey is to elicit the opinion of subject matter experts, by obtaining each 

numerical interval for a given linguistic fuzzy class from their responses. For each given scenario 

in each questions, 50 beds will be the given standard for capacity. From the responses which are 

based on 50 bed scenarios, such as in questions one, two, three and five, more calculation will be 
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necessary to make the results applicable to any ED setting. Specifically, the ratio of given 

responses to the capacity will be obtained for these questions.  

Questions one, two, three, and five, which will require further calculation, each contribute 

to the inputs of the different fuzzy subsystems described previously by providing data for the 

membership functions. Ratios calculated from the responses to question one will provide the 

membership function for the input to subsystem I, patient demand. Questions two and three will 

provide the membership functions for the two inputs of subsystem II, nurse staffing and physician 

staffing. Responses from question four will determine the membership function for occupancy 

rate, which is the input for subsystem III. Question five will provide the membership function for 

patient boarding, one of the inputs to the major subsystem, subsystem IV.  

The results from this survey will become the main source of data for constructing the 

membership functions. There are five commonly used types of membership functions including 

triangular, trapezoidal, bell curves, Gaussian, and Sigmoidal, some of which require large amounts 

of data to construct. Due to the limitations of available data, trapezoidal membership functions 

(Figure 4-9) and triangular membership functions (Figure 4-10) are the most appropriate for this 

study. These membership function features are defined by three characteristics, namely; core, 

support, and boundary. The membership degrees are assigned a value between 0 and 1. The core 

region in the function is the universe space where an element has full membership in a fuzzy set 

(i.e. 𝜇(𝑥) = 1). The support region is the universe space where an element has nonzero 

membership in a fuzzy set (i.e. 𝜇(𝑥) > 0). The boundary region defines the universe space at 

which an element takes a nonzero membership degree but not a full membership degree in a fuzzy 
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set (i.e. 0 < 𝜇(𝑥) < 1) (Sivanandam, Sumathi, & Deepa, 2007). The trapezoidal membership 

function is defined with the following formula:  

 

𝜇(𝑥; 𝑎, 𝑏, 𝑐, 𝑑)  =  
{  
  0,                   𝑥 ≤ 𝑎 𝑥−𝑎𝑏−𝑎 , 𝑎 ≤ 𝑥 ≤ 𝑏1,              𝑏 ≤ 𝑥 ≤ 𝑐𝑑−𝑥𝑏−𝑐 , 𝑐 ≤ 𝑥 ≤ 𝑑0,                 𝑑 ≤ 𝑥 }  

  
                                          (8) 

 

Where parameters b and c define the core area of the trapezoid MF and parameters a and d 

define the support area of the trapezoid MF. Figure 4-9 illustrates the shape and parameters of the 

trapezoidal membership function.  

 

Figure 4-9: Trapezoidal membership function. 

Adapted from (Abdallah, 2013) 
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The triangular membership function is defined with the following formula:  

 

𝑓(𝑥; 𝑎, 𝑏, 𝑐)  =  {  
  0,                 𝑥 ≤ 𝑎 𝑥−𝑎𝑏−𝑎 , 𝑎 ≤ 𝑥 ≤ 𝑏𝑐−𝑥𝑐−𝑏 , 𝑏 ≤ 𝑥 ≤ 𝑐0,                 𝑐 ≤ 𝑥 }  

  
                                                                     (9)  

 

Where the parameter b define the core area of the triangular MF and parameters a and c 

define the support area of the triangular MF. Figure 4-10 illustrates the shape and parameters of 

the triangular membership function. 

 

 

Figure 4-10: Triangular membership function. 

Adapted from (Sivanandam et al., 2007) 
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4.4.1.2 Fuzzy Rule Base 

 

The fuzzy rule base is the other key part to the knowledge base, including the database. It 

stores all derived fuzzy rules, which is intended to provide the fuzzy inference engine with decision 

support information within each subsystem.   

To robustly create fuzzy rules for each fuzzy logic subsystem, experts are given a form to 

assess the consequences of each condition statement, developed from the permutation of each 

fuzzy class for a given fuzzy subsystem. Appendix J shows the components of the assessment 

form. As mentioned earlier, a total of 10 healthcare experts will participate in the fuzzy rules 

assessment process. The total number of fuzzy rules to be evaluated by subject matter experts for 

the fuzzy logic subsystems I, II, III, and IV are 12 (3 × 4), 9(32), 36(4 × 32), and 80(5 × 42), 
respectively. Therefore, the proposed three-level hierarchical fuzzy expert system includes a total 

of 137 fuzzy rules, meaning that there will be a total of 1370 fuzzy rule assessments from the ten 

experts.  The process of developing the fuzzy rules is detailed in the following steps:  

 List all possible permutations of “AND” rules for each fuzzy logic subsystem. 

 Code each rule with “FLSm-n” where FLS stands for Fuzzy Logic Subsystem, m stands 

for the number of subsystem, and n stands for the rule number within the m subsystem.  

 Code “HCE-k” for each participating expert, where HCE stands for Healthcare Expert, and 

k stands for the expert number. 

 The Expert HCE-k determines the consequence of the fuzzy conditional statement FLSm-

n based on their expertise. 
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  The fuzzy conditional statement FLSm-n must meet a 50% consensus rate among experts, 

and must be the only consequence to receive a 50% consensus rate, to be accepted as a 

valid fuzzy rule.  

  If the consensus rate does not meet the determined criteria, further iterations should be 

conducted with a new expert until the consensus rate achieves the criteria in the previous 

step.  

 

The process for developing fuzzy rules is illustrated in figure 4-11, where the consensus 

feedback is elaborated upon in more detail.  

 

 

Figure 4-11: Process for Developing Fuzzy Rules 
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4.4.2 Fuzzification Process  

 

Fuzzification is the first step in the fuzzy system, as it obtains both the membership function 

type and the degree of membership from the database. This database is built from the surveyed 

expert determination of membership function intervals. In the fuzzification process, crisp values 

which are within the universe of discourse of the input variable are translated into fuzzy values, 

and the fuzzifier determines the degree to which they belong to a membership function. The 

fuzzifier for this designed fuzzy system adapts the Minimum approach. Whereas the input is crisp, 

the output is a degree of membership in a qualitative set. The fuzzified outputs allow the system 

to determine the degree to which each fuzzy condition satisfies each rule. 

 

 

4.4.3 Defuzzification Process 

 

After the fuzzifier converts numerical inputs into fuzzy values, and the fuzzy inference 

engine is fed by the knowledge base to logically link the inputs to the output, last step remaining 

in the fuzzy system occurs in the defuzzifier. Defuzzification is the process where the fuzzy values 

are converted into crisp values. The defuzzifier is fed by the database, and its importance lies in 

the fact that its crisp output is the desired product of the entire system. Seven defuzzification 

methods are identified (Sivanandam et al., 2007): centroid method, max-membership method, 

mean-max membership, weighted average method, center of sums, first of maxima or last of 
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maxima, and center of largest area. This research adapts the centroid method for the defuzzification 

process, and its formula is defined as following:    

 

𝑧∗ =  ∫ 𝜇𝐶(𝑧) 𝑧𝑑𝑧 𝜇𝐶(𝑧) 𝑑𝑧                                                  (10)  

 

 

4.5 Summary 

 

In summary, this chapter details the development process for creating the proposed fuzzy 

system for quantifying emergency department overcrowding, and its components. Hierarchical and 

standard fuzzy logic systems were compared, and the hierarchical system was chose for its ability 

to reduce the number of fuzzy rules necessary to construct the knowledge base, in addition to its 

ability to emulate the different operational aspects of crowding. The structure of this hierarchical 

system was described as consisting of four subsystems, fed with a total of seven inputs. The four 

subsystems were defined as demand status, staffing status, workload status, and crowding level.  

The inputs and outputs of these subsystems were related to subsystem IV, which is the most 

important part of the system. The knowledge base, consisting of both the database and fuzzy rule 

base was described, where this knowledge feeds the inference engine and fuzzifier and defizzifier 

to obtain outputs for the system. The knowledge base is the most crucial part of the subsystem 

architecture, as it is constructed from the assessments of ten experts. Next chapter shows the 

computation of the model based on the data collected from experts.    
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CHAPTER 5  IMPLEMENTATION AND RESULTS   

 

5.1 Introduction 

 

This chapter details the process of implementing the designed framework by constructing 

the knowledge base and analyzing the produced results. First, the preparation of the fuzzy system 

knowledge base is discussed, encompassing the results from expert knowledge elicitation and the 

construction of membership functions. A deeper statistical analysis is provided for the expert 

evaluations of membership intervals and consensus rates for assessments of fuzzy rules. Next, the 

fuzzy system results are analyzed for each subsystem, and the different surface plots representing 

the relation of subsystem inputs and outputs are presented. Implementation and validation of the 

model is also discussed, where results from implementation are compared against subjective expert 

assessment. Finally, concluding remarks are made to reflect on the insights developed from 

analysis of the data collected from the knowledge base construction and validation steps.  

 

5.2 Fuzzy System Preparedness  

 

In chapter four, the protocol was provided for eliciting expert knowledge on to obtain 

membership intervals, rule assessments and consensus rates, along with other data. With this step 

complete, a preparatory step must be taken to obtain results for the proposed model.  In this step, 

data will be prepared before it is added to the knowledge base, interval values will be used to 
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construct membership functions, and data from expert rule assessments will contribute to the rule 

base.  

Expert knowledge was sought from ten experts, designated with HCE expert codes. The 

occupation and qualifications of these experts are described as follows: 

- HCE-01: An experienced healthcare administrator in the Saudi public healthcare sector 

- HCE-02: A physician, professor, and consultant of emergency medicine in several 

healthcare organizations in Saudi Arabia 

- HCE-03: An academic researcher specializing in operations management 

- HCE-04: An emergency room physician working in a Saudi private healthcare sector 

- HCE-05: An experienced emergency room nurse 

- HCE-06: An academic researcher with experience in healthcare studies 

- HCE-07: A researcher with vast experience in emergency room operations management 

- HCE-08: A physician from the ICU department who oversees emergency department 

transfers to the ICU 

- HCE-09: An emergency room physician 

- HCE-10: A general physician 

 

 The backgrounds of these experts will be made more relevant in the discussion section 

when results from the developed model are discussed.  
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5.2.1 Results of Expert Knowledge Acquisition 

 

In this section, results from subject matter experts are detailed across five tables. For each 

table, the results from ten experts answering five questions are listed, providing a total of 220 

intervals which are used to construct membership functions. Chapter five will detail the calculation 

of the fuzzy numbers, based on the results provided by the subject matter experts. Table 5-1 

contains answers from question one of the survey, in which experts were posed with a scenario of 

an emergency room capacity of 50 beds. The answers from the expert evaluation are divided by 

50 to obtain the ratio of waiting patients to ED capacity, which can be applicable to any ED. This 

question in the survey specified the minimum and maximum values for the patient demand as 0 

and 100, respectively, in order to introduce boundaries for the membership functions. After 

converting these values into ratios, the minimum and maximum values became 0 and 2, 

respectively. Experts determined the patient demand on four levels; “low”, “medium”, “high”, and 

“very high”. The total number of obtained intervals from question one was 40.   
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Table 5-1: Interval assignment for patient demand based on ratio of no. of waiting patients to ED 
capacity 

Expert 

 Interval Value  

Low Medium High Very High 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

HCE-01 0 0.4 0.42 0.6 0.62 1.2 1.22 2 

HCE-02 0 0.3 0.32 0.7 0.72 1.1 1.12 2 

HCE-03 0 0.2 0.22 0.6 0.62 1 1.02 2 

HCE-04 0 0.3 0.32 0.8 0.82 1.2 1.22 2 

HCE-05 0 0.5 0.52 0.8 0.82 1.1 1.12 2 

HCE-06 0 0.2 0.22 0.7 0.72 1 1.02 2 

HCE-07 0 0.3 0.32 0.7 0.72 1.2 1.22 2 

HCE-08 0 0.4 0.42 0.8 0.82 1.2 1.22 2 

HCE-09 0 0.5 0.52 0.7 0.72 1.1 1.12 2 

HCE-10 0 0.4 0.42 0.6 0.72 0.9 0.92 2 

 

Using the data from table 5-1, figure 5-1 was constructed to compare the responses between 

each expert at each level in question one. Expert responses are similar between upper and lower 

values of adjacent levels, as they are the boundaries for fuzzy classes. Variation can be observed 

in different levels between expert responses. For the upper bound of the low level, experts HCE-

03 and HCE-06 share the lowest values. Experts HCE-05 and HCE-09 report the highest values of 

the upper bound of the low level, and experts HCE-02, HCE-04, and HCE-07 each have average 

values assigned for the upper bound of the low level. At the upper bound of the medium level, it 

can be noticed that there was minimal variation between expert responses. In the upper value of 
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the high level, HCE-01, HCE-04, HCE-07, and HCE-08 responded with higher values, while HCE-

03, HCE-06, and HCE-10 responded with low values, and the remaining experts responded with 

average values. It can be also noted that the evaluations provided by experts HCE-03 and HCE-06 

were lower than average values of other experts.  

 

 

Figure 5-1: Expert evaluation of patient demand 

 

Table 5-2 contains answers from question two of the survey, which is related to a scenario 

with an emergency room capacity of 50 beds. The ratios were obtained from the answers from 

subject matter experts. This question in the survey did not specify the maximum value for the 

patient demand, meaning that the membership function did not have an imposed boundary. After 

converting these values into ratios, the minimum and maximum values became 0 and 0.32, 

respectively. Experts determined the patient demand on three levels; “inadequate”, “partially 

adequate”, and “adequate”. The total number of obtained intervals from question two was 30.   
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Table 5-2: Interval assignment for physician staffing 

Expert  

Interval Value 

Inadequate 
Partially 

Adequate 
Adequate 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

HCE-01 0.02 0.06 0.08 0.18 0.16 0.24 

HCE-02 0.02 0.1 0.12 0.16 0.18 0.2 

HCE-03 0.04 0.1 0.12 0.18 0.2 0.3 

HCE-04 0.04 0.08 0.1 0.18 0.2 0.28 

HCE-05 0 0.12 0.14 0.24 0.26 0.3 

HCE-06 0 0.08 0.1 0.16 0.18 0.3 

HCE-07 0 0.08 0.1 0.18 0.2 0.3 

HCE-08 0.02 0.08 0.1 0.18 0.2 0.24 

HCE-09 0.02 0.06 0.08 0.16 0.22 0.2 

HCE-10 0.02 0.1 0.12 0.2 0.22 0.32 

 

 

Figure 5-2 compares the differences between the experts’ responses. It can be observed 

that in inadequate and partially adequate levels, HCE-05 responded with a higher ratio than 

average, while HCE-09 provided the lowest ratio. The remaining experts for inadequate and 

partially adequate appear to provide consistent evaluations compared to experts HCE-05 and HCE-

09.  Additionally, there is large variation in the upper bound of the adequate class, which may be 

due to the lack of a specified upper bound on the level of physician staffing. 
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Figure 5-2: Expert evaluation of physician staffing 

 

  

Table 5-3 contains answers from question three of the survey, which is related to a scenario 

with an emergency room capacity of 50 beds. Similarly in this table, there is no imposed upper 

bound for nurse staffing, which also impacts the upper bound of the last fuzzy class. The maximum 

value for nurse staffing was 0.5, or 25 out of 50 beds, and experts provided their evaluations on 

three fuzzy classes; “inadequate”, “partially adequate”, and “adequate”. 30 total intervals were 

obtained from question three.  
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Table 5-3: Interval assignment for nurse staffing 

Expert  

Interval Value 

Inadequate 
Partially 

Adequate 
Adequate 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

HCE-01 0.06 0.14 0.16 0.3 0.32 0.5 

HCE-02 0.02 0.08 0.1 0.26 0.22 0.34 

HCE-03 0.04 0.1 0.12 0.32 0.34 0.5 

HCE-04 0.08 0.12 0.14 0.24 0.26 0.4 

HCE-05 0.08 0.12 0.14 0.24 0.26 0.4 

HCE-06 0 0.14 0.16 0.28 0.3 0.36 

HCE-07 0 0.1 0.12 0.24 0.26 0.4 

HCE-08 0.08 0.16 0.18 0.32 0.34 0.5 

HCE-09 0.02 0.18 0.2 0.28 0.3 0.4 

HCE-10 0.02 0.16 0.18 0.3 0.32 0.46 

 

 

In figure 5-3, the experts responded consistently, and it can be observed that the upper 

values of the inadequate class may allow values in the upper value of the partially adequate class 

to be anticipated, if they were followed linearly. The greatest variation can be observed in the 

upper value of the adequate class, which may also be influenced by the absence of a defined upper 

bound value. Experts HCE-02 and HCE-07 provided the lowest values in their responses, while 

expert HCE-08 provided the highest average response. 
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Figure 5-3: Expert evaluation of nurse staffing 

 

 

Table 5-4 contains answers from question four of the survey, regarding ER occupancy rate, 

where the maximum occupancy rate was assumed to be 100 percent. Ten experts provided intervals 

from their perspective on an appropriate lower and upper value for each of the four fuzzy classes, 

“low”, “medium”, “high”, and “very high”. In total, 40 evaluated intervals were obtained to 

construct the membership functions.  
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Table 5-4: Interval assignment for ER occupancy rate 

Expert  

Interval Value 

Low Medium High Very High 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

HCE-01 0 25 26 45 46 75 76 100 

HCE-02 0 20 21 50 51 74 75 100 

HCE-03 0 35 36 55 56 80 81 100 

HCE-04 0 25 26 60 61 70 71 100 

HCE-05 0 25 26 50 51 70 71 100 

HCE-06 0 20 21 65 66 84 85 100 

HCE-07 0 30 31 48 49 74 75 100 

HCE-08 0 35 36 55 56 85 86 100 

HCE-09 0 33 34 60 61 90 91 100 

HCE-10 0 20 21 50 51 80 81 100 

 

 

In figure 5-4, expert responses are compared. In the upper value of the low fuzzy class, the 

experts with the highest recorded values are HCE-03, HCE-07, HCE-08, and HCE-09, while those 

with the lowest values are HCE-02, HCE-06, and HCE-10. The remaining experts in this class 

responded with average values. In the upper value of the medium class, experts HCE-04, HCE-06, 

and HCE-09 have the highest recorded values, and experts HCE-01 and HCE-07 have the lowest 

recorded values. Overall in the upper value of the medium class, the variation in responses is high. 

The upper value of the high class features the highest values among experts HCE-06, HCE-08, and 
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HCE-09, while the lowest values belong to HCE-04 and HCE-05. Similarly, variation of responses 

is high in this class.  

 

 

 

Figure 5-4: Expert evaluation of occupancy rate 

 

 

Table 4-5 contains answers from the survey’s fifth question, and is concerned with patient 

boarding. Similarly to questions one, two, and three, this question was based on a scenario with 

50 beds, which was later converted to a ratio of boarded patients to the ER capacity. The minimum 

and maximum intervals were specific at 0 and 20 patients, respectively, which translated to ratios 

of 0 and 0.4. From the ten experts’ responses across the four fuzzy classes, 40 evaluated intervals 

were obtained. 
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Table 5-5: Interval assignment for patient boarding 

Expert  

Interval Value 

Low Medium High Very High 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

Lower 
value 

Upper 
value 

HCE-01 0 0.08 0.1 0.22 0.24 0.32 0.34 0.4 

HCE-02 0 0.1 0.12 0.2 0.22 0.3 0.32 0.4 

HCE-03 0 0.08 0.1 0.2 0.22 0.3 0.32 0.4 

HCE-04 0 0.06 0.08 0.16 0.18 0.26 0.28 0.4 

HCE-05 0 0.12 0.14 0.22 0.24 0.3 0.32 0.4 

HCE-06 0 0.12 0.14 0.22 0.24 0.3 0.32 0.4 

HCE-07 0 0.04 0.06 0.16 0.18 0.26 0.28 0.4 

HCE-08 0 0.12 0.14 0.2 0.22 0.3 0.32 0.4 

HCE-09 0 0.06 0.08 0.2 0.22 0.3 0.32 0.4 

HCE-10 0 0.08 0.1 0.24 0.26 0.32 0.34 0.4 

 

 

Figure 5-5 displays the variation in responses from the subject matter experts. From the 

upper value of the low class, expert HCE-07 has the lowest recorded average value, and experts 

HCE-05, HCE-06, and HCE-08 accounted for the highest recorded average values. In the upper 

value of the medium class, there was not much variation, with exception of experts HCE-04 and 

HCE-07 who provided lower values. This case is similar in the upper value of the high class, there 

is minimal variation, aside from experts HCE-04 and HCE-07 who provide lower average values. 
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Figure 5-5: Expert evaluation of patient boarding 

 

These results identify underlying differences between the evaluations of subject matter 

experts, which may lead to the introduction of bias when relying on only one perspective to 

implement a solution. The expert panel members who responded to each survey question each 

have different backgrounds and experience rooted in different areas of emergency departments. 

