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ABSTRACT

Bats are important to many ecological processes such as pollination, insect (and by proxy,
disease) control, and seed dispersal and can be used to monitor ecosystem health. However, they are
facing unprecedented extinction risks from habitat degradation as well as pressures from pathogens (e.g.,
white-nose syndrome) and wind turbines. LiDAR allows ecologists to measure structural variables of
forested landscapes with increased precision and accuracy at broader spatial scales than previously
possible. This study used airborne LiDAR to classify forest habitat/canopy structure at the Ordway-
Swisher Biological Station (OSBS) in north central Florida. LIDAR data were acquired by the National
Ecological Observatory Network (NEON) airborne observation platform in summer 2014. OSBS consists
of open-canopy pine savannas, closed-canopy hardwood hammocks, and seasonally inundated basin
marshes. Multiple forest structural parameters (e.g., mean, maximum, and standard deviation of canopy
height) were derived from LiDAR point clouds using the USDA software program FUSION. K-means
clustering was used to segregate each 5x5 m raster across the ~3765 ha OSBS area into six different
clusters based on the derived canopy metrics. Cluster averages for maximum, mean, and standard
deviation of return heights ranged from 0 to 19.4 m, 0 to 15.3 m, and 0 to 3.0 m, respectively. To
determine the relationships among these landscape-canopy features and bat species diversity and
abundances, AnaBat II bat detectors were deployed from May to September in 2015 stratified by these
distinct clusters. A statistical regression model selection approach was performed in order to evaluate how
forest structural attributes such as understory clutter, vertical canopy structure, open and closed canopy,
etc. and landscape metrics influence bat communities. The most informative models showed that a
combination of site-specific (e.g., midstory clutter and entropy) and landscape level attributes (e.g., area
of water and service road length) contributed to bat community patterns. This knowledge provides a
deeper understanding of habitat-species interactions to better manage survival of these species and

provides insight into new tools for landscape management as they apply to specific species

il



ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. John Weishampel, for all of the guidance he has given me
during this project. It would not have been possible without all of the work he put in to help me through
the thesis. In addition, my committee members, Dr. Reed Noss and Dr. Josh King, also provided
invaluable feedback which greatly improved this project. I am grateful to both Dr. Pedro Quintana-
Ascencio and Dr. David Jenkins for comments on experimental design and for help with statistical
analysis. This project could not have been completed without the help of Laura Finn and Fly By Night,
Inc. who provided the bat detectors and expert advice on the bats of central Florida. Dr. Bruce Miller also
helped with acoustic identification of bats. Stephen Coates and the staff at Ordway-Swisher Biological
Station deserve my gratitude for rescuing me on more than one occasion and also for the support
throughout this project. Finally, I would like to thank my field assistants, Kevin Mayer, Regan Schwartz,
Tom Swanson, and Charles Wayne, who spent their summer helping me with equipment setup in spite of
oppressive heat, rain, and myriad ticks. LIDAR was collected by NEON, Inc. The National Observatory
Network is a project sponsored by the National Science Foundation and managed under cooperative
agreement by NEON, Inc. This material is based in part upon work supported by the National Science
Foundation under Grant No. DBI-0752017. Additional funding for this project was provided by the

Learning Institute for Elders (LIFE) at UCF.

v



TABLE OF CONTENTS

LIST OF FIGURES ..ottt ettt et s et e et e e st e b e et e eseesseene et e sseensesseensenseeseensesseansas vii
LIST OF TABLES ...ttt ettt ettt ettt et e et e sb et esbe e st et e ebe e st e bt estentesbeeneeees viii
LIST OF ACRONYMS ..ottt ettt ettt et ettt et s e et e se s st e s asseeseenseeseensasseensanseeseensensesseensenseenes X
INTRODUGCTION ...ttt ettt h et b et e s bt et e sbeeste b e e bt emt e bt eaeeteeseentenbeeneensesaeenes 1
METHODOLOGY ...ttt sttt ettt he et b et e st e s bt et e ebe e st e b e eb e emt e bt eaeeteebeensesbeeneetesaeenes 5
N 1b 10\ e To7: 150 o H OO USSR 5
Site Selection for ACOUSLIC SAMPIINE ....cccvieriieriieiiieiieieeiteee et ere et esreesresressbeesseessaesseesssessseessens 6
DEtECIOT SELUP. ...ttt ettt et e st e e bt e e s bt e e bt e e sabeesbaeesabeesbbeesateesabeeesabeeenee 7
LD AN 4 U1 3 OSSPSR 8
2 DT U T L TSRS 14
K MEANS CIUSLETINE ...veuvvievieeiieiiesieesiteereeteesteestteseteasteesseesseesseesssessseasseessaessassssesssessseassessseesssesssesssenssees 14
ACOUSTICS SUIMITIATY ...ceuvtiuiieuieeteesteestie ettt eteesteestteesteeuteenseenseesseesstesasesaseenseesseesseesnsesnseenseenseenseesseesnsesnsenn 17
L 04 151 ) T 1o s USRS 20
DISCUSSION ...ttt ettt et e et e e st es e e e e saeea e e teestemseeseemee st emeenseeseenseeseenteseeneenseaneeneas 27
APPENDIX A: CORRELATION MATRICES ......cooiiieieeceeeeeee ettt eneas 31
APPENDIX B: SITE AND MODEL SELECTION PARAMETERS.........c.cooiiiiieeeeeece e 67
APPENDIX C: SAMPLING TIMES. ... ..ottt sttt ettt sseessesessaensesneennas 70
APPENDIX D: COMPLETE MODEL SELECTION RESULTS......cccoiiiiieeie ettt 72
APPENDIX E: R CODE.......ooiiiiiiiieeee ettt ettt st b e sttt b et sae e ebe e 77
COTTEIAtION IMALTICES ....vevieutiiteiieteeit ettt sttt ettt ettt st e e e b et e bt eat et e s bt et et e satebeebeeneenbeeanen 78
K Means Clustering and Sit€ SEIECHION.........ccveiieiiieciieiieieieesre e ere e e steestresreebeesreeseessaesrnessseesses 78
IMOAEL SEIECHION ...ttt et et b et b ettt sb et e et s bt et e s b e e st e bt sbeenteneeennen 80



APPENDIX F: JACUC APPROVAL

LIST OF REFERENCES...................

vi



LIST OF FIGURES

Figure 1: Differences in foraging strategy and frequency of calls are related. Bats that forage in open areas
(1, 2, 5, 6) have lower frequency calls while those that forage in cluttered areas (3, 4) have higher
frequency calls (from Aldridge and Rautenbach 1987). .......cccoeiiiiiiiiiiiiii e 3
Figure 2: Wing loading and aspect ratio of bats of north central Florida, based on Farney and Fleharty
(1969); acronyms are the combined first two letters of the genus and species name. Species in red are my
predictions based on photographs and foraging behavior. ...........cccooieiiiiiiiiiiiiiee e 6
Figure 3: A) OSBS 5 x 5 m k-means cluster results; B) vegetative communities at OSBS as defined by
Florida Natural Areas Inventory (FINAL) ......oc.ooiiiiiiei ettt st s s 10
Figure 4: Level 1 FLUCCS designations for 1.5 km buffer around OSBS ..........ccoociiiiiiiiiiniiieeeee, 11
Figure 5: Cluster metrics for A) canopy mean and B) rugosity. Colors correspond to clusters from Figure
3A. The line within the boxplot is the median while the circles are outliers outside of one standard
deviation from the MEAN. ..........coiiiii ettt ettt e ettt b et e bt et eteseeeneesaeeneens 15
Figure 6: LiDAR point clouds for representative sites at each cluster; the radius of the ground surface
(DIUE diSK) 1S 12.5 Mtiiiiiiiiiiiiiiie ettt ettt e ettt e et e e e tb e e e ateeeabeesabeeenbaeesasesensseessseesnsaeennseaan 16
Figure 7: Total bat abundance by site; sites are color coded by cluster corresponding with Figure 3A. The
line through the boxes represents the median while open circles are outlier points. .........ccccoeeceereereenene 17
Figure 8: Jost bat diversity for each site; colors correspond to the clusters from Figure 3A. The line
through the boxes represents the median while open circles are outlier points. ...........ccoeeveveereereerieennen. 18
Figure 9: Species accumulation curves per cluster which are represented by different colored lines based

on Figure 3A. EchoClass v 3.1 had the ability to identify 7 total SPecies.........cccvevvereriviieireereenienre e, 19

vii



LIST OF TABLES

Table 1: Final parameters used in models selection and their ecological significance...........cc.cceeceereenneen. 12
Table 2: Parameters for numbered MOdels. .........ccocuieiiiiiiiiiiie e 13
Table 3: Results for most informative total abundance model. ...........ccccoooieiiiiiieiiiniiiieeeee 20
Table 4: Results for second most informative total abundance model. .............cooceeiiiiiiiiiiniininiee, 21
Table 5: Results for third most informative total abundance model. ............ccocoeoiiiiniiiininiiiieeee 21
Table 6: Results for most informative community diversity model...........ccccovieriiiiiniieiienienieneeeeeeee 22
Table 7: Results for most informative logistic model, evening bat (N. humeralis). ...........cccccoveeevvevvcuennen. 23
Table 8: Results for most informative logistic model, tricolored bat (P. subflavus). ......c.ccoevvververcvennnnns 24
Table 9: Results for most informative logistic model, southeastern myotis (M. austroriparius). .............. 25
Table 10: Results for most informative logistic model, big brown bat (E. fUSCUS)......c..ccvevreevieerververnnnns 26

Table Al: Correlation matrix of LiDAR parameters for k-means clustering (extends through page 65);

blue cells are positively related and red cells are negatively related. ND values represent no................... 32
Table A2: Correlation matrix of potential model Parameters. .........c.cccveevveerieriieniieereereereeeeseesvesve e 66
Table B1: Site selection parameters for k-means clustering analysis. .........ccccevverveenereeneneneeneneenieneneen 68
Table B2: Complete parameter set for model development............cceeveevvieriienieniecie et 69

Table C1: Sampling weeks for each site (cluster 1 - red, 2 - orange, 3 - yellow, 4 - purple, 5 - blue, 6 -

green) corresponding t0 FIGUIE 3A. ..ottt ettt e b e b e esbe e taestaessbessbeesseeseesssessneans 71
Table D1: AIC table for bat abundance MOdels. ..........ceoueeieiiiieieeeee s 73
Table D2: AIC table for bat community diversity MOdels. .........ccceverieriiniriiininienieneecetee e 73
Table D3: AIC table for logistic models, evening bat (N. AUMETalis). .........ccccoueevveecriecreevrienieieeeieereenen 74
Table D4: AIC table for logistic models, tricolored bat (P. SUDFlAVUS). ......c.ccoveeeeeceieciieiieiieeieeie e 74
Table D5: AIC table for logistic models, southeastern myotis (M austroriparius). ............cccceeeveecveecveennenn 75
Table D6: AIC table for logistic models, big brown bat (E. fUSCUS). ....c..ccveveerierieereereeieeseesiee e eve e 75

viii



Table D7: Results for second most informative logistic model, big brown bat (E. fuscus).........c....c......... 76

Table DS8: Results for third most informative logistic model, big brown bat (E. fuscus). .....cccccevevvrveennen. 76

X



LIST OF ACRONYMS

AICec: Akaike’s Information Criterion for small sample sizes
ALTM: airborne laser terrain mapping

CF: Compact Flash

CORA: Corynorhynus rafinesquii, Rafinesque’s big-eared bat
EPFU: Eptesicus fuscus, big brown bat

FLUCCS: Florida Land Use, Cover and Forms Classification System
FNAI: Florida Natural Areas Inventory

GLM: Generalized Linear Model

LABO: Lasiurus borealis, eastern red bat

LACI: Lasiurus cinerius, hoary bats

LAIN: Lasiurus intermedius, northern yellow bat

LASE: Lasiurus seminolus, Seminole bat

LiDAR: light detection and ranging

LTK: LiDAR Toolkit

MYAU: Myotis austroriparius, southeastern myotis

NEON: National Ecological Observatory Network

NYHU: Nycticeius humeralis, evening bat

OSBS: Ordway-Swisher Biological Station

PESU: Perimyotis subflavus, tricolored bat

TABR: Tadarida brasilienses, Mexican free-tailed bat
USDA: United States Department of Agriculture

ZCAIM: Zero-Crossings Analysis Interface Module



INTRODUCTION

Understanding the drivers of biodiversity is essential for species conservation. The
habitat heterogeneity hypothesis (Lack, 1969, MacArthur and Wilson, 1967) posits that as areas
increase in structural complexity, additional niches are opened for exploitation, therefore
allowing diversification of species that used these varied niches. MacArthur (1958) was one of
the first researchers to notice this diversification in birds based on vertical heterogeneity of forest
structure. In a later study, MacArthur and MacArthur (1961) developed the foliage height
diversity index which classified forests based on percentage of leaf area within different height
classes. With this measurement approach, forests were more structurally diverse if they had an
even distribution of leaf area throughout the different canopy layers (higher entropy) or less
structurally diverse if they had uneven distribution of leaf area throughout the different canopy
layers (lower entropy). Following these studies, many other researchers explored the positive
relationship between vertical habitat heterogeneity and increased diversity in primates
(Schwarzkopf and Rylands, 1989), birds (Bersier and Meyer, 1994), spiders (Docherty and
Leather, 1997), macropods (Southwell, Cairns, Pople et al., 1999), arboreal arthropods (Halaj,
Ross and Moldenke, 2000), ants (Bestelmeyer and Wiens, 2001), and amphibians (Vallan, 2002).

Bats represent greater than 20% of all mammalian diversity worldwide (Mickelburg,
Hutson and Racey, 2002) and play important roles in forested ecosystems by acting as
pollinators, seed dispersers, and insect predators, which provides top-down control to reduce
herbivory within ecosystems (Bohm, Wells and Kalko, 2011). It has also been suggested that
bats serve as good bioindicators (Jones, Jacobs, Kunz et al., 2009) to monitor environmental
degradation and decline in biodiversity (Waldon, Miller and Miller, 2011). Bats also play a role

in cycling nutrients through the forest, possibly even acting as a primary nutritional support for
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guano-dependent plants near their roosts (Duchamp, Sparks and Swihart, 2010). However, bat
species throughout the world are in decline (Mickleburgh, Hutson and Racey, 2002) due to
environmental stressors such as habitat loss and fragmentation, white nose syndrome (Frick,
Pollock, Hicks et al., 2010), and increased use of wind turbines (Arnett, Brown, Erickson e al.,
2008).

The wing morphology of bats informs us about a bat’s foraging strategy. Bats that forage
in more open areas are adapted for faster flight and therefore have higher mass, wing loading
(weight of the bat divided by the total area of the wing), and aspect ratio (wing span of the bat
squared divided by the wing area) (Aldridge and Rautenbach, 1987). On the other hand, bats that
forage in densely vegetated areas tend to be smaller and adapted for slower, more maneuverable
flight with low wing loading and aspect ratio (Aldridge and Rautenbach, 1987). Bat echolocation
is a part of the same adaptive complex (Aldridge and Rautenbach, 1987), so bats that forage
within densely forested patches have different foraging calls from those that forage in open
areas. To forage efficiently in areas with high three-dimensional complexity, or vegetative
clutter, bats evolved mechanisms which allow them to segregate vegetative clutter from potential
prey while also maintaining the ability to properly orient themselves and avoid obstacles
(Schnitzler and Kalko, 2001). Figure 1 shows differentiation in foraging strategy and

echolocation frequency (kHz) of forest-dwelling bats.
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Figure 1: Differences in foraging strategy and frequency of calls are related. Bats that forage in
open areas (1, 2, 5, 6) have lower frequency calls while those that forage in cluttered areas (3, 4)
have higher frequency calls (from Aldridge and Rautenbach 1987).

