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ABSTRACT 

Alzheimer’s disease (AD) is accompanied by abnormal extracellular deposition of 

amyloid  (A) peptide. This has led to the amyloid cascade hypothesis, causatively 

relating A with AD. While A deposits assume a fibrillar cross- structure, prefibrillar 

oligomers of A have been identified as the main cytotoxic agents in AD. 

Pyroglutamylated amyloid beta (ApE) peptides are N-terminally truncated and 

pyroglutamylated (at Glu3 or Glu11) A molecules that display enhanced cytotoxicity 

and represent up to 50% of total A in AD brains. ApE significantly enhances the 

toxicity of unmodified A by an unknown mechanism. Although in situ A populations 

are heterogeneous, the majority of studies have been conducted on single A species.  

Here, we examined the structural and morphological changes that occur in mixed 

A/ApE samples. Circular dichroism and transmission electron microscopy data 

indicate that ApE3-42 forms -sheet structure and undergoes delayed fibrillogenesis 

compared to unmodified A1-42. Further, ApE3-42 decelerates -sheet formation in mixed 

A1-42/ApE3-42 samples. FTIR measurements, using 13C-labeled A1-42 and unlabeled 

ApE3-42, indicate that ApE3-42 inhibits cross--sheet formation by A1-42, which explains 

the retardation of fibrillogenesis. FTIR on peptides 13C-labeled at specific segments 

provided site specific structural information. Based on these data, the monomeric A 

structure has been modeled as a -hairpin stabilized by intramolecular H-bonding with an 
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N-terminal -helix. These hairpins likely form higher order aggregates through ionic and 

hydrophobic interactions between the C-terminus of one hairpin and the N-terminus of 

another. Utilizing a novel technique, hydration from gas phase, we examined the -helix 

to -sheet transitions of these peptides. When combined, ApE3-42 and A1-42 mutually 

inhibit intermolecular -sheet formation, instead promoting formation of ApE3-42/A1-42 

hetero-oligomers of intramolecular H-bonding.  

These hetero-oligomers displayed enhanced toxicity to PC12 cells compared to 

individual peptides and induced greater calcium release from lipid vesicles than 

unmodified A. These results indicate that A and ApE mutually inhibit fibrillogenesis 

and stabilize hetero-oligomers of enhanced cytotoxicity, possibly through a membrane 

permeabilization mechanism. Collectively, our findings lead to a new concept that 

A/ApE hetero-oligomers, not just A or ApE oligomers, are the main cytotoxic 

species in AD.
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CHAPTER ONE: INTRODUCTION 

Alzheimer’s disease (AD) is a neurodegenerative disease affecting more than 35 million 

people worldwide. The primary symptom of AD is progressive loss of memory and other cognitive 

faculties leading to death within 3-9 years of diagnoses (1). AD is the most common form of 

dementia representing over 50% of cases examined at autopsy or clinical series (1). AD primarily 

affects the elderly. The odds of being diagnosed with AD double every 5 years after the age of 65,  

and the odds of receiving a positive diagnosis after the age of 85 is 1:3 (2). Due to an aging 

population, the number of cases of AD in the United States is rising rapidly. By 2050 there will be 

an estimated 13 million cases representing a yearly economic cost of $1 trillion (3). 

Effective treatments for AD are lacking and the success rate of AD drugs in clinical trials 

falls below 1% (4). There is significant loss of neuronal synapses in AD correlating closely with 

cognitive symptoms and predating neuronal death (5). Familial Alzheimer disease (FAD) is caused 

by genetic mutation with symptoms generally appearing in the early 40s. Sporadic Alzheimer 

disease (SAD), which makes up the majority of AD cases, usually manifests after the age of 65. 

FAD and SAD are indistinguishable from one another histologically. The two main hallmarks of 

AD are beta amyloid plaques and neurofibrillary tangles (NFTs). Plaques are extracellular protein 

aggregates composed of the A peptide; NFTs are intracellular aggregates consisting largely of 

hyper-phosphorylated tau. A peptides are small, hydrophobic peptides of no known physiological 

function, while tau normally associates with microtubules. 



2 

 

The amyloid cascade hypothesis states that AD is a consequence of the buildup of A 

peptides, through either increased production or decreased clearance (6). Evidence points to 

soluble aggregates of A as the cytotoxic species in AD (7, 8).  

Amyloid Beta Peptide 

A peptides are formed by cleavage of the amyloid precursor protein (APP) a 

transmembrane glycoprotein. The N-terminus of the APP is in extracellular space, while the C-

terminus terminates within the cytosol. The exact function of the APP is unknown, but it is believed 

to play a role in cell growth and proliferation, as well as influencing synaptogenesis (9). In the 

non-amyloidogenic pathway, the APP is cleaved by -secretase in the middle of the amyloid beta 

transmembrane segment creating the C83 fragment. The C83 fragment is then cleaved by -

secretase forming the APP Intracellular Domain (AICD) and a truncated A fragment known as 

p3 (9-11). The AICD enters the cytosol and is believed to play a role in nuclear signaling while 

the p3 seems pathologically irrelevant. Interaction between -secretase and the APP can lead to 

amyloidogenic cleavage at D672 freeing the N-terminus of the A and creating the C99 fragment 

(12). The C99 fragment is then cleaved by -secretase freeing the A peptide and forming the 

AICD (8, 10). This cleavage most frequently occurs at V40 forming the A40 fragment, but 

cleavage also occurs at nearby A42 and G38 positions on the C99 forming the A42 and A1-38 

respectively (12-14). The A peptide leaves the membrane and enters the extracellular space 
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following cleavage (10, 11, 14). Most mutations associated with FAD are associated with A 

production and involve the APP or its processing (15-19). There are many different species of A 

peptide and in situ A populations are heterogeneous (13, 20). Although the most common A 

found in the brain is the A1-40 the A1-42 is most often associated with AD (13, 21). Additionally, 

pyroglutamylated A is a major species in the AD brain and has been found to make up to 50% of 

the soluble A load (13, 20, 22). Amyloid beta builds up intracellularly as well, through production 

at either the endoplasmic reticulum (ER) or vesicles, as well as re uptake of oligomers (23-26). 

The intracellular buildup of A often precedes extracellular increases in A concentration and 

onset of synaptic dysfunction (24, 25). 

Current Issues in AD 

 No current treatments exist that delay the progression of AD. Currently, five drugs are FDA 

approved for the treatment of AD, the cholinesterase inhibitors: Tacrine, Donepezil, Revastigmine, 

and Galantamine; and the N-methyl-D-aspartate (NMDA) receptor antagonist Memantine. There 

have been no new AD drugs approved since 2003 (4).  Between 2002 and 2012, only one of the 

230 compounds assessed for the treatment of AD passed phase 3 clinical trials and was approved 

for treatment(4). This failure rate of 99.6% is the highest of any therapeutic area (27, 28). High 

profile AD drug failures include the anti A monoclonal antibody drugs bapineuzumab and 

solanezumab. As well as the A reducing drugs Phenserine, which reduces APP expression (29), 
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and Flurizan, which reduces A1-42 levels, likely through a mechanism involving -secretase (30, 

31). Data has not been released as to whether these drugs failed to have an effect on A load, or 

whether they decreased A load, but there was no corresponding decrease in cognitive decline. 

The failure of these drugs to translate from animal models into humans calls into question the 

accuracy of existing AD models and necessitates re-evaluation of the amyloid cascade hypothesis. 

Shortcomings of the Amyloid Cascade Hypothesis 

In the decades since the amyloid cascade hypothesis was first postulated, many new 

discoveries have been made. (32-35). Recent findings have shifted focus from insoluble fibrils to 

soluble oligomers of A as the main cytotoxic entity in AD. Soluble oligomers of A have been 

shown to inhibit long-term potentiation (LPT), and the population of soluble oligomers is an 

accurate predictor of synaptic decline (7, 8, 23, 36-39). Additionally, plaque levels do not correlate 

with disease state and are found in the brains of cognitively normal patients (40, 41). In fact, 

cognitive impairment in AD correlates better with tangle burden than plaque levels (42). 

Additionally, studies have found A neurotoxicity to be tau dependent, both in vivo and in vitro 

casting doubt on the completeness of the amyloid cascade hypothesis (43-45). Studies have shown 

oligomers to be significantly more cytotoxic than fibrils (46, 47). Some of these oligomers may be 

intermediates of fibrillogenesis, however others are formed via distinct pathways (48, 49). 

Neurotoxic oligomers appear to propagate via a prion-like mechanism, with pyroglutamylated 
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amyloid beta (ApE) in particular having a profound effect on toxicity even at low molar ratios 

(44, 50, 51). Dot blot experiments have shown that hybrid ApE3-42:A1-42 oligomers and similar 

sized oligomers formed by A1-42 alone are distinct structurally with hybrid oligomers having 

significantly enhanced toxicity (44). Surprisingly, A monomers appear neuroprotective, against 

both oxidative stress as well as the absence of insulin (52, 53). A40 has demonstrated a protective 

effect by inhibition of A1-42 aggregation (52). These findings necessitate the altering of the 

amyloid cascade hypothesis, shifting focus from large fibrillar aggregates to small soluble 

oligomers of A. An illustration of this refined amyloid cascade where oligomers formed as 

intermediates during fibrillogenesis or via other aggregation pathways lead to AD is shown in 

Figure 1. Little is known about the A peptide following cleavage from the membrane and prior 

to formation of proto-fibrils. 
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Figure 1. Potential pathway for the pathogenesis of AD via A oligomers. Little is known about the aspects of this 
pathway contained within the blue box. 

Pyroglutamylated Amyloid Beta 

The N-truncated, N-modified pyroglutamylated A (ApE) is a major A species in the 

AD brain and can make up as much as 50% of total soluble A load (13, 20, 22, 54). 

Pyroglutamylation occurs when glutamic acid is at the N-terminus of the peptide, most often due 

to upstream aminopeptidase degradation. The N-terminal glutamic acid is then cyclized in a 
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dehydration reaction carried out via glutaminyl cyclase (QC) (55). Pyroglutamylated A are 

believed to be highly involved in the pathogenesis of AD (20, 44, 54, 56). A population changes 

over time with the fraction of ApE increasing with disease progression (20, 57). In addition, QC 

expression is found in the peripheral blood of AD patients (58). The most common ApE is the 

ApE3-42 fragment, however ApE11-42, ApE3-40, and ApE11-40 have all been observed in AD brains 

(20, 59, 60).  

Over expression of QC in mice was found to cause behavioral deficits while knockout or 

inhibition of QC had a rescue effect (55, 61). Loss of calcium homeostasis, an early event in AD, 

has been shown to increase QC expression leading to an increased in ApE production (62). 

Studies indicate that ApE has altered aggregation, forming greater numbers and longer lived 

oligomers compared to unmodified A (63, 64). Pyroglutamylated A and hybrid A1-42/ApE3-42 

oligomers display increased toxicity when compared to unmodified A (44, 56). Additional studies 

found ApE to be more resistant to astrocyte degradation and have increased cytotoxicity to 

cultured neurons compared to both A1-42 and A1-40 (22). A correlation between ApE and 

adjacent deposits of hyper-phosphorylated tau has been found in AD brains, providing evidence 

of a link between ApE and tau phosphorylation (56). This is strong evidence towards the 

involvement of ApE in AD. 
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Gaps in Knowledge of A Oligomers 

Although they are believed to be the cytotoxic species in A, structural data on A 

oligomers is lacking. Previous structural studies have often used non-physiological conditions 

calling into question the disease relevance of their results (65, 66). Additionally, most structural 

studies have taken place on a single species of A and not a heterogeneous population as is found 

in situ. More detailed structural understandings of A oligomers and early aggregates are 

necessary to better understand the role of these oligomers in the pathogenesis of AD. Of particular 

interest are the changes that occur in mixed samples of ApE and A. This work aimed to 

characterize structural and morphological changes exerted on A by ApE. We found that ApE 

and A mutually inhibit fibrillogenesis by inhibiting intermolecular -sheet formation of one 

another. Instead, in combination they form hetero-oligomers composed of -hairpins which 

aggregate through ionic or hydrophobic bonds of a C-terminus of one hairpin and the N-terminus 

of another. These hetero-oligomers had increased cytotoxicity to PC12 cells. This study highlights 

the importance of A: ApE hetero-oligomers in the pathogenesis of AD. These hetero-oligomers 

may represent a promising target in the search for promising new ways to effectively treat AD.  
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CHAPTER TWO: LITERATURE SEARCH 

Before moving forward with this project, it was necessary to re-evaluate the amyloid 

cascade hypothesis to ensure the pertinence of A peptides in AD. Research was conducted on the 

genetics of AD, as well as the role tau plays in AD. This data supports A peptides as the initiator 

of AD pathology. In addition, current literature was searched on the structure and aggregation of 

A, especially oligomeric A. Finally, as this project related A to the neuronal death associated 

with AD, it is necessary to examine current literature on possible mechanisms of neurotoxicity in 

AD. 

Genetics of AD 

Since the discovery of the first genetic link in AD, multiple genes have been implicated in 

AD, with many mutations found to be fully penetrant. The most prevalent FAD mutations occur 

on the APP, PSEN1, and PSEN2, all genes associated with production of A (67, 68). One of the 

first genes associated with AD was the APP on chromosome 21. Many different mutations have 

been identified on the APP most of them leading to FAD (15, 16, 69, 70). Some APP mutations 

are neuroprotective, and hypothesized mechanisms of protection include: the lowering of A load, 

inhibition of the APP transforming growth factor 2 (TGF2) cell mediated death pathway, or 

through the alteration of aggregation kinetics (15, 71).  
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Conversely, APP mutations implicated in FAD have been linked to: higher A production, 

increased levels of tau, and increases in the A1-42/A1-40 ratio (16, 70). The majority of FAD 

mutations are linked to presenilin protein mutations (17). Mutations have been found for both 

PSEN1 located on chromosome 14 and PSEN2 located on chromosome 1 (17, 18, 72). PSEN 1 

and 2 along with the accessory proteins nicastrin, APH-1, and PEN2 form the -secretase, which 

is responsible for the final cleavage of A from the membrane. The prevailing proposed 

mechanism of PSEN mutations causing FAD is through partial loss in function of -secretase 

activity, leading to only partial processing of A1-42 and increasing the A1-42/A1-40 ratio in the 

brain (19, 68, 73). 

