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ABSTRACT 

Thief ants of the genus Solenopsis are a diverse group of ants that are found in ant communities 

throughout the world. They have long been purported to practice lestobiosis, an interaction 

between small and larger-bodied ants, where small ants cryptically tunnel into larger-bodied ant 

nests within the subterranean environment and steal brood or eggs for consumption. Thief ants 

are extremely small, measuring 1-2 mm in length and many of the species within this group 

practice a subterranean life history, where they live the entirety of their lives exclusively 

belowground. Due to these key characteristics, the ecology and natural history of this group of 

ants has remained largely unknown despite their noted high abundance within the southeastern 

United States, especially in upland ecosystems. The purpose of this thesis is to improve our 

understanding of the ecology of this enigmatic group, providing a solid foundation for future 

work on their behavior, biology, and natural history. Therefore, this project first attempts to 

identify key abiotic environmental variables that potentially drive the diversity and distribution 

of this group in upland ecosystems. Next a field manipulation experiment was conducted in areas 

of high thief ant density to determine biotic effects between thief ants and the aboveground ant 

community. This was done by removing thief ants using belowground toxic baits and monitoring 

co-occurring ant worker abundances throughout a period of approximately 1 year. We found 

evidence that thief ants dominate belowground and diversity. Our field experiment also yielded 

evidence indicating that thief ants exert potential top-down regulation on entire ant communities. 
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INTRODUCTION 

Ants are an abundant and diverse group of ecosystem engineers and bio indicators (Hölldobler & 

Wilson 1990; Andersen et al. 2004). They serve essential roles in environmental processes such 

as soil ecosystem functions (Folgarait 1998; Nkem et al. 2000; Wagner & Jones 2004; Tschinkel 

& Seal 2016). However, an often under-studied area lies in the activities and distribution of 

subterranean ants, ants that exclusively nest and forage below the soil surface (Wong & Guénard 

2017). Available literature on subterranean ant communities predominantly focuses on the New 

World Tropics (Pacheco & Vasconcelos 2012) where a foundational study from 2007 indicated a 

largely unexplored subterranean ant fauna (Wilkie et al. 2007, 2010). Even in well-studied ant 

communities, such as those in Florida (Lubertazzi & Tschinkel 2003; Deyrup 2016), 

subterranean ant literature is mostly comprised of anecdotal accounts (Hölldobler 1973, 

Hölldobler & Wilson 1990 ,Wheeler 1901).  

At the global scale, subterranean communities include many genera, but Florida’s 

subterranean community is believed to mainly consist of species from the thief ant group of the 

genus Solenopsis. The moniker of “thief ant” refers to their assumed behavior of stealing brood 

and larvae from other species of ants. However, the existence of such behavior has not been 

adequately assessed and stands mostly as conjecture (Hölldobler & Wilson 1990). Despite the 

morphological taxonomic certainty of Florida’s complex of Solenopsis (Thompson 1980, 1989), 

thief ant ecology has been rarely investigated since Thompson’s dissertation (1980). A more apt 

description would be that the majority of knowledge on this group of ants is conjecture. Reasons 

behind the paucity in research can be attributed to the difficulty of investigating subterranean 

ecology and behavior. However, central Florida serves as an ideal location to study subterranean 
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ants. Its soils are composed of mostly pure sand which, given that they spend the entirety of their 

life belowground, makes their study logistically feasible. Furthermore, Florida’s subterranean ant 

community is mostly comprised of a single genus that has also been taxonomically well-

described and therefore provides an informed study system. This project aimed to take advantage 

of the unique conditions available in the area to assess thief ant distributions and diversity as well 

as their potential ecological impacts on co-occurring ant species.  

The genus Solenopsis is known mostly because of the fire ants, a widespread, common 

and abundant genus of Myrmicine ants (Tschinkel 2006). However, this genus includes two 

taxonomically distinct groups. The most familiar group includes fire ants, with larger sizes and 

polymorphic workers. The other group, the Diplorhoptrum or thief ants, are much smaller 

(including some of the smallest ant species), and workers are mostly monomorphic (a few 

species are weakly polymorphic) (Creighton 1930; Moreno Gonzalez 2001). Diplorhoptrum was 

originally proposed in 1855 and then synonymized with Solenopsis in 1862 by Mayr (Mayr 

1855, 1862). However, this subgenus has gone through numerous revisions including being 

elevated to the status of genus but then being reverted (Kempf 1969; Pacheco & MacKay 2013). 

Today, the classification of thief ants as a subgenus is considered outdated and instead they are 

classified as a group within Solenopsis as they are similarly related to fire ants in terms of 

morphology but differ ecologically as most thief ants are strictly subterranean (Pacheco & 

MacKay 2013). This thief ant group is abundant on a global scale in communities ranging from 

the warm temperate to the tropical zones with ~ 86 described species occurring across the globe 

as a common and conspicuous group in most ant communities (Pacheco & MacKay 2013). They 

are characterized by their small size and cryptic morphology which also makes this group very 

difficult to work with and as a result, many more potential species likely remain undescribed 
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throughout the globe. Thankfully, all of Florida’s thief ant taxonomy has been extensively 

investigated and species descriptions have remained intact and supported for decades (Thompson 

1980, 1989; Moreno Gonzalez 2001; Deyrup 2016) 
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CHAPTER 1: DIVERSITY AND DISTRIBUTION BELOWGROUND 

 

*** this chapter has been previously published in a peer-reviewed journal, permission from 
editor to use the copyrighted manuscript has been obtained with proof shown in the appendix: 
Ohyama, L., King, J.R., Jenkins, D.G., 2018: Diversity and distribution of Solenopsis thief ants 
(Hymenoptera: Formicidae) belowground. – Myrmecological News 27:47-57 

 

Abstract 

Subterranean ant communities are vastly understudied relative to aboveground ant communities. 

The thief ants of the genus Solenopsis are a globally abundant and widespread group that is a 

conspicuous and important part of the belowground ant community. Thief ant ecology, including 

their distribution and diversity at local scales, has also rarely been documented. In this study we 

sampled the subterranean ant community of central Florida, a region with conspicuously high 

subterranean thief ant abundance. We used a stratified-random sampling protocol and collected 

soil environmental variables at each sampling plot to model subterranean ant diversity in relation 

to abiotic conditions in the soil environment. Furthermore, we utilized non-parametric ordination 

methods and permutation-based analyses of variance (PERMANOVAs) to visualize and quantify 

associations of species based on habitats and soil strata. Our study yielded 15 species from six 

genera of which 5 were thief ant species. These 5 Solenopsis species represented 64% of all ants 

found. We also identified distinct differences in species composition between 2 habitat types and 

significant effects of soil abiotic conditions on the diversity of the subterranean community. This 

study finds that thief ants dominate belowground and respond predictably to soil habitat 

conditions. Biotic effects among ant species may be important given their purported lestobiotic 

behaviors. 
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Introduction 

Subterranean ants nest and forage almost entirely belowground. They are a group that may 

represent the final unexplored frontier for global ant biodiversity (WILKIE & al. 2007). In 

general, these ants are usually small-bodied and cryptic in their morphology, most likely a result 

of a hypogaeic life history (WONG & GUÉNARD 2017). Despite recent evidence of the diversity 

represented in subterranean communities as well as their potential impacts on soil ecosystems, 

little information exists on their basic biology and ecology (WILKIE & al. 2007, SCHMIDT & 

DIEHL 2008, ANDERSEN & BRAULT 2010, WILKIE & al. 2010, RIBAS & al. 2012, WONG & 

GUÉNARD 2017). This also extends to what little is known about the ecology and belowground 

activities of most epigaeic ants. Subterranean sampling has not been integral to ant diversity 

assessments and its practice has only recently become more widespread (SCHMIDT & SOLAR 

2010). Most sampling of subterranean ant communities has only been done in the Neotropics 

(WONG & GUÉNARD 2017). Thus, subterranean ant distributions and interactions with other soil 

invertebrates are scarcely known. This dearth of information is because of the difficulties 

associated with sampling belowground where traps and direct soil sampling are usually the only 

logistically feasible approaches. 

Given this sparse background, an important question is: what are the potential drivers of 

subterranean ant species distributions at local scales? At broader scales, soils (type, compression, 

temperature) and elevation have been shown to affect subterranean ant diversity (LYNCH & al. 

1988, WILKIE & al. 2010, BERMAN & ANDERSEN 2012, CANEDO-JÚNIOR 2015). However, 

substantial variation exists among local sample sites in the above studies. For example, 

subterranean ant abundances in Ecuador are not predicted by some soil conditions, such as soil 

pH or mineral content (JACQUEMIN & al. 2012). However, another study in the Brazilian 
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savannah showed significant effects of soil temperature and compression in association with 

changing subterranean ant species compositions (CANEDO-JÚNIOR 2015). Collectively, these few 

studies represent most of what is known about environmental factors affecting subterranean ant 

diversity and distributions (WONG & GUÉNARD 2017). These studies suggest that the relationship 

between the diversity and distributions of subterranean ants and soil conditions may jointly 

depend on broad-scale geography and the local composition of the local subterranean ant 

community. 

Subterranean ant communities, especially in the tropics, contain a variety of genera. 

However, the genus Solenopsis is found globally in belowground communities and is among the 

most abundant group of species in these communities and thus warrants special attention 

(WILKIE & al. 2007, BERMAN & ANDERSEN 2012, PACHECO & MACKAY 2013). Thief ants in the 

genus Solenopsis are a group of relatively small-bodied, largely subterranean or litter-dwelling 

species (although there are even some arboreal species) that are abundant in communities from 

the warm temperate to the tropical zones (PACHECO & al. 2007, ANDERSEN & BRAULT 2010, 

HERNÁNDEZ 2010, PACHECO & MACKAY 2013). About  86 described thief ant species occur 

across the globe as a common and conspicuous group in most ant communities (MACKAY & 

MACKAY 2002, PACHECO & MACKAY 2013). In Florida, the thief ant species considered to be 

completely subterranean are Solenopsis tonsa (THOMPSON, 1989), Solenopsis pergandei (FOREL, 

1901), and quite possibly Solenopsis tennesseensis (SMITH, M.R., 1951). Some (or perhaps most) 

thief ant species are purported to be “lestobiotic”, nesting near the nests of host ant colonies, 

tunneling belowground into their nests, and stealing their brood (HÖLLDOBLER 1973, 

HÖLLDOBLER & WILSON 1990, TSCHINKEL 2006, DEYRUP 2016). Thief ants are assumed to 

practice lestobiosis upon a wide range of ant species that are often much larger in size, as this 
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interaction often emphasizes the interaction between small and large-bodied ants (HÖLLDOBLER 

& WILSON 1990). Although thief ants may also be dietary generalists and even predators of other 

ants when not stealing brood as they have also been observed actively preying on founding 

queens (WHEELER 1901, BLUM & al. 1980, THOMPSON 1980, BUREN 1983, LAMMERS 1987, 

NICHOLS & SITES 1991, VINSON & RAO 2004, DEYRUP 2016). The small body size of thief ants 

(which includes some of the smallest workers among all ants) may also allow them to move 

through soil and  escape via pathways not accessible to their larger-bodied prey (KASPARI & 

WEISER 1999). This potential behavior coupled with their high abundance and broad, global 

distribution suggests that lestobiosis by thief ants, and preying directly on brood and, especially,  

founding queens (LAMMERS 1987, NICHOLS & SITES 1991, VINSON & RAO 2004), may be an 

important regulator of both subterranean and aboveground ant communities. 