Loeb and O’Keefe (2006) determined that in addition to forest stand-level characteristics,
landscape parameters also play a role in foraging use of an area by bats. Measures of landscape
heterogeneity are difficult to quantify in the field. One form of remote sensing, LiDAR (light
detection and ranging), allows ecologists to quickly and accurately measure forest structural
parameters across large tracts (Lefsky, Cohen, Parker et al., 2002). Many forest variables such as
canopy height, canopy cover/closure, and vertical distribution of canopy cover (entropy) can be
derived either directly or indirectly from LiDAR returns (Merrick, Koprowski and Wilcox, 2012)

LiDAR systems map forest structure by emitting laser pulses from a known position and
measuring the amount of time it takes for the photons to travel back to the mounted receiver
(Reutebuch, Andersen and McGaughey, 2005). The first pulses to return represent the canopy
top while the last returns represent the ground. Returns in the middle represent the vertical
heterogeneity of the forest (i.e., understory, mid-canopy, etc.). Airborne LiDAR systems are

capable of mapping out large areas of land by sending out tens of thousands of laser pulses per



second (Reutebuch et al., 2005). These pulses are represented in a point cloud, a 3-dimensional
map of surfaces with X, y, and z spatial locations. Forest metrics such as canopy height (first
return — last return), rugosity (standard deviation of canopy height), and canopy cover
measurements which are derived by measuring the proportion of ground returns that are received
by a sensor (Lefsky et al., 2002) can be derived from the LiDAR point cloud.

The ability to measure canopy metrics at large scales has spurred a variety of studies on
the relationships between forest canopy structure and community composition of different taxa
(Davies and Asner, 2014) including spiders (Vierling, Bassler, Brandl et al., 2011), birds
(Clawges, Vierling, Vierling et al., 2008, Goetz, Steinberg, Dubayah et al., 2007), beetles
(Muller and Brandl, 2009), other arthropods (Miiller, Bae, Roder er al., 2014), and primates
(Palminteri, Powell, Asner et al., 2012). A study by Jung, Kaiser, Bohm et al. (2012) looked at
how management practices affecting three-dimensional forest structure influence insectivorous
bat community composition. My study combines the approaches of Jung et al. (2012) and Loeb
and O’Keefe (2006) to investigate how LiDAR-derived forest structure parameters at the patch
scale and landscape-level attributes (such as road density and landscape heterogeneity) relate to
bat abundance, bat community diversity, and use of sites by individual bat species across a
heterogeneous landscape in north central Florida. This study is the first to examine the
relationship of LiDAR-derived canopy structure to bat species and assemblages in the Western
Hemisphere. In addition to quantifying relationships among individual landscape and site-
specific parameters, it will also examine whether the interactions of these effects are important to

these population-level and community-level measures.



METHODOLOGY

Study Location

The study was conducted at the Ordway-Swisher Biological Station (OSBS) in Melrose, Florida
(29.68° N and 82.00° W). The station is approximately 3765 ha and is operated by the University of
Florida as a research station. This site is also part of the National Ecological Observatory Network
(NEON), which gathers data for long term ecological monitoring and forecasting at various sites
throughout the United States. Vegetative communities at OSBS include sandhills, xeric hammocks,
upland mixed forests, swamps, and marshes. To maintain natural disturbance regimes, the pyrogenic
communities are managed with prescribed fire with between 690 and 810 ha burned annually (Ordway-
Swisher Biological Station, 2014). Since the 1930s the land was used as a private hunting and fishing
preserve and by the 1980s much of the land had been set aside for conservation and research. The
relatively long history of conservation at OSBS makes it an ideal study site as the natural floral and faunal
communities have been given time to recuperate from human influence. The large size of the station can
act as a buffer against impact from the human matrix outside.

Based on geographic ranges, ten different species of bats are expected to reside within OSBS:
Rafineque’s big-eared bat (Corynorhinus rafinesquii, CORA), big brown bat (Eptesicus fuscus, EPFU),
castern red bat (Lasiurus borealis, LABO), hoary bat (L. cinerius, LACI), northern yellow bat (L.
intermedius, LAIN), Seminole bat (L. seminolus, LASE), southeastern myotis (Myotis austroriparius,
MY AU), evening bat (Nyctecius humeralis, NYHU), tricolored bat (Perimyotis subflavus, PESU), and the
Mexican free-tailed bat (Tadarida brasilienses, TABR) (Marks and Marks 2006). P. subflavus is a clutter
tolerant bat, L. borealis is semi clutter tolerant, and L. cinereus and T. brasilienses are clutter intolerant
(Farney and Fleharty, 1969). Figure 2 shows wing loading and aspect ratios for several bat species of

central Florida.
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Figure 2: Wing loading and aspect ratio of bats of north central Florida, based on Farney and
Fleharty (1969); acronyms are the combined first two letters of the genus and species name. Species
in red are my predictions based on photographs and foraging behavior.
Site Selection for Acoustic Sampling

LiDAR data were acquired for OSBS by the NEON airborne observation platform on June 5,
2014. An Optech Gemini ALTM (airborne laser terrain mapping) sensor was flown onboard a Twin Otter
aircraft. The LiDAR point density was approximately 3 points/m*. To select sites that were appropriate
for LiDAR analysis and to minimize impacts of variables that were not of interest, 50m buffers around
roads, lakes, and the property perimeter were removed from the larger dataset. The LiDAR data were
subdivided in to a 5 x 5 m grid. This scale was chosen because detectability of bat calls with AnaBat

detectors drops off greatly after 5 m. (Adams, Jantzen, Hamilton ef al., 2012). Batch processing of

LiDAR files was done in the USDA’s LTKProcessing v. 1.0 program (McGaughey, 2014). This program



calculated 66 different parameters from the LiDAR point cloud data, some of which were either deemed
unrelated to the study or else were highly correlated to other measured parameters.

A correlation analysis was performed to identify parameters that were highly correlated.
Parameters that had a 75% or greater positive or negative correlation to other parameters were eliminated
based on relevance to the study questions (Appendix A, Table Al). Parameters that were considered
particularly relevant to bat species occurrence were kept in the model even if they correlated highly with
other parameters. These decisions were based largely on the Jung et al. (2012) study.

Based on these criteria, 14 parameters (Appendix B, Table B1) were chosen to perform a k-means
clustering analysis to partition OSBS into areas which had similar structural components. Six clusters
were isolated representing a range from basin marshes to closed-canopy hardwood hammock. Figure 3
shows the resulting k-means cluster raster (A) along with vegetative communities (B).

After performing the k-means clustering analysis, 30 sites from each cluster were randomly
selected by using the random function in R (R Development Core Team, 2014). These sites were brought
into ArcGIS v. 10.1 (Environmental Systems Resource Institute, 2012). A 250 m buffer was placed
around each site. Sites with overlapping buffers were removed to minimize spatial autocorrelation. Sites
that were not representative of the area, i.e., they were surrounded by other cluster types, were also
removed. Sites were further eliminated based on accessibility until eighteen sites remained - three from

each cluster.

Detector Setup

Two sampling periods were conducted from June 16 through September 7, 2015. Each site was
visited twice per week. The first visit was used to set up the AnaBat detectors in water resistant casing.
Each detector was positioned on a tripod approximately 1.5 m above ground level (O'Farrell, 1998) and
the microphone was pointed away from vegetation clutter. The tripod was tied to a tree or staked to the
ground, and camouflage was placed around the water resistant container. To minimize variability between

detectors, each was set to the same sensitivity. Nightly calls were recorded by a ZCAIM (zero-crossings



analysis interface module) unit plugged into the AnaBat detector with start time for recording delayed
until 15 minutes before sunset to 15 minutes after sunrise. Three days after deploying the detectors,
batteries in both the detectors and the ZCAIM unit were replaced. The goal was to have six consecutive
nights of recorded calls. On the seventh day of the weekly cycle, detectors were removed from their
locations and data were downloaded using CFCRead Storage ZCAIM Interface (Corben, 2014). Compact
Flash (CF) cards were erased and replaced in the ZCAIM units. Detectors were transported to a new site.
Which particular detector was used for a particular site was haphazardly determined. Table C1 in

Appendix C shows the sampling times for each site.

Data Analysis

To create models which accurately represent parameters that affect site selection by bats at both
the site and landscape level, several forest structure and landscape parameters were included in a multiple
regression analysis. I calculated several landscape metrics within a 1.5 km buffer around each detector
site. The 1.5 km radius was chosen as a low-end foraging distance from roosts (Henry, Thomas, Vaudry
et al., 2002, Hutchinson and Lacki, 2000). Within each buffer, level 1 Florida Land Use, Cover and forms
Classification System (FLUCCS) codes were used to determine the proportion of urban, agricultural,
forested and nonforested lands present (Figure 4). I also measured total length of service roads and area of
standing water within each buffer. These measurements were derived from GIS layers created by OSBS
managers. | measured landscape heterogeneity using Jost diversity (Jost, 2006) to determine the effective
diversity of k-means cluster types within a given buffer. These measurements were limited to the
perimeter of OSBS. Table B2 in Appendix B summarizes all of the parameters considered as well as their
biological relevance. Analysis of the correlation matrix was performed to determine which variables
should be removed to reduce collinearity in the models (Appendix A, Table A2). Final parameters used in
the models are described in Table 1.

Due to limited familiarity with specific bat calls, I used the automated bat call identification

software package, Echoclass v. 3.1 (Britzke, 2014). This software has been approved by the United States



Fish and Wildlife Service (USFWS) (U.S. Fish and Wildlife Service, 2015) for conducting Indiana bat
(Myotis sodalis) surveys, and a test conducted on several automated bat identification software packages,
including Echoclass, demonstrated that Echoclass correctly identified South Carolina bat species 72% of
the time (Ford, 2014). However, 28% of calls were mis- or unidentified, and some common Florida bat
species including the Seminole bat (Lasiurus seminolus) and northern yellow bat (L. intermedius) were
not included in the program’s identifiers. Given these shortcomings, species diversity may be
understimated. Also, results for presence/absence of L. borealis are uncertain as this species’ call is often
confounded with L. seminolus.

Calls were segregated into nightly bins, and Jost diversity was calculated based on the Shannon-
Wiener Diversity Index (Jost, 2006). Multiple regression and logistic models were developed in R (R
Development Core Team, 2014) to test relationships between forest structure and landscape level
parameters and six different response variables: overall abundance, diversity, and evening bat (Nycticeus
humeralis), tricolored bat (Perimyotis subflavus), southeastern myotis (Myotis austroriparius), and big
brown bat (Eptesicus fuscus) presence (Table 2). The four bats included in the regression models were
selected because they were present in approximately equal numbers and should represent differing
foraging strategies based on morphology. Model parameters were selected based on previous literature
and relevance to management strategy. To improve model assumptions, parameters for community
diversity models were normalized and diversity was log transformed, therefore changing Jost diversity
into the Shannon-Weiner Diversity Index. For total site usage models, negative binomial generalized
linear models were used. In all cases, the most informative models were selected based AICc (Akaike’s
Information Criterion for small sample sizes) value and AICc weight (Burnham and Anderson, 2002).

AICc and AICc weight were calculated using R package AICmodavg (Mazerolle, 2015).
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Figure 4: Level 1 FLUCCS designations for 1.5 km buffer around OSBS
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Table 1: Final parameters used in models selection and their ecological significance

Parameter (abbreviation) Ecological Significance
Stand Level
Mean canopy height (CanMean) Mean canopy height for each 5x5 m site (in m)

Roughness of the outer canopy surface for each 5x5 m site
Rugosity (Rugosity) measured by calculating the standard deviation of
maximum canopy height

Proportion of returns (0-1.5 m (Prop015),
1.5-6 m. (Prop156), 6-12 (Prop612), 12 m
and above (PropAb12))

The proportion of LiDAR returns in different height bins
(related to the amount of clutter within the forest)

Entropy (Entropy) The Jost diversity of vertical LIDAR return distributions
Landscape Level

Area (in ha) of standing water (lakes, ponds) within 1.5

Area of standing water (AreaWater) km buffer

Length (in m) of service roads in 1.5 km buffer (limited to

Service road length (RoadLength) areas within OSBS)

Proportion of 1.5 km buffer classified in FLUCCS as

Proportion of urban land cover (PropUrban) urban or utilitics

Landscape heterogeneity The Jost diversity of k-means clusters within a 1.5 km
(LandHeterogeneity) buffer (limited to areas within OSBS)
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Table 2: Parameters for numbered models.

Number Parameters
1 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612
2 CanopyMean*Entropy+Rugosity+Prop015+Prop156+Prop612
3 CanopyMean+Entropy+Rugosity
4 CanopyMean*Entropy+Rugosity
5 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity
6 CanopyMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity
7 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+PercentWater+RoadLength+LandHeterogeneity
8 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity +PercentWater+RoadLength
9 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrbant+PercentWater* LandHeterogeneity +RoadLength
10 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+PercentWater +RoadLength*LandHeterogeneity
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RESULTS

K Means Clustering

The k-means cluster analysis defined vegetative structure at the 25 m? scale. Large basin marsh
areas, which lacked canopy (cluster 6), were very homogenous throughout and closely correspond with
the vegetation mapped by the Florida Natural Areas Inventory (FNAI) (Figure 3B). The finer scale of the
k-means clustering allowed me to examine subtle differences in forest structure within larger vegetative
communities. While the clusters do not exactly correspond to vegetative types, cluster 1 is more
prominent within successional hardwood forest, cluster 2 is common throughout baygall, and cluster 5 is
found throughout pine sandhills. Figure 5 shows boxplots of the canopy height (A) and rugosity (B) for
each of the three sites chosen for each cluster.

LiDAR point cloud images (Figure 6) also reveal differences in forest structure. Each point cloud
in Figure 66 represents a site within one of the six different k-means clusters. Main differences occur in
overall canopy height, rugosity, and midstory clutter. For instance, cluster 1 had an open canopy with
herbaceous ground cover. Clusters 2, 3, 4, and 5 had more closed canopies. The sites in cluster 6 were all
comprised of basin marshes with different grass species as dominant vegetation. No tree or shrub canopy
was present in this cluster. The representative site for cluster 2 had a higher rugosity than that for cluster 3
which had a more homogenous canopy height. The site shown for cluster 4 has less midstory clutter

present, especially towards the left side of the image where an opening in vegetation can be seen.
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Figure 5: Cluster metrics for A) canopy mean and B) rugosity. Colors correspond to clusters from
Figure 3A. The line within the boxplot is the median while the circles are outliers outside of one
standard deviation from the mean.
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Figure 6: LiDAR point clouds for representative sites at each cluster; the radius of the ground surface (blue disk) is 12.5 m.
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Acoustics Summary

Over 47 sample nights, a total of 27,481 bats calls were identified using Echoclass v. 3.1. There
were 263 big brown bats, 16,533 eastern red bats, 696 hoary bats, 140 southeastern myotis, 344 evening
bats, and 1,114 tricolored bats. Echoclass v. 3.1 also identified 373 silver-haired bats (Lasionycteris
noctivagans), but these bats are not known to occur within Ordway-Swisher and so were very likely
misidentified. These bats were still included in diversity calculations as they likely represented a species
that was not included within the filter set. Figure 7 shows the total bat abundance at each site and Figure 8
shows the bat diversity for each site. Figure 9 shows the species accumulation curves for each cluster

type. Most clusters approached an asymptote though not all species were detected in all clusters.
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Figure 7: Total bat abundance by site; sites are color coded by cluster corresponding with Figure
3A. The line through the boxes represents the median while open circles are outlier points.
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Figure 8: Jost bat diversity for each site; colors correspond to the clusters from Figure 3A. The line
through the boxes represents the median while open circles are outlier points.
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Figure 9: Species accumulation curves per cluster which are represented by different colored lines
based on Figure 3A. EchoClass v 3.1 had the ability to identify 7 total species.
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Model Selection

Overall Abundance Models

Because of close AIC weights and AAIC, it was not possible to pinpoint a single most
informative overall abundance model (Appendix D, Table D1). Model 8 had an AIC of 1922.6, AAIC of -
0.7, and AIC weight of 0.42. Model 9 had an AIC of 1923.7, AAIC of -0.9, and AIC weight of 0.30.
Model 10 had an AIC of 1923.3, AAIC of -13.8, and AIC weight of 0.27. In all three models, proportion
of binned returns (0-1.5 m, 1.5- 6 m, and 6-12 m) as well as length of service roads were negatively
correlated with bat abundance. Models 9 and 10 also had a negative correlation between site usage and
area of water. All of the models included mean canopy height, entropy, binned proportion of returns (0-
1.5 m, 1.5-6 m, 6-12 m), proportion of urban lands, landscape heterogeneity, area of water, and length of
service roads. Model 9 also included the interaction of landscape heterogeneity and the proportion of
urban lands while model 10 included the interaction of landscape heterogeneity and water area. Model 8
had no interactive terms. Tables 3, 4, and 5 show the complete results for the three most informative

abundance models.