The previously discussed genes have been linked to FAD, which represents <1% of AD 

cases (74). The vast majority of AD cases are SAD, with the strongest known risk factor being 

Apolipoprotein E allele (ApoE). ApoE has multiple isoforms with the E2 being neuroprotective 

and E4 being a risk factor for AD (74). ApoE aids in the degradation of amyloid beta within 

microglial cells, and the ability of astrocytes to clear diffuse A deposits (75-77). Previous studies 

have also demonstrated retardation of blood brain barrier (BBB) clearance of amyloid-ApoE 

aggregates compared to free A via redirection of clearance from the LRP1 to the VLDLR, which 

internalizes A-ApoE complexes more slowly (75). This clearance delay is isoform dependent 

with the E4 allele clearing more slowly than E3 and E2. This clearance slowdown may contribute 

to buildup of amyloid structures on blood vessels and explain the increased risk of cerebral amyloid 

angiopathy (CAA) associated with the E4 allele of ApoE (75). 
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Trisomy 21 and AD 

Due to the location of the APP gene on chromosome 21, there is a strong correlation 

between AD and trisomy 21 or Down syndrome (DS). Two-thirds of full trisomy 21 translocation 

patients develop dementia by the age of 60 (78). Interestingly, this association is only present if 

the APP gene is present on the extra chromosome, granting a third copy of the gene (79, 80). 

Patients without a third copy of APP will have DS without the increased risk of developing AD, 

normally associated with it. Furthermore, translocation of a small fragment of chromosome 21 

causing duplicate APP copies on a single chromosome cause FAD but not DS (69, 81). The 

relationship between an extra copy of APP and AD is strong evidence in support of A as the 

causative agent in AD. 

The Role of Tau in AD 

One of the hallmarks of AD is the presence of intracellular aggregates composed of highly 

phosphorylated tau. Tau is a protein involved in the stabilization of microtubules (5). Tau has 

multiple phosphorylation sites, and increased phosphorylation levels has an inhibitory effect on 

microtubule binding leading to a corresponding increase of soluble tau (82, 83)Phosphorylated tau 

has been shown to closely interact with F-actin causing bundling and aggregation of F-actin 

forming actin rich rods (84). F-actin is present at the dendritic synapse making tau mediated F-

actin aggregation a possible mechanism of synaptic loss in AD (85). The presence of NFTs is 
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linked to a reduction in expression of synaptic vesicle transport proteins. Levels of soluble tau 

correlate with AD implicating soluble tau as the neurotoxic form of tau (83, 86, 87). A has been 

shown to cause dendritic spine loss in the absence of tau; however, neuronal death was tau 

dependent (88).  

Excitotoxicity has been implicated as a mechanism of neuronal death involved in AD (89, 

90). Knockout of tau has been shown to attenuate hyper-excitability in mouse models 

overexpressing A (91). Strong evidence suggests that tau and A act in concert in AD to cause 

synaptic loss and neuronal death (43, 45, 86, 92, 93). However, in the front cortex of AD patients, 

A levels were found to be increased prior to the onset of significant tau pathology (94). 

Additionally, reduction in soluble A levels has been linked to a decrease in tau accumulation. 

Increased levels of A peptides have also been linked to the phosphorylation of tau (82, 93, 95, 

96). A dimers isolated from AD brains induce phosphorylation of tau causing neuritic 

degeneration (97).This evidence suggests that although a strong link between tau and AD exists, 

tau phosphorylation and aggregation is likely a downstream effect of A buildup. This supports 

the case that although tau is intimately linked to AD, buildup of A peptide is likely the initiating 

factor in AD pathogenesis. 
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A Structural Studies 

Consistent with the majority of transmembrane proteins, the amyloid beta segment of the 

APP is -helical prior to cleavage and exit from the lipid membrane. Supporting this is data from 

NMR studies on a segment of the APP containing the A sequence embedded in micelles which 

show the A sequence to form an -helix with a disordered C-terminus (98, 99). Structural changes 

and aggregation commences once the hydrophobic A peptides enter an aqueous environment. 

Amyloid Beta Fibrils 

Both solid-state nuclear magnetic resonance (ssNMR) and X-ray diffraction have shown 

mature amyloid fibrils to possess a cross -structure; meaning the -sheet plane and backbone 

hydrogen bonds connecting -strands are parallel to the main fibril axis while the -strands run 

perpendicular to the fibrillar axis (100, 101). Recently, studies have shown the presence of steric 

zippers in amyloid fibrils (102, 103). Steric-zippers are formed by the C-terminus of pairs of cross 

-sheets with interdigitating side chains (102, 103). TEM studies have shown mature fibrils to 

contain one or more protofilaments and to display two-fold symmetry with the fibril cross section 

superimposing with itself after 180 degree rotation (104-106).  

Studies indicate that amyloid fibrils, formed by both the A1-40 and A1-42, are composed 

of in-register parallel -sheets (107-109). However, fibrils formed by the Iowa mutant A peptide 

can have either parallel or antiparallel architecture (110). A fibrils and oligomers are polymorphic 
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with their internal structure often changing in an environment dependent manner, highlighting the 

importance of utilizing relevant experimental conditions (108). Fibrils seeded by brain extracts of 

AD patients had different structures, indicating that different seeds can induce formation of distinct 

fibrils and that fibril structure is not necessarily consistent between patients (107). A samples 

often show intra-sample polymorphism; meaning that measurements such as NMR and CD 

demonstrate the average and/or most prevalent of the multiple different structures within a sample 

(108). The polymorphic nature of A aggregates complicates the reproducibility of A structural 

data. 

Oligomeric Amyloid Beta 

The toxicity of A oligomers is linked to both oligomer size and structure. Dodecamers of 

A isolated from the brains of Tg2576 mice disrupted the memory of young rats (111). While A 

dimers isolated from the cerebral cortex of AD brains inhibited LPT in rat hippocampal slices and 

impaired memory when injected into rats (112), A dimers, trimers, and tetramers were found to 

inhibit LTP in mouse hippocampal neurons at physiological concentrations, with trimers having 

the greatest effect (38).Ion mobility, coupled with mass spectroscopy experiments, found that A1-

40 monomers form dimers, which then dimerize, and then likely undergo fibrillogenesis while A1-

42 tetramers went on to form hexamers, and then dodecamers (113). 
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It is commonly believed that the toxic species of A are oligomers of mixed -helix/-

sheet content formed during the transition from -helical monomer to cross -sheet fibril (114-

116).The transient nature of these aggregates makes their study difficult, therefore structural data 

on oligomeric A is lacking. Studies that have been conducted on the oligomeric A have found 

presence of both parallel and antiparallel -sheet, along with mixed / structures (117-122). One 

group demonstrated that inhibiting the formation of antiparallel -sheet led to a corresponding 

decline in toxicity (119). Many studies have used non-physiological conditions in order to stabilize 

these oligomers, calling into question the physiological relevance of their findings (49, 66, 115, 

116, 123).  

A Aggregation 

Protein fibrillization is implicated in multiple human diseases including AD, Parkinson’s 

disease, and Huntington’s disease. Fibrillization takes place in three stages: a lag phase during 

which prefibrillar intermediates are formed, a growth phase of rapid fibril growth and elongation, 

and finally growth plateaus once fibrillogenesis reaches equilibrium (124, 125). A fibrillization 

takes place via nucleated growth with the C-terminus being critical in the seeding of fibrillization 

(126-129). The rate of fibrillogenesis is dependent on both pH and temperature (130, 131). Studies 

have indicated that formation of a turn at residues ~23-28 is critical to A fibrillization and toxicity. 

This sequence is home to multiple mutations that lead to FAD, indicating the importance of this 
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turn to the disease state (132). Structural studies indicate that this turn is part of a -hairpin 

structure formed as an intermediate during aggregation (114, 133). Previous studies have found 

ApE to aggregate faster than, and have a higher -sheet propensity than A likely due to 

increased hydrophobicity (125, 134). Conversely, other studies have found that ApE3-42 aggregates 

slower and has lower -sheet propensity (135). Additionally, it was found that ApE3-42 increased 

the lag phase of A1-42 and delayed -sheet formation (135). Further studies are needed to clarify 

fibrillization kinetics of A1-42 and ApE3-42 as well as the effect ApE3-42 has on A1-42 

fibrillogenesis.  

Cell Death in AD 

 There have been many proposed mechanisms of A mediated cytotoxicity. Many different 

mechanisms have been demonstrated in vitro, but more study is needed to ascertain their 

relationship to the disease in vivo. These mechanisms include the alteration of mitochondrial 

dynamics, loss of calcium homeostasis, and trans-nitrosylation of proteins due to increased RNS 

production. 
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Alteration of Mitochondrial Dynamics 

Mitochondrial dynamics, or their constant fission and fusion, is used to dilute 

mitochondrial DNA damage and maintain a healthy mitochondria population (136). Alterations in 

mitochondrial dynamics has been implicated as a mechanism of both synaptic degradation and 

neuronal death in AD.  Neurons are highly energy dependent due to the large energy exertion 

required to maintain synapses, as well as the re-uptake and release of neurotransmitters. Aged 

mitochondria display reduced activity of complex I and IV in the respiration chain (137). 

Mitochondrial DNA mutations accumulate over time due to oxidative species formed during 

respiration (138). Fractionated mitochondria and broken cristae have been found in AD brains, 

indicating a loss of mitochondrial dynamics homeostasis (139). Fragmented mitochondria produce 

less ATP production and more reactive oxidative species (ROS) (136). Oxidative damage has been 

described in lipid membranes and proteins in AD brains, providing evidence for the role altered 

mitochondrial dynamics play in the disease (139, 140). Increases in mitochondrial derived ROS 

have been linked to upregulation of APP increasing A levels in a positive feedback mechanism 

(141). Increased ROS production is also an early signal of apoptosis (142).  Fusion of mitochondria 

is carried out via a complex of mitofusins 1 and 2 and optic atrophy 1 (136, 143). Mitochondrial 

fission is carried out via dynamin-related protein 1 (drp1), which is targeted to the mitochondrial 

outer membrane via: mitochondrial fission factor mitochondrial fission protein 1 and, 

mitochondrial elongation factor 1 (136). Up-regulation of mitochondrial fission in AD is believed 

to be due to increased activity or localization of drp1 due to post-translational modification, 

although the exact mechanism is controversial. Some groups have theorized that this occurs 
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through increased GTPase activity of Drp1 via nitrosylation (144, 145). Other groups argue that 

the altered dynamics is due to increased targeting of drp1 to mitochondria due to phosphorylation 

of drp1 (146). Additionally, enhanced levels of glycogen synthase kinase 3 (GSK3) have been 

found in AD patients (96). GSK3 has been linked to phosphorylation of drp1 upregulating its 

activity, as well as an increase in Cdk5 activity and tau expression (95, 147). 

Loss of Calcium Homeostasis 

Loss of intracellular calcium homeostasis is also implicated in AD neuronal death. Calcium 

is a vital intracellular signaling molecular responsible for regulating many signal cascades. Loss 

of calcium homeostasis has been linked to cellular apoptosis (148). Studies have shown A 

peptides to cause deregulation of calcium homeostasis, providing evidence for it being a 

mechanism of cellular death in AD (149-155).  

There have been many proposed pathways that A affect calcium regulation. A peptides 

have been linked to the upregulation of ryanodine receptors, specifically Ryanodine Receptor 3 

(RyR3) (153-155). These receptors release calcium from the endoplasmic reticulum (ER) in 

response to increases in intracellular calcium termed calcium induced calcium release (CICR). 

Increased levels of tau and A are linked to increased glutamate levels through increased 

expression and inhibition of re-uptake and transport (156-159). Glutamate can activate both RyR3 

and NMDAR increasing intracellular calcium. Soluble A oligomers were found to have high 
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affinity for PrPc. These complexes were found to interact with a complex of mGluR5 and Fyn, 

causing increased NMDAR activity and thus calcium influx (160). It was also found that these 

A-PrPc-mGluR5 complexes mediate dendritic spine loss through eEF2 phosphorylation. 

Additionally, A peptides have been shown to inhibit the activity of mGlu7 an NMDAR regulator 

further increasing NMDAR activation and subsequence calcium influx. Increases in intracellular 

Ca2+ concentrations mediates signaling changes via multiple mechanisms.  In response to increased 

calcium the calcium dependent protease calpain cleaves the Cyclin dependent kinase 5 (Cdk5) 

activators p35 to p25 or p39 to p29, causing aberrant increased Cdk5 activity (161, 162). This 

increased Cdk5 activity has been demonstrated to lead to an increase in A production as well as 

production and hyper-phosphorylation of tau (95, 161, 162).  

Amyloid Pore Formation 

 Another mechanism of loss of calcium homeostasis in AD is the formation of calcium 

permeable channels composed of A in the organelles and plasma membranes of neurons (121, 

149, 163-167). These pores have been observed in AD brains and in vitro assays have 

demonstrated an influx of calcium through A pores at physiological peptide concentrations, 

lending credence to this theory (163, 164, 167). Evidence shows that A behaves similarly to 

gramicidin, an antimicrobial agent which has mostly -sheet structure and forms pores in plasma 

membranes (168). Additionally, the A oligomer conformation specific antibody A11 binds 
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selectively to the bacterial pore forming protein HL as well as human perforin, indicating shared 

homology and possibly similar mechanisms of pore formation (169). A close link was found for 

both A1-42 and A1-40 between pore formation and cytotoxicity (121). Structural studies indicate 

that these pores may consist of -barrel like structures composed of monomers of A in either 

parallel or antiparallel -sheet (170, 171). Other MD simulations on short A peptides predict 

octameric pores composed of mostly -helical structure (172). 