What is actually known about subterranean ant interactions with other ants is largely based 

on a few descriptions  (WHEELER 1901, SCHNEIRLA & al. 1944, DEYRUP 2016). This gap in 

knowledge is all the more important in regions such as the southeastern US, and especially 

upland habitats in Florida, where thief ants dominate subterranean ant diversity and abundance  

(LUBERTAZZI & TSCHINKEL 2003, KING & PORTER 2007, DEYRUP 2016). Furthermore, the 

subterranean thief ant complex from these localities have been taxonomically well described for 

many years, meaning that community diversity analyses may be confidently conducted 

(THOMPSON 1980, THOMPSON 1989, MORENO GONZALEZ 2001).  

 In the most comprehensive treatment of thief ant ecology to date, THOMPSON (1980) 

found that thief ant species composition differed between shrubby and grassy habitat types. 

Otherwise, only unpublished observations inform the ecology of thief ant distributions. Depth to 

water table or soil moisture content may be the main environmental drivers of thief ant 
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distribution and diversity as long-term soil moisture dynamics may limit the foraging capabilities 

of these ants (LAMMERS 1987). It is also known that thief ants are sensitive to low humidity 

when being raised in a laboratory setting but in the wild are incapable of building mounds like 

the fire ant (Solenopsis invicta (BUREN,1972)) to escape inundation (THOMPSON 1980, 

TSCHINKEL 2006). Therefore, well-drained soils in otherwise mesic regions likely maintain 

conditions ideal for thief ant populations. In Florida, upland habitats such as drier pine flatwoods 

and especially high pine sandhills (MYERS & EWEL 1990) appear to support robust populations 

of a number of thief ant species (THOMPSON 1980). Nearby habitats (e.g., more mesic flatwoods 

and dry prairies) are more prone to flooding (MYERS & EWEL 1990) and appear to have reduced 

subterranean ant diversity and abundances (DEYRUP 2016). We therefore conducted this study in 

upland sandhill and flatwood habitats to determine if there are differences in thief ant 

communities associated with these common habitat types in this region. 

To better understand the factors affecting ant distribution and activity belowground, we 

sampled belowground foraging ants in the two habitat types (sandhill and flatwoods) using baits 

and collected associated soil environmental variables to identify relationships between the 

subterranean ant community and local habitat conditions. Considering that many subterranean 

ants are known for their small-bodied form and cryptic morphology we specifically targeted 

small-bodied ants in our sampling. We understand that not all subterranean ants are small-bodied 

as seen in WONG ET AL. (2017) but based on previous surveys and studies in central Florida and 

in other parts of the state we have evidence that subterranean ants in our locality were small-

bodied (THOMPSON 1980, PRUSAK 1997, LUBERTAZZI & TSCHINKEL 2003, KING & PORTER 

2007, KING 2010). Furthermore, our primary focus, the Solenopsis thief ants, are all small-

bodied (THOMPSON 1989, DEYRUP 2016). However, not all the ants that were baited truly 
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practice a subterranean life history, that is, nesting and foraging entirely belowground but they 

were still classified as part of the subterranean ant community for the purpose of this study. 

Therefore, we defined the “subterranean ant community” to be composed of ants with a 

hypogaeic life history as well as the ants that were found to co-occur with them in our 

subterranean sampling. These co-occurring species may forage or nest aboveground but may be 

opportunistically foraging belowground as well. We later differentiate subterranean versus other 

ant species, based on what is known of their natural history. Nevertheless, even small-bodied 

aboveground foraging or nesting ants that forage opportunistically belowground likely play a 

role in the subterranean ant community.  

We asked: (1) Do subterranean ant communities (with an emphasis on thief ants) differ in 

composition and abundance between flatwood and sandhill habitats? (2) Do soil environmental 

gradients predict the species diversity of this subterranean ant community? (3) Do these 

gradients also predict the occurrence of thief ant species?  

We also compared those data to the only 2 other subterranean sampling studies conducted in 

Florida (THOMPSON 1980, LUBERTAZZI & TSCHINKEL 2003). LUBERTAZZI & TSCHINKEL (2003) 

carried out their subterranean assessment in the longleaf pine forest of the Apalachicola National 

Forest outside of Tallahassee, Florida. THOMPSON (1980) conducted a sampling survey 

comprised of 2 total plots, 1 in turkey oak woods and the other in an open field outside of 

Gainesville, Florida. Comparisons to aboveground ant diversity and relative abundance in our 

study site were also made possible using aboveground pitfall sampling data (from 2012) 

collected from the same areas as our subterranean sampling. 
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Materials & Methods 

Study Site 

Sampling was conducted during the months of July and August, 2017, at Wekiva Springs State 

Park (2,750 Hectares) situated in Orange County, Florida at 28.7118° N, 81.4628° W. Average 

annual rainfall in the area is approximately 1350 mm. The general seasonality of the site involves 

a cycle of wet and dry seasons with the wet season beginning around May and ending in 

November and the dry season occurring December-April. We distinguished 2 main habitat types 

within this park to conduct our survey, high pine sandhills and mesic pine flatwoods.  

High pine sandhill is a pyrogenic habitat characterized by well-drained sandy soils, an 

overstory of longleaf pine (Pinus palustris), and a groundcover dominated by wiregrass (Astrida 

beyrichiana) (MYERS & EWEL 1990). The sandhill sites selected for this study were in areas 

maintained by low intensity fires. High pine sandhill habitats gradually transition downhill to 

pine flatwoods, which are distinct in vegetation as a result of more poorly-drained soils due to a 

higher water table and subsequent proneness to flooding (ABRAHAMSON & HARTNETT 1990). 

Sandhill soils are generally categorized into droughty course sands, sandy clays, or loamy sands; 

our sites were mostly composed of coarse sand classified as Entisols that are generally low in 

nutrients (ABRAHAMSON & HARTNETT 1990). Flatwood soils are usually acidic and hold 

insignificant amounts of extractable nutrients (GHOLZ & FISHER 1982, MYERS & EWEL 1990). 

Soil moisture of the flatwoods is usually influenced by soil organic matter content as well as a 

mulching effect from the litter layer (MYERS & EWEL 1990).  
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Design 

A stratified-random sampling design was used in both habitat types, where habitat type 

boundaries were first identified in the field (based on vegetation) using a handheld GPS. These 

coordinates were used to generate polygons representative of the 2 habitat types in ArcMap (ESRI 

2017). Coordinates for our sample plots (16 per habitat type) were then randomly generated in 

ArcMap within the habitat type polygons. A minimum distance of 36 meters between sample 

plots avoided site overlap. Sample plots were randomly assigned a sampling depth of 10 cm or 

20 cm. As a result, 8 plots in each of two habitat types were sampled at each of two depths (32 

total sample plots) (Fig. 1).  
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Figure 1: Map of study site (Wekiva Springs State Park) with sampling sites. 

Baits 

Baits were made using plastic capped vials 70 mm tall and 30 mm in diameter. A ~5 mm 

diameter hole was made near the bottom edge of the vial and covered with 1 mm screening to 

exclude larger animals (e.g., fire ants) but permit entry by subterranean ants. This was done to 

specifically target small-bodied subterranean ants as well as other non-subterranean ants that 
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may forage opportunistically within the subterranean environment. Each bait was loaded with 

~3-4 cm3 of sugar cookie (Pecan Sandies). To deploy the baits a battery-powered 24v drill and a 

24-inch auger-bit was used to drill into the soil to a specified depth. The baits were then placed 

in the holes and covered up with the previously extracted soil. Baits were deployed in the 

morning and retrieved using a hand trowel ~72 hours later. Specimens were kept in sandwich 

bags and stored in a freezer. 

Habitat Variables 

Soil temperature and soil moisture were recorded at each bait site. Soil temperature was recorded 

for the entirety of the 72-hour baiting period using data loggers (iButton, Maxim). Each plot had 

2 data loggers installed on both east and west sides at 10 cm below the soil surface to record 

temperatures every hour during the baiting period. Using those data, we extrapolated average 

minimum, maximum, and temporal changes in soil temperatures per site. Soil moisture was 

collected by using a soil moisture sensor at 10 cm depth (Procheck, Decagon Devices). 10 

readings were taken from each plot at the time of retrieval and averaged to represent the soil 

moisture level of the plot.  

Sorting 

All ants collected from the baits were sorted to species utilizing identification pointers from 

DEYRUP (2016). Additional reference specimens from J. R. King’s personal collection were used 

to confirm identifications.  

Aboveground Sampling 

Aboveground ant communities were sampled previously in the same area and habitat types of the 

park as the belowground sampling. In August 2012, three 100 m linear transects were established 

in each habitat type (a total of 6 transects), separated by at least 100 meters from one another or 
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forest roads. In each transect, sampling was performed using pitfall traps placed at 5-meter 

intervals for a total of 20 traps per site and 120 traps for the 2 habitat types. Pitfall traps were 85 

mm long plastic vials with 30 mm internal diameter partially filled with ~ 15 ml of non-toxic, 

propylene-glycol antifreeze.  Traps were buried with the opened end flush with the surface of the 

ground and operated for 7 days. Traps were installed using a hand-held, battery-powered drill 

using an auger bit.  

Analyses 

Each occurrence of a species in a baited vial was considered an occurrence of 1 colony of that 

species based on the spatial distances between baits (KING & PORTER 2007, KING 2010). 

Potential differences in community composition between habitats and depths were evaluated 

with nonmetric multi-dimensional scaling (NMDS), which is a nonparametric ordination method. 

