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ABSTRACT 

To understand native species persistence in transformed landscapes we must evaluate how 

individual behaviors interact with landscape structure through ecological processes such as 

habitat selection. Rapid, widespread landscape transformation may lead to a mismatch between 

habitat preference and quality, a phenomenon known as ecological traps that can have negative 

outcomes for populations. I applied this framework to the study of birds inhabiting landscapes 

dominated by forest remnants and shade coffee plantations, a tropical agroforestry system that 

retains important portions of native biodiversity. I used two different approaches to answer the 

question: What is the role of habitat selection in the adaptation of native species to transformed 

landscapes? First, I present the results of a simulation model used to evaluate the effects of 

landscape structure on population dynamics of a hypothetical species under two mechanisms of 

habitat selection. Then I present the analyses of seven years of capture-mark-recapture and 

resight data collected to compare habitat preference and quality between shade coffee and forest 

for twelve resident bird species in the Sierra Nevada de Santa Marta (Colombia). I provide 

evidence for the importance of including the landscape context in the evaluation of ecological 

traps and for using long-term demographic data when evaluating the potential of novel 

ecosystems and intermediately-modified habitats for biodiversity conservation. Beyond 

suggestions to improve bird conservation in shade coffee, my findings contribute to theory about 

ecological traps and can be applied to understand population processes in a wide variety of 

heterogeneous landscapes. 
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CHAPTER 1: INTRODUCTION 

Theoretical foundations: populations in heterogeneous landscapes 

Understanding species distributions in complex habitat mosaics requires an integration of 

three components (Dunning, Danielson & Pulliam 1992): 1) landscape structure, including both 

physiognomy and composition (Turner 1989); 2) habitat-specific responses of organisms living 

in those landscapes (Kareiva 1990); and 3) general ecological processes operating at the 

neighborhood (Addicott et al. 1987) and landscape scales (Dunning, Danielson & Pulliam 1992). 

All organisms live in a patchwork of habitats, and theories of increasing ecological complexity 

and detail have been developed to address the consequences of spatial heterogeneity on 

population dynamics. Spatially complex environments have generally been represented as island, 

stepping-stone, continuum or spatially explicit models (Kareiva 1990; Dunning et al. 1995; 

Kareiva & Wennergren 1995), and each approach carries advantages and disadvantages for the 

analysis of particular cases.  

As an extension of the theory of island biogeography, metapopulation models 

conceptualize space as patches of suitable habitat embedded on a matrix of unsuitable habitat 

(Levins 1969; Levins 1970; Hanski 1991; Hanski 1994), and while they have provided an 

opportunity to link theoretical population ecology with landscape ecology (Hanski 1998; Hanski 

1999), it is clear that not all subdivided populations exist in this arrangement (Harrison 1991; 

Harding & McNamara 2002; Baguette 2004; Ovaskainen & Hanski 2004). Additionally, most 

metapopulation models fail to address the effects of variation in habitat quality, which is key to 

modeling populations of mobile animals that use more than one type of habitat in a landscape 

(Moilanen & Hanski 1998; Vandermeer & Carvajal 2001; Schooley & Branch 2007).  
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The sources and sinks model formalized by H.R. Pulliam (Pulliam 1988) incorporates 

habitat quality into the dynamics of populations living in heterogeneous environments by 

distinguishing two types of subpopulations, based on growth and dispersal. These models are 

closely linked to the ecological process of habitat selection (Pulliam & Danielson 1991; 

Danielson 1992; Watkinson & Sutherland 1995), and provide an important framework for the 

study of mobile animals with high cognitive and navigation capacities. They are built on the 

assumption that individuals can have perfect information about habitat quality, but that either 

because of the costs of habitat search (preemptive habitat distribution - Pulliam 1988), the 

decrease of habitat suitability as density increases (ideal free distribution - Fretwell & Lucas 

1969) or because of strong dominance hierarchies within species (ideal despotic distribution -

Fretwell & Lucas 1969), not all individuals will establish themselves in good quality habitats. 

Under these assumptions, habitat selection defined as "the process whereby individuals 

preferentially use or occupy a non-random set of available habitats" (Morris 2003), is an 

evolutionary mechanism that allows adaptability to changing environments (Rausher 1984; Holt 

1985). 

Early tests of the ideal free distribution showed a consistent departure from the expected, 

which different authors attributed to differential perception abilities (Abrahams 1986), changing 

environmental conditions (Fagen 1988), the costs of searching for habitat (Rosenzweig 1981), 

the difference between generalist and specialist species (Wiens 1976; Rosenzweig 1981), the 

spatial and/or temporal scale of study (Johnson 1980), the costs that habitat choice has on 

individuals (Morris 1992), and problems with conceptual definitions and study design (Jones 

2001), among others. Since the late 1970s, examples contradicting the prediction of these models 



3 

have emerged in studies about the effects of anthropogenic habitat transformation, and the term 

ecological trap was coined for cases in which individuals distinctly prefer habitats where their 

fitness is lower than in other available habitats (Gates & Gysel 1978; Schlaepfer, Runge & 

Sherman 2002; Battin 2004; Weldon & Haddad 2005; Robertson & Hutto 2006). The 

hypothesized mechanism underlying ecological traps is that rapid landscape change can decouple 

the correlation between experienced habitat quality and the cues that organisms use to select it 

(Remes 2000; Stamps & Krishnan 2005). Also described as "attractive sinks," the potential 

importance of ecological traps in population dynamics has been demonstrated in models based 

on real life populations (Delibes, Ferreras & Gaona 2001; Delibes, Gaona & Ferreras 2001), but 

other authors have also proposed three different mechanisms by which species may escape them: 

1) changes in habitat preference brought about by natural selection, 2) phenotypic plasticity 

expressed as experience-based learning or 3) philopatric preference (i.e. preference to the site 

and conditions where the individual was born - Kokko & Sutherland 2001). 

The evolutionary and ecological mechanisms to explain ecological traps have been 

generally accepted, but reviews of studies claiming their existence have identified weaknesses in 

the way the concept is used. Habitat quality is not a property of the habitats themselves, but 

rather an organism-specific result (Kawecki 1995), therefore it cannot be estimated by measuring 

the characteristics of a patch (no matter how many variables are measured). Additionally, 

compelling evidence exists that individual density is a misleading indicator of habitat quality 

(Van Horne 1983). Higher individual or nest density has also been interpreted as evidence that a 

habitat is preferred, ignoring predictions of habitat selection theories that contradict this 

assumption; and habitat quality has been measured only as reproductive output without 
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consideration of possible tradeoffs with survival (Donovan & Thompson 2001; Schlaepfer, 

Runge & Sherman 2002; Battin 2004; Robertson & Hutto 2006). In light of the important 

evolutionary, ecological and conservation implications of ecological traps, these authors have 

called for better empirical evidence of their existence, frequency and of the species and 

landscapes most prone to them. Others have modeled ecological traps in landscapes where 

habitat quality changes continuously and suggested evidence could come from a bottom-up 

approach, starting at the level of individual territories (Kristan 2003). 

A further refinement of the framework for evaluating the adaptiveness of habitat selection 

leads to the consideration of undervalued resources, which are good quality habitats actively 

avoided by individuals who would benefit from occupying them (Gilroy & Sutherland 2007). 

The existence of avoided sources could also have important conservation implications, and have 

been described as perceptual traps by making an analogy with type I and II errors in statistics 

(Patten & Kelly 2010). Individual quality has also been incorporated into the decision model to 

differentiate between sinks and undervalued resources (Shustack & Rodewald 2010). 

A framework including sources and sinks, and ecological and perceptual traps as two 

opposites in a continuum of possible correspondence between habitat selection and quality is 

ideal to study population processes at the landscape level (Kristan 2003). It allows the linkage of 

landscape structure (available habitat) with individual behavior (habitat selection) and population 

outcomes (habitat quality) (Lima & Zollner 1996). It is particularly well suited to cases in which 

species actively use both the original habitat they were adapted to and a novel habitat that shares 

some possible cues for habitat selection but that also probably differs in quality. 
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Practical applications: biodiversity conservation in transformed regions 

Considering that more than three quarters of the planet's productive terrestrial surface 

have been altered by human residence and land use (Ellis & Ramankutty 2008), and that with 

continuing population growth the possibilities of preserving species and ecosystems as 

untouched samples in protected areas become unrealistic; it becomes critical to assess the true 

value of those human-modified landscapes that still include important portions of native 

biodiversity (Norris 2008; Chazdon et al. 2009; Child, Cumming & Amano 2009). Among these, 

tropical agroforestry systems stand out for retaining much higher richness and abundance of 

forest species than more structurally simple production systems (Perfecto et al. 1996; Moguel & 

Toledo 1999; Daily, Ehrlich & Sanchez-Azofeifa 2001; Hughes, Daily & Ehrlich 2002; Sodhi et 

al. 2005; Komar 2006; Philpott et al. 2007); therefore they have become a classical example of a 

situation in which balancing economic profit and biodiversity conservation may be possible 

(Perfecto et al. 2003; Perfecto et al. 2005; Gordon et al. 2007; Philpott et al. 2007; Philpott et al. 

2008; Jha et al. 2014). 

Even with considerable attention from the scientific community, a review of available 

literature on this topic reveals three trends that need to be addressed: (1) most studies have 

focused on comparing bird community composition, diversity and structure in different land-uses 

and along intervention gradients, considering species presence and abundance during sampling 

as the main response variables (Wunderle Jr & Latta 1996; Estrada, Coates-Estrada & Meritt Jr 

1997; Greenberg et al. 1997; Greenberg, Bichier & Sterling 1997; Calvo & Blake 1998; Petit et 

al. 1999; Greenberg, Bichier & Angón 2000; Znajda 2000; Daily, Ehrlich & Sanchez-Azofeifa 

2001; Reitsma, Parrish & McLarney 2001; Hughes, Daily & Ehrlich 2002; Jones et al. 2002; 
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Cárdenas et al. 2003; Perfecto et al. 2003; Petit & Petit 2003; Lindell, Chomentowski & Zook 

2004; Tejeda-Cruz & Sutherland 2004; Cockle, Leonard & Bodrati 2005; Estrada & Coates-

Estrada 2005; Faria et al. 2006); (2) habitat-specific measurements are taken and compared even 

when many species are highly mobile, and thus not limited to discrete patches or land use types; 

and (3) there is far more understanding about species distribution patterns than about the 

processes underlying them (Komar 2006; Sekercioglu et al. 2007; Sánchez-Clavijo, Arbeláez-

Alvarado & Renjifo 2008), so there is urgency for more studies of resource use (Wunderle Jr & 

Latta 1998; Cohen & Lindell 2005; Peh et al. 2006), survival (Cohen & Lindell 2004), 

reproduction (Tewksbury, Hejl & Martin 1998; Willson et al. 2001; Lindell & Smith 2003), 

movement (Rappole, Ramos & Winker 1989; Graham 2001; Castellon & Sieving 2006; Githiru, 

Lens & Bennun 2007; Sekercioglu et al. 2007; Burgess et al. 2009), dispersal (Van Houtan et al. 

2007) and inter-specific interactions (Greenberg et al. 2000; Roberts, Cooper & Petit 2000; Luck 

& Daily 2003; Smith-Ramirez & Armesto 2003; Perfecto et al. 2004; Philpott et al. 2004) in 

transformed landscapes.  

The term novel ecosystems, understood as ecosystems that “contain new combinations of 

species that arise through human action, environmental change, and the impacts of the deliberate 

and inadvertent introduction of species from other regions” (Hobbs et al. 2006), has also been 

used to describe tropical agroforestry systems because they are halfway in the continuum 

between natural ecosystems and intensively managed agriculture (Ewel 1999; Hobbs et al. 2006). 

While later refinements of this framework have classified agroforestry closer to a “hybrid” 

(Hobbs, Higgs & Harris 2009) or a “designed” (Morse et al. 2014) system; I retain the term 

novel ecosystem in this work to emphasize the generality of this research for a variety of 
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intermediately-modified habitats in heterogeneous landscapes, and propose that tropical 

agroforestry systems represent both a good model system to study the adaptiveness of habitat 

selection, and an important conservation context to generate lessons applicable for a variety of 

systems. 

Bringing theory and practice together: habitat selection in transformed landscapes and the role of 

novel ecosystems for native species persistence 

Based on ecological trap theory, we would expect that in natural systems habitat selection 

and quality would be coupled, and in intensively-managed systems most species would simply 

disappear, making intermediately-modified landscapes an “ideal” setting for ecological traps 

(Hobbs, Higgs & Harris 2009; Fletcher, Orrock & Robertson 2012; Robertson, Rehage & Sih 

2013). Tropical rural landscapes are very heterogeneous, so habitat and resource availability 

have high spatial and temporal variances, allowing for "natural experiments" on how associated 

biodiversity varies with habitat and landscape structure (Ewel 1999; Petit et al. 1999; Daily, 

Ehrlich & Sanchez-Azofeifa 2001; Perfecto et al. 2007). Forest generalist birds are common in 

both remaining forest fragments and in shaded crops (Hughes, Daily & Ehrlich 2002; Petit & 

Petit 2003; Komar 2006), which means these two types of habitats share environmental cues that 

make them attractive to less sensitive and highly mobile species. It is thought that some of these 

species have benefited from habitat conversion, and that because they persist after many years of 

landscape change, they are truly adapted to the heterogeneity in these regions. However, we can 

also expect that the obvious differences in habitat structure lead to differences in habitat quality, 

and under this context some species may be especially vulnerable to ecological and perceptual 

traps (Donovan & Thompson 2001; Battin 2004; Robertson & Hutto 2006). 
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In this project I use two different approaches to answer the question: What is the role of 

habitat selection in the adaptation of native species to transformed landscapes? I start by 

hypothesizing three possible roles for habitat selection:  

 

1) Habitat selection acts as an adaptive process when a species’ preferred habitat or landscape 

characteristics coincide with better outcomes in individual fitness, survival and reproduction at 

the population level.  

 

2) Habitat selection acts as a neutral process when a species’ preferred habitat or landscape 

characteristics vary randomly in response to outcomes in individual fitness, survival and 

reproduction at the population level.  

 

3) Habitat selection acts as a maladaptive process when a species’ preferred habitat or landscape 

characteristics are the opposite of those with better outcomes in individual fitness, survival and 

reproduction at the population level.  

 

In chapter 2 I describe a spatially-explicit, individual-based simulation model that was 

created to evaluate the effects of landscape structure on population dynamics of a hypothetical 

species under two mechanisms of habitat selection. In habitat-based selection, individuals 

preferred high-quality patches (leading to adaptive outcomes), selected patches at random (equal-

preference) or preferred lower-quality patches (severe ecological traps). In cue-based selection 

they chose based on a structural attribute that was not directly related to fitness (canopy cover). 
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The model was applied to the case of resident birds in landscapes composed of remnant forests 

and shade coffee agriculture and to simulation experiments with scenarios designed to vary in 

landscape composition, configuration, search area and criteria for habitat preference. The 

advantages of this approach were that there were no limits in the number and types of landscapes 

that could be designed and tested, and that the virtual animals could be programmed to follow 

specific and known behaviors, giving the opportunity for exploration of emerging patterns at the 

population level. This meant conclusions (and the model itself) can be applied to a wide 

generality of mobile animals living in heterogeneous landscapes.  

In chapter 3 I describe the field research carried out to compare indicators of habitat 

preference and quality between shade coffee plots and pre-montane forest remnants for twelve 

species of resident birds in the Sierra Nevada de Santa Marta (Colombia). This region is 

dominated by tropical mountain forests and commercial polyculture coffee crops (sensu Moguel 

& Toledo 1999 this system "involves complete removal of the original forest canopy trees and 

the introduction of a set of shade trees appropriate for coffee cultivation"). It is also a hotspot for 

endemicity, ecosystem, species and cultural diversity (Werger, van der Hammen & Ruiz 1989; 

Hernández-Camacho et al. 1992; Rangel 1995; Carbono & Lozano-Contreras 1997; Stattersfield 

et al. 2005). We worked in Hacienda La Victoria, an 800-hectare coffee growing company that 

has operated in the region since 1892 and currently has around 200 hectares of shade coffee with 

60% average canopy cover. The farm also includes well conserved pre-montane forest, with 

some minor areas of scrub, bamboo groves, pastures and living and processing infrastructure. I 

collaborated with researchers from SELVA (Research for Neotropical Conservation) to gather 

seven years of capture-mark-recapture and resight data which I then analyzed using Bayesian 
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population models and generalized linear models. This approach allowed the calculation of 

demographic estimates to evaluate whether habitat selection was helping different types of 

species adapt to landscape changes that occurred over a century ago. 

All models are simplifications, and therefore are meant to help us increase our general 

understanding of processes and to generate hypotheses to test in the field. Fieldwork on the other 

hand, allows us to estimate variables for specific species and landscapes, but also to characterize 

patterns that we can extrapolate to other settings. By using both methods in a complementary 

fashion, we aimed to help bridge the gap between theory and practice for biodiversity research 

and conservation in heterogeneous landscapes, increase knowledge about resident tropical birds, 

address an important conservation problem and methodological issues common in field ecology, 

and in general, contribute to the growth of a theoretical framework. Chapter 4 contains our 

general conclusions in regard to these objectives, as well as a discussion on where to go from 

here. 
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CHAPTER 2: MODELING THE EFFECT OF HABITAT SELECTION MECHANISMS 

ON POPULATION RESPONSES TO LANDSCAPE STRUCTURE 

Reprinted from Ecological Modelling, Vol. 328, Sánchez-Clavijo, L.M., Hearns, J., Quintana-

Ascencio, P.F., “Modeling the effect of habitat selection mechanisms on population responses to 

landscape structure”, Pages No. 99-107, Copyright (2016), with permission from Elsevier. 

Chapter Summary 

Novel habitats can become ecological traps for mobile animals if individuals consistently 

select them over habitats with better fitness consequences. Due to challenges with the 

measurement of habitat selection and quality, ecological traps are difficult to study in the field. 

Previous modeling approaches have overlooked the importance of selection cues as a key 

component in the mechanisms giving rise to ecological traps. We created a spatially-explicit, 

individual-based simulation model to evaluate the effects of landscape structure on population 

dynamics of a hypothetical species under two mechanisms of habitat selection. In habitat-based 

selection, individuals preferred high-quality patches (leading to adaptive outcomes), selected 

patches at random (equal-preference) or preferred lower-quality patches (severe ecological 

traps). In cue-based selection they chose based on a structural attribute that was not directly 

related to fitness (canopy cover). We applied the model to the case of resident birds in 

landscapes composed of remnant forests and shade coffee agriculture. We designed simulation 

experiments with scenarios varying in landscape composition, configuration, search area and 

criteria for habitat preference. While all factors affected population size and individual fitness, 

the most important variables were proportion of high-quality habitat in the landscape, criteria for 

habitat preference and their interaction. The specific arrangement of habitat patches and search 

area had weaker and sometimes unexpected effects, mainly through increasing outcome 
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variance. There was more variation among scenarios when selection was habitat-based than cue-

based, with outcomes of the latter being intermediate between those of adaptive and equal-

preference choices. Because the effects of ecological traps could be buffered by increasing the 

amount of high-quality habitat in the landscape, our results suggest that to truly understand 

species adaptation to habitat transformation we must always include landscape context in our 

analyses, and make an effort to find the appropriate scales and cues that organisms use for 

habitat selection. 

Keywords: ecological traps; habitat quality; habitat selection; individual-based model; 

landscape structure; spatially-explicit population model. 

Introduction 

Habitat selection is one of the most important biological processes linking individual 

behavior with species distribution (Jones, 2001; Lima and Zollner, 1996). Early models of 

habitat selection made the simplifying assumption that organisms possessed perfect information 

about habitat quality (Fretwell and Lucas, 1969; Pulliam, 1988). However, mobile animals living 

in landscapes that have gone through widespread, rapid environmental change, may have less 

reliable information than those remaining in their original habitats (Battin, 2004; Schlaepfer et 

al., 2002). Ecological traps arise when individuals indirectly assess habitat quality through cues 

that become uncoupled from the ultimate fitness consequences they experience after choosing 

that particular habitat (Remes, 2000; Stamps and Krishnan, 2005). The mismatch between cues 

and quality leads animals to consistently select unfavorable habitats (ecological traps), and/or to 

avoid favorable ones (undervalued resources or perceptual traps) (Gilroy and Sutherland, 2007; 
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Patten and Kelly, 2010). The population consequences of these processes differ substantially 

from those of classic source and sink systems; where unfavorable habitats are only occupied 

when favorable habitat is either not available or not cost-efficient for a particular individual 

(Loehle, 2012; Pulliam, 1988; Robertson and Hutto, 2006). While there is general agreement on 

the potential evolutionary and conservation relevance of this phenomena, knowledge of what 

makes species vulnerable to traps is constrained by the difficulty in estimating true measures of 

habitat preference and quality at the appropriate spatial and temporal scales (Battin, 2004; 

Robertson and Hutto, 2006; Shustack and Rodewald, 2010). 

