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ABSTRACT 

Bats are important to many ecological processes such as pollination, insect (and by proxy, 

disease) control, and seed dispersal and can be used to monitor ecosystem health. However, they are 

facing unprecedented extinction risks from habitat degradation as well as pressures from pathogens (e.g., 

white-nose syndrome) and wind turbines. LiDAR allows ecologists to measure structural variables of 

forested landscapes with increased precision and accuracy at broader spatial scales than previously 

possible. This study used airborne LiDAR to classify forest habitat/canopy structure at the Ordway-

Swisher Biological Station (OSBS) in north central Florida. LiDAR data were acquired by the National 

Ecological Observatory Network (NEON) airborne observation platform in summer 2014. OSBS consists 

of open-canopy pine savannas, closed-canopy hardwood hammocks, and seasonally inundated basin 

marshes. Multiple forest structural parameters (e.g., mean, maximum, and standard deviation of canopy 

height) were derived from LiDAR point clouds using the USDA software program FUSION. K-means 

clustering was used to segregate each 5x5 m raster across the ~3765 ha OSBS area into six different 

clusters based on the derived canopy metrics. Cluster averages for maximum, mean, and standard 

deviation of return heights ranged from 0 to 19.4 m, 0 to 15.3 m, and 0 to 3.0 m, respectively. To 

determine the relationships among these landscape-canopy features and bat species diversity and 

abundances, AnaBat II bat detectors were deployed from May to September in 2015 stratified by these 

distinct clusters. A statistical regression model selection approach was performed in order to evaluate how 

forest structural attributes such as understory clutter, vertical canopy structure, open and closed canopy, 

etc. and landscape metrics influence bat communities. The most informative models showed that a 

combination of site-specific (e.g., midstory clutter and entropy) and landscape level attributes (e.g., area 

of water and service road length) contributed to bat community patterns. This knowledge provides a 

deeper understanding of habitat-species interactions to better manage survival of these species and 

provides insight into new tools for landscape management as they apply to specific species 
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INTRODUCTION 

 Understanding the drivers of biodiversity is essential for species conservation. The 

habitat heterogeneity hypothesis (Lack, 1969, MacArthur and Wilson, 1967) posits that as areas 

increase in structural complexity, additional niches are opened for exploitation, therefore 

allowing diversification of species that used these varied niches. MacArthur (1958) was one of 

the first researchers to notice this diversification in birds based on vertical heterogeneity of forest 

structure. In a later study, MacArthur and MacArthur (1961) developed the foliage height 

diversity index which classified forests based on percentage of leaf area within different height 

classes. With this measurement approach, forests were more structurally diverse if they had an 

even distribution of leaf area throughout the different canopy layers (higher entropy) or less 

structurally diverse if they had uneven distribution of leaf area throughout the different canopy 

layers (lower entropy). Following these studies, many other researchers explored the positive 

relationship between vertical habitat heterogeneity and increased diversity in primates 

(Schwarzkopf and Rylands, 1989), birds (Bersier and Meyer, 1994), spiders (Docherty and 

Leather, 1997), macropods (Southwell, Cairns, Pople et al., 1999), arboreal arthropods (Halaj, 

Ross and Moldenke, 2000), ants (Bestelmeyer and Wiens, 2001), and amphibians (Vallan, 2002). 

 Bats represent greater than 20% of all mammalian diversity worldwide (Mickelburg, 

Hutson and Racey, 2002) and play important roles in forested ecosystems by acting as 

pollinators, seed dispersers, and insect predators, which provides top-down control to reduce 

herbivory within ecosystems (Bohm, Wells and Kalko, 2011). It has also been suggested that 

bats serve as good bioindicators (Jones, Jacobs, Kunz et al., 2009) to monitor environmental 

degradation and decline in biodiversity (Waldon, Miller and Miller, 2011). Bats also play a role 

in cycling nutrients through the forest, possibly even acting as a primary nutritional support for 
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guano-dependent plants near their roosts (Duchamp, Sparks and Swihart, 2010). However, bat 

species throughout the world are in decline (Mickleburgh, Hutson and Racey, 2002) due to 

environmental stressors such as habitat loss and fragmentation, white nose syndrome (Frick, 

Pollock, Hicks et al., 2010), and increased use of wind turbines (Arnett, Brown, Erickson et al., 

2008).  

The wing morphology of bats informs us about a bat’s foraging strategy. Bats that forage 

in more open areas are adapted for faster flight and therefore have higher mass, wing loading 

(weight of the bat divided by the total area of the wing), and aspect ratio (wing span of the bat 

squared divided by the wing area) (Aldridge and Rautenbach, 1987). On the other hand, bats that 

forage in densely vegetated areas tend to be smaller and adapted for slower, more maneuverable 

flight with low wing loading and aspect ratio (Aldridge and Rautenbach, 1987). Bat echolocation 

is a part of the same adaptive complex (Aldridge and Rautenbach, 1987), so bats that forage 

within densely forested patches have different foraging calls from those that forage in open 

areas. To forage efficiently in areas with high three-dimensional complexity, or vegetative 

clutter, bats evolved mechanisms which allow them to segregate vegetative clutter from potential 

prey while also maintaining the ability to properly orient themselves and avoid obstacles 

(Schnitzler and Kalko, 2001). Figure 1 shows differentiation in foraging strategy and 

echolocation frequency (kHz) of forest-dwelling bats. 
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Figure 1: Differences in foraging strategy and frequency of calls are related. Bats that forage in 

open areas (1, 2, 5, 6) have lower frequency calls while those that forage in cluttered areas (3, 4) 

have higher frequency calls (from Aldridge and Rautenbach 1987). 

 

 Loeb and O’Keefe (2006) determined that in addition to forest stand-level characteristics, 

landscape parameters also play a role in foraging use of an area by bats. Measures of landscape 

heterogeneity are difficult to quantify in the field. One form of remote sensing, LiDAR (light 

detection and ranging), allows ecologists to quickly and accurately measure forest structural 

parameters across large tracts (Lefsky, Cohen, Parker et al., 2002). Many forest variables such as 

canopy height, canopy cover/closure, and vertical distribution of canopy cover (entropy) can be 

derived either directly or indirectly from LiDAR returns (Merrick, Koprowski and Wilcox, 2012) 

 LiDAR systems map forest structure by emitting laser pulses from a known position and 

measuring the amount of time it takes for the photons to travel back to the mounted receiver 

(Reutebuch, Andersen and McGaughey, 2005). The first pulses to return represent the canopy 

top while the last returns represent the ground. Returns in the middle represent the vertical 

heterogeneity of the forest (i.e., understory, mid-canopy, etc.). Airborne LiDAR systems are 

capable of mapping out large areas of land by sending out tens of thousands of laser pulses per 
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second (Reutebuch et al., 2005). These pulses are represented in a point cloud, a 3-dimensional 

map of surfaces with x, y, and z spatial locations. Forest metrics such as canopy height (first 

return – last return), rugosity (standard deviation of canopy height), and canopy cover 

measurements which are derived by measuring the proportion of ground returns that are received 

by a sensor (Lefsky et al., 2002) can be derived from the LiDAR point cloud. 

 The ability to measure canopy metrics at large scales has spurred a variety of studies on 

the relationships between forest canopy structure and community composition of different taxa 

(Davies and Asner, 2014) including spiders (Vierling, Bassler, Brandl et al., 2011), birds 

(Clawges, Vierling, Vierling et al., 2008, Goetz, Steinberg, Dubayah et al., 2007), beetles 

(Muller and Brandl, 2009), other arthropods (Müller, Bae, Röder et al., 2014), and primates 

(Palminteri, Powell, Asner et al., 2012). A study by Jung, Kaiser, Bohm et al. (2012) looked at 

how management practices affecting three-dimensional forest structure influence insectivorous 

bat community composition. My study combines the approaches of Jung et al. (2012) and Loeb 

and O’Keefe (2006) to investigate how LiDAR-derived forest structure parameters at the patch 

scale and landscape-level attributes (such as road density and landscape heterogeneity) relate to 

bat abundance, bat community diversity, and use of sites by individual bat species across a 

heterogeneous landscape in north central Florida. This study is the first to examine the 

relationship of LiDAR-derived canopy structure to bat species and assemblages in the Western 

Hemisphere. In addition to quantifying relationships among individual landscape and site-

specific parameters, it will also examine whether the interactions of these effects are important to 

these population-level and community-level measures. 
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METHODOLOGY 

Study Location 

The study was conducted at the Ordway-Swisher Biological Station (OSBS) in Melrose, Florida 

(29.68° N and 82.00° W). The station is approximately 3765 ha and is operated by the University of 

Florida as a research station. This site is also part of the National Ecological Observatory Network 

(NEON), which gathers data for long term ecological monitoring and forecasting at various sites 

throughout the United States. Vegetative communities at OSBS include sandhills, xeric hammocks, 

upland mixed forests, swamps, and marshes. To maintain natural disturbance regimes, the pyrogenic 

communities are managed with prescribed fire with between 690 and 810 ha burned annually (Ordway-

Swisher Biological Station, 2014). Since the 1930s the land was used as a private hunting and fishing 

preserve and by the 1980s much of the land had been set aside for conservation and research. The 

relatively long history of conservation at OSBS makes it an ideal study site as the natural floral and faunal 

communities have been given time to recuperate from human influence. The large size of the station can 

act as a buffer against impact from the human matrix outside.  

Based on geographic ranges, ten different species of bats are expected to reside within OSBS: 

Rafineque’s big-eared bat (Corynorhinus rafinesquii, CORA), big brown bat (Eptesicus fuscus, EPFU), 

eastern red bat (Lasiurus borealis, LABO), hoary bat (L. cinerius, LACI), northern yellow bat (L. 

intermedius, LAIN), Seminole bat (L. seminolus, LASE), southeastern myotis (Myotis austroriparius, 

MYAU), evening bat (Nyctecius humeralis, NYHU), tricolored bat (Perimyotis subflavus, PESU), and the 

Mexican free-tailed bat (Tadarida brasilienses, TABR) (Marks and Marks 2006). P. subflavus is a clutter 

tolerant bat, L. borealis is semi clutter tolerant, and L. cinereus and T. brasilienses are clutter intolerant 

(Farney and Fleharty, 1969). Figure 2 shows wing loading and aspect ratios for several bat species of 

central Florida. 
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Figure 2: Wing loading and aspect ratio of bats of north central Florida, based on Farney and 

Fleharty (1969); acronyms are the combined first two letters of the genus and species name. Species 

in red are my predictions based on photographs and foraging behavior. 

Site Selection for Acoustic Sampling 

LiDAR data were acquired for OSBS by the NEON airborne observation platform on June 5, 

2014. An Optech Gemini ALTM (airborne laser terrain mapping) sensor was flown onboard a Twin Otter 

aircraft. The LiDAR point density was approximately 3 points/m2. To select sites that were appropriate 

for LiDAR analysis and to minimize impacts of variables that were not of interest, 50m buffers around 

roads, lakes, and the property perimeter were removed from the larger dataset. The LiDAR data were 

subdivided in to a 5 x 5 m grid. This scale was chosen because detectability of bat calls with AnaBat 

detectors drops off greatly after 5 m. (Adams, Jantzen, Hamilton et al., 2012). Batch processing of 

LiDAR files was done in the USDA’s LTKProcessing v. 1.0 program (McGaughey, 2014). This program 

 

                                                            NYHU 

                                                                        LASE   

LAIN  

         

 

 

        MYAU 



7 
 

calculated 66 different parameters from the LiDAR point cloud data, some of which were either deemed 

unrelated to the study or else were highly correlated to other measured parameters. 