Table 3: Results for most informative total abundance model.

Estimate Std. Error z value Pr(>|z|)
Intercept 13.66 2.630 5.195 <0.001
Mean canopy height -0.0718 0.0477 -1.504 0.1325
Entropy 0.0561 0.2912 0.192 0.8474
Rugosity -0.0320 0.2280 -0.141 0.888
Proportion of returns (0-1.5 m) -3.240 1.021 -3.173 <0.01
Proportion of returns (1.5-6 m) -16.34 6.830 -2.393 <0.05
Proportion of returns (6-12 m) -4.415 1.142 -3.864 <0.001
Proportion of urban lands -7.656 1.385 -5.527 <0.001
Water Area -0.0106 0.0029 -3.616 <0.001
Length of service roads -0.0001 -0.00005 -2.258 <0.05
Landscape heterogeneity -0.4294 0.4651 -0.923 0.356
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Table 4: Results for second most informative total abundance model.

Estimate Std. Error z value Pr(>|z|)
Intercept 14.78 2.714 5.445 <0.001
Mean canopy height -0.0797 0.0487 -1.639 0.101
Entropy 0.0650 0.2938 0.221 0.825
Proportion of returns (0-1.5 m) -2.629 1.132 -2.322 <0.05
Proportion of returns (1.5-6 m) -19.50 8.050 -2.422 <0.05
Proportion of returns (6-12 m) -3.793 1.233 -3.075 <0.01
Proportion of urban lands -31.93 19.68 -1.622 0.105
Landscape heterogeneity -0.7683 0.5057 -1.519 0.129
Water area -0.0096 0.0030 -3.160 <0.01
Length of service roads -0.0001 -0.00005 -2.356 <0.05
ProportionUrban:LandscapeHetereogeneity  5.439 4.348 1.251 0.211
Table 5: Results for third most informative total abundance model.
Estimate Std. Error z value Pr(>|z|)
Intercept 8.951 4.399 2.035 <0.05
Mean canopy height -0.0758 0.0487 -1.557 0.120
Entropy 0.1245 0.2952 0.422 0.673
Rugosity -0.1019 0.2358 -0.432 0.666
Proportion of returns (0-1.5 m) -3.215 1.029 -3.125 <0.01
Proportion of returns (1.5-6 m) -16.94 6.891 -2.458 <0.05
Proportion of returns (6-12 m) -4.337 1.140 -3.805 <0.001
Proportion of urban lands -7.439 1.421 -5.236 <0.001
Landscape heterogeneity 0.6202 0.9123 0.680 0.497
Water area 0.0622 0.0637 0.978 0.328
Length of service roads -0.0001 0.00005 -2.359 <0.05
LandscapeHeterogeneity: WaterArea -0.0161 0.0141 -1.144 0.252

21



Bat Community Diversity Models

Model 10 which included mean canopy height, entropy, rugosity, area of water, proportion of
binned returns (0-1.5 m, 1.5-6 m, 6-12 m.), proportion of urban land, service road length, and landscape
heterogeneity within buffer space as well as the interactions between several of these parameters was the
most informative model with an adjusted R? of 0.68, relative AICc weight of 1.0 and AAIC of -21.99
(Appendix D, Table D2). Mean canopy height, binned proportion of returns (0-1.5 m, 1.5 — 6 m, and 6-12
m), area of water, road length, and landscape heterogeneity all had significant negative relationships to
bat community diversity whereas entropy and the interaction of road length and landscape heterogeneity
both had a positive relationship to bat community diversity. Rugosity and proportion of urban lands
within the 1.5 km buffer did not have significant relationships to bat community diversity. Table 6 shows

the coefficients and p-values of parameters for the most parsimonious model.

Table 6: Results for most informative community diversity model.

Estimate Std. Error t value Pr(>t))
Intercept 0.209 0.021 9.949 <0.001
Canopy mean -0.069 0.010 -6.715 <0.001
Entropy 0.176 0.059 2.995 <0.01
Rugosity -0.005 0.046 -0.118 0.906
Proportion of returns (0-1.5 m) -1.036 0.204 -5.083 <0.001
Proportion of returns (1.5-6 m) -3.723 1.397 -2.665 <0.01
Proportion of returns (6-12 m) -1.739 0.229 -7.613 <0.001
Proportion of urban lands -0.173 0.275 -0.628 0.531
Area of Water -0.0016 0.0006 -2.610 <0.01
Service road length -0.00003 0.000009 -3.159 <0.01
Landscape heterogeneity -0.280 0.094 -2.985 <0.01
RoadLength:LandscapeHeterogeneity 0.0001 0.00001 7.857 <0.001
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Logistic Regression Models for Evening Bat (N. humeralis)

Model 6 which included mean canopy height, entropy, rugosity, proportion of binned returns (0-
1.5 m, 1.5-6 m, 6-12 m), landscape heterogeneity and the interaction between mean canopy height and
entropy was the most informative logistic model for N. humeralis with an AICc of 136.71, AICc weight
of 0.98, and AAICc of -9.11 (Appendix D, Table D3). Mean canopy height and entropy were both
negatively related to N. humeralis detection while the interaction of mean canopy height and entropy was

positively related to detection of N. humeralis. (Table 7).

Table 7: Results for most informative logistic model, evening bat (N. humeralis).

Estimate Std. Error z value Pr(>|z|)
(Intercept) 38.70 14.15 2.734 <0.01
Mean canopy height -1.865 0.708 -2.633 <0.01
Entropy -8.991 3.074 -2.924 <0.01
Rugosity 0.029 0.774 0.037 0.970
Proportion of returns (0 — 1.5 m) -0.116 4311 -0.027 0.979
Proportion of returns (1.5 — 6 m) -90.00 56.98 -1.580 0.114
Proportion of returns (6 — 12 m) -1.667 4.371 -0.381 0.703
Landscape heterogeneity -5.214 2.085 -2.500 0.012
MeanCanopyHeight:Entropy 0.997 0.379 2.632 <0.01

Logistic Regression Models for Tricolored bat (P. subflavus)

Model 10 was the most informative model for presence of P. subflavus with an AICc of 185.63,
AlICc weight of 0.84, and AAIC of 4.88 (Appendix D, Table D4). Model parameters were mean canopy
height, entropy, rugosity, binned proportion of returns (0-1.5 m, 1.5-6 m, 6-12 m), proportion of urban
lands, area of water, length of roads, landscape heterogeneity, and the interaction of road length and
landscape heterogeneity. Area of water and the interaction between road length and landscape

heterogeneity were positively related to P. subflavus presence while the proportion of returns from 6-12
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m, length of service roads, and landscape heterogeneity were negatively related to P. subflavus presence

(Table 8).

Table 8: Results for most informative logistic model, tricolored bat (P. subflavus).

Estimate Std. Error z value Pr(>|z|)
(Intercept) 45.890 14.10 3.254 <0.01
Mean canopy height -0.037 0.138 -0.270 0.787
Entropy -1.087 1.053 -1.032 0.302
Rugosity -0.110 0.543 -0.203 0.839
Proportion of returns (0 — 1.5m ) -1.373 2.946 -0.466 0.641
Proportion of returns (1.5 — 6 m) 13.187 16.33 0.807 0.419
Proportion of returns (6 — 12 m) -7.709 3.731 -2.066 <0.05
Proportion of urban lands -7.018 3.892 -1.803 0.071
Water area 0.015 0.007 2.004 <0.05
Service road length -0.003 0.001 -2.435 <0.05
Landscape heterogeneity -9.928 3.532 -2.811 <0.01
ServiceRoadLength:LandscapeHeterogeneity 0.0006 0.0003 2.422 <0.05
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Logistic Regression Models for Southeastern Myotis (M. austroriparius)

Model 5 was the most informative model of the logistic regression models for the southeastern
myotis (Appendix D, Table D5). It had an AICc of 130.65, a AAIC of -2.14, and an AICc weight of 0.50.
Model parameters for model 5 were mean canopy height, entropy, rugosity, binned proportion of returns
(0-1.5 m, 1.5-6 m, 6-12 m), and landscape heterogeneity. Of these, entropy had a positive relationship
with southeastern myotis presence while proportion of returns from 6-12 m and landscape heterogeneity

had negative relationships with the presence of this species (Table 9).

Table 9: Results for most informative logistic model, southeastern myotis (M. austroriparius).

Estimate Std. Error z value Pr(>|z|)
Intercept 12.04 6.108 1.971 <0.05
Mean canopy height -0.219 0.131 -1.671 0.095
Entropy 2.240 0.815 2.749 <0.01
Rugosity -0.716 0.663 -1.080 0.280
Proportion of returns (0-1.5 m) -4.926 2.832 -1.740 0.082
Proportion of returns (1.5-6 m) -5.447 27.47 -0.198 0.843
Proportion of returns (6-12 m) -17.10 4.753 -3.596 <0.001
Landscape heterogeneity -2.066 0.837 -2.468 <0.05

Logistic Regression Models for Big Brown Bat (E. fuscus)

Three logistic models had comparable AICc weights for the big brown bat (Appendix D, Table
D6). These were models 7 (AICc of 91.46, AAICc of -0.08, AICc weight of 0.33, Table 10), 10 (AICc of
91.54, AAICc of -0.64, AICc weight of 0.32, Appendix D, Table D7), and 9 (AICc of 92.10, AAICc of -
2.19, AICc weight of 0.24, Appendix D, Table DS8). All three models included mean canopy height,
entropy, rugosity, binned proportion of returns (0-1.5 m, 1.5-6 m, 6-12 m), landscape heterogeneity,
proportion of urban lands, area of water, and length of service roads. Model 10 included the interaction
between length of service roads and landscape heterogeneity while model 9 included the interaction of
landscape heterogeneity and area of water. Model 7 had no interactive terms. In all three models, entropy
had a positive relationship to presence of the big brown bat while proportion of returns between 0-1.5 m
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and 6-12 m had a negative relationship to the presence of this species. Two of the models (7 and 9) also

showed a negative relationship between the length of service roads and presence of this species.

Table 10: Results for most informative logistic model, big brown bat (E. fuscus).

Estimate Std. Error z value Pr(>|z|)
Intercept 44.64 16.56 2.696 <0.01
Mean canopy height -0.6004 0.2508 -2.394 <0.05
Entropy 3.733 1.592 2.344 <0.05
Rugosity -4.782 3.476 -1.376 0.169
Proportion of returns (0-1.5 m) -19.79 8.195 -2.415 <0.05
Proportion of returns (1.5-6 m) 17.44 59.57 0.293 0.770
Proportion of returns (6-12 m) -26.67 9.397 -2.838 <0.01
Proportion of urban lands -2.432 6.100 -0.399 0.690
Area of water -0.0421 0.0270 -1.565 0.118
Length of service roads -0.0004 -0.0002 -2.762 <0.01
Landscape heterogeneity -3.211 1.649 -1.948 0.051
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DISCUSSION

Increasing the proportion of returns in any single bin (0-1.5 m, 1.5-6 m, 6-12 m) had a negative
effect on overall usage of sites by bats. This may be due to lowered detectability in cluttered
environments, though Patriquin and Barclay (2003) showed that structural clutter does not affect detection
rates of bats calling at the 40 Hz range. More likely is that the majority of bats were detected within the
unforested basin marsh sites which had few aboveground returns. Though insect abundance was
perceived to be higher in these areas, it is likely that bats were preferentially foraging in these sites to
minimize difficulties associated with tracking prey while simultaneously avoiding obstacles within their
flight paths (Simmons, Fenton and O'Farrell, 1979). Within South Carolina, wetlands were also shown to
be important foraging habitat for bats (Menzel, Menzel, Kilgo ef al., 2005a), so it is likely that bats within
Florida also preferentially forage in similar wetland habitats such as basin marsh.

Several parameters had strong correlations with bat community diversity. Maximizing the vertical
foliage height diversity (entropy) positively related to bat community diversity, following the same
patterns of bird species diversity (Goetz et al., 2007, MacArthur and MacArthur, 1961). By the same
token, increases in vegetative clutter throughout the midstory corresponded to lower levels of bat
community diversity. This is likely because those species which are morphologically clutter intolerant
would be unable to forage within highly cluttered spaces (Brigham, Grindal, Firman et al., 1997, Ford,
Menzel, Rodrigue et al., 2005, Marciente, Brobrowiec and Magnusson, 2015, Rainho, Augusto and
Palmeirim, 2010, Sleep and Brigham, 2003). It is surprising that the length of service roads within the
buffer space surrounding plots negatively relates to bat species diversity when it well known that many
bats use roads and forest edge as flyways and foraging area (Grindal and Brigham, 1999, Hein,
Castleberry and Miller, 2009). However, other studies (Bender, Castleberry, Miller et al., 2015, Loeb and
O'Keefe, 2006) show little support for roads as a feature promoting bat occupancy, especially at the
landscape scale. The relationship between roads and bat diversity within forested areas may also be better

captured by measuring distance to roads instead of overall length of roads within a study area (Rainho and
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Palmeirim, 2011). It is possible that the roads may have been important edge habitat for the bats in this
study, however since roads were not directly compared to natural spaces, the results may be conflated.

Landscape heterogeneity, measured as the Jost diversity of k-means cluster results within the 1.5
km buffer surrounding each sample point, also had a negative relationship to bat community diversity.
One reason for this may be that having to navigate through a large variety of differing forest types would
make commuting to foraging spaces more difficult for bats that specialize in open area flight. Because the
landscape heterogeneity measure was taken at a very fine scale (5 x 5 m), it is possible that this may not
have captured a scale relevant to the long-range species present within OSBS (Stephens, Koons, Rotella
et al., 2003).

Area of water was also had a negative relationship to bat community diversity, though most of the
species present within OSBS are known to forage over water. This may be in part because the water
bodies considered were permanent lakes and ponds that were measured using GIS layers. Ephemeral
sources of water, such as temporarily inundated swampy areas which may be important sources of
drinking water and foraging habitat for clutter-adapted species such as the tricolored bat, were not
mapped or considered as part of this study. Bender et al. (2015) found a negative relationship between
site occupancy of tricolored bats (P. subflavus) and distance to water. They used similar methods to map
water sources and likewise neglected ephemeral water sources. Their findings are similar to ours for bat
diversity, but opposite for the presence of tricolored bats which indicates that perhaps the tricolored bats
found at our study site were not particularly dependent on ephemeral sources of water.

Vertical foliage height diversity was positively related to presence of southeastern myotis and big
brown bats and negatively related to presence of evening bats. Because the big brown bat is a habitat
generalist that forages both in stand interiors and edges (Brigham, 1991), increases in foliage height
diversity may have created more foraging space for this species to use. Negative relationships between
presence of big brown bat and evening bat to canopy height may be related to these species being over
canopy flyers (Menzel, Menzel, Kilgo e al., 2005b). Bats flying over lower canopies may have been
detected whereas those flying over tall canopies remained undetected.
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LiDAR-derived forest structure parameters added predictive power to models of bat species
diversity, occurrence, and site utilization. LiDAR allows land managers to quickly and effectively
categorize forest structure over an entire landscape so they can make more informed decisions on where
to focus management efforts (Merrick et al., 2012). LiDAR not only allows managers to inventory forests
and determine structural parameters such as height and entropy at fine scales, it also can be useful in
determining successional stages of fire-managed communities (Angelo, Duncan and Weishampel, 2010)
at scales relevant to species conservation and management. Using fire to manage ecosystems is critically
important in the southeastern coastal plain of the United States, and though not considered in this study, is
expected to have an effect on bat species living within fire managed areas (Armitage and Ober, 2012)
since fire changes vegetation structure by thinning overgrown stands and allowing grasses and herbaceous
ground vegetation to prosper. Alternatively, stands of pine savanna which are fire suppressed suffer from
hardwood encroachment and increased midstory clutter.