These experts view the ER from their different perspective, as internal and external stakeholders. 

Relying on only one perspective can lead to overestimated or underestimated interval values, as 

seen in some cases such the one discussed in question two, represented in figure 5-2. The variation 

in the experts’ responses create foggy areas in the collected data, which can be modeled by fuzzy 

logic. Without considering these variations, data from experts can lead to biased conclusions.  
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5.2.1.1 Membership Functions 

 

The database for subsystem I consists of membership functions for both inputs and the 

output, and are structured according to the data from table 5-6. Variable one, or the demand status, 

consists of four trapezoidal membership functions, while variable two, patient complexity, consists 

of three trapezoidal membership functions, and variable three, the ED demand, is the output of the 

subsystem and has five triangular membership functions.  

 

Table 5-6: Parameters of fuzzy subsystem I’s membership functions 

Variable Fuzzy Linguistic Class Fuzzy Number [a, b, c, d] 

Ratio of No. of 
Waiting Patients to 

ED Capacity 

Low [0, 0, 0.20, 0.50] 
Medium [0.20, 0.50, 0.60, 0.80] 

High [0.60, 0.80, 0.90, 1.20] 
Very high [0.90, 1.20, 2.00, 2.00] 

Patient Complexity 
Low [1, 1, 2, 2.5] 

Medium [2, 2.5, 3.5, 4] 
High [3.5, 4, 5, 5] 

ED Demand 

Very low [0, 0, 25] 
Low [0, 25, 50] 

Medium [25, 50, 75] 
High [50, 75, 100] 

Very high [75, 100, 100] 
 

 

The membership function representing patient demand in figure 5-6 is constructed using 

the fuzzy number intervals and linguistic classes provided in table 5-6. For the “low” linguistic 

class interval, the minimum value in the upper bound of the low class (as observed in table 5-1) is 

0.2, meaning that there is 100% agreement among experts between the values of 0 and 0.2 for 

“low”. The maximum value in the upper bound of the low class is 0.5, yet the minimum value of 
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the lower bound in the medium class is 0.2, meaning that some experts varied in assigning the term 

“low” and “medium” between the interval [0.2, 0.5]. In figure 5-6, this accounts for the structure 

of the low class, where the core exists between 0 and 0.2, and the support exists between 0.2 and 

0.5, overlapping the support of the medium class. The boundary for the medium class began at 0.2 

and ended at 0.8, while the boundary for the high class was between 0.6 and 1.2, and the boundary 

for the very-high class was between 0.92 and 2. The core structures of the medium and high class 

are small, compared to the low and very-high classes.  

 

Figure 5-6: Membership function of patient demand 

 

 

The membership function for patient complexity in figure 5-7 was constructed from the 

data provided by one expert using reverse interval estimation method. This was done due to the 

need for an expert possessing medical expertise in the triage process and familiarity with the 

emergency severity index. This expert directly constructed the membership function, providing 

data for the three linguistic classes. Patients rated with a value of 2 or 1 were considered “low”  

average complexity, and supports of this membership function consist of patients rated between 2 
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and 2.5, meaning the boundary for the low class was between 1 and 2.5. Similarly for “medium” 

average complexity, patients rated between 2.5 and 3.5 make up the core structure, and with the 

supports assigned values between 2 and 2.5, and between 3.5 and 4, the entire class boundary lies 

between 2 and 4. For “high” average complexity, the expert assigned values between 4 and 5 for 

the core area, with values between 3.5 and 4 for the support, making the boundary for the high 

class between 3.5 and 5. The core areas of each class are consistent in size, due to the data being 

taken from one expert instead of ten. 

 

 

Figure 5-7: Membership function of patient complexity 

 

 

The membership function for ED demand in figure 5-8 represents the output for subsystem 

one, which is considered the standard membership function for outputs. The function is triangular, 

with membership degree values peaking at 1, and the boundaries for different classes overlap the 

peaks of adjacent classes perfectly, demonstrating that the membership function always obtains 
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membership from two classes. This also means that at any given point, the membership degree 

from two overlapping classes always equals 1, but there are only five points where classes obtain 

membership completely. These points occur at 0, 25, 50, 75, and 100 for “very-low”, “low”, 

“medium”, “high”, and “very-high”, respectively.   

 

Figure 5-8: Membership function of ED demand 

 

In subsystem II, the membership functions for the physician staffing and nurse staffing 

inputs are constructed with trapezoids for three classes. The output, ED staffing, is also represented 

with a trapezoidal membership function, which features equally spaced boundaries across three 

classes. Table 5-7 details the linguistic classes and fuzzy numbers for subsystem II and its 

membership functions.  
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Table 5-7: Parameters of fuzzy subsystem II’s membership functions 

 

 

Physician staffing is represented in the membership functions in figure 5-9. The three 

classes overlap as seen in subsystem I, representing the regions where linguistic terms did not 

reach full degrees of membership. For instance, the inadequate class core boundary begins at 0 and 

ends at 0.06, representing full membership for the linguistic term “inadequate”. The upper bound 

for the inadequate class is 0.12, where the linguistic term “inadequate” achieves partial 

membership, and the lower bound for the partially adequate class is 0.06, where its term also 

achieves partial membership. The boundaries for the three classes are between 0 and 0.12 for the 

inadequate class, between .06 and 0.24 for the partially adequate class, and between 0.16 and 0.32 

for the adequate class. The partially adequate class has the smallest core area, and the supports for 

all classes are similar in size relative to each other.  

 

 

 

 

 

Variable Fuzzy Linguistic Class Fuzzy Number [a, b, c, d] 

Physician staffing  
Inadequate [0, 0, 0.06, 0.12] 

Partially adequate [0.06, 0.12, 0.16, 0.24] 
Adequate [0.16, 0.24, 0.32, 0.32] 

Nurse staffing 
Inadequate [0, 0, 0.08, 0.18] 

Partially adequate [0.08, 0.18, 0.24, 0.32] 
Adequate [0.24, 0.32, 0.50, 0.50] 

ED staffing 
Inadequate [0, 0, 25, 35] 

Partially adequate [25, 35, 65, 75] 
Adequate [65, 75, 100, 100] 
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Figure 5-9: Membership function of physician staffing 

 

 

The second input in subsystem II, nurse staffing, is represented by the membership 

functions in figure 5.10. The inadequate class boundaries are at 0 and 0.18, with the core structure 

representing full membership existing between 0 and 0.8. The partially adequate class lies between 

boundaries of 0.8 and 0.32, while the core area exists between 0.18 and 0.24. For the adequate 

class, the boundaries lie at 0.24 and 0.5, with the core structure existing between 0.32 and 0.5. It 

is apparent that the adequate class has the largest core area, meaning that the adequate linguistic 

term was given the widest variety of interval values for full membership, while values that defined 

the partially adequate class were more restrictive. 
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Figure 5-10: Membership function of nurse staffing 

 

Figure 5-11 contains the membership functions for the output of the subsystem, ED 

staffing. The membership functions are trapezoidal, but the intervals are assigned to create 

similarly sized membership classes. In this figure, the boundaries for the inadequate class lie 

between 0 and 35, with the core existing between 0 and 25, representing a full degree of 

membership. The boundaries for the partially adequate class are 25 and 75, with the core existing 

between 35 and 65. For the adequate class, the boundaries are 65 and 100, with the core area 

defined between 75 and 100. It can be noted that the midpoint between the boundaries for the 

partially adequate class lies at 50, which is the halfway point on the ED staffing axis, further 

demonstrating the uniformity in the membership functions.  
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Figure 5-11: Membership function of ED staffing 

 

 

Table 5-8 details the data used in the membership functions of subsystem III, where both 

trapezoidal and triangular membership functions are used across the three inputs and one output. 

It should be noted again that the output of subsystem II, ED staffing, is an input in subsystem III, 

dictating the use of a trapezoidal membership function for this subsystem’s associated input. As 

this input shares the same membership function characteristics as previously described, it will be 

omitted in the description of this subsystem’s membership functions. While the populations for 

patient complexity input are separate between this subsystem and subsystem I, the membership 

functions share the same characteristics, and thus the membership functions for patient complexity 

will not be discussed in this subsystem as well.  
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Table 5-8: Parameters of fuzzy subsystem III’s membership functions 

Variable Fuzzy Linguistic Class Fuzzy Number [a, b, c, d] 

ED Staffing 
Inadequate [0, 0, 25, 35] 

Partially adequate [25, 35, 65, 75] 
Adequate [65, 75, 100, 100] 

ER Occupancy 
Rate  

Low  [0, 0, 20, 35] 
Medium  [20, 35, 45, 65] 

High [45, 65, 70, 90] 
Very high  [70, 90, 100, 100] 

Patient 
Complexity 

Low [1, 1, 2, 2.5] 
Medium [2, 2.5, 3.5, 4] 

High [3.5, 4, 5, 5] 

ED Workload 

low [0, 0, 33.34] 
Medium [0, 33.34, 66.67] 

High [33.34, 66.67, 100] 
Very high [66.67, 100, 100] 

 

 

Figure 5-12 provides the trapezoidal membership functions for ER occupancy rate, which 

is the second variable in table 5-8, and is characterized by four linguistic terms. The low class is 

bounded between the values 0 and 35, while the medium, high, and very high classes lie between 

values of 20 and 65, 45 and 90, and 70 and 100, respectively. The low class has the largest core 

structure, which is bounded between the values of 0 and 20, and represents the largest interval of 

assigned values for full class membership. The medium and very high classes appear to have 

similarly sized core areas, bound between the values of 35 and 45 for “medium”, and 90 and 100 

for “very high”. The core area for “high” is the smallest, bound between the values of 65 and 70, 

and represents the smallest interval of assigned values for full class membership. 
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Figure 5-12: Membership function of ER occupancy rate 

 

Figure 5-13 provides the membership functions for the output of subsystem III, ED 

workload, and triangular membership functions are assigned to four classes. Similarly to the 

membership functions from the output of subsystem I, the membership classes exist on 

overlapping intervals such that at any point, the degree of membership for two classes add up to a 

value of one, and there are only four points at which classes reach full degrees of membership. 

These points occur at 0, 33.34, 66.67, and 100, for the low, medium, high, and very-high classes, 

respectively.  
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Figure 5-13: Membership function of workload 

 

In table 5-9, information is provided for the membership functions of the final subsystem, 

subsystem IV. Among the three inputs, ED demand and ED workload have been previously 

discussed in subsystems II and III, and they will be omitted in the description of this subsystem’s 

membership functions.  
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Table 5-9: Parameters of fuzzy subsystem IV’s membership functions 

Variable Fuzzy Linguistic Class Fuzzy Number [a, b, c, d] 

ED Demand 

Very low [0, 0, 15, 25] 
Low [15, 25, 35, 45] 

Medium [35, 45, 55, 65] 
High [55, 65, 75, 85] 

Very high [75, 85, 100, 100] 

ED Workload 

low [0, 0, 20, 30] 
Medium [20, 30, 50, 60] 

High [50, 60, 80, 90] 
Very high [80, 90, 100, 100] 

Patient Boarding 
Low [0, 0, 0.04, 0.12] 

Medium [0.04, 0.12, 0.16, 0.24] 
High [0.16, 0.24, 0.26, 0.32] 

 Very high [0.26, 0.32, 0.40, 0.40] 

 
ED Crowding 

Insignificant  [0, 0, 15, 25] 
Low [15, 25, 35, 45] 

Medium [35, 45, 55, 65] 
High [55, 65, 75, 85] 

 Extreme [75, 85, 100, 100] 
 

 

The trapezoidal membership functions in figure 5-14 represent the four classes used for the 

boarding input in subsystem IV. Boarding was considered to be “very high” between values of 

0.26 and 0.4, making its core structure the largest while indicating the largest interval of values 

where a class was assigned full membership. Between the values of 0.16 and 0.32, boarding was 

considered “high”, which is associated with the smallest membership function core structure 

belonging to the high class. The low and medium classes existed between the intervals of [0, 0.12], 

and [0.04, 0.24], respectively. 
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Figure 5-14: Membership function of patient boarding 

 

Crowding, the final output of the system, is represented by the triangular membership 

functions in figure 5-15. The linguistic terms “insignificant”, “low”, “medium”, “high”, and 

“extreme” were associated with the five classes. The membership functions were assigned 

boundaries to create evenly distributed classes on the crowding axis, and similarly to subsystem 

III and I, the degree of membership is equivalent to 1 among the two classes existing at any given 

point. Only at the points 0, 25, 50, 75, and 100, do the five respective classes individually obtain 

full degrees of membership.   
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Figure 5-15: Membership function of crowding 

 

 

5.2.2 Results of Expert Evaluation 

 

This section presents the results of the fuzzy rule base development and analyzes the level 

of agreement among experts, the reliability of their evaluations, and the consensus rate. The fuzzy 

rule base assessments are divided by subsystem, with subsystem I producing 120 rules 

assessments, and subsystem II, III, and IV producing 90, 360, and 800 rule assessments, 

respectively, for a total of 1370 assessments obtained. After reaching consensus, the final version 

of the fuzzy rules are listed in this section.  

Table 5-10 details the results from the expert assessment of the fuzzy rules from subsystem 

I. This table consists of 12 columns, beginning with the rule code, followed by ten expert 

evaluations, and ending with consensus status. Below the table is a legend comprising five 

linguistic classes which are color-coded. In this subsystem, two fuzzy rules reached full consensus 
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(100%); FLS1-11, and FLS1-12. Two rules achieved 90% consensus: FLS1-05, and FLS1-06; four 

reached 80%: FLS1-01, FLS1-04, FLS1-07, and FLS1-08; one rule reached 70% consensus: FLS1-

03, and three reached 60% consensus: FLS1-02, FLS1-09, and FLS1-10. The average consensus 

rate for this subsystem’s rule assessments is 79%. Seven of the twelve evaluated rules received 

assessments across only two linguistic classes, while two were assessed across three linguistic 

classes, and only one received assessments exceeding more than three types of linguistic 

assessment. The majority of the data in this subsystem is centralized around two linguistic classes. 

Regarding the frequency of linguistic class use, “medium” was most frequently used to assess 

rules, with 42 uses, while “high”, “low”, “very high”, and “very low” were used 30, 21, 15, and 

12 times, respectively.  

 

Table 5-10: Results of expert evaluation for subsystem I’s fuzzy rules 

 Health Care Expert   

 

 

consensus Rule 

Code  

HCE-

01 

HCE-

02 

HCE-

03 

HCE-

04 

HCE-

05 

HCE-

06 

HCE-

07 

HCE-

08 

HCE-

09 

HCE-

10 

FLS1-01                    

FLS1-02                    

FLS1-03                    

FLS1-04                    

FLS1-05                    

FLS1-06                    

FLS1-07                    

FLS1-08                    

FLS1-09                   

FLS1-10            

FLS1-11            

FLS1-12            

 
Very Low Low Medium High Very High 
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Further analysis of the data in table 5-10 reveals the level of agreement between experts by 

using inter-item correlation (Appendix K). Excluding one outlier, the range of averages of absolute 

agreement between nine experts was between 0.870 and 0.980. The excluded outlier has an average 

correlation coefficient of 0.634. Additionally, the highest correlation between the experts’ 

responses was between experts HCE-06 and HCE-03, with a correlation coefficient of 0.980, and 

the lowest correlation occurred between HCE-07 and HCE-04, with a correlation coefficient of 

0.358. The intra-class correlation for this subsystem is 0.806, with a 95% confidence interval of 

[0.656, 0.926]. 

In table 5-11, all of the fuzzy rule statements for subsystem I, after consensus, are listed 

according to their rule number. This final version of the rules will be stored in the fuzzy rule base 

of the knowledge base to fuel the fuzzy inference engine. 
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Table 5-11: Fuzzy rule statements for subsystem I 

Rule 

No. 
Fuzzy Rule Statement 

FLS1-01 
If the ratio of patients to ED capacity is low and patient complexity is low then ED 
demand status is very low. 

FLS1-02 
If the ratio of patients to ED capacity is low and patient complexity is medium then 
ED demand status is low.  

FLS1-03 
If the ratio of patients to ED capacity is low and patient complexity is high then ED 
demand status is medium.  

FLS1-04 
If the ratio of patients to ED capacity is medium and patient complexity is medium 
then ED demand status is low.  

FLS1-05 
If the ratio of patients to ED capacity is medium and patient complexity is high then 
ED demand status is medium.  

FLS1-06 
If the ratio of patients to ED capacity is medium and patient complexity is low then 
ED demand status is high.  

FLS1-07 
If the ratio of patients to ED capacity is high and patient complexity is low then ED 
demand status is medium.  

FLS1-08 
If the ratio of patients to ED capacity is high and patient complexity is medium then 
ED demand status is high.  

FLS1-09 
If the ratio of patients to ED capacity is high and patient complexity is high then ED 
demand status is very high.  

FLS1-10 
If the ratio of patients to ED capacity is very high and patient complexity is low 
then ED demand status is medium.  

FLS1-11 
If the ratio of patients to ED capacity is very high and patient complexity is medium 
then ED demand status is high.  

FLS1-12 
If the ratio of patients to ED capacity is very high and patient complexity is high 
then ED demand status is very high.  
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Table 5-12 is comprised of results from the assessments of the fuzzy rules from subsystem 

II. This table shares similar features from table 5-10, consisting of the same number of columns 

and expert evaluations.  Below the table is a legend comprising three linguistic classes which are 

color-coded.  

Within subsystem II, five of the nine rules received 90% consensus or greater, consisting 

of FLS2-01, FLS2-04, FLS2-05, FLS2-06, and FSL2-09. Three of these rules received 80% 

consensus, which were FLS2-02, FSL2-07, and FSL2-08. FSL2-03 received 50% consensus. The 

average consensus rate for the whole subsystem was 84%, which is higher than the previous 

subsystem, which featured more fuzzy rules and linguistic classes. Seven of the evaluated fuzzy 

rules were assessed with only two linguistic terms or less, and two rules were assessed with three 

terms. The frequency of linguistic classes used in assessing rules was the highest in “inadequate” 

with 41 uses, followed by “partially adequate”, and “adequate”, with 34 and 15 uses, respectively. 

 

Table 5-12: Results of expert evaluation for subsystem II’s fuzzy rules 

 Health Care Expert   

 

 

consensus Rule 

Code  

HCE-

01 

HCE-

02 

HCE-

03 

HCE-

04 

HCE-

05 

HCE-

06 

HCE-

07 

HCE-

08 

HCE-

09 

HCE-

10 

FLS2-01                       

FLS2-02                       

FLS2-03                       

FLS2-04                       

FLS2-05                       

FLS2-06                       

FLS2-07                       

FLS2-08                       

FLS2-09                       

 

Inadequate Partially Adequate Adequate 
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Statistical analysis of data from table 5-12 shows that range of the averages of the 

correlation among the experts was between 0.715 and 0.959 in this subsystem. Interestingly, the 

correlation between HCE-02 and HCE-08, HCE-09, and HCE-10, and between HCE-09 and HCE-

08, and between HCE-08 and HCE-10, and between HCE-09 and HCE-10 were 1.00. The lowest 

correlation was 0.539, between HCE-03 and HCE-04. Finally, the intra-class correlation for this 

assessment is 0.729 with a 95% confidence interval of [0.516, 0.912]. 

Table 5-13 lists the final fuzzy rule statements for subsystem II after consensus, according 

to their rule number. These final nine rules are stored in the fuzzy rule base of subsystem II to feed 

the decision engine of the fuzzy system.  
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Table 5-13: Fuzzy rule statements for subsystem II 

Rule No. Fuzzy Rule Statement 

FLS2-01 
If ED physician staffing is inadequate and ED nurse staffing is inadequate then ED 
staffing status is inadequate.  

FLS2-02 
If ED physician staffing is inadequate and ED nurse staffing is partially adequate then 
ED staffing status is inadequate. 

FLS2-03 
If ED physician staffing is inadequate and ED nurse staffing is adequate then ED 
staffing status is inadequate. 

FLS2-04 
If ED physician staffing is partially adequate and ED nurse staffing is inadequate then 
ED staffing status is inadequate. 

FLS2-05 
If ED physician staffing is partially adequate and ED nurse staffing is partially 
adequate then ED staffing status is partially adequate.  

FLS2-06 
If ED physician staffing is partially adequate and ED nurse staffing is adequate then 
ED staffing status is partially adequate. 

FLS2-07 
If ED physician staffing is adequate and ED nurse staffing is inadequate then ED 
staffing status is inadequate. 

FLS2-08 
If ED physician staffing is adequate and ED nurse staffing is partially adequate then 
ED staffing status is partially adequate. 

FLS2-09 
If ED physician staffing is adequate and ED nurse staffing is adequate then ED 
staffing status is adequate.  

 

 

Table 5-14 contains data from the expert assessments of the fuzzy rules of subsystem III. 