With ecological modelling, researchers are able to create scenarios where landscape 

structure is varied systematically while directly testing hypotheses about the interactions between 

habitat availability, selection, occupancy, and quality (Battin, 2004; Dunning et al., 1995; 

Pulliam and Danielson, 1991). Modelling has been increasingly used to evaluate the role that 

habitat selection plays in species adaptation to heterogeneous landscapes, and recently emphasis 

has been placed on: 1) modelling habitat attractiveness and quality separately to allow for the 

existence of ecological and perceptual traps (Delibes et al., 2001; Donovan and Thompson, 2001; 

Fletcher et al., 2012; Kokko and Sutherland, 2001; Kristan, 2003; Shustack and Rodewald, 

2010), or 2) incorporating more realistic behavioral assumptions, movement rules and selection 

constraints to population models (Aarts et al., 2013; DeCesare et al., 2014; Loehle, 2012). 

Models of ecological traps have matured from comparing population responses to the proportion 

of sink habitat under different types of preference (Delibes et al., 2001), to incorporating details 

in their parameterization of habitat quality (Donovan and Thompson, 2001; Kristan, 2003), 

including life history characteristics and evolution (Kokko and Sutherland, 2001), taking into 
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account differences in individual quality (Shustack and Rodewald, 2010), and differentiating 

ecological traps according to their origin (Fletcher et al., 2012). None of the models directly 

assessing ecological traps have been spatially explicit and, therefore, they do not incorporate 

movement rules or behaviors which may be important to generate realistic patterns 

(Matthiopoulos et al., 2005; Nakayama et al., 2011; Stephens et al., 2002). 

Habitat selection functions in previous models vary according to their specific research 

aim, but habitat choice has predominately been modelled as individuals selecting among habitat 

categories. This overly simplistic mechanism may not be readily applicable to populations 

existing in mosaics or landscapes with habitat gradients (Kristan, 2003). For habitat selection to 

become maladaptive either selection cues have to make a lower quality habitat more attractive, 

habitat suitability has to decrease while cues stay the same, or both processes can happen 

simultaneously (Robertson and Hutto, 2006). By a combination of these mechanisms, novel, 

man-made habitats can become two different types of ecological traps for highly-mobile habitat 

generalists: equal-preference traps arise when the animal is equally likely to settle in the higher 

and lower quality habitats whereas severe traps arise when animals favor the lower quality sites 

(Robertson and Hutto, 2006; Robertson et al., 2013). Given these mechanisms for the appearance 

of ecological and perceptual traps, we propose that model realism will improve by allowing 

individuals to use structural attributes that are distributed continuously throughout the landscape 

as selection cues. Further, we suggest that shifting the focus of model results from long-term 

effects on population persistence to trends in habitat-specific demography will better match 

known empirical cases of ecological traps (Battin, 2004; Fletcher et al., 2012). 
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We created a spatially-explicit and individual-based model to explore the effect of habitat 

and cue-based selection mechanisms on population responses to landscape structure. To explore 

the consequences that proposed mechanisms for the appearance of ecological traps have in a 

wide range of ecological contexts, it was necessary to assess the importance of interactions 

between variables occurring at two very distinct scales: the individual and the landscape level 

(Lima and Zollner, 1996). Therefore, our model system is one where a mobile animal is present 

in two habitat types of which one is better quality (source) than the other (sink), but where 

individuals have innate habitat choice behaviors that cannot be modified after landscape change. 

We designed two types of choice algorithms: 1) Selection based on the habitat type of the cell, 

from now on called habitat-based selection, allowed individuals to either prefer sources over 

sinks (adaptive selection), show no habitat preference (equal-preference traps), or constantly 

prefer sinks over sources (severe ecological and perceptual traps); and 2) Selection based on an 

internal characteristic of the cell, from now on called cue-based selection, allowed individuals to 

prefer sites having values for a structural attribute that were equal to or larger than a 

predetermined threshold, assuming that higher threshold values would result in better 

differentiation of the habitat types and therefore on more adaptive outcomes. 

We chose resident forest birds using shade coffee as the system to parameterize the 

model because despite the fact that these tropical agroforestry systems stand out for retaining 

important elements of native biodiversity (Moguel and Toledo, 1999; Perfecto et al., 1996; 

Philpott et al., 2007), the possibility remains that they function as ecological traps for species 

with broad habitat requirements (Komar, 2006; Sekercioglu et al., 2007). Whether traps exist or 

not in the system, and what consequences they could have for the apparent balance between 
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agricultural profit and biodiversity conservation, remains unanswered because with a few 

exceptions (Cohen and Lindell, 2004; Graham, 2001; Lindell and Smith, 2003; Sekercioglu et 

al., 2007), studies have either focused on migrants and/or species presence and detection rates as 

indicators of habitat suitability (Komar, 2006; Sánchez-Clavijo et al., 2008). While this model 

complements, and is partly based on, ongoing field research trying to address some of these 

issues (Sierra Nevada de Santa Marta, Colombia); it is still a highly simplified representation of a 

bird population in our study system, so parameter values were a mix of field and theoretical data. 

The structure was designed so that it can also be easily adapted to further explore this and other 

systems. 

We designed simulation experiments where we varied landscape structure (composition 

and configuration) and behavioral rules (habitat preference and search area) to: 1) Address which 

of these four factors (and their interactions) had a larger effect on fitness (measured as 

population and mean individual size); 2) Compare the patterns produced by different levels of 

habitat-based and cue-based selection; and 3) Compare emerging patterns of population size 

between simulations with local and global dispersal. We anticipated that all else being equal, 

more high-quality habitat, less complex landscapes with larger habitat patches, greater search 

areas, and adaptive or strict cue-based selection criteria would lead to faster occupancy of forest, 

larger individuals, and larger population sizes 
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Methods 

Model description 

We describe here only the general behavior of the model (for a detailed description 

following the ODD protocol for agent-based models (Grimm et al., 2006; Grimm et al., 2010) 

see Appendix A). The modelling sequence consisted of three initialization procedures (landscape 

generator, initial population, and colonization) followed by a yearly cycle of breeding, survival, 

census, and dispersal (Figure A.1). Habitat preference criteria were fixed throughout each 

simulation and for all individuals, while the outcomes from occupying a particular patch changed 

yearly through habitat-dependent functions. We assumed that forest, being the original habitat, 

would represent the source for our hypothetical species, while shade coffee, being the novel one, 

would represent the sink. Percent canopy cover was the shared structural characteristic that 

individuals used for cue-based selection. All code was written and executed in MATLAB version 

R2013b (The MathWorks, Inc. 1984-2013). 

Landscape generator - the simulation environment was a bounded square grid, made of 

cells of equal area that represented individual breeding territories. Landscape size was specified 

as 400 cells, all of which started out as forest. At the beginning of each simulation, a proportion 

of cells were converted to coffee to determine landscape composition, and landscape 

configurations were created by choosing from lateral, radial, and percolation transformation 

processes, which reflect common ways in which tropical forests are converted to agriculture 

(Figure A.3). Each cell was randomly allocated a value for percent canopy cover from a pool of 

data sampled in the field for both forest remnants and shade coffee. While mean canopy cover in 

forest was higher (forest: 82.36, coffee: 58.99), standard deviation in coffee was wider (forest: 
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6.11, coffee: 20.42) allowing for overlap between habitats (Figure A.2). A different landscape 

grid was generated for each simulation run, even under the same initial conditions. 

Initial population - the initial number of adults to populate the landscape was chosen to 

ensure population persistence, and allow a few years between initialization and landscape 

saturation. Each bird was assigned a wing length from a normal distribution common for all 

birds, and a weight from a forest-specific normal distribution (Table A.1). Size-corrected body 

mass (hereafter referred to as size) was calculated by dividing weight by wing length and was 

chosen as the measure of individual condition to combine individual and habitat-dependent 

effects. We used wing length and body mass data of Ochre-bellied Flycatcher (Mionectes 

oleagineus M. H. K. Lichtenstein, 1823) in our field site to build these distributions.  

Colonization - birds were sorted by size so that the largest/most competitive individuals 

had better chances of acquiring their preferred habitat. One by one they searched a 

predetermined number of patches at random, in a way analogous to pre-emptive habitat selection 

models (Pulliam and Danielson, 1991). They were either assigned to the first patch that matched 

their habitat selection criteria, or forced to settle in the last one they examined. Because cells 

could only hold one breeding adult, the process ended when all birds had either settled on a patch 

or remained in the landscape as floaters (see flowchart of this process in Figure A.4). 

Breeding - settled adults produced offspring based on habitat-specific binomial 

distributions that generated higher average reproductive output in forest than coffee (Table A.1, 

Figure A.5). New birds were designated as juveniles and assumed to stay in their natal patch 

until dispersal occurred. Birds existing as floaters did not breed. 
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Survival - survival probabilities were dependent on age and territorial status, and were 

applied at the individual level to introduce stochasticity. Adult survival was much higher than 

juvenile survival and floater survival probability was a density-dependent function that 

approached zero as the landscape reached its carrying capacity. After dead individuals were 

removed from the system, all surviving juveniles became adults. Their wing length was sampled 

from the same distribution as the initial birds, and their body mass from habitat-dependent 

normal distributions with a higher mean for forest than coffee. Adults retained the same wing 

length throughout their lifetime, but were assigned a new weight each year depending on their 

habitat. We assumed floaters had larger home ranges spanning both habitats; therefore their 

weight after survival was derived from a distribution intermediate between those of forest and 

coffee (Table A.1). 

Census and sampling - during this stage the program updated the data for each 

individual’s location, size, and the number of surviving fledglings it produced. In order to count 

floaters they were assigned a temporary habitat according to landscape proportion. At the end of 

each year of simulation, the program collected aggregate measures for all the individuals, 

separated by habitat (sources or sinks) and territorial status (breeders and surviving juveniles or 

floaters). 

Dispersal - our individuals represent resident birds that do not vacate the landscape each 

year to repeat the colonization process, instead they go through a spatially-explicit dispersal 

process affected by their individual size, current location and allowed search area. For scenarios 

with habitat-based selection, individuals were either given a type of breeding site that was 

preferred over the other (forest or coffee), or let to choose breeding sites randomly. With cue-
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based selection they were given a preferred threshold value for percent canopy cover; all the 

cells that had canopy cover equal to or larger than their threshold were considered preferred sites, 

while those below were avoided. Birds selected habitat in descending order of size, using a 

decision algorithm that first evaluated whether a chosen patch complied with their selection 

criteria, and if so, continued by assessing if it was either empty or if it contained an individual 

which they could displace (smaller bird). Birds who failed to settle became floaters (see 

flowchart of this process in Figure A.6). Local dispersal occurred when the birds were given a 

search area around their current patch which was smaller than the total landscape. Global 

dispersal occurred when they could search the whole landscape for a new patch. 

Simulation experiments 

Our main focus is on a set of simulations with local dispersal, where we combined 

different levels of our four factors of interest to create 480 scenarios. For landscape composition 

we chose scenarios with 90%, 75%, 50%, 25% and 10% of remnant forest cover to get a 

representation of increasing transformation. For landscape configuration we used lateral 

transformation to represent cases in which forest clearing starts from a linear feature, radial to 

represent transformation following topographical contours, and percolation to simulate small 

scale farming that expands outwards from several points. We selected four search areas to 

represent dispersal capabilities ranging from birds sampling less than 3% to around 20% of the 

whole landscape. For habitat-based selection we used all three possible behaviors (adaptive, 

equal-preference and severe traps). For cue-based selection we chose five canopy cover 

thresholds: 30%, 45%, 60%, 75% and 90%. It has been proposed that 60% canopy cover is the 



34 

minimum to ensure biodiversity conservation in shade coffee (Sánchez-Clavijo et al., 2007), and 

was the mean for measured coffee plots in our field site (Table 1). For this set of simulations, we 

ran 30 repetitions per scenario. In a second set of simulations we replaced local with global 

dispersal by allowing the individuals to search three patches at random from all the landscape. 

We used the same three levels for landscape configuration and habitat-based preference, but 

varied the levels for landscape composition and cue-based preference differently (Table 1).This 

design resulted in 36 scenarios common to both sets of simulations, allowing us to compare 

broad patterns between local and global dispersal. 

 

Table 1. Variable levels changed to create 480 simulation scenarios with local dispersal (30 repetitions) and 54 with 

global dispersal (50 repetitions).  

Variable Level 1 Level 2 Level 3 Level 4 Level 5 

Landscape composition 10% forest- 

90% coffee
b
 

25% forest- 

75% coffee
c
 

50% forest-  

50% coffee
c
 

75% forest- 

25% coffee
c
 

90% forest- 

10% coffee
b
 

Landscape configuration Lateral
c
  Radial

c
 Percolation

c
   

Search area 1 (9 cells)
b
 2 (25 cells)

b
 3 (49 cells)

b
 4 (81 cells)

b
 ALL (3 cells)

a
 

Habitat-based selection  Prefer forest  

(adaptive)
c
 

Equal-preference
c
 Prefer coffee  

(severe trap)
 c
 

  

Cue-based selection CC≥30%b
  

CC≥40%a
 

CC≥45%b
 CC≥60%c

 CC≥75%b
 CC≥90%b

 

CC≥80%a
 

CC, canopy cover. 
a
 Used only with global dispersal. 

b
 Used only with local dispersal. 

C
 Used in all simulations. 

 

Data analysis 

The output for each simulation consisted of matrices showing the number of adult birds, 

mean number of juveniles produced per adult that bred successfully, and the mean size of birds 

per habitat, territorial status, year, and run. The model always reached stable population sizes 

after both landscape saturation and maximum floater density were reached, therefore we 
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inspected population growth curves and chose a year before saturation to compare population 

responses during transient conditions. We calculated emergent properties at the population-level 

for each scenario, and focused on population size and mean size of individuals. Because each 

year the census happened after the birds born on that year had become adults, the output did not 

separate the breeders of one year from the offspring they produced. Therefore, population sizes 

are a combined measure of reproductive output (which is habitat-dependent) and survival (which 

is age-dependent). The mean size of individuals in the landscape is used as a surrogate of 

average individual fitness. We analyzed means and variances between runs, because the latter 

gives a measure of the stability for the outcomes of any given scenario. 

We used model selection with AICc (Burnham and Anderson, 2002) to identify the most 

plausible model structure for scenarios with habitat and cue-based selection separately. 

Preliminary analyses suggested that proportion of forest and habitat preference were the most 

important factors so our model sets included all possible models that could be built without 

removing those two factors, and including only up to four of their two-way interactions. We also 

included a null model and the completely saturated model in the set, for a total of 51 alternative 

structures. 
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Results 

Local dispersal 

Early occupation patterns and population growth 

Adaptive choices in scenarios with habitat-based selection led most birds to occupy forest 

sites, but as forest cover decreased, spill-over of individuals to coffee became more common. 

Equal-preference selection led to random occupation patterns and maladaptive selection to faster 

occupancy of coffee sites (Figure B.1). Colonization patterns with cue-based selection resembled 

those of equal-preference (Figure B.2). Starting with 15 individuals, all populations with habitat-

based selection grew fast for the first 12 years, and then leveled off as they hit carrying capacity. 

Populations in scenarios with adaptive selection and equal-preference grew faster than those with 

severe traps, and therefore stabilized earlier. By the end of the simulations (year 15) all 

populations had similar sizes for each level of forest cover (Figure B.3). With cue-based 

selection, growth was slower for CC90% preference and, up to year thirteen when populations 

stabilized, was very similar for all other values. At the end of the simulations the only clear 

differences in population size were brought about by forest cover (Figure B.4). Saturation ranges 

were equivalent between the two types of selection, and because we were more interested in 

transient patterns after disturbance than in stable environments, we chose to carry out all 

subsequent analyses for year 11. 
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Population size 

As the proportion of forest in the landscape increased, so did the mean and the variance 

for population size at year 11 in all 480 scenarios. With habitat-based selection, the general trend 

was for adaptive selection to lead to larger populations than equal-preference when forest cover 

was low, but very similar values when forest cover was high. Severe traps led to smaller 

populations consistently, but the difference with equal-preference was significantly larger with 

high values of forest cover. All else being equal, there were occasional differences between 

configurations but the patterns were not consistent. Larger search areas lead to larger populations 

for adaptive selection and equal-preference but to smaller populations with severe traps, 

especially when forest cover was high (Figure 1). With cue-based selection, larger canopy 

percent thresholds lead to larger populations except for CC90%, which consistently lead to much 

smaller populations than any other value. There were no consistent patterns related to landscape 

configuration. Larger search areas lead to larger populations, but there was a lot of overlap 

between the top three categories (areas of 25, 49 and 81 cells) (Figure 1). 
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Figure 1. Effect of forest cover on population size at year 11 for scenarios with habitat-based and cue-based 

selection. 
A
 Habitat-based selection: for each level of forest cover the three colors represent adaptiveness (red: severe traps, 

green: equal-preference traps, blue: adaptive selection); shapes represent landscape configuration (squares: lateral, 

circles: radial, triangles: percolation); shades represent search area (the darker the shade the larger the area); and the 

size of the dots represents the variance divided by a factor of 10,000 (+0.2).  
B
 Cue-based selection: for each level of forest cover the five colors represent increasing canopy cover thresholds for 

preference (red: CC30%, green: CC45%, blue: CC60%, purple: CC75%, black: CC90%); shapes represent 

landscape configuration (squares: lateral, circles: radial, triangles: percolation); shades represent search area (the 

darker the shade the larger the area); and the size of the dots represents the variance divided by a factor of 10,000 

(+0.2). 

 

 

The most plausible model explaining population size at year 11 in scenarios with habitat-

based selection included all four additive factors, an interaction between the two behavioral 

variables and a landscape-behavior interaction between forest cover and habitat preference 

(Table 2). The most plausible model in scenarios with cue-based selection additionally included 

the interaction between forest cover and search area, which was very hard to detect from visual 

examination of the results (Table 2). Both population size models have AICc weights lower than 

0.6 suggesting that other interactions may be worth investigating further (Tables B.1 and B.2). 
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Table 2. Structure of the most informative models for two fitness responses, with habitat-based and cue-based 

selection. 

 N11  S11 

Factor or Interaction Habitat Cue  Habitat Cue 

Composition (L) X X  X X 

Configuration (L) X X  X X 

Composition * Configuration (LL) - -  X X 

Habitat preference (B) X X  X X 

Search area (B) X X  X X 

Habitat preference * Search area (BB) X X  X - 

Composition * Habitat preference (LB) X X  X X 

Composition * Search area (LB) - X  X X 

Configuration * Habitat preference (LB) - -  X - 

Full interactive model - -  X - 

AICc weight within model set
a
 0.504 0.599  1.000 0.728 

Figure No. (Results) Fig. 1A Fig. 1B  Fig. 2A Fig. 2B 

Table No. (Appendix B) B.1 B.2  B.3 B.4 
a 
Lowest AICc within set of 51 models 

X, present 

N11, population size at year 11 

S11, mean individual size at year 11 

L, landscape factors 

B, behavioral factors 

Individual size 

The mean size of all individuals alive by year 11 increased with forest cover when there 

were severe ecological traps (as variance rapidly decreased). With adaptive selection and equal-

preference the pattern was more subtle and showed slightly higher values at landscapes with 

similar areas of forest and coffee. For equal-preference and severe traps, scenarios with radial 

configurations lead to larger individual sizes, especially when forest cover was high. For 

adaptive selection, radial landscapes produced larger individuals when forest cover was low. 

Larger search areas lead to smaller individuals within the habitat-preference categories (Figure 

2). With cue-based selection the patterns were different; size was higher at middle values of 

forest cover but increased with canopy cover percent threshold (except for CC90%). Variance 
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was also greater at landscape compositions in the extremes. Landscapes with lateral and 

percolation configurations lead to larger individuals when forest cover was low, but those with 

radial configurations lead to the same outcome when forest cover was high. As with habitat-

based selection, smaller search areas lead to on average, larger individuals (Figure 2). 

 
Figure 2. Effect of forest cover on mean individual size at year 11 for scenarios with habitat-based and cue-based 

selection. 
A 

Habitat-based selection: for each level of forest cover the three colors represent the gradient of adaptiveness (red: 

severe traps, green: equal-preference traps, blue: adaptive selection); shapes represent landscape configuration 

(squares: lateral, circles: radial, triangles: percolation); shade represents search area (the darker the shade the larger 

the area); and the size of the dots represents the variance divided by a factor of 0.00001 (+1). 
B
 Cue-based selection: for each level of forest cover the five colors represent increasing canopy cover thresholds for 

preference (red: CC30%, green: CC45%, blue: CC60%, purple: CC75%, black: CC90%); shapes represent 

landscape configuration (squares: lateral, circles: radial, triangles: percolation); shades represent search area (the 

darker the shade the larger the area); and the size of the dots represents the variance divided by a factor of 0.000001 

(+0.5). 

 

 

The most plausible models explaining the variation in mean individual size between 

scenarios were more complex than those for population size. For habitat-based selection the 

highest ranked model was the full interactive model between the four factors of interest, with an 

AICc weight of 1.000 within the model set, which suggests that all other models we tested were 

missing important interactions (Table 2). For cue-based selection, the most informative model 
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included the interactions between the two landscape factors, as well as the landscape: behavior 

interactions between forest cover, preference and search area (Tables 2, B.3 and B.4). 