Nitrosylation of Proteins in AD 

Excess levels of nitric oxide (NO) leading to increased S-nitrosylation (SNO) of proteins 

has been linked to AD (173). NO is produced by nitric oxide synthases (NOS) by the conversion 

of L-arginine to L-citrulline, it easily defuses through plasma membranes allowing it to signal 

neighboring cells. The two NOS relevant to AD are neuronal nitric oxide synthase (nNOS) and 

inducible nitric oxide synthase (iNOS). nNOS is found in neurons and is constitutively active, 

producing low levels of NO. iNOS is constitutively inactive, and when activated, produces high 

levels of NO. Excessive NMDAR activation in AD has been shown to lead to increased levels of 

ROS and NO through nNOS activation (174). Additionally, tangle-bearing neurons in the AD brain 

have been shown to have activated iNOS (175). SNO is a post-translational modification wherein 

a nitric oxide species undergoes a redox reaction with a thiol group on a cysteine (176). Increasing 

SNO of proteins has been linked to multiple neurodegenerative diseases, including AD and 

Parkinson’s disease (144, 145, 161, 177, 178). High levels of SNO proteins has a pro apoptotic 
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affect (179). Transnitrosylation via S-nitrosylating proteins has been identified as a major 

mechanism in the proliferation of SNO proteins throughout cells.  Numerous proteins have been 

identified as having the ability to transnitrosylate other proteins including GAPDH, Cdk5, and 

caspase 3 (176, 180). Cdk5 has been shown to be S-nitrosylated at amino acids 83 and 157 via 

interaction with iNOS (181). SNO-Cdk5 can act in several neurotoxic mechanisms, including 

Transnitrosylation of drp1, activation of the pro apoptotic protein ATM, and phosphorylation and 

loss of function of WAVE1 (180, 182, 183). SNO-Cdk5 has been shown to transnitrosylate Drp1, 

enhancing its GTPase activity leading to altered mitochondrial dynamics (144, 145, 180, 181). 

SNO-GAPDH has been found in AD brains; SNO-GAPDH binds Siah1 and translocates to the 

nucleus where it initiates apoptosis (178, 184, 185). There is also evidence that NO causes cyclin 

dependent kinase 1 (Cdk1) mediated phosphorylation of drp1 enhancing GTPase activity and 

mitochondrial fission (146).  

The nature of AD, namely the long time scale and the difficulty of studying neurons both 

in vivo and in vitro, make pin-pointing of a single mechanism of neuronal death difficult. It is 

likely that some of the aforementioned mechanisms of cytotoxicity are downstream consequences 

of AD and not direct causes; however, it is reasonable to assume that there are multiple often 

interconnected neurotoxic pathways in AD. The lack of a single mechanism to target complicates 

drug development in AD. A stronger understanding of the relationship between A structure and 

toxicity may pave the way the development of early diagnostic tests for AD or novel structure 

based AD drugs. 
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Methodology Literature Search 

The polymorphic nature of the A peptide required detailed review of existing literature. 

To ensure that consistent and reproducible results are obtained, it was necessary to use uniform, 

monomeric solutions of Ain each experiment. Fluorinated alcohols such as 1,1,1,3,3,3-

hexafluoro-2-propanol (HFIP) are commonly used to induce -helical structure and 

monomerization in A peptides (186, 187). In this work, protein secondary structure was 

determined by CD, literature was therefore reviewed in order to interpret CD spectra (188). 

Review of FTIR 

 Due to the importance of FTIR spectroscopy in this work a thorough review of current 

literature on FTIR was conducted. Infrared spectroscopy is also called vibrational spectroscopy; 

absorption of light is associated with various vibrational modes of chemical groups within a 

molecule. Polychromatic infrared radiation is passed through the sample, when the frequency of 

infrared radiation matches the vibrational frequency of chemical bonds present in the sample, 

absorbance occurs. The absorption frequency of FTIR spectra is displayed in wavenumbers where 

wavenumber W=1/=/c; where  is wavelength,  is temporal frequency of vibration, and c is 

the speed of light. The vibrational frequency  for a diatomic molecule can be approximated using 

equation 1; where the spring constant k is proportional to chemical bond strength. 
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𝑉 = 12𝜋√𝑘( 1(𝑚1 + 1𝑚2)      (1) 

There are many vibrational modes that can be observed in FTIR, but the two most relevant 

to biological study are the amide I and amide II. The amide I vibrational mode is located 1700-

1600 cm-1 and is primarily generated by C=O stretching vibration. These vibrations are coupled 

through covalent bonding, H-bonding, and through space, these couplings shift vibrational 

frequency. Protein secondary structure geometry is highly conserved, making the C=O vibrational 

frequencies of various secondary structures also highly conserved. This allows accurate attribution 

of an FTIR absorbance band to a specific secondary structure. Research was conducted on the 

locations of these amide I secondary structure absorbance peaks in order to interpret experimental 

results (189-191). The peak wavenumber and extinction coefficient of various protein secondary 

structures can be found in chart 1. The amide II is located 1570-1540 cm-1 and is primarily 

composed of NH in-plane bending. The amide II can be utilized to measure the solvent 

accessibility of the protein. Amide hydrogen-deuterium exchange will take place with the addition 

of D2O based buffer. The increased mass of deuterium causes a downshift in absorption and 

corresponding loss of absorbance 1570-1540 cm-1. Proteins in more open or solvent accessible 

conformations will undergo more H-D exchange and thus lose amide II signal intensity more 

quickly than tightly packed proteins. 
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13C Labeling of Proteins 

The 13C-labeling of specific amino acid stretches or entire proteins is a technique to 

investigate protein interaction and examine protein secondary structure in a site-specific manner. 

The amide I absorbance peaks of peptides 13C-labeled is downshifted thus allowing dissection of 

the structure of labeled segments or proteins from unlabeled segments or proteins. This downshift 

was reviewed in order to accurately interpret experimental results (192). The downshifted 

absorbance of a 13C labeled secondary structure can be accurately predicted as shown in equation 

2 by taking the ratio of vibrational frequency of the 13C=16O bond over the 12C=16O and multiplying 

the result by the known absorbance of 12C secondary structures shown in table 1 (Equation 2). For 

example, by taking the known 12C parallel -sheet absorbance at 1636-1630 cm-1 and multiplying 

it by the calculated factor of 0.978, we can predict the absorbance of a 13C parallel -sheet to be 

1600-1594 cm-1. 

√ 113+ 116112+ 116 = ~0.978        (2) 
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Table 1. Characteristic amide I wavenumber relative extinction coefficients, and integrated absorbance extinction 
coefficients (B) of various protein secondary structures in D2O, integrated extinction coefficient come from (193). 

Secondary Structure 
Absorbance D2O 

(cm-1) 

Relative Integrated 

Extinction Coefficient 

 

B 

(M-1cm-2) 

-helix 1655-1638 1 5.1 x107 

Parallel -sheet 

(Intramolecular) 

1636-1630 1.37 7.0x107 

Anti-Parallel -sheet 
1636-1630 

(Strong) 
1.37 7.0x107 

 
1680-1670 

(Weak) 
Multiply large 

component by 1.07 
(7% of Strong 
Component) 

Intermolecular (cross-

) -sheet 
1625-1613 1.37 7.0x107 

-turns 1675-1640 1.08 
5.5x107 

Unordered Structure 1648-1640 0.88 
4.5x107 
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CHAPTER THREE: METHODOLOGY 

In this project, we examined A1-42, ApE3-42, and combined samples at both equimolar and 

9:1 (A1-42:ApE3-42) ratios. These molar ratios were utilized because ApE has been observed in 

AD brains at up to 50% of total soluble A load but is commonly present at a lower ratio (13, 20, 

22). However, it has also been demonstrated to have a profound affect even at low molar ratios 

(44, 194). The secondary structures of early oligomers and intermediate structures were 

determined utilizing FTIR and CD. Peptides were first dissolved at concentrations of either 200 or 

50 M in HFIP to break up pre-formed aggregates. Monomer formation of the peptides was 

confirmed by the formation of -helix in HFIP (187). The removal of HFIP was conducted by 

streaming N2 gas over the samples until dried then vacuum desiccating samples for 15 minutes.  

Bulk aqueous buffer was then added to the dried samples. Two different buffers were used 

one at near-physiological ionic concentration and one with low ionic content. The near-

physiological buffer was 50 mM phosphate buffer + 50 mM NaCl pH 7.2 (pD 6.8 for FTIR samples 

in D2O buffer) and the buffer of low ionic content was 10 mM phosphate pH 7.2 (pD 6.8 for FTIR 

samples in D2O buffer). Buffer was added to produce a final peptide concentration of 50 M. The 

ApE3-42 is missing 3 N-terminal charges compared to the unmodified A. It is likely these charges 

form ionic bonds stabilizing the peptides, increasing ionic pressure will weaken these bonds and 

can cause changes in structure distribution. Examining structural changes of the peptides in both 

conditions provides information on the structure formed by the N-terminus of the peptide. 
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Cytotoxicity Assays 

Cytotoxicity assays were conducted with collaboration with Dr. Lucia Cilenti in the 

laboratory of Dr. Kenneth Teter. To assay the cytotoxicity of A aggregates, PC12 cells were 

grown in RPMI 1640 media, supplemented 10% fetal bovine serum, 50-units/ml penicillin and 50 

μg/ml streptomycin. For MTS viability assays cells were seeded in 96-well plates in 

triplicate/samples at a density of 10,000 cells/well in 100 μL complete medium for 18 hours. 

Following this, 100 μL of fresh medium containing A samples aggregated for 2, 4 and 24 hours 

by stirring at 37 °C in PBS, was added to cells followed by incubation at 37 °C for 28 and 50 hours. 

Cell viability was determined by MTS assay, a cell proliferation assay, to monitor 

methanethiosulfonate tetrazolium reduction as an estimate of cell viability, according to the 

manufacturer’s instructions (Promega). In the assay, 20μl of MTS tetrazolium substrate solution 

was added to the wells at 28 and 50 hours followed by further incubation at 37 °C for 3 hours, Cell 

viability in each well was assayed by reading the absorbance at 590 nm in a BioTek microplate 

reader Synergy 2. Percentage of cell viability was calculated by subtracting the average of the 

triplicate samples at 490nm absorbance from medium control (no cells/background) from all other 

absorbance values. 
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Membrane Calcium Release 

 The ability of A aggregates to induce the release of calcium from lipid vesicles was 

assayed using Quin-2. 40 M Quin-2 in the presence of 100 nm unilamellar vesicles of 

POPC/POPG/cholesterol (6:3:1) loaded with 30 mM CaCl2 in aqueous buffer pH 7.2. The total 

lipid concentration was 0.5 mM and peptides were added for a final ratio 1:100 peptide:lipid. 

Peptides were added after 2 and 24 hours of aggregation at 37 oC in PBS. Control was conducted 

by addition of PBS followed by complete release of all entrapped Ca2+ via addition of 0.05% Triton 

X-100 which disrupted vesicles.  

FTIR 

All FTIR measurements were taken on a Vector-22 FTIR spectrometer (Bruker Optics, 

Billerica, MA, USA) equipped with a liquid N2 cooled Hg-Cd-Te detector with a 2 cm-1 resolution. 

All buffers were made utilizing D2O, and not H2O, to avoid artifacts caused by absorption of H2O 

in the amide I region. Transmission spectra collected for all samples were taken by co-adding 

either 500 or 1000 consecutive scans. Peptides dissolved in HFIP were first deposited on the CaF2 

FTIR window, and then desiccated for 15 minutes to remove HFIP. Transmission spectra were 

then taken and absorption was calculated using a reference transmission spectra. After the 

collection of a dried sample, buffer was added along with a second CaF2 window. Separating CaF2 

windows was a 50 m Teflon spacer. Transmission spectra were then taken consecutively and 
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absorbance was calculated using a buffer reference. Data for both uniformly and segmentally 13C 

labelled peptides was obtained similarly along with data for mixed samples. Samples of 

atmospheric vapor was collected separately and used to clean up spectra as necessary. Spectra 

were smoothed using a 13-point Savitzky-Golay linear least squares algorithm and then baselined. 

Absorbance spectra were prepared using OPUS spectroscopy software.  

Curve-Fitting of FTIR Spectra 

 Curve-fitting of FTIR spectra was performed using GRAMS IO spectroscopy software. 

The locations of amide I components were based on negative peaks in the second derivative. 

Curve-fitting was considered acceptable when peak wavenumbers of components were in 

agreement with the second derivatives, the sum of all components reasonably fit the experimental 

spectra, and the peak component widths were within reasonable limits i.e. width at half height of 

less than 40 wavenumbers (190). The relative fraction Fi of either -helix (), -sheet (), -turn 

(t), and other structures, were calculated based on the area of fit peaks using equation 3 where B 

refers to the average integrated extinction coefficient of the described structures as previously 

described (195). 

𝐹𝑖= 𝑎𝑖𝐵𝑖(𝑎𝑎𝐵𝑎+𝑎𝛽𝐵𝛽+𝑎𝑡𝐵𝑡+𝑎𝑜𝑡ℎ𝑒𝑟𝐵𝑜𝑡ℎ𝑒𝑟)      (3) 
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Hydration FTIR 

 To facilitate examination of early peptide intermediates and structural 

transformations peptide transition was delayed by hydrating from gas phase, using D2O vapor and 

not aqueous buffer. This was done using two separate mechanisms. In the first, dried peptides both 

individually and in combination, were hydrated via exposure to ambient humidity. For the second 

a custom apparatus was designed to hydrate peptides inside the FTIR spectrometer via the pumping 

in of D2O laden N2 gas (Figure 1). In this setup two separate hoses of N2 gas was bubbled through 

two flasks of D2O and then piped into the spectrometer. Peptides were prepared from 50 M stocks 

in HFIP as described earlier. To examine the effect of co-incubation peptides were dried on either 

the same side or opposite sides of the CaF2 windows to allow comparison between interacting and 

non-interacting peptides (Figure 1A). 