It is structured in the same manner as the previous fuzzy rule evaluation tables in terms of the 

number of columns and what they represent, however there are four color-coded linguistic terms 

that are associated with the fuzzy classes. There are a total of 360 rule assessments in this table, 

which represents the assessment of 36 rules by ten experts. It is apparent that 31 of the 36 evaluated 

rules were evaluated using two or fewer linguistic terms, and the remaining rules were evaluated 
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with no more than three terms. Five assessed rules reached full consensus, with an agreement rate 

of 100%; FLS3-09, FLS3-20, FLS3-24, FLS3-26, and FLS3-31. It is also observed that twelve 

assessed rules received a consensus rate between 80% and 90%, while eighteen rules reached the 

range of 60% to 70%. Finally, one rule, FLS3-02, achieved a minimum consensus rate of 50%. 

The average consensus rate for this subsystem is 76%, which when compared to the average rate 

of 79% for subsystem I, is relatively close, even though subsystem III featured more inputs. When 

compared to subsystem II’s average consensus rate of 84%, 76% is still satisfactory, although 

subsystem III contained more assessment classes. The frequency of linguistic class use in assessing 

rules was the highest in the “high” class with 124 uses, followed by “medium” with 105 uses, 

while the least used classes were “low” and “very high”, with 66 and 65 uses, respectively. 
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Table 5-14: Results of expert evaluation for subsystem III’s fuzzy rules 
 

Low Medium High Very high 

 Health Care Expert   

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consensus  Rule 

Code  

HCE-

01 

HCE-

02 

HCE-

03 

HCE-

04 

HCE-

05 

HCE-

06 

HCE-

07 

HCE-

08 

HCE-

09 

HCE-

10 

FLS3-01                       

FLS3-02                       

FLS3-03                       

FLS3-04                       

FLS3-05                       

FLS3-06                       

FLS3-07                       

FLS3-08                       

FLS3-09                       

FLS3-10                       

FLS3-11                       

FLS3-12                       

FLS3-13                     

FLS3-14                     

FLS3-15                     

FLS3-16                     

FLS3-17                     

FLS3-18                     

FLS3-19                     

FLS3-20                     

FLS3-21                       

FLS3-22                       

FLS3-23                       

FLS3-24                       

FLS3-25                       

FLS3-26                       

FLS3-27                       

FLS3-28                       

FLS3-29                       

FLS3-30            

FLS3-31            

FLS3-32            

FLS3-33            

FLS3-34            

FLS3-35            

FLS3-36            
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Statistical analysis of the absolute agreement among the experts shows that the average 

correlation between evaluations ranged between 0.759 and 0.936. The lowest correlation occurred 

between experts HCE-01 and HCE-08 at 0.577, and the highest correlation was between experts 

HCE-02 and HCE-08.The intra-class correlation for the evaluation of subsystem III is 0.770, with 

a 95% confidence interval of [0.673, 0.856]. 

The final list of fuzzy rules for subsystem III is provided in table 5-15, which will be stored 

in the fuzzy rule base to build the fuzzy knowledge base.  

 

Table 5-15:  Fuzzy rule statements for subsystem III 

Rule No. Fuzzy Rule Statement 

FLS3-01 
If the ED staffing status is inadequate and ED occupancy rate is low and patient 
complexity is low then ED workload is low. 

FLS3-02 
If the ED staffing status is inadequate and ED occupancy rate is low and patient 
complexity is medium then ED workload is low. 

FLS3-03 
If the ED staffing status is inadequate and ED occupancy rate is low and patient 
complexity is high then ED workload is high.  

FLS3-04 
If the ED staffing status is inadequate and ED occupancy rate is medium and 
patient complexity is low then ED workload is medium.  

FLS3-05 
If the ED staffing status is inadequate and ED occupancy rate is medium and 
patient complexity is medium then ED workload is high. 

FLS3-06 
If the ED staffing status is inadequate and ED occupancy rate is medium and 
patient complexity is high then ED workload is high. 

FLS3-07 
If the ED staffing status is inadequate and ED occupancy rate is high and patient 
complexity is low then ED workload is high. 

FLS3-08 
If the ED staffing status is inadequate and ED occupancy rate is high and patient 
complexity is medium then ED workload is high. 
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Rule No. Fuzzy Rule Statement 

FLS3-09 
If the ED staffing status is inadequate and ED occupancy rate is high and patient 
complexity is high then ED workload is very high. 

FLS3-10 
If the ED staffing status is inadequate and ED occupancy rate is very high and 
patient complexity is low then ED workload is high. 

FLS3-11 
If the ED staffing status is inadequate and ED occupancy rate is very high and 
patient complexity is medium then ED workload is high. 

FLS3-12 
If the ED staffing status is inadequate and ED occupancy rate is very high and 
patient complexity is high then ED workload is very high. 

FLS3-13 
If the ED staffing status is partially adequate and ED occupancy rate is low and 
patient complexity is low then ED workload is low. 

FLS3-14 
If the ED staffing status is partially adequate and ED occupancy rate is low and 
patient complexity is medium then ED workload is low. 

FLS3-15 
If the ED staffing status is partially adequate and ED occupancy rate is low and 
patient complexity is high then ED workload is medium. 

FLS1-16 
If the ED staffing status is partially adequate and ED occupancy rate is medium and 
patient complexity is low then ED workload is medium. 

FLS3-17 
If the ED staffing status is partially adequate and ED occupancy rate is medium and 
patient complexity is medium then ED workload is medium. 

FLS3-18 
If the ED staffing status is partially adequate and ED occupancy rate is medium and 
patient complexity is high then ED workload is high. 

FLS3-19 
If the ED staffing status is partially adequate and ED occupancy rate is high and 
patient complexity is low then ED workload is medium. 

FLS3-20 
If the ED staffing status is partially adequate and ED occupancy rate is high and 
patient complexity is medium then ED workload is high. 

FLS3-21 
If the ED staffing status is partially adequate and ED occupancy rate is high and 
patient complexity is high then ED workload is very high. 

FLS3-22 
If the ED staffing status is partially adequate and ED occupancy rate is very high 
and patient complexity is low then ED workload is high. 

FLS3-23 
If the ED staffing status is partially adequate and ED occupancy rate is very high 
and patient complexity is medium then ED workload is high. 
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Rule No. Fuzzy Rule Statement 

FLS3-24 
If the ED staffing status is partially adequate and ED occupancy rate is very high 
and patient complexity is high then ED workload is very high. 

FLS3-25 
If the ED staffing status is adequate and ED occupancy rate is low and patient 
complexity is low then ED workload is low. 

FLS3-26 
If the ED staffing status is adequate and ED occupancy rate is low and patient 
complexity is medium then ED workload is low. 

FLS3-27 
If the ED staffing status is adequate and ED occupancy rate is low and patient 
complexity is high then ED workload is medium. 

FLS3-28 
If the ED staffing status is adequate and ED occupancy rate is medium and patient 
complexity is low then ED workload is low. 

FLS3-29 
If the ED staffing status is adequate and ED occupancy rate is medium and patient 
complexity is medium then ED workload is medium. 

FLS3-30 
If the ED staffing status is adequate and ED occupancy rate is medium and patient 
complexity is high then ED workload is medium. 

FLS3-31 
If the ED staffing status is adequate and ED occupancy rate is high and patient 
complexity is low then ED workload is medium. 

FLS3-32 
If the ED staffing status is adequate and ED occupancy rate is high and patient 
complexity is medium then ED workload is high. 

FLS3-33 
If the ED staffing status is adequate and ED occupancy rate is high and patient 
complexity is high then ED workload is high. 

FLS3-34 
If the ED staffing status is adequate and ED occupancy rate is very high and patient 
complexity is low then ED workload is medium. 

FLS3-35 
If the ED staffing status is adequate and ED occupancy rate is very high and patient 
complexity is medium then ED workload is high. 

FLS3-36 
If the ED staffing status is adequate and ED occupancy rate is very high and patient 
complexity is high then ED workload is very high. 
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The results for subsystem IV’s rule assessments are provided in table 5-16, which is the 

most significant subsystem in the fuzzy system. In this subsystem, ten experts evaluated 80 rules 

against five assessment levels, with each rule consisting of a combination of three AND conditions. 

As each rule is designed with three combinations for the antecedent, to be assessed at five levels, 

this subsystem presents the highest complexity for expert assessment.  

The results show that this subsystem is the only one in the entire designed fuzzy system 

that contained some rules which did not initially meet the given consensus criteria. These rules 

were FLS4-16, FLS4-22, FLS4-49, FLS4-52, FLS4-57, FLS4-72, and FLS4-78, and required an 

additional round of evaluation with new expert assessors. All seven rules in question achieved the 

minimum criteria upon the first additional round of evaluation, as it was likely to cause the 

consensus rate to cross beyond the threshold of 50%. The consensus rates of re-evaluated rules 

were all 54.5%, meeting the requirements. With these additional evaluations, the total number of 

rule assessments was brought to 807. 

Upon analyzing the data, it can be found that seven of the assessed rules reached a 

consensus rate of 100%, which were FLS4-01, FLS4-03, FLS4-07, FLS4-64, FLS4-66, FLS4-76, 

and FLS4-80. Among the remaining rules, twenty-six reached consensus rates between 80% and 

90%, while thirty-five reached rates between 60% and 70%, and five rules had a consensus rate of 

50%, passing minimum consensus requirements. The average consensus rate of this subsystem is 

72%, compared to 76%, 84%, and 79% in subsystems III, II, and I, respectively. Among the 

different linguistic terms used by experts, fifty-three rules were evaluated using two or fewer of 

the five assessment classes. The remaining rules received assessments using exactly three terms. 

For all 80 rules, the variation in expert assessment is small, as in cases where experts did not all 
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unanimously agree using only one linguistic term, they reached consensus using either two 

linguistic terms in adjacent classes (such as “low”-“medium”, or “medium”-“high”), or three terms 

describing adjacent classes (such as “insignificant”-“low”-“medium”). After the final round of 

assessments, experts most frequently used “medium” to assess rules, with 277 uses, followed 

closely by “high” with 269 uses, while “extreme”, “low”, and “insignificant” were selected 126, 

102, and 33 times, respectively. 

 

Table 5-16: Results of expert evaluation for subsystem IV’s fuzzy rules 

 Health Care Expert   

consensus Rule 

Code  

HCE-

01 

HCE-

02 

HCE-

03 

HCE-

04 

HCE-

05 

HCE-

06 

HCE-

07 

HCE-

08 

HCE-

09 

HCE-

10 

FLS4-01                        

FLS4-02                        

FLS4-03                        

FLS4-04                        

FLS4-05                        

FLS4-06                        

FLS4-07                        

FLS4-08                        

FLS4-09                        

FLS4-10                        

FLS4-11                        

FLS4-12                        

FLS4-13                        

FLS4-14                        

FLS4-15                        

FLS4-16                       

FLS4-17                        

FLS4-18                        

FLS4-19                        

FLS4-20                        

FLS4-21                        

FLS4-22                       

FLS4-23                        

FLS4-24                        
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 Health Care Expert   

consensus Rule 

Code  

HCE-

01 

HCE-

02 

HCE-

03 

HCE-

04 

HCE-

05 

HCE-

06 

HCE-

07 

HCE-

08 

HCE-

09 

HCE-

10 

FLS4-25                        

FLS4-26                        

FLS4-27                        

FLS4-28                        

FLS4-29                        

FLS4-30             

FLS4-31             

FLS4-32             

FLS4-33             

FLS4-34             

FLS4-35             

FLS4-36             

FLS4-37             

FLS4-38             

FLS4-39             

FLS4-40             

FLS4-41             

FLS4-42             

FLS4-43             

FLS4-44             

FLS4-45             

FLS4-46             

FLS4-47             

FLS4-48             

FLS4-49             

FLS4-50             

FLS4-51             

FLS4-52             

FLS4-53             

FLS4-54             

FLS4-55             

FLS4-56             

FLS4-57             

FLS4-58             

FLS4-59             

FLS4-60             

FLS4-61             

FLS4-62             

FLS4-63             

FLS4-64             
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 Health Care Expert   

consensus Rule 

Code  

HCE-

01 

HCE-

02 

HCE-

03 

HCE-

04 

HCE-

05 

HCE-

06 

HCE-

07 

HCE-

08 

HCE-

09 

HCE-

10 

FLS4-65             

FLS4-66             

FLS4-67             

FLS4-68             

FLS4-69             

FLS4-70             

FLS4-71             

FLS4-72             

FLS4-73             

FLS4-74             

FLS4-75             

FLS4-76             

FLS4-77             

FLS4-78             

FLS4-79             

FLS4-80             

 

 

 

 

From the data for subsystem IV, the range of the average correlation between experts was 

between 0.796 and 0.925, with the lowest correlation occurring between experts HCE-03 and 

HCE-04, and highest correlation was between experts HCE-07 and HCE-09. The intra-class 

correlation for the entire evaluation was 0.769, with a 95% confidence interval of [0.706, 0.828]. 

Statistical analysis of data from table 5-16 shows that range of the averages of the 

correlation among the experts was between 0.715 and 0.959 in this subsystem. Interestingly, the 

correlation between HCE-02 and HCE-08, HCE-09, and HCE-10, and between HCE-09 and HCE-

08, and between HCE-08 and HCE-10, and between HCE-09 and HCE-10 were 1.00. The lowest 

Insignificant Low medium High Extreme 
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correlation was 0.539, between HCE-03 and HCE-04. Finally, the intra-class correlation for this 

assessment is 0.729 with a 95% confidence interval of [0.516, 0.912]. 

The final fuzzy rules for subsystem IV are provided in table 5-17. These rules will become an 

essential part of the knowledge base for subsystem IV. 

Table 5-17: Fuzzy rule statements for subsystem IV 

Rule No. Fuzzy Rule Statement 

FLS4-01 
If ED demand status is very low and ED workload is low and boarding status is low 
then ED crowding level is insignificant. 

FLS4-02 
If ED demand status is very low and ED workload is low and boarding status is 
medium then ED crowding level is insignificant. 

FLS4-03 
If ED demand status is very low and ED workload is low and boarding status is high 
then ED crowding level is low.  

FLS4-04 
If ED demand status is very low and ED workload is low and boarding status is very 
high then ED crowding level is medium.  

FLS4-05 
If ED demand status is very low and ED workload is medium and boarding status is 
low then ED crowding level is low. 

FLS4-06 
If ED demand status is very low and ED workload is medium and boarding status is 
medium then ED crowding level is low. 

FLS4-07 
If ED demand status is very low and ED workload is medium and boarding status is 
high then ED crowding level is medium. 

FLS4-08 
If ED demand status is very low and ED workload is medium and boarding status is 
very high then ED crowding level is medium. 

FLS4-09 
If ED demand status is very low and ED workload is high and boarding status is low 
then ED crowding level is medium. 

FLS4-10 
If ED demand status is very low and ED workload is high and boarding status is 
medium then ED crowding level is medium. 

FLS4-11 
If ED demand status is very low and ED workload is high and boarding status is 
high then ED crowding level is high. 
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Rule No. Fuzzy Rule Statement 

FLS4-12 
If ED demand status is very low and ED workload is high and boarding status is 
very high then ED crowding level is high. 

FLS4-13 
If ED demand status is very low and ED workload is very high and boarding status 
is low then ED crowding level is medium. 

FLS4-14 
If ED demand status is very low and ED workload is very high and boarding status 
is medium then ED crowding level is high. 

FLS4-15 
If ED demand status is very low and ED workload is very high and boarding status 
is high then ED crowding level is high. 

FLS4-16 
If ED demand status is very low and ED workload is very high and boarding status 
is very high then ED crowding level is high. 

FLS4-17 
If ED demand status is low and ED workload is low and boarding status is low then 
ED crowding level is insignificant. 

FLS4-18 
If ED demand status is low and ED workload is low and boarding status is medium 
then ED crowding level is low. 

FLS4-19 
If ED demand status is low and ED workload is low and boarding status is high then 
ED crowding level is low. 

FLS4-20 
If ED demand status is low and ED workload is low and boarding status is very high 
then ED crowding level is medium. 

FLS4-21 
If ED demand status is low and ED workload is medium and boarding status is low 
then ED crowding level is low. 

FLS4-22 
If ED demand status is low and ED workload is medium and boarding status is 
medium then ED crowding level is low. 

FLS4-23 
If ED demand status is low and ED workload is medium and boarding status is high 
then ED crowding level is medium. 

FLS4-24 
If ED demand status is low and ED workload is medium and boarding status is very 
high then ED crowding level is medium. 

FLS4-25 
If ED demand status is low and ED workload is high and boarding status is low then 
ED crowding level is medium. 

FLS4-26 
If ED demand status is low and ED workload is high and boarding status is medium 
then ED crowding level is medium. 
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Rule No. Fuzzy Rule Statement 

FLS4-27 
If ED demand status is low and ED workload is high and boarding status is high 
then ED crowding level is high. 

FLS4-28 
If ED demand status is low and ED workload is high and boarding status is very 
high then ED crowding level is high. 

FLS4-29 
If ED demand status is low and ED workload is very high and boarding status is low 
then ED crowding level is medium. 

FLS4-30 
If ED demand status is low and ED workload is very high and boarding status is 
medium then ED crowding level is medium. 

FLS4-31 
If ED demand status is low and ED workload is very high and boarding status is 
high then ED crowding level is high. 

FLS4-32 
If ED demand status is low and ED workload is very high and boarding status is 
very high then ED crowding level is high. 

FLS4-33 
If ED demand status is medium and ED workload is low and boarding status is low 
then ED crowding level is low. 

FLS4-34 
If ED demand status is medium and ED workload is low and boarding status is 
medium then ED crowding level is low. 

FLS4-35 
If ED demand status is medium and ED workload is low and boarding status is high 
then ED crowding level is medium. 

FLS4-36 
If ED demand status medium and ED workload is low and boarding status is very 
high then ED crowding level is medium. 

FLS4-37 
If ED demand status is medium and ED workload is medium and boarding status is 
low then ED crowding level is medium. 

FLS4-38 
If ED demand status is medium and ED workload is medium and boarding status is 
medium then ED crowding level is medium. 

FLS4-39 
If ED demand status is medium and ED workload is medium and boarding status is 
high then ED crowding level is medium. 

FLS4-40 
If ED demand status is medium and ED workload is medium and boarding status is 
very high then ED crowding level is high. 

FLS4-41 
If ED demand status is medium and ED workload is high and boarding status is low 
then ED crowding level is medium. 
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Rule No. Fuzzy Rule Statement 

FLS4-42 
If ED demand status is medium and ED workload is high and boarding status is 
medium then ED crowding level is high. 

FLS4-43 
If ED demand status is medium and ED workload is high and boarding status is high 
then ED crowding level is high. 

FLS4-44 
If ED demand status is medium and ED workload is high and boarding status is very 
high then ED crowding level is high. 

FLS4-45 
If ED demand status is medium and ED workload is very high and boarding status is 
low then ED crowding level is high. 

FLS4-46 
If ED demand status is medium and ED workload is very high and boarding status is 
medium then ED crowding level is medium. 

FLS4-47 
If ED demand status is medium and ED workload is very high and boarding status is 
high then ED crowding level is high. 

FLS4-48 
If ED demand status is medium and ED workload is very high and boarding status is 
very high then ED crowding level is high. 

FLS4-49 
If ED demand status is high and ED workload is low and boarding status is low then 
ED crowding level is low. 

FLS4-50 
If ED demand status is high and ED workload is low and boarding status is medium 
then ED crowding level is medium. 

FLS4-51 
If ED demand status is high and ED workload is low and boarding status is high 
then ED crowding level is medium. 

FLS4-52 
If ED demand status high and ED workload is low and boarding status is very high 
then ED crowding level is high. 

FLS4-53 
If ED demand status is high and ED workload is medium and boarding status is low 
then ED crowding level is medium. 

FLS4-54 
If ED demand status is high and ED workload is medium and boarding status is 
medium then ED crowding level is medium. 

FLS4-55 
If ED demand status is high and ED workload is medium and boarding status is high 
then ED crowding level is high. 

FLS4-56 
If ED demand status is high and ED workload is medium and boarding status is very 
high then ED crowding level is high. 
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Rule No. Fuzzy Rule Statement 

FLS4-57 
If ED demand status is high and ED workload is high and boarding status is low 
then ED crowding level is medium. 

FLS4-58 
If ED demand status is high and ED workload is high and boarding status is medium 
then ED crowding level is high. 

FLS4-59 
If ED demand status is high and ED workload is high and boarding status is high 
then ED crowding level is high. 

FLS4-60 
If ED demand status is high and ED workload is high and boarding status is very 
high then ED crowding level is extreme.  

FLS4-61 
If ED demand status is high and ED workload is very high and boarding status is 
low then ED crowding level is high. 

FLS4-62 
If ED demand status is high and ED workload is very high and boarding status is 
medium then ED crowding level is high. 

FLS4-63 
If ED demand status is high and ED workload is very high and boarding status is 
high then ED crowding level is extreme. 