Subsequent permutation-based analyses of variance (PERMANOVAs) were used to test for 

significant differences between detected clusters. The NMDS utilized beta diversity distances 

based on the Bray-Curtis index, a measure of dissimilarity that allowed for the separation of sites 

based on differences in species composition (while also accounting for species abundance as 

measured by frequency of occurrences). Bray-Curtis distances are also robust to sampling errors 

and preferred to other beta diversity measures (SCHROEDER & JENKINS 2018). Potential effects of 

environmental gradients on ant diversity were modeled using both linear mixed-effect models 

and linear regressions. Species estimators were also calculated using Chao1 estimators (all 

values listed in Appendix S1, as digital supplementary material to this article, at the journal’s 

web pages) to provide further evidence of the robustness of sampling methods. The response 

variable for all models was the Jost Diversity index (D = eH’; JOST 2006) per site calculated using 

number of species occurrences per site. Independent variables included depth of the baited vial, 
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soil temperature (averages of maximum, minimum, and daily range), and average soil moisture 

(Table 1). Model assumptions were evaluated based on residual diagnostic plots (Appendix S2, 

as digital supplementary material to this article, at the journal’s web pages). Finally, the 

occurrence of all species in the baited vials was modeled using logistic regressions, where the 

occurrence of each ant species was predicted by soil parameters. All regressions were compared 

and ranked using corrected Akaike Information Criterion weights (AICc wi) from the R package 

‘bbmle’ (BOLKER & TEAM RDC 2017) as they allowed an appropriate comparison for model 

parsimony compared to evaluating individual R2-values (Table 1). Logistic regressions were also 

evaluated with pseudo-R2 values calculated by subtracting the null deviance of the model from 

the residual deviance and dividing the total by the residual deviance (Table 2).  All soil 

environmental variables were standardized during analyses and all statistical analyses were 

conducted using R 3.4.1 statistical software (R DEVELOPMENT CORE TEAM 2017). Mixed-effect 

models were computed using the R package ‘lme4’ (BATES & al. 2015) and the ‘vegan’ package 

(OKSANEN & al. 2017) was used to compute NMDS ordinations and PERMANOVAs. All 

graphics for regressions and ordinations were done using the R package ‘ggplot2’ (WICKHAM  

2009).         

Results 

Ant Diversity and Abundance 

A total of 15 species encompassing 6 genera were captured and identified from all our 

belowground baits (full species list in Appendix S3, as digital supplementary material to this 

article, at the journal’s web pages). 98% of the 1152 baited vials deployed were recovered; 23 

baited vials were lost during sampling. Species-sampling estimates indicate that all existing 
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species were observed in most samples (Appendix S1, as digital supplementary material to this 

article, at the journal’s web pages). We assessed relative abundances as the occurrence of a 

species at each baited vial. The most common genus was Solenopsis (in 70% of baits), followed 

by Pheidole (21.5%) and Brachymyrmex (8.3%). The last three genera, Forelius, Hypoponera, 

and Nylanderia occurred in 1 baited vial, each. Solenopsis was the most species-rich genus with 

6 species (all thief ants except for the introduced fire ant, S. invicta). The 8 most common species 

were Solenopsis pergandei (occurring in 209 baited vials, 27.6% of total), Solenopsis 

carolinensis (FOREL, 1901) (98, 12.9%), Solenopsis nickersoni (THOMPSON, 1982) (93, 12.3%), 

Pheidole floridana (EMERY, 1895) (69, 9%), Brachymyrmex depilis (EMERY, 1893) (63, 8.3%), 

Solenopsis tenneessensis (50, 6.6%), Solenopsis invicta (40, 5.3%), and Pheidole morrisii 

(FOREL, 1886) (39, 5.2%).  

Soil stratum comparison 

Most ant taxa other than Solenopsis, Nylanderia wojciki (TRAGER, 1984), and Pheidole dentata 

(MAYR, 1886) were less frequently sampled at the greater depth (20 cm). Nylanderia wojciki and 

Pheidole dentata were relatively rare and were only detected at 20 cm (Appendix S3, as digital 

supplementary material to this article, at the journal’s web pages). Among the Solenopsis 

species, S. carolinensis occurrence decreased 42% from 10 cm to 20 cm soil depth and S. 

nickersoni occurrence decreased (25%), but S. pergandei occurrence increased (78%), S. 

tennesseensis occurrence had no change, and S. tonsa occurrence increased (145%). The most 

frequently captured species at both depths was S. pergandei. Based on an NMDS analysis and a 

subsequent PERMANOVA, depth did not significantly affect species compositions 

(PERMANOVA, P > 0.05). 
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Habitat-Based Community Structure 

Brachymyrmex (1 occurrence in high pine sandhills, 62 occurrences in pine flatwoods), was 

more prevalent in the flatwoods than in sandhill habitats. Forelius (1,0), Hypoponera (1,0), and 

Nylanderia (1,0) were present in flatwoods but absent in the sandhills. Pheidole (125, 38) and 

Solenopsis (359, 169) were more common in the sandhills. Within Solenopsis, S. nickersoni was 

found more commonly in flatwoods than in sandhill habitats. However all other thief ant species 

(S. carolinenesis, S. pergandei, S.tennesseensis, S. tonsa) were more prevalent in the sandhills.  

The NMDS analysis (Fig. 2, Fig. 3) showed a distinct separation between communities of 

the 2 habitat types along with the separation of species that was congruent with our raw data. A 

subsequent PERMANOVA verified significant separation of centroids in this analysis (P<0.05). 

All thief ant and Pheidole species, except for S. nickersoni, P. dentata, and P. morrisii, were 

clustered tightly within the sandhill cluster. Positions for S. tonsa and Pheidole adrianoi (NAVES, 

1985) in the NMDS were furthest away from the flatwood cluster.  The species within and 

around the flatwood cluster had a higher degree of spread, most likely due to several species 

(Forelius. pruinosus (ROGER, 1863), Hypoponera. opacior (FOREL, 1893), N. wojciki, and P. 

dentata) having been collected only once. Brachymyrmex depilis’s position in the NMDS mirrors 

S. tonsa and is one of the few frequently collected species in the flatwoods. Finally, the fire ant, 

S. invicta, is positioned more along the upper edge of the flatwood cluster and towards the center 

between both habitat clusters. To further validate these results, we removed singletons from the 

species by site matrix (3 total species/columns removed) and ran the NMDS at the same 

dimensions (k =2) with the same number of starting iterations (1000) and found no differences in 

patterns. The stress value remained the same at ~0.127.= 
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Figure 2: Nonmetric multi-dimensional analysis of the species by site matrix from the subterranean sampling. Triangles 

represent pine flatwood sites and circles represent high pine sandhill sites. Lines connect the sites to each habitat’s respective 

centroid in multivariate space. Labels for thief ant species represent the position of species within this space. The analysis had 

acceptable stress values of 0.126 at 2 dimensions (k = 2) 
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Figure 3: A replicate nonmetric multi-dimensional analysis visual of Figure 2. Labels differ here to show the position of non-thief 

ant species. Flatwood species labels have a higher degree of spread due to extreme low occurrences of some species (e.g. 

Pheidole dentata, Nylanderia wojciki) 

Modeling Species Diversity 

Although not all species caught at our baits are truly subterranean ants, for the purposes of this 

study, we included species captured in belowground samples as part of the subterranean 

community as these species were clearly actively foraging belowground. Subterranean ant 

diversity was most effectively explained in regression models as an interaction between habitat 

types and average daily soil temperature range (AICc wi = 0.34, Table 1). This model represented 

a majority of variance in ant diversity (P = 0.02, R2 = 0.60). Residuals met assumptions of the 

model. The simple linear regression model outperformed the random-intercept model, and 

conditional pseudo R-squared values indicated that random intercepts explained very little 
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variation and both models indicated approximately the same effect sizes. A second linear model 

also included an interaction between habitat type and average soil maximum temperature (AICc 

wi = 0.14). However, the model using average daily temperature ranges accounted for more 

variation and was more plausible. In all our initial models we added soil depth as a covariate but 

the differences between the top-ranked models with and without the covariate was negligible as 

effect sizes and adjusted- R2 values barely differed.  

 

Table 1: A table showing the top 5 performing simple linear regression models under AICc (Akaike Information Criterion with 

correction for small sample sizes) rankings. Predictor variables for each model are shown along with each model's AICc score, 

the change in AICc for every lower ranked model, AICc weights, and the adjusted R2. 

Model AICc 
ΔAICc 

Weight (wi) Adjusted-R2 

D ~ Habitat * Avg. Change in Daily Soil Temp. 
94.4 0 0.34 0.60 

D ~ Habitat * Avg. Soil Maximum Temp. 
96.2 1.8 0.14 0.57 

D ~ Habitat + Avg. Soil Moisture * Avg. Soil Temp. 
97.2 2.9 0.08 0.58 

D ~ Habitat + Avg. Soil Minimum Temp. 
97.4 3.0 0.08 0.53 

D ~ Habitat + Avg. Soil Moisture 
97.6 3.3 0.07 0.53 
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Figure 4: Simple linear model coefficients and their 95% confidence intervals for the top 5 most plausible models in predicting 

diversity based on AICc (Akaike Information Criterion corrected for small sample sizes) rankings. Coefficients represent changes 

in the Jost diversity index relative to different soil abiotic variables. Bolded coefficients were significant at P<0.05. All coefficients 

are based on the flatwood habitat as being the reference level in the model and all quantitative predictor variables were 

standardized. 
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Table 2: Simple linear model coefficients and their 95% confidence intervals for the top 5 most plausible models in predicting 

diversity based on AICc (Akaike Information Criterion corrected for small sample sizes) rankings. Coefficients represent changes 

in the Jost diversity index relative to different soil abiotic variables. Bolded coefficients were significant at P<0.05. All coefficients 

are based on the flatwood habitat as being the reference level in the model and all quantitative predictor variables were 

standardized. 

Independent Variables 

D ~ Habitat + 

Avg. Soil 

Moisture * Avg. 

Soil Temp. 

D ~ Habitat * 

Avg. Soil 

Maximum 

Temp. 

D ~ Habitat * 

Avg. Change in 

Daily Soil Temp. 

D ~ Habitat + 

Avg. Soil 

Moisture 

D ~ Habitat + 

Avg. Soil 

Minimum Temp. 

Intercept 2.25±0.66 2.82±0.53 2.73±0.49 2.59±0.51 2.69±0.50 

Sandhill 2.55±1.03 2.15±0.73 2.27±0.69 2.25±0.74 2.05±0.71 

Avg. Change in Daily 
Soil Temp. 

