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ABSTRACT 

Diseases vectored by mosquitoes cause millions of deaths each year. In modern times 

Florida's disease risk has been reduced due to efforts to lessen the prevalence of mosquitoes 

through habitat modification of non-adults. With emerging diseases (i.e. Dengue and 

Chikunguya) encroaching into Florida from the Caribbean, this traditional approach may not be 

enough. Alternatively, we can better understand the ecology of how disease works in an 

ecosystem. One possible way is through the Dilution Effect, which states that the more species 

that are in a system the lower the chance for zoonosis. This project models mosquito diversity 

across regions, land use, and vegetation height in South-Central Florida, for the purpose of 

identifying predictors that indicate a higher disease risk using information theory (AICc). The 

plains and coastal regions as well as the developed areas have a relatively higher risk of disease.  

Florida is a fire maintained habitat, but has been fire suppressed for the last century. 

Archbold Biological Station (ABS) has used prescribed fires since the early 1980s to try and 

restore a more natural system. This has created a mosaic of different fire histories. Fire affects 

the structures that mosquitoes rest under during the day (they are vulnerable to desiccation 

during the day and hide in darker/shady places), therefore there is a high likelihood that fire will 

have some effect on mosquito assemblages. This project used model selection to determine the 

most plausible set of predictors that describe the effect of fire on mosquito assemblages at ABS, 

using information theory (AICc).  In general, time of season accounted for the largest proportion 

of the variation in the data and TSF had negligible effect on adult mosquito assemblages 

measured as abundance, speices richness, and Jost D.   
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CHAPTER 1: GENERAL INTRODUCTION 

Mosquitoes are important disease vectors throughout the world, spreading diseases like 

dengue, malaria, West Nile Virus, etc. For this reason it is important to understand mosquito 

ecology in order to reduce the risk of zoonosis (transfer of a disease from an animal to a human). 

Two main factors influence the chance of zoonosis; abundance and diversity. Variables that 

affect abundance of mosquitoes have been studied extensively (Elnaiem et al., 2008; Barney and 

Anson, 1912; Wegbreit and Reisen 2000; Bates, 1945; Hayes et. Al. 2005), but diversity is less 

studied (Chaves et al., 2011; Muturi et al., 2006; Beketov et al. 2010). Moreover, studies about 

mosquito assemblage are on a single geographic scale, tend to be on larvae, small tree holes, or 

do not take into account the entire adult assemblage. My studies evaluate abundance and 

diversity at both local and regional scales.  

The term diversity can be ambiguous; diversity is defined for this study as assemblage 

composition (Anderson et al., 2010), where assemblage is the species of a single group of 

organisms (here mosquitoes) within the larger community and composition is measured as the 

species presence and/or abundance. 

Mosquitoes are holo-metabolous insects (they go through all four life stages). Eggs are laid 

in a variety of locations depending on the species including: soil, vegetation, tree holes, 

containers, rafts on the water surface, swamp margins, etc., and oviposition is influenced by 

olfactory, physio-chemical, and visual cues (Bently, 1989). Eggs hatch into water as larvae, 

which then pupate, and finally emerge out of the water as adults.  
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Generally mosquitoes drink nectar from flowers. Most female adult mosquitoes ingest blood 

for egg production, while males do not ingest blood. Nocturnal mosquitoes will perch underneath 

leaves in order to avoid desiccation during the day. A few diurnal mosquitoes exist in the tropics 

where it is more humid and are actively feeding during the day (Bates, 1949; Silver, 2008; Bates, 

1944). Because desiccation is such a risk for mosquitoes the type of vegetation they are found in 

should be important (Burkett-Cadena et al., 2008). This includes vertical stratification of species 

due to preference and/or ability to deter desiccation (Bates, 1949). Much of the vegetation in 

Florida is affected by fire, and/or is fire maintained (Myers and Ewel, 1990). This points to a 

possible relationship between mosquitoes and fire.  