Local vs. global dispersal 

Simulations with landscape-wide dispersal showed faster saturation times than those 

where it was restricted to the local neighborhood. By year 11, population sizes of scenarios with 

maladaptive habitat selection were already closer to the values of the other types of selection and 

were positively and strongly affected by the amount of forest in the landscape (Figure 3 - top). 

Restricting dispersal to the local neighborhood and varying search area greatly increased the 

variance in population sizes at scenarios where all other factors were kept the same. This 

increase in variance made the differences in population sizes overlap to a greater extent than 

when search was a constant parameter, but significant differences could still be seen in 

maladaptive selection vs. other types of selection at all times, and between adaptive selection vs. 

equal-preference and CC60% scenarios, only when forest cover was 25% (Figure 3 - bottom).  
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Figure 3. Effect of forest cover, type of habitat preference and landscape configuration on population size at year 11 

for simulations with global (A, B and C) and local (D, E and F) dispersal. 

Panels on the left (A and D) show landscapes with lateral configurations, middle show radial (B and E), and right 

show percolation (C and F); colors represent types of selection (red: severe traps, green: equal-preference traps, 

orange: preference of sites with canopy cover ≥ 60%, blue: adaptive selection); error bars represent the 95% 
confidence intervals from a sample of four scenarios under each combination of factors (after averaging all the 

simulation runs for each one). 

Discussion 

Habitat selection has typically been modelled as a choice between habitat categories – 

where individuals either prefer or avoid each type of habitat (Battin, 2004). However, this 
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approach may obscure the mechanism responsible for ecological traps: the mismatch between 

selection cues and habitat quality (Schlaepfer et al., 2002) and the fact that these cues overlap in 

remnant and novel habitats. Our simulation experiment showed that habitat selection based on a 

continuously distributed structural attribute can lead to more subtle and sometimes different 

patterns than those found for selection based on patch type, which in turn will make ecological 

traps harder to detect if we characterize the later but ignore the former. Although our model 

could be adapted further by changing the distributions of the preference cue, the thresholds used 

for selection, including additional structural attributes, or even social responses and species 

interactions, our findings point to interesting hypotheses about species adaptation to transformed 

landscapes. 

Landscape factors 

Our results are consistent with previous models of habitat selection where the relative 

amount of high vs. low quality habitat was the most critical factor in determining population 

outcomes (Delibes et al., 2001; Pulliam and Danielson, 1991). However, the importance of 

remnant habitat to generalist species depends on the spatial and temporal variation of habitat 

quality (Donovan and Thompson, 2001; Kristan, 2003; Robertson et al., 2013), which in our 

model was kept relatively constant despite evidence that this might not be the case for certain 

species in shade coffee (Cohen and Lindell, 2004; Lindell and Smith, 2003). Responses to 

decreases in forest were not linear, and displayed different shapes for population and individual 

size, as these variables were affected by several interactions with the other predictor factors. 

Both responses were affected by the number of breeders and juveniles produced in each habitat, 
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and by the number of floaters in the system, which depended on the speed of population growth. 

Not being able to differentiate between transients and permanent residents in field sampling may 

be one of the reasons why it is difficult to find landscape-level differences in demography 

between habitats, and our simulations showed that, especially for body size, including floaters 

could greatly dilute the effects caused by maladaptive selection. Given the landscape 

compositions and search areas we used in our simulations, differences in configuration did not 

prevent birds from reaching their preferred habitat; however this should not be interpreted as 

evidence that landscape configuration will not be important to determine ecological traps in more 

complex regions with a higher habitat diversity. 

Behavioral factors 

Populations preferring high-quality habitat grew faster than those selecting randomly or 

preferring low-quality patches. In our model, the differences between each level changed 

according to the simulation year, suggesting that the effect of ecological traps may change in 

strength depending on the time since landscape perturbation. Even though we expected increases 

in the cue criteria to effectively increase the accuracy of habitat choices, the responses from this 

type of selection were always close to those of equal-preference. These outcomes, while not 

entirely maladaptive, are still different from what adaptive selection would bring about. It was 

especially noticeable that if selection was very strict (as in CC90%), individuals encountered 

their preferred habitat so sparsely that it no longer allowed for any discrimination of quality. This 

could indicate that the attractiveness provided by habitat selection cues to a specific site will 

change with the spatial distribution of the attribute at the landscape level, reinforcing that to 
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advance our knowledge of ecological traps, it is necessary to understand which cues species use 

to select habitat, and how the distribution of these cues relative to habitat quality ultimately 

determines species persistence in transformed regions (Battin, 2004; Robertson and Hutto, 2006). 

Search area was introduced to simulate species having different search capabilities 

(Danielson, 1991), and to restrict dispersal to the local neighborhood. It was important in all the 

models and had the effect of increasing population size; as individuals sampled more patches, 

there was a higher probability that they found the preferred kind. Surprisingly, the effect on 

average individual size was the opposite; larger search areas lead to smaller mean individual 

sizes and larger variances, particularly in extreme landscapes (forest covers of 10% and 90%). 

Intermediately-modified landscapes had more edges between habitats so there were higher 

chances of individuals being forced to become floaters, and this increased with search area. In 

landscapes representing those regions where forest has recently been converted or almost totally 

converted, birds will move less between habitats if they are not located near the edge, but greater 

search areas may prevent this from happening. More floaters in the system mean more dilution of 

the size difference between habitats. 

Interactions between landscape and behavioral factors  

Interactions between composition and configuration were important for individual size 

variation, but not to explain population size. Interactions between preference and search were 

important in all scenarios except the cue-based models for individual size, although generally 

species that search smaller areas are also expected to have stricter habitat selection criteria 

(Rabinowitz et al., 1986). All analyses showed interactions between factors at individual and 
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landscape levels, indicating the relevance of both ecological context and behavior for studies of 

habitat selection (Lima and Zollner, 1996). Landscape change that leads to severe, or even equal-

preference ecological traps will reduce fitness for species that cannot adapt their selection criteria 

(Robertson and Hutto, 2006) and our model shows that this situation becomes worse when the 

remnant good-quality habitat in the landscape is further decreased. 

Habitat vs. cue-based selection 

We chose percent canopy cover as the selection cue for our birds because it has been 

shown to be positively related to species richness and the proportion of forest species inhabiting 

shade coffee (Moguel and Toledo, 1999; Philpott et al., 2008). We expected birds to make more 

selection mistakes with lower threshold values of preference, and to behave more adaptively 

when their thresholds were strict; and while this was true, population and individual sizes were 

intermediate between those of equal-preference and adaptive selection. Increases in landscape 

heterogeneity may result in preferred patches no longer being next to each other, so that 

configuration and search distances become obstacles for the best competitors to get to their 

preferred condition. Mobile animals probably use a collection of environmental gradients as 

selection cues (Aarts et al., 2013; Robertson et al., 2013), so resulting patterns are probably even 

harder to characterize in nature (Battin, 2004; Kristan, 2003). 

Scale of dispersal 

Had our model not been spatially-explicit, we would not have detected the effects of 

landscape configuration, search area and their interactions. Starting each simulation year with an 

empty landscape, as used in previous models for migratory birds (Donovan and Thompson, 
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2001; Pulliam and Danielson, 1991), will not be appropriate to simulate the behavior of resident 

species. As shown in our simulations, introducing constraints to dispersal scale allowed us to 

explore the variation brought about by differing movement ranges as has been done previously in 

other types of simulation models (Deutschman et al., 1997). Search and selection rules in our 

model are obviously simplistic, so real-life complex behaviors and movement patterns would 

determine the degree to which landscape configuration is important. The main difference 

between the simulation experiments with the two types of dispersal was seen in saturation times 

and variance, but unlike in Loehle (2012), final population sizes were not very different in our 

model after increasing behavioral rules. 

Model assumptions, caveats and future improvements 

Contrary to classic models (Fretwell and Lucas, 1969), we designed habitat selection as a 

process that was neither ideal (birds could make mistakes) nor free (search was limited). By 

making the model individual-based and spatially-explicit, we created population patterns that 

emerged from the interactions between landscape structure and individual behavior (Dunning et 

al., 1992). However, our model ignored trade-offs between factors such as food availability and 

predation risk (Aarts et al., 2013; DeCesare et al., 2014) and assumed individuals had no way of 

directly assessing the factors that ultimately affected their fitness. We did not incorporate 

learning mechanisms, ways for the species to adapt, or social cues such as conspecific attraction, 

which may all be important in habitat selection (Gilroy and Sutherland, 2007; Kokko and 

Sutherland, 2001). 
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Density dependence also alters the interactions between habitat availability, selection 

behaviors and quality outcomes (Matthiopoulos et al., 2005). Instead of having density 

dependence affect all individuals, we simplified our model by incorporating limits to population 

size only through floater mortality following landscape saturation. Floaters allowed us to 

recognize the effect of non-breeding individuals on population dynamics since it is logical to 

suppose that they will have higher mortalities and wider, more variable home ranges (Loehle, 

2012; Pulliam and Danielson, 1991; Stephens et al., 2002). Although characteristics such as age, 

sex and other measures of individual quality may directly affect intraspecific competition, we 

addressed individual differences only through size sorting, which has been suggested as a 

reasonable proxy (Nakayama et al., 2011; Shustack and Rodewald, 2010). 

Because novel habitat introduction may have milder effects on population persistence 

than habitat degradation (Fletcher et al., 2012), and because resident animals are predicted to be 

more resistant to ecological traps (Robertson et al., 2013), we chose to focus on responses 

beyond extinction or persistence. All our scenarios led to stable populations, and as suggested by 

several authors (Donovan and Thompson, 2001; Gilroy and Sutherland, 2007; Shustack and 

Rodewald, 2010), we evaluated the effects of habitat on simulated populations by examining 

more than one demographic variable (abundance and individual size). We explored the means 

and variation in early simulation years to incorporate transient dynamics that could potentially 

mirror population responses to short-term disturbance events. 
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Implications for tropical agroforestry systems 

Our modelling assumption of higher quality in forest than coffee has not been proven, 

and for some species shade coffee could represent an undervalued resource (Gilroy and 

Sutherland, 2007) or simply a good quality habitat. Moreover, the opportunities to conserve 

native biodiversity in these systems vary greatly depending on the level of management, 

vegetation and structural complexity (Moguel and Toledo, 1999; Philpott et al., 2008). Our 

simulations point to the fact that landscape context could also be extremely important in 

determining the ability of shade coffee to become beneficial for forest species and ecosystem 

services, and this view has been supported by previous field and modelling research (Chandler et 

al., 2013; Railsback and Johnson, 2011). Using real habitat-specific demographic parameters (i.e. 

field measurements of survival and reproduction), this model could help researchers to form 

better hypothesis and sampling designs to evaluate alternative conservation strategies in 

agricultural landscapes. For example, criteria for biodiversity-friendly coffee suggests that 

canopy cover should be at least 60%, although this is rarely found in highly industrialized farms 

or regions with high cloud cover (Jha et al., 2014; Sánchez-Clavijo et al., 2007). Scenarios could 

be created to contrast the effects of changing internal characteristics of agroecosystems such as 

canopy cover, with the effects of conserving forest remnants at the regional level for a wide suite 

of native species. 

Conclusions 

Simulation modelling allowed us to build on previous habitat selection models by 

introducing two complex mechanisms related to individual behavior: selection based on habitat 
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cues and spatially-explicit dispersal. We showed that ecological traps, whether severe or of 

equal-preference, can reduce population fitness at the landscape level for a wide variety of 

species and ecological contexts. Cue-based selection mechanisms in natural conditions will make 

ecological traps harder to detect if measurements are not done appropriately e.g. if the cue and its 

distribution are unknown or if territorial and transient individuals are given the same weight in 

habitat-level measurements. Therefore, we advise that more attention to the assumptions and 

measurements with which we describe habitat selection is necessary to truly understand 

ecological traps. 

Whether populations adapt or not to the transformation of the region they inhabit will 

depend on processes at scales ranging from the individual to the landscape, and on interactions 

between them. The effects of ecological traps on a given species will not be the same in different 

landscapes and knowledge of this should be used to inform conservation decisions. A situation 

where a mobile species is found in two different types of habitat, but where habitat preference 

and quality are variable between them is widely applicable to many taxa and ecosystems. We 

hope that other researchers are motivated to use and improve on this model to advance 

knowledge about population processes in heterogeneous landscapes. 
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CHAPTER 3: HABITAT SELECTION IN TRANSFORMED LANDSCAPES  

AND THE ROLE OF SHADE COFFEE  

FOR THE CONSERVATION OF RESIDENT BIRD SPECIES 

Chapter summary 

High species richness and abundance has been documented in agroforestry systems but 

long-term demographic data are required to assess their true value for biodiversity conservation, 

as intermediately-modified habitats could be functioning as ecological traps, making species 

persistence uncertain under further landscape change. We analyzed data from seven years of 

capture-mark-recapture and resight sampling to compare habitat preference and quality between 

shade coffee plots and pre-montane forest remnants for twelve species of resident birds in the 

Sierra Nevada de Santa Marta (Colombia). As indicators of preference we used estimates of 

occupancy, abundance, site fidelity, seasonal variance in abundance, segregation by age and sex, 

detectability and habitat switching to classify species as preferring forest, coffee, or representing 

equal-preference. As indicators of quality we used estimates for the effect of habitat on 

individual body condition, muscle and fat scores, incidence of body and primary plumage molts, 

breeding activity and proportion of juveniles to classify species as experiencing higher-quality in 

forest, in coffee, or representing equal-quality. Six species showed evidence of adaptive habitat 

selection (a match between their preferred and higher-quality habitats), four species showed 

neutral outcomes (evidence of preference but no differences in quality), and two species showed 

maladaptive outcomes (a mismatch between their preferred and higher quality habitats). We 

provide evidence that: 1) species considered as habitat generalists still commonly use, prefer and 

experience higher fitness in forest remnants, and therefore conservation strategies in rural 

landscapes should emphasize their conservation; 2) many species seem to be using shade coffee 
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plots in an adaptive or neutral way, reinforcing its role as a biodiversity-friendly matrix around 

forest fragments; 3) though rare, ecological traps can exist for common species, so when 

evaluating the contribution of novel habitats to biodiversity conservation it is important to 

understand that maintaining current conditions will not necessarily ensure species persistence.  

Keywords: agroforestry systems; ecological traps; habitat preference; habitat quality; 

habitat selection; resident birds. 

Introduction 

Regional species distributions are emergent properties of demographic and ecological 

processes happening at both the individual and habitat scales (Wiens et al. 1993; Kareiva & 

Wennergren 1995; Fletcher Jr & Sieving 2010). As a consequence of this complexity, there have 

been numerous theoretical frameworks used to study populations at the landscape level (Wiens 

1976; Addicott et al. 1987; Dunning, Danielson & Pulliam 1992; Johnson et al. 1992). 

Metapopulation theory emphasizes the role of dispersal in determining local species colonization 

and extinction, and teaches us that species absence is not synonymous with bad-quality habitat 

(Hanski 1998; Moilanen & Hanski 1998; Quintana‐Ascencio, Dolan & Menges 1998). Source: 

sink dynamics emphasize heterogeneity in demographic outcomes of geographically or 

ecologically distinct populations, and point towards habitat selection as the process linking 

landscape structure with the individual behavior of mobile animals (Pulliam 1988; Pulliam & 

Danielson 1991; Dias 1996). While both of these frameworks, as well as many early 

conceptualizations of habitat selection, accounted for individuals ending up in a habitat different 

than the one they preferred through mechanisms like density dependence and competitive 
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displacement (Fretwell & Lucas 1969; Rosenzweig 1981; Morris 2003), neither raised the 

possibility of habitat selection acting as a maladaptive process (Remes 2000; Delibes, Ferreras & 

Gaona 2001; Kristan 2003; Stamps & Krishnan 2005). As empirical evidence accumulated of 

widespread, rapid landscape change leading to such outcomes, the term ecological trap was 

coined to describe those cases in which individuals consistently make mistakes by choosing 

lower-quality patches over available better-quality ones (Schlaepfer, Runge & Sherman 2002; 

Battin 2004; Robertson & Hutto 2006; Gilroy & Sutherland 2007). Theory on ecological traps 

has been refined to propose mechanisms for their emergence (Fletcher, Orrock & Robertson 

2012; Robertson, Rehage & Sih 2013) and ecological and evolutionary consequences of their 

existence (Kokko & Sutherland 2001; Patten & Kelly 2010); and ultimately emphasizes that 

species presence by itself is not synonymous with a habitat contributing to its persistence. 

Despite these arguments, species lists and habitat suitability models based exclusively on 

detection/non-detection data are among the most commonly used tools to evaluate the value of 

habitats and landscape structure for biodiversity conservation (Daily, Ehrlich & Sanchez-

Azofeifa 2001; Hughes, Daily & Ehrlich 2002; Loiselle et al. 2003; Petit & Petit 2003; 

Rondinini et al. 2006; Hirzel & Le Lay 2008). This trend is of particular concern when 

addressing novel ecosystems resulting from intermediate habitat transformations, as they could 

very likely become ecological traps for animals that evolved their habitat selection cues before 

human modification took place (Battin 2004; Shustack & Rodewald 2010; Fletcher, Orrock & 

Robertson 2012). As an example, tropical agroforestry systems like shade coffee stand out for 

retaining important portions of native forest biodiversity (Perfecto et al. 1996; Moguel & Toledo 

1999; Philpott et al. 2008), and while they have become a classic example of balancing 
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economic profit and conservation, and spurred a variety of incentives aimed to achieve their 

sustainability (Perfecto et al. 2003; Perfecto et al. 2005; Philpott et al. 2007; Jha et al. 2014); 

there is still a lot of information missing about the long-term demographic trends that will 

determine whether species truly adapt to living in these transformed landscapes (Komar 2006; 

Sekercioglu et al. 2007; Sánchez-Clavijo, Arbeláez-Alvarado & Renjifo 2008). 

We designed a capture-mark-recapture and resight study to compare indicators of habitat 

preference and quality between shade coffee plots and pre-montane forest remnants for twelve 

species of resident Neotropical birds in the Sierra Nevada de Santa Marta (Colombia). As 

indicators of habitat preference we used estimates of occupancy, abundance, site fidelity, 

seasonal variance in abundance, segregation by age and sex, detectability and habitat switching 

to classify species as preferring forest, preferring coffee or representing equal-preference (Table 

3). As indicators of quality we used estimates for the effect of habitat on individual body 

condition, muscle condition, fat scores, incidence of body and primary plumage molts, breeding 

activity and proportion of juveniles to classify species as experiencing better quality in forest, 

better quality in coffee or representing equal-quality (Table 3). Finally, by contrasting each 

species’ classifications in terms of preference and quality we came up with hypotheses about the 

role that both habitats may be playing for their populations at the landscape level, and for the 

effect that the process of habitat selection may be having in their adaptation to landscape 

transformation. 

Using previous information on frequency by habitat for our focal species (Hilty & Brown 

1986; del Hoyo et al. 1992-2011; Stotz et al. 1996; Restall, Rodner & Lentino 2006), we 

assigned them as forest specialists (species rarely recorded in habitats other than forest), forest 
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generalists (species frequently recorded in both forest and more open vegetation), and treed-area 

dwellers (species most frequently recorded in open areas with sparse tree cover). We expected 

that forest specialists would exhibit higher preference and experience higher fitness in forest, and 

that treed-area dwellers would exhibit higher preference and experience higher fitness in shade 

coffee, thus displaying adaptive habitat selection behaviors. On the other hand, we expected that 

any evidence of maladaptive habitat selection would probably come from the forest generalist 

species, as they were more likely than forest specialists to use selection cues present in shade 

coffee, but also more likely than treed-area dwellers to experience lower fitness in their novel 

habitat. 

Table 3. Variables used as indicators of higher habitat preference and quality in this project. 