 

Figure 2. A) Schematic depiction of the experimental set-up. Nitrogen gas is pumped through simmering D2O into the 
sample compartment. Only two of four flasks with D2O are shown for simplicity. Two sample holders are mounted 
vertically, at 90 degrees, one with two peptides at opposite sides of a CaF2 window and one with both peptides blended 
at one side. Consecutive FTIR spectra of the two samples are measured while the sample holder frame is turned back 
and forth by 90 degrees. Red arrows represent the infrared light. B) Photograph of the FTIR spectrometer during an 
actual experiment. The inset (middle bottom) provides a glimpse into the sample compartment. 
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Circular Dichroism 

CD measurements of A in HFIP were taken in either a 0.5 mm cylindrical cuvette or a 

4x4 mm rectangular quartz cuvette. Measurements were conducted on a Jasco J-810 

spectropolarimeter (Tokyo, Japan). For measurements in aqueous buffer HFIP was removed with 

N2 gas followed by desiccation for 30 minutes, prior to the addition of buffer. After the addition 

of 50 mM phosphate + 50 mM NaCl pH 7.2 aqueous buffer samples were incubated at 37oC while 

stirring and a final protein concentration of 50 M. CD measurements were taken between 330-

180 nm. After collection spectra were smoothed in Spectra Manager software using 9 point 

Savitzky-Golay linear least squares algorithm. 

TEM 

TEM measurements were performed with the assistance of the lab of Dr. Bo Chen 

(University of Central Florida, Orlando, FL, USA). Peptides were dissolved in HFIP, dried, and 

buffer was added as previously described. Samples were then stirred at 37oC for 24 hours. For 

measurements 5 mL of sample was placed on graphene coated grids. After five minutes excess 

buffer was removed. Samples were then washed twice with diH2O and negatively stained with 3% 

uranyl acetate. Samples were measured on a JEOL TEM-1011 (Tokyo, Japan) at 80kV. Samples 

were examined at 2,4,12, and 24 hours to examine aggregation and morphology. 
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CHAPTER FOUR: RESULTS 

Pyroglutamylated Amyloid- Peptide Reverses Cross -Sheets by a Prion-Like Mechanism 

Circular Dichroism of A Proteins 

We first sought to clear up disagreement in the literature about the -sheet propensity of 

ApE compared to the unmodified peptide. Some groups reported ApE to have a lower -sheet 

propensity than the unmodified peptide while others have proposed the opposite. To clear up this 

contradiction we examined the structural changes of ApE and unmodified A throughout 

aggregation using CD. 

To prepare monomeric samples A was first dissolved in HFIP to break up pre-formed 

aggregates. HFIP disrupts -sheet formation and promotes formation of -helical structure (187). 

CD spectra of peptides dissolved in HFIP at 50 M show a minima at 203 with a shoulder at 220 

nm (Figure 3A). This is indicative of -helix and disordered structures. This is in agreement with 

previous data of A proteins in HFIP and implies a monomeric solution. Spectra taken after the 

removal of HFIP indicate that the peptides are -helical shown by two minima located at 208-209 

nm and 221-224 nm (Figure 3B). Interestingly, the ApE3-42 has a significantly reduced 208/222 

ratio, indicating a more flexible or disordered -helix (196). 
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Figure 3. (A) CD spectra of A1-42 (red), ApE3-42 (blue) their 9:1 (teal) and, equimolar (green) ratios in HFIP at a 

peptide concentration of 50 M. (B) CD spectra of the same peptides following HFIP removal via N2 drying and 
vacuum desiccation. 

Following desiccation aqueous buffer was added to the sample for a final peptide 

concentration of 50 M and samples were constantly stirred at 37°C. In physiological buffer 

conditions A1-42 rapidly forms -sheet as shown by the broad minima at 216-219 nm present 10 

minutes after the addition of buffer (Figure 4A). After 16 hours this minima had red shifted to 220 

nm possibly indicating decreased accessibility of the solvent due to tight packing during 

aggregation, such as in fibrillogenesis. Alternatively, ApE3-42 spectra at 10 minutes has a wide 

minima from 208-230 nm likely indicating presence of -helical, -sheet, and turn structures 

(Figure 4B). After 2 hours this minima has shrunk to 212-223 nm indicating the presence of a 

combination of both -helical and -sheet structures. After 24 hours of aggregation a single 

minima at 219 nm is present indicating a majority -sheet structure. This demonstrates that A1-42 
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readily forms -sheets while ApE3-42 has a higher propensity to retain -helical structure and 

delayed formation of -sheet. 

The 9:1 (A1-42:ApE3-42) combination after 10 minutes of aggregation contains a wide 

minima at 217 nm consistent with the presence of mostly -sheet (Figure 4C). Throughout 

aggregation this peak grows in intensity, after 24 hours a single minima at 219 nm is present 

indicating the likely presence of fibrils. For the first hour the equimolar combination contains 

mixed -helix/-sheet content indicated by the wide minima 210-216 at ten minutes and two 

minima at 212 and 222 nm after one hour (188). At 2 hours of aggregation onward a minima 

located at 217 nm indicates presence of mostly -sheet structure. The equimolar combination after 

one hour resembles the ApE3-42 in that it retains -helical structure and resists converting fully to 

-sheet structure (Figure 4D). 

This data indicates that ApE has a lower -sheet propensity than unmodified A. Data 

from combined samples indicates that ApE3-42 alters A1-42 structural transition. Alone, A1-42 

rapidly forms fully -sheet aggregates, while forming mixed -helix/-sheet aggregates in 

equimolar combination with ApE3-42.  
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Figure 4. CD spectra of A1-42 (A), ApE3-42 (B), their 9:1 (A1-42/ApE3-42) (C) and, equimolar (D) ratios in 50 mM 
phosphate 50 mM NaCl buffer pH 7.2 Spectra are shown 10 minutes (red), 1 hour (green), 2 hours (blue) and, 24 

hours (pink) after addition of buffer. Final peptide concentration was 50 M and aggregation took place at 370C with 

constant stirring. For A1-42 the spectra in pink corresponds to 17h as subsequent time points gave weak signal due to 
evaporation of the sample. Spectra were cut at 210 nm due to weak signal from Cl and peptide absorbance. 

TEM of A Fibrils 

Secondary structure is linked to fibrillogenesis and fibril morphology (134). The structural 

differences between the two peptides therefore indicate a strong possibility of altered 

fibrillogenesis. There are currently disagreements in the literature about the fibrillization kinetics 

of ApE in comparison to the unmodified peptides. To clear this up, fibril formation and 

morphology was examined via TEM. Samples were examined at 2,4,12, and 24 hours of 

aggregation in 50 mM phosphate + 50 mM NaCl buffer pH 7.2. To determine the effect of peptide 

interaction peptides were examined separately as well as in equimolar and 9:1 (A1-42:ApE3-42) 

mixed samples. 

The largest differences between samples was observed after 2 hours of incubation. The 

ApE3-42 sample is dominated by irregularly shaped prefibrillar aggregates with dimensions 
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between 30-100 nm (Figure 5b). The A1-42 sample at 2 hours consists mostly of fibrils with a 

smaller number of pre fibrillar aggregates (Figure 5a). The rapid formation of pre-fibrillar 

aggregates by ApE3-42 may be due to its increased hydrophobicity. Both the 9:1 (Figure 5c) and 

1:1 (Figure 5d) samples resemble the ApE3-42 sample with a large number of pre-fibrillar 

aggregates compared to mature fibrils. At 4 hours fibrils were present in all samples along with 

significant amounts of prefibrillar aggregates (Figure 5e-h). At 12 (Figure 5i-l) and 24 (Figure 5m-

p) hours fibrillogenesis continued and more mature fibrils were found in all samples along with 

decreased levels of prefibrillar aggregates. 

This data demonstrates that the unmodified A undergoes more rapid fibrillogenesis than 

ApE. This data agrees with CD data showing that A1-42 rapidly forms -sheet indicative of fibril 

formation while ApE3-42 and the 1:1 combination retain a prominent -helical component. The 

increased levels of prefibrillar aggregates compared to fibrils at two hours in mixed samples 

demonstrates that ApE3-42 has a profound effect on fibrillogenesis particularly in the early stages 

of aggregation (135). The lack of fibrils in the 9:1 sample is evidence of the strong effect ApE3-42 

can exert even at low molar ratios. Interestingly, in the 9:1 sample there was no delay in -sheet 

formation coinciding with the delay in fibrillogenesis. This indicates that the delay in 

fibrillogenesis found in mixed samples may not simply be due to inhibition of -sheet formation. 
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Figure 5. TEM images of Aβ1−42 (a, e, i, m), AβpE3-42 (b, f, j, n), AβpE3-42/Aβ1−42 = 1:9 (c, g, k, o), and AβpE3-42/Aβ1−42 = 
1:1 (d, h, l, p) incubated in aqueous buffer of 50 mM NaCl + 50 mM Na,K-phosphate (pH 7.2) for 2 h (a−d), 4 h (e−h), 
12 h (i−l), and 24 h (m−p) at 37 °C with constant stirring. The horizontal bar in each panel equals 100 nm. 

FTIR of Amyloid Beta Peptides 

We next sought to examine the structure of these peptides in greater detail utilizing FTIR. 

FTIR gives greater structural resolution than CD allowing, for instance, the determination of 

whether the protein is forming intramolecular or intermolecular -sheet. Formation of 
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intramolecular -sheet and not intermolecular -sheet, as found in fibrils, may explain the delay 

of fibrillogenesis despite rapid -sheet conversion of the 9:1 sample. Utilizing uniformly 13C-

labeled A1-42 allowing the assignment of structural components to individual peptides in mixed 

samples. This allowed the probing of structural changes in both peptides caused by interaction 

with one another. 

Peptides were first examined individually by depositing 40 L of a 200 M solution of A 

in HFIP to the CaF2 FTIR window. HFIP was then removed via vacuum desiccation for 15 minutes 

and FTIR measurements were taken of the proteins in a dried state. The 13CA1-42 spectra contains 

a major peak at 1588 cm-1 indicating the presence of intermolecular -sheet structure (Figure 6). 

It also contains a broad component likely corresponding to -turns (~1660 cm-1) and an 

insignificant -helical component (1617 cm-1). The ApE3-42 is forming intramolecular -sheet that 

is possibly anti-parallel as indicated by the peak at 1634 cm-1 and small shelf present at 1695 cm-

1(189) (Figure 6). The presence of structures other than -helix in the dry samples indicates that 

the peptides can undergo structural transitions in the absence of aqueous buffer due to atmospheric 

humidity. 
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Figure 6. FTIR spectra of AβpE3-42 (Light Blue) and uniformly 13Clabeled Aβ1−42 (Green) dried from a 200 μM HFIP 
solution on a CaF2 Window. The amide I area of spectra was normalized. 

The observation that atmospheric humidity was sufficient to induce structural changes gave 

us the idea to examine the effect of ApE3-42 on the early stages of A1-42 aggregation utilizing 

atmospheric humidity. Using humidity we examined early transitions of both equimolar and 9:1 

molar combination samples. Samples in HFIP were added to FTIR windows and HFIP was 

removed by desiccation as described earlier. Samples were then exposed to atmospheric humidity 

for either 10 or 20 minutes and FTIR spectra was taken. Individual peptides were also measured 

after 15 minutes of atmospheric humidification and their weighted sum was compared to combined 

samples. The absorption of atmospheric humidity is demonstrated by a corresponding increase in 

absorbance in the H2O band located 3450-3150 cm-1 (Figure 7A). In the 9:1 molar ratio, as the 

sample is hydrated the structure transitions from -helix (1617 cm-1) to -sheet (1592 cm-1) 

evidenced by an increased 1592/1617 ratio in the 20 minute sample when compared to the 10 
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minute sample (Figure 7B). The broad peak ~1655 cm-1 likely corresponds to A1-42 turn structure 

as well as ApE3-42 turn and -helical structures. The lower absorbance by the weighted sum of 

individual peptides at 1617 cm-1 indicates less -helical content in the A1-42 in the absence of 

ApE3-42. This is evidence that ApE3-42 restricts -helix to -sheet transition of the A1-42. The 

differences in the equimolar samples are even more pronounced. The weighted sum at 15 minutes 

contains prominent peaks at 1588 and 1634 cm-1 likely corresponding to intermolecular -sheet of 

the A1-42 and intramolecular -sheet of the ApE3-42 respectively (Figure 7C). The broad shelf 

~1660 cm-1 is likely composed of A1-42 turns as well as ApE3-42 -helix and turn structures. 

Experimental spectra at 10 minutes show a decrease in -helix-to--sheet transition of ApE3-42 

evidenced by a decrease in 1634/1658 ratio when compared to the weighted sum. The A1-42 -

helix-to--sheet transition is also inhibited at 10 minutes as demonstrated by an increase in peak 

height at 1617 cm-1 and a decrease in the corresponding -sheet height present at 1595 cm-1 in the 

experimental and 1588 cm-1 in weighted sum spectra’s respectively. The peak at 1595 cm-1 likely 

corresponds to intra- not intermolecular -sheet structure. At 20 minutes the differences are even 

more pronounced. The major peak at 1658 cm-1 indicates that ApE3-42 is mostly -helical. Minor 

shelves located at 1617 and 1595 cm-1 correspond to A1-42 -helix and intramolecular-sheet 

respectively. The similar intensities at 1617 cm-1 for both 10 and 20 minutes indicate a lack of 

transition from -helix of the A1-42.  

This data indicates that at 10% of total peptide ApE3-42 delays formation of cross- 

structure of A1-42. At 50% the effect is even more pronounced with Ape3-42 inhibiting 
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intermolecular -sheet formation of A1-42 in favor of intramolecular at 10 minutes, and inhibiting 

any -sheet formation at 20 minutes. Additionally, the ApE3-42 forms more -helix than -sheet 

when in combination with A1-42, this indicates that A1-42 inhibits ApE3-42 -to- conversion. 

 

Figure 7. FTIR spectra of AβpE3-42 and uniformly 13CAβ1−42 at 1:9 molar ratio (A and B) and 1:1 molar ratio (C). Green 
and Red lines are experimental spectra of a sample prepared in HFIP, followed by solvent removal by desiccation and 
exposure to atmosphere for 10 and 20 min, respectively. The Blue is the weighted sum of the spectra of each peptide 
measured individually, exposed to the atmosphere for 15 min. Construction of the weighted sum spectra is described 
under Figure 4. Panel B is a zoom-in into the amide I/II region of spectra shown in panel A. 