- - -0.23±0.48 - - 

Avg. Soil Maximum 
Temp. 

- -0.39±0.59 - - - 

Soil Minimum Temp. - - - - -0.20±0.36 

Avg. Soil Moisture 0.31±0.48 - - 0.19±0.37 - 

Avg. Soil Temp. -0.08±0.53 - - - - 

Sandhill:Avg. Change 
in Daily Soil Temp. 

- - 0.87±0.70 - - 

Sandhill:Avg. Soil 
Maximum Temp. 

- 0.85±0.76 - - - 

Avg. Soil Moisture: 
Avg. Soil Temp. -0.53±0.43 - - - - 
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Predicting Species Occurrence 

Logistic regression models of thief ant species occurrence per site using soil environment 

variables significantly predicted 4 of 5 thief ant species and helped in further understanding the 

NMDS result (full models listed in Appendix S4, as digital supplementary material to this article, 

at the journal’s web pages); only S. nickersoni occurrence was not predicted. Solenopsis 

pergandei’s most plausible model was a function of the interaction between average soil 

moisture and average minimum soil temperature (P = 0.02, Pseudo- R2 = 0.59, Table 2). 

Solenopsis tonsa’s most plausible model was a function of the additive effects of average soil 

moisture and temperature (P=0.02, 0.01 respectively, Pseudo- R2 = 0.33). Solenopsis 

carolinensis’s most plausible model was also a function of the same predictors (P = 0.04, P = 

0.04, Pseudo- R2 = 0.16). Finally, S. tennesseensis’s most plausible model was a function of 

average soil temperature (P = 0.01, Pseudo- R2 = 0.23).  

Other co-occurring ant species found in our samples were also modeled by logistic 

regression, though not all species had sufficient occurrences to model (Table 5, models listed in 

Appendix S5, as digital supplementary material to this article, at the journal’s web pages). AICc 

model selection on the logistic regressions for P. adrianoi and S. invicta showed the null model 

being ranked the best indicating the lack of any statistical signal in their species-respective 

models. Brachymyrmex depilis’ most plausible model was a function of the interaction between 

average soil moisture and average minimum soil temperature (P = 0.04, Pseudo- R2 = 0.74). 

Pheidole floridana’s most plausible model was a function of average maximum soil temperature 

(P = 0.05, Pseudo- R2 = 0.11). Pheidole metallescens’ (EMERY, 1895) most plausible model was 

a function of the additive effects of average soil moisture and average minimum soil temperature 

(P = 0.07, 0.09, Pseudo- R2 = 0.12). It’s important to note that the next plausible model for P. 
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metallescens was the null model, and the two models were only different by a ΔAICc of 0.2 with 

similar AICc weights (Appendix S5, as digital supplementary material to this article, at the 

journal’s web pages). Therefore, we did not evaluate P. metallescens occurrences. Pheidole. 

morrisii’s most plausible model was a function of average minimum soil temperature (P = 0.02, 

Pseudo-R2 = 0.21). 

 

Table 3: Pseudo R2 values for most plausible logistic regression model of successfully modeled species collected in the 

subterranean sampling (8 of 15 possible species). Model predictor variables are also displayed. 

Species Pseudo- R2 of most 

plausible model 
Model 

Solenopsis carolinensis 0.16 Occurrence ~ Avg. Soil Moisture + Avg. Soil Temp. 
Solenopsis pergandei 0.59 Occurrence ~ Avg. Soil Moisture * Avg. Minimum Soil Temp. 

Solenopsis tennesseensis 0.23 Occurrence ~ Avg. Soil Temp. 
Solenopsis tonsa 0.33 Occurrence ~ Avg. Soil Moisture + Avg. Soil Temp. 

Brachymyrmex depilis 0.74 Occurrence ~ Avg. Minimum Soil Temp. * Avg. Soil Moisture 
Pheidole floridana 0.11 Occurrence ~ Avg. Maximum Soil Temp. 

Pheidole metallescens 0.12 Occurrence ~ Avg. Minimum Soil Temp + Avg. Soil Moisture 
Pheidole morrisii 0.21 Occurrence ~ Maximum Soil Temp. 

 

Table 4: Logistic regression model coefficients and their 95% confidence intervals for the most plausible model for every 

successfully modeled thief ant species. Coefficients represent the log odds of the occurrence of the ant species relative to 

different soil abiotic conditions. Bolded coefficients were significant at P<0.05. All predictor variables were standardized for the 

models. 

Independent variables 

Solenopsis 

carolinensis 

coefficients 

Solenopsis pergandei 

coefficients 

Solenopsis 

tennesseensis 

coefficients 

Solenopsis tonsa 

coefficients 

Intercept 0.02±0.79 2.76±2.49 0.37±0.84 -0.57±0.94 

Avg. Minimum Soil 
Temp. 

- -2.40±2.20 - - 

Avg. Soil Moisture -1.04±0.99 -3.61±3.06 - -1.85±1.37 

Avg. Soil Temp -1.04±1.01 - -1.42±1.07 -1.71±1.50 

Avg. Soil Moisture: 
Avg. Minimum Soil 

Temp. 
- 2.36±2.02 - - 
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Table 5: Logistic regression model coefficients and their 95% confidence intervals for the most plausible model for every 

successfully modeled non-thief ant species. Coefficients represent the log odds of the occurrence of the ant species relative to 

different soil abiotic conditions. Bolded coefficients were significant at P<0.05. All predictor variables were standardized for the 

models. 

Independent variables 
Brachymyrmex Depilis 

coefficients 

Pheidole floridana 

coefficients 

Pheidole Metallescens 

coefficients 

Pheidole Morrisi 

coefficients 

Intercept -3.26±0.91 -0.27±0.75 -0.77±0.82 -0.75±0.89 

Avg. Maximum Soil 
Temp. 

- -0.86±0.85 - -1.48±1.26 

Avg. Minimum Soil 
Temp. 4.49 ±1.06 - -0.83±0.97 - 

Avg. Soil Moisture 5.56±1.08 - -1.01±1.07 - 

Avg. Soil Temp - - - - 

Avg. Soil Moisture: 
Avg. Minimum Soil 

Temp. 
-3.70±1.02 - - - 
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Figure 5: Logistic regression models of Brachymyrmex depilis (left) and Solenopsis pergandei (right). Y-axis represents 

occurrence; X-axis represents average minimum soil temperature (standardized).  The interaction between average minimum 

soil temperature and average soil moisture (standardized) is represented through 4 facets (labels on right). Each facet shows the 

model at 3 different average soil moisture levels and average soil moisture increases from the top to the bottom facet. Colors 

differ for each average soil moisture level and colored shading represents the 95% confidence intervals of the model at various 

levels of moisture. Pseudo R values for B. depilis and S. pergandei moderls were 0.74 and 0.59 and P-values for each model’s 
interaction were 0.04 and 0.02 respectively. 

Overall, subterranean ant diversity was dominated by Solenopsis species and different in 

composition between high pine sandhills and pine flatwoods. Those patterns appeared to be 

related to soil temperature and moisture, which consistently predicted belowground ant diversity 

and species’ occurrences in the two different habitat types. 
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Discussion 

Differences among habitats 

Distinct multivariate differences  between sandhill and flatwood sites are consistent with the 

expectation that ant communities differ between habitat types at local scales (BERMAN & 

ANDERSEN 2012, CROSS & al. 2016) (Fig. 2 & 3).  Distinct species compositions existed between 

habitats, but sandhill sites were more similar to one another than flatwood sites, indicating the 

greater homogeneity in soil habitat conditions in the sandhills. This suggests that heterogeneous 

soil habitat conditions affecting thief ants in flatwoods may result in more variation in the 

species present in any given area. This clustering also indicates the presence of a potential 

ecological driver (soil temperature and moisture conditions by regressions) for dissimilar species 

rosters found in both habitats. Such drivers may be environmental filters resulting in different 

survivorship or competitive abilities among species, ultimately resulting in different species 

found in pine flatwoods and high pine sandhills. Results here describe patterns in species 

composition; elucidating actual drivers of these patterns will require experiments and careful 

observation of species’ natural histories. 

The known natural history of most of these species agrees with their positions within the 

NMDS. Of the sandhill thief ant species, only S. tonsa, one of the few truly subterranean species, 

is expected to occur strictly in sandhill (DEYRUP 2016). Solenopsis pergandei, another true 

subterranean species can be found in other soils but tends to be most common in open sandy 

areas such as sandhills. Solenopsis tennesseensis, a suspected subterranean but also litter-

dwelling thief ant, is a supposed habitat generalist but in this case, was closely associated with 

the sandhill sites. Other species that were tightly clustered to the sandhills were P. metallescens, 
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P. adrianoi, and P. floridana. Pheidole metallescens is considered a predominantly upland 

species that is usually found in high pine sandhills and usually co-occurs with P. adrianoi. 

Pheidole floridana is associated with drier habitats, like the sandhills, and is less likely to be 

found in moist forested areas (DEYRUP 2016). Flatwood species other than S. nickersoni included 

B. depilis and P. morrisi. Brachymyrmex depilis, predominantly sampled in the flatwoods,  is 

considered a generally subterranean species like subterranean thief ants except they are usually 

found in a wider variety of habitat types across North America (DEYRUP 2016). However, its 

general absence in the sandhills may be indicative of it preferring mesic conditions or being out-

competed by the thief ants or species of small-bodied Pheidole. The fire ant, S. invicta, is a 

known invasive and weedy species, capable of surviving in inundation-prone habitats 

(TSCHINKEL 2006). Its position in the NMDS analysis indicate its prevalence in both habitats 

(Fig. 2 & 3) which would be logical considering its ability to establish in a variety of conditions, 

especially if there are forest roads or other disturbances nearby. 