The use of LiDAR has led to advances in the understanding of species/habitat relationships
because LiIDAR measurements can tease out nuanced patterns from very fine (tree branch) to coarse
(landscape-level) scales (Davies and Asner, 2014). LiDAR is also useful in creating indices of structural
diversity over large landscapes (Listopad, Masters, Drake et al., 2015) which allows researchers to
broaden their understanding of multiple indicators of biodiversity (Noss, 1990) by coupling monitoring
biodiversity at the species level with understanding of landscape structure and disturbance regimes.
Taking LiDAR inventories of managed sites could prove useful to managers who must make decisions on
how to best conserve plant and animal species at differing scales.

Given the continental scale LIDAR collection done by NEON, it is will be possible to extend this
and similar studies throughout the United States allowing researchers to understand large scale patterns of
bat diversity and habitat use. These studies could be conducted regularly to monitor changes in both
habitat and species composition throughout the contiguous United States. Though all of the species
present within this area of Florida are common, other studies have shown benefits to monitoring common
species (Agosta, 2002), including detecting possible declines of these species (Winhold, Kurta and Foster,
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2008). These studies could be supported by citizen scientists as acoustic data collection does not require
strict permitting. However, since acoustic studies can only provide researchers with information about
habitat use (Miller, Arnett and Lacki, 2003), further research using different methods would be advised in
order to determine habitat preference.

Future studies could also expand this research by including multiple detector levels to better
understand relationships between structural parameters and above canopy flyers (Menzel et al., 2005b).
This study could also be improved by considering measures at the stand level in addition to site and
landscape level parameters, as all three levels have been shown to affect bat presence (Loeb and O'Keefe,
2006). LiDAR-derived parameters such as landscape heterogeneity may be more meaningful at the stand
level instead of the landscape level.

The conservation of bat species is becoming increasingly important as bats face anthropogenic-
related pressures including disease (Frick ef al., 2010), wind turbine mortality (Arnett er al., 2008), and
habitat destruction and degradation. Even common bat species such as the eastern red bad may be in
decline (Winhold et al., 2008), and as important habitat such as pine savannas are increasingly converted
into agricultural and urban lands (Wear and Greis, 2002) more species are expected to be affected. In
order to preserve a high diversity of bat species, it is integral to understand their relationships with
complex environments. LiDAR is an excellent tool to help researchers understand species/habitat

dynamics over large scales.
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APPENDIX A: CORRELATION MATRICES
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Table Al: Correlation matrix of LIDAR parameters for k-means clustering (extends through page
65); blue cells are positively related and red cells are negatively related. ND values represent no
data.

TotalReturns  ElevMin  EleviMax ElevMean ElevMaode

TotalReturns -0.1753 0.4975% 0.4656
ElevMin 0.1237 0.4227 0.3911
Eleviax 0.1237

ElevMlean 0.4227

Eleviode 0.39511

ElevStdDey -0.2582 0.4751

Elev\ar -0.2582 0.4751 0.3863
ElevCy 02714 -0.5734 0.2711 -0.1358 -0.1916
EleviQ -0.2566 [IOIEOEE  0.2254 0.2370
ElevSkew -0.2518 -0.2778 -0.3672 -0.6453 -0.6858
ElevKurtosis 02111 01792 0.2113 0.3412 0.3618
ElevAAD -0.2670 0.4152

Elevll 0.4227

Elevl2 -0.2577 0.4435

Elevl3 -0.1568 -0.3796 -0.6023 -0.6901
Elevld 0.1068 0.4228 0.4308 0.4502
ElevLly -0.5686 02377 -0.1719 -0.2234
EleyLSkewness -0.2345 -0.2156 -0.3474 -0.5858 -0.6634
ElevLKurtosis 00825 0.2136 0.1187 0.2518 0.2856
ElevPO1

ElevFP05

ElevPl10

ElevP20

ElevP25

EleyP30

EleyPa0

ElevP50

ElevPG0O

ElevP70

EleyP75

EleyP30

EleyPS0

ElevP35

ElevP3g

Returnlibove3 0.4979 0.4G58
Return?Above3 0.4273 0.35m
Return3Above3 00416 00032 0.0561 0.0458 0.0421
ReturndAbove3 ND ND ND HD ND
ReturnSAboved HD ND HD HD ND
Returntibove3 HD ND HD HD ND
Return7above3 HD ND HD HD MDD
Return8Above3 ND ND ND HD D
ReturndAbove3 ND ND ND HD MD
OtherReturnibavel ND ND ND ND ND

PercentFirstAbove3 -0.1503 0.4939
PercentAlldboved -0.1896 0.4709
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AllDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode
AllAboveMeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst

TotalAll

ElevMADMedian

ElevMADMode

CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean

TotalReturns

-0.0807
0.0294
0.4745
0.3738
0.2416

ElevMin ElevMax ElevMean ElevMode
0.4989
0.4658

0.4686

0.4929
0.4975

-0.1537 0.4952 0.3184 0.0896
-0.1422

-0.1838 0.4755 0.2859 0.0568
01126 [
-0.1559  0.4952 0.3152 0.0845
-0.1393

-0.1904  0.4950 0.3376 0.1493
-0.1418

-0.1926  0.4958 0.3350 0.1439
-0.1134  0.0260 0.0193 0.0453
-0.0701 0.0981 0.1023 0.1188
-0.2377 0.3386 0.2509

-0.2182
0.3742

0.2693

0.1413
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TotalReturns
ElevMin
Eleviax
ElevMean
ElevMode
ElevStdDev
Elevvar

ElevCy

Elevi(
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl?

Elevl3

Elevld

ElevlCyV
ElevLSkewness
ElevLEurtosis
ElevPO1
ElevP05
ElevP10
ElevP20
ElevF25
EleyP20
ElevP40
ElewP50
ElevPG0
ElevPF70
ElevF75
ElevFa0
ElevP30
ElevP35
ElevP33
ReturnlAbove3
Return2Above3
Return3Aboved
ReturndAbovel
ReturnSAbove3
ReturntAbove3
Return/Above3
Return8@Abovel
Returndabove3

OtherReturnAbove3
PercentFirstAbove3

PercentAllAbove3

ElevStdDev  Elevar ElevlyY EleviQ  ElevSkew ElevKurtosis

0.2714 04580  -0.2518 0.2111

-0.25382 -0.2532 -0.5784 -0.2566  -0.2778 0.1792
0.2711 -0.3672 0.2113

04781 04731 -0.1328 03254  -0.6453 0.3412
0.3863 0.3362 -0.1916 0.2370  -0.6858 0.3618
-0.1562 -0.1361

-0.1562 -0.1361

0.3451 -0.4083

0.0102 -0.4103

-0.4169

01562 -0.1562 0.3451 0.0102

01361 -0.1361 -0.4023 -0.4103

04781 04781 -0.1388 0.3254  -0.6453 0.3412
-0.2063

-0.2810
02243

-0.2909
0.2243

-0.1444
-0.1002

-0.2308 -0.0720

-0.1856 -0.1956 -0.4446 -0.5095
-0.1251 -0.1351 -0.5821 -0.1642 -0.4159 0.2921
-0.0211 -0.0211 -0.5575 -0.0993 -0.5489 0.4283

00615 0.0615 -0.5196 -0.0617  -0.6291
02009 0.2009 -0.4181 0.0287 -0.7066
02567 0.256G7 -0.3685 0.076G8 -0.7242

03085 0.3085 -0.3184 01322 -0.7312 0.4762

0.4004 04004 -0.22323 0.2357  -0.7244 0.4026

04783 04732 -0.1367 03254  -0.6998 0.3300

-0.0806  0.4011 -0.6627 0.2651

0.0145 0.4723 -0.6128 0.2167

0.0530 -0.5835 0.1871

0.0925 -0.5505 0.1816

01723 -0.4735 0.1767

0.2192 -0.4231 0.1870

0.2592 -0.3777 0.2043

0.2568 0.4418 -0.2537 0.2215

-0.1651 -0.0282

0.0510 00510 0.0181 0.0429 -0.0165 -0.0019
ND ND ND ND MD ND
HD ND HD HD HD WD
HD ND HD HD HD WD
HD ND HD HD HD NWD
MD ND MD ND MD ND
ND ND ND ND MD ND
ND MD ND ND HD ND

0.3348 -0.2409 0.1656
0.3755 -0.2136 0.1402
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AllDivFirstTimes100

FirstAbovel

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAlldbovelean
PercentAllaboveVode
AllAboveMeanDivByFirstTimes100
AlldboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveNode

TatalFirst

Totalall

EleviMADMedian

ElevMADMode

CanopyReliefRatio
ElevOuadraticMean
ElevCubicMean

ElevStdDev

0.3507
02568 0.4418
0.2714 0.4580
0.2668
04348 04348 03122 0.3953
0.2966
04361 04361 03377 0.4024
0.2734 [JEISE0E
04378 04378 03179 0.3993
0.2185 0.4464
04129 04129 0.2658 03570
02237 0.4506
04166 04166 02720 0.3618
00131 0.0131 -0.0268 -0.0080
00462 0.0462 0.0437 0.0138

01232 01232 -0.4108 -0.0288
-0.0707 0.3812
-0.0158 0.4238
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ElevVar ElevCY EleviQ  ElevSkew

-0.2368
-0.2537
-0.2518
-0.4181
-0.0229
-0.3950

0.0044
-0.4127
-0.0173
-0.3935
-0.0761
-0.3897
-0.0705
-0.0439
-0.0988
-0.0038

0.0185
-0.9502
-0.6189
-0.5909

ElevKurtosis

0.1523
0.2215
0.2111
0.2089
0.1500
0.1912
0.1330
0.2045
0.1457
0.2412
0.1984
0.2383
0.1836
0.0523
0.0944
-0.3757
-0.4028
0.4255
0.3077
0.2826



TotalReturns
ElevMin
Eleviax
ElevMean
ElevMode
ElevStdDev
Elevvar

ElevCy

Elevi(
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl?

Elevl3

Elevld

ElevlCyV
ElevLSkewness
ElevLEurtosis
ElevPO1
ElevP05
ElevP10
ElevP20
ElevF25
EleyP20
ElevP40
ElewP50
ElevPG0
ElevPF70
ElevF75
ElevFa0
ElevP30
ElevP35
ElevP33
ReturnlAbove3
Return2Above3
Return3Aboved
ReturndAbovel
ReturnSAbove3
ReturntAbove3
Return/Above3
Return8@Abovel
Returndabove3
OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

ElevAAD Elevll Elevl? Elevl?  Elevld ElevlCy
0.4975 02614 03148 02482
02670 Q4227 02577 01568 01068 -0.5686
03796 04228 02357
06023 04308 -0.1719
06801 04502 -0.2234
-0.2910 0.2243
-0.2909 Q2243
01730 -0.1034
01444 01002
-0.4124

-0.2412
-0.2408 01127
-0.6023 04308
-0.2580

-0.1719

0.1636 [NONEH

-0.2408 .0.3365  0.2082
01127 04308 O -0.3365 -0.1699
e 01719 0.2082
-0.1736 -0.5838 0.2679
-0.3133 . -0.2126 -0.5041
-0.1581 . -0.2634 10,5793
20.3769 0.3506 -0.5684
04643 04506 -0.5416
-0.5849 10,4518
-0.6269 -0.4042
-0.6575 0.3547
-0.6902 0.4891 -0.2588
06873 04267 -0.1706
{06555 0.3764 -0.0927
06078 0.3424 -0.0157
-0.5789 0.3365 0.0230
-0.5470 0.3333  0.0629
204742 03681 0.1422
204250 03947  0.1882
203801 04175 0.2262
04802 04929 02579 03171 0.2334

P 04273 02742 02406 [NEEI0Y

0.0502 00488 00501 -0.0200 0019 0.0153

ND ND ND ND ND ND
HD ND WD ND WD ND
HD ND WD ND ] ND
HD ND ND ND HD ND
MD ND ND ND ND ND
ND ND ND ND ND ND
ND ND ND ND ND MND

02716 03359 0.2166
-0.2537 03196 0.3532
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AllDivFirstTimes100
FirstAbovel
AllAbove3
PercentAboveMean

PercentFirstAboveMode

PercentAlldbovelean
PercentAllaboveVode

AllAboveMeanDivByFirstTimes100
AlldboveModeDivByFirstTimes100

FirstAboveMean
FirstAboveMode
AllAboveMean
AllAboveNode
TatalFirst

Totalall
EleviMADMedian
ElevMADMode
CanopyReliefRatio
ElevOuadraticMean
ElevCubicMean

ElevAAD Elevll Elevl? Elevl3

-0.2727
0.4802 04929 -0.2579
-0.2614
-0.4063
04168 03184 04303 00386

-0.4488
04208 02859 04331 0.0603
04203 03152 04336 0.0439

-0.4155

(0.2892 03376 04003 -0.0218
0.2834 0,330 04044 -0.0164
0.0073 00193 00018 -0.0658
0.0350 01023 00320 -0.1033
0.3386 -0,1460

0.2693 -0,1160

-0,8237

-0.5865

-0.5654
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Elevld  ElevlCy
0.3295  0.3326
0.3171 02334
03145 02432
0.3819 02415
0.2399  0.3007
Q370 02722
0.2257  0.3270
0.2799  0.2482
02368 03066
03545 0.1909
02510 0.2470
0.3533 01962
Q.2477  0.2535
Q.0015  -N.035%4
0.0406 -0.0538

-0.0670

-0.0982
0.2391 -0.44907
04171 -0.1043
0.4082  -0.0497



TotalReturns
ElevMin
Eleviax
ElevMean
ElevMode
ElevStdDev
Elevvar

ElevCy

Elevi(
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl?