FLS4-64 
If ED demand status is high and ED workload is very high and boarding status is 
very high then ED crowding level is extreme. 

FLS4-65 
If ED demand status is very high and ED workload is low and boarding status is low 
then ED crowding level is medium. 

FLS4-66 
If ED demand status is very high and ED workload is low and boarding status is 
medium then ED crowding level is medium. 

FLS4-67 
If ED demand status is very high and ED workload is low and boarding status is 
high then ED crowding level is medium. 

FLS4-68 
If ED demand status very high and ED workload is low and boarding status is very 
high then ED crowding level is medium. 

FLS4-69 
If ED demand status is very high and ED workload is medium and boarding status is 
low then ED crowding level is medium. 

FLS4-70 
If ED demand status is very high and ED workload is medium and boarding status is 
medium then ED crowding level is high. 

FLS4-71 
If ED demand status is very high and ED workload is medium and boarding status is 
high then ED crowding level is high. 
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Rule No. Fuzzy Rule Statement 

FLS4-72 
If ED demand status is very high and ED workload is medium and boarding status is 
very high then ED crowding level is high. 

FLS4-73 
If ED demand status is very high and ED workload is high and boarding status is 
low then ED crowding level is high. 

FLS4-74 
If ED demand status is very high and ED workload is high and boarding status is 
medium then ED crowding level is extreme. 

FLS4-75 
If ED demand status is very high and ED workload is high and boarding status is 
high then ED crowding level is extreme. 

FLS4-76 
If ED demand status is very high and ED workload is high and boarding status is 
very high then ED crowding level is extreme. 

FLS4-77 
If ED demand status is very high and ED workload is very high and boarding status 
is low then ED crowding level is high. 

FLS4-78 
If ED demand status is very high and ED workload is very high and boarding status 
is medium then ED crowding level is extreme. 

FLS4-79 
If ED demand status is very high and ED workload is very high and boarding status 
is high then ED crowding level is extreme. 

FLS4-80 
If ED demand status is very high and ED workload is very high and boarding status 
is very high then ED crowding level is extreme. 

 

 

The results presented in this section are a critical component of this research, as they 

provide validation for the design intent of the framework, and show that the consensus rates for 

rule assessments are good, necessitating only seven re-evaluations among the initial 137 rules. The 

average consensus rate was 72% or better between each of the four subsystems, which further 

highlights the consistency of results. It was observed that the average consensus rate decreased 

noticeably in subsystems where there were either an increase in assessment classes, more rules, or 

more complex rules with more conditions for experts to evaluate. These factors contributed to each 
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subsystem’s complexity, contributing to the overall decrease in average consensus rate. The 

reliability analysis showed that in general, the correlation between expert assessments was strong, 

but some weak correlations were noticed. These variations could be attributed to the differences 

between the experts’ backgrounds, areas of expertise, years of experience, and possibly cultural 

values. In general, the consistency in evaluations was acceptable, as most expert evaluated rules 

using adjacent assessment classes. All of these assessed fuzzy rules will build upon the designed 

fuzzy system by feeding the four different fuzzy engines from subsystems I-IV with supporting 

information to link the inputs to the outputs.  

 

5.3 Fuzzy System Results 

 

The fuzzy logic toolbox of Matlab R2015b (Version 2.2.22) was used to construct and 

simulate each fuzzy subsystem individually, with data gathered from experts. Appendix L provides 

the written computer code to build the designed fuzzy systems.   A series of 3-D surface plots were 

generated relating the inputs of each subsystem to their respective outputs. This was accomplished 

through the products of the proposed architecture, including the development of membership 

functions from quantitative data collected from experts, and the expert subjective assessment of 

rules. These generated surface plots allow for a clearer view of how the different fuzzy subsystems 

function, and it makes the relation between inputs more visually accessible. Additionally, the 

surface plots allow for determining the outputs of the subsystems in a straightforward manner by 

only using inputs, bypassing lengthy calculations. This section provides the results from the fuzzy 

logic subsystems and presents the surface plots for the output of the subsystems.  
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Figure 5-16: Surface of the fuzzy logic subsystem I 

 

Figure 5-16 illustrates the surface of subsystem I, defined by two input axes, patient 

complexity and patient demand, and one output axis, ED demand. The values for ED demand on 

the surface plot range from 8 to 92, resulting from the centroid method used for defuzzification. 

Generally speaking, it can be observed on the surface that ED demand will increase with patient 

complexity if patient demand is held constant, and similarly ED demand will increase with patient 

demand if patient complexity is held constant. Interestingly, when patient demand is approaches a 

value of 1, the ED demand plateaus when patient demand is between 1 and 2, unless patient 

complexity increases. The step-like structure occurring for patient demand higher than 1 resembles 

another local step structure for patient complexity higher than 4, where ED demand cycles between 

plateaus and increases until it plateaus near its maximum value. For patient demand less than 1 

and patient complexity less than 4, the surface appears to linearly increase in a more predictable 

manner than the two step-like structures near its extremes. 
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Figure 5-17: Surface of the fuzzy logic subsystem II 

 

Figure 5-17 demonstrates the relation between the inputs (nurse staffing and physician 

staffing) and output (ED staffing) of subsystem II, where ED staffing ranges between scores of 

14.9 and 89.1. ED staffing appears to increase in a similar manner with either nurse staffing or 

physician staffing when the other input is held constant, although the increase is not as high as 

when both inputs are proportionally increased. In other words, there are several plateau planes on 

the surface where ED staffing will only increase when both inputs are proportionally increased. 

When physician staffing is held constant, around 0.1 for instance, ED staffing will not increase 

after nurse staffing increases beyond 1.5, demonstrating the logical relation between the ED 

staffing and the ratio between nurses and physicians. If the ratio of physicians to nurses is low, ED 

staffing will be considered low, and an ED’s staffing size and thus ability to see to patients would 

not likely increase if the nursing staff was increased in size. This illustrates that a proportional 
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number of physicians and nurses would be required for an ED to effectively maintain a high 

staffing level. It may also be noted that the slope of the surface from 50 to 89 ED staffing score is 

steeper for increasing nursing staff than when physician staffing is increased, which may be due 

to the different scales of the input axes. 

 

 

Figure 5-18: Parameter sensitivity analysis - Subsystem III (a) 

 

Figure 5-18 features nine surface plots that represent part of subsystem III, showing how 

ED workload is affected by ER occupancy rate and ED staffing, when average patient complexity 

is held at nine different constants, which are 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 for surfaces a through 
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i, respectively. For surfaces a, b, and c, when patient complexity is low, between 1 and 2, ED 

workload increases when ED staffing is low and ER occupancy is high, approaching a maximum 

scale value of 60. When ED staffing is increased in these cases, ED workload decreases. Only 

when ED staffing is high and occupancy is low does ED workload scale reach its minimum value 

of 10.8. When average patient complexity is held between 2.5 and 3.5, surfaces d, e, and f show a 

much steeper increase in workload when ER occupancy rate is increased, even when ED staffing 

is high. This demonstrates the impact that an increase in average patient complexity has on ED 

workload even when staffing may be considered adequate. With the maximum workload scale 

adjusted to 80 for surfaces g, h, and I, when average patient complexity is between 4 and 5, the 

effects of low ED staffing even at low occupancy rates show an impact on ED workload. For 

instance, even when both staffing and occupancy rates are close to 0 in these surfaces, the ED 

workload starts at non-zero values due to the increase in average patient complexity. Even under 

medium staffing and medium occupancy rates, the ED workload scale approaches high values. 
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Figure 5-19: Parameter sensitivity analysis - Subsystem III (b) 

  

Figure 5-19 consists of eleven surface plots, a through k, which show the impact of average 

patient complexity and ED staffing on ED workload, when occupancy rate is held at eleven 

different constants, starting near zero, 10, 20, and ending with 100. In surfaces a through c, when 
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occupancy rates are held between zero and 20, ED staffing does not significantly impact ED 

workload until average patient complexity approaches 4. Around this value, ED workload sharply 

increases to a value of 60, and only an increase in ED staffing decreases ED workload beyond this 

complexity. Overall, ED staffing does not play a large role in ED workload under low occupancy 

until patients in severe condition increase patient complexity. Even a few serious cases can tie up 

resources in an ED and lead to an increase in workload when staffing may be considered adequate.  

When occupancy rate is increased and maintain values between 30 and 60 in figure 5-19, 

surfaces d through g demonstrate the impact on workload. As occupancy rate increases in these 

surfaces, ED workload gradually reaches higher values when ED staffing is constantly low and 

average patient complexity is constantly high. It can also be observed that the possibilities for low 

ED workload slowly decrease with an increase in occupancy, even when staffing is high and 

average complexity is low. 

In surfaces h through k in figure 5-19, when occupancy rate is between 70 and 100, the ED 

workload scale is adjusted to create new maximum values. In these surfaces, even when ED 

staffing is medium, and average patient complexity is low, ED workload is high. There is a steep 

increase in ED workload in surfaces j and k when average patient complexity exceeds a value of 

4, even when ED staffing is high.  
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Figure 5-20: Parameter sensitivity analysis - Subsystem III (c) 

  

In figure 5-20, surfaces a through k represent the relation between ED workload and its 

inputs, average patient complexity and ER occupancy rate when ED staffing is held at eleven 

different constants, ranging from near zero to 100 for each respective surface. For surfaces a, b, 

and c, when ED staffing is between near zero and 20, high ED workload reaches scores of 60 
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quickly with medium occupancy rates and average patient complexity. When average patient 

complexity achieves values higher than 4, and occupancy rates achieve values higher than 50, ED 

workload plateaus unless both average patient complexity and occupancy rates increase, leading 

to a peak area of the surface where ED workload reaches scores near 80. When ED staffing is 

between 30 and 60, for surfaces d through g, the impact of better staffing can be seen on ED 

workload. The increase of ED workload becomes more gradual with increasing average patient 

complexity and occupancy rates, and the size of the surface representing ED workload scores of 

60 or higher decrease. In surfaces h through k, when ED staffing is between 70 and 100, the peak 

of the surface representing the highest scores for ED workload becomes smaller, and areas of the 

surface representing increases in ED workload become isolated in the plot, as higher values for 

average patient complexity and occupancy rate become necessary to achieve high values for ED 

workload. This represents the impact that increasing ED staffing to adequate levels has on ED 

workload, even when average patient complexity and occupancy rates are high. There are always 

areas of the surfaces where ED workload is high, however when ED staffing is increased, ED 

workload can be said to decrease even for moderate values of its other two inputs.  
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Figure 5-21: Parameter sensitivity analysis - Subsystem IV (a) 

 

Figure 5-21 represents the surfaces of subsystem IV, which is the most important 

subsystem as it represents the final outcome for the entire system. In figure 5-21, surfaces a through 

i represent the relation between crowding and its inputs, workload and demand, when the variable 

boarding status is held at nine different constants, 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, and 

0.40. The variable boarding status represents the ratio of boarded patients to the emergency 

capacity. In surface a, when boarding status is held at 0, crowding increases gradually with 

workload and demand, with the highest levels of crowding occurring under high demand and 

workload. Surface b represents a similar effect from both inputs when boarding status is held at 
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0.05, however the surface appears to be smoother despite having a similar characteristics and 

shape. In surface c, when boarding status is increased to 0.10, the crowding level scale is adjusted 

to a maximum of 80, and an interesting saddle feature occurs when workload is high and demand 

is low. When demand is near zero in both surface c and d, crowding starts with high values near 

60 on the surface when workload is at its maximum, but crowding appears to decrease when 

demand increases to values of 10 to 20, and then crowding increases again when demand further 

increases. This illogical feature could be due to the demand scale, which is between 8 and 92, 

meaning demand does not reach values near zero, and to simulate crowding at such a level could 

produce inaccuracy.  

While surface d is smooth, a plateau begins to emerge in surface e, and is more apparent in 

surface f. For these surfaces, the minimum values for crowding begin to rise, isolating the low 

values of the surfaces. Crowding appears to increase faster with demand and workload than in 

previous surfaces. In surface g, when boarding status is held at 0.30, a peak begins to emerge on 

the surface, which is more pronounced in surfaces h and i when boarding status is near maximum 

values. In surfaces g through i, another illogical feature occurs when workload low and demand 

approaches maximum values. After approaching demand values of 60, crowding decreases after a 

steady increase, when workload is low. This could be caused a conflict in the knowledge base, 

where a conflict may exist in the rule base.  
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Figure 5-22: Parameter sensitivity analysis – Subsystem IV (b) 

 

Figure 5-22 consists of surfaces a through k of subsystem IV, showing the impact that the 

inputs of boarding and demand have on the output of crowding, when the variable workload is 

held at eleven constants, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 . In surfaces a through c, 

when workload is low, crowding generally increases with boarding and demand, however the peak 
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values in surfaces b and c differ from surface a. The peak of the surface decreases in size and 

transitions into a plateau in surfaces b and c, indicating a wider range of input values that lead to 

the same high level of crowing.  

In surfaces d through g when workload is between 30 and 60, the lower values of the 

surface become more isolated, and all points on the surfaces appear to rise, representing an overall 

increase in crowding for all values of boarding and demand. It can be observed that increasing the 

ED workload evenly increases crowding under any condition of boarding and demand.  

 As workload approaches values between 70 and 100, surfaces h through k show that 

crowding continues to generally increase for all boarding and demand values, and the surfaces 

peak at higher values. A plateau emerges in surface h, where crowding remains constant for 

boarding values which exceed 0.2, when demand is below 50. Beyond boarding values of 0.2, 

crowding will only increase when demand is increased beyond 50. This demonstrates that under 

high workload, there are consistent levels of crowding when boarding is high, but demand is low. 

Only when both boarding and demand are low does crowding achieve minimum values under high 

workload.  
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Figure 5-23: Parameter sensitivity analysis - Subsystem IV (c) 

 

Figure 5-23 includes surfaces a through k, where crowding is related to boarding and 

workload when demand is held at eleven different constants, ranging from 0, 10, and 20, to 100. 

In surfaces a through d, when demand is between 0 and 30, crowding generally increases with an 

increase in boarding and workload, reaching maximum values when both inputs are high. Surfaces 

b and c appear to be smoother than surface a, when demand is the lowest.  
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 Beginning with surface e, and continuing in surfaces f through h, when demand is between 

values of 40 and 70, an illogical feature emerges when workload is high and boarding is low. In 

surface f and g when this feature is most pronounced, crowding decreases when workload values 

increase beyond a value of 60, and in surface h this feature begins to disappear. This could result 

from a conflict that occurs in the knowledge base for medium values of demand. Otherwise, 

surfaces e through h show that crowding generally increases for all values of boarding and 

workload, and the crowding scale adjusts in surface e to a maximum of 70, and then it adjusts to a 

maximum of 80 in surface h.  

 In surfaces i through k, when demand is between 80 and 100, crowding can be said to 

generally increase with increasing boarding and workload as observed in surfaces a through c. In 

surface k, the surface becomes more uniform when workload increases beyond low values. It can 

be said that for boarding values higher than 0.1, crowding does not increase unless workload 

increases. This demonstrates that when demand is very high, boarding is not as significant, as it 

does not affect crowding beyond a certain point unless the ED workload is increased.  

 

 

5.4 Framework Implementation and Validation 

 

This section details the process for implementing and testing the accuracy of the proposed 

fuzzy model framework, which will be described as the Adaptable Index for Emergency 

Department Overcrowding, or AIEDOC. One of the main goals of the AIEDOC is to produce 

reliable results which can be reproducible in EDs of other healthcare systems. The design of the 
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GIEDOC accounts for this in the knowledge base, as ten healthcare experts from a nation in 

question may provide data to be fed into the knowledge base, allowing the fuzzy system to produce 

results. This is why the design of GIEDOC is unlike other developed indices, which when tested 

outside their countries of origin, do not show adequate reproducibility when implemented. In order 

to accurately assess the GIEDOC, it must be implemented in real ED environments to measure the 

level of crowding, and at the same time, an expert assessment of a native expert must be made of 

the same environment to compare the results from the GIEDOC.  

For the purposes of measuring the accuracy of the GIEDOC, five classes within the 

GIEDOC were defined by five equal intervals on a scale from 0 to 100, so that the classes could 

be compared to the subjective assessment of experts. These five classes for assessing ED crowding 

on five subjective levels were: 1 for “insignificant”, 2 for “low”, 3 for “medium”, 4 for “high”, 

and 5 for “extreme”. In other words, this was done to compare the agreement of the index to 

experts, by determining if this scale reflects the expert perspective for crowding. The GIEDOC 

was implemented for three days in a public Saudi Arabian hospital in Jeddah, which sees more 

than one hundred thousand patients in its emergency department on a yearly basis, possessing more 

than 400 inpatient beds and 42 emergency beds. During the validation, twenty four observations 

were made to collect data which focused on factors including the capacity of the emergency 

department, the number of patients in the waiting area, ER, and boarding areas, the number of 

present physicians and nurses, the average patient complexity in both the waiting area and the ER, 

and finally a healthcare expert’s subjective assessment of crowding. These results are detailed in 

table 5-18, where the ED crowding level scale can be compared to class number assigned by 

experts 
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Kappa analysis (Equation 1) was used to test the agreement between the computed 

GIEDOC scores and the subjective assessment of the healthcare experts. These statistics allow for 

the comparison of the accuracy of the results from GIEDOC to those of other indices when 

assessing ED crowding. 

Table 5-18: Crisp inputs and their computed crisp output using GIEDOC 
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1 0.286 2 18.1 0.31 0.45 85.1 100% 3 66.7 0.070 62.5 4 
2 0.095 2.5 25 0.35 0.47 85.1 100% 3.5 66.7 0.120 50 3 
3 0.167 2.5 25 0.35 0.40 85.1 90% 3 66.7 0.140 50 3 
4 0.240 1.5 8 0.31 0.40 85.1 100% 2 33.3 0.024 25 3 
5 0.120 3 25 0.33 0.47 85.1 60% 3 57 0.119 41.9 3 
6 0.167 1 8 0.29 0.50 85.1 86% 3.5 66.7 0.190 60 4 
7 0 0 8 0.19 0.36 85.1 71% 2 33.3 0.143 25 2 
8 0.190 1.5 8 0.33 0.43 85.1 100% 3.5 66.7 0.047 50 3 
9 0.260 2 16 0.29 0.43  85.1 100% 4 89.2 0.024 50 3 
10 0.047 4 50 0.35 0.40  85.1 43% 3 33.3 0.143 50 2 
11 0.214 3 26.6 0.21 0.43 68.4 57% 2 31.3 0.166 27.6 3 
12 0.262 3.5 31.2 0.33 0.47 85.1 100% 3 66.7 0.047 53.1 3 
13 0.286 3 33.1 0.31 0.47 85.1 91% 4 89.2 0.190 60 4 
14 0.071 2 8 0.31 0.47 85.1 100% 1.5 33.3 0.286 49.9 3 
15 0.286 1.5 18.1 0.26 0.38 85.1 98% 2 33.3 0.047 25 2 
16 0.643 3 56.4 0.31 0.45 85.1 83% 2 33.3 0.095 50 3 
17 0.143 2 8 0.26 0.36 85.1 100 2.5 66.7 0 50 4 
18 0.452 2 24.6 024 0.40 85.1 76% 3 66.7 0.214 66.1 4 
19 0.500 2.5 50 0.26 0.29 68.4 100% 4 88.2 0.143 59.5 4 
20 0.214 3.5 26.6 0.26 0.43 85.1 100% 4 89.2 0.143 52.4 4 
21 0.333 4 61.4 0.21 0.38 68.4 100% 3 66.7 0.143 75 4 
22 0.047 3 25 0.33 0.47 85.1 95% 3 66.7 0.119 50 3 
23 0.309 1 19.7 0.16 0.50 50 81% 3 66.7 0.024 50 3 
24 0.381 3 39.6 0.21 0.33 68.4 100% 3 66.7 0.047 53.5 3 
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Table 5-18 provides the data obtained from the twenty four observations conducted for 

validation of the GIEDOC, resulting in calculated scores for the major operational factors. The 

demand scores ranged from values of 8 to 61.4 according to the demand indicator of the GIEDOC, 

while staffing scores ranged from 50 to 85.1, and ED workload ranged from 33.33 to 89.2. It should 

be noted that the majority of staffing scores obtained their maximum values, indicating that over 

the three days of validation, the selected ED almost always maintained adequate staffing. There 

was higher variation in the range of demand and ED workload scores. ED crowding level scores 

achieved values between 25 and 75. To further study the variation in scores between observations, 

the scores were plotted in figure 5.24.  

 

 

Figure 5-24: GIEDOC index scores 

 

The plot in figure 5.24 further shows the consistency in the staffing score across the twenty 

four observations, varying slightly between observations 19 and 24. Generally speaking, when 
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demand, boarding, and workload scores were decreasing or increasing between observations, such 

as in observation four, the crowding level decreased or increased accordingly. In other 

observations such as 8 and 9, when factor scores such as workload increased while another factor 

such as boarding decreased, the resulting crowding score exhibited no change. In observation 21 

when other scores exhibited minimal change, a sharp increase in the demand score can be attributed 

to the sharp increase in crowding, demonstrating the significance of the role of demand in 

crowding.  