A correlation analysis was performed to identify parameters that were highly correlated. 

Parameters that had a 75% or greater positive or negative correlation to other parameters were eliminated 

based on relevance to the study questions (Appendix A, Table A1). Parameters that were considered 

particularly relevant to bat species occurrence were kept in the model even if they correlated highly with 

other parameters. These decisions were based largely on the Jung et al. (2012) study. 

Based on these criteria, 14 parameters (Appendix B, Table B1) were chosen to perform a k-means 

clustering analysis to partition OSBS into areas which had similar structural components. Six clusters 

were isolated representing a range from basin marshes to closed-canopy hardwood hammock. Figure 3 

shows the resulting k-means cluster raster (A) along with vegetative communities (B).  

After performing the k-means clustering analysis, 30 sites from each cluster were randomly 

selected by using the  random function in R (R Development Core Team, 2014). These sites were brought 

into ArcGIS v. 10.1 (Environmental Systems Resource Institute, 2012). A 250 m buffer was placed 

around each site. Sites with overlapping buffers were removed to minimize spatial autocorrelation. Sites 

that were not representative of the area, i.e., they were surrounded by other cluster types, were also 

removed. Sites were further eliminated based on accessibility until eighteen sites remained - three from 

each cluster.  

Detector Setup 

 Two sampling periods were conducted from June 16 through September 7, 2015. Each site was 

visited twice per week. The first visit was used to set up the AnaBat detectors in water resistant casing. 

Each detector was positioned on a tripod approximately 1.5 m above ground level (O'Farrell, 1998) and 

the microphone was pointed away from vegetation clutter. The tripod was tied to a tree or staked to the 

ground, and camouflage was placed around the water resistant container. To minimize variability between 

detectors, each was set to the same sensitivity. Nightly calls were recorded by a ZCAIM (zero-crossings 
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analysis interface module) unit plugged into the AnaBat detector with start time for recording delayed 

until 15 minutes before sunset to 15 minutes after sunrise. Three days after deploying the detectors, 

batteries in both the detectors and the ZCAIM unit were replaced. The goal was to have six consecutive 

nights of recorded calls. On the seventh day of the weekly cycle, detectors were removed from their 

locations and data were downloaded using CFCRead Storage ZCAIM Interface (Corben, 2014). Compact 

Flash (CF) cards were erased and replaced in the ZCAIM units. Detectors were transported to a new site. 

Which particular detector was used for a particular site was haphazardly determined. Table C1 in 

Appendix C shows the sampling times for each site. 

Data Analysis 

 To create models which accurately represent parameters that affect site selection by bats at both 

the site and landscape level, several forest structure and landscape parameters were included in a multiple 

regression analysis. I calculated several landscape metrics within a 1.5 km buffer around each detector 

site. The 1.5 km radius was chosen as a low-end foraging distance from roosts (Henry, Thomas, Vaudry 

et al., 2002, Hutchinson and Lacki, 2000). Within each buffer, level 1 Florida Land Use, Cover and forms 

Classification System (FLUCCS) codes were used to determine the proportion of urban, agricultural, 

forested and nonforested lands present (Figure 4). I also measured total length of service roads and area of 

standing water within each buffer. These measurements were derived from GIS layers created by OSBS 

managers. I measured landscape heterogeneity using Jost diversity (Jost, 2006) to determine the effective 

diversity of k-means cluster types within a given buffer. These measurements were limited to the 

perimeter of OSBS. Table B2 in Appendix B summarizes all of the parameters considered as well as their 

biological relevance. Analysis of the correlation matrix was performed to determine which variables 

should be removed to reduce collinearity in the models (Appendix A, Table A2). Final parameters used in 

the models are described in Table 1. 

 Due to limited familiarity with specific bat calls, I used the automated bat call identification 

software package, Echoclass v. 3.1 (Britzke, 2014). This software has been approved by the United States 
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Fish and Wildlife Service (USFWS) (U.S. Fish and Wildlife Service, 2015) for conducting Indiana bat 

(Myotis sodalis) surveys, and a test conducted on several automated bat identification software packages, 

including Echoclass, demonstrated that Echoclass correctly identified South Carolina bat species 72% of 

the time (Ford, 2014). However, 28% of calls were mis- or unidentified, and some common Florida bat 

species including the Seminole bat (Lasiurus seminolus) and northern yellow bat (L. intermedius) were 

not included in the program’s identifiers. Given these shortcomings, species diversity may be 

understimated. Also, results for presence/absence of L. borealis are uncertain as this species’ call is often 

confounded with L. seminolus.  

Calls were segregated into nightly bins, and Jost diversity was calculated based on the Shannon-

Wiener Diversity Index (Jost, 2006). Multiple regression and logistic models were developed in R (R 

Development Core Team, 2014) to test relationships between forest structure and landscape level 

parameters and six different response variables: overall abundance, diversity, and evening bat (Nycticeus 

humeralis), tricolored bat (Perimyotis subflavus), southeastern myotis (Myotis austroriparius), and big 

brown bat (Eptesicus fuscus) presence (Table 2). The four bats included in the regression models were 

selected because they were present in approximately equal numbers and should represent differing 

foraging strategies based on morphology. Model parameters were selected based on previous literature 

and relevance to management strategy. To improve model assumptions, parameters for community 

diversity models were normalized and diversity was log transformed, therefore changing Jost diversity 

into the Shannon-Weiner Diversity Index. For total site usage models, negative binomial generalized 

linear models were used. In all cases, the most informative models were selected based AICc (Akaike’s 

Information Criterion for small sample sizes) value and AICc weight (Burnham and Anderson, 2002). 

AICc and AICc weight were calculated using R package AICmodavg (Mazerolle, 2015).  



10 
 

 

Figure 3: A) OSBS 5 x 5 m k-means cluster results; B) vegetative communities at OSBS as defined 

by Florida Natural Areas Inventory (FNAI) 
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Figure 4: Level 1 FLUCCS designations for 1.5 km buffer around OSBS 
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Table 1: Final parameters used in models selection and their ecological significance 

Parameter (abbreviation) Ecological Significance 

Stand Level 

Mean canopy height (CanMean)  Mean canopy height for each 5x5 m site (in m) 

Rugosity (Rugosity) 

Roughness of the outer canopy surface for each 5x5 m site 

measured by calculating the standard deviation of 

maximum canopy height 

Proportion of returns (0-1.5 m (Prop015), 

1.5-6 m. (Prop156), 6-12 (Prop612), 12 m 

and above (PropAb12)) 

The proportion of LiDAR returns in different height bins 

(related to the amount of clutter within the forest) 

Entropy (Entropy) The Jost diversity of vertical LiDAR return distributions 

Landscape Level 

Area of standing water (AreaWater) 
Area (in ha) of standing water (lakes, ponds) within 1.5 

km buffer 

Service road length (RoadLength) 
Length (in m) of service roads in 1.5 km buffer (limited to 

areas within OSBS) 

Proportion of urban land cover (PropUrban) 
Proportion of 1.5 km buffer classified in FLUCCS as 

urban or utilities 

Landscape heterogeneity 

(LandHeterogeneity) 

The Jost diversity of k-means clusters within a 1.5 km 

buffer (limited to areas within OSBS) 
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Table 2: Parameters for numbered models. 

Number  Parameters 

1 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612 

2 CanopyMean*Entropy+Rugosity+Prop015+Prop156+Prop612 

3 CanopyMean+Entropy+Rugosity 

4 CanopyMean*Entropy+Rugosity 

5 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity 

6 CanopyMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity 

7 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+PercentWater+RoadLength+LandHeterogeneity 

8 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity +PercentWater+RoadLength 

9 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+PercentWater*LandHeterogeneity +RoadLength 

10 CanopyMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+PercentWater +RoadLength*LandHeterogeneity 
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RESULTS 

K Means Clustering 

 The k-means cluster analysis defined vegetative structure at the 25 m2 scale. Large basin marsh 

areas, which lacked canopy (cluster 6), were very homogenous throughout and closely correspond with 

the vegetation mapped by the Florida Natural Areas Inventory (FNAI) (Figure 3B). The finer scale of the 

k-means clustering allowed me to examine subtle differences in forest structure within larger vegetative 

communities. While the clusters do not exactly correspond to vegetative types, cluster 1 is more 

prominent within successional hardwood forest, cluster 2 is common throughout baygall, and cluster 5 is 

found throughout pine sandhills. Figure 5 shows boxplots of the canopy height (A) and rugosity (B) for 

each of the three sites chosen for each cluster.  

 LiDAR point cloud images (Figure 6) also reveal differences in forest structure. Each point cloud 

in Figure 66 represents a site within one of the six different k-means clusters. Main differences occur in 

overall canopy height, rugosity, and midstory clutter. For instance, cluster 1 had an open canopy with 

herbaceous ground cover. Clusters 2, 3, 4, and 5 had more closed canopies. The sites in cluster 6 were all 

comprised of basin marshes with different grass species as dominant vegetation. No tree or shrub canopy 

was present in this cluster. The representative site for cluster 2 had a higher rugosity than that for cluster 3 

which had a more homogenous canopy height. The site shown for cluster 4 has less midstory clutter 

present, especially towards the left side of the image where an opening in vegetation can be seen. 
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Figure 5: Cluster metrics for A) canopy mean and B) rugosity. Colors correspond to clusters from 

Figure 3A. The line within the boxplot is the median while the circles are outliers outside of one 

standard deviation from the mean. 
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Figure 6: LiDAR point clouds for representative sites at each cluster; the radius of the ground surface (blue disk) is 12.5 m.
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Acoustics Summary 

 Over 47 sample nights, a total of 27,481 bats calls were identified using Echoclass v. 3.1. There 

were 263 big brown bats, 16,533 eastern red bats, 696 hoary bats, 140 southeastern myotis, 344 evening 

bats, and 1,114 tricolored bats. Echoclass v. 3.1 also identified 373 silver-haired bats (Lasionycteris 

noctivagans), but these bats are not known to occur within Ordway-Swisher and so were very likely 

misidentified. These bats were still included in diversity calculations as they likely represented a species 

that was not included within the filter set. Figure 7 shows the total bat abundance at each site and Figure 8 

shows the bat diversity for each site. Figure 9 shows the species accumulation curves for each cluster 

type. Most clusters approached an asymptote though not all species were detected in all clusters. 

 

Figure 7: Total bat abundance by site; sites are color coded by cluster corresponding with Figure 

3A. The line through the boxes represents the median while open circles are outlier points. 
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Figure 8: Jost bat diversity for each site; colors correspond to the clusters from Figure 3A. The line 

through the boxes represents the median while open circles are outlier points. 
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Figure 9: Species accumulation curves per cluster which are represented by different colored lines 

based on Figure 3A. EchoClass v 3.1 had the ability to identify 7 total species. 
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Model Selection 

Overall Abundance Models 

Because of close AIC weights and ΔAIC, it was not possible to pinpoint a single most 

informative overall abundance model (Appendix D, Table D1). Model 8 had an AIC of 1922.6, ΔAIC of -

0.7, and AIC weight of 0.42. Model 9 had an AIC of 1923.7, ΔAIC of -0.9, and AIC weight of 0.30. 