We next examined structural differences between the peptides in aqueous buffer, 10 mM 

phosphate pD 6.8 buffer was added to samples following measurement of the dried peptides and 

spectra were taken every ten minutes. After the addition of buffer both peptides formed 

predominantly intermolecular -sheet structure evidenced by a major peak at 1628 cm-1 for the 

ApE3-42 (Figure 8B)and 1585 cm-1 for the 13CA1-42 (Figure 8A). Additionally, the ApE3-42 had 

significant turn and -helical components as evidenced by the secondary peak ~1673 cm-1. The 

small peak at 1673 cm-1 in the 13CA1-42 sample is likely due to trifluoroacetic acid (TFA) which 

is commonly found in synthesized peptides. 
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Examination of the Amide II components of spectra gives additional insight into protein 

structure. Use of a D2O based buffer causes hydrogen-deuterium (H-D) exchange and a 

corresponding loss of amide II intensity around 1540 cm-1(190, 197). Examination of the Amide 

II of both peptides for two hours shows a loss of amide II intensity for the ApE3-42 and no loss of 

intensity for A1-42 (Figure 8). The lack of a drop in Amide II intensity indicates that the amide 

hydrogens are being shielded from the buffer via formation of a more compact tertiary structure 

and/or a less flexible secondary structure, as is found in mature fibrils. 

 

Figure 8. FTIR spectra of A
1-42

 (A) and A
pE3-42

 (B) in 10 mM Na,K-phosphate in D2O, pD 7.2. Change from Blue 

to Red corresponds to time of exposure of the peptides to the buffer for 10, 30, 50, 70, 90, and 120 min. 

Next, we examined spectra of mixed 13CA1-42 and ApE3-42 samples to determine structural 

effects of co-incubation. After 2 hours of incubation in 10 mM phosphate pD 6.8 experimental 

spectra were compared to the weighted sum of individual spectra. When compared to the weighted 
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sums of individual spectra the A1-42 -sheet peak (1585 cm-1) is upshifted by 3 and 10 cm-1 in the 

9:1 (Figure 9A) and 1:1 samples (Figure 9B) respectively. The latter shift to 1595 cm-1 implies 

formation of intra- not inter-molecular -sheet. The ApE3-42 -sheet peak (1626-1628 cm-1) was 

downshifted compared to individual peptides by 4 cm-1 in the equimolar combination. These shifts 

are likely due to 13C:12C coupling and imply strong interactions between the two peptides. It is 

thus clear that A1-42 and ApE3-42 form hybrid oligomers composed mostly of -sheets. Curiously, 

in the 9:1 sample ApE3-42 is upshifted 10 cm-1 from 1626 to 1636 cm-1 (Figure 4A). This peak can 

most likely be attributed to intramolecular not intermolecular -sheet which is characteristic of 

mature fibrils. This implies that when incubated with A1-42 at low molar ratio ApE3-42 

fibrillogenesis may be inhibited. 

 

Figure 9. FTIR spectra of AβpE3-42 and 13CAβ1−42 combined at 1:9 (A) and 1:1 (B) molar ratios, incubated in a D2O-
based phosphate buffer (pD 7.2) for 2 h, at a total peptide concentration of 100 μM. Red and Blue lines are the 
experimental spectra obtained on the two peptides combined in one sample and the weighted sums of individual 
spectra, respectively. The weighted sums were obtained as A = Σf iAi, where fi is the molar fraction and Ai is the 
absorbance spectrum of each individual peptide measured separately. 
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This project gave insight into the structural transitions of A1-42 and ApE3-42 as well as the 

structure of early oligomers. It was found that A1-42 has a greater -sheet forming propensity than 

ApE3-42. Additionally, in hybrid samples ApE3-42 delays or even reverses formation of cross -

sheet by A1-42. The effect of ApE on fibrillogenesis was demonstrated via TEM data showing 

mature fibrils in the A1-42 samples while the ApE3-42 sample contains mostly prefibrillar 

aggregates. The hybrid samples resemble the ApE3-42 indicating a strong effect on fibrillogenesis. 

FTIR data indicates that ApE inhibits formation of A1-42 intermolecular -sheet which makes 

up fibrils. This inhibition of -sheet formation and thus fibrillization of A1-42 by ApE3-42 is 

interesting and a possible mechanism of increased toxicity. Delay or inhibition of fibrillization 

likely leads to a corresponding increase in the population of soluble oligomers or drive the 

formation of off-pathway aggregates of increased toxicity. However, the lack of -helical structure 

in FTIR of dried peptides indicates structural transitions had occurred before buffer addition, 

calling these results into question. In addition the peptides were examined in buffer with 

significantly less ionic content that in physiological conditions. Moving forward with this project, 

we sought to examine the early oligomer structure of ApE and unmodified A as well as address 

these two concerns. 
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Isotope-Edited FTIR Reveals Distinct Structural Features of Unmodified and Pyroglutamylated 

Amyloid- Peptides During oligomerization 

 Next, we sought to characterize the structure of oligomers formed by A1-42 and ApE3-42 

as well as hybrid oligomers (198). In mixed samples it was observed that ApE3-42 inhibits cross -

sheet formation and fibrillogenesis of A1-42. A oligomers are heavily implicated in AD but little 

is known of their structures, so we wished to better characterize the structure of the oligomers 

formed by these peptides. Here we utilized peptides 13C- and 15N-labeled at specific stretches, 

these labels allow site specific determination of secondary structure as well as provide tertiary and 

quaternary structural information. Labeled proteins were examined in both 10 mM phosphate 

buffer pD 6.8 as well as in near-physiological 50 mM phosphate + 50 mM NaCl buffer pD 6.8. 

These data provide structural constraints for the modeling of early monomers and oligomers of 

A. Using these constraints, we propose a possible structure for monomeric A as well as likely 

mechanisms of early oligomerization. 

Isotope Labeling of Peptides 

In order to gain site-specific secondary structural information we utilized peptides that had 

been 13C and 15N labelled at specific locations. Peptides were generated with labels in two 

locations, K16L17V18 and V36G37G38V39. Solution NMR studies of the A containing APP segment 

reconstituted in micelles show an -helix starting at K16L17V18 and a bend involving V36G37G38V39 

near the C-terminus. After cleavage of A from the membrane this -helical structure undergoes 
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structural transitions eventually forming the cross -sheet structure found in fibrils. The 13C 

labelling of these segments causes a downshift in the amide I spectra allowing site-specific 

secondary structural information. In addition by examining the carbon coupling of these labelled 

segments we are able to gain quaternary structural information. If two labelled segments are in 

close proximity as is found in the in-register parallel -sheet characteristic of fibrils they will 

undergo 13C:13C coupling and a further downshift of absorbance will occur. If the labelled 

segments are not in close proximity to one another they will instead undergo 13C:12C coupling and 

a slight upshift of their associated absorbance peak will occur. 

FTIR of Dried Proteins 

Prior to the addition of buffer, measurements were taken of the peptides dried from HFIP. 

Peptides in HFIP were first deposited on the CaF2 window and then HFIP was removed via 

desiccation. It was previously observed that atmospheric humidity is sufficient to induce structural 

changes. In order to obtain reliable data, HFIP is used break up pre-formed aggregates and 

monomerize A. Previously, in CD of proteins dried from HFIP we observed -helical structures. 

We sought to capture this -helical structure in FTIR to ensure consistent A populations prior to 

the addition of bulk aqueous buffer. To ensure this, we lowered the protein concentration to 50 

M in HFIP, as high concentrations have been shown to induce aggregation (199). When peptides 

were dried from HFIP, using the lower concentration and keeping care not to keep samples in the 
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humid lab air for long, both ApE3-42 and A1-42 as well as their equimolar combination form mostly 

-helical structure, evidenced by the absorption peak at 1658-1662 cm-1 (Figure 10A). This 

absorbance is higher than is found in more stable -helices (1647-1657 cm-1) and suggests that the 

-helix formed by A peptides is more flexible. This more flexible -helix agrees with previous 

data of the A1-42 segment of the APP (98, 99). To accurately place and quantify the additional 

peak generated by the labeled residues the second derivative of dried spectra was calculated 

(Figure 10B). Peak fitting was then performed to quantify the additional peaks (Table 2) (Appendix 

A). For K16L17V18 labeled peptides an additional peak at 1624-1628 cm-1 is found corresponding 

to the labelled segment. This area is consistent with -helix composed of 1-4 13C labeled residues 

(190). The reason for the less-than-expected downshift is i-i+4 H-bonding with unlabeled peptides. 

In peptides labeled at V36G37G38V39 the dried spectra contains an additional peak at 1596-1602 

cm-1. This peak is located at a lower wavenumber and is lower intensity than would be expected 

from a 13C -helix comprising 4/42 or 4/40 suggesting that the C-terminus of the protein is 

disordered and the peptides are acting as isolated oscillators (Table 2) (190). This data indicates 

that in a dry state the peptides adopt a flexible -helical structure involving K16L17V18 while the 

V36G37G38V39 sequence close to the C-terminus is unordered. This agrees with previous 

observations of A containing segments of the APP reconstituted in micelles as well as MD 

simulations (98, 99, 200). This demonstrates that these dried peptides resemble A prior to 

membrane release into an aqueous environment, making them a biologically relevant starting 

material for the study of A structural changes and aggregation. 
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Figure 10. (A) FTIR spectra of dry peptides in the amide I regions. Spectra for unlabeled and isotopically labeled A1-

42 and ApE3-42 peptides and their 1:1 combinations are presented. Gray dotted lines correspond to ApE3-42, and solid 
black lines correspond either to Ab1-42 or to combined samples, as indicated. KLV or VGGV imply the peptides have 
been labeled at K16L17V18 or V36G37G38V39, respectively. In KLV/VGGV or VGGV/KLV samples, the first stretch 
applies to Aβ1-42 and the second to AβpE3-42. (B) Second derivatives of the corresponding FTIR spectra. 

Table 2. Relative amide I content of the 13C labeled peaks in peptides dried from HFIP. In the columns with two 

different labels the first one corresponds to A1-42 and the second to ApE3-42. 

 A1-42 ApE3-42 1 to 1 KLV/VGGV VGGV/KLV Total 

KLV 12.3% 15.5% 13.3% 13.0% 12.6% 13.3±1.3% 

VGGV 8.2% 12.4% 8.9% 2.2% 7.4% 7.8±3.7% 
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FTIR of Unlabeled Peptides 

After measurement of dried peptides aqueous buffer was added and measurements were 

taken consecutively (1000 scans takes ~10 minutes). After 10 minutes in 10 mM Phosphate buffer 

pD 6.8 the peptides and their equimolar combination form type 1 -turn and intramolecular -

sheet as evidenced by the major peaks at 1673 and 1635-1630 cm-1 respectively (Figure 11D) 

(190). Consistent with previous observations, the peptides retain some -helical structure 

evidenced by absorption ~1660 cm-1. Peptides in near-physiological buffer conditions have similar 

absorption peaks and shape indicating formation of type 1 -turn, -helix, and intramolecular -

sheet (Figure 11A). After 2 hours the location of the -sheet was downshifted 2-5 cm-1 likely due 

to H-D exchange. This indicates that the peptides are in a loose conformation allowing solvent 

access to the majority of peptides residues (Figure 11C). The -sheet absorbs 1633-1628 cm-1 

indicating the presence of intramolecular -sheet as intermolecular -sheets absorb at a lower 

wavenumber 1613-1625 cm-1. In near physiological conditions ApE3-42 contains more -helix and 

less -sheet compared to A1-42 indicated by a higher ratio 1660/1630-35 cm-1(Figure 11A-C). In 

low ionic buffer conditions the opposite is true with A1-42 containing more -helix and less -

sheet than ApE3-42 (Figure 11D-F). These differences are evident when examining A1-42 –ApE3-

42 difference spectra. In physiological ionic conditions a negative peak at 1660 cm-1 and a positive 

peak at 1620 cm-1 indicate more -helix and less -sheet in the ApE3-42 sample compared to the 

A1-42 (Figure 12A). The opposite is seen in low salt buffer with a large negative peak at 1620 cm-

1 and a positive peak at 1660 indicating less -helix and more -sheet in the ApE3-42 (Figure 12C). 
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Taking the difference spectra of the 1:1 and the weighted sums of the individual peptides show 

differences caused by peptide interactions. If there were no changes due to peptide interaction this 

line would be flat. In physiological ionic conditions difference spectra has positive components at 

1670 and 1653 cm-1 and a negative component at 1625 cm-1, indicating peptide interaction 

enhances formation of -turn and -helix and inhibits -sheet formation (Figure 12B). In low salt 

a positive component at 1673 cm-1 and a negative one at 1625 cm-1 are present (Figure 12D). This 

indicates that peptide interaction causes formation of more -turn and less -sheet structure. In 

near-physiological conditions the 1:1 sample more closely resembles the ApE3-42 forming more 

-helix and less -sheet; this agrees with previous data that ApE3-42 strongly influences the 

structure of hybrid samples. In low salt conditions the 1:1 more closely resembles the A1-42 

forming more -turn and less -sheet structure. 
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Figure 11. FTIR spectra of 50 mM A1-42 (Green) ApE3-42 (blue) and their equimolar combination (Red) in 50 mM 
phosphate + 50 mM NaCl pD 7.2 (ABC) and in 10 mM phosphate pD 6.8 (DEF) buffers. Time points shown are 10 

minutes (A,D) 60 minutes (B,E) and 120 minutes (C,F). Total peptide concentration is 50 M 
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Figure 12. Difference FTIR spectra of Aβ1-42 and AβpE3-42 peptides and their equimolar combinations in 50 mM NaCl 
+ 50 mM phosphate buffer (A, B) and 10 mM phosphate buffer (C, D), pD Spectra in A) and C) show the difference 
Aβ1-42 - AβpE3-42, and those in B) and D) show the difference between 1:1 combination and the normalized sum of the 
spectra of the two peptides. Blue, green, and red correspond to the peptide samples incubated in a D2O-based buffer 
for 10, 60 and 120 min, respectively. Total peptide concentration is 50 μM. 