Vegetative structure may also play a role in mating locations for mosquitoes.  Remarkably 

little is known about the mating behavior of mosquitoes, and much of that knowledge is confined 

to the Anopheles genus because of its medical importance as a malaria carrier. In the first 12-36 

hours after emergence for all male mosquitoes, their genitalia must complete a full 180° turn, and 

this seems to limit when they can start to copulate (Clements, 1999). After this period the males 

will begin to form mating swarms around dusk. The timing of the swarm is mostly light 

dependent and is different for each species. There is conflicting evidence of how these swarms 

assemble. Some studies show that males follow certain markers (i.e. overtop of a church steeple 

(Downes, 1969)); other studies have shown no evidence of such markers (Diabate et al. 2003). 

Either way it could be surmised that the swarming areas should not be very far from the daily 

perch sites because of the great metabolic requirements of long flights. Females will join the 

swarm shortly after, forming copulatory pairs (Yuval, Wekesa, and Washino, 1993).  
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After the females have been fertilized they search out blood meals in order to gain enough 

nutrients to make eggs, although some species consume enough iron and protein as larvae to 

create clutches of eggs without feeding on blood (Bates, 1949). They blood feed in cycles based 

on gonotrophic state (Provost, 1952). Females may or may not feed on multiple hosts during any 

one cycle.  

Individual mosquito species are not considered to be cosmopolitan because we find varying 

species throughout the world. This leads to the questions of why we find species in some places 

and not others, is this pattern predictable, and at what scale does this apply to. A more 

anthropocentric question is how all of this affects vectoring of diseases by mosquitoes across 

landscapes. As previously mentioned the effect of abundance on zoonosis is well studied, but the 

effect of diversity is less so. One of the theories on how diversity affects zoonosis risk is called 

the Dilution effect (Schmidt and Ostfeld, 2001); which states that few mosquitoes are highly 

competent at vectoring any disease; therefore the more diverse the system, the lower the 

proportion of highly competent species will be.  

Therefore I addressed the effect of habitat on adult mosquitoes at regional and local spatial 

scales in Florida. Specifically, I asked two major questions here: “What combination of 

landscape variables (region, vegetation, and land use) and seasonality best predicts mosquito 

biodiversity and a potential vector Dilution Effect?” And “How does Time Since Fire (TSF) 

affect adult mosquito assemblages at Archbold Biological Station?” The former was tested using 

18 different sampling sites partitioned orthogonally into 3 regions, 2 land use types, and 3 

vegetation structures, over 12 sampling events. The latter was tested using 84 sampling sites at 
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Archbold Biological Station randomly chosen within 3 different TSF categories.  Both were 

approached from a mixed model perspective with model selection.  

This first question addresses a relative probability of zoonosis of the major mosquito 

vectored diseases in Florida based on the predictors tested, as well as, gain insight into the 

possibility of the Dilution Effect. The second question addressed if TSF in Florida scrub affects 

adult mosquito assemblages, and if fire management may also affect zoonotic risk. Comparing 

the two studies conducted at different scales, allowed me to test similar patterns across those 

scales.  
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CHAPTER 2: MOSQUITO (DIPTERA: CULICIDAE) BIODIVERSITY IN 

SOUTH-CENTRAL FLORIDA ND THE DILUTION EFFECT FOR 

EXPOSURE TO ZOONOTIC DISEASE 

Abstract 

Many efforts have been put into place in Florida to reduce the nuciences of mosquitoes and 

the risk of mosquito-borne diseases, but much of this effort has been focused on mosquito 

abundances and control of non-adult individuals.  With emerging diseases expanding up from the 

Carribean (i.e. dengue and chikungunya) this traditional effort may not be enough.  An 

alternative approach is to understand how the diversity of the mosquito community affects the 

risk of disease, one idea to explain this is called the Dilution effect.  The Dilution effect simply 

states that the more diverse a system is the more diluted the few individuals that can vector a 

disease will be.  Eighteen sites were sampled to include all combinations of region (3), land use 