The agreement between GIEDOC and expert assessment is analyzed in table 5.18, where 

assessments are documented according to the “low”, “medium”, and “high” classes (2, 3, and 4) 

from table 5-18. The GIEDOC issued 4 assessments for “low” scores, 15 for “medium”, and 5 for 

“high”, while the expert provided 3 “low” assessments, 13 “medium”, and 8 “high”. For the low 

class, the GIEDOC and the expert issued the same-assessment agreements twice, while they agreed 

eleven times for the medium class, and five times for the high class. When measured against the 

expert assessments, the GIEDOC overestimated once for the low class, (providing a score of 

“medium” where the expert provided a score of “low”), and underestimated the medium class 

twice (providing “low” while the expert provided “medium”), while underestimating the high class 

three times. It should be noted that the insignificant and extreme classes could not be predicted, as 

the ED during this study was neither empty nor extremely overcrowded according to both scores 

from the expert and the GIEDOC. Most activity regarding the major operation factors occurred in 

the third level or “medium” class according to their scores.  
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The Kappa value found for the system was 0.562, 95% CI [0.45, 0.66], which indicates 

moderate agreement between the objective and subjective scores of GIEDOC and the expert  

(Appendix N).  

 

5.5 Concluding Remarks 

 

This chapter presents several opportunities to discuss the accuracy of the proposed model 

and the implications it has on bias from expert assessment, and the influence that each of the factors 

for ED crowding carry in constructing an understanding of how an effective index should function.  

When the interval values were provided by experts to construct membership functions, some 

variation was observed in responses, and it can be speculated that these varying responses could 

be due to factors such as the expert’s background and expertise in EDs, their years of experience, 

and possibly cultural values. For instance, it was found that the determined physician staffing and 

nurse staffing intervals varied greatly in figures 5-2 and 5-3, indicating some different 

perspectives. For instance, physicians were found to overestimate values for the classes of nurse 

staffing, and vice versa, demonstrating the problems of relying on only one perspective. It is 

important to minimize bias in this study by avoiding reliance upon one assessment or embracing 

only one perspective when implementing a solution to a problem which exists in several different 

healthcare systems. The variation in these class intervals created foggy data, which was modeled 

with membership functions for the proposed fuzzy logic system. The interval estimation method 

was a very effective elicitation method, as it produced the desired membership functions for each 

subsystem. 
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Several lessons can be learned from the evaluation of the 137 fuzzy rules, which produced 

the consensus rates between expert assessments. Among the different fuzzy rules with different 

permutations of conditional consequents (from tables 5-10, 5-12, 5-14, and 5-16), it is possible to 

detect different perspectives in the differing rule assessments provided by experts. Experts with 

similar backgrounds such as physicians appear to have consistent responses. With regard to rule 

consensus, only seven of the 137 assessed rules did not reach the minimum criteria in the first 

round, indicating that the fuzzy rule assessment structure was effective. With these consensus rates 

for each subsystem, deeper analysis could determine when and why bias happens in the 

evaluations. While this assessment provides more insight into patterns of bias, other studies which 

rely on one stakeholder to inform their results can produce indices which are skewed in the 

perspective of that stakeholder. The average consensus rate between the four subsystems was 

consistently better than 72%, with increasing complexity in the fuzzy rules accounting for the 

slight decreases in consensus rate between subsystems. The intra-class correlation for the whole 

system was 0.817, with a 95% confidence interval of [0.777, 0.854], which demonstrates good 

agreement. 

The generated surfaces which related each of the subsystems’ inputs to their output 

revealed patterns of influence between these input variables. The demand score in Subsystem I 

based on expert assessment behaved in a logical manner, and with more membership functions, 

more fuzzy rules, or more complex rules, the surfaces could be made smoother. In Subsystem II, 

the surface reflected the relationship between the ratio of nurses and physicians to ED staffing in 

a logical manner. When the ratio of physicians to nurses was high, and vice versa, ED staffing did 

not increase beyond a certain value, and only when both physician and nursing staffing increased 
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did ED staffing also increase. This shows how an excess of either physicians or nurses will not 

contribute to a higher considered level of overall ED staffing, as both roles are critical within ED 

staffing. Subsystem III demonstrated the significant impact that occupancy rate and staffing had 

on workload, with patient complexity having the most distinct effect upon workload across the 

surfaces for the entire subsystem. Subsystem IV featured some interesting surfaces, which 

demonstrated the large impact that demand and workload had on crowding. Some aspects of the 

surfaces can be explained by the limits of the scale involved, or a possible conflict in the knowledge 

base. These surfaces are useful for determining crowding level output for the system by using one 

known factor. 

The steps taken to validate the model produced good results for an initial validation, 

including a kappa value of 0.562, indicating moderate agreement. The validation did not capture 

the highest and lowest classes on the scale, as measurements could not be taken to validate these 

classes, given the conditions of the ED over the three days. With a longer validation period, more 

data could be collected, and it could then be possible to draw conclusions on the extreme classes. 

Moreover, a more robust validation process would include more experts’ assessments when 

comparing the results of this model. The resulting kappa value for this initial validation represents 

the agreement of the model’s results to the one expert assessment, meaning that if the model were 

developed with only that expert’s perspective, the kappa value would be higher. However, this 

model benefits from the perspective of multiple experts, and thus the inclusion of more expert 

assessment would improve the validation process.  
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CHAPTER 6  CONCLUSION AND FUTURE RESEARCH  

 

6.1 Conclusion 

 

In the modern era, healthcare systems face many challenges both operationally and 

financially. As a growing industry, healthcare organizations take many measures to meet growing 

demand and standards for care, in addition to expanding access. Individually, hospitals face their 

own unique challenges which are defined by their size, location, and other factors. Within 

hospitals, the emergency departments also face increases in demand which is confounded by both 

the number of patients and their severity, as well as the readiness of emergency centers. ED 

demand continues to rise, and overcrowding has become a common issue for many hospitals which 

are dedicated to providing high standards in service.  

The issue of overcrowding has many dimensions, impacting stakeholders such as patients 

and hospitals alike, where errors caused by the burdens of overcrowding may lead to further delays, 

tie up valuable resources, or lead to further risk of morbidity. Overcrowding is not universally 

defined by a clear set of criteria, and existing criteria varies according to different local and 

regional standards, different policies on measures taken to ameliorate it, and most importantly it 

is perceived differently by the different professionals who work in ED environments. These 

different views lead to different ideas of when EDs become overcrowded, how overcrowding can 

be prevented, and how it should be characterized.  

One approach to mitigating the operational problems that overcrowding present is to 

quantify it to enable and inform decision making regarding staffing, ambulance diversion, 
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boarding, and others. In addition to informing policy, quantifying and classifying overcrowding 

makes it easier for EDs to prepare for and reduce overcrowding in their environments. To achieve 

this, many studies have sought to develop indices to measure ED crowding. Many of these indices 

have proven to be ineffective in reproducing results for accurately identifying overcrowding in 

healthcare systems outside the ones these indices were defined in. In addition, many indices are 

founded upon the feedback from one stakeholder, introducing bias into the index. These difficulties 

in quantifying crowding in diverse environments have led experts to call upon the application of 

industrial engineering techniques to analyze and research this issue. 

This study sought to assess the validity of two existing indices by applying them in a 

healthcare system of a new region in which they had not been applied previously. The application 

of the indices to the Saudi Arabian healthcare system provided the opportunity to perform such a 

validation in a representative region. The indices chosen are known as the NEDOCS and EDWIN 

indices, as they are the most compatible for the Saudi Arabian healthcare system, such that all of 

the proper inputs are both relevant and obtainable. This validation was carried out as a preliminary 

study to learn more about the performance of established indices, finding that they were not 

accurate in measuring overcrowding. This is due to the inaccuracies in reflecting physician and 

nursing perspectives of ED overcrowding, which the developed indices exclusively relied on. The 

results of the preliminary study confirm the inaccuracies of ED crowding indices when they are 

applied outside the regions in which they were initially developed. 

This study proposed a framework for quantifying overcrowding within different healthcare 

contexts, seeking to overcome the shortcomings of previous indices by founding the framework 

upon the perspective of multiple experts and stakeholders. With a method for quantifying 
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overcrowding in qualitative and quantitative terms provided by a variety of experts, and identifying 

and reducing bias, this study strives for reproducibility of results in other settings. 

The framework of the proposed study takes into consideration operational factors such as 

patient demand, workload, boarding status, and others when defining the crowding level in an ED. 

The hierarchical fuzzy logic approach is used to accomplish the goals of this framework by 

combining a diverse pool of expert perspectives while addressing the complexity of the 

overcrowding issue. The designed fuzzy logic system acknowledges the interconnectedness of 

dimensions of overcrowding by organizing subsystems in a manner which reflects the three 

operational determinants of crowding, as discussed from figure 4-4.  

The three-level hierarchical fuzzy logic system consists of four fuzzy inference engines, or 

subsystems, which each contain their own knowledge base containing a database and fuzzy rule 

base. The novel feature of this model is that it allows for the use of a combined pool of expert 

evaluation and knowledge from multiple stakeholders when the crowding level is determined. The 

architecture of the system integrates a total of seven inputs into the four fuzzy logic subsystems, 

allowing information from the knowledge base  to state the degree of membership and assign a 

membership function to input and output values. Each subsystem is developed to assess an output 

which is a key contributing factor to the crowding level, which is assessed in the fourth subsystem. 

In level one, the first subsystem determined the ED demand status, and the second subsystem 

determined the level of ED staffing. The second level contained the third subsystem, which 

evaluated the ED workload, and finally the fourth subsystem quantified the crowding status in the 

third level. 
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The analysis from chapter five showed that the results from the construction of the 

knowledge base were logical, and the obtained visual relation between the operational 

determinants of crowding provided more insight into the dynamics of crowding. Analysis of the 

initial measures taken to validate the developed GIEDOC index demonstrated its accuracy when 

tested against subjective expert assessment. The results from this validation showed that the 

accuracy of the GIEDOC index was superior in comparison to the level of accuracy of the 

NIEDOCS and EDWIN indices in the same setting. Finally, the innovative and novel design 

features which allow this developed index to accurately assess ED crowding also contribute to its 

capability to produce accurate results in other healthcare systems. 

The research accomplished in this study contributes to existing knowledge in the field of 

quality systems engineering by designing a robust and novel index for assessing ED crowding. 

The designed index overcomes shortcomings of previous indices by both reducing bias through 

the inclusion of perspective from different types of stakeholders, and identifying patterns of bias 

in the analysis of the results from the construction of the fuzzy logic system. The index developed 

in this research offers opportunities to both researchers and practitioners. For researchers, this 

index can empower the development of future improvements within ED settings, in addition to 

offering a new technique for quantifying subjective operational challenges. Practitioners can use 

this index to make better informed decisions while assessing ED crowding, contributing to the 

improvement of overall care, outcomes, quality of service, and patient safety. 
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6.2 Limitations and Future Research  

 

The design of the proposed framework introduced several challenges which were overcome 

with decisions to reduce the number of calculations and simplify the system architecture. These 

decisions carry implications which can be used to identify limitations to this study, and identify 

opportunities for future researchers to improve the framework.  

The design of the knowledge base for the fuzzy system focused on using conditional 

statements using only AND rules when eliciting expert assessment of fuzzy rules. While the benefit 

of this was the reduction in the number of rules, it imposed limitations on the assessments by 

restricting the possible range of responses. In addition, the hierarchical fuzzy system adapted 

contributing factors to ED from the Asplin’s overcrowding model, which consists of only three 

main determinants. While seven inputs were chosen to represent these determinants, other ED 

settings may present other important contributing factors to overcrowding that could be 

additionally included in a refinement of the developed framework. When defining factors such as 

patient complexity, this research adapted the definition provided by the Emergency Severity Index, 

which may not be compatible with the emergency triage systems used in other healthcare settings. 

This research allowed experts to subjectively assess the impact of patient complexity on ED 

crowding, and more membership functions could be implemented to increase the number of fuzzy 

classes used to define patient complexity, and thus increase the precision of results.  

When building the knowledge base, the rules to be assessed by experts were assumed to be 

of equivalent importance or weight, whereas a future design may allow experts to assign different 

values of importance to different rules as they contribute to overcrowding. When validating the 
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developed index, the observation period was limited to three days, in which the conditions for 

insignificant and extreme crowding were not observed. A more rigorous validation may take 

advantage of a longer period to obtain a larger pool of data to assess the other classes of crowding 

provided by the model.  

Conducting this research and constructing the proposed framework presents new 

opportunities for expanding the field of research on the issue of ED overcrowding. Based upon the 

observations made in previous chapters, several ways to further advance of the body of knowledge 

in this field can be identified. With regard to the design of the fuzzy system, future research could 

focus on either increasing the number of inputs to the system, or identifying more crowding 

determinants. Other design improvements could include an expansion of the hierarchical fuzzy 

system, in which more subsystems could be implemented in association with other identified 

inputs or determinants of crowding. These determinants could further vary according to the policy 

of different triage systems. Accordingly, efforts made to further test the index could seek to apply 

it in healthcare settings which use different triage systems, which may shed light on the influence 

that the chosen determinants have on the index results.  

In designing the knowledge base, further research could attempt to integrate other 

quantitative tools into the fuzzy system to process some inputs independently, such as patient 

demand. Methods such as simple linear regression or multiple regression could be used to model 

the demand side of the problem in such a way to make the index more robust and accurate. The 

fuzzy rule base, which is one of the most important components of the model, could be optimized 

by incorporating a method to determine the weighting of each fuzzy rule. To accomplish this, 

different classification algorithms could be applied to a fuzzy rule base classification system to 
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assign weights to each rule. This could increase the overall performance of the index, which 

utilizes 137 rules in this research, and the impact of weighting on an increased number of rules 

would be more pronounced. In addition to this, the rule base could be further enriched by including 

more complicated rules. Specifically, the rules could use OR statements in addition to the AND 

statements used in the conditional statements of this research. For instance, a new rule might ask 

an expert: “If the patient demand is low, or if the workload is low, and the boarding status is 

medium, then would ED crowding be considered low, or medium?” 

Implementing the index in other settings is another important research opportunity. The 

developed index could be studied when applied in other EDs in the same studied healthcare system, 

or the index might be applied in other healthcare systems which have similar characteristics to that 

of the region in which the validation in this research was carried out. Both of these implementation 

strategies could be used to further compare the accuracy and applicability of the developed index 

across different healthcare settings. If the proposed model were to be implemented in a sufficiently 

different healthcare system, another worthwhile task for researchers would include the 

development of a knowledge base for such a setting.  

Aside from altering the architecture of the index, other research efforts could focus on 

developing index integration strategies within EDs. Integrating the developed index with an ED 

decision support system could aid in analyzing major operational factors in EDs, including 

demand, patient flow, staffing levels, workload, congestion after treatment, and the overall 

crowding. The analysis of these factors could help in determining the root causes of overcrowding 

in the moment of observation. Furthermore, researchers could use this index to create an alarm 

system based on the hourly observations of ED crowding. An alarm system could specify both 
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prevention policies to avoid crowding, as well as reaction policies designed to respond to 

overcrowding when it occurs, when specific conditions are met in the index.  

A separate research effort could focus on developing a set of action protocols for EDs, to 

specify a course of action to both prevent and react to overcrowding when it occurs, as identified 

by the index. The index could be further adjusted to adapt to different settings by adjusting the 

interval of crowding for an individual hospital. This could be done by linking policies in a given 

healthcare system to the developed index in a way that modifies the fuzzy classes according to the 

local overcrowding policy and protocols.  

Finally, a more rigorous validation study could simulate the index by integrating it with a 

discrete event simulation model to study its performance over a longer period of time. With such 

a simulation, the impact of the determinants on the overcrowding score could be more accurately 

observed. Patterns of simulated data used to more closely observe the impact of each factor on 

overcrowding could also be used to draw conclusions for the development of future ED policy.
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APPENDIX A  UCF IRB APPROVAL 
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APPENDIX B  STUDY INFORMED CONCENT  
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EXPLANATION OF RESEARCH 

 

 

Title of Project: Evaluating the Applicability and Validity of NEDOCS and EDWIN indices in Saudi Arabian 

Healthcare Organizations: Assessment of Crowding in Emergency Departments  

Principal Investigator: Abdulrahman Albar 

Faculty Supervisor: Ahmad Elshennawy  

 

You are being invited to take part in a research study. Whether you take part is up to you. 

 

The purpose of this research is to evaluate the applicability and validity of the National Emergency 

Department Overcrowding Scale (NEDOCS) and the Emergency Department Work Index (EDWIN) in 

your hospital. The collected data will be analyzed to quantitatively validate those emergency 

department crowding indices within Saudi Arabian healthcare settings.  

 

This research includes two major parts. First part aims to examine whether the NEDOCS index is valid 

in Saudi Arabian emergency care settings or not. Part one includes two surveys, one targets ED 

physicians, and the other targets ED nurses. The participants will answer questions about the degree 

of overcrowding and the feeling of being in rush in a given time. It is expected to take the participant 

about one minute to finish the survey. Part one also includes a section for collecting information about 

the capacity of the ED, availability of beds, as well as the amount of patients in a given time. This 

section can be filled by a member from the ED registration office. It is expected to take 5 minutes to 
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finish this section. The participant will be asked to fill the survey in a specific time. He or She can fill 

the survey at 1 am, 5 am, 9 am, 1 pm, 5 pm, or 9 pm. Part one will last for about three weeks.     

 

Second part aims to examine whether the EDWIN index is valid in Saudi Arabian emergency care 

settings or not. This part includes two surveys, one targets ED physicians, and the other targets ED 

nurses. The participants will answer one questions about the level of ED busyness in a given time. It 

is expected to take the participant about one minute to finish the survey. Part one also includes a 

section for collecting information about the capacity of the ED, availability of beds, as well as the 

number of patients in each triage category in a given time. This section can be filled by a member from 

the ED registration office. It is expected to take 5 minutes to finish this section. The participant will be 

asked to fill the survey in a specific time. He or She can fill the survey at 1 am, 5 am, 9 am, 1 pm, 5 

pm, or 9 pm. Part two will last for about five weeks.  

 

Both parts of this study will take place at the same time.  

      

You must be 18 years of age or older to take part in this research study.  

 

Study contact for questions about the study or to report a problem: If you have questions, 

concerns, or complaints, please contact Abdulrahman Albar, Graduate Student, Department of 

Industrial Engineering and Management Systems at (407) 617-7446 or by email at 

aalbar@knights.ucf.edu or Dr. Ahmad Elshennawy, Faculty Supervisor, Department of Industrial 

Engineering and Management Systems at (407) 823-5742 or by email at 

Ahmad.Elshennawy@ucf.edu. 

 

IRB contact about your rights in the study or to report a complaint: Research at the University of 

Central Florida involving human participants is carried out under the oversight of the Institutional Review 

Board (UCF IRB). This research has been reviewed and approved by the IRB. For information about the 
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rights of people who take part in research, please contact: Institutional Review Board, University of Central 

Florida, Office of Research & Commercialization, 12201 Research Parkway, Suite 501, Orlando, FL 

32826-3246 or by telephone at (407) 823-2901. 
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APPENDIX C  MINISTRY OF HEALTH IRB APPROVAL 
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APPENDIX D  LETTERS OF PERMISSION FOR DATA COLLECTION 
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APPENDIX E  NEDOCS ASSESSMENT FORM 
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Section Code: NEDOCS-Physicians 

             Date:         /       / 2015 

 

 

 

 

Dear ER Physician,  

You are invited to participate in this study by completing a brief anonymous survey. It is 

expected to take you less than one minute to finish the questions. 

 

Thank you, and We appreciate your participation,  

The Research Team  

************************************************************************************* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Please circle the opinion on ED ‘Degree of Overcrowding’  
 
1 = not busy 

2 = busy 

3 = extremely busy but not overcrowded 

4 = overcrowded 

5 = severely overcrowded 

6 = dangerously overcrowded 

 
 

Please circle the opinion on ‘Feeling rushed’ in ED, 1 = not rushed, 6 = rushed  
 
1               2               3              4             5            6 

 

Please circle the time. 

 Time:            1 AM             5 AM           9 AM              1 PM               5 PM               9 PM 
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Section Code: NEDOCS-Nurses 

 

             Date:         /       / 2015 

 

 

 

 

 

Dear ER Nurse,  

You are invited to participate in this study by completing a brief anonymous survey. It is 

expected to take you less than one minute to finish the question. 

 

Thank you, and We appreciate your participation,  

The Research Team  

************************************************************************************* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Please circle the opinion on ED ‘Degree of Overcrowding’  
 
1 = not busy 

2 = busy 

3 = extremely busy but not overcrowded 

4 = overcrowded 

5 = severely overcrowded 

6 = dangerously overcrowded 

 
 

Please circle the time. 