In order to quantitate the relative fractions of secondary structure present peak fitting was 

performed with peaks being placed based on the second derivative of the spectra (Appendix B). 

While peak fitting it was noticed that in 50 mM phosphate + 50 mM NaCl pD 6.8 buffer the 1:1 

-helix was downshifted to ~1653 cm-1. This downshift is likely due to helix stabilization. Peaks 

were assigned to secondary structures based on location of the absorbance peak. Data after 10, 60, 
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and 120 minutes of hydration was averaged (Table 3). In physiological buffer conditions ApE3-42 

contains more -helix and less -sheet than A1-42 while the opposite is true in buffer of less ionic 

content. The 1:1 combination similarly resists -helix-to--sheet conversion. 

This is consistent with our previous observations that ApE3-42 is able to retard -sheet 

formation in hybrid samples. The changing -helical propensity based on ionic conditions is 

evidence that the -helix is located in the N-terminus of the peptides. The -helix of A1-42 can be 

stabilized by ionic interactions at the N-terminus such as D1-K16, E3-K16, D1-R5, R5-E11. Higher 

concentrations of ionic charges will weaken this ionic stabilization. The ApE3-42 is missing three 

N-terminal charges and thus does not form some of these stabilizing ionic interactions. 

Table 3. Secondary structures of A1-42, ApE3-42, and their equimolar combination in 50 mM phosphate 50 mM NaCl 
pD 6.8 (light blue) and 10 mM phosphate pD 6.8 (unshaded) determined by curve fitting of amide 1 spectra. Numbers 
shown are averages taken after 10, 60, and 120 minutes in buffer. Other refers to all other peaks fit and is primarily 
composed of unordered structure. 

 A1-42 ApE3-42 1 to 1 

-helix 
11.0±2.4 18.7±3.2 22.9±3.6 

24.8±5.1 13.6±1.8 16.3±2.1 

-sheet 
50.4±4.6 43.0±4.4 34.5±3.9 

38.7±4.8 48.9±3.6 34.2±3.2 

-turn 
18.1±3.3 20.3±1.7 28.4±2.4 

24.0±2.7 19.8±1.3 27.7±3.6 

other 
20.5±3.9 18.0±2.2 14.2±1.3 

12.5±3.6 17.7±2.6 21.8±2.7 
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FTIR of Labeled Peptides 

 After dry measurement of the labeled peptides buffer was applied and consecutive 

measurements were taken as with the unlabeled peptides. After ten minutes in both buffers the 

spectra for the peptide resembles the unlabeled with major peaks ~1673 cm-1 and between 1637-

1628 cm-1 corresponding to type 1 -turn and intramolecular -sheet respectively (Figure 12). 

Overlaying the K16L17V18 and V36G37G38V39 spectra over the unlabeled spectra discussed 
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previously identifies an additional peak located ~1598-1604 cm-1(Figure 13). This peak can be 

attributed to the 13C labeled amino acids in the peptides. 

 

 

 

Figure 13. FTIR spectra of A1-42 (A,D), ApE3-42 (B,E) and, their 1:1 combination (C,F) after 10 minutes in 50 mM 
phosphate 50 mM NaCl pD 7.2 (A,B,C) and 10 mM phosphate pD 7.2 (D,E,F) buffers. Colors correspond to unlabeled 
peptide (Red) as well as proteins 13C- and 15N- labeled at K16L17V18 (Blue) and V36G37G38V39 (green). Total peptide 

concentration is 50 M. 

 When labeled at K16L17V18 in 50 mM phosphate + 50 mM NaCl pD 6.8 buffer the ApE3-

42 retains more -helix than A1-42 as with the unlabeled peptides (Figure 14 A-C). The A1-42 

instead forms more type 1 -turn structure demonstrated by the larger absorbance at 1673 cm-1. 
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Additionally, the -sheet absorbance of the A1-42 is downshifted 3-5 wavenumbers in comparison 

to the ApE3-42 indicating faster formation of -sheet compared to the ApE3-42. The 1:1 

combination -sheet peak absorbs ~1633cm-1 between A1-42 and ApE3-42. This agrees with our 

previous observations that ApE3-42 has lower -sheet propensity than A1-42 and could retard -

sheet formation of the A1-42 in hybrid samples. When labeled at V36G37G38V39 the ApE3-42 

contained more -turn and less -sheet structure than A1-42 indicated by peak heights at 1673 and 

~1635 cm-1 respectively (Figure 14 D-F). As with the K16L17V18 labeled proteins the -sheet peak 

of A1-42 is at lower frequencies than ApE3-42 indicating faster -sheet formation. 
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Figure 14. FTIR spectra of A1-42 (green), ApE3-42 (blue) and, their equimolar (red) combinations after 10 (A,D) 60 
(B,E) and, 120 (C,F) minutes in 50 mM phosphate 50 mM NaCl pD 7.2 buffer. Peptides are 13C- and 15N-labeled at 

K16L17V18 (A,B,C) and V36G37G38V39 (D,E,F). Total peptide concentration is 50 M. 

 When 10 mM phosphate pD 6.8 buffer was added to the peptides the A1-42 formed a higher 

fraction of -turn structure indicated by the peak at 1673cm-1 (Figure 15). Additionally, in the 

K16L17V18 labeled peptides the -sheet peak wavenumber of the ApE3-42 is shifted several 

wavenumbers lower than A1-42 indicating faster -sheet formation by the ApE3-42 (Figure 15A-

C). The 1:1 -sheet is again located between the A1-42 and ApE3-42 -sheet wavenumbers 

indicating that A1-42 retards -sheet formation in the hybrid sample. This agrees with our previous 

data that ApE3-42 has a lower -sheet propensity than the A1-42 and can delay -sheet formation 

in hybrid samples in physiological buffer conditions while the opposite is true in buffer of low 
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ionic content

 

Figure 15. FTIR spectra of A1-42 (green), ApE3-42 (blue) and, their equimolar (red) combinations after 10 (A,D) 60 
(B,E) and, 120 (C,F) minutes in 10 mM phosphate pD 7.2 buffer. Peptides are 13C- and 15N-labeled at K16L17V18 

(A,B,C) and V36G37G38V39 (D,E,F). Total peptide concentration is 50 M. 

 To facilitate placement of the labeled peak the second derivative was calculated, 

examination of the second derivative show a peak that can be assigned to the labeled segment 

~1603-1598 cm-1 (Figure 16). To further quantify this peak as well as to examine secondary 

structure distribution peak fitting was conducted for spectra taken 10, 60, and 120 minutes after 

buffer addition (Appendix C). Taking into account our observed intramolecular -sheet peaks of 

1637-1628 cm-1 we can predict 13C-labeled -sheets to absorb 1601-1592 cm-1 therefore we can 

reliably say that the labeled segment is forming intramolecular -sheet. As discussed earlier, in 
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samples containing both 13C- and12C-labeled samples the 13C-labeled residues can undergo 

vibrational coupling with either 13C or 12C-labeled residues depending on whichever is in close 

proximity. This coupling changes vibrational frequency with 13C:13C coupling causing a downshift 

and 13C:12C coupling causing an upshift in absorbance wavenumber. Taken with our previous 

calculation we can reasonably assign an absorbance 1603-1599 to 13C-labeled -sheets undergoing 

13C:12C-coupling and the absorbance 1596-1592 to 13C-labeled -sheets undergoing 13C:13C-

coupling. Therefore, based on the location of the labeled peak in the second derivative we can 

reasonably conclude that in these samples in any combination neither K16L17V18 nor V36G37G38V39 

segments are adjacent to themselves or one another.  

 

Figure 16.  Second derivative of FTIR spectra taken 10 minutes after the addition of A) 50 mM phosphate + 50 mM 
NaCl pD 6.8 and B) 10 mM Phosphate buffer pD 6.8. For spectra labeled KLV/VGGV or VGGV/KLV the first 

corresponds to A1-42 and the second to ApE3-42. 
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A Modeling 

 Although FTIR data generally does not give tertiary or quaternary structural information 

site-specific 13C-labeling gave site-specific structural information. This information along with the 

other data collected here gives structural constraints useful in the modeling of early A oligomers 

and oligomerization. First, in aqueous buffer both A1-42 and ApE3-42 forms a mixture of primarily 

intramolecular--sheet with lesser amounts of, -helix, -turn, and unordered structures. This -

helix can be placed at the N-terminus based on data collected in buffers with two different ionic 

contents indicating that ApE3-42 has a higher -helix propensity than A1-42 in physiological 

conditions while the opposite is true in buffer with low ionic content. Second, the segments 

K16L17V18 and V36G37G38V39 both form intramolecular -sheet. Third these segments are 

undergoing 13C:12C coupling meaning they are not adjacent to one another. The final constraint is 

based on the small size of these peptides as well as the significant fraction of -helix this makes 

formation of parallel intramolecular -sheets impossible. Based on these constraints we propose 

that the monomeric A is forming a -hairpin with two -strands connected by turn structure 

downstream of K16L17V18 with an N-terminal -helix (Figure 16). The turn segment is likely 

stabilized by a salt bridge between D23 and K28 as predicted in other studies (201).The presence of 

-helix with majority -sheet has been previously observed in A oligomers which display more 

toxicity to cultured PC12 cells compared to mature fibrils which contain no -helical component 

(115). 
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Figure 17. The amino acid sequence of A1-42 arranged in a structure involving a b-hairpin stabilized by D23-K28 ionic 
bridge, and an N-terminal stretch that may assume a-helical conformation. The isotopically labeled amino acids are 

shaded. Underneath is a ribbon model for Ab monomer, composed of a -hairpin and an N-terminal -helix. The 
segments K16L17V18 and V36G37G38V39 are both involved in the b-hairpin and are marked by dark blue colors. 

 These data also give us hints as to how these early monomers aggregate. The lack of 13C:13C 

coupling exclude the possibility of parallel in-register stacking with the aggregation axis 

perpendicular to hairpin plane as found in mature fibrils (Figure 17A). Stacking in an anti-parallel 

arrangement would also cause 13C:13C coupling and can thus be ruled out (Figure 17B). Next we 

examined oligomerization through interactions between the C-termini or N-termini of neighboring 

hairpins. The lack of intermolecular -sheet signal indicates that this interaction is through non-H 

bonding possibly hydrophobic or ionic. Aggregation in this manner in either a parallel (Figure 

17C) or antiparallel (Figure 17D) orientation would again lead to 13C:13C coupling and therefore 
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can be confidently ruled out. We then examined dimerization through non-H bonding between the 

C-termini of one hairpin strand with the N-terminus of a neighboring hairpin in either a parallel 

(Figure 17E) or antiparallel (Figure 17F) manner. In this arrangement there would not be any 

13C:13C coupling matching our experimental observations and is thus not ruled out. This stacking 

could take place with the -strands laterally or in a vertical manner reminiscent of steric zippers. 

This vertical stacking could take place alternatively between strands (Figure 17E) or alternating 

between entire hairpins (Figure 17F).  
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Figure 18. Schematic models for A oligomerization through interactions between the core - hairpin structures. Two 

arrows in each molecule represent two -strands, connected by a loop or turn. The monomers are colored gray and 
pink, and the isotopically labeled segments are indicated by darker color. In all cases, the structures are stabilized by 
intramolecular H-bonding and intermolecular non-H-bonding contacts, i.e. ionic and/or hydrophobic interactions. The 
plane of the picture is parallel to the hairpin plane. In A,B the aggregation axis is perpendicular, and in C-F it is 
coplanar to the picture plane. 

 Here we conducted FTIR on peptides 13C-labeled at specific segments in order to obtain 

site-specific structural information for A1-42, ApE3-42, and their equimolar combinations. Using 

this information as well as information obtained in two buffers with distinct ionic content allow us 

to propose a model for an early monomer composed of a -hairpin with an N-terminal -helix. 
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Additionally, we propose that these monomers aggregate through non-H-bonding interactions 

between the N-terminus of one hairpin and the C-terminus of another. These oligomers are 

structurally distinct form mature fibrils and are formed via a different mechanism of aggregation. 

The consistency of this data throughout repeated experiments, in spite of the polymorphic nature 

of these proteins, lends credibility to these results. 
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Mutual inhibition of fibrillogenesis by A peptides 

 Next, we sought to characterize the transitions and intermediate structures during oligomer 

formation. The toxic A species is thought to be created sometime during the transition from the 

-helical monomer to the mature cross-fibrils. However, it is unknown whether these oligomers 

are formed as intermediates during fibrillogenesis or are formed via alternative pathways. We 

sought to answer this question by examining the -to- transition of the peptides. To accomplish 

this we used a novel approach, hydration from gas phase, (see methods) based on our previous use 

of atmospheric humidity to induce structural changes in A (Figure 6). 

Individual Peptides 

 Prior to examining hybrid samples we first characterized the behavior of individual 

peptides. After desiccating the proteins onto the windows as described earlier, spectra of the dried 

peptide was collected. These spectra indicate that both 13CA1-42 and ApE3-42 are forming 

primarily -helical structure shown by peaks at 1616 and 1657 cm-1 respectively (Figure 18). In 

the 13CA1-42 spectra a shelf present ~1590 indicates presence of a small amount of -sheet and 

the peak ~1673 cm-1 likely corresponds to residual TFA from peptide synthesis. 
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Figure 19. FTIR spectra of 50 M ApE3-42 (red) and 13CA1-42 (blue) in HFIP added to FTIR windows followed by 
HFIP removal by vacuum desiccation. 