(2), and vegetative height (3) in a factorial design.  For 5 months in 2012, 201 samples and 

~367,000 individuals were collected.  A mixed-effect model approach with AICc and model 

selection was used in conjunction with indicator species analysis and Non-Metric Multi-

Dimensional Scaling.  The results do not provide evidence for a simple Dilution Effect because 

of the complex nature of the system.  It does indicate that there is mosquito distribution patterns 

that can be predicted with region and land use that show that coastal and urban areas have a 

higher relative mosquito-borne disease risk. 
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Introduction 

Florida has been a hot bed for vector borne diseases throughout its history. In modern times 

this risk has been reduced due to efforts to reduce the prevalence of mosquitoes which often 

involves habitat modification (e.g, draining or flooding with salt water), pesticide broadcast 

spraying and window screens. With the advent of new emerging diseases coming out of the 

Caribbean, possibly driven by warming temperatures, these efforts may not be enough to keep 

out diseases like Dengue or Chikungunya. From 2013 to March of 2015 there were 42,994 

confirmed cases of Chikungunya in the Caribbean and 2,116,410 suspected cases (PAHO/WHO, 

March 27, 2015). A local transmission has already been confirmed in Florida at the beginning of 

2014 (CDC, Chikungunya virus) and it can only be assumed that with the amount of travel there 

is between Florida and the Caribbean every day, Chikungunya will be well established soon. 

Habitat modification and pesticide spraying affect entire ecosystems and window screens reduce 

nighttime disease risk, but do not affect mosquito diversity or abundance. An alternative 

approach is to understand the effects that natural diversity has on risk of disease transfer. The 

effect of diversity on zoonosis is called the Dilution Effect. 

The Dilution Effect of zoonosis is based on compounded relative probabilities of diseases, 

hosts, and vectors coming into contact with each other (Figure 1). Zoonosis risk may be reduced 

if mosquito species that dominant the assemblage are not competent to vector the disease, 

diluting the competent species (Schmidt and Ostfeld, 2001). The Dilution Effect can occur at any 

one layer (or combination of) a multi-layered disease life strategy system. Here I focus on the 

vector Dilution Effect, assuming this system has a variety of vector and non-vector species. 



7 
 

Given thus Dilution Effect, the more diverse the mosquito assemblage the lower the rate of 

zoonosis, because there will be proportionally few highly competent species. Because this is only 

a likelihood based on equiprobable contact with a mosquito species, there will be some systems 

and situations where the opposite will occur. Few studies have considered a Dilution Effect in 

any natural system (Swaddle and Calos, 2008; Hall et al., 2009). If the Dilution Effect occurs in 

nature, and matters for zoonosis, then it is important to understand what factors drive adult 

mosquito diversity. 

 

 

Figure 1: Each pie represents the proportion of high and low competent species in the community. The left figure 
represents a system with low diversity where the proportion of highly competent species is high. The right figure 
represents a system with high diversity where the proportion of highly competent species is low. The number next to 
each pie is the proportion of highly competent species. The total number is a proportional estimate of the probability 
of zoonosis based on multiplying the proportion of highly competent species at each level together. 

 

Factors that may affect diversity of adult mosquitoes include geography, vegetation, 

anthropogenic influences, and seasons. Geography affects climate, history, dispersal or available 

species pools. Vegetation is potentially important for mosquito perch sites, location of breeding 

swarms, or as an indicator of available vertebrate hosts. Anthropogenic influences matter 
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because humans change environmental conditions, including the availability of breeding habitats, 

vegetation, thermal regime, urban homogenization, etc. (Johnson, Gomez, and Pinedo-Vasqueez 

2008; James and McCulloch, 1990). It has also often been seen that urbanization homogenizes 

the habitat and would therefore be dominated by only a few species (McKinny, 2006). Finally, 

seasons matter because different mosquito species may have different life cycle timings 

throughout a year, related to thermal and hydrological changes.  