Elevl3

Elevld

ElevlCyV
ElevLSkewness
ElevLEurtosis
ElevPO1
ElevP05
ElevP10
ElevP20
ElevF25
EleyP20
ElevP40
ElewP50
ElevPG0
ElevPF70
ElevF75
ElevFa0
ElevP30
ElevP35
ElevP33
ReturnlAbove3
Return2Above3
Return3Aboved
ReturndAbovel
ReturnSAbove3
ReturntAbove3
Return/Above3
Return8@Abovel
Returndabove3
OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

Elev Skewness

-(0.2345
-0.2156
-0.3474
-0.5833
-0.6634
-(0.2308
-0.22308

(0.2355
-0.0720

-0.2002
-0.1736
-0.5838
-0.1820

ElevLKurtosis
0.0825
0.2136
01187
02518
02886

-0.1956
-0.1956
-01.4446
-0.5095
-0L3609

-0.3132
0.2512
-0.2635

-0.2126
-0.3742

0.2679

-0.2785
-0.2228
-0.4316
-0.5151
-0.6177
-0.6492
-0.6681
-0.6793
-0.6632
-0.6233
-0.5792
-0.5502
-0.5177
-0.4439
-0.3578
-0.3568
-0.2332
-0.2206
-0.0260

ND

HD

HD

HD

MD

ND

ND
-0.2344
-0.2145

38

-0.5041
-0.2785

0.2773

ElevPO1
Q.0553

03273

-0.1351
-0.1351
-0.5821
-0.1642
-0.4159

02531
-0.1581

-0.1426
-0.2684

02187
-0.5798
-0.3228
0.2778

ElevFO5 ElevP10
0.216%  0.2293

0.4797

-0.0211  0.0615

-0.0211 0.0615

-0.5575 -0.5196

-0.0993 -0.0617

-0.5439 -0.6291
04233

-0.0676 -0.0008

-0.0448  0.0273
-0.3769 -0.4643

0.3506 04506
-0.5684 -0.5416
-0.4316 -0.5151
0.3703 042331

0.3708

0.43381

0.4646

0.4426

0.4091

0.3272

0.2452

0.1785

01211

0.1013

0.0886

0.0902

0.1026

0.1154 . 0.4936

0.0915 00558 02214 0.25932

-0.0922 00756 0.0484 01209

-0.0071  0.0151 0.0235 0.0265
ND MD ND MD
HD HD ND HD
HD HD ND HD
HD HD ND HD
MD MD ND MD
ND MD ND ND
ND HD ND ND

0.0573 00633 02245 03011

0.0324 00154 01799 0.257%



AllDivFirstTimes100
FirstAbovel
AllAbove3
PercentAboveMean

PercentFirstAboveMode
PercentAlldbovelean
PercentAllaboveVode
AllAboveMeanDivByFirstTimes100
AlldboveModeDivByFirstTimes100

FirstAboveMean
FirstAboveMode
AllAboveMean
AllAboveNode
TatalFirst

Totalall
EleviMADMedian
ElevMADMode
CanopyReliefRatio
ElevOuadraticMean
ElevCubicMean

Elev Skewness
-0.2337
-0.2332
-0.2345%
-0.4252

0.0354
-0.4072

Q.0585
-0.4205

0.040%
-0.3877
-0.019%
-0.3845
-0.0144
-(.0556
-0.094 7
-0.0750
-0.055%%
-0.33827
-0.5687
-0.5453
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ElevLKurtosis
0.0452
0.0915
00225
01068
00472
0.0338
0.0301
0.1030
00431
01138
00763
1151
00718
00073
0,037

-04671
-0 4630
0.3540
02178
019232

ElevPO1 ElevPO5 ElevP10

0.0569
0.0598
0.0553
01077
-0.0070
0.0722
-0.0425
01043
-0.0101
0.0555
-0.0063
0.0929
-0.0093
-0.0410
0.0232
-0.1376
-0.1441
0.5332
0.5828
0.5456

0.2170
0.2214
0.2168
0.2789
0.1189
0.2440
0.0815
0.2752
0.1149
0.2658
0.1325
0.2630
0.1283
-0.0127
0.0639
-0.0650
-0.0931
0.6585
0.7308
0.6951

0.2939
0.2932
0.2893
0.3700
01677
0.3356
01:z01
0.2660
016323
0.3497
01853
0.2468
013812
-0.0063
0.0734
-0.0252
-0.0630
0.720G
0.8036
0.7698



TotalReturns
ElevMin
Eleviax
ElevMean
ElevMode
ElevStdDev
Elevvar

ElevCy

Elevi(
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl?

Elevl3

Elevld

ElevlCyV
ElevLSkewness
ElevLEurtosis
ElevPO1
ElevP05
ElevP10
ElevP20
ElevF25
EleyP20
ElevP40
ElewP50
ElevPG0
ElevPF70
ElevF75
ElevFa0
ElevP30
ElevP35
ElevP33
ReturnlAbove3
Return2Above3
Return3Aboved
ReturndAbovel
ReturnSAbove3
ReturntAbove3
Return/Above3
Return8@Abovel
Returndabove3

OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

ElevP20 ElewP25 ElevP30 ElevP40 ElevP50 ElewPGD ElevP70
03742 04006 04251 04634 04879
0.4525 04016 Q.3569 03121

02008  0.25G7 0.4004
02008 0.25G7 03085 04004
-0.4151 -0.2685 -0.3184 -0.2233 -01367 -0.060c 00149
0.0287 00768 01323 02357 03254 04011 04723
-0.7066 -0.7242 -0.7312 -0.7244 -0.8998 -0.6627 -0.6128
04762 04026 03300 0.2691 02167

0.2352 0.4901

01234 0.1853

01608 02167 02682 03635 04441
-0.5848 -0.6269 -0.6575 -0.0902 -0.6372 -0.6555 -0.6078
04891 04267 0.3764 03424
-0.4518 -0.4042 -0.3547 -0.2588 -01706 -0.0927 -0.0157
-0.6177 -0.6492 -06681 -0.67/93 -06632 -0.6283 -0.5792
04646 04426 04081 03273 02452 01769 01211

03762 04014 04247 04608 04832
02285 0.2699 03084 03756 04282 04724
0.0352 0.0395 00443 00455 00462 0.04565 00528

ND ND MD ND MD ND ND
HD ND HD ND HD ND HD
HD ND HD ND HD ND HD
HD MWD HD ND HD ND HD
MD ND MD ND MD ND ND
ND ND MD ND ND ND ND
ND ND ND ND ND ND ND

03940 04251 04542
0.3538 03367 04176 0.4666
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AllDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode
AllAboveMeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst

TotalAll

ElevMADMedian

ElevMADMode

CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean

ElevP20 ElevP25 ElevP30 ElevP40 ElevP50 ElevP60 ElevP70

0.3885 0.4207 0.4510 0.4992
0.3762 0.4014 04247 04608 0.4832
0.4006 0.4251 04634 0.4879

02150 0.2263 02391 0.2615 0.2841 03106 0.3438
0.4515 0.4910
0.1784 0.1903 02038 02276 0.2522 0.2804 0.3156
04798 05183 05522 0031 06328 06497 06593
02103 0.2216 0.2344 0.2573 0.2805 03077 0.3415
0.4509 0.4832

0.2389 0.2519 0.2660 0.2891 0.3088 03313 0.3602
0.4482 0.4806

0.2345 0.2475 0.2617 0.2852 0.3057 03290 0.3587
0.0089 0.0132 0.0175 0.0234 0.0231 00242 00253
0.0902 0.0944 0.0984 01043 0.1034 01036 01033
0.0637 0.1085 01565 0.2519 0.3404 04130 04763
00174 0.0580 01022 01908 0.2761 03424 0.3988
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TotalReturns
ElevMin
Eleviax
ElevMean
ElevMode
ElevStdDev
Elevvar

ElevCy

Elevi(
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl?

Elevl3

Elevld

ElevlCyV
ElevLSkewness
ElevLEurtosis
ElevPO1
ElevP05
ElevP10
ElevP20
ElevF25
EleyP20
ElevP40
ElewP50
ElevPG0
ElevPF70
ElevF75
ElevFa0
ElevP30
ElevP35
ElevP33
ReturnlAbove3
Return2Above3
Return3Aboved
ReturndAbovel
ReturnSAbove3
ReturntAbove3
Return/Above3
Return8@Abovel
Returndabove3

OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

ElevP75 ElevP80 ElevP90 ElevP95 ElevPS9 ReturnlAbove3

02501 0.2671 02166 01824 01429 -0.1708

0.4929
04658

00530 00925 01723 02192 02592 0.2563

0.4412
-0.5835 -0.5505 -0.4735 -0.4231 -0.37%77 -0.2537
01971 01316 01767 01870 02042 0.2215%

-0.5789 -0.5470 -0.4742 -0.4290 -0.33851 -0.2579
03365 032383 03681 03947 04175 0.2171
0.02230 00629 01422 01882 02262 0.2334
-0.5502  -0.5177 -0.4439 -0.3978 -0.3568 -0.2332
01012 0.0885 0.0%03 01026 01154 0.0915
04918 04881 04155 0.3804 0.3436 0.0593

00545 0.0548 00555 0.0561 0.0560 0.0413
ND ND MD ND MD ND
HD ND HD ND HD ND
HD ND HD ND HD ND
HD MWD HD ND HD ND
MD ND MD ND MD ND
ND ND MD ND ND ND
ND ND ND ND ND ND
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ElevP75 ElevP80 ElevP90 ElevP95 FElevP99 ReturnlAbove3

AllDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode
AllAboveMeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean
FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst 0.0249 0.0249 0.0254 0.0224 0.0226 -0.0786
TotalAll 0.1022 0.1010 0.0998 0.0956 0.0949 0.0314
ElevMADMedian
ElevMADMode
CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean
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TotalReturns
ElevMin
ElevMax
ElevMean
ElevMode
ElevStdDev
Elev\ar

ElevCV

EleviQ
ElevSkew
ElevKurtosis
ElevAAD

ElevLl

Elevl2

Elevl3

ElevLd

ElevLCV
ElevLSkewness
ElevLKurtosis
ElevP01
ElevP05
ElevP10
ElevP20
ElevP25
ElevP30
ElevP40
ElevP50
ElevP60
ElevP70
ElevP75
ElevP80
ElevP90
ElevP95
ElevP99
ReturnlAbove3
Return2Above3
Return3Above3d
ReturndAbove3
Return5Above3
Return6Above3
Return7Above3
Return8Above3
Return9Above3
OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

Return2Above3

-0.2406

0.4273

0.3901

-0.1651

-0.0282

0.4273

-0.2742
0.2406

-0.2206
-0.0922
-0.0756
0.0484
0.1209
0.2285
0.2699
0.3084
0.3756
0.4282
0.4724

ND

ND
ND
ND
ND
ND
ND
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Return3Above3 ReturndAbove3

ND
ND
ND
ND
ND
ND
ND

0.0416 ND
0.0032 ND
0.0561 ND
0.0488 ND
0.0421 ND
0.0510 ND
0.0510 ND
0.0181 ND
0.0429 ND
-0.0165 ND
-0.0019 ND
0.0502 ND
0.0488 ND
0.0501 ND
-0.0300 ND
0.0196 ND
0.0153 ND
-0.0260 ND
-0.0071 ND
0.0151 ND
0.0235 ND
0.0265 ND
0.0352 ND
0.0395 ND
0.0443 ND
0.0455 ND
0.0462 ND
0.0465 ND
0.0529 ND
0.0545 ND
0.0548 ND
0.0555 ND
0.0561 ND
0.0560 ND
0.0413 ND
0.0480 ND

ND
0.0421 ND
0.0416 ND



AllDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode
AllAboveMeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst

TotalAll

ElevMADMedian

ElevMADMode

CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean

Return2Above3

-0.0867
0.0093

0.1356
0.4667
0.4965
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Return3Above3 ReturndAbove3
0.0427 ND
0.0413 ND
0.0416 ND
0.0469 ND
0.0228 ND
0.0447 ND
0.0204 ND
0.0469 ND
0.0227 ND
0.0431 ND
0.0363 ND
0.0431 ND
0.0362 ND
0.0038 ND
0.0098 ND
0.0354 ND
0.0238 ND
0.0208 ND
0.0505 ND
0.0519 ND



TotalReturns
ElevMin
Eleviax
ElevMean
ElevMode
ElevStdDev
Elevvar

ElevCy

Elevi(
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl?

Elevl3

Elevld

ElevlCyV
ElevLSkewness
ElevLEurtosis
ElevPO1
ElevP05
ElevP10
ElevP20
ElevF25
EleyP20
ElevP40
ElewP50
ElevPG0
ElevPF70
ElevF75
ElevFa0
ElevP30
ElevP35
ElevP33
ReturnlAbove3
Return2Above3
Return3Aboved
ReturndAbovel
ReturnSAbove3
ReturntAbove3
Return/Above3
Return8@Abovel
Returndabove3

OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

ReturnSAbove3
ND
ND
MND
ND
ND
ND
ND
ND
ND
HND
MND
ND
ND
ND
ND
ND
HND
ND
ND
ND
MND
ND
ND
ND
ND
ND
HND
HND
MND
ND
ND
ND
ND
ND
HND
ND
ND
ND
ND
ND
ND
ND
ND
ND
HND
MND
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ReturnbAbove3
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

Return7Above3
ND
ND
MND
ND
ND
ND
ND
ND
MND
MND
MND
ND
ND
ND
ND
ND
MND
ND
ND
ND
MND
ND
ND
ND
ND
ND
MND
MND
MND
ND
ND
ND
ND
ND
MND
ND
ND
ND
ND
ND
ND
ND
ND
ND
MND
MND



AllDivFirstTimes100
FirstAbovel
AllAbove3
PercentAboveMean

PercentFirstAboveMode

PercentAlldbovelean

PercentAllAboveNode
AllAboveMeanDivByFirstTimes100
AlldboveModeDivByFirstTimes100

FirstAboveMean
FirstAboveMode
AllAboveMean
AllAboveNode
TatalFirst

Totalall
EleviMADMedian
ElevMADMode
CanopyReliefRatio
ElevOuadraticMean
ElevCubicMean

ReturnSAbove3

ND
ND
HD
HD
HD
MD
MD
ND
HD
HD
HD
ND
MD
MD
HD
HD
HD
ND
HD
ND
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ReturnbAbove3
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

Return7Above3
ND
ND
MND
ND
ND
ND
ND
ND
MND
MND
MND
ND
ND
ND
ND
ND
MND
ND
ND
ND



TotalReturns
ElevMin
Eleviax
ElevMean
ElevMode
ElevStdDev
Elevvar

ElevCy

Elevi(
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl?

Elevl3

Elevld

ElevlCyV
ElevLSkewness
ElevLEurtosis
ElevPO1
ElevP05
ElevP10
ElevP20
ElevF25
EleyP20
ElevP40
ElewP50
ElevPG0
ElevPF70
ElevF75
ElevFa0
ElevP30
ElevP35
ElevP33
ReturnlAbove3
Return2Above3
Return3Aboved
ReturndAbovel
ReturnSAbove3
ReturntAbove3
Return/Above3
Return8@Abovel
Returndabove3

OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

Return8Above3
ND
ND
MND
ND
ND
ND
ND
ND
ND
HND
MND
ND
ND
ND
ND
ND
HND
ND
ND
ND
MND
ND
ND
ND
ND
ND
HND
HND
MND
ND
ND
ND
ND
ND
HND
ND
ND
ND
ND
ND
ND
ND
ND
ND
HND
MND

48

Return9above3
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

OtherReturnAbove3
ND
ND
MND
ND
ND
ND
ND
ND
MND
MND
MND
ND
ND
ND
ND
ND
MND
ND
ND
ND
MND
ND
ND
ND
ND
ND
MND
MND
MND
ND
ND
ND
ND
ND
MND
ND
ND
ND
ND
ND
ND
ND
ND
ND
MND
MND



AllDivFirstTimes100
FirstAbovel
AllAbove3
PercentAboveMean

PercentFirstAboveMode

PercentAlldbovelean

PercentAllAboveNode
AllAboveMeanDivByFirstTimes100
AlldboveModeDivByFirstTimes100

FirstAboveMean
FirstAboveMode
AllAboveMean
AllAboveNode
TatalFirst

Totalall
EleviMADMedian
ElevMADMode
CanopyReliefRatio
ElevOuadraticMean
ElevCubicMean

Return8Above3

ND
ND
HD
HD
HD
MD
MD
ND
HD
HD
HD
ND
MD
MD
HD
HD
HD
ND
HD
ND
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Return9above3
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

OtherReturnAbove3
ND
ND
MND
ND
ND
ND
ND
ND
MND
MND
MND
ND
ND
ND
ND
ND
MND
ND
ND
ND



TotalReturns
ElevMin
ElevMax
ElevMean
ElevMode
ElevStdDev
ElevVar

ElevCV

EleviQ
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl2

Elevl3

ElevLd

ElevLCV
ElevLSkewness
ElevLKurtosis
ElevP01
ElevP05
ElevP10
ElevP20
ElevP25
ElevP30
ElevP40
ElevP50
ElevP60
ElevP70
ElevP75
ElevP80
ElevP90
ElevP95
ElevP99
ReturnlAbove3
Return2Above3
Return3Above3
ReturndAbove3
Return5Above3
Return6Above3
Return7Above3
Return8Above3
Return9Above3

OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

PercentFirstAbove3  PercentAllAbove3  AllDivFirstTimes100

-0.1503 -0.1896 -0.1554

0.4999 0.4709 0.4989

0.3348 0.3755 0.3507
-0.2409 -0.2136 -0.2368
0.1656 0.1402 0.1528

-0.2716 -0.2537 -0.2727
0.3359 0.3196 0.3295
0.3166 0.3582 0.3326

-0.2344 -0.2145 -0.2337
0.0579 0.0324 0.0462
0.0633 0.0194 0.0569
0.2245 0.1799 0.2170
0.3011 0.2575 0.2939
0.3940 0.3538 0.3885
0.4251 0.3867 0.4207
0.4542 0.4176 0.4510