 Following measurement of dried peptides structural transitions were initiated by beginning 

the flow of D2O laden N2 gas into the sample chamber. The buildup of D2O within the chamber is 

indicated by increasing intensity of spectral features generated by D2O stretching ~2500 (Figure 

20). This data indicated that D2O saturation level reached one third of maximum after 5 minutes 

and then slowly rose until maximum saturation is reached approximately 3 hours later. After the 

onset of D2O hydration the peak associated with the 13CA1-42 -helix rapidly diminished while a 

peak corresponding to -sheet ~1590 cm-1 quickly grew indicating a rapid initial rate of -helix-

to--sheet transition (Figure 21A). The peak ~1673 cm-1 is unchanged throughout hydration and 

can be attributed to TFA. Hydration of the ApE3-42 caused a decrease in -helix and a 

corresponding increase in -sheet content indicated by growth of a peak at 1633 cm-1 (Figure 21B). 
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Over time, the reduction in -helical intensity revealed an additional peak at 1673 cm-1 which we 

have previously attributed to type 1 -turns. Additionally, the A1-42 retained an amide II 

absorbance while the ApE3-42 amide II was fully deuterated, as previously observed. This -to- 

transition is easily observed by looking at the second derivative of the initial spectra and one after 

five hours of gas phase hydration (Figure 21C,D). Examination of second derivatives reveal a 

component at 1613 cm-1 in 13CA1-42, this peak indicates retention of -helical structure (Figure 

21C). The downshift in wavenumber is likely due to amide dueteration throughout hydration. A 

small component ~1660 cm-1 in the ApE likely corresponds to some residual -helix as well 

(Figure 21D). 
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Figure 20. FTIR Spectra of ApE3-42 sample in D2O absorbance region at various times of continuous injection of D2O-
saturated nitrogen. The intensity of D2O asymmetric stretching vibrational-rotational mode increases as D2O vapor is 
being pumped into the sample compartment of the FTIR instrument. The spectra have been stacked for clarity. 
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Figure 21. FTIR spectra of 13C-A1-42 (A) and ApE3-42 (B) dried on a CaF2 window (black lines) and upon injection 
of D2O-saturated nitrogen for ~5 hours (blue to red). Amide I areas have been normalized. Time points of consecutive 
spectra can be determined from data of Fig. 21. The second derivatives of spectra corresponding to the dry and after 

five hours of vapor hydration for the A1-42 (C) and ApE3-42 (D). 

 Although both peptides transitioned from -helix to -sheet the kinetics of this transition 

were quite different. The ApE3-42 transition occurs much slower at first and then more rapidly later 

on. To examine the kinetics of this transition we plotted A/Aas well as the height of the amide 

II peak versus time (Figure 22). In the A1-42 for the first hour, the A1590/A1616 rapidly increased 



70 

 

while the amide II height rapidly diminished (Figure 22A). After an hour this trend continued but 

at a reduced rate. Conversely, the ApE3-42 transitions were sigmoidal in behavior. Little change 

occurred in the first hour, followed by rapid change in both amide II height and A1633/A1658 (Figure 

22B). The delayed -sheet formation of the ApE compared to the unmodified peptide agrees with 

our previous observations. 

 
Figure 22. Dependence of -structure formation (red) in 13C-A1-42 (A) and ApE3-42 (B) and amide II intensities (blue) 
on time of pumping D2O-saturated nitrogen into the sample compartment. 

Combined Sample -to- Transition 

 Following measurement of the individual peptides we examined the structural effects of 

combination of the peptides. Two peptide ratios were used a 9:1 (A1-42:ApE3-42) ratio and an 

equimolar ratio, as we used in previous experiments. Two samples were prepared and examined 

sequentially while exposed to the same vapor environment, the first has both peptides dried 

together on one side of the CaF2 FTIR window, in the other sample the two peptides are dried on 

opposite sides of the CaF2 window so the signal from both peptides is present in the spectra but 
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peptide interaction is not occurring (See Methods). When dried at either ratio, both A1-42 and 

ApE3-42 form -helix indicated by absorbance peaks at 1617-1619 and ~1658 cm-1 respectively 

(Figure 23 A,B). The -helix location is unchanged between separated and combined samples 

implying a lack of 13C:12C coupling. Therefore, we can conclude that in the -helical state the 

peptides are not interacting. Curiously in all samples the 13CA1-42 -helix absorbs at a lower 

intensity than would be expected from peptide ratios. 

 
Figure 23. FTIR spectra of the dried peptides at a 9:1 (A) and 1:1 (B) ratios. The teal spectra corresponds to separated 
peptides while the green is the peptides in combination. Amide I areas have been normalized. 

 Both peptides when either separated or combined at a 9:1 ratio underwent -to- transition 

in response to D2O vapor. After 5 hours of vapor hydration, the -helical peaks have diminished 

and in their place -sheet peaks corresponding to both peptides have formed, as well as a peak at 

1673 cm-1 corresponding to TFA with some likely contribution from ApE3-42 -turn (Figure 

24A,B). In the separated sample the ApE3-42 -sheet was located at 1625 cm-1 while in 
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combination it absorbed weaker and higher at 1639 cm-1. These peaks could normally be assigned 

to inter- and intramolecular -sheet respectively. However, the high molar ratio of 13CA1-42 means 

that this this upshift could also be caused by transition dipole coupling, thus further investigation 

is required. Examination of the second derivative of spectra taken after 5 hours of vapor hydration 

(Figure 24C,D), shows absorbance peaks at 1625 and 1639 cm-1 in both separate and combined 

samples. The presence of these peaks in both samples implies that both intra- and intermolecular 

-sheets are formed in both samples but co-incubation with unmodified A shifts structural 

propensity of ApE from inter- to intramolecular -sheet. In 13CA1-42 the -sheet is located at 

1585 and 1587 cm-1 in separate and combined samples respectively. These peaks indicate presence 

of intermolecular or cross -sheet, the small upshift in the combined sample is likely due to 13C:12C 

coupling with unlabeled ApE3-42. The lack of a structural shift in the 13CA-42 is expected, due to 

the high molar excess of A1-42 and the solid nature of the sample there is likely little interaction 

between most A1-42 peptides and ApE3-42. 
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Figure 24. FTIR spectra of ApE3-42 and 13C-A1-42 peptides at opposite sides of a CaF2 window (A) or combined on 
the same side of a window (B) at a 9:1 mole ratio. Black lines are spectra of dry samples. Change in color from blue 
to red corresponds to injection of D2O-saturated nitrogen for ~5 hours. Amide I areas have been normalized. Time 
intervals between consecutive spectra can be determined from data of Fig. 26. C,D) Second Derivative of FTIR spectra 
after 5 minutes (blue) and 5 hours (red) of hydration for both separate (C) and combined (D) peptides. 

The equimolar samples also undergo -to- transition. Diminishing of the ApE3-42 -helical peak 

throughout hydration again uncovers the peak located at 1673 cm-1 likely composed of both TFA 

from the 13CA1-42 and -turn of the ApE3-42 (Figure 25A,B). Along with this peak are peaks 

corresponding to -sheet of both peptides. After five hours of hydration from gas phase the -sheet 

peak of ApE3-42 the major peak is located at 1628 when separate and 1638 cm-1 when combined. 
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When separate the A-42 -sheet peak is located at 1586 cm-1 while in combination it shifts to 

1597 cm-1. For both peptides the former can be attributed to intermolecular -sheet while the latter 

can be attributed to intramolecular -sheet. Examination of the second derivative of 5 hour spectra 

show peaks corresponding to intra- and inter -sheets for both peptides (i.e. peaks at 1637, 1628, 

1597, and 1586 cm-1) indicating that the shifted peak comes from structural shifts and not simply 

13C:12C coupling (Figure 25C,D). Additionally, these spectra contain peaks at 1656-1654 and 

1617-1616 cm-1 these peaks likely represent residual -helix of ApE3-42 and A1-42 respectively, 

indicating incomplete -to- transition. This data along with the data from the 9:1 ratio indicate 

that ApE3-42 forms more intra- than inter-molecular -sheet in the presence of A1-42, while A1-

42 similarly forms more intra- than inter-molecular -sheet in the presence of ApE3-42. This 

relationship is demonstrated by overlaying the separated and combined samples spectra after 5 

hours of D2O hydration (Figure 26). 

To quantify this shift we examined the ratio Aintra/Ainter after five hours which gives the 

ratio of intra to inter--sheet present in the sample, which will henceforth refer to as R. Taking 

R comb/R sep allows quantification of the change in this ratio caused by peptide interaction (Table 

5). The values for the 9:1 13CA1-42 are not calculated as it did not form any significant fraction of 

intramolecular -sheet. For both A1-42 and ApE3-42 R comb/R sep is above 1 at both 9:1 and 1:1 

ratios indicating shifts in -sheet formation caused by peptide interaction. This is compelling 

evidence that the peptides act upon one another to mutually inhibit cross -sheet formation. 

Curiously, the structural components are consistent with their molar ratios after hydration in both 
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9:1 and 1:1 samples. This means that the altered ratios observed in dry samples is caused by a 

lowered extinction coefficient for 13CA1-42 -helical structure and not improper peptide ratios. 
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Figure 25. FTIR spectra of ApE3-42 and 13C-A1-42 peptides at opposite sides of a CaF2 window (A) or combined on 
the same side of a window (B) at a 1:1 mole ratio. Black lines are spectra of dry samples. Change in color from blue 
to red corresponds to injection of D2O-saturated nitrogen for ~5 hours. Amide I areas have been normalized. Time 
intervals between consecutive spectra can be determined from data of Fig. 26. C,D) Second Derivative of FTIR spectra 
after 5 minutes (blue) and 5 hours (red) of hydration for both separate (C) and combined (D) peptides. 
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Figure 26. FTIR spectra for 9:1 (A) and 1:1 (B) molar ratios taken after 5 hours of continuous vapor hydration. The 
teal spectra corresponds to separated peptides while the green is the peptides in combination. 
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Table 4. Quantitative data describing -helix to -sheet transitions in ApE3-42 and 13C-A1-42 peptides at opposite 

sides of a CaF2 window or combined together at one side of a window at 1:9 or 1:1 molar ratios.  is the shift in 

wavenumbers from -helix to -sheet and  is the difference between combined and separated samples. Aintra and 
Ainter correspond to the major b-sheet peaks as found experimentally and shown in the table. 

 9:1 (13CA1-42:ApE3-42) 1:1 (13CA1-42:ApE3-42) 

 ApE3-42 13CA1-42 ApE3-42 13CA1-42 

 → Transition 

Separate 1659→1625 1617→1585 1659→1628 1619→1586 

Peak Shift  

(cm-1) 

34 32 30 33 

Rsep (Aintra/Ainter) 
0.97 

- 

 0.95 

0.93 

 

Combined 1659→1639 1617→1587 1658→1638 1619→1597 

Peak Shift  20 30 20 22 

Rcomb 

(Aintra/Ainter) 
1.08 

- 

 1.05 1.41 

 14 2 10 11 

R comb/R sep 
1.11 - 1.11 1.51 

 

 The kinetics of → transition was examined by taking the ratio of the absorbance 

intensity at the peaks associated with -sheet in both separated and combined samples over the 

intensity of the -helical peak, and tracking it against time of hydration (Figure 27). At a 9:1 ratio 
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there is very little shift in the -sheet peak of the 13CA1-42 between the separated and combined 

samples as expected due to the low ratio of ApE and solid nature of the samples. When the 

kinetics of -sheet formation in both separated and combined samples is examined they closely 

resemble one another as well as the A1-42 individually, in that they undergo transition rapidly 

initially before then slowing but continuing to transition with time. The ApE3-42 initially 

underwent transition more slowly than the unmodified peptide, in agreement with previous 

observations. In both separate and combined samples the ApE3-42 forms more inter- than intra-

molecular -sheet. However, the difference between the two narrows in combined samples 

indicating a shift from inter- to intra--sheet formation (Black and white circles Figure 27 A,B). 

In the 1:1 samples the kinetics are similar with A1-42 transitioning rapidly at first and then slowing 

while ApE3-42 transition appeared to speed up with time (Figure 27 C,D). Examination of -sheet 

formation in combination yields strong evidence that the peptides mutually inhibit intermolecular 

-sheet formation in favor of intramolecular -sheet formation. For both peptides, when separated 

intermolecular -sheet formation is favored while the opposite is true in combined samples (White 

circles and squares are increased compared to colored in separate samples while the opposite is 

true in combination). Interestingly the effect of ApE3-42 on A1-42 appeared to be most pronounced 

after 3 hours, with the rate of intramolecular -sheet formation increasing greatly compared to the 

formation of intermolecular -sheet.  
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Figure 27. Changes in -sheet/-helix amide I intensity ratios with time of pumping D2O-saturated nitrogen. A, B: 

ApE3-42/13C-A1-42 = 1:9; C,D: ApE3-42/13C-A1-42 = 1:1. A, C: peptides are physically separated, i.e. are at opposite 
sides of a CaF2 window, B, D: peptides are combined at one side of a CaF2 window. Symbols in A are identical to B, 

and symbols in C is identical to D. Black graphs describe transitions in ApE3-42, red graphs describe transitions in 13C-

A1-42. ApE3-42 and 13C-A1-42 

 This data indicates that ApE3-42 and A1-42 mutually inhibit intermolecular -sheet 

formation of one another, instead promoting formation of intramolecular -sheet. This data agrees 

with previous observations of the ApE3-42 ability to inhibit cross -sheet formation of the A1-42 
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(Figures 7,9). Kinetic data shows a decelerated rate of intermolecular -sheet formation in mixed 

samples supporting this conjecture (Figure 27). Conceivably, this could be caused by intervention 

of non-identical peptide molecules into structures formed by the other peptide shifting the H-

bonding from intermolecular to intramolecular. Peptides forming intermolecular -sheets 

eventually go on to form mature fibrils while these intramolecular -sheets likely resemble the -

hairpins we described earlier (Figure 16). The presence of residual -helix agrees with earlier 

findings and supports this conclusion. It can therefore be concluded that A1-42 and ApE3-42 

mutually inhibit formation of intermolecular -sheet, instead promoting off-pathway formation of 

mixed / hairpins (Figure 28). This conclusion agrees with previous observations of delayed 

fibrillogenesis of mixed samples (Figure 5). 
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Figure 28. Scheme for aggregation of ApE3-42 (gray), A1-42 (red), and their combination, accompanied with an -

helix to -sheet transition. At the N-terminus of A1-42 there are 3 additional charges, a positive charge of the N-

terminal -amino group and 2 negative charges of the side chains of Asp1 and Glu3. Helices are shown as spirals, -
strands as arrows, and H-bonds as black bars. 