This information leads me to my first question: What combination of landscape variables 

(region, vegetation, and land use) and seasonality best predicts mosquito biodiversity and a 

potential vector Dilution Effect? I hypothesize that if phenology, geography, and land use are 

large scale drivers of mosquito diversity, then seasonality, region, and land use will significantly 

predict mosquito assemblages. This was tested in south-central Florida where the mosquito 

assemblages include species that vector existing diseases (i.e. West Nile virus and St. Luis 

Encephalitis), as well as emerging diseases (i.e. dengue and Chikungunya). This studies goal is 

not to obtain an effect size, but to identify predictors of mosquito diversity that could later 

inform a more focused study on each predictor.  

Methods 

Study Sites 

Eighteen sites were chosen to include all combinations of region (3), land use (2), and 

vegetative height (3) in a factorial design. The three regions chosen were the south end of the 

Lake Wales ridge (ridge ~65m above sea level), the plains area just East of the Lake Wales ridge 
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(plains ~9m above sea level), and the coast directly east of the plains site (coast ~4m above sea 

level). The two land use types chosen were developed and ‘natural’, classified by apparent 

density of buildings or concrete. The three vegetative heights chosen were short, medium, and 

tall (Figure 2 and Table 1). 

 

 

Figure 2: Map of south-central Florida indicating sampling site with yellow makers. Each region is outlined by a 
separate color (Ridge=yellow, Plains=green, Coast=orange). Each region has two land use types: Developed and 
‘Natural.’ Each land use type has three vegetative structures: short, medium, and tall. 
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Table 1: Universal Transverse Mercator (UTM) locations of all 18 sites. 
Region Land use Vegetation UTM Northing UTM Easting PDOP 

Ridge Urban Short 3016448.95 460829.47 5.52 

Ridge Urban Medium 3019457.82 463919.77 3.32 

Ridge Urban Tall 3022178.20 466119.71 6.36 

Ridge Natural Short 3004412.67 463261.99 3.31 

Ridge Natural Medium 3005890.30 464240.74 3.22 

Ridge Natural Tall 3009770.20 465654.69 4.74 

Plains Urban Short 3010964.01 519150.78 4.14 

Plains Urban Medium 3012980.06 516925.13 4.35 

Plains Urban Tall 3011407.06 514787.66 4.21 

Plains Natural Short 3004425.20 480409.48 5.77 

Plains Natural Medium 3003213.53 478447.06 3.86 

Plains Natural Tall 3003562.11 481937.37 4.23 

Coast Urban Short 3016811.49 555871.32 5.37 

Coast Urban Medium 3008190.02 574034.72 5.52 

Coast Urban Tall 3018353.84 559899.81 4.88 

Coast Natural Short 3021313.41 571768.73 3.79 

Coast Natural Medium 3020660.08 573245.67 2.07 

Coast Natural Tall 3019879.57 571663.92 7.99 

 

 The Lake Wales ridge is part of the Florida ridge system which is comprised of upland 

areas that have remained above sea-level since the Pleistocene (James, 1961; Myers and Ewel, 

1990-pgs 70-100). The ridge is home to many endemic species that have been isolated on ancient 

islands. Some of the different natural habitats found on the southern portion of the ridge include 
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several types of scrub, flatwoods, southern ridge sandhill, and bayheads (Abrahamson et al., 

1984a). Much of the natural areas of the ridge have been cultivated for citrus and cattle pasture.  

The natural land use type in this region is represented by Archbold Biological Station (ABS) 

including pasture lands in the Archbold Reserve (hereafter referred to collectively as ABS) 

(Figure 3). The station was farmed for turpentine and lumber in the past but has been managed 

for biological research since 1941 (Main and Menges, 1997). Only a handful of permanent 

structures exist in the 8,841 acres that make up ABS.  