0.0421 0.0416 0.0427
ND ND ND
ND ND ND
ND ND ND
ND ND ND
ND ND ND
ND ND ND
ND ND ND
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AlIDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode
AllAboveMeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst

TotalAll

ElevMADMedian

ElevMADMode

CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean

PercentFirstAbove3  PercentAllAbove3  AllDivFirstTimes100

-0.1941 -0.1927 -0.1948
-0.0866 -0.0869 -0.0871
04701 0.4921 0.4844
0.2243 0.1910 0.2197
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TotalReturns
ElevMin
ElevMax
ElevMean
ElevMode
ElevStdDev
ElevVar

ElevCV

EleviQ
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl2

Elevl3

ElevLd

ElevLCV
ElevLSkewness
ElevLKurtosis
ElevP01
ElevP05
ElevP10
ElevP20
ElevP25
ElevP30
ElevP40
ElevP50
ElevP60
ElevP70
ElevP75
ElevP80
ElevP90
ElevP95
ElevP99
ReturnlAbove3
Return2Above3
Return3Above3
ReturndAbove3
Return5Above3
Return6Above3
Return7Above3
Return8Above3
Return9Above3

OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

FirstAbove3 AllAbove3 PercentAboveMean

-0.1708 -0.1753 -0.1095

0.2568
0.4418
-0.2537 -0.2518 -0.4181
0.2215 0.2111 0.2089

0.4902
0.4929

-0.2579 -0.2614 -0.4663

0.3171 0.3148 0.3819
0.2334 0.2482 0.2415
-0.2332 -0.2345 -0.4252
0.0915 0.0825 0.1068
0.0598 0.0553 0.1077
02214 0.2168 0.2789
0.2932 0.2893 0.3700
0.3762 0.3742 0.4836
0.4014

0.4247
0.4608
0.4832

0.0413 0.0416 0.0469
ND ND ND
ND ND ND
ND ND ND
ND ND ND
ND ND ND
ND ND ND
ND ND ND
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AlIDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode
AllAboveMeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst

TotalAll

ElevMADMedian

ElevMADMode

CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean

FirstAbove3

-0.0786
0.0314
0.4588
0.3588
0.2439

AllAbove3 PercentAboveMean

-0.0807 -0.0448
0.0294 0.0237
0.3738 0.4430
0.2416 0.3777
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TotalReturns
ElevMin
ElevMax
ElevMean
ElevMode
ElevStdDev
ElevVar

ElevCV

EleviQ
ElevSkew
ElevKurtosis
ElevAAD

ElevLl

Elevl2

Elevl3

ElevLd

ElevLCV
ElevLSkewness
ElevLKurtosis
ElevP01
ElevP05
ElevP10
ElevP20
ElevP25
ElevP30
ElevP40
ElevP50
ElevP60
ElevP70
ElevP75
ElevP80
ElevP90
ElevP95
ElevP99
ReturnlAbove3
Return2Above3
Return3Above3
ReturndAbove3
Return5Above3
Return6Above3
Return7Above3
Return8Above3
Return9Above3

OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

PercentFirstAboveMode PercentAllAboveMean

-0.1537 -0.1422
0.4952
0.3134
0.0896
0.4348
0.4348

0.2399 0.3709
0.3007 0.2722
0.0354 -0.4072
0.0472 0,0889
-0.0070 0.0722
01189 0.2440
01677 0.3356
0.2150 0.4515

0.0228 0.0447
ND ND
ND ND
ND ND
ND ND
ND ND
ND ND
ND ND
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AlIDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode
AllAboveMeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst

TotalAll

ElevMADMedian

ElevMADMode

CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean

PercentFirstAboveMode
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PercentAllAboveMean

-0.1210 -0.0364
-0.0656 0.0249
0.3980 0.4585
0.0149 0.3500

0.3410
0.3602



TotalReturns
ElevMin
ElevMax
ElevMean
ElevMode
ElevStdDev
ElevVar

ElevCV

EleviQ
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl2

Elevl3

ElevLd

ElevLCV
ElevLSkewness
ElevLKurtosis
ElevP01
ElevP05
ElevP10
ElevP20
ElevP25
ElevP30
ElevP40
ElevP50
ElevP60
ElevP70
ElevP75
ElevP80
ElevP90
ElevP95
ElevP99
ReturnlAbove3
Return2Above3
Return3Above3
ReturndAbove3
Return5Above3
Return6Above3
Return7Above3
Return8Above3
Return9Above3
OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

PercentAllAboveMode  AllAbMeanDivByFirstTimes100

ND
ND
ND
ND
ND
ND
ND
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-0.1838 0.1126
0.4755
0.2859
0.0568

0.4361
0.4361

0.0603 -0.4616
0.2257 0.3799
0.3270 0.2482
0.0585 -0.4205
0.0301 0.1030
-0.0425 0.1043
0.0815 0.2752
0.1301 0.3660
0.1784 0.4798

0.0204 0.0469
ND
ND
ND
ND
ND
ND
ND



AlIDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode
AllAboveMeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst

TotalAll

ElevMADMedian

ElevMADMode

CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean

PercentAllAboveMode
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AllAbove MeanDivByFirstTimes100

-0.1140 -0.0447
-0.0658 0.0236
0.4056 0.4481
-0.0161 0.3724

0.3102
0.3308



AllAbove Mode DivByFirstTimes100 FirstAboveMean

TotalReturns

ElevMin -0.1559 -0.1393
ElevMax 0.4952

ElevMean 0.3152

ElevMode 0.0845

ElevStdDev 0.4378

ElevVar 0.4378

ElevCV 0.3179 0.2185
EleviQ 0.3993 0.4464
ElevSkew -0.0173 -0.3935
ElevKurtosis 0.1457 0.2412
ElevAAD 0.4203

ElevLl 0.3152

Elevl2 0.4336

ElevL3 0.0439 -0.4155
ElevL4 0.2368 0.3545
ElevLCV 0.3066 0.1909
ElevLSkewness 0.0405 -0.3877
ElevLKurtosis 0.0431 0.1188
ElevP01 -0.0101 0.0955
ElevP05 0.1149 0.2658
ElevP10 0.1633 0.3497
ElevP20 0.2103 0.4509
ElevP25 0.2216

ElevP30

ElevP40

ElevP50

ElevP60

ElevP70

ElevP75

ElevP80

ElevP90

ElevP95

ElevP99

ReturnlAbove3

Return2Above3

Return3Above3 0.0227 0.0431
ReturndAbove3 ND ND
Return5Above3 ND ND
Return6Above3 ND ND
Return7Above3 ND ND
Return8Above3 ND ND
Return9Above3 ND ND
OtherReturnAbove3 ND ND

PercentFirstAbove3
PercentAllAbove3
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AlIDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode
AllAboveMeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst

TotalAll

ElevMADMedian

ElevMADMode

CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean

AllAbove ModeDivByFirstTimes100
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FirstAboveMean

-0.1214 -0.0824
-0.0663 0.0288
0.4318 0.4642
0.4021 0.3631
0.0094 0.3649

0.3383
0.3579



TotalReturns
ElevMin
ElevMax
ElevMean
ElevMode
ElevStdDev
Elev\ar

ElevCV

EleviQ
ElevSkew
ElevKurtosis
ElevAAD

ElevLl

Elevl2

Elevl3

ElevLd

ElevLCV
ElevLSkewness
ElevLKurtosis
ElevP01
ElevP05
ElevP10
ElevP20
ElevP25
ElevP30
ElevP40
ElevP50
ElevP60
ElevP70
ElevP75
ElevP80
ElevP90
ElevP95
ElevP99
ReturnlAbove3
Return2Above3
Return3Above3d
ReturndAbove3
Return5Above3
Return6Above3
Return7Above3
Return8Above3
Return9Above3
OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

FirstAboveMode

ND
ND
ND
ND
ND
ND
ND

-0.1904
0.4950
0.3376
0.1493
0.4129
0.4129
0.2658
0.3570

-0.0761
0.1984
0.3892
0.3376
0.4003

-0.0218
0.2510
0.2470

-0.0195
0.0763

-0.0063
0.1325
0.1853
0.2389

0.0363
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AllAboveMean

ND
ND
ND
ND
ND
ND
ND

-0.1418

0.2237
0.4506
-0.3897
0.2383

-0.4124
0.3533
0.1962

-0.3845
0.1161
0.0929
0.2630
0.3468
0.4482

0.0431

AllAbove Mode

ND
ND
ND
ND
ND
ND
ND

-0.1926
0.4959
0.3350
0.1439
0.4166
0.4166
0.2720
0.3618

-0.0705
0.1936
0.3934
0.3350
0.4044

-0.0164
0.2477
0.2535

-0.0144
0.0718

-0.0093

0.1288

0.1812

0.2345

0.2475

0.2617

0.2852

0.3057

0.3290

0.3587

0.3752

0.3908

0.4309

0.4504

0.4791

0.0362

TotalFirst
-0.0807
-0.1134

0.0260
0.0193
0.0453
0.0131
0.0131
-0.0268
-0.0080
-0.0489
0.0528
0.0073
0.0193
0.0018
-0.0658
0.0015
-0.0394
-0.0556
0.0078
-0.0410
-0.0127
-0.0063
0.0089
0.0132
0.0175
0.0234
0.0231
0.0242
0.0253
0.0249
0.0249
0.0254
0.0224
0.0226
-0.0786
-0.0867
0.0038

ND

ND

ND

ND

ND

ND

ND
-0.1941
-0.1927



AllDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode
AllAboveMeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst

TotalAll

ElevMADMedian

ElevMADMode

CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean

FirstAboveMode  AllAboveMean

-0.0825
0.0136 0.0286
0.3764 0.4683
0.3266 0.3672
0.0717 0.3612

0.3576
0.3743
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AllAbove Mode

0.0663
0.3556
0.3728

TotalFirst
-0.1948
-0.0786
-0.0807
-0.0448
-0.1210
-0.0364
-0.1140
-0.0447
-0.1214
-0.0824

-0.0945

-0.0825

-0.0954

-0.0565
0.0604
0.0204
0.0214



TotalReturns
ElevMin
Eleviax
ElevMean
ElevMode
ElevStdDev
Elevvar

ElevCy

Elevi(
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl?

Elevl3

Elevld

ElevlCyV
ElevLSkewness
ElevLEurtosis
ElevPO1
ElevP05
ElevP10
ElevP20
ElevF25
EleyP20
ElevP40
ElewP50
ElevPG0
ElevPF70
ElevF75
ElevFa0
ElevP30
ElevP35
ElevP33
ReturnlAbove3
Return2Above3
Return3Aboved
ReturndAbovel
ReturnSAbove3
ReturntAbove3
Return/Above3
Return8@Abovel
Returndabove3

OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

Totalall  ElevMADMedian  ElevMADNode  CanopyReliefRatio
0.02594 0.4745 0.3738 0.2416
-0.0701 -0.2377 -0.2182 0.3742
0.0981 0.3837
0.1023
0.1188
0.0462

-0.09588 -0.0038 0.0185 -0.9502
0.0944 -0.3757 -0.4028 0.4255

-0.8237

0.3831

-0.4407

-0.0947 -0.0750 -0.0559 -0.8527
0.0374 -0.4671 -0.4636 0.3540

0.0314 0.4538 0.3588 0.2439

0.1356

0.0093 0.0354 0.0233 0.0203
ND ND HD ND
HD ND MD ND
HD ND MD ND
HD MWD MD ND
MD ND MD ND
ND ND MD ND
ND ND MND ND

-0.0866 0.4701 0.2243
-0.0869 04921 0.1910



AllDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode

AllAbove MeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst

TotalAll

ElevMADMedian

ElevMADMode

CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean

TotalAll ElevMADMedian  ElevMADMode CanopyReliefRatio

-0.0871 [ 0.4844 0.2197
0.0314 0.4588 0.3588 0.2439
0.0294 0.4745 0.3738 0.2416
0.0237 O 0.4430 0.3777

-0.0656 0.4279 0.3980 0.0149
o.0249 R 0.4585 0.3500
-0.0658 0.4336 0.4056 -0.0161
0.023¢ S 0.4481 0.3724

-0.0663 0.4318 0.4021 0.0094
0.0288 0.4642 0.3631 0.3649
0.0136 03764 0.3266 0.0717
0.0286 0.4683 0.3672 0.3612
0.0127 03811 0.3317 0.0663

-0.0297 -0.0565 0.0604
-0.0401 0.1164
-0.0138
-0.0410

0.1164 -0.0138 -0.0410
0.1021 0.3901 0.3168
0.1018 0.4295 0.3532
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TotalReturns
ElevMin
Eleviax
ElevMean
ElevMode
ElevStdDev
Elevvar

ElevCy

Elevi(
ElevSkew
ElevKurtosis
ElevAAD

Elevll

Elevl?

Elevl3

Elevld

ElevlCyV
ElevLSkewness
ElevLEurtosis
ElevPO1
ElevP05
ElevP10
ElevP20
ElevF25
EleyP20
ElevP40
ElewP50
ElevPG0
ElevPF70
ElevF75
ElevFa0
ElevP30
ElevP35
ElevP33
ReturnlAbove3
Return2Above3
Return3Aboved
ReturndAbovel
ReturnSAbove3
ReturntAbove3
Return/Above3
Return8@Abovel
Returndabove3

OtherReturnAbove3
PercentFirstAbove3
PercentAllAbove3

ElevCuadraticMean  ElewCubicMean

0.3761 0.2394

-0.0707 -0.0158
0.3812 0.4239
-0.6189 -0.5909
0.3077 0.2326

-0.5865 -0.5654
04171 0.4082
-0.1043 -0.0497
-0.5637 -0.5453
0.2178 0.1923

0.4667 0.4965
0.0505 0.0519

ND ND

HD ND

HD ND

HD ND

MD ND

ND ND

ND ND
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AllDivFirstTimes100

FirstAbove3

AllAbove3

PercentAboveMean
PercentFirstAboveMode
PercentAllAboveMean
PercentAllAboveMode
AllAboveMeanDivByFirstTimes100
AllAboveModeDivByFirstTimes100
FirstAboveMean

FirstAboveMode

AllAboveMean

AllAboveMade

TotalFirst

TotalAll

ElevMADMedian

ElevMADMode

CanopyReliefRatio
ElevQuadraticMean
ElevCubicMean

ElevQuadraticMean  ElevCubicMean

0.3410 0.3602
0.3102 0.3308
0.3383 0.3579
0.3576 0.3743
0.3556 0.3728
0.0204 0.0214
0.1021 0.1018
0.3901 0.4295
0.3168 0.3532
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Table A2: Correlation matrix of potential model parameters.

ETLEELSTSEEL
TimeSinceFire .;}_.1-3 0.13-0.08-02 0.15 %-ﬂ_ﬁ?wﬂja~ﬁ_2&—_{};2?'-[]_i]6 0.06 0.04 -0.05
PropAg 0. 1:3'.;] 05-0.01-0.260.12 -0.31-0.25-0.09-0.05-0.04-0.07-0.21-0.19-0.26 0.02 08
Prop015 313005.{}05 02 -007-004 0 -0.33068:0 |
TimeSinceRain -0.08-0.010.05

== 56
007 015 008-0.05 0 -0.16-0.16-0.18-0.21-0.130.12 0.13

Roadlength 0.2 -0.26 0.2 0.07 ...{]_.14 0.11 0.07-0.08-0.08-006 -0.1 0.34-0.34
LandHeterogeneity 0.15 0.12 .0.070.15

04

01 004-006-018012-036
PropForest Eggggé,«{}::’;i_a_ﬁztu_r}s . .4196.9‘2& 0.07 003001 005004-024.003 | [ 02

CanHeight -0.27-0.07 -18-0.080.04 0.01-0.0 g 0.26-0.09

Rugosty 006,021868.021.000.000005 msllllll

Prop156 0.06 919@%913 01018004 ﬁzsu _____ 31 0.18 0.29 ..-913{}13
PropUrban 0.04-026-0.130.120.34012 024 0.