Model 10 had an AIC of 1923.3, ΔAIC of -13.8, and AIC weight of 0.27. In all three models, proportion 

of binned returns (0-1.5 m, 1.5- 6 m, and 6-12 m) as well as length of service roads were negatively 

correlated with bat abundance. Models 9 and 10 also had a negative correlation between site usage and 

area of water. All of the models included mean canopy height, entropy, binned proportion of returns (0-

1.5 m, 1.5-6 m, 6-12 m), proportion of urban lands, landscape heterogeneity, area of water, and length of 

service roads. Model 9 also included the interaction of landscape heterogeneity and the proportion of 

urban lands while model 10 included the interaction of landscape heterogeneity and water area. Model 8 

had no interactive terms. Tables 3, 4, and 5 show the complete results for the three most informative 

abundance models. 

 Table 3: Results for most informative total abundance model. 

 Estimate Std. Error z value Pr(>|z|) 

Intercept 13.66 2.630 5.195 <0.001 

Mean canopy height -0.0718 0.0477 -1.504 0.1325 

Entropy 0.0561 0.2912 0.192 0.8474 

Rugosity -0.0320 0.2280 -0.141 0.888 

Proportion of returns (0-1.5 m) -3.240 1.021 -3.173 <0.01 

Proportion of returns (1.5-6 m) -16.34 6.830 -2.393 <0.05 

Proportion of returns (6-12 m) -4.415 1.142 -3.864 <0.001 

Proportion of urban lands -7.656 1.385 -5.527 <0.001 

Water Area -0.0106 0.0029 -3.616 <0.001 

Length of service roads -0.0001 -0.00005 -2.258 <0.05 

Landscape heterogeneity -0.4294 0.4651 -0.923 0.356 
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Table 4: Results for second most informative total abundance model. 

 Estimate Std. Error z value Pr(>|z|) 

Intercept 14.78 2.714 5.445 <0.001 

Mean canopy height -0.0797 0.0487 -1.639 0.101 

Entropy 0.0650 0.2938 0.221 0.825 

Proportion of returns (0-1.5 m) -2.629 1.132 -2.322 <0.05 

Proportion of returns (1.5-6 m) -19.50 8.050 -2.422 <0.05 

Proportion of returns (6-12 m) -3.793 1.233 -3.075 <0.01 

Proportion of urban lands -31.93 19.68 -1.622 0.105 

Landscape heterogeneity -0.7683 0.5057 -1.519 0.129 

Water area -0.0096 0.0030 -3.160 <0.01 

Length of service roads -0.0001 -0.00005 -2.356 <0.05 

ProportionUrban:LandscapeHetereogeneity 5.439 4.348 1.251 0.211 

 

Table 5: Results for third most informative total abundance model. 

 Estimate Std. Error z value Pr(>|z|) 

Intercept 8.951 4.399 2.035 <0.05 

Mean canopy height -0.0758 0.0487 -1.557 0.120 

Entropy 0.1245 0.2952 0.422 0.673 

Rugosity -0.1019 0.2358 -0.432 0.666 

Proportion of returns (0-1.5 m) -3.215 1.029 -3.125 <0.01 

Proportion of returns (1.5-6 m) -16.94 6.891 -2.458 <0.05 

Proportion of returns (6-12 m) -4.337 1.140 -3.805 <0.001 

Proportion of urban lands -7.439 1.421 -5.236 <0.001 

Landscape heterogeneity 0.6202 0.9123 0.680 0.497 

Water area 0.0622 0.0637 0.978 0.328 

Length of service roads -0.0001 0.00005 -2.359 <0.05 

LandscapeHeterogeneity:WaterArea -0.0161 0.0141 -1.144 0.252 
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Bat Community Diversity Models 

 Model 10 which included mean canopy height, entropy, rugosity, area of water, proportion of 

binned returns (0-1.5 m, 1.5-6 m, 6-12 m.), proportion of urban land, service road length, and landscape 

heterogeneity within buffer space as well as the interactions between several of these parameters was the 

most informative model with an adjusted R2 of 0.68, relative AICc weight of 1.0 and ΔAIC of -21.99 

(Appendix D, Table D2). Mean canopy height, binned proportion of returns (0-1.5 m, 1.5 – 6 m, and 6-12 

m), area of water, road length, and landscape heterogeneity all had significant negative relationships to 

bat community diversity whereas entropy and the interaction of road length and landscape heterogeneity 

both had a positive relationship to bat community diversity. Rugosity and proportion of urban lands 

within the 1.5 km buffer did not have significant relationships to bat community diversity. Table 6 shows 

the coefficients and p-values of parameters for the most parsimonious model. 

Table 6: Results for most informative community diversity model. 

 Estimate Std. Error t value Pr(>|t|) 

Intercept 0.209 0.021 9.949 <0.001 

Canopy mean -0.069 0.010 -6.715 <0.001 

Entropy 0.176 0.059 2.995 <0.01 

Rugosity -0.005 0.046 -0.118 0.906 

Proportion of returns (0-1.5 m) -1.036 0.204 -5.083 <0.001 

Proportion of returns (1.5-6 m) -3.723 1.397 -2.665 <0.01 

Proportion of returns (6-12 m) -1.739 0.229 -7.613 <0.001 

Proportion of urban lands -0.173 0.275 -0.628 0.531 

Area of Water -0.0016 0.0006 -2.610 <0.01 

Service road length -0.00003 0.000009 -3.159 <0.01 

Landscape heterogeneity -0.280 0.094 -2.985 <0.01 

RoadLength:LandscapeHeterogeneity 0.0001 0.00001 7.857 <0.001 
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Logistic Regression Models for Evening Bat (N. humeralis) 

 Model 6 which included mean canopy height, entropy, rugosity, proportion of binned returns (0-

1.5 m, 1.5-6 m, 6-12 m), landscape heterogeneity and the interaction between mean canopy height and 

entropy was the most informative logistic model for N. humeralis with an AICc of 136.71, AICc weight 

of 0.98, and ΔAICc of -9.11 (Appendix D, Table D3). Mean canopy height and entropy were both 

negatively related to N. humeralis detection while the interaction of mean canopy height and entropy was 

positively related to detection of N. humeralis. (Table 7). 

Table 7: Results for most informative logistic model, evening bat (N. humeralis). 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 38.70 14.15 2.734 <0.01 

Mean canopy height -1.865 0.708 -2.633 <0.01 

Entropy -8.991 3.074 -2.924 <0.01 

Rugosity 0.029 0.774 0.037 0.970 

Proportion of returns (0 – 1.5 m) -0.116 4.311 -0.027 0.979 

Proportion of returns (1.5 – 6 m) -90.00 56.98 -1.580 0.114 

Proportion of returns (6 – 12 m) -1.667 4.371 -0.381 0.703 

Landscape heterogeneity -5.214 2.085 -2.500 0.012 

MeanCanopyHeight:Entropy 0.997 0.379 2.632 <0.01 

 

Logistic Regression Models for Tricolored bat (P. subflavus) 

 Model 10 was the most informative model for presence of P. subflavus with an AICc of 185.63, 

AICc weight of 0.84, and ΔAIC of 4.88 (Appendix D, Table D4). Model parameters were mean canopy 

height, entropy, rugosity, binned proportion of returns (0-1.5 m, 1.5-6 m, 6-12 m), proportion of urban 

lands, area of water, length of roads, landscape heterogeneity, and the interaction of road length and 

landscape heterogeneity. Area of water and the interaction between road length and landscape 

heterogeneity were positively related to P. subflavus presence while the proportion of returns from 6-12 
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m, length of service roads, and landscape heterogeneity were negatively related to P. subflavus presence 

(Table 8). 

Table 8: Results for most informative logistic model, tricolored bat (P. subflavus). 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 45.890 14.10 3.254 <0.01 

Mean canopy height -0.037 0.138 -0.270 0.787 

Entropy -1.087 1.053 -1.032 0.302 

Rugosity -0.110 0.543 -0.203 0.839 

Proportion of returns (0 – 1.5m ) -1.373 2.946 -0.466 0.641 

Proportion of returns (1.5 – 6 m) 13.187 16.33 0.807 0.419 

Proportion of returns (6 – 12 m) -7.709 3.731 -2.066 <0.05 

Proportion of urban lands -7.018 3.892 -1.803 0.071 

Water area 0.015 0.007 2.004 <0.05 

Service road length -0.003 0.001 -2.435 <0.05 

Landscape heterogeneity -9.928 3.532 -2.811 <0.01 

ServiceRoadLength:LandscapeHeterogeneity 0.0006 0.0003 2.422 <0.05 
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Logistic Regression Models for Southeastern Myotis (M. austroriparius) 

 Model 5 was the most informative model of the logistic regression models for the southeastern 

myotis (Appendix D, Table D5). It had an AICc of 130.65, a ΔAIC of -2.14, and an AICc weight of 0.50. 

Model parameters for model 5 were mean canopy height, entropy, rugosity, binned proportion of returns 

(0-1.5 m, 1.5-6 m, 6-12 m), and landscape heterogeneity. Of these, entropy had a positive relationship 

with southeastern myotis presence while proportion of returns from 6-12 m and landscape heterogeneity 

had negative relationships with the presence of this species (Table 9). 

Table 9: Results for most informative logistic model, southeastern myotis (M. austroriparius). 

 Estimate Std. Error z value Pr(>|z|) 

Intercept 12.04 6.108 1.971 <0.05 

Mean canopy height -0.219 0.131 -1.671 0.095 

Entropy 2.240 0.815 2.749 <0.01 

Rugosity -0.716 0.663 -1.080 0.280 

Proportion of returns (0-1.5 m) -4.926 2.832 -1.740 0.082 

Proportion of returns (1.5-6 m) -5.447 27.47 -0.198 0.843 

Proportion of returns (6-12 m) -17.10 4.753 -3.596 <0.001 

Landscape heterogeneity -2.066 0.837 -2.468 <0.05 

 

Logistic Regression Models for Big Brown Bat (E. fuscus) 

 Three logistic models had comparable AICc weights for the big brown bat (Appendix D, Table 

D6). These were models 7 (AICc of 91.46, ΔAICc of -0.08, AICc weight of 0.33, Table 10), 10 (AICc of 

91.54, ΔAICc of -0.64, AICc weight of 0.32, Appendix D, Table D7), and 9 (AICc of 92.10, ΔAICc of -

2.19, AICc weight of 0.24, Appendix D, Table D8). All three models included mean canopy height, 

entropy, rugosity, binned proportion of returns (0-1.5 m, 1.5-6 m, 6-12 m), landscape heterogeneity, 

proportion of urban lands, area of water, and length of service roads. Model 10 included the interaction 

between length of service roads and landscape heterogeneity while model 9 included the interaction of 

landscape heterogeneity and area of water. Model 7 had no interactive terms. In all three models, entropy 

had a positive relationship to presence of the big brown bat while proportion of returns between 0-1.5 m 
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and 6-12 m had a negative relationship to the presence of this species. Two of the models (7 and 9) also 

showed a negative relationship between the length of service roads and presence of this species. 