 

 

Figure 3: A Generalized map of Natural communities of ABS from 2004. 
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Short vegetative structure within the ABS site occurred in two intensively managed (Bahia 

grass seeded and ditched) pastures, located on the north end of the reserve. Cattle were recently 

excluded from these pastures. The medium vegetative structure is located inside a large scrubby 

Flatwoods patch in the north part of the station. This area contains many ephemeral ponds and is 

dominated by typical scrub plants including: palmettos, a mixture of oaks and sparse slash pines. 

The tall vegetative structure site is in the northeastern most corner of the station inside a 

bayhead. The bayhead is bordered on one side by railroad tracks, one side by Lake Annie, and 

one side by a nursery business. State road 70 passes through part of the bayhead but, there is 

dense bayhead on either side of the road. The dominant plants are of mixed bay-tree species (i.e. 

Red Bay, Sweet Bay, Cinnamon Bay).  

The developed area on the ridge was in and around the town of Lake Placid, Florida which is 

located just north of ABS and has a population of only 2,223 in 2010 (U.S. Census Bureau). 

Even though this is a fairly small town, it is concentrated with a city center composed of 

commercial and residential land use. I selected sites within Lake Placid with relatively higher 

density of housing and businesses based on satellite images and local appearance. 

The short vegetation site was located outside of Lake Placid in a community called Placid 

Lakes and is characterized by a network of open canals among residential properties, where most 

vegetation is ornamental but several housing lots are partially overgrown. The medium 

vegetation site was located in downtown Lake Placid, characterized by businesses, a satellite 

campus of a state college, a few parks, and many roads. Most vegetation is ornamental. The 

sampling site was located between the local police station/jail and the Chamber of Commerce. 
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The tall vegetation site was located in a community called Sylvan Shores on residential property, 

where many properties have ornamental plants, but various lots also contain vegetation that are 

common in bayheads.  

The plains region was east of the Lake Wales ridge and is of generally lower elevation and 

flatter. Three dominant natural habitats in this region include: prairie grasses, pine flatwoods, and 

cabbage palm forests (Davis, 1967). Much of this area is now cultivated for citrus and cattle 

ranches. 

The natural land use type on the plains was at MacArthur Agro-Ecology Research Center 

(MAERC) a division of ABS. This property is also known as Buck Island Ranch, and is 10,500 

acres with ~3,150 cattle year round (Figure 4) (www.Maerc.org). The ranch contains both 

intensively managed and semi-native pastures (to be explained later).  

 

 

Figure 4: Google Earth satellite image of MAERC, which is outlined in red. 
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The short vegetation site was along the main access road through MAERC between 

intensively managed pastures. These pastures have been tilled, seeded with Bahia grass, 

fertilized, and ditched. The dominant vegetation is Bahia grass. Cattle are also rotated through 

these pastures regularly, with greatest densities in the summer months (Swain et al., 2013). The 

medium vegetation site is in the middle of a semi-native pasture. This pasture is tilled irregularly 

and rarely seeded, has less ditches and has never been fertilized. Cattle are rotated into semi-

native pastures in winter months. The dominant vegetation includes some non-native grasses like 

Bahia, but is mixed with native grasses (i.e. Andropogon) and shrubs (i.e. Hypericum). There are 

also some large oaks. The tall vegetation site is located within a stand of forest within an 

improved pasture. The dominant vegetation are sabal palm, cabbage palm, and oak. This tall 

vegetation patch has less sub-canopy structure than other tall vegetation sites in this study. 

The developed land use sites in the plains region are in Okeechobee, Florida. Located east of 

MAERC with a population of 5,621 (U.S. Census Bureau) in 2010, with a central downtown 

surrounded by residential areas.  

The short vegetation site was located in a residential area that has canals behind many homes. 

Most vegetation in the area is ornamental; with many lots having nearly exclusively short grass.  