Environmental gradients with Diversity and Species Occurrence  

Local scale ant diversity is often weakly correlated with abiotic conditions and is usually more 

strongly associated with local vegetation (CROSS & al. 2016). However for subterranean 

communities, gradients of abiotic conditions such as soil moisture and temperature may heavily 

influence their distribution at local scales (THOMPSON 1980, LUBERTAZZI & TSCHINKEL 2003, 

WILKIE & al. 2010). Teasing apart how local scale abiotic conditions affect diversity can be 

useful in discerning drivers of diversity. Here we found that diversity was predicted by an 

interaction between habitat types and average daily soil temperature range, where subterranean 

ant diversity increased with average daily temperature range in sandhill habitats but decreased 

slightly in the flatwoods (Fig. 4, Table 3). Flatwood sites also experienced higher variation in 
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average daily soil temperature range than sandhill sites. This result may indicate a more dynamic 

environment in the flatwoods, where soil temperature can be influenced by flooding events due 

to poorly drained soils. Flooding events in these areas as well as shallow water tables may 

strongly constrain habitat space for these ants (LAMMERS 1987, LUBERTAZZI & TSCHINKEL 2003, 

TSCHINKEL & al. 2012).  Another possible explanation is that some ant species may not be able 

to tolerate the wide temperature differences and therefore prefer the lower soil temperature 

variation. It was surprising to find no significant effects on diversity from soil moisture as it 

could be a better proxy for indicating periodic flooding. However, the relatively brief study did 

not collect moisture data throughout a wet-dry season cycle, so the full variation of soil moisture 

that may affect colony distributions was not fully evaluated.  

Depths to water tables and inundation dynamics may not drive species composition and 

diversity differences between the two habitat types. Logistic regressions showed that 

environmental soil gradients serve a significant role in the occurrence of thief ants and co-

occurring ants found in our sampling. For example, in low soil moisture, cooler minimum soil 

temperature increases the chance of S. pergandei occurrence but in high moisture soils, lower 

minimum soil temperature decreases the chances of occurrence.  This suggests that S. pergandei 

might be sensitive to the synergistic effects of both soil moisture and temperature.  

The logistic regression for S. carolinensis showed significant negative effects on the 

chances of its occurrence as soil temperature and moisture increased. The same significant effect 

on the same parameters were also observed for S. tonsa. Finally, S. tennesseensis occurrence was 

negatively affected by increasing soil temperature. Across these four thief ant species there is 

thus a trend of decreasing occurrence as soil moisture or temperature increases (Table 4). These 

four species were also all positioned tightly within the same sandhill cluster from the NMDS 
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analysis suggesting, again, soil abiotic conditions as a potential driver for that thief ant 

clustering. This is congruent with previous assumptions found from THOMPSON (1980) that 

highly moist and inundation-prone areas may not be suitable for the persistence of these species 

as well as a study from Texas (LAMMERS 1987) where it was suggested that subterranean 

foraging by thief ants may be limited by soil moisture.  

When considering the occurrence of other non-thief ant species in flatwoods within the 

context of the NMDS analysis, only B. depilis occurrence was modelled successfully in the 

flatwoods. A sandhill species, S. pergandei, was modeled with the same predictors but responded 

in opposite directions (Fig. 5, Table 4, Table 5). These contrasting patterns suggest 

environmental filtering as potential mechanism explaining their occurrence in disparate habitats. 

Brachymyrmex depilis could be more sensitive to xeric conditions as indicated by lower 

occurrences at lower levels of soil moisture while S. pergandei tends to show the opposite trend. 

These results supports previous suggestions that Florida’s subterranean thief ants may occur 

more frequently in well-drained soils (e.g., high pine sandhill ecosystems) (THOMPSON 1980, 

LAMMERS 1987). A wider range of environmental conditions in other habitats and locations 

should also be considered to verify the patterns observed here, in sandy soils.  

Although our models show evidence indicative of environmental filtering in certain 

subterranean species, patterns of occurrence of thief ants may also be affected by the occurrence 

and distributions of potential prey in the context of the purported lestobiotic interactions that 

thief ants have with other ants, especially larger-bodied ant species. To further understand the 

role that species interactions may play in shaping subterranean ant distributions, there is a need 

for detailed information on, for example, the local distribution of thief ant colonies in relation to 
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other colonies. Unfortunately, no such data exists but we can cautiously infer patterns of co-

occurrence from aboveground pitfall data.   

A Comparison of Studies 

This study showed the dominance of thief ants among small-bodied ants in the subterranean 

environment of central Florida’s sandy soils. Furthermore, our community analyses indicate 

significantly distinct subterranean ant communities between flatwood and sandhill habitat types. 

Moreover, the diversity of these communities can be predicted using soil abiotic conditions.  

Subterranean thief ant diversity patterns remain largely enigmatic in most regions of the world, 

so the results of this study are the first quantitative assessments of the diversity and distribution 

of an abundant group of subterranean ants and the abiotic predictors of that diversity.  

This study complements two other subterranean sampling studies in Florida (Tallahassee 

and Gainesville) and is one of few studies globally to assess abiotic predictors of subterranean 

ant diversity patterns (THOMPSON 1980, LUBERTAZZI & TSCHINKEL 2003). Ants in the 

Solenopsis genus dominate the subterranean thief ant communities in both north and central 

Florida. Fifteen total species were found in belowground samples here while 20 species were 

captured in north Florida (LUBERTAZZI & TSCHINKEL 2003). Solenopsis pergandei, was the most 

dominant species in our study, but not in north Florida. THOMPSON (1980) described S. 

pergandei as an “occasional dominant” species in north-central Florida (Gainesville). The 

dominant thief ant in both the Tallahassee and Gainesville studies was S. carolinensis. This 

indicates a transition between S. pergandei and S. carolinensis as dominant thief ants between 

central and north Florida. Other species occurrences, including P. dentata, P. floridana, P. 

metallescens, and B. depilis were found in studies of THOMPSON (1980), LUBERTAZZI & 

TSCHINKEL (2013), and results here.  Our study provides further evidence of the widespread, 
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high abundances of thief ants in this region. It is also clear that the subterranean ant communities 

of semi-tropical and temperate Florida are not as diverse as subterranean communities in the 

Neotropics (THOMPSON 1980, LUBERTAZZI & TSCHINKEL 2003, WILKIE & al. 2007) where as 

many as 47 species were recorded at local scales.  

Sampling methods differed between 2012 aboveground sampling (pitfall traps) and 

belowground baits in this study; comparisons are made with caution. Aboveground samples 

collected more species (37 species in 18 genera), and abundances were more evenly distributed 

among general than in our belowground sampling. Aboveground, the genus Pheidole is most 

abundant followed closely by Solenopsis and Campanotus. Solenopsis pergandei and S. tonsa, 

two truly subterranean species, were not recorded in any of the aboveground traps. However, 

belowground, Solenopsis remains dominant by quite a large margin (Fig. 6). Aboveground 

species richness remains relatively the same with 32 species in the flatwoods and 35 in the 

sandhill. The aboveground ant community seems to have a higher abundance of individuals 

across the genera present in sandhill habitat when compared to flatwoods habitat. However, 

several genera show the opposite trend, including Formica and Nylanderia. Considering the 

temporal difference in the pitfall data and the subterranean data we suggest that it is possible that 

sandhill habitats may serve as areas of higher abundance of larger-bodied ants that can serve as 

potential prey for thief ants. 

Figure 6: Abundance of aboveground and belowground sampling. Y-axis represents ant taxa at 

the genus level. X-axis represents the proportion of total abundance per sampling type. Dark 

sections of the bars represent abundance found in pine flatwood areas and lighter sections 

represent abundance found in high pine sandhill areas. Note: Solenopsis invicta has been 

removed from the datasets represented in the figure. 
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Figure 6: Abundance of aboveground and belowground sampling. Y-axis represents ant taxa at the genus level. X-axis represents 

the proportion of total abundance per sampling type. Dark sections of the bars represent abundance found in pine flatwood 

areas and lighter sections represent abundance found in high pine sandhill areas. Note: Solenopsis invicta has been removed 

from the datasets represented in the figure  

Lestobiosis and subterranean ant communities 

This study affirms the general dominance of thief ants in Florida upland soils (THOMPSON 1980, 

LUBERTAZZI & TSCHINKEL 2003).  If thief ants are truly lestobiotic, then their widespread 

abundance, now shown by three studies in Florida (including this one), suggests potential for 

substantial effects on co-occurring ants, including direct and indirect effects via  brood raiding 

and generalist predation (THOMPSON 1980, BUREN 1983, LAMMERS 1987, NICHOLS & SITES 

1991, YAMAGUCHI & HASEGAWA 1996, VINSON & RAO 2004).  Further sampling is needed to 

evaluate subterranean ant communities among various ecosystems, and the environmental 
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conditions that may potentially predict the diversity and distributions of these lesser-known ant 

communities.  
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CHAPTER 2: EXPERIMENTAL EVIDENCE THAT SUBTERRANEAN 
SOLENOPSIS THIEF ANTS (HYMENOPTERA: FORMICIDAE) EXERT TOP-

DOWN EFFECTS ON THE ABOVEGROUND ANT COMMUNITY 

 

Abstract 

Interspecific ant interactions in natural subterranean habitats have rarely been studied. Instead, 

research has primarily focused on aboveground interspecific competition. This study sheds new 

light on predation by an abundant and globally cosmopolitan group of ants, the Solenopsis thief 

ants. Thief ants are hypothesized to prey on brood or larvae of larger ant species in belowground 

nests after stealing them from the host ant. To assess their potential belowground impacts on the 

surrounding ant community, subterranean thief ant populations were experimentally reduced in 

field plots over the course of ~1 year. Aboveground ant sampling quantified potential effects of 

thief ant reductions on aboveground ants. The reduction methodology, a novel contribution, 

proved to be successful with significant reductions of both thief ant abundances and occurrences 

in plots targeted for reduction compared to control plots. Among aboveground ants, only 

Dorymyrmex bureni clearly increased given reduced thief ants; other aboveground ant species 

were not clearly affected. Based on our results, thief ants selectively affect aboveground ant 

communities, suggesting predator-prey coevolution.  

    

Introduction 

Biotic interactions between organisms serve as an important component in niche-based processes 

and influence community-level structure. These interactions, such as competition and predation, 

can mold an ecological community’s structure by playing a pivotal role in regulating organisms 
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at the local population level (Lynch et al. 1979). Although views that counter this idea exist 

(Ricklefs 2008), previous studies have shown the significant effects that these interactions can 

have at the local scale and across trophic levels (Thorp & Cothran 1984). Perhaps one of the 

most direct and significant interactions in regulating organisms at the population level is 

predation. Assessing the effects of predation on prey in the natural environment is often difficult 

with some methods involving the assessment of species co-occurrence patterns at various scales 

(Bell et al. 2010, Jenkins 2006) or the estimation of predicted biomass consumption directly after 

a predation event while accounting for predation rates (Kaspari et al. 2011).  