Table 10: Results for most informative logistic model, big brown bat (E. fuscus). 

 Estimate Std. Error z value Pr(>|z|) 

Intercept 44.64 16.56 2.696 <0.01 

Mean canopy height -0.6004 0.2508 -2.394 <0.05 

Entropy 3.733 1.592 2.344 <0.05 

Rugosity -4.782 3.476 -1.376 0.169 

Proportion of returns (0-1.5 m) -19.79 8.195 -2.415 <0.05 

Proportion of returns (1.5-6 m) 17.44 59.57 0.293 0.770 

Proportion of returns (6-12 m) -26.67 9.397 -2.838 <0.01 

Proportion of urban lands -2.432 6.100 -0.399 0.690 

Area of water -0.0421 0.0270 -1.565 0.118 

Length of service roads -0.0004 -0.0002 -2.762 <0.01 

Landscape heterogeneity -3.211 1.649 -1.948 0.051 
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DISCUSSION 

 Increasing the proportion of returns in any single bin (0-1.5 m, 1.5-6 m, 6-12 m) had a negative 

effect on overall usage of sites by bats. This may be due to lowered detectability in cluttered 

environments, though Patriquin and Barclay (2003) showed that structural clutter does not affect detection 

rates of bats calling at the 40 Hz range. More likely is that the majority of bats were detected within the 

unforested basin marsh sites which had few aboveground returns. Though insect abundance was 

perceived to be higher in these areas, it is likely that bats were preferentially foraging in these sites to 

minimize difficulties associated with tracking prey while simultaneously avoiding obstacles within their 

flight paths (Simmons, Fenton and O'Farrell, 1979). Within South Carolina, wetlands were also shown to 

be important foraging habitat for bats (Menzel, Menzel, Kilgo et al., 2005a), so it is likely that bats within 

Florida also preferentially forage in similar wetland habitats such as basin marsh. 

Several parameters had strong correlations with bat community diversity. Maximizing the vertical 

foliage height diversity (entropy) positively related to bat community diversity, following the same 

patterns of bird species diversity (Goetz et al., 2007, MacArthur and MacArthur, 1961). By the same 

token, increases in vegetative clutter throughout the midstory corresponded to lower levels of bat 

community diversity. This is likely because those species which are morphologically clutter intolerant 

would be unable to forage within highly cluttered spaces (Brigham, Grindal, Firman et al., 1997, Ford, 

Menzel, Rodrigue et al., 2005, Marciente, Brobrowiec and Magnusson, 2015, Rainho, Augusto and 

Palmeirim, 2010, Sleep and Brigham, 2003). It is surprising that the length of service roads within the 

buffer space surrounding plots negatively relates to bat species diversity when it well known that many 

bats use roads and forest edge as flyways and foraging area (Grindal and Brigham, 1999, Hein, 

Castleberry and Miller, 2009). However, other studies (Bender, Castleberry, Miller et al., 2015, Loeb and 

O'Keefe, 2006) show little support for roads as a feature promoting bat occupancy, especially at the 

landscape scale. The relationship between roads and bat diversity within forested areas may also be better 

captured by measuring distance to roads instead of overall length of roads within a study area (Rainho and 
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Palmeirim, 2011). It is possible that the roads may have been important edge habitat for the bats in this 

study, however since roads were not directly compared to natural spaces, the results may be conflated. 

 Landscape heterogeneity, measured as the Jost diversity of k-means cluster results within the 1.5 

km buffer surrounding each sample point, also had a negative relationship to bat community diversity. 

One reason for this may be that having to navigate through a large variety of differing forest types would 

make commuting to foraging spaces more difficult for bats that specialize in open area flight. Because the 

landscape heterogeneity measure was taken at a very fine scale (5 x 5 m), it is possible that this may not 

have captured a scale relevant to the long-range species present within OSBS (Stephens, Koons, Rotella 

et al., 2003). 

 Area of water was also had a negative relationship to bat community diversity, though most of the 

species present within OSBS are known to forage over water. This may be in part because the water 

bodies considered were permanent lakes and ponds that were measured using GIS layers. Ephemeral 

sources of water, such as temporarily inundated swampy areas which may be important sources of 

drinking water and foraging habitat for clutter-adapted species such as the tricolored bat, were not 

mapped or considered as part of this study. Bender et al. (2015) found a negative relationship between 

site occupancy of tricolored bats (P. subflavus) and distance to water. They used similar methods to map 

water sources and likewise neglected ephemeral water sources. Their findings are similar to ours for bat 

diversity, but opposite for the presence of tricolored bats which indicates that perhaps the tricolored bats 

found at our study site were not particularly dependent on ephemeral sources of water.  

 Vertical foliage height diversity was positively related to presence of southeastern myotis and big 

brown bats and negatively related to presence of evening bats. Because the big brown bat is a habitat 

generalist that forages both in stand interiors and edges (Brigham, 1991), increases in foliage height 

diversity may have created more foraging space for this species to use. Negative relationships between 

presence of big brown bat and evening bat to canopy height may be related to these species being over 

canopy flyers (Menzel, Menzel, Kilgo et al., 2005b). Bats flying over lower canopies may have been 

detected whereas those flying over tall canopies remained undetected.  
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 LiDAR-derived forest structure parameters added predictive power to models of bat species 

diversity, occurrence, and site utilization. LiDAR allows land managers to quickly and effectively 

categorize forest structure over an entire landscape so they can make more informed decisions on where 

to focus management efforts (Merrick et al., 2012). LiDAR not only allows managers to inventory forests 

and determine structural parameters such as height and entropy at fine scales, it also can be useful in 

determining successional stages of fire-managed communities (Angelo, Duncan and Weishampel, 2010) 

at scales relevant to species conservation and management. Using fire to manage ecosystems is critically 

important in the southeastern coastal plain of the United States, and though not considered in this study, is 

expected to have an effect on bat species living within fire managed areas (Armitage and Ober, 2012) 

since fire changes vegetation structure by thinning overgrown stands and allowing grasses and herbaceous 

ground vegetation to prosper. Alternatively, stands of pine savanna which are fire suppressed suffer from 

hardwood encroachment and increased midstory clutter.  

The use of LiDAR has led to advances in the understanding of species/habitat relationships 

because LiDAR measurements can tease out nuanced patterns from very fine (tree branch) to coarse 

(landscape-level) scales (Davies and Asner, 2014). LiDAR is also useful in creating indices of structural 

diversity over large landscapes (Listopad, Masters, Drake et al., 2015) which allows researchers to 

broaden their understanding of multiple indicators of biodiversity (Noss, 1990) by coupling monitoring 

biodiversity at the species level with understanding of landscape structure and disturbance regimes. 

Taking LiDAR inventories of managed sites could prove useful to managers who must make decisions on 

how to best conserve plant and animal species at differing scales.  

Given the continental scale LiDAR collection done by NEON, it is will be possible to extend this 

and similar studies throughout the United States allowing researchers to understand large scale patterns of 

bat diversity and habitat use. These studies could be conducted regularly to monitor changes in both 

habitat and species composition throughout the contiguous United States. Though all of the species 

present within this area of Florida are common, other studies have shown benefits to monitoring common 

species (Agosta, 2002), including detecting possible declines of these species (Winhold, Kurta and Foster, 
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2008). These studies could be supported by citizen scientists as acoustic data collection does not require 

strict permitting. However, since acoustic studies can only provide researchers with information about 

habitat use (Miller, Arnett and Lacki, 2003), further research using different methods would be advised in 

order to determine habitat preference. 

Future studies could also expand this research by including multiple detector levels to better 

understand relationships between structural parameters and above canopy flyers (Menzel et al., 2005b). 

This study could also be improved by considering measures at the stand level in addition to site and 

landscape level parameters, as all three levels have been shown to affect bat presence (Loeb and O'Keefe, 

2006). LiDAR-derived parameters such as landscape heterogeneity may be more meaningful at the stand 

level instead of the landscape level. 

 The conservation of bat species is becoming increasingly important as bats face anthropogenic-

related pressures including disease (Frick et al., 2010), wind turbine mortality (Arnett et al., 2008), and 

habitat destruction and degradation. Even common bat species such as the eastern red bad may be in 

decline (Winhold et al., 2008), and as important habitat such as pine savannas are increasingly converted 

into agricultural and urban lands (Wear and Greis, 2002) more species are expected to be affected. In 

order to preserve a high diversity of bat species, it is integral to understand their relationships with 

complex environments. LiDAR is an excellent tool to help researchers understand species/habitat 

dynamics over large scales.  
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APPENDIX A: CORRELATION MATRICES 
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Table A1: Correlation matrix of LiDAR parameters for k-means clustering (extends through page 

65); blue cells are positively related and red cells are negatively related. ND values represent no  

data. 
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Table A2: Correlation matrix of potential model parameters. 
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APPENDIX B: SITE AND MODEL SELECTION PARAMETERS 
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Table B1: Site selection parameters for k-means clustering analysis. 

Parameter Ecological Significance 

Minimum canopy height Height (m) of the lowest canopy tree within 5x5 m 

site 

Maximum canopy height Height (m) of the tallest canopy tree within 5x5 m 

site 

Mean canopy height Arithmetic mean (m) of all of the heights of the 

canopy trees within 5x5 m site 

Standard deviation of canopy height The rugosity of the canopy within 5x5 m site (m) 

Canopy height skew The skew of the canopy heights within 5x5 m site 

Canopy height kurtosis The kurtosis of the canopy heights within 5x5 m 

site 

Percent of returns above 3 m The structural clutter above 3 m.  

Proportion of binned returns (0-0.5 m, 0.5-1.5 m, 

1.5-3 m, 3-6 m., 6-9 m, 9-12 m, above 12 m) 

Bins of vertical forest structure; used to calculate 

entropy and describe the height profiles of each 5x5 

m site 
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Table B2: Complete parameter set for model development. 

Parameter Ecological Significance 

LiDAR 

Mean canopy height Mean height (m) of the canopy within 5x5 m area 

Rugosity Standard deviation (m) of canopy height within 5x5 m 

area 

Percent of returns above 3 m Percentage of LiDAR returns above 3 m.  