The medium vegetation site was located on a business property one block south of the main 

downtown area, and well within the downtown area with abundant impervious surfaces. The 

dominant vegetation is ornamental and some overgrown properties. The tall vegetation site was 

located on a residential property within an oak hammock. Vegetation is dominated by 
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ornamentals, oaks, and houses are somewhat spread apart but are still much denser than ‘natural’ 

areas. 

The coastal region was located on the east coast in Port St. Lucie, Fort Pierce and Stuart, 

Florida. This region is much more densely populated than the other regions. The dominant 

habitat here is pine flatwoods and scrub, with marsh directly next to the ocean (Davis, 1967). 

Some parts of this region contain salt water.  

The natural land use area was in Savanna’s Preserve State Park (SPSP) (Port St. Lucie) and 

Walton Scrub Preserve (Fort Pierce). SPSP is over 6,000 acres and includes pine flatwoods, 

freshwater marsh, scrub, and this entire habitat together has been called Savanna since the early 

1800’s by Lt. Colonel Benjamin Pierce (http://www.floridastateparks.org/history/parkhistory. 

cfm?parkid=159 )(Figure 5). The Walton Scrub Preserve is owned by St. Lucie County and is 33 

acres of endangered scrub habitat (Figure 5) ( http://www.stlucieco.gov/beaches/66.htm).  

The short vegetation site was located in SPSP along the freshwater marsh north of the 

Walton road entrance, where dominant vegetation is tall reed plants and phragmite grasses. This 

marsh had no detectable salt water intrusion at the time of study. The medium vegetation site 

was located in Walton Scrub Preserve. The dominant vegetation includes typical scrub species 

like palmetto, oak, and cactus. This site was somewhat over grown due to fire suppression. The 

tall vegetation site was located in SPSP in a dense tree stand near the southwestern edge of the 

portion of the park north of the Walton road entrance. The dominant vegetation included pines, 

palmettoes, and large shrub species. This site was closer to an urban area than other natural sites 
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(as is true in coastal Florida in general), but the placement of the site was chosen to maximize the 

amount of tall trees with minimal amount of housing nearby. 

 

 

Figure 5: Google Earth Satellite image of SPSP (outlined in red) and Walton Scrub Preserve (outlined in purple). 
 

The urban land use is located in Port St. Lucie and Stuart, Florida. Port St. Lucie has a 

population size of 166,603 (U.S. Census Bureau) in 2010 and Stuart has a population size of 

15,593 (U.S. Census Bureau) in 2010.  
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The short vegetation site was located in a community called Traditions in the west part of 

Port St. Lucie. This area is characterized by wide streets, with large grass areas or small parks on 

most streets. A few blocks from the site is a community with canals behind the homes. The 

vegetation is almost completely ornamental with few, if any, overgrown lots. The medium 

vegetation site was located in Stuart in an area comprised predominantly of office buildings and 

many small shops. The dominant vegetation is ornamental and overgrown alleys. The tall 

vegetation site was located in Port St. Lucie in an area with many overgrown lots and dense 

forest. A few medium drainage canals pass through this site. The dominant vegetation is 

ornamentals, pines, and Brazilian pepper. 

Sampling 

Adult mosquitoes were trapped at each site weekly from June 20 to July 20, 2012 and nearly 

biweekly from August 8 to November 10, 2012. An entire region’s sites were sampled on any 

one night, and the regions were sampled on consecutive nights starting with the ridge and ending 

with the coast (three consecutive nights). Exceptions to the above sampling regime included the 

following: Two sites located inside the SPSP, were not sampled until July 13 due to permitting 

restriction (sampling events 1-3); no coastal sites were sampled on Aug 10, due to illness 

(sampling event 6); three samples were lost in transport, (plains developed short on July 12, 

plains natural tall and a plains natural short on September 28). Despite sampling gaps, 201 

samples were collected during the 5 month sampling interval.  