MTS Viability Assay 

 We next wished to examine the effect of these A hetero-oligomers on A aggregates 

through collaboration with Dr. Kenneth Teter and Dr. Lucia Cilenti. In this data the most toxic 

species is the equimolar combination of ApE3-42 and A1-42 at two hours of aggregation (Figure 

29). This is the time period where the greatest population of hetero-oligomer is thought to exist. 

This data demonstrates the enhanced cytotoxic properties of these hetero-oligomers. 
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Figure 29. Change in cellular viability caused by A aggregates as demonstrated by MTS assay. Studies were 

conducted in triplicate and normalized so that the control is equivalent to 100% viability. A peptides were added to 

peptides at a final concentration of 10 M for 28 or 50 hours. Ab peptides that had been aggregating in PBS at 37°C 
for 2 hours (First group) 4 hours (second group) and 24 hours (final group) 

A Mediated Membrane Calcium Leakage 

 The formation by A of calcium permeable membrane pores is a hypothesized mechanism 

of A mediated cytotoxicity in AD. To examine the effect of these oligomers, A aggregates were 

added to a solution containing calcium bound in unilamellar lipid vesicles composed of 60% POPC 

30% POPG and 10% cholesterol after 2 and 24 hours of aggregation. The release of calcium from 

vesicles was demonstrated via increase in fluorescence of Quin-2. Maximum fluorescence is 

demonstrated by popping all of the vesicles with triton-X. The results of this are striking, at two 

hours of aggregation A1-42 does not induce any greater calcium release than buffer control. 
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However, ApE3-42 as well as 9:1 and 1:1 combinations induce significant release of calcium 

(Figure 30A). At 24 hours of aggregation the combinations had a lesser effect than at two hours, 

consistent with pore formation by oligomers but not mature fibrils (Figure 30B). Curiously, the 

ApE3-42 actually had a greater effect on calcium release at 24 hours than 2 hours. Additionally, at 

24 hours the 9:1 had a greater effect than the 1:1. 

 
Figure 30. Vesicular calcium release as assayed by Quin-2. A peptides were added to vesicles after 2 hours (A) and 

24 hours (B) of aggregation via stirring at 37 °C. Data for release via A1-42 (blue), ApE3-42 (red), 9:1 (green) 1:1 (teal) 
and buffer control (black) are shown. Peptides were added following two measurements to establish a baseline, 0.5% 
Triton X-100 was added to the control after 6 measurements to disrupt vesicles and measure maximum fluorescence. 

 This data demonstrates that these hetero-oligomers do in-fact induce a significant drop in 

cellular viability compared to individual peptides. These hetero-oligomers also induced greater 

release of intra-vesicular calcium. The far greater effect of ApE3-42 at 24 hours as well as the 

greater effect of 9:1 than 1:1at 24 hours, is not consistent with toxicity data. To confirm these 

results follow up studies are being conducted. If confirmed, this data implies that formation of 
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calcium pores in lipid membranes may not be the primary A-mediated pathway of cellular 

dysfunction in AD. 
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CHAPTER FIVE: CONCLUSIONS 

 Recent evidence has shifted focus from fibrillar to soluble oligomeric species of A as the 

primary cytotoxic species in AD. Due to the difficulty of their study, namely their structural 

heterogeneity, dynamics, and polymorphic nature, little is known about the structure and formation 

of A oligomers. Pyroglutamylated A are major species of A in the AD brain displaying 

increased toxicity. Studies have demonstrated the ability of ApE3-42 to increase the toxicity of 

unmodified A in low molar ratio through structural changes however, little is known about the 

mechanism. 

This project sought to investigate A oligomer structure. In particular we aimed to examine 

the structural effect of ApE on unmodified A. Current evidence implicates these oligomers as 

the cytotoxic A agent in AD (38, 46). Pyroglutamylated A species make up a significant fraction 

of the soluble A in AD brains. ApE3-42 has been demonstrated to cause significant changes to 

oligomers of A1-42 and ApE3-42, altering both their structure and toxicity, even when it is present 

in low molar ratio (44). We first sought to examine the effects of ApE3-42 on the structure and 

fibrillization kinetics of A1-42. Data collected via CD indicate that ApE3-42 delays -sheet 

formation of the unmodified peptide in mixed samples. TEM images of the unmodified A 

collected after two hours of aggregation contain mature fibrils while samples of ApE and mixed 

samples contained greater numbers of globular aggregates. FTIR data indicates that ApE inhibits 

cross-sheet formation of the unmodified peptide, thus retarding fibrillogenesis. Inhibiting fibril 
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formation may increase the population of A oligomers or promote formation of off-pathway 

aggregates of enhanced toxicity.  

We next sought to characterize the early oligomers of ApE and unmodified A as well as 

the structural changes upon co-incubation. To further investigate the structure of A oligomers we 

utilized peptides selectively 13C-labeled at two specific segments K16L17V18 and V36G37G38V39. 

These allow site specific determination of protein secondary structure. Data was collected of A1-

42, ApE3-42, and, their equimolar combination labeled at two locations and in two buffers of 

different ionic content. This data indicates that early oligomers are composed of -helix, 

intramolecular -sheet, and -turn structure, and that the labeled segments were forming sheets. 

Changes in -helical content in different buffer conditions indicate that the a-helix is located at 

the N-terminus. Additionally, the carbon coupling of labeled residues indicates a lack of 13C:13C 

coupling giving both tertiary and quaternary structural insight. These data allow us to propose a 

possible structure for the monomeric A namely a -hairpin with an N-terminal -helix and a -

turn occurring downstream of K16L17V18. Data indicates that oligomerization likely occurs through 

non H-bonding interactions between neighboring -hairpin strands. 

After structural characterization of early peptides we sought greater detail on the early 

dynamics of oligomerization. In the plasma membrane as well as HFIP A peptides are -helical. 

In buffer they quickly form -sheets and begin to aggregate. We have already observed that ApE3-

42 inhibits this -sheet formation of the A1-42 in aqueous buffer. To observe these changes we 

gradually hydrated the peptides using D2O vapor. Upon exposure to vapor both peptides undergo 
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-to- transition but with different kinetics. A1-42 transitions rapidly in the first hour and 

continued to transition slowly afterwards, while ApE3-42 transitioned in a sigmoidal manner. When 

combined the peptides exerted a mutual effect upon one another to intermolecular -sheet 

formation instead forming intramolecular -sheets. Data from vesicle calcium release studies and 

MTS assays indicate that in combination the peptides have a more pronounced effect on cellular 

viability than the peptides individually and induce greater release of calcium than the unmodified 

peptide alone. Thus hybrid ApE and unmodified samples exhibit enhanced cytotoxicity possibly 

due to increased formation of off pathway mixed / oligomers instead of the intermolecular -

sheet structures that make up mature fibrils. These hetero-oligomers induce greater calcium release 

from lipid membranes and exert a greater effect on cellular viability than the unmodified A. 

Previous studies on A oligomers have found an antiparallel orientation while studies on 

mature fibrils show a parallel in-register orientation. In FTIR spectra antiparallel -sheet is 

indicated by a major peak 1636-1630 cm-1 and a minor peak 1680-1670 cm-1. Although several 

spectra appear to contain a peak corresponding to antiparallel -sheet (Figures 6, 16A,B), the low 

intensity of this peak makes it impossible to differentiate from other structural components. In 

ApE3-42 this peak is located in a similar location to -turn and TFA while in 13CA1-42 this peak 

(~1643-1633 cm-1) corresponds with ApE3-42 -sheet absorbance. Therefore, it is not possible to 

determine whether these oligomers are in a parallel or antiparallel orientation. Curve fitting of 

spectra indicate that -helical and -sheet fractions of peptides vary to a degree (Tables 3,4). This 
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indicates low barrier energy between these structures; and represents a possible source of A 

polymorphism. 

Significance 

 It is believed that the toxic A species in AD is formed during the transition from the -

helical structure formed prior to lipid membrane exit to the intermolecular -sheet structure found 

in mature fibrils. Here we characterized this transition as well as proposing a data-based model of 

early A monomers as well as aggregation. Data indicate that A1-42 and ApE3-42 mutually inhibit 

cross--sheet formation of one another instead forming mixed / hairpins. Inhibition of cross -

sheet formation delayed fibrillogenesis and lead to an increase in the population of globular 

aggregates. Studies have found oligomers of mixed / content to display enhanced cytotoxicity 

(114-116). These hetero-oligomers had a greater effect on the viability of PC12 cells than either 

peptide alone indicating their potent effect. Additionally, vesicle calcium release assays 

demonstrate that this effect may in part be due to enhanced formation of calcium permeable pores 

in lipid membranes. This work highlights the importance of hetero-oligomers in the pathogenesis 

of AD. This data gives insight into oligomer structure and formation as discussed in figure 1 

(Figure 31). 
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Figure 31. Update of Figure 1 using data collected during this work. Mixed populations of Ab1-42 and AbpE3-42 
promote formation of hetero-oligomers via a non-fibrillogenic pathway. These oligomers display increased 
cytotoxicity to PC12 cells possibly through the formation of calcium permeable membrane pores leading to loss of Ca 
2+ homeostasis. 

Future Studies 

 Targets for future study include A1-40 and its pyroglutamylated counterpart the ApE3-40. 

In vivo A populations are heterogeneous but little is known about the behavior of mixed peptide 

populations. These species are prevalent in the AD brain and examination should be conducted on 

whether they have similar structural effects upon one another. If they possess the same mutual 

inhibitory relationship, it is strong evidence that this effect may occur with other pyroglutamylated 
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A species. We also seek a method to stabilize oligomers for the time scales necessary for ssNMR 

analysis. Of particular interest is stabilization of oligomers formed in physiologically relevant 

conditions without using methods that may induce structural changes. High resolution structural 

data from ssNMR would represent strong supporting evidence for the -hairpin model proposed 

here. Follow-up studies should also be conducted to investigate inconsistencies between vesicular 

calcium release and cellular viability studies. 
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APPENDIX A: PEAK FITTING OF DRY SPECTRA 
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Peak fitting of Dry FTIR spectra. The original spectra (blue), peak fit (dotted red), and baseline 

(black) are shown. Fit peaks corresponding to alpha helix (orange) and the labeled segment (pink) 

are also shown. Peaks shown in grey are considered other in area concentration and correspond 

primarily to unordered structure. Peaks corresponding to side chain interactions are dotted grey 

and are not included in area calculations.  
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APPENDIX B: PEAK FITTING UNLABELED PEPTIDES 
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. Peak Fit Spectra of A1-42  ApE3-42  and their equimolar combination in 10 mM phosphate pD 

6.8 buffer labeled here as low salt as well as 50 mM phsosphate 50 mM NaCl pD 6.8 labeled here 

as high salt for 10, 60, and 120 minutes. The experimental measurement is shown in Blue while 

the Red dotted line is the sum of all components, fit peaks correspond to turn (green), -helix 

(orange), and -sheet (purple) unattributed peaks are shown in grey and are primarily composed 

of unordered structure. Peaks corresponding to side chain interactions are shown in dotted grey 

and are not included in area calculations. The second derivative of the experimental spectra is 

shown in black underneath. Total peptide concentration is 50 M. 
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APPENDIX C: PEAK FITTING OF LABELED PEPTIDES 
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. Curve fit spectra of 13C-labeled A1-42, ApE3-42  and their equimolar combination in 10 mM 

phosphate pD 6.8 buffer (low salt conditions) as well as 50 mM phsosphate 50 mM NaCl pD 6.8 

(physiological buffer) for 10, 60, and 120 minutes. Peptides were 13C- and 15N-labeled at either 

K16L17V18 or V36G37G38V39.The experimental measurement is shown in Blue while the Red dotted 

line is the sum of all components, fit peaks correspond to turn (green), -helix (orange), and -

sheet (purple) unattributed peaks are shown in grey and are primarily composed of unordered 

structure. Peaks corresponding to side chain interactions are shown in dotted grey and are not 

included in area calculations. The second derivative of the experimental spectra is shown in black 

underneath. Total peptide concentration is 50 M. 
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Table 5. Distribution of secondary structures in 50 mM phosphate 50 mM NaCl pD 6.8 as calculated by curve fitting. 
Numbers are the averages at 10, 60, and 120 minutes in buffer, label combination refers to the fraction of the peak 
corresponding to the 13C-label in KLV/VGG and VGGV/KLV spectra. Components counted as other, primarily 
unordered structure, are not included in the table. 

High Salt A1-42 ApE3-42 1:1 

-turn 19.5 ± 8.3 27.7±5.0 22.1±3.5 

-helix 24.4±10.7 18.1±10.6 26.9±7.2 

-sheet 41.1±5.0 45.4±5.6 36.2±10.8 

13C-Label KLV 7.4±1.0 8.0±1.5 5.8±0.7 

13C-Label VGGV 10.3±0.8 9.9±0.4 10.4±0.5 

13C-Label Combination - - 6.1±2.8 
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Physiological Buffer 
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Low Salt Conditions 

Table 6. Distribution of secondary structures in 10 mM phosphate pD 6.8 as calculated by curve fitting. Numbers are 
the averages at 10, 60, and 120 minutes in buffer, label combination refers to the fraction of the peak corresponding 
to the 13C-label in KLV/VGG and VGGV/KLV spectra. Components counted as other, primarily unordered structure, 
are not included in the table. 

Low Salt A1-42 ApE3-42 1:1 

-turn 26.2±5.2 21.3±3.6 25.0±5.5 

-helix 21.8±7.9 21.5±8.1 15.3±6.0 

-sheet 34.2±9.5 35.2±10.2 36.5±8.5 

13C-Label KLV 4.9±0.6 6.7±0.5 6.3±0.6 

13C-Label VGGV 7.4±0.4 12.9±0.4 14.2±0.2 

13C-Label Combination - - 8.2±1.3 
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