Proportion of LiDAR returns (0-1.5 m) Proportion of returns that were shrubby and herbaceous 

understory within 5x5 m area 

Proportion of LiDAR returns (1.5-6 m) Proportion of returns that were within forest midstory in 

5x5 m area 

Proportion of LiDAR returns (6-12 m) Proportion of returns that were upper midstory to 

canopy within 5x5 m area 

Proportion of LiDAR returns (above 12 m) Proportion of tall canopy returns within 5x5 m area 

Entropy Vertical diversity of forest layers (Jost diversity of 

binned LiDAR returns) 

Landscape and Disturbance 

Time since fire Time, in months, since last prescribed burn (unburned 

areas were marked as 50 years since fire) 

Area of water  Total area (ha) of lakes and ponds within 1.5 km buffer 

Service road length Total length of service roads (m) within area of 1.5 km 

buffer inside of OSBS 

Landscape heterogeneity Jost diversity of k-means clusters within 1.5 km buffer 

bounded by OSBS 

Proportion of urban lands Proportion of lands classified by FLUCCS as urban 

inside of 1.5 km buffer 

Proportion of agricultural lands Proportion of lands classified by FLUCCS as 

agricultural or pasture inside of 1.5 km buffer 

Proportion of forested lands Proportion of lands classified by FLUCCS as forested 

inside of 1.5 km buffer 

Proportion of non-forested lands Proportion of lands classified by FLUCCS as non-

forested inside of 1.5 km buffer 

Season and Weather 

Season Sampling season (early or late summer) 

Time since rain Time, in days, since last rain 



70 
 

 APPENDIX C: SAMPLING TIMES 
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Table C1: Sampling weeks for each site (cluster 1 - red, 2 - orange, 3 - yellow, 4 - purple, 5 - blue, 6 - 

green) corresponding to Figure 3A. 

Site June 15-21 June 29-

July 4 

July 5-11 Aug 10-16 Aug 17-23 Aug 24-30 Aug 31-

Sept 6 

1        

6    *   * 

11        

14        

15        

18        

27        

29        

30       ** 

33    *   * 

35        

39        

42        

49        

50        

55      * * 

60        

66        

* Half of the week was sampled due to equipment issues 
** Only one week total sampled at this site 
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APPENDIX D: COMPLETE MODEL SELECTION RESULTS 
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Table D1: AIC table for bat abundance models. 

 K AICc ΔAICc AICcWt Cum.Wt LL 

Model 8 12 1922.6 0.0 0.42 0.42 -949.3 

Model 9 13 1923.3 0.7 0.30 0.72 -948.6 

Model 10 13 1923.5 0.9 0.27 0.99 -948.8 

Model 5 8 1936.4 13.8 0.01 1.00 -960.2 

Model 6 9 1937.1 14.5 0.00 1.00 -959.6 

Model 7 9 1937.8 15.2 0.00 1.00 -959.9 

Model 1 8 1944.4 21.8 0.00 1.00 -964.2 

Model 3 5 1945.1 22.5 0.00 1.00 -967.6 

Model 2 9 1946.0 23.4 0.00 1.00 -964.0 

Model 4 6 1946.4 23.8 0.00 1.00 -967.2 

 

Table D2: AIC table for bat community diversity models. 

 K AICc ΔAICc AICc.Wt Cum.Wt LL 

Model 10 13 -14.86 0.00 1 1 21.66 

Model 8 13 7.13 21.99 0 1 10.67 

Model 9 13 22.02 36.88 0 1 3.22 

Model 7 12 38.62 53.47 0 1 -6.26 

Model 5 9 83.74 98.60 0 1 -32.28 

Model 6 10 85.92 100.78 0 1 -32.23 

Model 1 8 98.39 113.25 0 1 -40.73 

Model 2 9 100.19 115.05 0 1 -40.50 

Model 4 6 105.65 120.50 0 1 -46.55 

Model 3 5 111.08 125.94 0 1 -50.35 
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Table D3: AIC table for logistic models, evening bat (N. humeralis). 

 K AICc ΔAICc AICcWt Cum.Wt LL 

Model 6 9 136.71 0.00 0.98 0.98 -58.81 

Model 4 5 145.83 9.11 0.01 0.99 -67.73 

Model 2 8 146.01 9.30 0.01 1.00 -64.57 

Model 10 12 149.79 13.08 0.00 1.00 -61.93 

Model 7 11 150.47 13.75 0.00 1.00 -63.42 

Model 8 12 152.65 15.94 0.00 1.00 -63.36 

Model 9 12 152.74 16.03 0.00 1.00 -63.40 

Model 5 8 155.21 18.49 0.00 1.00 -69.17 

Model 1 7 159.94 23.22 0.00 1.00 -72.63 

Model 3 4 164.20 27.49 0.00 1.00 -77.98 

 

Table D4: AIC table for logistic models, tricolored bat (P. subflavus). 

 K AICc ΔAIC AICc.Wt Cum.Wt LL 

Model 10 12 185.63 0.00 0.84 0.84 -79.84 

Model 8 12 190.51 4.88 0.07 0.92 -82.29 

Model 7 11 191.93 6.30 0.04 0.95 -84.15 

Model 5 8 192.97 7.34 0.02 0.97 -88.05 

Model 9 12 194.18 8.56 0.01 0.99 -84.12 

Model 6 9 194.51 8.89 0.01 1.00 -87.71 

Model 1 7 196.64 11.01 0.00 1.00 -90.98 

Model 2 8 198.72 13.10 0.00 1.00 -90.93 

Model 4 5 217.55 31.92 0.00 1.00 -103.60 

Model 3 4 227.86 42.24 0.00 1.00 -109.81 
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Table D5: AIC table for logistic models, southeastern myotis (M austroriparius). 

 K AICc ΔAIC AICc.Wt Cum.Wt LL 

Model 5 8 130.65 0.00 0.50 0.50 -56.89 

Model 6 9 132.80 2.14 0.17 0.67 -56.85 

Model 7 11 133.41 2.76 0.12 0.79 -54.89 

Model 9 12 135.28 4.62 0.05 0.84 -54.67 

Model 1 7 135.45 4.79 0.05 0.88 -60.39 

Model 8 12 135.46 4.81 0.04 0.93 -54.76 

Model 10 12 135.52 4.87 0.04 0.97 -54.79 

Model 2 8 137.39 6.73 0.02 0.99 -60.26 

Model 4 5 138.44 7.79 0.01 1.00 -64.04 

Model 3 4 152.87 22.21 0.00 1.00 -72.32 

 

Table D6: AIC table for logistic models, big brown bat (E. fuscus). 

 K AICc ΔAIC AICc.Wt Cum.Wt LL 

Model 7 11 91.46 0.00 0.33 0.33 -33.92 

Model 10 12 91.54 0.08 0.32 0.65 -32.80 

Model 9 12 92.10 0.64 0.24 0.89 -33.08 

Model 8 12 93.65 2.19 0.11 1.00 -33.85 

Model 5 8 101.27 9.81 0.00 1.00 -42.20 

Model 6 9 102.41 10.95 0.00 1.00 -41.66 

Model 3 4 121.61 30.15 0.00 1.00 -56.69 

Model 2 8 121.97 30.51 0.00 1.00 -52.55 

Model 1 7 122.11 30.65 0.00 1.00 -53.72 

Model 4 5 123.70 32.24 0.00 1.00 -56.67 
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Table D7: Results for second most informative logistic model, big brown bat (E. fuscus). 

 Estimate Std. Error z value Pr(>|z|) 

Intercept 72.87 31.88 2.286 <0.05 

Mean canopy height -0.6002 0.2553 -2.351 <0.05 

Entropy 3.971 1.655 2.400 <0.05 

Rugosity -4.878 3.582 -1.362 0.173 

Proportion of returns (0-1.5 m) -22.33 9.650 -2.314 <0.05 

Proportion of returns (1.5-6 m) 6.747 73.21 0.092 0.927 

Proportion of returns (6-12 m) -28.86 10.57 -2.730 <0.01 

Proportion of urban lands -7.297 1.020 -0.715 0.474 

Water area -0.0447 0.0321 -1.393 0.164 

Length of service roads -0.0019 0.0012 -1.636 0.102 

Landscape heterogeneity -9.070 5.280 -1.718 0.086 

ServiceRoadLength:LandscapeHeterogeneity 0.0003 0.0002 1.307 0.191 

 

Table D8: Results for third most informative logistic model, big brown bat (E. fuscus). 

 Estimate Std. Error z value Pr(>|z|) 

Intercept 70.84 33.37 2.123 <0.05 

Mean canopy height -0.6656 0.2620 -2.540 <0.05 

Entropy 3.927 1.670 2.351 <0.05 

Rugosity -4.785 2.983 -1.604 0.109 

Proportion of returns (0-1.5 m) -23.34 10.76 -2.170 <0.05 

Proportion of returns (1.5-6 m) 8.111 50.78 0.160 0.873 

Proportion of returns (6-12 m) -29.75 11.07 -2.687 <0.01 

Proportion of urban lands -8.957 10.17 -0.880 0.379 

Landscape heterogeneity -7.648 4.569 -1.674 0.094 

Water area -0.4123 0.3162 -1.304 0.192 

Length of service roads -0.0006 0.0002 -2.617 <0.01 

LandscapeHeterogeneity:WaterArea 0.0813 0.0675 1.206 0.228 
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APPENDIX E: R CODE 



78 
 

Correlation Matrices 

##Model selection parameter matrix 

##Set the working directory 

setwd("G:/Thesis/Data") 

 

##Read the data 

bat.data<-read.csv("BatMasterDataFINALWorking2.csv", header=T) 

names(bat.data) 

 

##Load packages 

library(corrplot) 

library(grDevices) 

 

##Subset the parameters being considered for model selection 

bat.subset<-

subset(bat.data,select=c(CanHeight,CanopyMean,Rugosity,Prop015,Prop156,Prop612,PropAb12,TimeSi

nceRain,TimeSinceFire,PercentWater,RoadLength,LandHeterogeneity,PropUrban,PropAg,PropForest,En

tropy)) 

 

##Run the correlation matrix 

mcor<-cor(bat.subset) 

 

##Graph the correlation matrix 

col<-colorRampPalette(c("#BB4444","#EE9988","#FFFFFF","#77AADD","#4477AA")) 

corrplot(mcor,method="shade",shade.col=NA,tl.col="black",tl.srt=60,col=col(200),addCoef.col="black",

addcolorlabel="no",order="AOE") 

K Means Clustering and Site Selection 

##set directory 

setwd("G:/Project_Home/Products/Collated Metrics") 

getwd() 

 

##read data 

osdata<-read.csv("OSAllGIS.csv", header=T) 

names(osdata) 

 

##calculate the return counts 

osbsdata$SumX<-

(X0to3+X3to6+X6to9+X9to12+X12to15+X15to18+X18to21+X21to24+X24to27+X27to30+X30to33) 

 

attach(osdata) 

names(osbsdata) 
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##add columns with percent returns by bin 

osbsdata$P0to3<-(X0to3/SumX) 

osbsdata$P3to6<-(X3to6/SumX) 

osbsdata$P6to9<-(X6to9/SumX) 

osbsdata$P9to12<-(X9to12/SumX) 

osbsdata$P12to15<-(X12to15/SumX) 

osbsdata$P15to18<-(X15to18/SumX) 

osbsdata$P18to21<-(X18to21/SumX) 

osbsdata$P21to24<-(X21to24/SumX) 

osbsdata$P24to27<-(X24to27/SumX) 

osbsdata$P27to30<-(X27to30/SumX) 

osbsdata$P30to33<-(X30to33/SumX) 

 

##Detach and reattach data to ensure new columns are present 

detach(osbsdata) 

attach(osbsdata) 

 

names(osbsdata) 

 

##write table with percentages 

write.table(unclass(osbsdata), "OSBSdatatrunc.txt", sep=",", col.names=T, row.names=F) 

 

##run kmeans without total return count (this was messing up the clusters with remnants of flight lines)  

model1<-

kmeans(data.frame(ElevMax,ElevMean,ElevStdDev,ElevSkew,ElevKurtosis,Return3Above3,PercentAll