In order to address sampling gaps, analyses requiring balanced designs were analyzed two 

separate ways. Before any analysis, to fill the gaps of the three lost data points the average of the 
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same sample point from the directly previous and directly proceeding sampling events. The first 

analysis omitted all coastal sites and hereafter is called the ‘without coast’ analysis. Second, the 

coastal sites were used, but the first 3 sampling events and sampling event 6 were omitted from 

the analysis entirely so that all data were balanced. Hereafter this will be called the ‘with coast’ 

analysis. 

 Mosquitoes were trapped with a John W. Hock CDC light trap with CO2 attractant. The 

CO2 attractant used was ~0.68kg of dry ice placed in a cooler hung next to the trap. Each trap 

was hung ~1m above the ground. The traps were set out just before sunset and retrieved the next 

morning. The samples were then frozen to kill all invertebrates trapped inside and remained 

frozen prior to processing. All non-mosquito invertebrates were excluded and then the sample 

was weighed to the nearest 0.0001 g. If the sample was over 0.5g then a sub-sample of ~0.5g 

(~1,000 individuals) was haphazardly taken. To evaluate the efficacy of the subsampling, ten 

samples that were subsampled were randomly chosen to enumerate all mosquitoes in the sample. 

I then regressed the subsample against the entire sample to come up with a formula to correct for 

subsampling: 

𝑌𝑌 =  −0.32 + 1.04𝑥𝑥 
 ( 1 ) 

Were ‘x’ is the subsample abundance of each species in the sample and ‘Y ’ is the corrected 

abundance. This formula was then used to correct all samples that were subsampled and were 

used from here on. This regression had an R2 = 0.97 and the intercept and (log) subsample had p-

values < 0.000. The correction was minor for the slope and slightly adjusted the intercept (i.e. 
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minimum N of a species in a sample).  The minor adjustments by the equation indicate that 

subsampling did not strongly bias sampling and this minor bias was handled by the regression.  

Subsamples that were <30% of the total sample were unrepresentative of the total species 

richness of the sample. To address this, if the subsample constituted less than 30% of the total 

sample, another subsample was taken until approximately 30% of the total sample was sampled. 

Females were identified to species when possible using Identification and Geographical 

Distribution of the Mosquitoes of North America, North of Mexico (2005).   

Statistical Analysis 

The study used a factorial repeated measures design (region X land use) with vegetation 

height as a covariate,  where each “treatment” was fixed and categorical. The terms used in every 

model were region (ridge, plains, coast), land use type (natural, developed), and vegetation 

height (short, medium, tall). Time (sampling event) was a random factor in the mixed effects 

models. This study was conducted across landscapes with spatial autocorrelation of patterns; 

distance among sites was accounted for with a second covariate ('dist').  'Dist' was also used as a 

random factor in the mixed effects models when appropriate.  

I used a hybrid of methods from Zuur et. al (2009) and model selection with AICc and 

weights (Burnham and Anderson, 2002) on all possible models. Where AICc is AIC with a 

correction for finite or small sample size compared to number of parameters (Hurvich and Tsai, 

1989). An optimal set of random terms was selected by using the most complex fixed factors 

(dist + region*land use + vegetation height) in combination with random structures composed of 
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none, random intercept only, and random slope and intercept (Table 2). Models were constructed 

using REtricted Maximum Likelihood (REML). Sampling event was treated as the random 

intercept to address the repeated measures design. Geographical distance was addressed as a 

distance-weighted auto-covariate (Augustin, Mugglestone, and Buckland. 1996; Bivand et. al., 

2014) and was treated as both a fixed effect and the random slope. Significance of estimates 

were then determined using 95% confidence intervals obtained using 10,000 bootstraps in 

‘confint’ (lme4, 2014).  When two models were equally plausible via AICc comparison, either 

both models were evaluated, or the greatest hierarchical model as the most plausible.  