 Time:            1 AM             5 AM           9 AM              1 PM               5 PM               9 PM 
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Section Code: NEDOCS-Quantitative 

 

             Date:         /       / 2015 

 

 

 

 

 

Dear ER Administrator,  

You are invited to participate in this study by completing brief quantitative questions. It is 

expected to take you less than five minute to finish the questions. 

 

Thank you, and We appreciate your participation,  

The Research Team  

************************************************************************************* 

 

 

number of ED treatment beds  

number of licensed hospital beds  
 

 

number of patients in ED beds and other 
treatment spaces such as hallways beds 

 

number of admitted patients    
waiting time for last patient placed in an ED 
bed 

 

longest time among boarding patients since 
registration 

 

number of occupied respirators  
 

 

Please circle the time. 

 Time:            1 AM             5 AM           9 AM              1 PM               5 PM               9 PM 
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APPENDIX F  EDWIN ASSESSMENT FORM 
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Section Code: EDWIN-Physicians 

 

             Date:         /       / 2015 

 

 

 

 

 

Dear ER Physician,  

You are invited to participate in this study by completing a brief anonymous survey. It is 

expected to take you less than one minute to finish the questions. 

 

Thank you, and We appreciate your participation,  

The Research Team  

************************************************************************************* 

 

 

 

 

 

 

 

 

 

 

 

 

Section Code: EDWIN-Nurses 

 

 
‘‘How busy would you say the ED is right now? 
Please take into account your workload, the workload of all other doctors and nurses, the 
numbers of patients in the ED and waiting room, and numbers of holds (admitted 
patients waiting for beds) 
 
 

1   not busy at all, not crowded 

2    steady, easily keeping up 

3    average: working hard, but keeping up 

4    more crowded and busy than desirable 

5    extremely busy, very crowded.’’ 
 
 

Please circle the time. 

 Time:            1 AM             5 AM           9 AM              1 PM               5 PM               9 PM 
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             Date:         /       / 2015 

 

 

 

 

Dear ER Nurse,  

You are invited to participate in this study by completing a brief anonymous survey. It is 

expected to take you less than one minute to finish the questions. 

 

Thank you, and We appreciate your participation,  

The Research Team  

************************************************************************************* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
‘‘How busy would you say the ED is right now? 
Please take into account your workload, the workload of all other doctors and nurses, the 
numbers of patients in the ED and waiting room, and numbers of holds (admitted 
patients waiting for beds) 
 
 

1   not busy at all, not crowded 

2    steady, easily keeping up 

3    average: working hard, but keeping up 

4    more crowded and busy than desirable 

5    extremely busy, very crowded.’’ 
 
 

Please circle the time. 

 Time:            1 AM             5 AM           9 AM              1 PM               5 PM               9 PM 
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Section Code: EDWIN-Quantitative 

 

             Date:         /       / 2015 

 

 

 

 

Dear ER Administrator,  

You are invited to participate in this study by completing brief quantitative questions. It is 

expected to take you less than five minute to finish the questions. 

 

Thank you, and We appreciate your participation,  

The Research Team  

************************************************************************************* 

 

 

 
 

number of ED patients in triage category i 
 

triage category 
 

1 2 3 4 5 
 
 

    

 

 
Number of available beds in the ED 
 

 

 
number of ED physicians  

 

 
number of admitted patients   
 

 

 

 

Please circle the time. 

 Time:            1 AM             5 AM           9 AM              1 PM               5 PM               9 PM 
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APPENDIX G  ESI TRIAGE ALGORITHM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



212 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESI Triage Algorithm. Adapted from (Gilboy, 2012) 
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APPENDIX H  NEDOCS AND EDWIN RELIABILITY ANALYSIS  
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NEDOCS Reliability Analysis 

 
 

CROSSTABS 

  /TABLES=P1A BY P2A 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=KAPPA 

  /CELLS=COUNT 

  /COUNT ROUND CELL. 

 

 
 
Crosstabs 
 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

P1A * P2A 90 100.0% 0 0.0% 90 100.0% 

 

 

P1A * P2A Crosstabulation 

Count   

 

P2A 

Total 1 2 3 4 5 6 

P1A 1 0 2 1 0 0 0 3 

2 2 8 2 5 0 0 17 

3 2 3 6 6 0 0 17 

4 0 0 3 13 1 0 17 

5 0 5 3 7 9 0 24 

6 0 0 2 1 6 3 12 

Total 4 18 17 32 16 3 90 
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Symmetric Measures 

 Value 

Asymptotic 

Standardized 

Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .297 .062 5.966 .000 

N of Valid Cases 90    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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CROSSTABS 

  /TABLES=P1B BY P2B 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=KAPPA 

  /CELLS=COUNT 

  /COUNT ROUND CELL. 

 

 
Crosstabs 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

P1B * P2B 90 100.0% 0 0.0% 90 100.0% 

 

 

P1B * P2B Crosstabulation 

Count   

 

P2B 

Total 2 3 4 5 6 

P1B 1 2 4 0 0 0 6 

2 4 2 1 0 0 7 

3 5 4 13 3 0 25 

4 2 6 6 2 1 17 

5 1 1 5 16 0 23 

6 2 0 7 2 1 12 

Total 16 17 32 23 2 90 

 

 

Symmetric Measures 

 Value 

Asymptotic 

Standardized 

Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .179 .059 3.568 .000 

N of Valid Cases 90    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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CROSSTABS 

  /TABLES=N1A BY N2A 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=KAPPA 

  /CELLS=COUNT 

  /COUNT ROUND CELL. 

 

 
Crosstabs 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

N1A * N2A 90 100.0% 0 0.0% 90 100.0% 

 

 

N1A * N2A Crosstabulation 

Count   

 

N2A 

Total 1 2 3 4 5 6 

N1A 1 3 4 0 0 0 0 7 

2 1 7 1 3 3 0 15 

3 2 2 8 3 3 2 20 

4 0 3 6 6 2 0 17 

5 1 5 0 5 7 4 22 

6 0 1 0 1 3 4 9 

Total 7 22 15 18 18 10 90 

 

 

Symmetric Measures 

 Value 

Asymptotic 

Standardized 

Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .253 .063 5.187 .000 

N of Valid Cases 90    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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CROSSTABS 

  /TABLES=N1B BY N2B 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=KAPPA 

  /CELLS=COUNT 

  /COUNT ROUND CELL. 

 
Crosstabs 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

N1B * N2B 90 100.0% 0 0.0% 90 100.0% 

 

 

N1B * N2B Crosstabulation 

Count   

 

N2B 

Total 1 2 3 4 5 6 

N1B 1 3 0 2 0 0 0 5 

2 0 6 9 1 4 0 20 

3 0 3 3 6 1 0 13 

4 1 1 7 12 4 4 29 

5 0 0 4 1 1 4 10 

6 0 0 9 0 3 1 13 

Total 4 10 34 20 13 9 90 

 

 

Symmetric Measures 

 Value 

Asymptotic 

Standardized 

Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .129 .057 2.722 .006 

N of Valid Cases 90    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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CROSSTABS 

  /TABLES=AdjustedAvgPA BY AdjustedAvgNA 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=KAPPA 

  /CELLS=COUNT 

  /COUNT ROUND CELL. 

 

 
Crosstabs 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

AdjustedAvgPA * 

AdjustedAvgNA 
90 100.0% 0 0.0% 90 100.0% 

 

 

AdjustedAvgPA * AdjustedAvgNA Crosstabulation 

Count   

 

AdjustedAvgNA 

Total 1 2 3 4 5 6 

AdjustedAvgPA 2 2 5 6 2 0 0 15 

3 0 2 7 6 0 0 15 

4 0 6 4 10 9 2 31 

5 1 0 1 7 7 4 20 

6 0 0 0 3 1 5 9 

Total 3 13 18 28 17 11 90 

 

 

Symmetric Measures 

 Value 

Asymptotic 

Standardized 

Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .204 .067 3.811 .000 

N of Valid Cases 90    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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CROSSTABS 

  /TABLES=NEDOCS BY AdjustedAvgClin 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=KAPPA 

  /CELLS=COUNT 

  /COUNT ROUND CELL. 

 
Crosstabs 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

NEDOCS * AdjustedAvgClin 90 100.0% 0 0.0% 90 100.0% 

 

 

NEDOCS * AdjustedAvgClin Crosstabulation 

Count   

 

AdjustedAvgClin 

Total 2 3 4 5 6 

NEDOCS 1 4 4 2 0 0 10 

2 3 6 7 1 0 17 

3 3 12 10 4 1 30 

4 1 0 15 4 0 20 

5 0 0 0 9 3 12 

6 0 0 0 1 0 1 

Total 11 22 34 19 4 90 

 

 

Symmetric Measures 

 Value 

Asymptotic 

Standardized 

Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .276 .061 5.296 .000 

N of Valid Cases 90    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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EDWIN Reliability Analysis 

 

CROSSTABS 

  /TABLES=P1 BY P2 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=KAPPA 

  /CELLS=COUNT 

  /COUNT ROUND CELL. 

 

 
Crosstabs 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

P1 * P2 90 100.0% 0 0.0% 90 100.0% 

 

 

P1 * P2 Crosstabulation 

Count   

 

P2 

Total 1 2 3 4 5 

P1 1 2 2 0 0 0 4 

2 2 7 3 0 0 12 

3 0 4 10 4 1 19 

4 0 1 11 18 4 34 

5 0 0 3 6 12 21 

Total 4 14 27 28 17 90 

 

 

Symmetric Measures 

 Value 

Asymptotic 

Standardized 

Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .394 .070 6.811 .000 

N of Valid Cases 90    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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CROSSTABS 

  /TABLES=N1 BY N2 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=KAPPA 

  /CELLS=COUNT 

  /COUNT ROUND CELL. 

 
Crosstabs 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

N1 * N2 90 100.0% 0 0.0% 90 100.0% 

 

 

N1 * N2 Crosstabulation 

Count   

 

N2 

Total 1 2 3 4 5 

N1 1 2 2 0 0 0 4 

2 2 8 3 1 0 14 

3 0 4 25 1 1 31 

4 1 0 2 13 3 19 

5 0 1 2 6 13 22 

Total 5 15 32 21 17 90 

 

 

Symmetric Measures 

 Value 

Asymptotic 

Standardized 

Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .572 .064 9.907 .000 

N of Valid Cases 90    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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CROSSTABS 

  /TABLES=AdjustedAvgP BY AdjustedAvgN 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=KAPPA 

  /CELLS=COUNT 

  /COUNT ROUND CELL. 

 

 
Crosstabs 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

AdjustedAvgP * 

AdjustedAvgN 
90 100.0% 0 0.0% 90 100.0% 

 

 

AdjustedAvgP * AdjustedAvgN Crosstabulation 

Count   

 

AdjustedAvgN 

Total 1 2 3 4 5 55 

AdjustedAvgP 1 1 1 0 0 0 0 2 

2 0 5 5 1 0 0 11 

3 0 4 11 1 2 0 18 

4 1 2 12 12 10 0 37 

5 0 0 6 6 9 1 22 

Total 2 12 34 20 21 1 90 

 

 

Symmetric Measures 

 Value 

Asymptotic 

Standardized 

Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .239 .067 4.229 .000 

N of Valid Cases 90    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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CROSSTABS 

  /TABLES=EDWIN BY AdjustedAvrg 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=KAPPA 

  /CELLS=COUNT 

  /COUNT ROUND CELL. 

 
 
Crosstabs 

 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

EDWIN * AdjustedAvrg 90 100.0% 0 0.0% 90 100.0% 

 

 

EDWIN * AdjustedAvrg Crosstabulation 

Count   

 

AdjustedAvrg 

Total 1 2 3 

EDWIN 1 4 11 4 19 

2 1 35 21 57 

3 0 3 11 14 

Total 5 49 36 90 

 

 

Symmetric Measures 

 Value 

Asymptotic 

Standardized 

Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .235 .079 3.347 .001 

N of Valid Cases 90    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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APPENDIX I  UCF IRB RESPONSE  
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APPENDIX J  EXPERT KNOWLEDGE ACQUISITION 
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Emergency Department Overcrowding Study – Expert Knowledge - Part One  

 

 

Question 1: Suppose that an Emergency Room (ER) capacity is 50 beds, and assume that the 

current ER occupancy rate is 100%, what is the range number of patients in Emergency 

Department (ED) waiting area that describes each patient demand level in the first column?  

 

 

Patient Demand  

Number of patients in ED waiting 
area  

(0=Minimum to 100= Maximum) 

Lower value Upper value 
Low   
Medium   
High   
Very high   

 

 

 

Question 2: Suppose that an ED capacity is 50 beds, what is the range number of ED physicians 

that describes each physician staffing level in the first column?  

 

Physician staffing 
level   

Number of ED physicians 

Lower value Upper value 
Inadequate   
Partially adequate    
Adequate    
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Question 3: Suppose that an ED capacity is 50 beds, what is the range number of ED nurses that 
describes each nurse staffing level in the first column?  

 

Nurse staffing level   
Number of ED nurses 

Lower value Upper value 
Inadequate   
Partially adequate    
Adequate    

 

 

 

 

 

Question 4: what is the ER occupancy rate that describes the subjective level of each occupancy 
rate in the first column?  

 

ER Occupancy Rate  

Occupancy Rate 
(0%=Minimum to 100%= 

Maximum) 

Lower value Upper value 
Low   
Medium   
High    
Very High   
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Question 5: Suppose that an Emergency Room (ER) capacity is 50 beds, what is the range number 

of boarded patients in Emergency Department (ED) that describes each ED patient boarding status 

in the first column?  

 

 

ED Patient Boarding 
Status  

Number of boarded patients 
(0=Minimum to 20= Maximum) 

Lower value Upper value 
Low   
Medium   
High   
Very high   
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Emergency Department Overcrowding Study – Expert Knowledge – Part Two 

 

 

Section 1: ED Demand Status  

  
The aim of this section is to determine the Emergency Department (ED) demand status based on 
the following two factors:  
 

- Ratio of patients to ED capacity (This factor links the number of patients waiting for ED 
care services to the ED size. e.g. when the ratio is 0.2, it means that there is 10 patients 
waiting for service in a 50 beds emergency room)   

 
- Average Patients Complexity (This factor is constructed based on Emergency Severity 

Index (ESI) which divides patient severity into five categories namely; resuscitation, 
emergent, urgent, less urgent, and nonurgent. The resuscitation, and emergent are 
considered high complex cases, the complexity of urgent cases are considered medium, 
while the complexity of less urgent and nonurgent cases are considered low).   

 
Based on your expertise, please evaluate the consequence “THEN column” of each condition in 
the table below. For example: Rule FLS1-01 states that “IF Ratio of Patients to ED Capacity is 
Low AND Patient Complexity is Low THEN ED Demand Status is ………….. ”. Your answer 
should determine the ED Demand Status whether it is Very Low, Low, Medium, High, or Very 

High.  

 

 

 

 

 

 

 

 

 

 



232 

 

Rule 

Code  

IF  
Ratio of Patients to ED Capacity is 

AND  
Patient Complexity is  

THEN  
ED Demand Status is 

FLS1-01 Low Low 

☐ Very Low 
☐ Low  

☐ Medium  
☐ High  
☐ Very High  
 

FLS1-02 Low Medium 

☐ Very Low 
☐ Low  
☐ Medium  

☐ High  
☐ Very High 
 

FLS1-03 Low High 

☐ Very Low 
☐ Low  
☐ Medium  
☐ High  

☐ Very High 
 

FLS1-04 Medium Low 

☐ Very Low 
☐ Low  
☐ Medium  
☐ High  

☐ Very High 
 

FLS1-05 Medium Medium 

☐ Very Low 
☐ Low  
☐ Medium  
☐ High  
☐ Very High 
 
 

FLS1-06 Medium High 

☐ Very Low 
☐ Low   
☐ Medium  
☐ High  

☐ Very High 
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FLS1-07 High Low 

☐ Very Low 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS1-08 High Medium 

☐ Very Low 
☐ Low  
☐ Medium  

☐ High  
☐ Very High 

FLS1-09 High High 

☐ Very Low 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS1-10 Very High Low 

☐ Very Low 
☐ Low  
☐ Medium  

☐ High  
☐ Very High 

FLS1-11 Very High Medium 

☐ Very Low 
☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS1-12 Very High High 

☐ Very Low 
☐ Low  

☐ Medium  
☐ High  
☐ Very High 
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Section 2: ED Staffing Status  

  
 
The aim of this section is to determine the Emergency Department (ED) staffing status based on 
the following two factors:  
 

- ED Physician staffing  
- ED Nurse Staffing  

 
Based on your expertise, please evaluate the consequence “THEN column” of each condition in 
the table below.  For example: Rule FLS2-01 states that “IF ED Physician Staffing is Inadequate 
AND ED Nurse Staffing is Inadequate THEN ED Staffing Status is …………..” Your answer 
should determine the ED staffing Status whether it is Inadequate, Partially adequate, or adequate.   
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Rule  

Code 

IF  

ED Physician Staffing  is 

AND  

ED Nurse Staffing is  

THEN  

ED Staffing Status is 

 
 
FLS2-01 

 
 

Inadequate 

 
 

Inadequate 

☐ Inadequate  

☐ Partially Adequate  
☐ Adequate  

FLS2-02 Inadequate Partially adequate 
☐ Inadequate  
☐ Partially Adequate  
☐ Adequate  

FLS2-03 Inadequate Adequate 
☐ Inadequate  
☐ Partially Adequate  
☐ Adequate  

FLS2-04 Partially adequate Inadequate 
☐ Inadequate  
☐ Partially Adequate  
☐ Adequate  

FLS2-05 Partially adequate Partially adequate 

☐ Inadequate  
☐ Partially Adequate  
☐ Adequate  

FLS2-06 Partially adequate Adequate 
☐ Inadequate  
☐ Partially Adequate  

☐ Adequate  

FLS2-07 Adequate Inadequate 
☐ Inadequate  
☐ Partially Adequate  

☐ Adequate  

FLS2-08 Adequate Partially adequate 
☐ Inadequate  

☐ Partially Adequate  
☐ Adequate  

FLS2-09 Adequate Adequate 
☐ Inadequate  

☐ Partially Adequate  
☐ Adequate  
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Section 3: ED Workload  

 

The aim of this section is to determine the Emergency Department (ED) Workload based on the 
following three factors:  
 

- ED Staffing Status  
- ED Occupancy Rate  
- Patients Complexity    

 
 

Based on your expertise, please evaluate the consequence “THEN column” of each condition in 
the table below.  For example: Rule FLS3-01 states that “IF ED Staffing Status is Inadequate 
AND ED Occupancy Rate is Low AND Patient Complexity is Low  THEN ED Workload is 
…………..”. Your answer should determine the ED Workload whether it is Low, Medium, High, 

or Very High.   
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Rule 

Code  

IF  
ED Staffing Status is 

AND  
ED Occupancy Rate is  

AND  
Patient Complexity is 

THEN  
ED Workload is 

FLS3-01 Inadequate Low Low 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS3-02 Inadequate Low Medium 

☐ Low  
☐ Medium  

☐ High  
☐ Very High 

FLS3-03 Inadequate Low High 

☐ Low  

☐ Medium  
☐ High  
☐ Very High 

FLS3-04 Inadequate Medium Low 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS3-05 Inadequate Medium Medium 

☐ Low  
☐ Medium  
☐ High  

☐ Very High 

FLS3-06 Inadequate Medium High 

☐ Low  

☐ Medium  
☐ High  
☐ Very High 

FLS3-07 Inadequate High Low 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 
 

FLS3-08 Inadequate High Medium 

☐ Low  
☐ Medium  

☐ High  
☐ Very High 

FLS3-09 Inadequate High High 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 
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FLS3-10 Inadequate Very High Low 

☐ Low  

☐ Medium  
☐ High  
☐ Very High 
 

FLS3-11 Inadequate Very High Medium 

☐ Low  
☐ Medium  
☐ High  

☐ Very High 
 

FLS3-12 Inadequate Very High High 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS3-13 Partially adequate Low Low 

☐ Low  
☐ Medium  
☐ High  

☐ Very High 
 

FLS3-14 Partially adequate Low Medium 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS3-15 Partially adequate Low High 

☐ Low  
☐ Medium  
☐ High  

☐ Very High 
 

FLS3-16 Partially adequate Medium Low 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS3-17 Partially adequate Medium Medium 

☐ Low  
☐ Medium  
☐ High  

☐ Very High 
 

FLS3-18 Partially adequate Medium High 

☐ Low  

☐ Medium  
☐ High  
☐ Very High 
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FLS3-19 Partially adequate High Low 

☐ Low  

☐ Medium  
☐ High  
☐ Very High 
 

FLS3-20 Partially adequate High Medium 

☐ Low  
☐ Medium  
☐ High  

☐ Very High 

FLS3-21 Partially adequate High High 

☐ Low  

☐ Medium  
☐ High  
☐ Very High 

FLS3-22 Partially adequate Very High Low 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 
 

FLS3-23 Partially adequate Very High Medium 

☐ Low  

☐ Medium  
☐ High  
☐ Very High 

FLS3-24 Partially adequate Very High High 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 
 

FLS3-25 Adequate Low Low 

☐ Low  
☐ Medium  

☐ High  
☐ Very High 

FLS3-26 Adequate Low Medium 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS3-27 Adequate Low High 

☐ Low  
☐ Medium  
☐ High  

☐ Very High 
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FLS3-28 Adequate Medium Low 

☐ Low  

☐ Medium  
☐ High  
☐ Very High 

FLS3-29 Adequate Medium Medium 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS3-30 Adequate Medium High 

☐ Low  
☐ Medium  
☐ High  

☐ Very High 
 

FLS3-31 Adequate High Low 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS3-32 Adequate High Medium 

☐ Low  
☐ Medium  
☐ High  

☐ Very High 
 

FLS3-33 Adequate High High 

☐ Low  
☐ Medium  
☐ High  
☐ Very High 

FLS3-34 Adequate Very High Low 

☐ Low  
☐ Medium  
☐ High  

☐ Very High 

FLS3-35 Adequate Very High Medium 

☐ Low  
☐ Medium  

☐ High  
☐ Very High 
 

FLS3-36 Adequate Very High High 

☐ Low  
☐ Medium  
☐ High  

☐ Very High 
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Section 4: ED Crowding Level  

 

The aim of this section is to determine the Emergency Department (ED) Crowding Level based on 
the following three factors:  
  

- ED Demand Status  
- ED Workload  
- ED Boarding Status (The boarding status refers to the number of boarded patients in the 

ED.) 
 