Ants serve as an excellent group in quantifying and understanding biotic interactions at 

the community level as they represent a well-studied and abundant group of organisms with 

established methods available for assessing their abiotic and biotic interactions. Ants have 

ecosystem-level effects through a variety of interactions such as seed dispersal, soil turnover, and 

mutualisms with other arthropods (Nkem et al. 2000, Levey & Byrne 1993, Styrsky & Eubanks 

2006). These interactions justify the need to study interspecific interactions that may affect the 

total abundance or species composition of ant communities. Interspecific interactions likely play 

a strong role in the dynamism and structure of an ant community as evidence from exotic ants 

show the capacity of these interactions, often times antagonistic, in generating community-level 

changes (Sanders et al. 2003).  

Ant communities are often well-studied in the context of interspecific competition 

(Sanders & Gordan 2000, Morrison 2000). These competition-based interactions are shown to 

drive a structured hierarchy of behavioral dominance among some species in a variety of ant 

communities (Greenslade 1976, Andersen 1997). The subsequent effects of a structured 

hierarchy based on behavioral dominance plays a role in our perception of the overall structure 
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of ant communities. However, there is a good deal that we do not know about how other 

interspecific interactions, such as ant-ant predation, affect community structure. Ant predation on 

other ants has rarely been studied except for predation by some army ant species (Kaspari et al. 

2011). Army ants have been shown to exert a form of top-down regulation on the co-occurring 

arthropod community, especially ants (Breton et al. 2007, LaPolla et al. 2002, Swartz 1998).  

It is probable that predation plays a significant role in the structure and assembly of ant 

communities at local scales (LaPolla et al. 2002, Powell & Clark 2004). The importance of 

predation driving top-down regulation of animal communities has been repeatedly shown in 

vertebrate and invertebrate communities, alike (Krebs 2009). In the specific case of ants, 

understanding how predation shapes community structure has traditionally been very difficult 

because most ants spend a significant portion of their life belowground. Interspecific predation 

occurring belowground is likely very important but also very hard to document and verify. For 

example, predation of founding ant queens by other ants likely has a direct effect on population-

level dynamics in ant communities (Lammers 1987, Nichols & Sites 1991, Vinson & Rao 2004) 

but has rarely been documented.  

This study investigates the interactions between aboveground-foraging ants and 

subterranean ants that occur in the belowground environment. Subterranean ants spend almost 

the entirety of their lives exclusively belowground (Wong & Guénard 2017). Studies like this are 

non-existent in the literature likely due to the difficulty in finding and studying ants belowground 

under natural conditions.  Current hypotheses of the origin and evolution of ants suggest that 

basal lineages stem from species that were subterranean (Lucky et al. 2013, Wilson & Hölldobler 

2005) and recent evidence supports these hypotheses (Rabeling et al. 2008). Thus, studying the 

ecology of subterranean ants may provide important insights into understanding the evolutionary 
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biology of ants, generally, and will provide specific information about subterranean interactions 

between ant species that are likely ancient selective forces. Subterranean ants are often cryptic in 

their morphology and species delimitation has proven challenging for a number of genera 

(Pacheco & MacKay 2013, Wong & Guenard 2017). Therefore, not only do many taxa remain 

undescribed but the conventional morphological approaches to describing ants may not be as 

useful for describing many subterranean species. However, there are certain groups of 

subterranean ants that have been morphologically well-described, such as thief ants (Pacheco 

MacKay 2013). Collectively, there are a number of challenges to studying subterranean ant 

communities but improving our understanding of their ecology is justified.  

Thief ants are a globally conspicuous member of most ant communities throughout the 

world, ranging from tropics to temperate zones. In Florida, they are a dominant group in 

belowground ant communities, often comprising over half the total abundance of ants 

(Lubertazzi & Tschinkel 2003, Ohyama et al. 2018) and have been taxonomically described 

without any significant changes for decades (Moreno-Gonzalez 2001, Pacheco & MacKay 2013, 

Deyrup 2016, Thompson 1980, Thompson 1989). Furthermore, Florida’s thief ant natural history 

is better understood relative to their congeners around the world. However, our understanding of 

their natural history has resulted primarily from a very limited number of studies and a handful 

of anecdotal accounts of their behavior and ecology (Blum et al. 1980, Deyrup 2016, Hölldobler 

1973, Thompson 1980, Wheeler 1901). Existing evidence suggests that there is a high 

probability that most thief ant colonies are lestobiotic, preying on other ground-nesting species of 

ants that forage aboveground and are regularly found near thief ant colonies.  

Lestobiosis is a subterranean predatory interaction typically involving a small-bodied 

“thief” ant species that nest and forage belowground near the nests of larger-bodied host ant 



 
 

39 

colonies, tunnel into their hosts’ nests, and steal their brood (Deyrup 2016, Hölldobler 1973, 

Hölldobler and Wilson 1990, Tschinkel 2006). Thief ants are assumed to be lestobiotic upon a 

wide range of ant species that are often much larger in size, although thief ants may also be 

dietary generalists and even predators of other ants when not stealing brood as they have also 

been observed actively preying on founding queens (Blum et al. 1980, Deyrup 2016, Thompson 

1980, Buren 1983, Lammers 1987, Nichols and Sites 1991, Vinson and Rao 2004, Wheeler 

1901). 

Whether thief ants specialize solely on the brood and larvae of other ants or are generalist 

omnivores like their sister group, the fire ants, remains unknown. And the effects of lestobiosis 

or general predation by thief ants on co-occurring ant populations is unknown. Thief ants are 

often very abundant locally in a wide variety of subtropical and tropical ecosystems. If highly 

abundant thief ants are actively lestobiotic and regulate co-occurring aboveground-foraging ant 

populations, then release from lestobiosis through multiple generations of brood and workers 

should quantifiably increase aboveground-foraging ant worker abundances. This study’s 

objective is to test that hypothesis.  

To test this hypothesis, a field experiment was conducted where thief ant populations 

were significantly reduced in treatment plots compared to control plots. Co-occurring ant 

abundances were then quantified and compared between treatment types.  

Predation is the assumed regulatory mechanism of co-occurring aboveground-foraging 

ants as thief ants practice a completely different life history strategy compared to the majority of 

the co-occurring ant community. They forage belowground in a different stratum than most ants 

(Ohyama et al. 2018) and are smaller than almost all other ants found in the same community 

(Deyrup 2016, King & Porter 2010, Pacheco & MacKay 2013). These distinct differences allow 



 
 

40 

the probabilistic assumption that competition plays a negligible role in the relationship between 

thief ants and co-occurring aboveground-foraging ants.  

Field studies involving the removal or significant reduction of ants from large plots are 

not common. They are logistically difficult to execute and often require long time periods to 

determine the effectiveness of the removal or reduction and whether impacts on co-occurring 

species has occurred. Removing or reducing specific ant species from a community adds another 

layer of difficulty as removal or reduction methods must be specific, only affecting the species or 

group of interest.  Despite such difficulties, removal or reduction experiments provide a robust 

and elegant approach to determining the impact of a species in a community.  

In the past, ant removal or reduction field-based studies have often relied on techniques 

that center on the prevention of ants from gaining access to areas in a form of exclusion (e.g. 

caging, fencing) (Andersen & Patel 1994, Gibb & Hochuli 2004, Zelikova et al. 2011). Other 

methods of reduction or removal are short temporal reductions of a species from localized areas 

(LeBrun et al. 2007). There are even fewer studies that focus on large-scale and long-term 

reduction of ants from plots of natural habitat, most likely because they prove to be logistically 

challenging. One of the few studies that has been able to successfully reduce certain groups of 

ants from large areas in the field over multiple years comes from King & Tschinkel (2006), 

where colonies of the red-imported fire ant, Solenopsis invicta, were successfully reduced over 

the course of three years. The same study involved the monitoring of co-occurring ants in these 

plots to assess the competitive effects of the invasive species.  

For this study, subterranean thief ants were reduced in the field over the course of almost 

one year. Similar to King & Tschinkel (2006), co-occurring ant populations were assessed 

throughout the duration of the experiment in treated and control plots.  
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Methods 

Study site and design 

20 plots were randomly placed in sandhill habitat of Wekiva Springs State Park (2,750 hectares) 

situated in Orange and Seminole County Florida. Sandhill was used for the location of this 

experiment given results from a study by Ohyama et al. (2018). The authors established that this 

habitat holds a high diversity and very high abundance of subterranean thief ants. High pine 

sandhill is a pyrogenic habitat characterized by well-drained sandy soils, an overstory of longleaf 

pine (Pinus palustris), and a groundcover dominated by wiregrass (Astrida beyrichiana) (Myers 

& Ewell 1990) . The placement of sandhill sites were randomly generated in ArcMap and placed 

in areas maintained by low intensity prescribed fires. 10 of these were randomly chosen to 

receive a thief ant reduction treatment while the other 10 plots were left as control plots, 

receiving no treatments. Plots were 18 m × 18 m. 16 flags were positioned in these plots in a grid 

spaced out by 6 meters, these flags were point flags that represented the borders and gridlines 

within each plot. Another 16 flags were set up within a 1-meter radius of the point flags. These 

flags represented points where thief ant reduction and sampling were done. These flags were 

randomly moved within a 1-meter radius of the point flags for every sampling and thief ant 

reduction event to avoid the resampling of the same position.  

Thief ant reduction and belowground sampling 

The thief ant reduction treatment consisted of loading plastic capped vials 70 mm tall and 30 mm 

in diameter with AMDRO™. This approach is an adaptation of sampling methods used by 

Ohyama et al. (2018). AMDRO is an ant-specific pesticide with a main chemical compound of 

hydramethylnon (Meer et al. 1982). It’s effects on other arthropods are minimal, especially when 
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the target species collect the majority of the toxic bait (Apperson et al. 1984). A ~5 mm diameter 

hole was made at the bottom of the plastic vial and covered with 0.75 mm screening to exclude 

larger insects and arthropods (e.g., fire ants) but permit entry by thief ants. This approach 

reduces the likelihood of non-target effects as the vast majority of ants with access to the 

pesticide baits were thief ants. We note that a few species of small Pheidole (P. metallescens, P. 

floridana) still had the capacity to enter these vials and did so in relatively small numbers in 

some of the plots (see Results).  

 The screening used for insecticide treatment vials in this study had smaller openings 

compared to those used by Ohyama et al. (2018). As a result, the traps permitted fewer species 

and in lower numbers of non-thief ant species to enter the vial. Specifically, Ohyama et al. 2018 

showed that screening with 1 mm aperture still allowed species such as Forelius pruinosus, 

Pheidole morrisii, and Nylanderia wojciki to pass through. Thus, we adopted the 0.75 mm 

aperture screening for this study.  