Characteristic Variable Prediction for preferred/ best habitat 

Habitat preference Occupancy  Higher  

Abundance Higher  

Site fidelity  Higher  

Seasonal variance in abundance Lower  

Segregation by age Adults > immatures 

Segregation by sex Females > males (during breeding) 

Detectability during observations Higher (especially with playback) 

Resight habitat  Same as banding habitat 

Habitat quality Body condition index Higher  

Muscle condition scores Higher  

Fat stores More likely 

Body plumage molt More likely 

Primary plumage molt More likely 

Breeding activity More likely 

Juvenile captures More likely 

Based partly on the work and suggestions of (Ralph et al. 1993; Robertson & Hutto 2006; Gilroy & Sutherland 

2007; Peig & Green 2010; Shustack & Rodewald 2010). 
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Methods 

Field sampling 

Sampling site - Field sampling took place in Hacienda La Victoria (11°7'20"N, 

74°5'34"W, 850 to 1800 m), an 800-hectare agricultural estate devoted to coffee production and 

forest conservation in the Sierra Nevada de Santa Marta in northern Colombia (Figure 4), a 

region which is considered a global hotspot for biodiversity (Cracraft 1985; Myers et al. 2000; 

Kattan et al. 2004). Historically, the Gaira-Manzanares-Piedras watershed between 600 and 

1,700 meters, where La Victoria is located, was dominated by pre-montane tropical humid 

forests, and as of 2012, close to 47% of this cover remained (Bayly et al. 2012). Coffee 

cultivation in La Victoria started in 1892 and because of the region’s highly pronounced 

unimodal rainfall pattern, has always taken place under a canopy of trees. Currently, all coffee is 

grown in moderate to steep slopes, underneath cultivated shade dominated by Inga codonantha 

and Albizia carbonaria, with occasional interspersed trees of other edible and ornamental 

species, and is classified as a commercial polyculture (sensu Moguel & Toledo 1999). Canopy 

height is generally between 10 and 15m, and canopy percent cover varies greatly around a mean 

of 60%. Coffee shrub density and height varies according to when plots were last renewed (cut 

down) or replanted, and groundcover depends on the time of year (high after the dry season, 

cleared out when the rainy season intensifies). Coffee production is still the main economic 

activity of the farm, but most plots are not managed intensively, and have experienced cycles of 

temporal local abandonment followed by increases in intensification, and cycles of coffee leaf 

rust propagation followed by renewal of the coffee plants. Plant diversity in remnant forest 

patches is much higher, with a dominance of species from Lauraceae, Melastomataceae, 
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Araliaceae, Euphorbiaceae, Rubiaceae and Leguminosae. Canopy heights range from 15 to 30 m 

and canopy cover has a low variation around a mean of 80%. Most forest sites had a dense 

understory of palms, ferns, Heliconiaceae and other herbaceous shrubs, including occasional 

coffee plants either left over from previous plantings or that dispersed naturally from nearby 

crops. Currently forests are only used for biological research, low-intensity tourism and 

occasionally for wood extraction. 

  
Figure 4. Location of Hacienda La Victoria in northern Colombia and schematic map of study site showing the 

approximate location of banding stations and vegetation cover. 

F - forest banding stations 

C - coffee banding stations 

Black circles - original sites designated for this project 

Blue stars - additional sites used by SELVA 

 

Sampling scheme - We chose nine 4-hectare sampling stations that were located either 

within an extensive pre-montane forest patch (three sites at elevations ranging from 900 to 1,300 

meters), or within a shade coffee plot (six sites with two each located near, mid-distance and far 

from forest) (Figure 4). During 2013-2014 we made a total of four visits to the site (from mid-

March to mid-May which corresponds to the transition between the dry and rainy seasons or 

“dry-wet”; and from mid-June to mid-August which corresponds to the middle of the rainy 

season or “mid-wet”). We complemented our dataset with capture-recapture information from 
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pilot sampling and from an ongoing banding project at La Victoria (http://selva.org.co/research-

programs/migratory-species/crossing-the-caribbean/), adding eight more sampling occasions 

from 2009 to 2015 (some taking place mid-September to mid-November which corresponds to 

the peak of the rainy season or “peak-wet”), taking place in three additional coffee and five 

additional forest sites (Figure 4). No sampling was ever carried out during the wet-dry transition 

or the core of the dry season (mid-November to mid-March). Sampling effort varied among sites 

and seasons depending on resources and logistical constraints (Table C.1). 

Focal species - We chose twelve species of resident passerine birds that represented a 

gradient of habitat associations according to the literature (from primary forest to open areas with 

trees), were relatively common in the study region, had been reported for both habitats of 

interest, could be safely captured, marked and recaptured, and represented a variety of families, 

life histories and ecological functions (Table 4). 

Table 4. Focal species of resident birds used for this study. 

Family
1
 English Common Name Scientific Name Code

2
 Habitat Classification

3
 

TYRANNIDAE Olive-striped Flycatcher Mionectes olivaceus MIOLI Forest specialist 

  Ochre-bellied Flycatcher Mionectes oleagineus MIOLE Forest specialist 

TURDIDAE Yellow-legged Thrush Turdus flavipes TUFL Forest generalist 

  White-necked Thrush Turdus albicollis TUAL Forest specialist 

THRAUPIDAE Crimson-backed Tanager Ramphocelus dimidiatus RADI Treed-area dweller 

  Bay-headed Tanager Tangara gyrola TAGY Forest generalist 

 Buff-throated Saltator Saltator maximus SAMA Forest generalist 

  Streaked Saltator Saltator striatipectus SAST Treed-area dweller 

PARULIDAE White-lored Warbler Myiothlypis conspicillata MYCO Forest specialist 

 Rufous-capped Warbler Basileuterus rufifrons BARU Treed-area dweller 

  Slate-throated Redstart Myioborus miniatus MYMI Treed-area dweller 

FRINGILLIDAE Thick-billed Euphonia Euphonia laniirostris EULA Forest generalist 
1
 Taxonomic classification from South American Classification Committee (Remsen et al. Version 08/31/2016) 

2
 Code corresponds to the first letters of both parts of the scientific name of the species 

3
 From (Hilty & Brown 1986; del Hoyo et al. 1992-2011; Stotz et al. 1996; Restall, Rodner & Lentino 2006) 
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Capture-mark-recapture - Mist nets were setup in each of the 17 banding sites according 

to SELVA’s standardized protocols and depending on the characteristics of the site, bird activity 

and experience of the bander(s) present (usually between 4 to 10 mist nets were deployed, for 5 

to 6 hours, starting at sunrise). Nets were checked every 20-30 minutes according to standards of 

safety and ethical treatment of animals (under permits 10-17W/13-05W from IACUC and 0819 

from ANLA). Individuals were transported in a holding bag to a banding station for processing; 

which included banding all individuals with one uniquely-coded metal band, and up to 50 

individuals of each focal species per habitat were banded with a unique combination of color 

bands. We also recorded the following information for each individual: age (following Pyle et al. 

1987 and SELVA’s unpublished ageing guide), sex (based on plumage coloration, structural 

dimorphism and reproductive condition), fat score and muscle condition (scored from 0 to 3 

following Ralph et al. 1993), state of cloacal protuberance and/or incubation patch (scored from 

0 to 3, and 0 to 5 respectively - Ralph et al. 1993), primary plumage and body molt (the former 

according to Pyle et al. 1987 and the later scored qualitatively from 0 to 3). Additionally we 

measured wing chord (to the nearest mm) and body mass (to the nearest tenth of a gram). All 

individuals were liberated on site immediately after processing. 

Observations and resights - Visual sampling of the focal species was concentrated in the 

9 sites originally chosen for this study. Activities took place from 2 to 4 hours after sunrise or 

before sunset and were always carried out by a single observer. Although the initial aim of these 

sessions was to accumulate resightings of color banded birds, observers recorded all detected 

individuals of the focal species. During some of these sessions, playback was used to increase 
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bird detectability (we looped over a playlist that featured calls and songs from all focal species, 

plus a Neotropical owl mix - courtesy of the Cornell Lab of Ornithology). 

Data analysis 

Our final banding database consisted of 5,003 records of captures and our final count 

database contained 2,655 records of sightings for the twelve focal species, both of which were 

carefully checked for consistency, outliers and suspicious information. It is important to note that 

sample sizes vary according to species, habitat, variables of choice and type of analysis. 

Occupancy - Results from species inventories (regardless of the method), are often 

assumed to be species presence/absence data, when in reality they represent species 

detection/non-detection information (Kéry & Schaub 2012). In order to use species site-

occupancy (psi) to assess our species preferred habitat, we needed to account for factors that may 

have affected detection probability (p), as well as the effects of altitude on occupancy (Kattan & 

Franco 2004; Gómez et al. 2015). To avoid problems with differing sampling intensities, and 

because occupancy estimations need a lot less data than abundance estimation (Kéry & Schaub 

2012), we used only data with comparable banding and sighting efforts from our main sampling 

occasions (a total of 20 bird banding and 16 bird sighting events at each of the nine sites - Table 

C.2). Following the JAGS code available at 

http://www.vogelwarte.ch/de/projekte/publikationen/bpa/code-for-running-bpa-using-jags.html 

for the Bayesian implementation of occupancy models (Kéry & Schaub 2012), we created a 

model with the following covariates: 1) effect of sampling method (sighting or banding) on p, 2) 

effect of habitat on p (forest or coffee), 3) effect of altitude on psi (scaled meters above sea level 
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measured at each banding station using a GPS), and 4) effect of habitat on psi. Analyses were 

run using R (R Core Team 2016), JAGS (Plummer 2016) and the “jagsui” package (Kellner 

2016). After checking model outputs for convergence, we considered factors to be important in 

the estimation of detection and occupancy probability for the species when parameter estimates 

for their effect size did not include 0 in their 95% credibility intervals. We also plotted 

occupancy probability as a function of altitude and habitat, and interpreted evidence of higher 

occupancy as higher use by the species. 

Abundance and site fidelity - To improve precision in habitat-specific demographic 

estimates we used the whole capture database, pooled together data from all sites into two habitat 

classes, and data from each mist-net day into twelve primary sampling occasions. We modified 

the JAGS code available at http://www.vogelwarte.ch/de/projekte/publikationen/bpa/code-for-

running-bpa-using-jags.html for the Bayesian implementation of the Jolly-Seber population 

model parameterized as a multistate model (Royle & Dorazio 2008; Kéry & Schaub 2012), by 

introducing a quadratic effect of sampling effort (the scaled number of standardized mist net 

hours per habitat, per occasion) on detection probabilities (p). Apparent survival (phi) was 

allowed to vary randomly by occasion, estimates of the number of individuals alive per occasion 

(N) and over the whole sampling time (Nsuper) were calculated as derived population 

parameters, and analyses were carried out separately for each species and habitat. Analyses were 

run using R (R Core Team 2016), JAGS (Plummer 2016) and the “jagsui” package (Kellner 

2016). Jolly-Seber models were chosen to allow for the simultaneous estimation of apparent 

survival and population size, however for some species: habitat combinations, recapture rates 

were too low to get reasonable estimates with this model. For those species, we used a separate 
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closed population model to calculate abundance over the whole sampling time, and a Cormack-

Jolly-Seber model to calculate phi per occasion (Royle & Dorazio 2008; Kéry & Schaub 2012); 

in both cases including the same modification to make capture rate dependent on sampling effort. 

While parameters were not estimated with the same method for all species, we made sure to 

always keep the model we used, the number of augmented individuals and the simulation 

conditions constant for both habitats within species. 

After checking model outputs for convergence, we considered species estimations of 

overall abundance as different between habitats when there was no overlap in their 50% 

credibility intervals, and plotted their posterior distributions together to visually asses overlap 

(using package “ggplot2” (Wickham 2016)). We also calculated the coefficient of variance 

between abundance per occasion for each iteration, and then derived the mean and standard 

deviation for all iterations to get an estimate of seasonal variance in abundance. We considered 

them as significantly different when there was no overlap of the mean +/- the standard deviation. 

Apparent survival is a compound measurement of site fidelity (which should be greater in 

preferred than non-preferred habitats – Robertson & Hutto 2006) and true survival (which would 

determine a better quality habitat – Battin 2004). Because of previously recorded longevities of 

tropical bird species (Ruiz-Gutiérrez et al. 2012), we can expect that when calculated over short 

periods of time, this parameter is more indicative of the former than the latter. We used model 

output to calculate mean phi between occasions for each iteration, and then derived the mean and 

standard deviation for all iterations to assess differences in overall site fidelity, and again plotted 

posterior distributions for both habitats together to asses overlap visually. Evidence of higher 
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abundance, lower seasonal variations in abundance and higher site fidelity were interpreted as 

evidence of habitat preference by each species. 

Other indicators of habitat preference - Our other four indicators of habitat preference 

were analyzed using generalized linear models with binomial errors and logit links, followed by 

AICc model averaging, using R (R Core Team 2016) and package “AICcmodavg” (Mazerolle 

2016). In all cases, we considered differences significant when the 95% confidence intervals for 

the model-averaged coefficient of the effect of habitat did not overlap zero. To test for 

segregation according to age (and therefore a possible despotic distribution of individuals sensu 

Fretwell & Lucas 1960), we excluded from the data all records for M. olivaceus and M. 

oleagineus (because age determination criteria for these species was not well defined throughout 

the study period), all individuals classified as juveniles and all individuals whose age could not 

be determined in the field or given their capture history. We considered a capture as a success 

when the individual was an adult (presumably dominant) and as a failure when it was an 

immature (presumably submissive). To test for segregation according to sex, we excluded all 

records for M. oleagineus and T. albicollis (because we did not have enough captures of both 

sexes in both habitats), and all individuals whose sex could not be determined in the field or 

given their capture history. We considered a capture as a success when the individual was a male 

and as a failure when it was a female (although we were more interested in females during 

breeding periods). In both cases the model set included a null model, a time model where the 

only predictor was the quadratic effect of day of the year (non-linear response), a habitat model 

with only habitat category as predictor (coffee or forest), and an additive model of time and 

habitat. 
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Individuals in their territory are expected to respond to playback more than transient 

individuals, therefore we hypothesized that using playback would increase our chances of 

detecting a species more when performed in their preferred habitat. To test this hypothesis, we 

used duration of bird observation sessions, habitat (coffee or forest), method (playback or no 

playback), and the interaction between habitat and method as predictor variables, and detection 

of at least one individual of each species as the response, giving us a total of seven models in the 

set for detectability (Table C.3 shows variation in sampling between sites and occasions). Our 

rate of resight of color-banded individuals was much lower than expected, but for six of our 

species, we compared the probability of resight habitat being different than the banding habitat, 

as a function of the habitat where individuals were banded, the number of days elapsed between 

banding and resight, and the interaction of habitat and time (five models in the set for resight). 

We expected this probability to be higher in the less-preferred habitat. 

Species classification according to habitat preference - Because our seven indicators of 

habitat preference were very different in nature and mode of analysis, we had to qualitatively 

summarize the evidence they provided. We classified a species as preferring one habitat if the 

number of times evidence suggested higher preference in that habitat was greater than the 

number of times evidence suggested higher preference in the other, regardless of the number of 

times when we found no evidence of difference. If evidence for both habitats was the same, or 

we did not find any evidence of difference at all, the species was classified as having equal-

preference. We added a qualification of each species’ classification, by considering the evidence 

weak when less than a third of the tests ran supported the category it was assigned to, 
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intermediate if between one and two thirds supported it, and strong if more than two thirds did 

(the total number of tests varied by species). 

Body condition index - To compare physical individual condition between habitats we 

calculated a scaled index that corrects body mass with a size indicator (in our case wing chord) 

for each individual, and which uses standard major axis regression (performed with R package 

“smart” (Warton et al. 2012)) to account for error in the measurement of both variables (Peig & 

Green 2009; Peig & Green 2010). We ran generalized linear models with normal errors and 

identity link to create a set of four models akin to the ones we used for age and sex (null, 

quadratic effect of day of year (because of nonlinear responses), habitat, and the additive model 

of time and habitat), to get a model-averaged coefficient for the effect of habitat (which we 

considered significant when 95% confidence intervals did not overlap zero). 

Other indicators of habitat quality - Our other six variables of individual condition 

reflecting habitat quality were analyzed as generalized linear models with binomial errors and 

logit link, using the same predictors and method described above to determine if there was a 

significant effect of habitat. For each analysis, we only considered individuals where the variable 

of interest was properly evaluated, so for some tests we had to eliminate species because of 

issues with sample size. In terms of muscle, we considered a capture a success if individuals had 

a muscle score of 3, and a failure if their muscle score was 2 (we eliminated individuals with 

scores of 0 and 1 because there were too few of them to analyze). For fat, we considered a 

capture a success if individuals had a fat score of 1 or higher. For both body and primary 

plumage molting, a success was defined by an individual having active molt, regardless of stage. 

A breeding success was defined by capturing either a female with active brood patch (categories 
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2-4) or a male with active cloacal protuberance (categories 2-3). To analyze the probability of 

capturing juveniles, we used age again, but this time defined individuals classified as juveniles as 

a success, and those classified as adults or immatures as a failure. 

Species classification according to habitat quality - Because all analyses of fitness used 

the same predictors, the coefficients of the effect of habitat are directly interpretable and 

comparable (with larger, positive values indicating higher outcome probability in forest, larger, 

negative values indicating higher outcome probability in coffee, and values close to zero 

indicating no evidence of habitat differences). To get a quantitative estimate of the overall 

differences between habitats, we calculated the mean of effects sizes weighted by their standard 

deviation, in a manner akin to a meta-analysis using package “metaphor” (Viechtbauer 2010). If 

this estimate minus the standard error was larger than zero, a species was classified as having 

higher quality in forest. If the estimates plus the standard error was smaller than zero, the species 

was classified as having higher quality in coffee. If the interval of the estimate +/- the standard 

error included zero, the species was classified as having equal-quality outcomes in both habitats. 

Contrasting habitat preference and quality - We compared each species’ classifications 

to come up with hypotheses about the role that forest and coffee play for their populations at the 

landscape level, as well as for the role that habitat selection is playing for their adaptation to 

habitat transformation (Figure 5). Additionally, we ran a principal component analysis in R (R 

Core Team 2016) for the habitat effect sizes of body condition, body molt and breeding activity 

of the twelve species and plotted the results according to their habitat preference categories. 
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Figure 5. Progression of a general framework for evaluating the role of habitat selection in species adaptation to 

transformed landscapes.  

Left: initial proposal by (Gilroy & Sutherland 2007) 

Middle: augmented framework partially based on work by (Robertson & Hutto 2006; Patten & Kelly 2010; Fletcher, 

Orrock & Robertson 2012) 

Right: evaluation of preference and quality as continuous variables (suggested for future work) 

Results 

After data processing our bird banding database consisted of 4,108 captures (894 of 

which were recaptures) from 3,214 individuals. Our bird observation database had 1,958 records 

of the focal species, plus 256 resights for 871 color-banded birds. There was a lot of 

heterogeneity in sample size according to species, habitat and method (Tables C.4 and C.5). 

Habitat preference 

Occupancy - Estimates of occupancy for nine species were always above 0.97, and 

showed no statistically significant effects of elevation or habitat. The remaining three species 

showed a significant effect of altitude (negative for MIOLE and EULA, positive for MYMI), 

with MIOLE also showing higher occupancy in forest and MYMI showing higher occupancy in 

coffee (Figure C.2; see Figure C.1 for effects of habitat and method on p). 
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Abundance - We found evidence for five species being more abundant in forest: MIOLE, 

MYCO (using the Jolly-Seber model), TUFL, EULA (using the closed population model) and 

TUAL (no recaptures in coffee). Three species were more abundant in coffee: RADI, BARU 

(Jolly-Seber) and SAST (only one recapture in forest). Conversely, we did not find evidence for 

differences in abundance between habitats for TAGY, MYMI (Jolly-Seber), MIOLI and SAMA 

(closed population) (Figure C.3; see table C.6 for effects of effort on p). 

Site fidelity - Mean apparent survival was significantly higher in forest for TAGY, RADI 

(Jolly-Seber), MIOLI and TUAL (Cormack- Jolly-Seber); and significantly higher in coffee for 

SAST and EULA (Cormack- Jolly-Seber). We did not find evidence for differences in site 

fidelity between habitats for the three warblers (MYCO, BARU and MYMI studied with Jolly-

Seber models), MIOLE, TUFL or SAMA (studied with Cormack-Jolly-Seber models) (Figure 

C.4). 

Seasonal variation in abundance - For the six species in which we had independent 

abundance estimates for each occasion (Jolly-Seber models), the coefficients of variation among 

seasons were always lower in forest than coffee, and showed significant differences for TAGY 

and BARU (Figure C.5). 

Segregation according to age and sex - Out of ten species analyzed for age, we found 

evidence of segregation for the two thrushes, with a higher probability of capturing adults over 

immatures in forest for TUAL and in coffee for TUFL (Figure C.6). For the ten species analyzed 

for sex, we found evidence of lower probability of capturing males over females for RADI in 

coffee and for TAGY in forest (Figure C.7). 
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Observations and resights - MYCO, MYMI and EULA showed positive and significant 

responses to playback; while MIOLE showed higher probabilities of detection in forest, and 

BARU and MYMI higher probabilities in coffee. We found no evidence of significant 

interactions between method and habitat for any species. There were too few observations of 

TUAL in coffee for analysis, once again pointing to higher incidence in forest for this species 

(Figure C.8). Resight analysis was performed for five species, from which only MYMI showed a 

significant trend (higher probability of being spotted later in coffee when individuals were 

originally banded in forest) (Figure C.9). 

 

Table 5. Summary of evidence for habitat preference according to eight chosen variables. 

Species OCC TAB PHI SVA AGE SEX OBS RST 

Evidence 

Strength 

Preference 

Classification  

MIOLI NE NE F - - NE NE - Weak FOREST 

MIOLE F F NE NE - - F - Intermediate FOREST 

TUFL NE F NE - C NE NE - Contradictory EQUAL 

TUAL NE F F - F - - - Strong FOREST 

RADI NE C F NE NE C NE NE Weak COFFEE 

TAGY NE NE F F NE F NE NE Intermediate FOREST 

SAMA NE NE NE - NE NE NE NE None EQUAL 

SAST NE C C - NE NE NE - Intermediate COFFEE 

MYCO NE F NE NE NE NE NE - Weak FOREST 

BARU NE C NE F NE NE C NE Weak COFFEE 

MYMI C NE NE NE NE NE C C Intermediate COFFEE 

EULA NE F C - NE NE NE - Contradictory EQUAL 

Variables: OCC – higher occupancy, TAB – higher total abundance, PHI – higher site fidelity, SVA – lower 

seasonal variation in abundance, AGE – more likely to capture an adult than an immature, SEX – less likely to 

capture a male than a female, OBS – more likely to be observed during bird counts, RST – less likely to change 

habitat after banding. 