 

Based on your expertise, please evaluate the consequence “THEN column” of each condition in 
the table below. For example: Rule FLS4-01 states that “IF ED Demand Status is Very Low AND 
ED Workload is Low AND ED Boarding Status is Low  THEN ED Crowding Level is 
…………..”. Your answer should determine the ED staffing Status whether it is Insignificant, Low, 

Medium, High, or Extreme.   
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Rule 

Code  

IF  
ED Demand Status is 

AND  
ED Workload is  

AND  
Boarding Status 
is 

THEN  
ED Crowding 
Level is 

FLS4-01 Very Low Low Low 

☐Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 

FLS4-02 Very Low Low Medium 

☐Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 

FLS4-03 Very Low Low High 

☐Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
 

FLS4-04 Very Low Low Very High 

☐Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 

FLS4-05 Very Low Medium Low 

☐Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
 

FLS4-06 Very Low Medium Medium 

☐Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
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FLS4-07 Very Low Medium High 

☐Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-08 Very Low Medium Very High 

☐Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-09 Very Low High Low 

☐Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 

FLS4-10 Very Low High Medium 

☐Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-11 Very Low High High 

☐Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
 
 

FLS4-12 Very Low High Very High 

☐Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
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FLS4-13 Very Low Very High Low 

☐Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 

FLS4-14 Very Low Very High Medium 

☐ Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-15 Very Low Very High High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-16 Very Low Very High Very High 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-17 Low Low Low 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
 
 

FLS4-18 Low Low Medium 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
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FLS4-19 Low Low High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-20 Low Low Very High 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-21 Low Medium Low 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-22 Low Medium Medium 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
 
 

FLS4-23 Low Medium High 

☐ Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
 

FLS4-24 Low Medium Very High 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
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FLS4-25 Low High Low 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 

FLS4-26 Low High Medium 

☐ Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-27 Low High High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 
 

FLS4-28 Low High Very High 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
 
 

FLS4-29 Low Very High Low 

☐ Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
 
 
 

FLS4-30 Low Very High Medium 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
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FLS4-31 Low Very High High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-32 Low Very High Very High 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 

FLS4-33 Medium Low Low 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-34 Medium Low Medium 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 

FLS4-35 Medium Low High 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-36 Medium Low Very High 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
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FLS4-37 Medium Medium Low 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-38 Medium Medium Medium 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 
 

FLS4-39 Medium Medium High 

☐ Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-40 Medium Medium Very High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-41 Medium High Low 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-42 Medium High Medium 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
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FLS4-43 Medium High High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-44 Medium High Very High 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-45 Medium Very High Low 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 

FLS4-46 Medium Very High Medium 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-47 Medium Very High High 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
 
 
 

FLS4-48 Medium Very High Very High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
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FLS4-49 High Low Low 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 

FLS4-50 High Low Medium 

☐ Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-51 High Low High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-52 High Low Very High 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-53 High Medium Low 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
 
 

FLS4-54 High Medium Medium 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
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FLS4-55 High Medium High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 

FLS4-56 High Medium Very High 

☐ Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
 
 
 

FLS4-57 High High Low 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 

FLS4-58 High High Medium 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 
 

FLS4-59 High High High 

☐ Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-60 High High Very High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
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FLS4-61 High Very High Low 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-62 High Very High Medium 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 

FLS4-63 High Very High High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-64 High Very High Very High 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-65 Very High Low Low 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
 
 

FLS4-66 Very High Low Medium 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
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FLS4-67 Very High Low High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 

FLS4-68 Very High Low Very High 

☐ Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
 
 
 

FLS4-69 Very High Medium Low 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-70 Very High Medium Medium 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
 
 

FLS4-71 Very High Medium High 

☐ Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-72 Very High Medium Very High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
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FLS4-73 Very High High Low 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 
 

FLS4-74 Very High High Medium 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-75 Very High High High 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 

FLS4-76 Very High High Very High 

☐ Insignificant 
☐ Low  
☐ Medium  
☐ High  

☐ Extreme 
 
 

FLS4-77 Very High Very High Low 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
 
 

FLS4-78 Very High Very High Medium 

☐ Insignificant 
☐ Low  
☐ Medium  

☐ High  
☐ Extreme 
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FLS4-79 Very High Very High High 

☐ Insignificant 

☐ Low  
☐ Medium  
☐ High  
☐ Extreme 
 

FLS4-80 Very High Very High Very High 

☐ Insignificant 
☐ Low  

☐ Medium  
☐ High  
☐ Extreme 
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APPENDIX K  RELIABILITY ANALYSIS FOR EXPERT EVALUATION     
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Reliability Analysis for Expert Evaluation of Fuzzy Rules of Subsystem I 

 
 

RELIABILITY 

  /VARIABLES=HCE01 HCE02 HCE03 HCE04 HCE05 HCE06 HCE07 HCE08 HCE09 HCE10 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /STATISTICS=SCALE CORR 

  /SUMMARY=TOTAL 

  /ICC=MODEL(MIXED) TYPE(ABSOLUTE) CIN=95 TESTVAL=0. 

 

 
 
Reliability 

 
 

[DataSet1] \\Client\C$\SPSS\System 1.sav 

 

Warnings 

The determinant of the covariance matrix is zero or approximately zero. Statistics based on its inverse 

matrix cannot be computed and they are displayed as system missing values. 

 
 
Scale: ALL VARIABLES 

 

Case Processing Summary 

 N % 

Cases Valid 12 100.0 

Excludeda 0 .0 

Total 12 100.0 

a. Listwise deletion based on all variables in the 

procedure. 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha 

Based on 

Standardized Items N of Items 

.977 .979 10 
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Inter-Item Correlation Matrix 

 HCE01 HCE02 HCE03 HCE04 HCE05 HCE06 HCE07 HCE08 HCE09 HCE10 

HCE01 1.000 .756 .864 .575 .813 .856 .799 .780 .898 .869 

HCE02 .756 1.000 .900 .434 .803 .902 .954 .854 .907 .841 

HCE03 .864 .900 1.000 .653 .924 .980 .912 .853 .972 .931 

HCE04 .575 .434 .653 1.000 .629 .630 .358 .754 .703 .788 

HCE05 .813 .803 .924 .629 1.000 .943 .810 .821 .877 .853 

HCE06 .856 .902 .980 .630 .943 1.000 .883 .870 .951 .912 

HCE07 .799 .954 .912 .358 .810 .883 1.000 .785 .879 .827 

HCE08 .780 .854 .853 .754 .821 .870 .785 1.000 .885 .945 

HCE09 .898 .907 .972 .703 .877 .951 .879 .885 1.000 .949 

HCE10 .869 .841 .931 .788 .853 .912 .827 .945 .949 1.000 

 

 

Item-Total Statistics 

 
Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected Item-

Total Correlation 

Squared Multiple 

Correlation 

Cronbach's Alpha 

if Item Deleted 

HCE01 28.75 101.114 .870 . .975 

HCE02 29.25 96.932 .897 . .975 

HCE03 28.83 100.152 .979 . .972 

HCE04 28.67 112.788 .634 . .982 

HCE05 29.17 100.879 .906 . .974 

HCE06 28.92 97.902 .970 . .972 

HCE07 29.00 99.091 .885 . .975 

HCE08 28.92 108.629 .909 . .976 

HCE09 28.92 100.447 .980 . .972 

HCE10 29.08 103.538 .956 . .973 

 

 

Scale Statistics 

Mean Variance Std. Deviation N of Items 

32.17 125.788 11.216 10 
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Intraclass Correlation Coefficient 

 
Intraclass 

Correlationb 

95% Confidence Interval F Test with True Value 0 

Lower Bound Upper Bound Value df1 df2 Sig 

Single Measures .806a .656 .926 43.746 11 99 .000 

Average Measures .976c .950 .992 43.746 11 99 .000 

 

Two-way mixed effects model where people effects are random and measures effects are fixed. 

a. The estimator is the same, whether the interaction effect is present or not. 

b. Type A intraclass correlation coefficients using an absolute agreement definition. 

c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise. 
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Reliability Analysis for Expert Evaluation of Fuzzy Rules of Subsystem II 

 
 

RELIABILITY 

  /VARIABLES=HCE01 HCE02 HCE03 HCE04 HCE05 HCE06 HCE07 HCE08 HCE09 HCE10 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /STATISTICS=SCALE CORR 

  /SUMMARY=TOTAL 

  /ICC=MODEL(MIXED) TYPE(ABSOLUTE) CIN=95 TESTVAL=0. 

 

 
 
Reliability 

 
 

[DataSet2] \\Client\C$\SPSS\System 2.sav 

 

Warnings 

The determinant of the covariance matrix is zero or approximately zero. Statistics based on its inverse 

matrix cannot be computed and they are displayed as system missing values. 

 
 
Scale: ALL VARIABLES 

 

Case Processing Summary 

 N % 

Cases Valid 9 100.0 

Excludeda 0 .0 

Total 9 100.0 

a. Listwise deletion based on all variables in the 

procedure. 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha 

Based on 

Standardized Items N of Items 

.972 .975 10 
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Inter-Item Correlation Matrix 

 HCE01 HCE02 HCE03 HCE04 HCE05 HCE06 HCE07 HCE08 HCE09 HCE10 

HCE01 1.000 .895 .688 .659 .639 .746 .811 .895 .895 .895 

HCE02 .895 1.000 .688 .639 .845 .803 .892 1.000 1.000 1.000 

HCE03 .688 .688 1.000 .539 .539 .750 .707 .688 .688 .688 

HCE04 .659 .639 .539 1.000 .742 .651 .826 .639 .639 .639 

HCE05 .639 .845 .539 .742 1.000 .763 .889 .845 .845 .845 

HCE06 .746 .803 .750 .651 .763 1.000 .884 .803 .803 .803 

HCE07 .811 .892 .707 .826 .889 .884 1.000 .892 .892 .892 

HCE08 .895 1.000 .688 .639 .845 .803 .892 1.000 1.000 1.000 

HCE09 .895 1.000 .688 .639 .845 .803 .892 1.000 1.000 1.000 

HCE10 .895 1.000 .688 .639 .845 .803 .892 1.000 1.000 1.000 

 

 

Item-Total Statistics 

 
Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected Item-

Total Correlation 

Squared Multiple 

Correlation 

Cronbach's Alpha 

if Item Deleted 

HCE01 15.67 36.250 .867 . .969 

HCE02 15.56 35.528 .959 . .966 

HCE03 15.11 39.611 .715 . .974 

HCE04 15.00 35.500 .723 . .976 

HCE05 15.22 34.194 .857 . .971 

HCE06 15.33 37.000 .853 . .970 

HCE07 15.44 35.778 .956 . .966 

HCE08 15.56 35.528 .959 . .966 

HCE09 15.56 35.528 .959 . .966 

HCE10 15.56 35.528 .959 . .966 

 

 

Scale Statistics 

Mean Variance Std. Deviation N of Items 

17.11 44.361 6.660 10 
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Intraclass Correlation Coefficient 

 
Intraclass 

Correlationb 

95% Confidence Interval F Test with True Value 0 

Lower Bound Upper Bound Value df1 df2 Sig 

Single Measures .729a .516 .912 35.665 8 72 .000 

Average Measures .964c .914 .990 35.665 8 72 .000 

 

Two-way mixed effects model where people effects are random and measures effects are fixed. 

a. The estimator is the same, whether the interaction effect is present or not. 

b. Type A intraclass correlation coefficients using an absolute agreement definition. 

c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise. 
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Reliability Analysis for Expert Evaluation of Fuzzy Rules of Subsystem III 

 
 

GET 

  FILE='\\Client\C$\SPSS\System 3.sav'. 

DATASET NAME DataSet3 WINDOW=FRONT. 

RELIABILITY 

  /VARIABLES=HCE01 HCE02 HCE03 HCE04 HCE05 HCE06 HCE07 HCE08 HCE09 HCE10 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /STATISTICS=SCALE CORR 

  /SUMMARY=TOTAL 

  /ICC=MODEL(MIXED) TYPE(ABSOLUTE) CIN=95 TESTVAL=0. 

 
 
Reliability 
 

[DataSet3] \\Client\C$\SPSS\System 3.sav 

 

 
Scale: ALL VARIABLES 

 

Case Processing Summary 

 N % 

Cases Valid 36 100.0 

Excludeda 0 .0 

Total 36 100.0 

a. Listwise deletion based on all variables in the 

procedure. 

 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha 

Based on 

Standardized Items N of Items 

.975 .975 10 
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Inter-Item Correlation Matrix 

 HCE01 HCE02 HCE03 HCE04 HCE05 HCE06 HCE07 HCE08 HCE09 HCE10 

HCE01 1.000 .764 .822 .724 .799 .838 .697 .577 .815 .776 

HCE02 .764 1.000 .886 .838 .903 .833 .834 .750 .898 .884 

HCE03 .822 .886 1.000 .758 .869 .892 .824 .697 .847 .842 

HCE04 .724 .838 .758 1.000 .853 .764 .786 .603 .743 .751 

HCE05 .799 .903 .869 .853 1.000 .825 .823 .708 .840 .842 

HCE06 .838 .833 .892 .764 .825 1.000 .866 .706 .825 .863 

HCE07 .697 .834 .824 .786 .823 .866 1.000 .706 .784 .875 

HCE08 .577 .750 .697 .603 .708 .706 .706 1.000 .758 .753 

HCE09 .815 .898 .847 .743 .840 .825 .784 .758 1.000 .881 

HCE10 .776 .884 .842 .751 .842 .863 .875 .753 .881 1.000 

 

 

Item-Total Statistics 

 
Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected Item-

Total Correlation 

Squared Multiple 

Correlation 

Cronbach's Alpha 

if Item Deleted 

HCE01 22.47 66.999 .831 .813 .974 

HCE02 22.64 62.066 .936 .917 .970 

HCE03 22.72 63.978 .916 .880 .971 

HCE04 22.42 65.450 .832 .790 .974 

HCE05 22.94 64.797 .919 .877 .971 

HCE06 22.64 62.066 .911 .885 .971 

HCE07 23.06 63.997 .885 .851 .972 

HCE08 22.72 66.206 .759 .646 .976 

HCE09 22.58 63.793 .909 .876 .971 

HCE10 22.81 63.533 .921 .880 .971 

 

 

Scale Statistics 

Mean Variance Std. Deviation N of Items 

25.22 79.149 8.897 10 
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Intraclass Correlation Coefficient 

 
Intraclass 

Correlationb 

95% Confidence Interval F Test with True Value 0 

Lower Bound Upper Bound Value df1 df2 Sig 

Single Measures .770a .673 .856 40.119 35 315 .000 

Average Measures .971c .954 .983 40.119 35 315 .000 

 

Two-way mixed effects model where people effects are random and measures effects are fixed. 

a. The estimator is the same, whether the interaction effect is present or not. 

b. Type A intraclass correlation coefficients using an absolute agreement definition. 

c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise. 
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Reliability Analysis for Expert Evaluation of Fuzzy Rules of Subsystem IV 

 
 

 

RELIABILITY 

  /VARIABLES=HCE01 HCE02 HCE03 HCE04 HCE05 HCE06 HCE07 HCE08 HCE09 HCE10 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /STATISTICS=SCALE CORR 

  /SUMMARY=TOTAL 

  /ICC=MODEL(MIXED) TYPE(ABSOLUTE) CIN=95 TESTVAL=0. 

 
Reliability 

 
 

[DataSet4] \\Client\C$\SPSS\System 4.sav 

 
 
Scale: ALL VARIABLES 
 

 

 

Case Processing Summary 

 N % 

Cases Valid 80 100.0 

Excludeda 0 .0 

Total 80 100.0 

a. Listwise deletion based on all variables in the 

procedure. 

 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha 

Based on 

Standardized Items N of Items 

.973 .974 10 
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Inter-Item Correlation Matrix 

 HCE01 HCE02 HCE03 HCE04 HCE05 HCE06 HCE07 HCE08 HCE09 HCE10 

HCE01 1.000 .735 .664 .744 .859 .828 .806 .786 .813 .800 

HCE02 .735 1.000 .809 .672 .756 .785 .822 .814 .798 .825 

HCE03 .664 .809 1.000 .629 .688 .669 .779 .737 .786 .758 

HCE04 .744 .672 .629 1.000 .854 .811 .748 .698 .776 .696 

HCE05 .859 .756 .688 .854 1.000 .854 .831 .794 .855 .819 

HCE06 .828 .785 .669 .811 .854 1.000 .833 .816 .842 .817 

HCE07 .806 .822 .779 .748 .831 .833 1.000 .866 .879 .855 

HCE08 .786 .814 .737 .698 .794 .816 .866 1.000 .855 .859 

HCE09 .813 .798 .786 .776 .855 .842 .879 .855 1.000 .877 

HCE10 .800 .825 .758 .696 .819 .817 .855 .859 .877 1.000 

 

 

Item-Total Statistics 

 
Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected Item-

Total Correlation 

Squared Multiple 

Correlation 

Cronbach's Alpha 

if Item Deleted 

HCE01 31.18 68.855 .866 .787 .970 

HCE02 30.65 65.977 .859 .796 .971 

HCE03 30.89 71.519 .796 .729 .973 

HCE04 30.74 68.778 .812 .769 .972 

HCE05 30.70 65.327 .903 .869 .969 

HCE06 30.84 69.404 .897 .834 .969 

HCE07 30.91 68.866 .917 .852 .969 

HCE08 30.81 69.268 .890 .823 .970 

HCE09 30.76 68.133 .925 .871 .968 

HCE10 30.78 68.683 .901 .843 .969 

 

 

Scale Statistics 

Mean Variance Std. Deviation N of Items 

34.25 84.291 9.181 10 
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Intraclass Correlation Coefficient 

 
Intraclass 

Correlationb 

95% Confidence Interval F Test with True Value 0 

Lower Bound Upper Bound Value df1 df2 Sig 

Single Measures .769a .706 .828 36.989 79 711 .000 

Average Measures .971c .960 .980 36.989 79 711 .000 

 

Two-way mixed effects model where people effects are random and measures effects are fixed. 

a. The estimator is the same, whether the interaction effect is present or not. 

b. Type A intraclass correlation coefficients using an absolute agreement definition. 

c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise. 
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Reliability Analysis for Expert Evaluation of All Fuzzy Rules 
 

 
 

RELIABILITY 

  /VARIABLES=HCE01 HCE02 HCE03 HCE04 HCE05 HCE06 HCE07 HCE08 HCE09 HCE10 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /STATISTICS=SCALE CORR 

  /SUMMARY=TOTAL 

  /ICC=MODEL(MIXED) TYPE(ABSOLUTE) CIN=95 TESTVAL=0. 

 
 
Reliability 

 
 

[DataSet4] \\Client\C$\SPSS\Whole System.sav 

 

 
Scale: ALL VARIABLES 

 

Case Processing Summary 

 N % 

Cases Valid 137 100.0 

Excludeda 0 .0 

Total 137 100.0 

a. Listwise deletion based on all variables in the 

procedure. 