 Pesticide-loaded vials were delivered belowground to a depth of ~10 cm below the soil 

surface using a 24-inch auger bit with a 24-volt battery-operated drill. Vials remained 

underground for 2 weeks then removed and replaced with a vial with fresh bait. The treatment 

was carried out during the last two weeks of every month starting from February 2018 to 

November 2018. After every pesticide treatment a subterranean sampling of all plots was done to 

evaluate the effects of the pesticide on thief ant relative abundances and occurrences. Sampling 

was not done for the month of October because of difficult field conditions. These sampling 

events utilized a vial with the same design as the one used to deploy AMDRO belowground but 

were filled with Pecan Sandies™ cookies. Vials were planted 10 cm belowground and left for 3 

days. An initial sampling of the plots prior to the first pesticide treatment was conducted in the 
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month of February to establish baseline abundances of both above and belowground ants for all 

plots.  

Aboveground pitfall sampling 

4 pitfalls were randomly set up in each plot and operated for 3 days in tandem with the 

subterranean sampling. Pitfall traps were 85 mm long plastic vials with 30 mm internal diameter 

partially filled with ~ 15 ml of non-toxic, propylene-glycol antifreeze.  Traps were buried with 

the opened end flush with the surface of the ground. Traps were installed using a hand-held, 

battery-powered drill using an auger bit. All ants were pooled into one sample to represent the 

abundance and occurrence per plot rather than per trap. 

Seasonality 

It’s important to note that the study site experienced abnormal weather patterns during the wet 

season (months of April to August) in 2018. These abnormalities included heavy pulses of rain 

and intermittent weeks of droughty conditions that likely reduced ant foraging (personal 

observation) relative to ‘normal’ years where ant worker activity peaks in the summer months. 

As a result, pitfall trap abundances were unusually low from the months of June through 

September. Comparisons among treatments and controls still remain valid as all plots were 

subject to the same conditions. All ants from all pitfalls were identified to species and counted by 

the authors. Voucher specimens were deposited in the University of Central Florida Collection of 

Arthropods.  

Analysis 

To validate the reduction of thief ants in the plots both graphing and statistical modeling were 

used. Occurrences and abundances were modeled as a function of treatment type and a covariate 
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of the initial abundances or occurrences in the plots. The covariate was included as a model 

parameter to account for the natural variation of ant abundance or occurrences for each plot and 

comes from the first month of sampling (February 2018) prior to the first treatment of pesticide. 

This was necessary as some plots had been randomly generated in areas with high concentrations 

of thief ants. Therefore, in order to assess the effectiveness of the thief ant reduction treatment it 

was necessary to account for this initial and unequal variance. A mixed-effects model with a 

negative binomial error distribution and a random intercept for months that accounted for 

repeated sampling was used with the initial data as a covariate (scaled to z-scores). Reduction of 

thief ants was also assessed using heat maps at the plot level for the months of August to 

November. This was done because a single belowground bait could at times hold up to ~600 

thief ant workers. In some cases, this one bait could skew and misrepresent the abundance of 

thief ants throughout the entire plot.   

A similar modeling approach was used with pitfall data to assess the potential effects of 

thief ant reduction on aboveground ants. Any species found in the belowground baits were 

removed from the aboveground pitfall analyses as these species would have had access to the 

pesticide (10 species total, average of 2 species per plot, per month). A mixed-effects model, 

with a negative binomial error distribution, and a random intercept to account for repeat 

sampling was used. The negative binomial distribution was selected for all models due to 

overdispersion in the count data.  

Initial sampling data from February was not included in the response variable for the 

models as the data was collected prior to the first pesticide treatment. All models were run using 

R statistical programming and the package lme4 (R Development Core Team 2018, Bates et al. 



 
 

45 

2015). All plots were done using the package ‘ggplot2’ (Wickham 2009). Pseudo-R2 values for 

marginal and conditional effects were generated using the R package ‘MuMIn’ (Barton 2018). 

Results 

Thief ant reduction 

Thief ant abundances and occurrences were reduced throughout the duration of 8 sampled 

months in plots treated with AMDRO. Significant reduction was not observed until the months 

of May and June for both abundances and occurrences, respectively. Subsequent months after the 

initial signs of reductions showed rapidly increasing differences between pesticide-treated and 

control plots (Figure 7 & 8).  Non-thief ant species caught in our belowground bait traps 

included small-bodied species of Pheidole (P. adrianoi, P.floridana, P. metallescens, and P. 

moerens), Nylanderia wojciki and Wasmannia auropunctata. The latter two species only 

occurred once and twice respectively across all samples. There were a total of 3 N. wojciki and 

84 Wasmannia individuals recorded from the sampling while the total belowground ant count 

was 197,400 ants. Finally, heat maps of average thief ant abundance generated for the months of 

August, September, and November (Figure 9) indicate that the average thief ant worker 

abundance at the individual plot scale were lower in thief ant reduced plots versus control plots 

across the majority of the 16 sampling points per plot.  
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Figure 7: Boxplots showing the distribution of thief ant worker abundance (Y – axis) in control and treatment plots for every 

month of sampling (X – axis). 
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Figure 8: Boxplots showing the distribution of thief ant occurrence (Y – axis) in control and treatment plots for every month of 

sampling (X – axis). 
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Figure 9: Heat maps of average thief ant abundance at the plot level for 16 sampling points across plots based on treatment 

type and the month of sampling. 
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 The total abundance and occurrence of the belowground sampling also show 

proportionally large total differences between control and thief ant reduced plots (Fig 11 & Fig 

12). Across all plots, thief ants made up 88.67% of the total ant abundance and 66.62% of all ant 

occurrences in belowground samples.  

There was a lag effect in thief ant reduction during the course of the year as thief ants did 

not instantly decrease in number as treatments were applied (Figure 7 & 8). However, the 

months of May and June saw a significant reduction of abundance and occurrence. The two most 

likely, not mutually exclusive explanations for this lag effect are: 1) it took ~4-5 months to 

reduce the number or size of colonies in the treated plots to a detectable level, and 2) thief ants 

may increase foraging activities in the months of May, therefore increasing encounters with 

pesticide during the subsequent months (Figure 10). By August, the effects of the treatment were 

apparent at the plot level (Figure 9) with average thief ant abundances at almost every sampling 

point within treated plots being lower than abundances in the control plots.  
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Figure 10: Plot showing the occurrence percentage of the genera Pheidole and Solenopsis (Y – axis) across sampled months (X – 

axis) from belowground sampling. Shapes represent treatment types and colors represent taxa. 
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Figure 11: Column graph showing the total summed abundance of thief ant workers for each month of sampling 
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Figure 12: Column graph showing the total summed occurrence of thief ant workers for each month of sampling 

 

 Fixed effects of the model showed significant reduction of thief ant occurrence in thief 

ant reduced plots relative to control plots (Table 6, Figure 13). Marginal and conditional Pseudo-

R2 values were 0.23 and 0.27 where marginal values represent the variation explained by the 

fixed effects and conditional values represent the variation explained by the both fixed and 

random effects. These values were calculated using the tri-gamma function, a method that is best 

suited for distributions using logarithmic links (Barton 2018). It’s important to note that pseudo-
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R2 values for mixed-effect models are not fully reliable and may misrepresent the model’s ability 

to fully explain variation in the data. Therefore, although helpful, these values should be 

interpreted with some caution.  

 

Table 6: Model output from a negative binomial mixed-effects model assessing thief ant occurrence as a function of treatment 

type and an initial occurrence covariate. The variation from the random effects of months as well as the fixed effects estimates 

and their respective standard errors are shown. 

Model: Thief ant occurrence ~ Initial occurrence + Treatment type + (1|Month) 

Random effects Variance 
Standard 
deviation 

 

Months 0.2167 0.1472 

Fixed effects Estimate Standard error z – value Pr(>|z|) 

Intercept 

(Control) 
1.86715 0.08390 22.253 <2e-16 

Initial 

occurrence 
0.1397 0.05196 2.573 0.0101 

Treated -0.50178 0.10282 -4.880 1.06e-06 

 

 

 Fixed effects from the mixed-effects model assessing thief ant abundance showed 

significant reduction of abundance in thief ant reduced plots relative to control plots (Table 7, 

Figure 14). Pseudo-R2 values based on the tri-gamma function show that the marginal R2 was 

0.13 and the conditional R2 was 0.18. 
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Table 7: Model output from a negative binomial mixed-effects model assessing thief ant abundance as a function of treatment 

type and an initial abundance covariate. The variation from the random effects of months as well as the fixed effects estimates 

and their respective standard errors are shown. 

Model: Thief ant abundance ~ Initial abundance + Treatment type + (1|Month) 

Random effects Variance 
Standard 
deviation 

 

Months 0.1785 0.4225 

Fixed effects Estimate Standard error z – value Pr(>|z|) 

Intercept 

(Control) 
7.3685 0.2018 36.506 <2e-16 

Initial 

abundance 
0.08428 0.1017 0.829 0.407 

Treated -1.26095 0.1942 -6.493 8.39e-11 
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Figure 13: Fixed effects of a mixed-effect negative binomial model fitted regression values of thief ant occurrence by treatment 

type. X – axis represents initial sampling of occurrence scaled by z-scores. Y – axis represents the back-transformed predicted 

values from the model. Shaded regions represent 95% confidence intervals that account for the uncertainty of the fixed effects. 

Raw data represented by colored points (blue, black). The uncertainty of the random effects is not accounted for in the 

confidence intervals therefore caution is necessary when interpreting them. 

 



 
 

56 

 

Figure 14: Fixed effects of a mixed-effect negative binomial model fitted regression values of thief ant abundance by treatment 

type. X – axis represents initial sampling of abundance scaled by z-scores. Y – axis represents the back-transformed predicted 

values from the model. Shaded regions represent 95% confidence intervals that account for the uncertainty of the fixed effects. 

Raw data represented by colored points (blue, black). The uncertainty of the random effects is not accounted for in the 

confidence intervals therefore caution is necessary when interpreting them. 

 

Aboveground ant effects 

Prior to analyzing the aboveground ant data obtained from pitfall sampling, species that were 

found in belowground baits were removed from the dataset to avoid false inferences for species 

that could have been affected by the pesticide. The species removed were Nylanderia wojciki, 
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Pheidole adrianoi, P. floridana, P. metallescens, P. moerens, Solenopsis carolinensis, S. invicta, 

S. nickersoni, S. tennesseensis, and Wasmannia auropunctata. These 10 species accounted for 

40% of the ant abundance and 34% of the occurrences in the aboveground pitfall dataset.  Of the 

remaining species, 38 species were pooled as aboveground ant abundance because they appeared 

in very low numbers or sporadically in some months. One species, Dorymyrmex bureni, was 

well-represented in data every month and provided a robust response for the repeated measures 

statistical model.  