F - higher preference of forest 

C - higher preference of coffee 

NE - no evidence of differences in preference 

Blank - test not performed for the species 

 

Summary for habitat preference - based on the previous evidence we classified five 

species as preferring forest over coffee (in decreasing strength of signal): TUAL, MIOLE, 
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TAGY, MIOLI and MYCO; four species as preferring coffee over forest: MYMI, SAST, RADI 

and BARU; and for lacking evidence of preference or contradictory results, three species as 

having equal-preference for both habitats: SAMA, TUFL and EULA. This classification gave us 

a gradient of preference to compare against measures of habitat quality (Table 5). 

Habitat quality 

Body condition - We found evidence of higher BCI scores in forest for MIOLI and 

MYCO and of higher scores in coffee for RADI and EULA. There was also support for higher 

muscle scores in forest for MYMI and RADI and higher in coffee for TAGY. Finally, there was 

evidence for higher chances of fat storage in forest for MIOLE, TUFL, RADI and TAGY. Most 

species showed strong temporal variation in muscle score and fat storage, but not in their index 

of body condition (Figures C.10-C.12). 

Plumage molting - We found evidence of differences in the incidence of body molt for 

one species: higher probability of capturing an individual with active body molt for TAGY in 

forest than in coffee. Similarly, we found no evidence of habitat having an effect on the 

incidence of individuals undergoing primary plumage molt for any of the species. Most species 

showed strong temporal variation for both variables (C.13-C.14). 

Breeding - We found evidence of higher probabilities of capturing individuals actively 

breeding in forest for EULA, and in coffee for TUFL, TAGY, SAST and BARU; and no 

evidence of difference between habitats for the probability of capturing juveniles in any of the 

eight species analyzed. Once again, temporal effects were strong for most species, especially for 

breeding (Figures C.15-C.16). 
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Summary for habitat quality - based on the previous seven sources of evidence we have 

strong (MYMI, MYCO, SAMA and MIOLI) to medium (MIOLE) support to classify five 

species as birds that experience better habitat quality in forest than coffee. We only found 

medium support for better quality in coffee for one species (SAST), and for the remainder six 

birds (TAGY, BARU, TUFL, RADI, EULA and TUAL) we did not find evidence of differences 

in their overall habitat quality score (Figure 6). 

Contrasting results of habitat preference and quality 

When we contrast the habitat preference and quality classifications done for each species 

according to the framework summarized in Figure 5, we find: 1) four species that showed 

evidence of preferring the habitat where evidence showed quality was higher (MIOLI, MIOLE 

and MYCO for forest and SAST for coffee); 2) four species that showed evidence of preferring 

one habitat (TUAL and TAGY for forest, RADI and BARU for coffee), but no consistent 

evidence of differences in quality; 3) two species that showed no consistent evidence of 

differences in either preference or quality (TUFL and EULA); 4) evidence that SAMA may be 

caught in an equal-preference trap (preferring neither habitat, but with evidence of better quality 

in forest); and 5) evidence that MYMI may be caught in a severe ecological trap (higher 

preference in coffee combined with higher quality in forest) (Table 6). 
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Figure 6. Summary of evidence for habitat quality according to seven chosen variables  

Black frame: quality significantly higher in forest, red frame: quality significantly higher in coffee, no frame: no 

significant differences. 

Variables: BCI – body condition index, MUS – muscle score, FAT – fat storage, BMT – body plumage molt, PPM – 

primary plumage molt, BRE – breeding activity, JUV – incidence of juveniles.  

Squares: mid-point represents the mean effect estimate for each study, area represents weight given to it in the 

model, and lines represent 95% confidence intervals (negative values indicate higher quality in coffee, positive 

values higher quality in forest).  

Diamond: overall effect of habitat on individual fitness with 95% confidence intervals (fixed effects model of the 

means weighted by the inverse of the variance).  
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Table 6. Contrasting habitat preference (HP) and habitat quality (HQ) classifications for twelve species of resident 

birds, as well as hypotheses on the role that shade coffee and pre-montane forest may play for their populations at 

the landscape level. 

Species HP Class HQ Class Role of Coffee Role of Forest Habitat Selection 

MIOLI FOREST FOREST Sink Source Adaptive 

MIOLE FOREST FOREST Sink Source Adaptive 

TUFL EQUAL EQUAL Generalist habitat Generalist habitat Adaptive 

TUAL FOREST EQUAL Undervalued Equal-quality trap Neutral 

RADI COFFEE EQUAL Equal-quality trap Undervalued Neutral 

TAGY FOREST EQUAL Undervalued Equal-quality trap Neutral 

SAMA EQUAL FOREST Equal-preference trap Undervalued Maladaptive 

SAST COFFEE COFFEE Source Sink Adaptive 

MYCO FOREST FOREST Sink Source Adaptive 

BARU COFFEE EQUAL Equal-quality trap Undervalued Neutral 

MYMI COFFEE FOREST Ecological trap Perceptual trap Maladaptive 

EULA EQUAL EQUAL Generalist Generalist Adaptive 

 

The results of the principal component analysis carried out for the habitat effect sizes of 

body condition, body molt and breeding activity of the twelve species show an interesting 

ordination pattern; with species classified as preferring forest showing more consistency in their 

responses (especially along PC1), and species classified as preferring coffee showing a wide 

heterogeneity in their responses in relation to both PC1 (which contains positive loadings of 

breeding and molting) and PC2 (which contains positive loadings of body condition). Species 

classified as having equal-preference cover an intermediate area between the other two groups 

(Figure 7/Table C.7). 
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Figure 7. Plot of the first vs. the second principal components for the correlations between the habitat effect sizes 

for body condition index, body molt and breeding activity.  

Each dot represents one of our focal species, colored by their category of habitat preference as follows: red – prefers 

coffee, green – prefers forest, blue – shows no consistent pattern of preference.  

PC1 contains positive loadings of breeding and molting primarily, and explains 47% of the variance, while PC2 

contains positive loadings of body condition primarily, and explains 34% of the variance. 

Discussion 

A great majority of the studies evaluating biodiversity associated with agricultural 

landscapes have focused on patterns of species richness at the habitat (mainly focusing in forest 

remnants) or between habitat scales (comparing species richness and composition between 

different land uses). This project aimed to complement that knowledge by understanding that 

patterns of species distributions emerge from the accumulation of habitat-specific responses of 

individuals, mediated by the constraints imposed by landscape level structure and dynamics 

(Wiens 1976; Levin 1992). By comparing indicators of habitat preference and quality between 

pre-montane forest remnants and shade coffee plantations for twelve species of resident birds, we 

found evidence suggesting that the adaptiveness of habitat selection may decrease as species 

switch from preferring the original to the novel habitat in the landscape. Since this hypothesis 
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may have important implications for research and conservation, it is important to assess how our 

findings compare with those of previous studies, caveats in the way we measured and interpreted 

the variables, and future lines of research needed to corroborate these patterns beyond our 

specific study site, years and species.  

Patterns of habitat preference  

Our focal species presented a range of preferences that coincided with their habitat 

descriptions in the literature (Hilty & Brown 1986; del Hoyo et al. 1992-2011; Stotz et al. 1996; 

Restall, Rodner & Lentino 2006). While in general, bird assemblages in tropical agroforestry 

ecosystems are comprised of disproportionately more frugivorous than insectivorous species 

when compared with forest (Tscharntke et al. 2008), we found two of our insectivorous species 

(BARU and MYMI) preferring shade coffee and our highly frugivorous Tyrannidae (MIOLI and 

MIOLE) preferring forest, showing that patterns of habitat preference in our species do not seem 

to be strictly associated with either trophic guild or body size (Thornton & Fletcher 2014).  

Occupancy was not a very precise indicator of preference in our birds, as it is better used 

when studying rare species (Ruiz‐Gutiérrez, Zipkin & Dhondt 2010). For eight of the species we 

found either very little evidence of preference or relatively consistent patterns. In the other four 

species estimated abundance was not always correlated with the other measures of preference 

(Battin 2004; Robertson & Hutto 2006). RADI showed higher abundance in coffee but higher 

site fidelity to forest, which could be explained by seasonality, since site fidelity in temporally 

correlated environments has been shown to enhance population persistence (Schmidt 2004), and 

forests are less affected by changes in precipitation (Dietsch 2003). However, EULA showed the 
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opposite pattern, leaving us with questions about this species’ habitat preference. TUFL showed 

higher abundance in forest, but the higher proportion of adults in coffee, raises doubts about how 

to classify it. BARU was more abundant and more frequently detected in coffee, but abundance 

in forest was less variable, which could be linked to the seasonal shifts in foraging niche that 

have been documented previously for this species (Jedlicka et al. 2006).  

Habitat selection results from a variety of individual and social, behavioral and 

environmental cues interacting with each other at different scales (Gavin & Bollinger 1988; Haas 

1998; Jones 2001; DeCesare et al. 2014), which makes habitat preference a dynamic 

phenomenon which is very challenging to measure. We tried to overcome uncertainty in our 

assessments by combining different measures; however a critical next step for our research will 

be to determine which habitat and social characteristics are being used as selection cues by our 

species (Schlaepfer, Runge & Sherman 2002; Battin 2004; Robertson & Hutto 2006; Gilroy & 

Sutherland 2007), as well as how these are affected by interspecific interactions. Previous studies 

in shade coffee point to the importance of keystone plant species such as those in the genus Inga 

(which dominate shade in our site), for providing resources when plant diversity is low (Johnson 

2000), and to the importance of epiphytes for foraging and breeding of certain resident species 

(Cruz-Angón, Sillett & Greenberg 2008). Telemetry studies have shown that residents of tropical 

agroecosystems may maintain similar home range sizes regardless of the amount of preferred 

habitat in them (Githiru, Lens & Bennun 2007), and that habitat-sensitive species associate 

frequently with remaining trees in the landscape (Sekercioglu et al. 2007). Characteristics like 

whether a species joins mixed flocks or not, may also result in seasonal shifts in habitat use 

(Colorado 2011), so it becomes important to link the patterns we have discovered so far with the 
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social information dimension (Fletcher Jr & Sieving 2010; Schmidt, Dall & Van Gils 2010), 

especially when studying species with complex social behaviors such as EULA and TAGY.  

Patterns of habitat quality  

In general, individual quality indicators were equal to or better in forest than coffee, 

which coincides with previous evidence accumulated for Neotropical migrants using shade 

coffee (Bakermans et al. 2009) and forest as their wintering habitats (Chandler & King 2011). 

We need more information to understand if the apparent dependence of our species on forest is 

related to issues of habitat supplementation and complementation (Dunning, Danielson & 

Pulliam 1992), to the seasonality in resources and predation offered by both habitats (Wunderle 

Jr & Latta 1998; Dietsch 2003; Shochat et al. 2005), to changes in community composition 

brought about by the presence of migrants (Greenberg, Reitsma & Angon 1996; Jedlicka et al. 

2006), or to varying levels of landscape heterogeneity (Tscharntke et al. 2012); among other 

possible mechanisms.   

Our habitat quality assessments were based solely on evaluations of captured individuals, 

so possible tradeoffs may exist with other components of quality such as survival and 

reproduction (Vickery, Hunter & Wells 1992; Donovan & Thompson 2001; Burel & Baudry 

2005; Johnson et al. 2006). We would have needed more data accumulated over a longer period 

of time to properly estimate survival (Ruiz-Gutiérrez et al. 2012), and unfortunately, our nest 

search and monitoring efforts did not yield enough data to build informative models. Species 

associated with forest edge, open canopy or scrubby habitats, belonging to Turdidae, Tyrannidae, 

Cardinalidae and Thraupidae have been found commonly nesting in sun coffee plantations close 
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to forest before, and although nest mortality rates were not unusually high (Lindell & Smith 

2003); there is evidence of forest being a better quality habitat in the post-fledging period for 

Turdus assimilis in a Costa Rican agricultural landscape (Cohen & Lindell 2004). Unlike our 

study (where individuals of most species were captured in both habitats during the same 

sampling occasion – Table C8), other studies have found that resident birds do not commute 

regularly to forest (Sekercioglu et al. 2007). Even within the same habitat patch, wanderer and 

sedentary birds can experience different mortality rates (Rappole, Ramos & Winker 1989), so 

further differences in quality may be masked when we do not distinguish between these types of 

individuals. Finally, density-dependence could also be changing the experienced habitat quality 

for the species seasonally or among different years (Pulliam & Danielson 1991), but our data was 

not suited to address this issue directly.  

Evidence of ecological traps 

Going back to our initial hypotheses, three of the forest specialists displayed evidence for 

adaptive selection; with the fourth possibly undervaluing the resources shade coffee could 

provide. Of the forest generalists, two species showed no differences in preference or quality, 

which can be interpreted as an adaptive response to the heterogeneity in this landscape, another 

could be undervaluing shade coffee and Saltator maximus could be caught in an equal-preference 

trap (as defined by Fletcher, Orrock & Robertson 2012). Of the treed-area dwellers, only one 

species showed evidence for adaptive preference; two of them might be underutilizing forest 

remnants and Myioborus miniatus may be caught in a severe ecological trap (as defined by 

Fletcher, Orrock & Robertson 2012).  
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Under the assumption that no significant differences in preference and/or quality actually 

means that the species show no preference or individual fitness outcome differences between 

forest remnants and shade coffee; ten of the study species showed either adaptive or neutral 

selection behavior. Based on our results, the three species that showed adaptive selection towards 

forest, Mionectes olivaceus, Mionectes oleagineus and Myiothlypis conspicillata, will probably 

only occupy shade coffee plantations in farms that are close enough to forest for them to use both 

habitats, but it is noticeable that despite the extension and relatively good condition of the forest 

they are still commonly captured and/or observed in coffee, meaning the latter may be providing 

important resources to certain individuals and/or during certain seasons or life stages. The 

opposite is true for Saltator striatipectus, that overall showed adaptive preference for shade 

coffee. The two species for which we found no differences in preference or quality, Turdus 

flavipes and Euphonia laniirostris, will probably be common in different types of heterogeneous, 

agricultural landscapes, while we would expect Turdus albicollis and Tangara gyrola to be more 

abundant in landscapes with remaining forest cover and Ramphocelus dimidiatus and 

Basileuterus rufifrons in landscapes with more intermediately-modified habitats. If the 

preference that M. miniatus, and in a lesser extent S. maximus, show for novel ecosystems is 

truly maladaptive, then we would expect both of these species to be less common in landscapes 

without forest than in those with forest, even if they are more commonly captured and/or 

detected in shade coffee.  

Because most of our focal species have wide distribution ranges within the Neotropics, 

the next step will be to corroborate the patterns we found with capture and/or observation 

information from other projects and regions. Chandler and collaborators (2013) compared 
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abundance between primary forests, secondary forest, Integrated Open Canopy coffee farms 

(IOC farms have equal areas of sun coffee and regenerating forests) and shade coffee farms 

(which were also commercial polycultures) in Costa Rica from 2006-2008. Of the six species 

available for comparison, they classified M. olivaceus, M. oleagineus, T. gyrola, M. miniatus and 

B. rufifrons as having intermediate dependence from forest (3/5) and S. maximus as having low 

forest dependence (5/5). The number of captures per 100 net-hours for both Mionectes species 

was higher in forest remnants but M. olivaceus was higher in IOC than shade coffee, whereas M. 

oleagineus was rare in both. T. gyrola was only captured in secondary forest and M. miniatus 

was more abundant in IOC coffee and primary forest than in secondary forest and shade coffee. 

Both B. rufifrons and S. maximus were captured more frequently in shade coffee and secondary 

forest than in IOC coffee. In general these patterns match our data, but if we interpret these 

capture rates as preference S. maximus shows even higher preference for coffee than in our site, 

and M. miniatus more affinity for forests. However, without any information on habitat quality, 

we cannot corroborate if this reinforces or contradicts the apparent traps we found for the two 

species at our site. 

In previous studies, the lower diversity of forest-dependent birds in agricultural 

landscapes has been linked to their sensitivity to the introduction of high-intensity farming uses 

(Dietsch 2003; Tejeda-Cruz & Sutherland 2004; Komar 2006). None of the species we studied 

are considered forest-dependent birds, yet the trend we found contradicts literature stating that 

habitat generalists benefit from processes such as forest loss (Carrara et al. 2015). High forest 

use by birds classified as non-forest species warrants caution when selecting such groups as 

indicators to evaluate the benefits of agriculture for conservation (Cohen & Lindell 2005; Ruiz‐
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Gutiérrez, Zipkin & Dhondt 2010; Fahrig et al. 2011), helps highlight the importance that natural 

remnants have for native species persistence in intermediately-modified landscapes, and points to 

agroforestry systems such as shade coffee being more valuable as matrices, corridors or buffers 

between natural vegetation remnants, than as a replacement habitat by themselves (Perfecto & 

Vandermeer 2002; Perfecto et al. 2007). In this study, species preferring coffee, and to a lesser 

degree those with equal-preference, showed stronger responses in quality (both positive and 

negative), suggesting that one of the mechanisms underlying the patterns described above may 

be that settling in shade coffee is a higher-risk strategy (offering the possibility of high rewards, 

but also more variability and chances of failure).  

Avenues for further research  

While carrying out this project, we used a simulation model to demonstrate that 

ecological traps that arise when selection cues are distributed continuously throughout the 

landscape may be very difficult to detect when comparing fitness measures between habitat 

categories (Sánchez-Clavijo, Hearns & Quintana-Ascencio 2016). Resident birds in tropical 

agroforestry systems have been shown to respond to different scales and variables than migrants 

(Colorado 2011), so variables like the amount of habitat edges in a landscape (Weldon & Haddad 

2005), and the proximity to riparian forests (Petit et al. 1999) could have effects beyond those of 

internal habitat characteristics. Therefore, future studies of the interplay between habitat 

selection and quality should aim to compare more than two types of habitat, and to relate 

organism variables to continuous characteristics at the patch, neighborhood and landscape scales 

(Bennett, Radford & Haslem 2006; Tscharntke et al. 2012). Our sampling was designed so that 
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shade coffee sites were located at different distances from forest, with the idea of comparing the 

landscape and vegetation characteristics of each site to bird responses. In the end we had to pool 

by habitat because of very low recapture rates and a lot of individuals being commonly captured 

in more than one site even within the same sampling occasion. Both these characteristics are 

indicative of larger than expected home ranges, so it is important to take into consideration that 

the coffee and forest birds are not separate populations. Unfortunately movements between sites 

were not common enough to perform a spatially-explicit capture-recapture analysis.   

A lot of the information we used is regularly collected in banding projects, but is seldom 

used to produce a general perspective about the role that different habitats have for species 

persistence. The latter has been identified as a priority in assessing whether coffee 

agroecosystems represent viable habitats for forest biodiversity, transitory habitats providing 

short-term resources, or corridors facilitating dispersal between remnants patches (Dietsch 2003; 

Perfecto et al. 2007). The value of our approach lies in going beyond species presence, and the 

assumption that common species thrive in all the habitats they are found. We based our results 

on several years of data and used a variety of indicators of preference and quality. For now our 

results represent working hypotheses, but with more and longer-term data, more species analyzed 

and more preference and quality variables measured in greater detail, we could start 

incorporating this type of information into tools and strategies for biodiversity management and 

conservation in heterogeneous landscapes. 



89 

Conclusions 

Long-term demographic studies of native species occupying novel habitats should be 

considered a main objective of biodiversity monitoring, understanding that the assumptions of 

how we collect and analyze data can have important impacts on the design of conservation 

strategies. The analysis of seven years of capture-mark-recapture and resight data for twelve 

species of resident birds living in shade coffee plots and pre-montane forest remnants of the 

Sierra Nevada de Santa Marta allowed us to: 1) provide evidence that even species considered as 

habitat generalists still commonly use, prefer and experience higher fitness in available forest 

remnants, and that therefore conservation strategies in rural landscapes should emphasize the 

conservation of native vegetation; 2) establish that after a century of landscape transformation 

many species seem to be using shade coffee plots in an adaptive or at least neutral way, 

reinforcing the idea that this agroforestry system can be a biodiversity-friendly matrix around 

forest fragments; and 3) discuss possible evidence of ecological traps persisting for common 

species, and therefore showing that when evaluating the contribution of novel habitats to 

biodiversity conservation it is important to understand that species persistence is not necessarily 

ensured by maintaining current conditions.  
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CHAPTER 4: CONCLUSIONS  

Lessons learned from the theoretical model of ecological traps 

Building the simulation model allowed us to change landscape structure and habitat 

selection criteria to study their interaction, which is impossible to do in real life. While all the 

factors we tested affected population size and individual fitness, the most important variables 

were proportion of high-quality habitat in the landscape, criteria for habitat preference and their 

interaction. The specific arrangement of habitat patches and search area had weaker and 

sometimes unexpected effects, mainly through increasing outcome variance. There was more 

variation among scenarios when selection was habitat-based than cue-based, with outcomes of 

the latter being intermediate between those of adaptive and equal-preference choices. Because 

the effects of ecological traps could be buffered by increasing the amount of high-quality habitat 

in the landscape, our results suggested that to truly understand species adaptation to habitat 

transformation we must always include landscape context in our analyses, and make an effort to 

find the appropriate scales and cues that organisms use for habitat selection. 