0.09-006

026 0.09-0.13

1.3 0. 015
0.13-0.34.036-0030.08 &333283113&9696013 {}15.

Prop612 -0.050.02
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APPENDIX B: SITE AND MODEL SELECTION PARAMETERS
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Table B1: Site selection parameters for k-means clustering analysis.

Parameter

Ecological Significance

Minimum canopy height

Maximum canopy height

Mean canopy height

Standard deviation of canopy height
Canopy height skew
Canopy height kurtosis

Percent of returns above 3 m

Proportion of binned returns (0-0.5 m, 0.5-1.5 m,
1.5-3 m, 3-6 m., 6-9 m, 9-12 m, above 12 m)

Height (m) of the lowest canopy tree within 5x5 m
site

Height (m) of the tallest canopy tree within 5x5 m
site

Arithmetic mean (m) of all of the heights of the
canopy trees within 5x5 m site

The rugosity of the canopy within 5x5 m site (m)
The skew of the canopy heights within 5x5 m site
The kurtosis of the canopy heights within 5x5 m
site

The structural clutter above 3 m.

Bins of vertical forest structure; used to calculate
entropy and describe the height profiles of each 5x5
m site

68



Table B2: Complete parameter set for model development.

Parameter Ecological Significance

LiDAR
Mean canopy height Mean height (m) of the canopy within 5x5 m area
Rugosity Standard deviation (m) of canopy height within 5x5 m

Percent of returns above 3 m

Proportion of LiDAR returns (0-1.5 m)

Proportion of LiDAR returns (1.5-6 m)

Proportion of LiDAR returns (6-12 m)

Proportion of LiDAR returns (above 12 m)

Entropy

Time since fire

Area of water

Service road length

Landscape heterogeneity

Proportion of urban lands

Proportion of agricultural lands

Proportion of forested lands

Proportion of non-forested lands

Season

Time since rain

area
Percentage of LiIDAR returns above 3 m.

Proportion of returns that were shrubby and herbaceous
understory within 5x5 m area

Proportion of returns that were within forest midstory in
5x5 marea

Proportion of returns that were upper midstory to
canopy within 5x5 m area

Proportion of tall canopy returns within 5x5 m area

Vertical diversity of forest layers (Jost diversity of
binned LiDAR returns)

Landscape and Disturbance

Time, in months, since last prescribed burn (unburned
areas were marked as 50 years since fire)

Total area (ha) of lakes and ponds within 1.5 km buffer

Total length of service roads (m) within area of 1.5 km
buffer inside of OSBS

Jost diversity of k-means clusters within 1.5 km buffer
bounded by OSBS

Proportion of lands classified by FLUCCS as urban
inside of 1.5 km buffer

Proportion of lands classified by FLUCCS as
agricultural or pasture inside of 1.5 km buffer

Proportion of lands classified by FLUCCS as forested
inside of 1.5 km buffer

Proportion of lands classified by FLUCCS as non-
forested inside of 1.5 km buffer

Season and Weather

Sampling season (early or late summer)

Time, in days, since last rain
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APPENDIX C: SAMPLING TIMES
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Table C1: Sampling weeks for each site (cluster 1 - red, 2 - orange, 3 - yellow, 4 - purple, 5 - blue, 6 -

green) corresponding to Figure 3A.

Site

June 15-21

June 29-

July 4

July 5-11

Aug 10-16

Aug 17-23 | Aug 24-30

Aug 31-

* Half of the week was sampled due to equipment issues
** Only one week total sampled at this site
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APPENDIX D: COMPLETE MODEL SELECTION RESULTS
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Table D1: AIC table for bat abundance models.

K AlCc AAICc AICcWt Cum. Wt LL
Model 8 12 1922.6 0.0 0.42 0.42 -949.3
Model 9 13 1923.3 0.7 0.30 0.72 -948.6
Model 10 13 1923.5 0.9 0.27 0.99 -948.8
Model 5 8 1936.4 13.8 0.01 1.00 -960.2
Model 6 9 1937.1 14.5 0.00 1.00 -959.6
Model 7 9 1937.8 15.2 0.00 1.00 -959.9
Model 1 8 1944.4 21.8 0.00 1.00 -964.2
Model 3 5 1945.1 22.5 0.00 1.00 -967.6
Model 2 9 1946.0 23.4 0.00 1.00 -964.0
Model 4 6 1946.4 23.8 0.00 1.00 -967.2

Table D2: AIC table for bat community diversity models.

K AlCc AAICc AlICc. Wt Cum.Wt LL

Model 10 13 -14.86 0.00 1 1 21.66
Model 8 13 7.13 21.99 0 1 10.67
Model 9 13 22.02 36.88 0 1 3.22

Model 7 12 38.62 53.47 0 1 -6.26

Model 5 9 83.74 98.60 0 1 -32.28
Model 6 10 85.92 100.78 0 1 -32.23
Model 1 8 98.39 113.25 0 1 -40.73
Model 2 9 100.19 115.05 0 1 -40.50
Model 4 6 105.65 120.50 0 1 -46.55
Model 3 5 111.08 125.94 0 1 -50.35
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Table D3: AIC table for logistic models, evening bat (V. humeralis).

K AlCc AAICc AICcWt Cum. Wt LL
Model 6 9 136.71 0.00 0.98 0.98 -58.81
Model 4 5 145.83 9.11 0.01 0.99 -67.73
Model 2 8 146.01 9.30 0.01 1.00 -64.57
Model 10 12 149.79 13.08 0.00 1.00 -61.93
Model 7 11 150.47 13.75 0.00 1.00 -63.42
Model 8 12 152.65 15.94 0.00 1.00 -63.36
Model 9 12 152.74 16.03 0.00 1.00 -63.40
Model 5 8 155.21 18.49 0.00 1.00 -69.17
Model 1 159.94 23.22 0.00 1.00 -72.63
Model 3 4 164.20 27.49 0.00 1.00 -77.98
Table D4: AIC table for logistic models, tricolored bat (P. subflavus).
K AlCc AAIC AlICc. Wt Cum.Wt LL

Model 10 12 185.63 0.00 0.84 0.84 -79.84
Model 8 12 190.51 4.88 0.07 0.92 -82.29
Model 7 11 191.93 6.30 0.04 0.95 -84.15
Model 5 8 192.97 7.34 0.02 0.97 -88.05
Model 9 12 194.18 8.56 0.01 0.99 -84.12
Model 6 9 194.51 8.89 0.01 1.00 -87.71
Model 1 7 196.64 11.01 0.00 1.00 -90.98
Model 2 8 198.72 13.10 0.00 1.00 -90.93
Model 4 5 217.55 31.92 0.00 1.00 -103.60
Model 3 4 227.86 42.24 0.00 1.00 -109.81
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Table D5: AIC table for logistic models, southeastern myotis (M austroriparius).

K AlCc AAIC AICc. Wt Cum.Wt LL
Model 5 8 130.65 0.00 0.50 0.50 -56.89
Model 6 9 132.80 2.14 0.17 0.67 -56.85
Model 7 11 133.41 2.76 0.12 0.79 -54.89
Model 9 12 135.28 4.62 0.05 0.84 -54.67
Model 1 7 135.45 4.79 0.05 0.88 -60.39
Model 8 12 135.46 4.81 0.04 0.93 -54.76
Model 10 12 135.52 4.87 0.04 0.97 -54.79
Model 2 8 137.39 6.73 0.02 0.99 -60.26
Model 4 138.44 7.79 0.01 1.00 -64.04
Model 3 4 152.87 22.21 0.00 1.00 -72.32
Table D6: AIC table for logistic models, big brown bat (E. fuscus).
K AlCc AAIC AlICc. Wt Cum.Wt LL

Model 7 11 91.46 0.00 0.33 0.33 -33.92
Model 10 12 91.54 0.08 0.32 0.65 -32.80
Model 9 12 92.10 0.64 0.24 0.89 -33.08
Model 8 12 93.65 2.19 0.11 1.00 -33.85
Model 5 8 101.27 9.81 0.00 1.00 -42.20
Model 6 9 102.41 10.95 0.00 1.00 -41.66
Model 3 4 121.61 30.15 0.00 1.00 -56.69
Model 2 8 121.97 30.51 0.00 1.00 -52.55
Model 1 7 122.11 30.65 0.00 1.00 -53.72
Model 4 5 123.70 32.24 0.00 1.00 -56.67
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Table D7: Results for second most informative logistic model, big brown bat (E. fuscus).

Estimate  Std. Error zvalue  Pr(>|z)

Intercept 72.87 31.88 2.286 <0.05
Mean canopy height -0.6002 0.2553 -2.351 <0.05
Entropy 3.971 1.655 2.400 <0.05
Rugosity -4.878 3.582 -1.362  0.173
Proportion of returns (0-1.5 m) -22.33 9.650 -2.314 <0.05
Proportion of returns (1.5-6 m) 6.747 73.21 0.092 0.927
Proportion of returns (6-12 m) -28.86 10.57 -2.730 <0.01
Proportion of urban lands -7.297 1.020 -0.715 0.474
Water area -0.0447 0.0321 -1.393 0.164
Length of service roads -0.0019 0.0012 -1.636  0.102
Landscape heterogeneity -9.070 5.280 -1.718 0.086
ServiceRoadLength:LandscapeHeterogeneity 0.0003 0.0002 1.307 0.191
Table D8: Results for third most informative logistic model, big brown bat (E. fuscus).

Estimate Std. Error z value Pr(>|z|)
Intercept 70.84 33.37 2.123 <0.05
Mean canopy height -0.6656 0.2620 -2.540 <0.05
Entropy 3.927 1.670 2.351 <0.05
Rugosity -4.785 2.983 -1.604 0.109
Proportion of returns (0-1.5 m) -23.34 10.76 -2.170 <0.05
Proportion of returns (1.5-6 m) 8.111 50.78 0.160 0.873
Proportion of returns (6-12 m) -29.75 11.07 -2.687 <0.01
Proportion of urban lands -8.957 10.17 -0.880 0.379
Landscape heterogeneity -7.648 4.569 -1.674 0.094
Water area -0.4123 0.3162 -1.304 0.192
Length of service roads -0.0006 0.0002 -2.617 <0.01
LandscapeHeterogeneity: WaterArea 0.0813 0.0675 1.206 0.228
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Correlation Matrices

##Model selection parameter matrix
##Set the working directory
setwd("G:/Thesis/Data")

##Read the data
bat.data<-read.csv("BatMasterDataFINALWorking2.csv", header=T)
names(bat.data)

##Load packages
library(corrplot)
library(grDevices)

##Subset the parameters being considered for model selection

bat.subset<-
subset(bat.data,select=c(CanHeight,CanopyMean,Rugosity,Prop015,Prop156,Prop612,PropAb12,TimeSi
nceRain, TimeSinceFire,PercentWater,RoadLength,LandHeterogeneity, PropUrban,PropAg,PropForest,En

tropy))

##Run the correlation matrix
mcor<-cor(bat.subset)

##Graph the correlation matrix

col<-colorRampPalette(c("#BB4444" ,"#EE9988","#FFFFFF","#77AADD","#4477AA"))
corrplot(mcor,method="shade",shade.col=NA,tl.col="black" tl.srt=60,col=co0l(200),addCoef.col="black",
addcolorlabel="no",order="AOE")

K Means Clustering and Site Selection

##set directory
setwd("G:/Project Home/Products/Collated Metrics")
getwd()

#ttread data
osdata<-read.csv("OSAIIGIS.csv", header=T)
names(osdata)

##calculate the return counts
osbsdata$SumX<-
(X0to3+X3t06+X6t09+X9t012+X12t015+X15t018+X18t021+X21t024+X24t027+X27t030+X30t033)

attach(osdata)
names(osbsdata)
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##tadd columns with percent returns by bin
osbsdata$P0to3<-(X0to3/SumX)
osbsdata$P3t06<-(X3to6/SumX)
osbsdata$P6t09<-(X6t09/SumX)
osbsdata$P9to12<-(X9to12/SumX)
osbsdata$P12to15<-(X12to15/SumX)
osbsdata$P15to18<-(X15t018/SumX)
osbsdata$P18t021<-(X18t021/SumX)
osbsdata$P21t024<-(X21t024/SumX)
osbsdata$P24t027<-(X24t027/SumX)
osbsdata$P27t030<-(X27t030/SumX)
osbsdata$P30t033<-(X30t033/SumX)

##Detach and reattach data to ensure new columns are present
detach(osbsdata)
attach(osbsdata)

names(osbsdata)

##write table with percentages
write.table(unclass(osbsdata), "OSBSdatatrunc.txt", sep=",

n

, col.names=T, row.names=F)

##run kmeans without total return count (this was messing up the clusters with remnants of flight lines)
model1<-
kmeans(data.frame(ElevMax,ElevMean,ElevStdDev,ElevSkew,ElevKurtosis,Return3 Above3,PercentAll
Above3,MaxHeight,POto3,P3t06,P6t09,P9t0o12,P12to15,P15t018,P18to21,P21t024,P24t027,P27t030,P30t
033), centers = 6, algorithm="Lloyd", iter.max=1000)

##Write k-means results to a file
write.matrix(model1,file="kmeans6.txt", sep =",")

##Read in k-means file
kmeans6<-scan("kmeans6.txt", what=numeric(), sep=",")

#Transpose the file from a row into a column
t(kmeanso)

##Add the clusters column to the data
data$Clusters6<-kmeans

##Write the data including k-means clusters to a file
write.table(unclass(data), "OSBSclusters6.txt", sep=",", col.names=T, row.names=F)
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##segregate rows by cluster
data.sub1<-subset(osclusters, Cluster6==1)
write.table(unclass(data.subl), "OSclustersSub6-1-1.txt", sep=",", col.names=T, row.names=F)

data.sub2<-subset(osclusters, Cluster6==2)
write.table(unclass(data.sub2), "OSBSclustersSub6-1-2.txt", sep=",", col.names=T, row.names=F)

data.sub3<-subset(osclusters, Cluster6==3)
write.table(unclass(data.sub3), "OSBSclustersSub6-1-3.txt", sep=",", col.names=T, row.names=F)

data.sub4<-subset(osclusters, Cluster6=—=4)
write.table(unclass(data.sub4), "OSBSclustersSub6-1-4.txt", sep=",", col.names=T, row.names=F)

data.sub5<-subset(osclusters, Cluster6==5)
write.table(unclass(data.sub5), "OSBSclustersSub6-1-5.txt", sep=",", col.names=T, row.names=F)

data.sub6<-subset(osclusters, Cluster6==6)
write.table(unclass(data.sub6), "OSBSclustersSub6-5-6.txt", sep=",", col.names=T, row.names=F)

##trandomly select sites from the subsets, extra sites were selected to ensure that there were enough sites
within the boundaries of Ordway-Swisher

random1<-data.sub1[sample(nrow(data.subl), 30), ]

random2<-data.sub2[sample(nrow(data.sub2), 30), ]

random3<-data.sub3[sample(nrow(data.sub3), 30), ]

random4<-data.sub4[sample(nrow(data.sub4), 30), ]

random5<-data.sub5[sample(nrow(data.sub5), 30), ]

random6<-data.sub6[sample(nrow(data.sub6), 30), ]

##write random samples to a table

write.table(unclass(random1), "OSRandom6-1-1.txt", sep=",", col.names=T, row.names=F)
write.table(unclass(random?2), "OSRandom6-1-2.txt", sep=",", col.names=T, row.names=F)
write.table(unclass(random3), "OSRandom6-1-3.txt", sep=",", col.names=T, row.names=F)
write.table(unclass(random4), "OSRandom6-1-4.txt", sep=",", col.names=T, row.names=F)
write.table(unclass(random5), "OSRandom6-1-5.txt", sep=",", col.names=T, row.names=F)
write.table(unclass(random6), "OSRandom6-1-6.txt", sep=",", col.names=T, row.names=F)
Model Selection

setwd("G:/Thesis/Data")

##Read and attach the data
bat.data<-read.csv("BatMasterDataFINALworking2.csv",header=T)
names(bat.data)

bat<-subset(bat.data,ShanBatDiv != 0)
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##Call package for AIC comparisons
library(AICcmodavg)