Above3,MaxHeight,P0to3,P3to6,P6to9,P9to12,P12to15,P15to18,P18to21,P21to24,P24to27,P27to30,P30t

o33), centers = 6, algorithm="Lloyd", iter.max=1000) 

 

##Write k-means results to a file 

write.matrix(model1,file="kmeans6.txt", sep =",") 

 

##Read in k-means file 

kmeans6<-scan("kmeans6.txt", what=numeric(), sep=",") 

 

#Transpose the file from a row into a column 

t(kmeans6) 

 

##Add the clusters column to the data 

data$Clusters6<-kmeans 

 

##Write the data including k-means clusters to a file 

write.table(unclass(data), "OSBSclusters6.txt", sep=",", col.names=T, row.names=F) 
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##segregate rows by cluster 

data.sub1<-subset(osclusters, Cluster6==1) 

write.table(unclass(data.sub1), "OSclustersSub6-1-1.txt", sep=",", col.names=T, row.names=F) 

 

data.sub2<-subset(osclusters, Cluster6==2) 

write.table(unclass(data.sub2), "OSBSclustersSub6-1-2.txt", sep=",", col.names=T, row.names=F) 

 

data.sub3<-subset(osclusters, Cluster6==3) 

write.table(unclass(data.sub3), "OSBSclustersSub6-1-3.txt", sep=",", col.names=T, row.names=F) 

 

data.sub4<-subset(osclusters, Cluster6==4) 

write.table(unclass(data.sub4), "OSBSclustersSub6-1-4.txt", sep=",", col.names=T, row.names=F) 

 

data.sub5<-subset(osclusters, Cluster6==5) 

write.table(unclass(data.sub5), "OSBSclustersSub6-1-5.txt", sep=",", col.names=T, row.names=F) 

 

data.sub6<-subset(osclusters, Cluster6==6) 

write.table(unclass(data.sub6), "OSBSclustersSub6-5-6.txt", sep=",", col.names=T, row.names=F) 

 

##randomly select sites from the subsets, extra sites were selected to ensure that there were enough sites 

within the boundaries of Ordway-Swisher 

random1<-data.sub1[sample(nrow(data.sub1), 30), ] 

random2<-data.sub2[sample(nrow(data.sub2), 30), ] 

random3<-data.sub3[sample(nrow(data.sub3), 30), ] 

random4<-data.sub4[sample(nrow(data.sub4), 30), ] 

random5<-data.sub5[sample(nrow(data.sub5), 30), ] 

random6<-data.sub6[sample(nrow(data.sub6), 30), ] 

 

##write random samples to a table 

write.table(unclass(random1), "OSRandom6-1-1.txt", sep=",", col.names=T, row.names=F) 

write.table(unclass(random2), "OSRandom6-1-2.txt", sep=",", col.names=T, row.names=F) 

write.table(unclass(random3), "OSRandom6-1-3.txt", sep=",", col.names=T, row.names=F) 

write.table(unclass(random4), "OSRandom6-1-4.txt", sep=",", col.names=T, row.names=F) 

write.table(unclass(random5), "OSRandom6-1-5.txt", sep=",", col.names=T, row.names=F) 

write.table(unclass(random6), "OSRandom6-1-6.txt", sep=",", col.names=T, row.names=F) 

Model Selection 

setwd("G:/Thesis/Data") 

 

##Read and attach the data 

bat.data<-read.csv("BatMasterDataFINALworking2.csv",header=T) 

names(bat.data) 

bat<-subset(bat.data,ShanBatDiv != 0) 
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##Call package for AIC comparisons 

library(AICcmodavg) 

 

##Set up variable for diversity 

Bat.Div<-bat$ShanBatDiv 

 

##Normalize model parameters 

vifCanMean<-bat$CanMean-mean(bat$CanMean) 

vifEntropy<-bat$Entropy-mean(bat$Entropy) 

vifRugosity<-bat$Rugosity-mean(bat$Rugosity) 

vifProp015<-bat$Prop015-mean(bat$Prop015) 

vifProp156<-bat$Prop156-mean(bat$Prop156) 

vifProp612<-bat$Prop612-mean(bat$Prop612) 

vifLandHeterogeneityerogeneity<-bat$LandHeterogeneity-mean(bat$LandHeterogeneity) 

vifPropUrban<-bat$PropUrban-mean(bat$PropUrban) 

vifPercentWater<-bat$AreaWater-mean(bat$AreaWater) 

vifRoadLength<-bat$RoadLength-mean(bat$RoadLength) 

 

##Log transform diversity data 

logbat<-log(Bat.Div) 

 

##models 

cand.models<-list() 

 

cand.models[[1]]<-

lm(logbat~vifCanMean+vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612, data=bat) 

cand.models[[2]]<-

lm(logbat~vifCanMean*vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612, data=bat) 

cand.models[[3]]<-lm(logbat~vifCanMean+vifEntropy+vifRugosity, data=bat) 

cand.models[[4]]<-lm(logbat~vifCanMean*vifEntropy+vifRugosity, data=bat) 

 

##2) Land heterogeneity will relate to bat community diversity 

 

cand.models[[5]]<-

lm(logbat~vifCanMean+vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612+vifLandHeteroge

neity, data=bat) 

cand.models[[6]]<-

lm(logbat~vifCanMean*vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612+vifLandHeteroge

neity, data=bat) 

 

##3) Stand-level attributes will relate to bat community diversity 
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cand.models[[7]]<-

lm(logbat~vifCanMean+vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612+vifPropUrban+vif

PercentWater+vifRoadLength+vifLandHeterogeneity, data=bat) 

cand.models[[8]]<-lm(logbat~ 

vifCanMean+vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612+vifPropUrban*vifLandHeter

ogeneity+vifPercentWater+vifRoadLength,data=bat) 

cand.models[[9]]<-

lm(logbat~vifCanMean+vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612+vifPropUrban+vif

LandHeterogeneity*vifPercentWater+vifRoadLength,data=bat) 

cand.models[[10]]<-

lm(logbat~vifCanMean+vifEntropy+vifRugosity+vifProp015+vifProp156+vifProp612+vifPropUrban+vif

PercentWater+vifRoadLength*vifLandHeterogeneity,data=bat) 

 

##Create a vector of names to trace back models in set 

modelnames<-paste("Model", 1:length(cand.models), sep=" ") 

 

##Generate AICc table 

aictab(cand.set=cand.models, modnames=modelnames, sort=TRUE) 

 

##Set up variable for presence 

labo<-bat.data$LABOPres 

 

##models 

labo.models<-list() 

 

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy 

height, entropy, rugosity, and proportion of returns in height bins. 

 

labo.models[[1]]<-glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data, 

family=binomial) 

labo.models[[2]]<-glm(labo~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data, 

family=binomial) 

labo.models[[3]]<-glm(labo~CanMean+Entropy+Rugosity, data=bat.data, family=binomial) 

labo.models[[4]]<-glm(labo~CanMean*Entropy+Rugosity, data=bat.data, family=binomial) 

 

##2) Land heterogeneity will relate to bat community diversity 

 

labo.models[[5]]<-

glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data, 

family=binomial) 

labo.models[[6]]<-

glm(labo~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data, 

family=binomial) 
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##3) Stand-level attributes will relate to bat community diversity 

 

labo.models[[7]]<-

glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLeng

th+LandHeterogeneity, data=bat.data, family=binomial) 

labo.models[[8]]<-

glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity+A

reaWater+RoadLength,data=bat.data, family=binomial) 

labo.models[[9]]<-

glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity*A

reaWater+RoadLength,data=bat.data, family=binomial) 

labo.models[[10]]<-

glm(labo~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLeng

th*LandHeterogeneity,data=bat.data, family=binomial) 

 

##Create a vector of names to trace back models in set 

modelnames<-paste("Model", 1:length(labo.models), sep=" ") 

 

##Generate AICc table 

aictab(cand.set=labo.models, modnames=modelnames, sort=TRUE) 

 

##Set up variable for presence 

pesu<-bat.data$PESUPres 

 

##models 

pesu.models<-list() 

 

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy 

height, entropy, rugosity, and proportion of returns in height bins. 

 

pesu.models[[1]]<-glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data, 

family=binomial) 

pesu.models[[2]]<-glm(pesu~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data, 

family=binomial) 

pesu.models[[3]]<-glm(pesu~CanMean+Entropy+Rugosity, data=bat.data, family=binomial) 

pesu.models[[4]]<-glm(pesu~CanMean*Entropy+Rugosity, data=bat.data, family=binomial) 

 

##2) Land heterogeneity will relate to bat community diversity 

 

pesu.models[[5]]<-

glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data, 

family=binomial) 
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pesu.models[[6]]<-

glm(pesu~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data, 

family=binomial) 

 

##3) Stand-level attributes will relate to bat community diversity 

 

pesu.models[[7]]<-

glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen

gth+LandHeterogeneity, data=bat.data, family=binomial) 

pesu.models[[8]]<-

glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity+A

reaWater+RoadLength,data=bat.data, family=binomial) 

pesu.models[[9]]<-

glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity*A

reaWater+RoadLength,data=bat.data, family=binomial) 

pesu.models[[10]]<-

glm(pesu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen

gth*LandHeterogeneity,data=bat.data, family=binomial) 

 

##Create a vector of names to trace back models in set 

modelnames<-paste("Model", 1:length(pesu.models), sep=" ") 

 

##Generate AICc table 

aictab(cand.set=pesu.models, modnames=modelnames, sort=TRUE) 

 

##Set up variable for presence 

laci<-bat.data$LACIPres 

 

##models 

laci.models<-list() 

 

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy 

height, entropy, rugosity, and proportion of returns in height bins. 

 

laci.models[[1]]<-glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data, 

family=binomial) 

laci.models[[2]]<-glm(laci~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data, 

family=binomial) 

laci.models[[3]]<-glm(laci~CanMean+Entropy+Rugosity, data=bat.data, family=binomial) 

laci.models[[4]]<-glm(laci~CanMean*Entropy+Rugosity, data=bat.data, family=binomial) 

 

##2) Land heterogeneity will relate to bat community diversity 
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laci.models[[5]]<-

glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data, 

family=binomial) 

laci.models[[6]]<-

glm(laci~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data, 

family=binomial) 

 

##3) Stand-level attributes will relate to bat community diversity 

 

laci.models[[7]]<-

glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLengt

h+LandHeterogeneity, data=bat.data, family=binomial) 

laci.models[[8]]<-

glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity+Ar

eaWater+RoadLength,data=bat.data, family=binomial) 

laci.models[[9]]<-

glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity*Ar

eaWater+RoadLength,data=bat.data, family=binomial) 

laci.models[[10]]<-

glm(laci~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLengt

h*LandHeterogeneity,data=bat.data, family=binomial) 

 

##Create a vector of names to trace back models in set 

modelnames<-paste("Model", 1:length(laci.models), sep=" ") 

 

##Generate AICc table 

aictab(cand.set=laci.models, modnames=modelnames, sort=TRUE) 

 

##Set up variable for presence 

epfu<-bat.data$EPFUPres 

 

##models 

epfu.models<-list() 

 

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy 

height, entropy, rugosity, and proportion of returns in height bins. 