Lessons learned from the field assessment of ecological traps 

From the analysis of data collected in the field we found that while the majority of the 

species showed adaptive (six species) or neutral (four species) roles for habitat selection, two 

species showed maladaptive outcomes (Saltator maximus, a forest generalist, may be caught in 

an equal-preference trap, while Myioborus miniatus, a treed-area dweller, may be caught in a 

severe ecological trap). Therefore, we provided evidence that ecological traps may arise for 

common species even after a century of landscape transformation, and that this phenomenon may 
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be more widespread and common than previously thought; that species considered as habitat 

generalists still commonly use, prefer and experience higher fitness in available forest remnants, 

and therefore conservation strategies in rural landscapes should take into account landscape 

characteristics and not only the characteristics of a particular habitat; and finally argued that 

when evaluating the contribution of novel habitats for biodiversity conservation it is important to 

understand that species persistence is not necessarily ensured by maintaining current conditions. 

  Bringing together the theoretical model and the field assessment of ecological traps  

Based on the characteristics of the field study, as well as on some of the lessons learned 

from the theoretical model, there are several reasons why the power to detect maladaptive habitat 

selection in this study was low: 1) We chose species that were relatively common in both 

habitats, and resident generalists, which have been predicted in the literature to be less likely to 

“get caught” in an ecological trap; 2) Our site had gone through strong landscape transformation 

over a century ago, so species had a long time to adapt or completely fail to do so and disappear 

from the region; 3) From the model we learned that when comparing habitat-specific individual 

fitness, the effect of habitat could be masked when territorial and vagrant individuals are given 

the same weights in the analyses and in our fieldwork we did not distinguish between these two 

types of individuals; 4) We also learned from the model that when selection is based on habitat 

cues that are shared by different components in the landscape, but outcomes are compared 

between land-cover types, the effects of ecological traps are fuzzier and harder to detect; 5) Our 

initial plan was to compare measures of individual fitness, but also survival and reproductive 
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output as indicators of habitat quality. Since there may be tradeoffs between the different aspects 

of fitness, a true ecological trap can only be proved if all are assessed simultaneously. 

 However we did detect evidence of ecological traps, and if we look at the model results 

for habitat-based selection in a landscape of characteristics similar to our study site (50:50 forest: 

coffee cover, resulting from radial transformation), and specifically at those scenarios where 

species had large search areas (the very low recapture rates by site gives us an indication that 

most of our species probably have large home ranges), we would expect: 1) larger populations of 

species carrying out adaptive habitat selection than of those carrying out maladaptive habitat 

selection, with those showing equal-preference being much closer to the former than the latter; 2) 

strong differences in individual condition between species carrying out adaptive, neutral and 

maladaptive selection. We cannot compare mean body condition between species because they 

all have different sizes, however we can compare overall abundance of each species on our study 

site (adding the estimates for coffee and forest) as long as we only compare within a method of 

estimation (closed population models will always yield larger estimates than those that allow 

openness between sampling occasions). The two species for which we hypothesized maladaptive 

habitat selection had significantly smaller population sizes than those for which we hypothesized 

neutral or adaptive selection, and there was a lot of overlap between the former two categories. 

This pattern is held even when comparing species within the same family (see Parulidae where 

Myiothlypis conspicillata is hypothesized to have adaptive selection and has the largest overall 

population, followed by Basileuterus rufifrons which is hypothesized to have neutral selection, 

and where Myioborus miniatus, which may be caught in an ecological trap, shows the smaller 

population size (Table 7). 
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Table 7. Contrasting hypothesized roles for habitat selection with the overall abundance estimated at the site level 

according to species and method of estimation. 

Species Habitat Selection Overall abundance* 

JS models 
  

TAGY Neutral 1,149 [1038-1245] 

RADI Neutral 942 [767-1097] 

MIOLE Adaptive 927 [822-1012] 

MYCO Adaptive 921 [783-1026] 

BARU Neutral 800 [647-916] 

MYMI Maladaptive 504 [328-585] 

CP models 
  

MIOLI Adaptive 2,430 [1972-2713] 

TUFL Adaptive 2,005 [1797-2171] 

EULA Adaptive 855 [651-1003] 

SAMA Maladaptive 373 [318-414] 

Other species 

  TUAL Neutral NA 

SAST Adaptive NA 

*Overall abundance shows the mean of the posterior distribution and the 50% credibility intervals between 

parenthesis obtained by adding independent estimates for coffee and forest populations.   

JS: Jolly-Seber population model 

CP: closed-population model 

NA: not available because we could not get estimates for both habitats.  

 

In the future, we will use the model to apply findings from the field, specifically by 

designing new simulation experiments that: 1) Use the data from capture and observation 

probabilities by habitat to account for habitat-specific detection rates and the effect that this 

sampling bias could introduce to analyses when trying to detect ecological traps, 2) Compare 

emergent patterns when species have varying degrees of differences in quality between habitats, 

and therefore evaluate how strong signals have to be before they can be detected under realistic 

sampling conditions; 3) Incorporate more variation in the selection cue and relate its distribution 

to quality outcomes in a continuous framework, which will also require using larger landscapes 

and longer simulations times. 



107 

How can these lessons be applied for research and conservation? 

We used a novel methodological approach to carry out a field test of the theoretical 

predictions of an important ecological framework for the study of populations in heterogeneous 

landscapes, and integrated theory with practice by using tropical agro-ecosystems, a study 

system with high potential to prompt generally applicable lessons for management and 

conservation. What makes shade coffee and other tropical agroforestry systems so interesting 

from a conservation perspective is that while they are set up and managed for the production of 

goods and services for humans, with small changes they can strongly contribute to the 

conservation of associated biodiversity as well. So although they may not be able to replace 

forest as habitat for many species, it is important to recognize that they are a preferred alternative 

over more intensively managed land uses such as open monocultures and cattle pastures, and that 

latter conversion is precisely what biodiversity-friendly labels and other economic and social 

incentives have been trying to avoid. Recognizing the trade-offs between the positive and 

negative aspects of novel ecosystems “will allow managers the pragmatic flexibility needed to 

make informed and sensible decisions concerning resource use and ecosystem maintenance” 

(Morse et al. 2014). Based on the evidence we accumulated throughout this project, four 

concepts have been reinforced: 

First, that the focus for research and conservation should not be solely on the intrinsic 

characteristics of a particular habitat (in this case of the shade coffee plantations), but it should 

also include the contextual characteristics where the patch is found (Hobbs et al. 2006; 

Lindenmayer et al. 2008). Having large patches of well conserved forest or even connected 

networks of riparian and secondary vegetation in a landscape may help compensate for 



108 

characteristics such as low canopy tree diversity, more open canopy cover (which may be 

necessary in places with very high cloud cover throughout the year), and more seasonal changes 

in vegetation structure, just to name a few. As long as we keep studies at the patch level, or keep 

doing them in the same type of landscapes, we will never find out how to balance characteristics 

at both scales – as in the land sparing vs. land sharing debate (Holzkämper, Lausch & Seppelt 

2006; Chandler et al. 2013; Hobbs et al. 2014). To go beyond discrete habitat descriptors (i.e. 

forest vs. coffee), we need to make sure that when studying mobile animals we design our 

sampling at appropriate scales for the processes of interest (Orians & Wittenberger 1991; Morris 

1992; Parody & Milne 2005). 

Second, with an increase in the spatial scale of our research and conservation efforts 

comes an increase in their temporal scale as well, especially if we want to understand how 

species, goods and services respond to landscape transformation through time (Burel & Baudry 

2005; Lindenmayer et al. 2008; Hobbs et al. 2014). We found a considerable diversity in 

responses using only twelve species over seven years, but as mentioned before, a lot more time is 

needed to accurately estimate parameters such as survival. Even on the shorter temporal scale, 

seasonal changes were so important when we analyzed our preference and quality variables, that 

usually differences between coffee and forest could only be detected after accounting for time of 

year. Management practices such as clearing undergrowth between coffee rows, cutting large 

branches from shade trees or removing epiphytes may be necessary for the productivity of shade 

coffee plantations, but further attention into when these practices take place could improve 

habitat quality for species living there. For example, in our field site vegetation is allowed to 

grow freely between coffee rows after the harvest takes place (October-December) and through 
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the dry season to conserve water and prevent the soil from drying up. This creates a dense layer 

of vegetation where we have found bird species nest frequently, but since this vegetation is 

removed as soon as it starts raining, most of these nests fail and use of coffee by understory birds 

decreases in general. By knowing local species’ breeding peaks, we could recommend farm 

managers the best time to do this, especially in plots where diversity is high.  

Third, we need to expand from using species richness (which is the summation of species 

presences) as the one and only indicator variable of biodiversity health (Fleishman, Noss & 

Noon 2006). Since species richness emerges from population processes at the landscape level, if 

phenomena like ecological traps are pervasive, then that richness could be decreasing without 

notice. Even when using species groups as indicators of functional diversity, we must make sure 

to test out assumptions about them beforehand. We were surprised to find that the species that 

seemed to be more prone to maladaptive habitat selection in our study were precisely those that 

have been stated by previous literature to have benefited from landscape conversion. We chose 

to work with birds because previous experience in coffee-growing regions of Colombia had 

taught us their responses were intermediate between those of completely managed diversity 

(such as plants) and very sensitive groups whose communities get quickly oversimplified (such 

as ants) (Sánchez-Clavijo et al. 2008). However, other studies comparing bird responses to other 

broad taxonomic groups have found both similarities and inconsistencies in their responses to 

management intensity and landscape structure (Perfecto et al. 2003; Lindenmayer et al. 2008; 

Philpott et al. 2008), so it is definitely necessary to expand efforts taxonomically as well. 

Finally, the most common responses used in studies evaluating the contribution of 

agroforestry systems to biodiversity conservation are species richness, diversity and some 
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measure of how many forest species occupy them. These measures are not always corrected for 

differences in detectability and/or effort between habitat types, but even when they are, they are 

still aggregated measures of species presence and abundance and cannot provide a complete 

picture of processes such as habitat selection and its interplay with habitat quality. The most 

direct way to address habitat quality would be to measure survival and reproduction directly, but 

this takes a lot of time, effort and resources to do for even one species, let alone a suit of them. 

Since many ongoing banding projects are already collecting information on the physical and 

demographic condition of individuals, we propose that using individual fitness as an indicator of 

habitat quality can be a good compromise between the two approaches outlined above. My work 

has highlighted the importance of being careful about the assumptions we make during the 

design, sampling and analysis of data such as: 

1) Higher species abundance or density in a habitat does not necessarily imply 

higher habitat preference and/or better habitat quality, and these two variables are not always 

matched after landscapes transformation.  

2) The role that a particular land-use plays for biodiversity conservation will vary 

with time, and according to species and landscape characteristics, so it may not be detectable 

when grouping species into functional groups. 

3) Species classified as habitat generalists based on patterns of habitat use 

throughout their whole distribution range, will not necessarily benefit from further landscape 

transformation.  
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4) Community structure (and therefore species richness) is dynamic, and will change 

in temporal scales ranging from seasons to years, therefore species presence is not an indicator of 

species persistence. 

Future challenges 

Following the points above, I maintain that studying the role that habitat selection plays 

in the adaptation of native species to transformed landscapes is a useful framework to 

simultaneously increase our knowledge of population processes at the landscape level, and help 

us generate conservation recommendations for biodiversity in intermediately-modified 

landscapes. The next step for research in this field is to identify the cues species are using for 

habitat selection, and to complete the evaluation of quality by including direct measures of 

survival and reproduction. Because we suggest comparing different landscapes while also 

collecting demographic data, and since the needs for spatial and temporal replication usually 

represent a tradeoff for research resources, a compromise might be to combine easy-quick 

sampling at large scales (for example detection/non-detection surveys scattered randomly 

throughout multiple environmental gradients) with a few sites where long-term demographic 

data is collected (for example setting permanent bird banding stations in systems of interest such 

as shade coffee). Through such studies, which will inevitably require collaboration between 

researchers and institutions, we may characterize the adaptiveness of habitat selection in more 

detail (Figure 8), and further advance our understanding of the mechanisms that allow species 

persistence in disturbed landscapes. 
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Figure 8. Future research hypotheses for regressions of habitat preference and quality indicators against continuous 

landscape and habitat characteristics. 

Habitat preference is shown in blue, habitat quality in pink. 

The next step in this research will be to disseminate the findings from this project to a 

wider community, including but not limited to, farm owners and workers in La Victoria and 

neighboring coffee plantations, Cenicafé (Colombia’s National Center for Coffee Research) and 

the extension personnel from the Colombian Coffee Growers Federation, people and institutions 
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working with certifying labels for biodiversity-friendly coffee, as well as other regional and 

national environmental authorities. Working with such institutions will help us combine 

ecological information with the human dimensions of coffee growing, which must be taken into 

account when working on a productive system of such economic, social and cultural importance. 

There are three scales at which shade coffee, and other agroforestry systems can be 

researched and manipulated to be more biodiversity-friendly: 1) at the landscape scale, what 

types of land-uses surround or are intermingled with shade coffee will inevitably change the type 

of species it harbors, and the use that these species can make of it; 2) at the farm and/or plot 

scale, vegetation structure and diversity of the actual agroforestry system will influence which 

species are attracted to each site (preference) and the experienced fitness of those individuals that 

use them (quality); 3) management of the agricultural system will affect the variation that species 

have to adapt to, from the timing, frequency and methods of habitat structure manipulation (e.g. 

undergrowth clearance, shade coping, epiphyte removal), to the presence of domestic species and 

the influence of human settlement, movement and labor. Factors at these three levels interact to 

determine not only species persistence, but also community structure and ecosystem functioning. 

Each biodiversity-friendly label assigns weights differently to aspects in each level, but a lot of 

research has focused primarily on habitat structure of the agroforestry plots (land sharing 

approach), and to a lesser degree on forest protection and regeneration (land sparing approach).  

Based on the results of my studies I suggest that conservation of native vegetation cover 

within coffee-growing regions should be one of the top priorities for farmers, certifying labels 

and local environmental authorities. Actions to ensure this range from protection of forest 

remnants to allowing regeneration of secondary vegetation in areas that are not being used 
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productively, between coffee plots and especially surrounding water sources and streams. The 

benefits of these actions will go well beyond improving habitat quality and connectivity for 

forest species, and other studies have shown they lead to enhanced provision of goods and 

services as well as of human welfare. 

Species richness or high abundance of species belonging to certain groups should not be 

the only indicator and/or measurable goal for biodiversity conservation in agricultural regions. 

Knowledge of habitat-specific demography, but even of habitat use and movement between 

habitats can help align farming practices with improvements for associated biodiversity. For 

example, knowing when the most energy-demanding periods are for wildlife (e.g. breeding) and 

how this relates to rainfall seasonality in a site like ours may mean that by adjusting the timing of 

vegetation clearance in coffee plots by only a few weeks, species nesting in the undergrowth may 

actually have a chance of success. Minimizing the traffic and access of people and domestic 

animals to plots closer to forest and secondary vegetation remnants will probably enhance 

quality for species that use both types of habitats, as will creating some sort of buffer around 

human infrastructure such as buildings and roads. Many such small measures may help enhance 

biodiversity conservation at the local level and the accumulation of many sites carrying out these 

practices will carry these effects over to the regional level, but a better integration of research 

and practice is imperative to make sure we can monitor whether our actions are having the 

desired effect.    

We also hope that the lessons learned in this project are generally applicable to any 

region that retains native biodiversity in a combination of remnant and managed ecosystems. 

Species conservation in heterogeneous landscapes is one of many disciplines in which theory and 
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practice have not grown together, and only by basing conservation tools and strategies on 

information that reflects important ecological processes, will we be able to maximize species 

persistence in those scenarios that are currently labeled as sustainable. 
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APPENDIX A.  

MODEL DESCRIPTION FOLLOWING ODD (OVERVIEW, DESIGN AND DETAILS) 

PROTOCOL FOR AGENT-BASED SIMULATION MODELLING 

 (GRIMM ET AL., 2006; GRIMM ET AL., 2010).  
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The code for this model consists of a sequence of loops and decision algorithms that 

determine and are affected by two main interacting matrices: a habitat matrix and an animal 

matrix. It was written and executed in MATLAB version R2013b (The MathWorks, Inc. 1984-

2013) and it is publicly available at http://pascencio.cos.ucf.edu/Research.htm. 

 

1. Purpose 

The purpose of this model is to explore the effects of landscape structure on population fitness 

under habitat-based and cue-based mechanisms of habitat selection. Specifically, we evaluate the 

case of mobile species that are present in two habitat types of which one is better quality (source) 

than the other (sink), but where individuals have innate habitat choice behaviors that cannot be 

modified after landscape change. This will allow for a better understanding of population 

phenomena such as ecological traps, which arise from interactions ranging from the individual to 

the landscape scale (Wiens et al., 1993). 

 

2. Entities, state variables and scales 

 

2.1. Animals 

The main agents in this model are individuals that can move between, choose from, breed and 

survive in two different habitats. Their state variables include a unique identity (used to generate 

outputs), life stage (juveniles or adults), territorial status (settled or floaters), size (size-corrected 

body mass) and spatial location (for settled individuals the cell and habitat type they occupy, for 

http://pascencio.cos.ucf.edu/Research.htm
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floaters the type of habitat in which they are detected). Except for identity, all state variables 

change throughout the simulations, as explained in further sections.   

 

2.2. Habitats 

Each cell in the model represents an individual breeding territory with two state variables: habitat 

type (source or sink) and a value for a particular habitat cue. The model space is a bounded 

square grid that generates a closed system where immigration and emigration are ignored. 

Landscape size is determined by the total number of cells chosen by the user.   

 

2.3. Scales 

The spatial extent that the model reflects will depend on the characteristics of the animals being 

studied, the key being that only one individual can settle in each cell but that the total number of 

individuals in the landscape can exceed the total number of cells (non-settled animals continue 

existing in the landscape as floaters). After initialization, the model runs with a 1-year time step 

for as many years as indicated in the simulation parameters.   

 

3. Process overview and scheduling 

 

The modelling sequence consists of three initialization procedures followed by a yearly cycle of 

four processes that occur for the remaining simulation time (Figure A.1).  
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Figure A.1. Modelling sequence showing initialization procedures (white) and yearly processes (grey). 

 

3.1. Landscape generator  

Different landscape compositions are achieved by choosing a proportion of the cells to be 

converted from source to sink habitat. Different landscape configurations are achieved by 

simulating four types of landscape conversion: random, lateral, radial and percolation. Once each 

cell has been assigned a habitat type, it also receives a value for the habitat cue that remains 

unaltered throughout the simulations. Therefore, a unique landscape structure is generated and 

stored in the habitat matrix for each simulation run.  

 

3.2. Initial population 

In order to populate the landscape, an initial number of adults must be chosen and assigned a 

size. All individuals share the same habitat selection criteria which may be habitat-based (equal-

preference, prefer sources or prefer sinks), or cue-based (prefer cells with a habitat cue value 

equal to or above a predefined threshold). These individuals become the first entries in the 

animal matrix. 

Landscape 
Generator

Colonization
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Breeding

Survival
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3.3. Colonization 

The initial individuals go through the process of colonizing the empty landscape one by one, in 

order of decreasing size. In a manner analogous to pre-emptive habitat selection models (Pulliam 

and Danielson, 1991), they randomly search a maximum number of empty cells and either settle 

on the first cell that matches their habitat selection criteria, or settle in the last cell they examine. 

After this stage, the animal matrix is updated to show the cell and habitat occupied by each 

individual during this initial year.  

 

3.4. Breeding 

Settled adults produce offspring based on habitat-specific distributions that incorporate 

demographic stochasticity but ensure that, on average, individuals breeding in sources produce 

more offspring than individuals breeding in sinks. New individuals are designated as juveniles. 

  

3.5. Survival 

Survival probabilities are applied independently to each individual according to their life stage 

and territorial status, but independent of their habitat. Juvenile survival is much lower than adult 

survival. Floaters (individuals without a breeding territory) have a density-dependent survival 

function that approaches zero as the landscape reaches its carrying capacity. After this stage, the 

animal matrix is updated when surviving juveniles become adults, and when all of the sizes are 

modified according to habitat and territorial status (individuals settled in sources are on average 

larger than those in sinks, but floaters are intermediate between them).  
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3.6. Census and sampling 

In order for floaters to be counted they are assigned a temporary habitat according to landscape 

proportion. Census functions assume perfect knowledge of individual location and history, and 

allow for the separation of breeders and floaters in both habitats. Sampling functions count 

individuals according to habitat-specific detection probabilities. 