 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha 

Based on 

Standardized Items N of Items 

.979 .979 10 
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Inter-Item Correlation Matrix 

 HCE01 HCE02 HCE03 HCE04 HCE05 HCE06 HCE07 HCE08 HCE09 HCE10 

HCE01 1.000 .756 .745 .741 .802 .832 .773 .757 .836 .799 

HCE02 .756 1.000 .858 .727 .830 .843 .867 .842 .871 .877 

HCE03 .745 .858 1.000 .711 .794 .824 .851 .788 .855 .839 

HCE04 .741 .727 .711 1.000 .844 .800 .757 .733 .792 .760 

HCE05 .802 .830 .794 .844 1.000 .865 .861 .819 .871 .863 

HCE06 .832 .843 .824 .800 .865 1.000 .878 .828 .879 .871 

HCE07 .773 .867 .851 .757 .861 .878 1.000 .852 .880 .890 

HCE08 .757 .842 .788 .733 .819 .828 .852 1.000 .874 .883 

HCE09 .836 .871 .855 .792 .871 .879 .880 .874 1.000 .914 

HCE10 .799 .877 .839 .760 .863 .871 .890 .883 .914 1.000 

 

 

Item-Total Statistics 

 
Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected Item-

Total Correlation 

Squared Multiple 

Correlation 

Cronbach's Alpha 

if Item Deleted 

HCE01 27.66 91.565 .846 .748 .978 

HCE02 27.43 86.026 .904 .842 .977 

HCE03 27.53 91.545 .877 .802 .977 

HCE04 27.34 91.445 .824 .739 .979 

HCE05 27.51 86.531 .914 .856 .976 

HCE06 27.50 89.164 .923 .860 .976 

HCE07 27.66 88.460 .923 .867 .976 

HCE08 27.52 90.266 .892 .821 .977 

HCE09 27.45 88.485 .944 .899 .975 

HCE10 27.53 88.515 .934 .890 .975 

 

 

Scale Statistics 

Mean Variance Std. Deviation N of Items 

30.57 109.865 10.482 10 
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Intraclass Correlation Coefficient 

 
Intraclass 

Correlationb 

95% Confidence Interval F Test with True Value 0 

Lower Bound Upper Bound Value df1 df2 Sig 

Single Measures .817a .777 .854 47.088 136 1224 .000 

Average Measures .978c .972 .983 47.088 136 1224 .000 

 

Two-way mixed effects model where people effects are random and measures effects are fixed. 

a. The estimator is the same, whether the interaction effect is present or not. 

b. Type A intraclass correlation coefficients using an absolute agreement definition. 

c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise. 
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Expert Consensus Rate on Consequences of Fuzzy Conditions of Subsystem I 

Rule 

Code  

Very 

Low 
Low Medium High Very High 

Total  

Consensus 

Rate  

FLS1-01 8 2       10 80% 

FLS1-02 3 6 1     10 60% 

FLS1-03 1 1 7 1   10 70% 

FLS1-04   8 2     10 80% 

FLS1-05   1 9     10 90% 

FLS1-06     1 9   10 90% 

FLS1-07   1 8   1 10 80% 

FLS1-08   2 8     10 80% 

FLS1-09       6 4 10 60% 

FLS1-10     6 4   10 60% 

FLS1-11       10   10 100% 

FLS1-12         10 10 100% 

Total  12 21 42 30 15 120 79% 

 

Expert Consensus Rate on Consequences of Fuzzy Conditions of Subsystem II 

Rule 

Code  
Inadequate  

Partially 

adequate  
Adequate  

Total  

Consensus 

Rate  

FLS2-01 10     10 100% 

FLS2-02 8 2   10 80% 

FLS2-03 5 4 1 10 50% 

FLS2-04 9 1   10 90% 

FLS2-05   9 1 10 90% 

FLS2-06   8 2 10 90% 

FLS2-07 8 2   10 80% 

FLS2-08 1 8 1 10 80% 

FLS2-09     10 10 100% 

FLS2-10 41 34 15 90 84% 
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Expert Consensus Rate on Consequences of Fuzzy Conditions of Subsystem III 

Rule 

Code  
Low Medium High 

Very 

High Total  

Consensus 

Rate  

FLS3-01 8 2     10 80% 

FLS3-02 5 4 1   10 50% 

FLS3-03 2 1 7   10 70% 

FLS3-04 1 7 2   10 70% 

FLS3-05   4 6   10 60% 

FLS3-06     8 2 10 80% 

FLS3-07   2 8   10 80% 

FLS3-08   2 6 2 10 60% 

FLS3-09       10 10 100% 

FLS3-10     7 3 10 70% 

FLS3-11     6 4 10 60% 

FLS3-12     1 9 10 90% 

FLS3-13 9 1     10 90% 

FLS3-14 6 4     10 60% 

FLS3-15 1 7 2   10 70% 

FLS3-16 4 6     10 60% 

FLS3-17   7 3   10 70% 

FLS3-18   3 7   10 70% 

FLS3-19   8 2   10 80% 

FLS3-20     10   10 100% 

FLS3-21     3 7 10 70% 

FLS3-22   4 6   10 60% 

FLS3-23     8 2 10 80% 

FLS3-24       10 10 100% 

FLS3-25 9     1 10 90% 

FLS3-26 10       10 100% 

FLS3-27 3 7     10 70% 

FLS3-28 8 2     10 80% 

FLS3-29   9 1   10 90% 

FLS3-30   6 4   10 60% 

FLS3-31   10     10 100% 

FLS3-32   2 8   10 80% 

FLS3-33     7 3 10 70% 

FLS3-34   7 3   10 70% 

FLS3-35     7 3 10 70% 

FLS3-36     1 9 10 90% 

Total  66 105 124 65 360 76% 
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Expert Consensus Rate on Consequences of Fuzzy Conditions of Subsystem IV 

Rule 

Code  
Insignificant  Low Medium High Extreme 

Total  

Consensus  

Rate  

FLS4-01 10         10 100% 

FLS4-02 6 3 1     10 60% 

FLS4-03   10       10 10% 

FLS4-04   2 7 1   10 70% 

FLS4-05 2 8       10 80% 

FLS4-06   8 2     10 80% 

FLS4-07     10     10 100% 

FLS4-08     7 3   10 70% 

FLS4-09   3 7     10 70% 

FLS4-10     8 2   10 80% 

FLS4-11     4 6   10 60% 

FLS4-12     1 7 2 10 70% 

FLS4-13   1 8 1   10 80% 

FLS4-14     4 6   10 60% 

FLS4-15     1 6 3 10 60% 

FLS4-16       5 5 10 50% 

FLS4-17 8 2       10 80% 

FLS4-18 2 8       10 80% 

FLS4-19   8 2     10 80% 

FLS4-20   2 7 1   10 70% 

FLS4-21 2 6 2     10 60% 

FLS4-22   5 5     10 50% 

FLS4-23   1 8 1   10 80% 

FLS4-24     7 3   10 70% 

FLS4-25   1 9     10 90% 

FLS4-26     9 1   10 90% 

FLS4-27     3 7   10 70% 

FLS4-28     2 6 2 10 60% 

FLS4-29   4 5 1   10 50% 

FLS4-30     7 3   10 70% 

FLS4-31     1 8 1 10 80% 

FLS4-32       6 4 10 60% 

FLS4-33 3 7       10 70% 

FLS4-34   7 3     10 70% 

FLS4-35   2 8     10 80% 

FLS4-36     3 7   10 70% 

FLS4-37   3 7     10 70% 

FLS4-38     9 1   10 90% 

FLS4-39     7 3   10 70% 
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FLS4-40     3 6 1 10 60% 

FLS4-41     3 7   10 70% 

FLS4-42     3 6 1 10 60% 

FLS4-43     1 8 1 10 80% 

FLS4-44       6 4 10 60% 

FLS4-45     3 7   10 70% 

FLS4-46     5 4 1 10 50% 

FLS4-47       8 2 10 80% 

FLS4-48       6 4 10 60% 

FLS4-49   5 5     10 50% 

FLS4-50   1 9     10 90% 

FLS4-51     4 6   10 60% 

FLS4-52     5 5   10 50% 

FLS4-53   1 6 3   10 60% 

FLS4-54     6 3 1 10 60% 

FLS4-55     2 6 2 10 60% 

FLS4-56       7 3 10 70% 

FLS4-57     5 5   10 50% 

FLS4-58     2 7 1 10 70% 

FLS4-59       9 1 10 90% 

FLS4-60       2 8 10 80% 

FLS4-61     3 6 1 10 60% 

FLS4-62     1 8 1 10 80% 

FLS4-63       4 6 10 60% 

FLS4-64         10 10 100% 

FLS4-65   2 8     10 80% 

FLS4-66     10     10 100% 

FLS4-67     8 2   10 80% 

FLS4-68     7 1 2 10 70% 

FLS4-69     8 2   10 80% 

FLS4-70     1 8 1 10 80% 

FLS4-71     1 7 2 10 70% 

FLS4-72       5 5 10 50% 

FLS4-73     1 7 2 10 70% 

FLS4-74     1 4 5 10 50% 

FLS4-75       2 8 10 80% 

FLS4-76         10 10 100% 

FLS4-77     1 8 1 10 80% 

FLS4-78       5 5 10 50% 

FLS4-79       1 9 10 90% 

FLS4-80         10 10 100% 

Total  33 100 276 266 125 800 71% 
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APPENDIX L  FUZZY LOGIC COMPUTER CODING 
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Fuzzy Logic Subsystem I (ED Demand Status) 

 

 

 

(IOM, 2007) 
Name='Demand' 
Type='mamdani' 
Version=2.0 
NumInputs=2 
NumOutputs=1 
NumRules=12 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='max' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='Patient-Demand' 
Range=[0 2] 
NumMFs=4 
MF1='Low':'trapmf',[0 0 0.2 0.5] 
MF2='Medium':'trapmf',[0.2 0.5 0.6 0.8] 
MF3='High':'trapmf',[0.6 0.8 0.9 1.2] 
MF4='Very-High':'trapmf',[0.9 1.2 2 2] 

  
[Input2] 
Name='Patient-Complexity' 
Range=[1 5] 
NumMFs=3 
MF1='Low':'trapmf',[1 1 2 2.5] 
MF2='Medium':'trapmf',[2 2.5 3.5 4] 
MF3='High':'trapmf',[3.5 4 5 5] 

  
[Output1] 
Name='ED-Demand' 
Range=[0 100] 
NumMFs=5 
MF1='Very-Low':'trimf',[0 0 25] 
MF2='Low':'trimf',[0 25 50] 
MF3='Medium':'trimf',[25 50 75] 
MF4='High':'trimf',[50 75 100] 
MF5='Very-High':'trimf',[75 100 100] 

  
[Rules] 
1 1, 1 (1) : 1 
1 2, 2 (1) : 1 
1 3, 3 (1) : 1 
2 1, 2 (1) : 1 
2 2, 3 (1) : 1 
2 3, 4 (1) : 1 
3 1, 3 (1) : 1 
3 2, 4 (1) : 1 
3 3, 5 (1) : 1 
4 1, 3 (1) : 1 
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4 2, 4 (1) : 1 
4 3, 5 (1) : 1 
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Fuzzy Logic Subsystem II (ED Staffing Status) 

 

 

(IOM, 2007) 
Name='Staffing' 
Type='mamdani' 
Version=2.0 
NumInputs=2 
NumOutputs=1 
NumRules=9 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='max' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='Physician-Staffing' 
Range=[0 0.32] 
NumMFs=3 
MF1='Inadequate':'trapmf',[0 0 0.06 0.12] 
MF2='Partially-Adequate':'trapmf',[0.06 0.12 0.16 0.24] 
MF3='Adequate':'trapmf',[0.16 0.24 0.32 0.32] 

  
[Input2] 
Name='Nurse-Staffing' 
Range=[0 0.5] 
NumMFs=3 
MF1='Inadequate':'trapmf',[0 0 0.08 0.18] 
MF2='Partially-Adequate':'trapmf',[0.08 0.18 0.24 0.32] 
MF3='Adequate':'trapmf',[0.24 0.32 0.5 0.5] 

  
[Output1] 
Name='ED-Staffing' 
Range=[0 100] 
NumMFs=3 
MF1='Inadequate':'trapmf',[0 0 25 35] 
MF2='Partially-Adequate':'trapmf',[25 35 65 75] 
MF3='Adequate':'trapmf',[65 75 100 100] 

  
[Rules] 
1 1, 1 (1) : 1 
1 2, 1 (1) : 1 
1 3, 1 (1) : 1 
2 1, 1 (1) : 1 
2 2, 2 (1) : 1 
2 3, 2 (1) : 1 
3 1, 1 (1) : 1 
3 2, 2 (1) : 1 
3 3, 3 (1) : 1 
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Fuzzy Logic Subsystem III (ED Staffing Status) 

 

 

(IOM, 2007) 
Name='WorkloadV.100' 
Type='mamdani' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=36 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='max' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='ED-Staffing' 
Range=[0 100] 
NumMFs=3 
MF1='Iadequate':'trapmf',[0 0 25 35] 
MF2='Partially-Adequate':'trapmf',[25 35 65 75] 
MF3='Adequate':'trapmf',[65 75 100 100] 

  
[Input2] 
Name='ER-Occupancy-Rate' 
Range=[0 100] 
NumMFs=4 
MF1='Low':'trapmf',[0 0 20 35] 
MF2='Medium':'trapmf',[20 35 45 65] 
MF3='High':'trapmf',[45 65 70 90] 
MF4='Very-High':'trapmf',[70 90 100 100] 

  
[Input3] 
Name='Patient-Complexity' 
Range=[1 5] 
NumMFs=3 
MF1='Low':'trapmf',[1 1 2 2.5] 
MF2='Medium':'trapmf',[2 2.5 3.5 4] 
MF3='High':'trapmf',[3.5 4 5 5] 

  
[Output1] 
Name='ED-Workload' 
Range=[0 100] 
NumMFs=4 
MF1='Low':'trimf',[0 0 33.34] 
MF2='Medium':'trimf',[0 33.34 66.67] 
MF3='High':'trimf',[33.34 66.67 100] 
MF4='Very-High':'trimf',[66.67 100 100] 

  
[Rules] 
1 1 1, 1 (1) : 1 
1 1 2, 1 (1) : 1 
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1 1 3, 3 (1) : 1 
1 2 1, 2 (1) : 1 
1 2 2, 3 (1) : 1 
1 2 3, 3 (1) : 1 
1 3 1, 3 (1) : 1 
1 3 2, 3 (1) : 1 
1 3 3, 4 (1) : 1 
1 4 1, 3 (1) : 1 
1 4 2, 3 (1) : 1 
1 4 3, 4 (1) : 1 
2 1 1, 1 (1) : 1 
2 1 2, 1 (1) : 1 
2 1 3, 2 (1) : 1 
2 2 1, 2 (1) : 1 
2 2 2, 2 (1) : 1 
2 2 3, 3 (1) : 1 
2 3 1, 2 (1) : 1 
2 3 2, 3 (1) : 1 
2 3 3, 4 (1) : 1 
2 4 1, 3 (1) : 1 
2 4 2, 3 (1) : 1 
2 4 3, 4 (1) : 1 
3 1 1, 1 (1) : 1 
3 1 2, 1 (1) : 1 
3 1 3, 2 (1) : 1 
3 2 1, 1 (1) : 1 
3 2 2, 2 (1) : 1 
3 2 3, 2 (1) : 1 
3 3 1, 2 (1) : 1 
3 3 2, 3 (1) : 1 
3 3 3, 3 (1) : 1 
3 4 1, 2 (1) : 1 
3 4 2, 3 (1) : 1 
3 4 3, 4 (1) : 1 
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Fuzzy Logic Subsystem IV (ED Staffing Status) 

 

 

(IOM, 2007) 
Name='CrowdingV.101' 
Type='mamdani' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=80 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='max' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='Demand' 
Range=[0 100] 
NumMFs=5 
MF1='Very-Low':'trimf',[0 0 25] 
MF2='Low':'trimf',[0 25 50] 
MF3='Medium':'trimf',[25 50 75] 
MF4='High':'trimf',[50 75 100] 
MF5='Very-High':'trimf',[75 100 100] 

  
[Input2] 
Name='Workload' 
Range=[0 100] 
NumMFs=4 
MF1='Low':'trimf',[0 0 33.34] 
MF2='Medium':'trimf',[0 33.34 66.67] 
MF3='High':'trimf',[33.34 66.67 100] 
MF4='Very-High':'trimf',[66.67 100 100] 

  
[Input3] 
Name='Boarding' 
Range=[0 0.4] 
NumMFs=4 
MF1='Low':'trapmf',[0 0 0.04 0.12] 
MF2='Medium':'trapmf',[0.04 0.12 0.16 0.24] 
MF3='High':'trapmf',[0.16 0.24 0.26 0.32] 
MF4='Very-High':'trapmf',[0.26 0.32 0.4 0.4] 

  
[Output1] 
Name='Crowding' 
Range=[0 100] 
NumMFs=5 
MF1='Insignificant':'trimf',[0 0 25] 
MF2='Low':'trimf',[0 25 50] 
MF3='Medium':'trimf',[25 50 75] 
MF4='High':'trimf',[50 75 100] 
MF5='Extreme':'trimf',[75 100 100] 
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[Rules] 
1 1 1, 1 (1) : 1 
1 1 2, 1 (1) : 1 
1 1 3, 2 (1) : 1 
1 1 4, 3 (1) : 1 
1 2 1, 2 (1) : 1 
1 2 2, 2 (1) : 1 
1 2 3, 3 (1) : 1 
1 2 4, 3 (1) : 1 
1 3 1, 3 (1) : 1 
1 3 2, 3 (1) : 1 
1 3 3, 4 (1) : 1 
1 3 4, 4 (1) : 1 
1 4 1, 3 (1) : 1 
1 4 2, 4 (1) : 1 
1 4 3, 4 (1) : 1 
1 4 4, 4 (1) : 1 
2 1 1, 1 (1) : 1 
2 1 2, 2 (1) : 1 
2 1 3, 2 (1) : 1 
2 1 4, 3 (1) : 1 
2 2 1, 2 (1) : 1 
2 2 2, 2 (1) : 1 
2 2 3, 3 (1) : 1 
2 2 4, 3 (1) : 1 
2 3 1, 3 (1) : 1 
2 3 2, 3 (1) : 1 
2 3 3, 4 (1) : 1 
2 3 4, 4 (1) : 1 
2 4 1, 3 (1) : 1 
2 4 2, 3 (1) : 1 
2 4 3, 4 (1) : 1 
2 4 4, 4 (1) : 1 
3 1 1, 2 (1) : 1 
3 1 2, 2 (1) : 1 
3 1 3, 3 (1) : 1 
3 1 4, 3 (1) : 1 
3 2 1, 3 (1) : 1 
3 2 2, 3 (1) : 1 
3 2 3, 3 (1) : 1 
3 2 4, 4 (1) : 1 
3 3 1, 3 (1) : 1 
3 3 2, 4 (1) : 1 
3 3 3, 4 (1) : 1 
3 3 4, 4 (1) : 1 
3 4 1, 4 (1) : 1 
3 4 2, 3 (1) : 1 
3 4 3, 4 (1) : 1 
3 4 4, 4 (1) : 1 
4 1 1, 2 (1) : 1 
4 1 2, 3 (1) : 1 
4 1 3, 3 (1) : 1 
4 1 4, 4 (1) : 1 
4 2 1, 3 (1) : 1 
4 2 2, 3 (1) : 1 
4 2 3, 4 (1) : 1 
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4 2 4, 4 (1) : 1 
4 3 1, 3 (1) : 1 
4 3 2, 4 (1) : 1 
4 3 3, 4 (1) : 1 
4 3 4, 5 (1) : 1 
4 4 1, 4 (1) : 1 
4 4 2, 4 (1) : 1 
4 4 3, 5 (1) : 1 
4 4 4, 5 (1) : 1 
5 1 1, 3 (1) : 1 
5 1 2, 3 (1) : 1 
5 1 3, 3 (1) : 1 
5 1 4, 3 (1) : 1 
5 2 1, 3 (1) : 1 
5 2 2, 4 (1) : 1 
5 2 3, 4 (1) : 1 
5 2 4, 4 (1) : 1 
5 3 1, 4 (1) : 1 
5 3 2, 5 (1) : 1 
5 3 3, 5 (1) : 1 
5 3 4, 5 (1) : 1 
5 4 1, 4 (1) : 1 
5 4 2, 5 (1) : 1 
5 4 3, 5 (1) : 1 
5 4 4, 5 (1) : 1 
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APPENDIX M  GIEDOC VALIDATION DATA SHEET 
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4= High 
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1         
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APPENDIX N  GIEDOC RELIABILITY ANALYSIS 
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CROSSTAB 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

GIEDOC * Expert 24 100.0% 0 0.0% 24 100.0% 

 

GIEDOC * Expert Crosstabulation 

Count   

 

Expert 

Total 2 3 4 

GIEDOC 2 2 2 0 4 

3 1 11 3 15 

4 0 0 5 5 

Total 3 13 8 24 

 

 

Symmetric Measures 

 Value 

Asymptotic 

Standardized 

Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .562 .152 3.772 .000 

N of Valid Cases 24    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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