 Thief ant reduced plots consistently held higher abundances of aboveground ants over 

time than in control plots. The differences in abundances were detectable as the mixed-effects 

model of aboveground ant abundance showed a positive estimate in thief ant reduced plots 

compared to control plots (Table 8, Figure 15). The random intercept of months helped parse out 

the signal from this data and this is shown by the variance and standard deviation of the random 

intercept output from the model (Table 3) as well as the tri-gamma pseudo-R2 value where the 

marginal (0.08) and conditional (0.24) pseudo-R2 values indicate ~ 66% of the total explained 

variance contributed by the random effect.  
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Table 8: Model output from a negative binomial mixed-effects model assessing aboveground ant abundance as a function of 

treatment type and an initial abundance covariate. The variation from the random effects of months as well as the fixed effects 

estimates and their respective standard errors are shown. 

Model: Aboveground abundance ~ Initial abundance + Treatment type + (1|Month) 

Random effects Variance 
Standard 
deviation 

 

Months 0.3059 0.5531 

Fixed effects Estimate Standard error z – value Pr(>|z|) 

Intercept 

(Control) 
3.4491 0.2255 15.296 <2e-16 

Initial 

abundance 
0.3638 0.0879 4.137 3.52e-05 

Treated 0.4746 0.1620 0.293 0.003 
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Figure 15: Fixed-effects of a negative binomial model fitted regression values of aboveground ant abundance by treatment type. 

X – axis represents initial sampling of abundance scaled by z-scores. Y – axis represents the back-transformed predicted values 

from the model. Shaded regions represent 95% confidence intervals that account for the uncertainty of the fixed effects. Raw 

data represented by colored points (blue, yellow). The uncertainty of the random effects is not accounted for in the confidence 

intervals therefore caution is necessary when interpreting them. 

 

The final mixed-effects model was the abundance of Dorymyrmex bureni worker 

abundance as a function of an initial sampling covariate and treatment type (Figure 16). The 

model showed a significant positive estimate for D. bureni abundance in thief ant reduced plots 
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versus control plots (Table 9). The marginal and conditional pseudo-R2 values were 0.11 and 

0.14 respectively.  

Table 9: Model output from a negative binomial mixed-effects model assessing Dorymyrmex bureni ant abundance as a function 

of treatment type and an initial abundance covariate. The variation from the random effects of months as well as the fixed 

effects estimates and their respective standard errors are shown. 

Model: Dorymyrmex bureni abundance ~ Initial abundance + Treatment type + (1|Month) 

Random effects Variance 
Standard 
deviation 

 

Months 0.1107 0.3328 

Fixed effects Estimate Standard error z – value Pr(>|z|) 

Intercept 

(Control) 
1.7954 0.1925 9.328 <2e-16 

Initial 

abundance 
0.5270 0.1050 5.019 5.19e-07 

Treated 0.7908 0.2101 3.764 0.000167 
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Figure 16: Fixed-effects of a negative binomial model fitted regression values of Dorymyrmex bureni abundance by treatment 

type. X – axis represents initial sampling of abundance scaled by z-scores. Y – axis represents the back-transformed predicted 

values from the model. Shaded regions represent 95% confidence intervals that account for the uncertainty of the fixed effects. 

Raw data represented by colored points (blue, black). The uncertainty of the random effects is not accounted for in the 

confidence intervals therefore caution is necessary when interpreting them. 

 

Discussion 

Thief ant reduction 

The methods utilized to reduce thief ant diversity were effective as the models showed the 

effectiveness of AMDRO applied in screened, belowground traps in reducing thief ant 
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abundance and occurrence belowground. Although a small number of ant species other than thief 

ants, such as small Pheidole species, were potentially impacted by treatments of pesticide, the 

reduction of these other species was minimal relative to the impact of the treatments on thief 

ants. Pheidole species baited belowground decrease in abundance and occurrence around the 

onset of the wet season suggesting a shifting of foraging strategies to the aboveground surface 

(Figure 10). At the same time, thief ants start increasing in their activities belowground. 

Furthermore, a study done in the same park in 2017 established that thief ants make up 70% of 

the belowground ant fauna in sandhill habitat (Ohyama et al. 2018). Therefore, pesticide 

treatments had the greatest impact on the most abundant ants in the belowground environment, 

thief ants. Nevertheless, we excluded non-thief ant species found in both below and aboveground 

sampling from our aboveground pitfall trap analyses to account for any potential of non-target 

effects due to pesticide exposure.   

 Results of this novel approach to experimentally manipulate subterranean ants show the 

value of implementing consistent field applications, in the manner of a press experiment, every 

month instead of a single pulse event. This is important as seasonal fluctuations in abundance or 

other factors affecting abundance over short time spans could make interpretation of data more 

challenging. Furthermore, as ants are territorial, new colonies may quickly move into areas that 

have been reduced. In order to sustain a reduction of the species of interest, a consistent 

application of control measures was necessary.  

Effects on aboveground communities 

Our results show increases in aboveground ant, and especially Dorymyrmex bureni, abundance 

corresponding with the experimental reduction of thief ants belowground. The effects of thief ant 

reduction took some time to become apparent in the aboveground ant community. Such lag 
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effects can be a result of seasonal fluctuations in aboveground-foraging ant worker abundance, 

for example. The majority of aboveground foraging ants in these communities begin the 

production of their reproductive sexual castes in the spring season (Deyrup 2016). During this 

time, sexual-producing colonies produce fewer workers and more sexuals. Among species here, 

the fire ant, S. invicta, is the best studied example of this annual cycle, where the tradeoff 

between producing sexuals or worker castes results in a diminished number of foragers during 

the spring (Tschinkel 2011). Forager numbers do not increase until the end of the mating season 

and the beginning of Fall. Therefore, under normal conditions, the initial signs of community 

effects on aboveground ants would most likely begin to show in the later months of September. 

It’s likely that another year of treatments and sampling would result in clearer patterns showing 

effects of the removals on the aboveground ant community.  

Based on evidence that aboveground ant abundance was higher than in thief ant reduced 

plots, it is probable that the aboveground ant community is going through a form of release from 

predation on brood by thief ants. This makes this study the first of its kind to show experimental 

evidence that lestobiosis may play a significant top-down regulatory role in ant communities. 

While it is possible that thief ants may only impact some species more than others, our data show 

potential impacts affecting multiple species.  

One species, Dorymyrmex bureni, showed strong effects from the reduction of thief ants, 

in part because it was more consistently abundant. Dorymyrmex bureni is a likely species to be 

the first to show any substantial changes in worker abundance given that they are one the most 

abundant members of Florida’s ant communities, have shorter generation cycles, and are also 

often viewed as opportunists (Deyrup 2016, King & Porter 2007). Our model shows that in plots 

with naturally high abundances of D. bureni, the effects from reducing thief ants was greatest 
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compared to plots with naturally lower levels of abundances (Figure 16). Although weaker, this 

pattern is also observed from the model assessing general aboveground ant abundance (Figure 

15). Therefore, as prey density increases the effects of predation also increase suggesting that the 

magnitude of brood predation by thief ants is likely density-dependent and occurs across the 

spectrum of prey density. This further suggests that thief ant predation could be a form of apex 

predation as it is a constant pressure on the ant community.   

The implications of this study for ant community ecology are important. Here we show 

the smallest-bodied ants in a community, which is a group of subterranean thief ants, likely play 

a top-down regulatory role on the aboveground ant community through brood predation in the 

belowground environment. Our experimental evidence suggests that belowground ecological 

interactions between ants in the form of predation influences ant community structure. 

Considering that most ants spend a significant portion of their in-nest lives belowground these 

interactions are most likely equally or more important than the effects of ant-ant predation that 

occur aboveground (e.g. predatory effect of spiders, vertebrates, other ants on foragers). Further, 

these results suggest that many of the ecosystem services provided by ant communities are 

potentially indirectly influenced by the presence and abundance of thief ants.  

Predation occurring in the subterranean environment is an understudied aspect of ant 

ecology and our study creates a new perspective on how ant communities are regulated. 

Furthermore, the type of predation that is most likely occurring belowground involves the 

targeting of brood or larvae rather than fully-developed workers suggesting that these thief ants 

pose a survival hurdle to aboveground-foraging ants at very specific life stage in their 

development. Therefore, it’s most likely that these belowground ecological interactions play a 
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significant role in what is observed in the ant community aboveground. The smallest members of 

the ant community thus appear to exert an oversized effect on the entire community. 

 

Lestobiosis 

Lestobiosis by thief ants plays an important role in regulating abundance of multiple 

aboveground-foraging ants, and possibly for specific species. The mechanisms driving this 

study’s results, particularly with D. bureni, may include direct predation on queens but more 

likely is predation on larvae and pupae.  

Different effects among different prey ant species may be due to nest architecture or in-

nest behaviors (e.g., frequency of brood visits, brood care, or protection). We hypothesize that 

brood predation acts as a selective pressure for nest architecture, where nests that are diffuse and 

connected by long tunnel networks are more vulnerable to brood predation by thief ants. Such 

architecture is seen in Dorymyrmex bureni nests which are comprised of small flat chambers 

spread out vertically through a single tunnel system (Tschinkel 2003, Tschinkel 2015). While 

diffuse distribution of chambers may be more vulnerable, it may also positively affect overall 

survivorship of colony resources and brood by spreading risk via multiple small targets 

compared to architectural designs that utilize one major chamber. The relationship between ant 

nest architecture, in-nest brood care behaviors, and the ability of potential subterranean 

predators, like thief ants, to access brood piles has not been considered as part of the selective 

forces shaping ant nest architecture (Tschinkel 2003) but should be.  

Considering the high abundance and widespread distributions of thief ants across the 

warm temperate, subtropical, and tropical regions of the earth, it is reasonable to assume that the 

evolution of lestobiotic behavior has contributed to the success of this group of Solenopsis 
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species and the evolution of other ants. Unfortunately, the lack of natural history studies on this 

group impedes additional productive speculation. Nevertheless, this study has shown that the 

smallest of ants may be among the mightiest of predators within eusocial insect communities. 

This represents a new and exciting line of research that will help us better understand differences 

among ant species and how ant communities are structured.      
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