 

epfu.models[[1]]<-glm(epfu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data, 

family=binomial) 

epfu.models[[2]]<-glm(epfu~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data, 

family=binomial) 

epfu.models[[3]]<-glm(epfu~CanMean+Entropy+Rugosity, data=bat.data, family=binomial) 

epfu.models[[4]]<-glm(epfu~CanMean*Entropy+Rugosity, data=bat.data, family=binomial) 
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##2) Land heterogeneity will relate to bat community diversity 

 

epfu.models[[5]]<-

glm(epfu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data, 

family=binomial) 

epfu.models[[6]]<-

glm(epfu~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data, 

family=binomial) 

 

##3) Stand-level attributes will relate to bat community diversity 

 

epfu.models[[7]]<-

glm(epfu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen

gth+LandHeterogeneity, data=bat.data, family=binomial) 

epfu.models[[8]]<-

glm(epfu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity+A

reaWater+RoadLength,data=bat.data, family=binomial) 

epfu.models[[9]]<-

glm(epfu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity*A

reaWater+RoadLength,data=bat.data, family=binomial) 

epfu.models[[10]]<-

glm(epfu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen

gth*LandHeterogeneity,data=bat.data, family=binomial) 

 

##Create a vector of names to trace back models in set 

modelnames<-paste("Model", 1:length(epfu.models), sep=" ") 

 

##Generate AICc table 

aictab(cand.set=epfu.models, modnames=modelnames, sort=TRUE) 

 

##Set up variable for presence 

myau<-bat.data$MYAUPres 

 

##models 

myau.models<-list() 

 

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy 

height, entropy, rugosity, and proportion of returns in height bins. 

 

myau.models[[1]]<-glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612, 

data=bat.data, family=binomial) 

myau.models[[2]]<-glm(myau~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data, 

family=binomial) 

myau.models[[3]]<-glm(myau~CanMean+Entropy+Rugosity, data=bat.data, family=binomial) 
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myau.models[[4]]<-glm(myau~CanMean*Entropy+Rugosity, data=bat.data, family=binomial) 

 

##2) Land heterogeneity will relate to bat community diversity 

 

myau.models[[5]]<-

glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, 

data=bat.data, family=binomial) 

myau.models[[6]]<-

glm(myau~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, 

data=bat.data, family=binomial) 

 

##3) Stand-level attributes will relate to bat community diversity 

 

myau.models[[7]]<-

glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen

gth+LandHeterogeneity, data=bat.data, family=binomial) 

myau.models[[8]]<-

glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity+

AreaWater+RoadLength,data=bat.data, family=binomial) 

myau.models[[9]]<-

glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity*

AreaWater+RoadLength,data=bat.data, family=binomial) 

myau.models[[10]]<-

glm(myau~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen

gth*LandHeterogeneity,data=bat.data, family=binomial) 

 

##Create a vector of names to trace back models in set 

modelnames<-paste("Model", 1:length(myau.models), sep=" ") 

 

##Generate AICc table 

aictab(cand.set=myau.models, modnames=modelnames, sort=TRUE) 

 

##Set up variable for presence 

nyhu<-bat.data$NYHUPres 

 

##models 

nyhu.models<-list() 

 

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy 

height, entropy, rugosity, and proportion of returns in height bins. 

 

nyhu.models[[1]]<-glm(nyhu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data, 

family=binomial) 
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nyhu.models[[2]]<-glm(nyhu~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, data=bat.data, 

family=binomial) 

nyhu.models[[3]]<-glm(nyhu~CanMean+Entropy+Rugosity, data=bat.data, family=binomial) 

nyhu.models[[4]]<-glm(nyhu~CanMean*Entropy+Rugosity, data=bat.data, family=binomial) 

 

##2) Land heterogeneity will relate to bat community diversity 

 

nyhu.models[[5]]<-

glm(nyhu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data, 

family=binomial) 

nyhu.models[[6]]<-

glm(nyhu~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.data, 

family=binomial) 

 

##3) Stand-level attributes will relate to bat community diversity 

 

nyhu.models[[7]]<-

glm(nyhu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen

gth+LandHeterogeneity, data=bat.data, family=binomial) 

nyhu.models[[8]]<-

glm(nyhu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity+

AreaWater+RoadLength,data=bat.data, family=binomial) 

nyhu.models[[9]]<-

glm(nyhu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity*

AreaWater+RoadLength,data=bat.data, family=binomial) 

nyhu.models[[10]]<-

glm(nyhu~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadLen

gth*LandHeterogeneity,data=bat.data, family=binomial) 

 

##Create a vector of names to trace back models in set 

modelnames<-paste("Model", 1:length(nyhu.models), sep=" ") 

 

##Generate AICc table 

aictab(cand.set=nyhu.models, modnames=modelnames, sort=TRUE) 

 

##models 

negbinom.models<-list() 

 

##1) Stand-level attributes will contribute to bat diversity. Expected contributions would be canopy 

height, entropy, rugosity, and proportion of returns in height bins. 

 

negbinom.models[[1]]<-glm.nb(total~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612, 

data=bat.total) 
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negbinom.models[[2]]<-glm.nb(total~CanMean*Entropy+Rugosity+Prop015+Prop156+Prop612, 

data=bat.total) 

negbinom.models[[3]]<-glm.nb(total~CanMean+Entropy+Rugosity, data=bat.total) 

negbinom.models[[4]]<-glm.nb(total~CanMean*Entropy+Rugosity, data=bat.total) 

 

##2) Land heterogeneity will relate to bat community diversity 

 

negbinom.models[[5]]<-

glm.nb(total~CanMean+Entropy+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.total) 

negbinom.models[[6]]<-

glm.nb(total~CanMean*Entropy+Prop015+Prop156+Prop612+LandHeterogeneity, data=bat.total) 

negbinom.models[[7]]<-

glm.nb(total~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+LandHeterogeneity, 

data=bat.total) 

 

##3) Stand-level attributes will relate to bat community diversity 

 

negbinom.models[[8]]<-

glm.nb(total~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadL

ength+LandHeterogeneity, data=bat.total) 

negbinom.models[[9]]<-

glm.nb(total~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban*LandHeterogeneity

+AreaWater+RoadLength,data=bat.total) 

negbinom.models[[10]]<-

glm.nb(total~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+LandHeterogeneity

*AreaWater+RoadLength,data=bat.total) 

negbinom.models[[11]]<-

glm.nb(total~CanMean+Entropy+Rugosity+Prop015+Prop156+Prop612+PropUrban+AreaWater+RoadL

ength*LandHeterogeneity,data=bat.total) 

 

##Create a vector of names to trace back models in set 

modelnames<-paste("Model", 1:length(negbinom.models), sep=" ") 

 

##Generate AICc table 

aictab(cand.set=negbinom.models, modnames=modelnames, sort=TRUE) 



90 
 

APPENDIX F: IACUC APPROVAL 



91 
 

 



92 
 

 



93 
 

LIST OF REFERENCES 

Adams, A. M., Jantzen, M. K., Hamilton, R. M. , Fenton, M. B. (2012). Do you hear what I hear? 
Implications of detector selection for acoustic monitoring of bats. Methods in Ecology and 

Evolution 3, 992. 
 
Agosta, S. J. (2002). Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North 

America: A case for conserving an abundant species. Mamm. Rev. 32, 179. 
 
Aldridge, H. D. J. N. , Rautenbach, I. L. (1987). Morphology, echolocation and resource partitioning in 

insectivorous bats. J. Anim. Ecol. 56, 763. 
 
Angelo, J. J., Duncan, B. W. , Weishampel, J. F. (2010). Using LiDAR-derived vegetation profiles to 

predict time since fire in an oak scrub landscape in east-central Florida. Remote Sensing 2, 514. 
 
Armitage, D. W. , Ober, H. K. (2012). The effects of prescribed fire on bat communities in the longleaf 

pine sandhills ecosystem. J. Mammal. 93, 102. 
 
Arnett, E. B., Brown, W. K., Erickson, W. P., Fiedler, J. K., Hamilton, B. L., Henry, T. H., Jain, A., 

Johnson, G. D., Kerns, J., Koford, R. R., Nicholson, C. P., O'Connell, T. J., Piorkowski, M. D. , 
Tankersley, R. D. (2008). Patterns of bat fatalities at wind energy facilities in North America. J. 

Wildl. Manage. 72, 61. 
 
Bender, M. J., Castleberry, S. B., Miller, D. A. , Wigley, T. B. (2015). Site occupancy of foraging bats on 

landscapes of managed pine forest. For. Ecol. Manage. 336, 1. 
 
Bersier, L. F. , Meyer, D. R. (1994). Bird assemblages in mosaic forests - the relative importance of 

vegetation structure and floristic composition along the successional gradient. Acta Oecologica-

International Journal of Ecology 15, 561. 
 
Bestelmeyer, B. T. , Wiens, J. A. (2001). Ant biodiversity in semiarid landscape mosaics: The 

consequences of grazing vs. natural heterogeneity. Ecol. Appl. 11, 1123. 
 
Bohm, S. M., Wells, K. , Kalko, E. K. V. (2011). Top-down control of herbivory by birds and bats in the 

canopy of temperate broad-leaved oaks (Quercus robur). Plos One 6. 
 
Brigham, R. M. (1991). Flexibility in foraging and roosting behavior by the big brown bat (Eptesicus 

fuscus). Canadian Journal of Zoology 69. 
 
Brigham, R. M., Grindal, S. D., Firman, M. C. , Morissette, J. L. (1997). The influence of structural 

clutter on activity patterns of insectivorous bats. Canadian Journal of Zoology 73, 131. 
 
Britzke, E. R. (2014) Echoclass v 3.1. Retrieved from: 

http://www.fws.gov/midwest/Endangered/mammals/inba/surveys/inbaAcousticSoftware.html. 
 
Burnham, K. P. , Anderson, D. R. (2002). Model selection and multimodel inference: A practical 

information-theoretic approach: Springer-Verlag. 
 



94 
 

Clawges, R., Vierling, K., Vierling, L. , Rowell, E. (2008). The use of airborne LiDAR to assess avian 
species diversity, density, and occurrence in a pine/aspen forest. Remote Sens. Environ. 112, 
2064. 

 
Corben, C. (2014) CFCRead Storage ZCAIM Interface version 4.4u.  Retrieved from: 

www.hoarybat.com. 
 
Davies, A. B. , Asner, G. P. (2014). Advances in animal ecology from 3D-LiDAR ecosystem mapping. 

Trends Ecol. Evol. 29, 681. 
 
Docherty, M. , Leather, S. R. (1997). Structure and abundance of arachnid communities in scots and 

lodgepole pine plantations. For. Ecol. Manage. 95, 197. 
 
Duchamp, J. E., Sparks, D. W. , Swihart, R. K. (2010). Exploring the "nutrient hot spot" hypothesis at 

trees used by bats. J. Mammal. 91, 48. 
 
Environmental Systems Resource Institute. (2012) Arcmap 10.1. Redlands, CA. ESRI. 
 