 

3.7. Dispersal 

Once a year individuals are allowed to move within the landscape to try to improve their 

breeding territory. The outcome of this process (which cell they occupy for the next year) 

depends on the interactions between their size, location, and allowed search area. 

 

4. Design concepts 

 

4.1. Basic principles 

The main hypotheses underlying the model’s design describe the ecological process of habitat 

selection. The simplest way to model habitat choice is to assume that individuals do not have a 

particular habitat preference, and that their distribution is therefore a direct result of habitat 

availability (in our model we call this equal-preference traps (Robertson and Hutto, 2006)). 

Early habitat selection models assumed that individuals always had an accurate way of assessing 

habitat quality, in other words, that given the chance they would always choose sources over 

sinks (adaptive selection in our model (Pulliam, 1988)). After evidence appeared of ecological 
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and perceptual traps (Battin, 2004; Robertson and Hutto, 2006), models decoupled selection and 

quality so that individuals could make mistakes and systematically choose sinks over sources 

(severe traps in our model, but also called maladaptive selection (Delibes et al., 2001). 

Theoretically, ecological traps are caused by the decoupling of previously adaptive selection 

cues and experienced habitat quality (Gilroy and Sutherland, 2007). Our model adds further 

realism to the process of habitat selection by comparing habitat-based choices (as described 

above) to cue-based selection, where a particular habitat characteristic is used by the individuals 

to assess whether to settle on a patch or not, regardless of habitat type (source or sink). Because 

habitat-based and cue-based mechanisms could potentially alter population outcomes, it is 

important to assess how varying the mode of habitat selection can interact with landscape 

characteristics and individual behavior to determine species distribution and persistence in 

heterogeneous regions. 

 

4.2. Emergence 

The yearly spatial distribution of individuals in the landscape and all population consequences 

thereafter emerge from the dynamical interactions among landscape structure, behavior rules, 

random and stochastic processes in the model.  

 

4.3. Adaptation 

Since the model explicitly prohibits individuals from modifying their habitat selection behavior 

in response to changes in themselves or their environment, selection criteria is only an adaptive 

trait when they are preset to prefer source habitat. By fixing habitat decisions on all individuals 
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during a simulation run our model assumes that these traits are innate, and cannot evolve during 

the selected time horizon. For an exploration of the consequences of adaptation in a similar 

setting see (Kokko and Sutherland, 2001).     

 

4.4. Objectives 

Although individuals want to occupy the habitat that maximizes their fitness (quantified in the 

model as the number of surviving juveniles and individual size), they cannot evaluate this 

directly and therefore have to rely on their innate choice criteria.  

 

4.5. Learning and 4.6. Prediction 

Individuals do not learn from past experiences nor can they directly predict the consequences of 

habitat choice, however when they choose the correct patch they acquire a larger body size, 

which allows them to disperse first and thus leads to a positive feedback mechanism reinforcing 

the probability of correct choice (and vice versa). 

 

4.7. Sensing 

When dispersing, individuals know the habitat type or the habitat cue of their own patch and of 

other patches in their ecological neighborhood. However, the size of the neighborhood is limited 

by the search area and the number of patches they are allowed to sample before having to settle 

in a cell. They are also allowed to know whether cells are empty or occupied, and in the latter 

case whether the individual occupying a cell is smaller than themselves. These particular settings 
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ensure that large birds settle in preferred patches (and smaller birds are forced to settle in less 

preferred patches) more often, but not always.   

 

4.8. Interaction 

Individuals interact indirectly by competing for breeding territories, with larger individuals 

having the capacity of displacing smaller individuals during dispersal. Habitat cells only interact 

at the landscape generator, where the probability of a cell being converted from source to sink is 

larger for cells neighboring cells that are already transformed.   

 

4.9. Stochasticity 

The model has three mechanisms for inserting stochasticity which were included to reflect 

variation and uncertainty in natural systems: 1) During landscape generation, colonization and 

dispersal, the combination of deterministic rules and random decisions ensure that even under the 

same initial conditions, the end results will display variability; 2) By sampling values from a real 

data set to assign the habitat cue to each cell, and from probability distributions to assign the size 

and number of juveniles born to each individual, we incorporated environmental and 

demographic stochasticity; 3) During survival and sampling, survival and detection probabilities 

are applied independently to each individual and not as a deterministic proportion to the whole 

population, again incorporating realism to the processes. As a consequence of this design, several 

runs of each simulation scenario are needed to make sure we get an accurate representation of the 

central tendency and dispersion of outcomes. 
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4.10. Collectives 

There are no collectives in this model. 

 

4.11. Observation  

The model was designed to collect both a census output where all individuals can be traced 

throughout their lifetimes, and a sampling output where some individuals are not detected, and 

where information on their identities and histories is lost. The former allows us to follow the 

behavior of the model in detail, while the later adds realism about what we would encounter in 

an empirical study. Each year, both functions tally the number of individuals, number of 

surviving juveniles per adult breeder, and the average size of individuals for each habitat.  

 

5. Initialization 

 

While the overview and the design concepts of the model were explained in its general 

conception of following mobile animals in a landscape with source and sink habitats; to truly 

explain model details and our simulation experiments we refer to a specific study system: forest 

birds that inhabit landscapes where some of the forest has been converted to shade coffee. We 

chose forest as the source and coffee as the sink because forest is the original habitat where this 

hypothetical bird species would have evolved its habitat selection cues in. However, in real life 

there can be species that have equal or higher fitness in the shade coffee plots as in the remnant 

forests, which is currently being researched by L.M.S.C. in a coffee-growing region of 
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Colombia. As described below, we used four types of information to define the parameters 

needed to initialize each model run (Table A.1). 

Table A.1. Initialization parameters used in the simulation experiments, organized by process sequence 

(submodels). Sources of information to define parameters include: P - values modified from model parameters in 

(Pulliam and Danielson, 1991); F - values based on field data; S - values selected after experimentation with the 

model’s sensibility; E - predictor factors varied to create scenarios for simulation experiments.  

Submodel Variable  Type  Values Source 

Landscape 

generator 

Landscape length (size) Integer  20 cells (400 cells)  S 

Landscape composition Proportion 0.10, 0.25, 0.50, 0.75, 0.90 (F->C) E 

Landscape configuration Categorical 1: lateral, 2: radial, 3: percolation E 

Number of openings for percolation Integer 2 S 

Transformation probability (0 edges) Probability 0 S 

Transformation probability (1 edge) Probability 0.2 S 

Transformation probability (2 edges) Probability 0.4 S 

Transformation probability (3 edges) Probability 0.6 S 

Transformation probability (4 edges) Probability 0.8 S 

Canopy percent cover in forest  Integer Picked randomly from 52 values  F 

Canopy percent cover in coffee  Integer Picked randomly from 156 values  F 

Initial 

population 

Initial number of birds Integer 15  S 

Wing length (mm) Continuous Picked from Normal (59.4,2.21)  F 

Colonization 

and 

dispersal 

Number of searched patches  Integer 9(SA1), 25(SA2), 49(SA3), 81(SA4)  E 

Search area (SA) Categorical SA1, SA2, SA3, SA4  E 

Type of habitat selection  Categorical 0: habitat-based, 1:cue-based  E 

Habitat-based selection Categorical 0: equal-pref., 1: adaptive, 2: severe  E 

Cue-based selection Threshold CC% ≥ 0.30, 0.45, 0.60, 0.75, 0.90  E 

Breeding Juveniles produced in forest (F) Discrete Picked from Binomial (6,0.80)  P 

Juveniles produced in coffee (C) Discrete Picked from Binomial (3,0.65)  P 

Survival Juvenile survival  Probability 0.1  P 

Adult survival Probability 0.6  P 

Floater carrying capacity  Integer 1 individual per cell S 

Floater maximum number Integer 3 individuals per cell S 

Weight in forest (grams) Continuous Picked from Normal (11.5,0.51)  F 

Weight in coffee (grams) Continuous Picked from Normal (9.5,0.51) F 

Weight for floaters (grams) Continuous Picked from Normal (10.5,0.51)  F 

Census and 

sampling 

Detectability in forest Probability 1 (no sampling) S 

Detectability in coffee Probability 1 (no sampling) S 

Simulation 

parameters 

Simulation time Integer 15 years S 

Number of simulations Integer 30  S 
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1) Originally we based model construction on (Pulliam and Danielson, 1991) sources and sinks 

model, so we relied upon their methods and parameters for creating differences in reproductive 

output between habitats and survival between life stages, as well as to represent the initial 

landscape colonization. We changed from a normal to a binomial distribution to determine the 

number of offspring to better represent the discrete nature of the variable. In the future we hope 

to acquire habitat-specific demographic data for real birds in order to use the model to make 

more realistic predictions (parameters derived from this source have a [P] to distinguish them in 

table A.1). 

 

2) To ensure that the two variables needed to calculate bird size had realistic distributions, we 

used field data of wing chord length and body mass collected for 145 individuals of Mionectes 

oleagineus (Ochre-bellied Flycatcher) to calculate the parameters needed to generate the 

associated probability distributions. One distribution for wing length was generated to assign the 

value for all adult birds, and once a bird had its value assigned, it remained constant through its 

lifetime. In contrast, we used three different distributions for weight, one for individuals settled 

in forests, a second one for those settled in coffee and a third one for floaters. The weight 

differentiation between forest and coffee was created through k-means clustering of the body 

mass data, but the two clusters did not correspond to different habitat types in real life. The mean 

for floaters was the mean for the two groups (parameters derived from this source have an [F] to 

distinguish them in table A.1). Field data was also used to determine canopy cover percent (see 

section 6 on this appendix). 
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3) To determine the initial values for those variables that were not the focus of our simulation 

experiments, we relied on early sensitivity analyses of the model, and chose values that 

consistently lead to stable populations but that nonetheless allowed for variations in the 

responses to our variables of interest (parameters derived from this source have an [S] to 

distinguish them in table A.1). 

 

4) To determine the range of variation in the parameters for our simulation experiment, we had 

to find a balance between exploring the full response ranges and keeping the number of scenarios 

manageable. Landscape composition: Even though we were mainly interested in intermediately-

modified landscapes (scenarios with 75%, 50% and 25% of remnant forest cover) where 

ecological traps may be most important (Fletcher et al., 2012) , we also included the extremes 

(90% and 10%) to account for any non-linear effects that may occur as heterogeneity decreases. 

Landscape configuration: we removed random transformation, as it produces configurations that 

are not realistic in the case of forests being turned to shade coffee. All other three types (lateral, 

radial and percolation are commonly seen in the tropical countryside). Search area: even though 

the model allows for the selection of a search area and the number of patches sampled by each 

bird separately (simulating travel distance and time spent searching) we decided to focus on the 

former for our simulations and therefore allowed birds to sample their complete ecological 

neighborhoods. The four areas chosen (SA1 to SA4) allow birds to sample 2.25%, 6.25%, 

12.25% and 20.25% of the 400-cell landscape, and simulate birds with different dispersal 

strategies. Habitat-based selection: we used all three possible mechanisms as this was the main 

focus of our simulation design. Cue-based selection: we chose CC60% as our middle value of 
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canopy cover threshold because it is both the value that has been promoted as the minimum to 

ensure biodiversity conservation in shade coffee (Jha et al., 2014), and also happens to be the 

mean found for shade coffee in vegetation structure plots in our field site. We added values 30% 

higher (CC90%) to simulate birds that have a very strong preference for forest, and 30% lower 

(CC30%) to simulate those that are more associated with open habitats with trees; and 

additionally two intermediate values (CC45%, CC75%) to explore the range of responses better 

(parameters derived from this source have an [E] to distinguish them in table A.1). 

 

6. Input data 

 

Because of the difficulty in finding a function to build an idealized distribution for percent 

canopy cover of both forest and coffee, the model pools values from a file containing field data. 

The sample for forest contained 52 values with a mean of 82.36 and a standard deviation of 6.11 

(range: 70.62 to 95.84). The sample for coffee contained 156 values with a mean of 58.99 and a 

standard deviation of 20.42 (range: 0 to 96.88) (Figure A2). It is important to note that while this 

achieves a realistic distribution of values from a statistical perspective, we did not include spatial 

autocorrelations to generate distributions that are spatially realistic. For example, coffee plots 

next to forest may be managed differently from those that are far and so high canopy cover 

values could be aggregated and not evenly spread throughout our coffee habitat.  
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Figure A.2. Histograms of percent canopy cover for forest (green-left) and coffee (red-right) vegetation plots 

sampled in Santa Marta, Colombia (forest: n = 52, coffee: n = 156).  

 

7. Submodels 

 

7.1. Landscape generator 

Landscape structure is determined by composition (the amount of each type of habitat) and 

configuration (the placement of landscape elements relative to each other), and despite a focus of 

research on the effects of composition, both are important to understand population processes at 

the landscape level (Dunning et al., 1992; Turner, 1989). This model is spatially-explicit so that 

individuals can be affected by configuration during dispersal (see section 7.7). Instead of 

inputting complex landscapes, but to still create a diversity of structures for simulation scenarios, 

we created four processes of landscape transformation (all the cells are created as sources at 

first): 1) Random – transformation starts at a random point in the grid and from then on, all cells 

can be chosen for transformation with equal probabilities; 2) Lateral – transformation starts and 

spreads at one edge of the grid and from then on, it is more likely for a cell sharing an edge with 

a transformed cell to change into coffee; 3) Radial – transformation starts and spreads at one 

corner of the grid and from then on, the more edges a cell shares with a transformed cell, the 

higher the probability that it changes; 4) Percolation – a predetermined number of cells is 
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changed at random, and gaps continue to grow in all directions until the desired composition is 

achieved (Figure A.3).  

 

 
Figure A.3. Landscape representations for a 50% source (green): 50% sink (black) composition with random (upper 

left), lateral (upper right), radial (lower left) and percolation (lower right) configurations.  

 

7.2. Initial population 

Early sensitivity analyses showed that the initial number of birds affected the time until 

landscape saturation, but did not alter population size or fitness outcomes once the overall 

number of birds stabilized. We chose size-corrected body mass (weight divided by wing chord 

length) as our measure of size because it is a commonly used metric to evaluate individual 

condition in the field and also because it allowed us to create a measure simulating a compound 

of genetic (represented by wing length) and environmental (represented by body mass) 

stochasticity. Therefore, wing length for all birds was derived from the same normal distribution 

and stayed fixed for their whole life. The weight for all the initial birds came from the forest-

specific distribution.  
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7.3. Colonization 

The process of colonization is a mix between the ideal despotic (Fretwell and Lucas, 1969) and 

the preemptive habitat (Pulliam, 1988) distributions; with the added change that habitat selection 

is not necessarily configured to lead to adaptive outcomes at the population level. We 

incorporated a dominance hierarchy among the birds to simulate intraspecific competition for 

breeding sites, by means of size sorting before colonization and dispersal. Although an 

individual’s competitive ability is conditioned by many factors, size has been widely used as a 

measure of individual condition in the field (Bakermans et al., 2009) and as a proxy for 

dominance in modelling (Shustack and Rodewald, 2010). The largest bird from the initial 

population selects up to m patches from the landscape at random. It is then either assigned to the 

first patch that matches its habitat selection criteria, or forced to settle in the last patch it 

examines. Once the patch is assigned, the program selects the second largest bird and repeats this 

process until either all birds have a patch (if the initial population is less than the total number of 

cells) or until all patches are full (if the initial population is greater than the total number of 

cells). In the latter case, patch-less birds become floaters (non-settled individuals) (Figure A.4). 
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Figure A.4. Flowchart depicting landscape colonization by the initial bird population. 

 

7.4. Breeding 

Only those birds that have settled on a patch are allowed to produce offspring, meaning none of 

the birds existing as floaters get to breed. Because we do not have a wealth of information on 

habitat-dependent demographic indices of the species on our study site, we kept the parameters 

for juvenile production as in Pulliam & Danielson’s 1991 model, but replaced their normal 

distribution with a binomial one that lead to mean expected values of five juveniles produced in 

forest and two in coffee (Figure A.5). New birds are designated as juveniles and assumed to stay 

in their natal patch until they become adults and then disperse (see next sections). Technically all 

the animals in the model can breed, although once the landscape is saturated a lot of them wont. 

However we decided to ignore sex because adding yet another state variable to our agents would 

complicate processes even further. 
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Figure A.5. Histograms for 1,000 iterations of the function to determine the number of juveniles in source (blue-

left) and sink (orange-right) during breeding. 

 

7.5. Survival 

Two important events happen to birds during this stage: death and resizing. Tropical forest birds 

suffer a lot more predation during the nesting-fledgling stage than when they become 

reproductive adults (Karr et al., 1990). Therefore, we made survival dependent on life stage 

rather than on habitat. Having different survival probabilities per habitat would have 

incorporated further differences in quality, but due to lack of information on whether this is true 

or not, we opted for a more conservative approach (although the model could be modified to 

accommodate a species with habitat-dependent survival). To ensure stochasticity, survival 

probabilities (0.6 for adults and 0.1 for juveniles) were applied to each individual as opposed to 

us just removing a deterministic proportion of individuals per year.  

 

In earlier versions of the model, floater mortality was equal to adult mortality but this left the 

simulated populations with no mechanism to regulate population growth. We modified floater 

survival probability to be a density-dependent function that approaches zero as the landscape 

reaches its carrying capacity, which does indeed limit growth, but also adds the assumption that 

when density is high, fitness is going to be lower for non-breeding than breeding individuals. 
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While this would not be true for species with tradeoffs between reproduction and survival, it 

might be that because floaters have larger home ranges they may incur in higher levels of 

predation and stress, and have to compete more for food resources.   

 

After mortality is applied to all individuals, surviving juveniles are counted and assigned to the 

adult and patch that produced them. They become adults, are added to the animal matrix as new 

individuals and are assigned a size. Their wing length is sampled from the same distribution as 

the initial birds, but their body mass is taken from the habitat-dependent distributions according 

to the patch where they were born. This gives individuals born in the source an advantage over 

those born in sinks. Pre-existing adults are also assigned a new weight each year depending on 

their habitat and/or their status as floaters. We assumed that floaters had larger home ranges 

spanning both types of habitat, and therefore their weight after winter is derived from a 

distribution intermediate between that of forest and coffee. 

 

7.6. Census and sampling 

During this stage the model takes stock of the number of birds present, their size, location and 

the number of surviving juveniles they produced, and stores this yearly information in three new 

columns in the animal matrix. During this stage floaters are assigned a temporary habitat 

according to landscape proportion (e.g. if 75% of the landscape was coffee, we expected to 

detect approximately 75% of the floaters in coffee and the remaining 25% in forest). The full 

census option assumes perfect knowledge of individual location and history, and allows for the 

separation of breeders and floaters according to habitat type. The partial sampling function 
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counts the birds according to habitat-specific detection probabilities and recreates field sampling 

conditions by losing their identity, and more importantly, their territorial status (Zurell et al., 

2010). Currently we focus only on census results, but future analyses will make use of the 

sampling function.  

 

7.7. Dispersal 

Our individuals represent resident birds that do not vacate the landscape each year to repeat the 

colonization process. Instead they go through a spatially-explicit dispersal process which is 

affected by their current location, individual size, and allowed search area. As in colonization, 

size sorting ensures a dominance hierarchy, further reinforced by the process no longer being 

preemptive i.e. individuals can search occupied patches. All birds start by evaluating their 

current patch (floaters start at a random patch), and then randomly search all the patches in their 

ecological neighborhood (local dispersal) or the whole landscape (global dispersal). The decision 

to stay or leave a patch depends on whether it is preferred or not, empty or occupied, and if the 

latter is true, whether the occupant is smaller than the individual searching for a patch. As 

progressively smaller birds go through the process, the possibility increases for them to be left 

without a patch and become floaters. The process ends when the smallest bird has either been 

assigned a patch or turned to a floater, and the animal matrix is updated with the new location 

and status for each individual (Figure A.6).  
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Figure A.6. Flowchart depicting yearly dispersion by the adult bird population (Inset legend: preferred patches are 

have a solid outline, while non-preferred patches have a dotted outline; current patches are shaded yellow, empty 

patches white, patches occupied by a smaller bird are blue, and patches occupied by an equal or larger bird are pink). 

 

 

Note: The data generated by the simulation experiments is also available at 

http://pascencio.cos.ucf.edu/Research.htm 

 

 

http://pascencio.cos.ucf.edu/Research.htm
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APPENDIX B.  

SUPPLEMENTARY TABLES AND FIGURES FOR CHAPTER 2. 
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Figure B.1. Early occupation patterns of birds under different strategies of habitat selection in scenarios with 

habitat-based preference (keeping search area constant at 9 cells). The upper row shows habitat distribution in radial 

landscapes with 25%, 50% and 75% forest cover, respectively (green: forest, black: coffee). Remaining panels show 

sites occupied by birds after five years of simulation. Columns correspond to the landscape compositions on row 1, 

and lower rows represent adaptive (second row - blue), neutral (third row - green) and maladaptive (bottom row - 

red) habitat selection. 
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Figure B.2. Early occupation patterns of birds under different strategies of habitat selection in scenarios with cue-

based preference (keeping search area constant at 9 cells). The upper row shows habitat distribution in radial 

landscapes with 25%, 50% and 75% forest cover, respectively (darker tone means higher canopy cover). Remaining 

panels show sites occupied by birds after five years of simulation. Columns correspond to the landscape 

compositions on row 1, and lower rows represent CC90% (second row - blue), CC60% (third row - green) and 

CC30% (bottom row - red) thresholds for canopy cover preference.  
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Figure B.3. Population growth for all scenarios with habitat-based selection; blue lines represent adaptive selection, 

green represents equal-preference traps and red represents severe traps; the darker the shade, the higher the forest 

cover in the landscape.  