##Set up variable for diversity
Bat.Div<-bat§ShanBatDiv

##Normalize model parameters
vifCanMean<-bat§CanMean-mean(bat§CanMean)
vifEntropy<-bat$Entropy-mean(bat$Entropy)
vifRugosity<-bat§Rugosity-mean(bat$Rugosity)
vifProp015<-bat$Prop015-mean(bat$Prop015)
vifProp156<-bat$Prop156-mean(bat$Prop156)
vifProp612<-bat$Prop612-mean(bat$Prop612)
vifLandHeterogeneityerogeneity<-bat§LandHeterogeneity-mean(bat$LandHeterogeneity)
vifPropUrban<-bat$PropUrban-mean(bat$PropUrban)
vifPercentWater<-bat§ AreaWater-mean(bat$ AreaWater)
vifRoadLength<-bat§RoadLength-mean(bat$RoadLength)

##Log transform diversity data
logbat<-log(Bat.Div)

##models
cand.models<-list()

cand.models[[1]]<-
Im(logbat~vifCanMean+vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612, data=bat)
cand.models[[2]]<-

Im(logbat~vifCanMean*vifEntropy-+vifRugosity+vifProp015+vifProp 1 56+vifProp612, data=bat)
cand.models[[3]]<-Im(logbat~vifCanMean+vifEntropy-+vifRugosity, data=bat)
cand.models|[4]]<-Im(logbat~vifCanMean*vifEntropy+vifRugosity, data=bat)

##2) Land heterogeneity will relate to bat community diversity

cand.models[[5]]<-
Im(logbat~vifCanMean+vifEntropy-+vifRugosity+vifProp015+vifProp156+vifProp612+vifLandHeteroge
neity, data=bat)

cand.models[[6]]<-
Im(logbat~vifCanMean*vifEntropy-+vifRugosity+vifProp015+vifProp156+vifProp612+vifLandHeteroge
neity, data=bat)

##3) Stand-level attributes will relate to bat community diversity
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cand.models[[7]]<-
Im(logbat~vifCanMean+vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612+vifPropUrban+vif
PercentWater+vifRoadLength+vifLandHeterogeneity, data=bat)

cand.models[[8]]<-Im(logbat~

vifCanMean+vifEntropy-+vifRugosity+vifProp015+vifProp 1 56+vifProp612+vifPropUrban*vifLandHeter
ogeneity+vifPercentWater+vifRoadLength,data=bat)

cand.models[[9]]<-
Im(logbat~vifCanMean+vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612+vifPropUrban+vif
LandHeterogeneity*vifPercentWater+vifRoadLength,data=bat)

cand.models[[10]]<-
Im(logbat~vifCanMean+vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612+vifPropUrban+vif
PercentWater+vifRoadLength*vifLandHeterogeneity,data=bat)

##Create a vector of names to trace back models in set
modelnames<-paste("Model", 1:length(cand.models), sep="")

##Generate AICc table
aictab(cand.set=cand.models, modnames=modelnames, sort=TRUE)

##Set up variable for presence
labo<-bat.dataSL ABOPres

##models
labo.models<-list()

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy
height, entropy, rugosity, and proportion of returns in height bins.

labo.models[[1]]<-glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data,
family=binomial)
labo.models[[2]]<-glm(labo~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data,
family=binomial)

labo.models[[3]]<-glm(labo~CanMean+Entropy+Rugosity, data=bat.data, family=binomial)
labo.models[[4]]<-glm(labo~CanMean*Entropy+Rugosity, data=bat.data, family=binomial)

##2) Land heterogeneity will relate to bat community diversity

labo.models[[5]]<-
glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data,
family=binomial)

labo.models[[6]]<-
glm(labo~CanMean*Entropy-+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data,
family=binomial)
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##3) Stand-level attributes will relate to bat community diversity

labo.models[[7]]<-
glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLeng
th+LandHeterogeneity, data=bat.data, family=binomial)

labo.models[[8]]<-
glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity+A
reaWater+RoadLength,data=bat.data, family=binomial)

labo.models[[9]]<-
glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity* A
reaWater+RoadLength,data=bat.data, family=binomial)

labo.models[[10]]<-
glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLeng
th*LandHeterogeneity,data=bat.data, family=binomial)

##Create a vector of names to trace back models in set
modelnames<-paste("Model", 1:length(labo.models), sep="")

##Generate AICc table
aictab(cand.set=labo.models, modnames=modelnames, sort=TRUE)

##Set up variable for presence
pesu<-bat.dataSPESUPres

##models
pesu.models<-list()

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy
height, entropy, rugosity, and proportion of returns in height bins.

pesu.models[[1]]<-glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data,
family=binomial)

pesu.models[[2]]<-glm(pesu~CanMean* Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data,
family=binomial)

pesu.models[[3]]<-glm(pesu~CanMean+Entropy+Rugosity, data=bat.data, family=binomial)
pesu.models[[4]]<-glm(pesu~CanMean* Entropy+Rugosity, data=bat.data, family=binomial)

##2) Land heterogeneity will relate to bat community diversity
pesu.models[[5]]<-

glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data,
family=binomial)
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pesu.models[[6]]<-
glm(pesu~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data,
family=binomial)

##3) Stand-level attributes will relate to bat community diversity

pesu.models[[7]]<-

glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop 156+Prop612+PropUrban+AreaWater+RoadLen
gth+LandHeterogeneity, data=bat.data, family=binomial)

pesu.models[[8]]<-
glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity+A
reaWater+RoadLength,data=bat.data, family=binomial)

pesu.models[[9]]<-
glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity* A
reaWater+RoadLength,data=bat.data, family=binomial)

pesu.models[[10]]<-
glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen
gth*LandHeterogeneity,data=bat.data, family=binomial)

##Create a vector of names to trace back models in set
modelnames<-paste("Model", 1:length(pesu.models), sep="")

##Generate AICc table
aictab(cand.set=pesu.models, modnames=modelnames, sort=TRUE)

##Set up variable for presence
laci<-bat.data§LACIPres

##models
laci.models<-list()

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy
height, entropy, rugosity, and proportion of returns in height bins.

laci.models[[1]]<-glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data,
family=binomial)

laci.models[[2]]<-glm(laci~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data,
family=binomial)

laci.models[[3]]<-glm(laci~CanMean+Entropy+Rugosity, data=bat.data, family=binomial)
laci.models[[4]]<-glm(laci~CanMean*Entropy+Rugosity, data=bat.data, family=binomial)

##2) Land heterogeneity will relate to bat community diversity
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laci.models[[5]]<-
glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data,
family=binomial)
laci.models[[6]]<-
glm(laci~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data,
family=binomial)

##3) Stand-level attributes will relate to bat community diversity

laci.models[[7]]<-
glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLengt
h+LandHeterogeneity, data=bat.data, family=binomial)

laci.models[[8]]<-
glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612-+PropUrban*LandHeterogeneity+Ar
eaWater+RoadLength,data=bat.data, family=binomial)

laci.models[[9]]<-
glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity* Ar
eaWater+RoadLength,data=bat.data, family=binomial)

laci.models[[10]]<-
glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLengt
h*LandHeterogeneity,data=bat.data, family=binomial)

##Create a vector of names to trace back models in set
modelnames<-paste("Model", 1:length(laci.models), sep="")

##Generate AICc table
aictab(cand.set=laci.models, modnames=modelnames, sort=TRUE)

##Set up variable for presence
epfu<-bat.dataSEPFUPres

##models
epfu.models<-list()

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy
height, entropy, rugosity, and proportion of returns in height bins.

epfu.models[[1]]<-glm(epfu~CanMean+Entropy-+Rugosity+Prop015+Prop156+Prop612, data=bat.data,
family=binomial)
epfu.models[[2]]<-glm(epfu~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data,
family=binomial)

epfu.models[[3]]<-glm(epfu~CanMean+Entropy+Rugosity, data=bat.data, family=binomial)
epfu.models[[4]]<-glm(epfu~CanMean*Entropy+Rugosity, data=bat.data, family=binomial)
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##2) Land heterogeneity will relate to bat community diversity

epfu.models[[5]]<-
glm(epfu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data,
family=binomial)

epfu.models[[6]]<-
glm(epfu~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data,
family=binomial)

##3) Stand-level attributes will relate to bat community diversity

epfu.models[[7]]<-
glm(epfu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen
gth+LandHeterogeneity, data=bat.data, family=binomial)

epfu.models[[8]]<-
glm(epfu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity+A
reaWater+RoadLength,data=bat.data, family=binomial)

epfu.models[[9]]<-
glm(epfu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity* A
reaWater+RoadLength,data=bat.data, family=binomial)

epfu.models[[10]]<-
glm(epfu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen
gth*LandHeterogeneity,data=bat.data, family=binomial)

##Create a vector of names to trace back models in set
modelnames<-paste("Model", 1:length(epfu.models), sep="")

##Generate AICc table
aictab(cand.set=epfu.models, modnames=modelnames, sort=TRUE)

##Set up variable for presence
myau<-bat.dataSMY AUPres

##models
myau.models<-list()

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy
height, entropy, rugosity, and proportion of returns in height bins.

myau.models[[1]]<-glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612,

data=bat.data, family=binomial)
myau.models[[2]]<-glm(myau~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data,
family=binomial)

myau.models[[3]]<-glm(myau~CanMean+Entropy+Rugosity, data=bat.data, family=binomial)
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myau.models[[4]]<-glm(myau~CanMean*Entropy+Rugosity, data=bat.data, family=binomial)
##2) Land heterogeneity will relate to bat community diversity

myau.models[[5]]<-
glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity,
data=bat.data, family=binomial)

myau.models[[6]]<-
glm(myau~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity,
data=bat.data, family=binomial)

##3) Stand-level attributes will relate to bat community diversity

myau.models[[7]]<-
glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen
gth+LandHeterogeneity, data=bat.data, family=binomial)

myau.models[[8]]<-

glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban* LandHeterogeneity+
AreaWater+RoadLength,data=bat.data, family=binomial)

myau.models[[9]]<-
glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity*
AreaWater+RoadLength,data=bat.data, family=binomial)

myau.models[[10]]<-
glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen
gth*LandHeterogeneity,data=bat.data, family=binomial)

##Create a vector of names to trace back models in set
modelnames<-paste("Model", 1:length(myau.models), sep="")

##Generate AICc table
aictab(cand.set=myau.models, modnames=modelnames, sort=TRUE)

##Set up variable for presence
nyhu<-bat.dataSNYHUPres

##models
nyhu.models<-list()

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy
height, entropy, rugosity, and proportion of returns in height bins.

nyhu.models|[[ 1]]<-glm(nyhu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data,
family=binomial)
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nyhu.models[[2]]<-glm(nyhu~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data,
family=binomial)

nyhu.models[[3]]<-glm(nyhu~CanMean+Entropy+Rugosity, data=bat.data, family=binomial)
nyhu.models[[4]]<-glm(nyhu~CanMean*Entropy+Rugosity, data=bat.data, family=binomial)

##2) Land heterogeneity will relate to bat community diversity

nyhu.models[[5]]<-
glm(nyhu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data,
family=binomial)

nyhu.models[[6]]<-

glm(nyhu~CanMean* Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data,
family=binomial)

##3) Stand-level attributes will relate to bat community diversity

nyhu.models[[7]]<-
glm(nyhu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen
gth+LandHeterogeneity, data=bat.data, family=binomial)

nyhu.models[[8]]<-
glm(nyhu~CanMean-+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity+
AreaWater+RoadLength,data=bat.data, family=binomial)

nyhu.models[[9]]<-
glm(nyhu~CanMean-+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity™*
AreaWater+RoadLength,data=bat.data, family=binomial)

nyhu.models[[10]]<-
glm(nyhu~CanMean-+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen
gth*LandHeterogeneity,data=bat.data, family=binomial)

##Create a vector of names to trace back models in set
modelnames<-paste("Model", 1:length(nyhu.models), sep="")

##Generate AICc table
aictab(cand.set=nyhu.models, modnames=modelnames, sort=TRUE)

##models
negbinom.models<-list()

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy
height, entropy, rugosity, and proportion of returns in height bins.

negbinom.models[[1]]<-glm.nb(total~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612,
data=bat.total)
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negbinom.models[[2]]<-glm.nb(total~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612,
data=bat.total)

negbinom.models[[3]]<-glm.nb(total~CanMean+Entropy+Rugosity, data=bat.total)
negbinom.models[[4]]<-glm.nb(total~CanMean* Entropy+Rugosity, data=bat.total)

##2) Land heterogeneity will relate to bat community diversity

negbinom.models[[5]]<-
glm.nb(total~CanMean+Entropy+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.total)
negbinom.models[[6]]<-
glm.nb(total~CanMean*Entropy+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.total)
negbinom.models[[7]]<-
glm.nb(total~CanMean+Entropy-+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity,
data=bat.total)

##3) Stand-level attributes will relate to bat community diversity

negbinom.models[[8]]<-

glm.nb(total~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadL

ength+LandHeterogeneity, data=bat.total)
negbinom.models[[9]]<-

glm.nb(total~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity

+AreaWatert+RoadLength,data=bat.total)
negbinom.models[[10]]<-

glm.nb(total~CanMean+Entropy-+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity

* AreaWater+RoadLength,data=bat.total)
negbinom.models[[11]]<-

glm.nb(total~CanMean-+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadL

ength*LandHeterogeneity,data=bat.total)

##Create a vector of names to trace back models in set
modelnames<-paste("Model", 1:length(negbinom.models), sep="")

##Generate AICc table
aictab(cand.set=negbinom.models, modnames=modelnames, sort=TRUE)
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gﬁlmlvcrsny of Office of Research & Commercialization
Central
Florida

12/2/2014

Dr. John Weishampel
Biology

BL 110

4000 Central FL Blvd
Orlando, FL. 32816

Subject: Institutional Animal Care and Use Committee (IACUC) Protocol Submission

Dear Dr. John Weishampel:

This letter is to inform you that your following animal protocol was re-approved by the IACUC, The
IACUC Animal Use Renewal Form is attached for your records.

Animal Project #; 13-38W

Title: Acoustic surveying of bat community diversity in relation to LIDAR-derived
forest structure

Eirst Approval Date:  12/4/2013

Please be advised that IACUC approvals are limited to one year maximum. Should there be any technical
or administrative changes to the approved protocol, they must be submitted in writing to the IACUC for
approval. Changes should not be initiated until written IACUC approval is received. Adverse events
should be reported to the IACUC as they occur. Furthermore, should there be a need to extend this
protocol, a renewal must be submitted for approval at least three months prior to the anniversary date of the
most recent approval. If the protocol is over three years old, it must be rewritten and submitted for IACUC
review.

Should you have any questions, please do not hesitate to call the office of Animal Welfare at (407) 882-1164.
Please accept our best wishes for the success of your endeavors.
Best Regards,

Lhistiar puama

Cristina Caamafio
Associate Director, Research Program
Services

Copies: Facility Manager (when applicable.)

12201 Research Parkway « Suite 501 « Orlando, FL. 32826-3246 ¢ 407-823-3778 » FFax 407-823-3299

An Erual O ¢ o) Acthan
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THE UNIVERSITY OF CENTRAL FLORIDA
INSTITUTIONAL ANIMAL CARE and USE COMMITTEE (IACUC)
Re-Approval to Use Animals

Dear Dr, John Weishampel,

Your application for JACUC Re-Approval has becn reviewed and approved by ihe UCFK
TACUC Reviewers,

Approval Date; 12/1/2014

Title: Acoustic surveying of bal community divessity in rclation to LiDAR-derived
forest structure

Department: Biology

Animal Project#:  13-38W

Expiration: 120412015

You may purchase and use anmimals according to the provisions outlined in the abowve
referenced animal project. T'his project will expire as indicated above, You will be notificd
2-3 months prior to vour expriation date regarding your need to fils another renewal.

oy
e
e

Christopher Parkingon, Ph.1,
IACUC Chair

Approved / Eenewed L
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