Farney, J. , Fleharty, E. D. (1969). Aspect ratio, loading, wing span and membrane areas of bats. J. 

Mammal. 50, 362. 
 
Ford, M. (2014) Echolocation identification software results. Retrieved from: 

http://www.fws.gov/midwest/Endangered/mammals/inba/surveys/pdf/USGSTestReport1_201409
015.pdf. 

 
Ford, W. M., Menzel, M. A., Rodrigue, J. L., Menzel, J. M. , Johnson, J. B. (2005). Relating bat species 

presence to simple habitat measures in a central Appalachian forest. Biol. Conserv. 126, 528. 
 
Frick, W. F., Pollock, J. F., Hicks, A. C., Langwig, K. E., Reynolds, D. S., Turner, G. G., Butchkoski, C. 

M. , Kunz, T. H. (2010). An emerging disease causes regional population collapse of a common 
North American bat species. Science 329, 679. 

 
Goetz, S., Steinberg, D., Dubayah, R. , Blair, B. (2007). Laser remote sensing of canopy habitat 

heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote 

Sens. Environ. 108, 254. 
 
Grindal, S. D. , Brigham, R. M. (1999). Impacts of forest harvesting on habitat use by foraging 

insectivorous bats at different spatial scales. Ecoscience 6, 25. 
 
Halaj, J., Ross, D. W. , Moldenke, A. R. (2000). Importance of habitat structure to the arthropod food-

web in douglas-fir canopies. Oikos 90, 139. 
 
Hein, C. D., Castleberry, S. B. , Miller, K. V. (2009). Site-occupancy of bats in relation to forested 

corridors. For. Ecol. Manage. 257, 1200. 
 
Henry, M., Thomas, D. W., Vaudry, R. , Carrier, M. (2002). Foraging distances and home range of 

pregnant and lactating little brown bats (Myotis lucifugus). J. Mammal. 83, 767. 
 
Hutchinson, J. T. , Lacki, M. J. (2000). Selection of day roosts by red bats in mixed mesophytic forests. 

Journal of Wildlife Managemet 64, 87. 



95 
 

Jones, G., Jacobs, D. S., Kunz, T. H., Willig, M. R. , Racey, P. A. (2009). Carpe noctem: The importance 
of bats as bioindicators. Endangered Species Research 8, 93. 

 
Jost, L. (2006). Entropy and diversity. Oikos 113, 363. 
 
Jung, K., Kaiser, S., Böhm, S., Nieschulze, J. , Kalko, E. K. V. (2012). Moving in three dimensions: 

Effects of structural complexity on occurrence and activity of insectivorous bats in managed 
forest stands. J. Appl. Ecol. 49, 523. 

 
Lack, D. (1969). The numbers of bird species on islands. Bird Study 16, 193. 
 
Lefsky, M. A., Cohen, W. B., Parker, G. G. , Harding, D. J. (2002). LiDAR remote sensing for ecosystem 

studies. Bioscience 52, 19. 
 
Listopad, C. M. C. S., Masters, R. E., Drake, J. B., Weishampel, J. F. , Branquinho, C. (2015). Structural 

diversity indices based on ariborne LiDAR as ecological indicators for managing highly dynamic 
landscapes. Ecol. Indicators 57, 268. 

 
Loeb, S. C. , O'Keefe, J. M. (2006). Habitat use by forest bats in South Carolina in relation to local, stand, 

and landscape characteristics. Journal of Wildlife Managemet 70, 1210. 
 
MacArthur, R. H. (1958). Population ecology of some warblers of northeastern coniferous forests. 

Ecology 39, 599. 
 
MacArthur, R. H. , MacArthur, J. W. (1961). On bird species diversity. Ecology 42, 594. 
 
MacArthur, R. H. , Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton: Princeton 

University Press. 
 
Marciente, R., Brobrowiec, P. E. D. , Magnusson, W. E. (2015). Ground-vegetation clutter affects 

phyllostomid bat assemblage structure in lowland Amazonian forest. PLoS One 10, e0129560. 
 
Marks, C., Marks, G. (2006). Bats of Florida. Florida: University Press of Florida.  
 
Mazerolle, M. J. (2015) AICcmodavg: Model selection and multimodel inference based on (q)aic(c). R 

package version 2.0-3.  Retrieved from: http://CRAN.R-project.org/package=AICcmodeavg. 
 
McGaughey, R. J. (2014) Fusion/LDV and the LiDAR toolkit (LTK). Pacific Northwest Research 

Station. United States Department of Agriculture, Forest Service. 
 
Menzel, J. M., Menzel, M. A., Kilgo, J. C., Ford, W. M. , Edwards, J. W. (2005a). Bat response to 

Carolina bays and wetland restoration in the southeastern U.S. Coastal Plain. Wetlands 25, 542. 
 
Menzel, J. M., Menzel, M. A., Kilgo, J. C., Ford, W. M., Edwards, J. W. , McCracken, G. F. (2005b). 

Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina. 
Journal of Wildlife Managemet 69, 235. 

 
Merrick, M. J., Koprowski, J. L. , Wilcox, C. (2012). Into the third dimension: Benefits of incorporating 

LiDAR data in wildlife habitat models. In 7th Conference on Research and Resource 

management in the Southwester Deserts: 389-395. Gottfried, G. J., Ffolliott, P. F., Gebow, B. S., 



96 
 

Eskew, L. G., Collins, L. C. (Eds.). Tucson, AZ: United States Department of Agriculture, Forest 
Service, Rocky Mountain Research Station. 

 
Mickelburg, S. P., Hutson, A. M. , Racey, P. A. (2002). A review of the global conservation status of 

bats. Oryx 36, 18. 
 
Miller, D. A., Arnett, E. B. , Lacki, M. J. (2003). Habitat management for forest-roosting bats of North 

America: A critical review of habitat studies. Wildl. Soc. Bull. 31, 30. 
 
Müller, J., Bae, S., Röder, J., Chao, A. , Didham, R. K. (2014). Airborne LiDAR reveals context 

dependence in the effects of canopy architecture on arthropod diversity. For. Ecol. Manage. 312, 
129. 

 
Muller, J. , Brandl, R. (2009). Assessing biodiversity by remote sensing in mountainous terrain: The 

potential of LiDAR to predict forest beetle assemblages. J. Appl. Ecol. 46, 897. 
 
Noss, R. F. (1990). Indicators for monitoring biodiversity: A hierarchical approach. Conserv. Biol. 4, 355. 
 
O'Farrell, M. J. (1998). A passive monitoring system from Anabat II using a laptop computer. Bat 

Research News 39, 147. 
 
Ordway-Swisher Biological Station (2014) 2014 UF/IFAS Ordway-Swisher Biological Station Annual 

Report  Retrieved from: http://ordway-swisher.ufl.edu/forms/14_OSBS_AR.pdf. 
 
Palminteri, S., Powell, G. V. N., Asner, G. P. , Peres, C. A. (2012). Lidar measurements of canopy 

structure predict spatial distribution of a tropical mature forest primate. Remote Sens. Environ. 
127, 98. 

 
Patriquin, K. J. , Barclay, R. M. R. (2003). Foraging by bats in cleared, thinned and unharvested boreal 

forest. J. Appl. Ecol. 40, 646. 
 
R Development Core Team. (2014) R: A language and environment for statistical computing. Vienna, 

Austria. R Foundation for Statistical Computing. Retrieved from: http://www.R-project.org. 
 
Rainho, A., Augusto, A. M. , Palmeirim, J. M. (2010). Influence of vegetation clutter on the capacity of 

ground foraging bats to capture prey. J. Appl. Ecol. 47, 850. 
 
Rainho, A. , Palmeirim, J. M. (2011). The importance of distance to resources in the spatial modelling of 

bat foraging habitat. Plos One 6, e19227. 
 
Reutebuch, S. E., Andersen, H. E. , McGaughey, R. J. (2005). Light detection and ranging (LiDAR): An 

emerging tool for multiple resource inventory. J. For. 103, 286. 
 
Schnitzler, H. U. , Kalko, E. K. V. (2001). Echolocation by insect-eating bats. Bioscience 51, 557. 
 
Schwarzkopf, L. , Rylands, A. B. (1989). Primate species richness in relation to habitat structure in 

Amazonian rainforest fragments. Biol. Conserv. 48, 1. 
 
Simmons, J. A., Fenton, M. B. , O'Farrell, M. J. (1979). Echolocation and pursuit of prey by bats. Science 

203, 16. 
 



97 
 

Sleep, D. J. H. , Brigham, R. M. (2003). An experimental test of clutter tolerance in bats. J. Mammal. 84, 
216. 

 
Southwell, C. J., Cairns, S. C., Pople, A. R. , Delaney, R. (1999). Gradient analysis of macropod 

distribution in open forest and woodland of eastern Australia. Aust. J. Ecol. 24, 132. 
 
Stephens, S. E., Koons, D. N., Rotella, J. J. , Willey, D. W. (2003). Effects of habitat fragmentation on 

avian nesting success: A review of the evidence at multiple spatial scales. Biol. Conserv. 115, 
101. 

 
U.S. Fish and Wildlife Service (2015). Indiana bat summer survey guidance.Retrived from: 

http://www.fws.gov/midwest/endangered/mammals/inba/inbasummersurveyguidance.html 
 
Vallan, D. (2002). Effects of anthropogenic environmental changes on amphibian diversity in the rain 

forests of eastern Madagascar. J. Trop. Ecol. 18, 725. 
 
Vierling, K. T., Bassler, C., Brandl, R., Vierling, L. A., Weiss, I. , Muller, J. (2011). Spinning a laser web: 

Predicting spider distributions using lidar. Ecol. Appl. 21, 577. 
 
Waldon, J., Miller, B. W. , Miller, C. M. (2011). A model biodiversity monitoring protocol for REDD 

projects. Tropical Conservation Science 4, 254. 
 
Wear, D. N. , Greis, J. G. (2002). Southern forest resource assessment - summary of findings. J. For. 100, 

6. 
 
Winhold, L., Kurta, A. , Foster, R. (2008). Long-term change in an assemblage of North American bats: 

Are eastern red bats declining? Acta Chiropterol 10, 359. 

 


	Flying under the LiDAR: relating forest structure to bat community diversity
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	INTRODUCTION
	METHODOLOGY
	Study Location
	Site Selection for Acoustic Sampling
	Detector Setup
	Data Analysis

	RESULTS
	K Means Clustering
	Acoustics Summary
	Model Selection
	Overall Abundance Models
	Bat Community Diversity Models
	Logistic Regression Models for Evening Bat (N. humeralis)
	Logistic Regression Models for Tricolored bat (P. subflavus)
	Logistic Regression Models for Southeastern Myotis (M. austroriparius)
	Logistic Regression Models for Big Brown Bat (E. fuscus)


	DISCUSSION
	APPENDIX A: CORRELATION MATRICES
	APPENDIX B: SITE AND MODEL SELECTION PARAMETERS
	APPENDIX C: SAMPLING TIMES
	APPENDIX D: COMPLETE MODEL SELECTION RESULTS
	APPENDIX E: R CODE
	Correlation Matrices
	K Means Clustering and Site Selection
	Model Selection

	APPENDIX F: IACUC APPROVAL
	LIST OF REFERENCES