 

 
Figure B.4. Population growth for all scenarios with cue-based selection; grey -> CC90%, purple -> CC75%, blue -

> CC60%, green -> CC45% and red -> CC30%; the darker the shade, the higher the forest cover in the landscape.  
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Tables B.1 to B.4.  

Model selection results including the number of parameters (k), absolute and change in AICc, 

and cumulative weight comparing relative support for different models of fitness responses at 

year 11. The analysis was based on a set of 51 models that include forest cover, habitat 

preference and up to four of their two-way interactions. PROP = proportion of forest, PREF = 

habitat preference, CONF = landscape configuration, SEAR= search area. For simplicity in each 

table we only include those models with AICc weight above 0.001, the null and the full 

interactive models. 

 

Table B.1. Population sizes at year 11 in scenarios with habitat-based selection. 

Model structure k AICc ∆AICc Cum.Wt. 

N11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PREF:SEAR 

12 1837.331 0.000 0.504 

N11 ~ PROP+PREF+SEAR 

+PROP:PREF+PREF:SEAR 

10 1839.216 1.886 0.700 

N11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:SEAR+PREF:SEAR 

13 1839.633 2.303 0.859 

N11 ~ PROP+PREF+SEAR 

+PROP:PREF+PROP:SEAR+PREF:SEAR 

11 1841.465 4.135 0.923 

N11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:CONF+PREF:SEAR 

14 1841.865 4.534 0.975 

N11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:CONF+PROP:SEAR+PREF:SEAR 

15 1844.224 6.894 0.991 

N11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PREF:CONF+PREF:SEAR 

16 1846.080 8.749 0.998 

N11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:SEAR+PREF:CONF+PREF:SEAR 

17 1848.498 11.168 0.999 

N11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:CONF+PREF:CONF+PREF:SEAR 

18 1850.847 13.517 1.000 

N11 ~ PROP*PREF*CONF*SEAR 37 1870.203 32.872 1.000 

N11 ~ 1 2 2512.627 675.297 1.000 
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Table B.2. Population sizes at year 11 in scenarios with cue-based selection. 

 

Model structure k AICc ∆AICc Cum.Wt. 

N11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:SEAR+PREF:SEAR 

19 3020.827 0.000 0.599 

N11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:SEAR 

15 3022.744 1.917 0.828 

N11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:CONF+PROP:SEAR+PREF:SEAR 

21 3025.285 4.458 0.892 

N11 ~ PROP+PREF+SEAR 

+PROP:PREF+PROP:SEAR+PREF:SEAR 

17 3025.530 4.703 0.949 

N11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:CONF+PROP:SEAR 

17 3027.077 6.251 0.976 

N11 ~ PROP+PREF+SEAR 

+PROP:PREF+PROP:SEAR 

13 3027.247 6.420 1.000 

N11 ~ PROP*PREF*CONF*SEAR 61 3116.103 95.277 1.000 

N11 ~ 1 2 4088.168 1067.341 1.000 

 

 

Table B.3. Mean individual size at year 11 in scenarios with habitat-based selection. 

 

Model structure k AICc ∆AICc Cum.Wt. 

S11 ~ PROP*PREF*CONF*SEAR 37 -2212.88 0.000 1.000 

S11 ~ 1 2 -1771.41 441.476 1.000 
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Table B.4. Mean individual size at year 11 in scenarios with cue-based selection. 

 

Model structure k AICc ∆AICc Cum.Wt. 

S11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:CONF+PROP:SEAR 

17 -4049.37 0.000 0.728 

S11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:CONF 

16 -4047.06 2.310 0.958 

S11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:CONF+PROP:SEAR+PREF:SEAR 

21 -4041.75 7.616 0.974 

S11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:SEAR 

15 -4041.10 8.268 0.986 

S11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:CONF+PREF:SEAR 

20 -4039.49 9.884 0.991 

S11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF 

14 -4038.95 10.422 0.995 

S11 ~ PROP+PREF+CONF+SEAR 

+PROP:CONF+PROP:SEAR 

13 -4038.26 11.110 0.998 

S11 ~ PROP+PREF+CONF+SEAR 

+PROP:CONF 

12 -4036.18 13.191 0.999 

S11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:CONF+PROP:SEAR+PREF:CONF 

25 -4035.27 14.099 0.999 

S11 ~ PROP+PREF+CONF+SEAR 

+PROP:PREF+PROP:SEAR+PREF:SEAR 

19 -4033.55 15.818 1.000 

S11 ~ PROP*PREF*CONF*SEAR 61 -3955.92 93.454 1.000 

S11 ~ 1 2 -3702.21 347.162 1.000 
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APPENDIX C.  

SUPPLEMENTARY TABLES AND FIGURES FOR CHAPTER 3. 
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Table C.1. Capture effort in standardized mist-net hours, per site and sampling season. 

 

 PW09 DW10 PW10 DW11 MW11 PW11 DW12 DW13 MW13 DW14 MW14 DW15 

C1 152 1,245 415 1,062 277 - 663 832 174 126 168 109 

C2 - - - 755 - - 484 - - - - - 

C3 - - - - 248 - - - - - - - 

C4 - - - - - - 156 - - - - - 

C5 - - - - - - - 599 141 133 179 - 

C6 - - - - - - - 113 143 126 164 - 

C7 - - - - - - - 142 164 135 179 - 

C8 - - - - - - - 129 172 126 175 - 

C9 - - - - - - - 137 148 117 210 - 

F1 1,144 2,072 928 2,846 256 1,008 2,448 1,266 147 548 167 1,007 

F2 - - - 1,183 - - 878 245 - 82 - - 

F3 - - - - 262 657 775 625 147 373 178 619 

F4 - - - - - - 1,001 591 170 392 168 - 

F5 - - - - - - - 434 - 372 - 448 

F6 - - - - - - - 610 - 570 - 834 

F7 - - - - - - - 342 - 366 - 479 

F8 - - - - - - - - - - - 443 

C - banding stations in shade coffee 

F - banding stations in pre-montane forest 

DW - “dry-wet” (March-May) 

MW - “mid-wet” (June-August) 

PW - “peak-wet” (September-November) 
1
 Differences in effort stem from different lengths of each sampling occasion, different numbers of mist nets set up 

per site, and different duration of sampling per day  
2
 Numbers after the season correspond to the year sampling took place 

 

 

Table C.2. Site description and number of banding and sighting events carried out in each site during our four main 

sampling occasions.  

 

Site Description DW13 MW13 DW14 MW14 

Station Habitat Altitude Band Sight Band Sight Band Sight Band Sight 

C1 Coffee 1,180 5 2 5 4 5 7 5 7 

C5 Coffee 1,207 5 2 5 4 5 7 5 7 

C6 Coffee 1,122 5 2 5 4 5 7 5 7 

C7 Coffee 1,292 5 2 5 4 5 7 5 7 

C8 Coffee 1,343 5 2 5 4 5 7 5 7 

C9 Coffee 1,014 5 2 5 4 5 7 5 7 

F1 Forest 1,100 5 2 5 4 5 7 5 7 

F3 Forest 920 5 2 5 4 5 7 5 7 

F4 Forest 1,325 5 2 5 4 5 7 5 7 

DW - “dry-wet” (March-May) 

MW - “mid-wet” (June-August) 
1
 Numbers after the season correspond to the year sampling took place 
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Table C.3. Observation effort (in hours) for each site, occasion, method and habitat. 

 

 
MW13 DW14 MW14 

  
Site/Method BW PB BW PB BW PB Total BW Total PB 

C1 4.00 5.50 2.00 6.67 10.00 9.17 16.00 21.33 

C5 4.00 4.00 2.00 6.67 10.00 9.17 16.00 19.83 

C6 4.00 4.17 2.00 6.00 10.17 8.00 16.17 18.17 

C7 4.00 3.17 2.00 6.25 10.17 8.17 16.17 17.58 

C8 4.00 6.00 2.00 6.42 10.83 8.50 16.83 20.92 

C9 4.00 4.33 2.00 6.42 10.17 8.83 16.17 19.58 

COFFEE 24.00 27.17 12.00 38.42 61.33 51.83 97.33 117.42 

F1 4.00 4.67 2.00 6.17 10.17 8.00 16.17 18.83 

F3 4.00 4.92 2.00 6.50 10.25 9.17 16.25 20.58 

F4 4.00 4.33 2.00 6.25 10.00 8.50 16.00 19.08 

FOREST 12.00 13.92 6.00 18.92 30.42 25.67 48.42 58.50 

TOTAL 36.00 41.08 18.00 57.33 91.75 77.50 145.75 175.92 

DW - “dry-wet” (March-May) 

MW - “mid-wet” (June-August) 

BW - regular bird watching sessions 

PB -bird watching sessions where playback was used 

C - sites in shade coffee 

F - sites in pre-montane forest 
1
 Numbers after the season correspond to the year sampling took place 

 

NEXT PAGES: 

• Species always appear in taxonomic order 

• For figures with 12 panels species always appear in the same position 

• When a variable was not tested for a species the space is left blank 

• Plots with black outline: response significantly higher in forest 

• Plots with red outline: response significantly higher in coffee 

• We use the following species acronyms:  

 

MIOLI – Mionectes olivaceus 

MIOLE – Mionectes oleagineus 

TUFL – Turdus flavipes 

TUAL – Turdus albicollis 

RADI – Ramphocelus dimidiatus 

TAGY – Tangara gyrola 

SAMA – Saltator maximus 

SAST – Saltator striatipectus 

MYCO – Myiothlypis conspicillata  

BARU – Basileuterus rufifrons 

MYMI – Myioborus miniatus 

EULA – Euphonia laniirostris  
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Table C.4. Summary of banding data available for capture-mark-recapture analyses for the twelve focal species in 

shade coffee plots and pre-montane forest remnants. 

 

Species Habitat Captures Individuals(I) Recaptures(R) Ratio R/I 

MIOLI Coffee 124 117 7 0.06 

Forest 577 462 115 0.25 

MIOLE Coffee 95 66 29 0.44 

Forest 318 235 83 0.35 

TUFL Coffee 223 195 28 0.14 

Forest 392 339 53 0.16 

TUAL Coffee 19 19 0 0.00 

Forest 330 244 86 0.35 

RADI Coffee 126 101 25 0.25 

Forest 119 88 31 0.35 

TAGY Coffee 182 138 44 0.32 

Forest 398 267 131 0.49 

SAMA Coffee 91 74 17 0.23 

Forest 92 71 21 0.30 

SAST Coffee 70 60 10 0.17 

Forest 34 33 1 0.03 

MYCO Coffee 86 64 22 0.34 

Forest 247 188 59 0.31 

BARU Coffee 174 131 43 0.33 

Forest 83 61 22 0.36 

MYMI Coffee 90 62 28 0.45 

Forest 46 30 16 0.53 

EULA Coffee 95 80 15 0.19 

Forest 97 89 8 0.09 

 

 

  



154 

Table C.5. Summary of count and color-banding data available for capture-mark-resight analyses for the twelve 

focal species in shade coffee plots and pre-montane forest remnants. 

 

Species Habitat Counts Color-banded(C)  Resights(R)  Ratio R/C 

MIOLI Coffee 17 50 3 0.06 

Forest 13 52 0 0.00 

MIOLE Coffee 15 15 2 0.13 

Forest 23 50 2 0.04 

TUFL Coffee 138 50 5 0.10 

Forest 39 50 0 0.00 

TUAL Coffee 2 10 0 0.00 

Forest 9 51 0 0.00 

RADI Coffee 176 50 14 0.28 

Forest 80 29 7 0.24 

TAGY Coffee 319 50 42 0.84 

Forest 159 51 34 0.67 

SAMA Coffee 114 47 15 0.32 

Forest 32 17 7 0.41 

SAST Coffee 86 35 12 0.34 

Forest 34 7 0 0.00 

MYCO Coffee 66 39 5 0.13 

Forest 35 50 7 0.14 

BARU Coffee 275 53 44 0.83 

Forest 77 21 11 0.52 

MYMI Coffee 168 38 30 0.79 

Forest 27 8 6 0.75 

EULA Coffee 56 33 10 0.30 

Forest 25 15 0 0.00 

 

 

  
 

Figure C.1. Coefficient estimates and 95% credibility intervals for linear models of species detection probability in 

occupancy models. LEFT: effect of habitat (black - negative values indicate higher detectability in forest, red -

positive values indicate higher detectability in coffee, grey – values overlapping zero indicate no effect of habitat). 

RIGHT: effect of sampling method (blue - negative values indicate higher detectability during observations, orange 

- positive values indicate higher detectability during mist-netting, grey – values overlapping zero indicate no effect 

of sampling method). 
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Figure C.2. Occupancy estimates for each species according to elevation (masl) and habitat (coffee in red and forest 

in black). Points show mean values from 3,000 samples of the posterior distribution; lines are included for heuristic 

purposes and show a fitted regression model of quadratic effects of elevation + habitat (solid lines) together with 

their 95% confidence intervals (dotted lines).   
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Table C.6. Coefficient estimates for the effect of sampling effort on capture probability for all species in both 

habitats (mean value of the posterior distribution). CP – estimation done with a closed population model, JS – 

estimation done with a Jolly-Seber population model, values in italics show that 95% credibility intervals did not 

overlap 0).  

 
Species Model Habitat Effort Effort

2
 

MIOLI CP Coffee 0.09 -0.12 

 Forest 0.89 -0.58 

MIOLE JS Coffee -0.54 0.18 

 Forest -0.53 0.23 

TUFL CP Coffee 1.52 -0.73 

 Forest 0.46 -0.25 

TUAL CP Coffee - - 

 Forest 0.60 -0.24 

RADI JS Coffee -0.74 0.17 

 Forest -0.58 -0.05 

TAGY JS Coffee -0.32 0.22 

 Forest -0.46 0.09 

SAMA CP Coffee 1.38 -0.70 

 Forest 0.65 -0.16 

SAST CP Coffee 0.74 -0.04 

 Forest - - 

MYCO JS Coffee -0.41 -0.36 

 Forest -0.59 0.54 

BARU JS Coffee -0.68 0.27 

 Forest -0.50 0.39 

MYMI JS Coffee -0.89 0.19 

 Forest -0.22 0.25 

EULA CP Coffee 3.40 -1.45 

 Forest 1.23 -0.71 
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Figure C.3. Posterior distributions for the estimates of total abundance for the twelve focal species in coffee (red 

bars) and forest (black bars); less overlap means higher probability of differences between habitats. Estimation 

method and simulations conditions varied among species but not between habitats within a species.  



158 

 
 

Figure C.4. Posterior distributions for the estimates of apparent survival for the twelve focal species in coffee (red 

lines) and forest (black lines); less overlap means higher probability of differences between habitats. Estimation 

method and simulations conditions varied among species but not between habitats within a species.  
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Figure C.5. Mean and standard deviation for the coefficient of variation among estimates of abundance per occasion 

(calculated from output of the Jolly-Serber model).  
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Figure C.6. Effect of day of year (day 0: earliest date of sampling) and habitat (coffee in red and forest in black) in 

estimates for the probability of capturing an adult individual (over an immature one). Predicted model (solid line) 

and 95% confidence intervals (dotted lines) for the generalized linear model of DAY + DAY
2
 + HABITAT with 

binomial error family and logit link; points show observed data.   
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Figure C.7. Effect of day of year (day 0: earliest date of sampling) and habitat (coffee in red and forest in black) in 

estimates for the probability of capturing a male (over a female). Predicted model (solid line) and 95% confidence 

intervals (dotted lines) for the generalized linear model of DAY + DAY
2
 + HABITAT with binomial error family 

and logit link; points show observed data.   
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Figure C.8. Effect of sampling duration (in hours), habitat and method (red: coffee with playback, orange: coffee 

without playback, black: forest with playback, grey: forest without playback) in estimates for the probability of 

observing a species during visual counts. Predicted model (solid line) and 95% confidence intervals (dotted lines) 

for the generalized linear model of DURATION + HABITAT + METHOD with binomial error family and logit 

link; points show observed data.  
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Figure C.9. Effect of days since and habitat where an individual was color-banded (red: coffee, black: forest) in 

estimates for the probability of resighting it in a different habitat. Predicted model (solid line) and 95% confidence 

intervals (dotted lines) for the generalized linear model of DAYS + HABITAT with binomial error family and logit 

link; points show observed data.  
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Figure C.10. Effect of day of year (day 0: earliest date of sampling) and habitat (coffee in red and forest in black) 

on body condition index. Predicted model (solid line) and 95% confidence intervals (dotted lines) for the generalized 

linear model of DAY + DAY
2
 + HABITAT with normal error family and identity link; orange points show observed 

data for coffee and grey points observed data for forest.  
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Figure C.11. Effect of day of year (day 0: earliest date of sampling) and habitat (coffee in red and forest in black) in 

estimates for the probability of capturing an individual with high muscle score (over one with medium). Predicted 

model (solid line) and 95% confidence intervals (dotted lines) for the generalized linear model of DAY + DAY
2
 + 

HABITAT with binomial error family and logit link; points show observed data.   
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Figure C.12. Effect of day of year (day 0: earliest date of sampling) and habitat (coffee in red and forest in black) in 

estimates for the probability of capturing an individual with fat storage (over one without). Predicted model (solid 

line) and 95% confidence intervals (dotted lines) for the generalized linear model of DAY + DAY
2
 + HABITAT 

with binomial error family and logit link; points show observed data.   
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Figure C.13. Effect of day of year (day 0: earliest date of sampling) and habitat (coffee in red and forest in black) in 

estimates for the probability of capturing an individual with active body plumage molt (over one without). Predicted 

model (solid line) and 95% confidence intervals (dotted lines) for the generalized linear model of DAY + DAY
2
 + 

HABITAT with binomial error family and logit link; points show observed data.   
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Figure C.14. Effect of day of year (day 0: earliest date of sampling) and habitat (coffee in red and forest in black) in 

estimates for the probability of capturing an individual with active primary plumage molt (over one without). 

Predicted model (solid line) and 95% confidence intervals (dotted lines) for the generalized linear model of DAY + 

DAY
2
 + HABITAT with binomial error family and logit link; points show observed data.   
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Figure C.15. Effect of day of year (day 0: earliest date of sampling) and habitat (coffee in red and forest in black) in 

estimates for the probability of capturing an individual in active breeding (over an inactive one). Predicted model 

(solid line) and 95% confidence intervals (dotted lines) for the generalized linear model of DAY + DAY
2
 + 

HABITAT with binomial error family and logit link; points show observed data.   
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Figure C.16. Effect of day of year (day 0: earliest date of sampling) and habitat (coffee in red and forest in black) in 

estimates for the probability of capturing a juvenile individual (over an adult or immature). Predicted model (solid 

line) and 95% confidence intervals (dotted lines) for the generalized linear model of DAY + DAY
2
 + HABITAT 

with binomial error family and logit link; points show observed data.   
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Table C.7. Principal component analysis output for the ordination of habitat effect sizes for body condition index, 

body molt and breeding activity for the twelve focal species. 

 

Summary Comp.1 Comp.2 Comp.3 

Standard deviation 1.187 1.012 0.754 

Proportion of Variance 0.469 0.341 0.189 

Cumulative Proportion 0.469 0.811 1.000 

    
Scores Comp.1 Comp.2 Comp.3 

MYCO (1) 0.659 1.142 -0.812 

BARU (2) -2.052 0.881 0.404 

EULA (3) 1.693 -1.663 0.693 

MIOLE (4) -0.147 0.574 -0.421 

MIOLI (5) 0.018 1.393 1.019 

MYMI (6) 2.158 0.268 -0.805 

RADI (7) -0.913 -0.667 0.893 

SAMA (8) 0.666 0.759 0.605 

SAST (9) -1.550 -1.612 -1.145 

TAGY (10) 0.265 0.063 -0.601 

TUAL (11) 0.168 -1.213 0.716 

TUFL (12) -0.965 0.076 -0.546 

    
Loadings Comp.1 Comp.2 Comp.3 

BCI.b3 0.284 0.894 -0.347 

BMT.b3 0.637 -0.447 -0.628 

BRE.b3 0.716 0.000 0.696 

 

Table C.8. Frequency of individuals from our focal species captured in both habitats during the same sampling 

occasion. 

 

Species Number 
Percentage  

of total 

MIOLI 16 3% 

MIOLE 23 8% 

TUFL 22 5% 

TUAL 4 2% 

RADI 4 2% 

TAGY 7 2% 

SAMA 2 1% 

SAST 1 1% 

MYCO 1 0% 

BARU 0 0% 

MYMI 2 2% 

EULA 14 10% 
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