Models were then validated using the function 'r.squaredGLMM' (MuMIn, 2015) to obtain 

pseudo R squared values. This function provides a marginal R squared value which represents 

variance of the fixed effects, and a conditional R squared value that represents the variance of 

both fixed and random effects. Both the confidence intervals and R squared function could not be 

applied to logistic models. Graphs were created to visually inspect the assumptions of 

homogeneity of factors and normal residuals.  If models did not meet these assumptions then the 

model was rejected. In order to interpret the models means and 95% confidence intervals were 

obtained for all significant factors.  These were then compared to each other to evaluate the 

models. 
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Table 2: Fixed effects structure of models for all sets.  Model 12 cannot be used beasue it creates a singularity. 
Models Dist Region Land use Vegetation Height Region:Land use 

1 X X X X X 

2 X X X X  

3 X X X   

4 X X  X  

5 X  X X  

6 X   X  

7 X X    

8 X  X   

9 X X X  X 

10 X X  X X 

11 X  X X X 

12 X   X X 

13 X X   X 

14 X  X  X 

 

 Both the Shapiro-Wilk test (Shapiro and Wilk, 1965; R core team, 2014) and the Levene 

test (Levene, 1960; Fox and Weisberg, 2011) were employed to evaluate parametric statistical 

assumptions. 

Samples generated abundance and presence/absence data for multiple mosquito species, so 

that data comprised a species X sites X time matrix. Those data were evaluated in several ways, 

summarized below.   

Diversity Models 

 Mosquito assemblages’ diversity was assessed with two different response variables. 

First, using species richness because the dilution effect was proposed with that measure and it is 

a classic estimator of diversity. Secondly, using Jost D, or the effective diversity of a sample 

(Jost, 2006) and was calculated as:  
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𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐷𝐷 = 𝑒𝑒H′ 
 ( 2 ) 

 

where H' is Shannon’s diversity: 

H′ = −� pi i ln pi 
 ( 3 ) 

Where pi is the proportional abundance of species i.  

Logistic Models of Vector Porportions 

 The relative probability of vectoring diseases in each sample was calculated as the 

proportion of individuals that are members of possible vectors species for a disease to the total 

number of individuals caught in a sample. I determined which diseases to use and what species 

vector them from the Florida Medical Entomology Lab website (11/25/2014). There are three 

major diseases in Florida with fairly well known vectors. Dengue is vectored by Aedes 

albopictus and Aedes aegypti, West Nile Virus (WNV) is vectored by all Culex species, and St. 

Louis Encephalitis (SLE) is vectored primarily by Culex nigripalpus.  There are a few other 

diseases of note in Florida. One is chikungunya, which has not yet established in Florida, but is 

prevalent throughout the Caribbean and may establish in the near future. Chikungunya is 

vectored by the same mosquito species as dengue and therefore easy to add in to this analysis. 

Two others disease, Eastern Equine Encephalitis and Highlands J virus, are not included in the 

analysis because there is not general consensus on the vectors in Florida.  
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 Models were assessed similarly to approaches described above except that the 

distribution family used is binomial, or logistic and glmmADMB (Skaug et al., 2015) was used.  

This function allowed me to incorporate zero inflation when necessary.   

Non-Metric Multi-Dimensional Scaling (NMDS) 

 NMDS (Kruskal, 1964; Minchin, 1987; Faith, Minchin and Belbin, 1987) was used to 

evaluate compositional data based on the Bray-Curtis’ (Bray and Curtis, 1957) and Jaccard’s 

indices (McCune and Grace, 2002). These two approaches are used because Bray-Curtis is 

widely used to evaluate abundance based differences between samples, while Jaccarrd is widely 

used to evaluate presence/ absence differences between samples.   

 For each ordination a scree plot was created in order to determine the optimal number of 

dimensions to use (Figure 6). Three dimensions were chosen, because it gave a stress value that 

was fair with a drastic improvement over 2 dimensions, but allowed for easy visualization 

(McCune and Grace, 2002). This also created ordinations that fit the data very well with linear 

R2>0.92 and non-linear R2>0.98 (Figure 7).  

 



24 
 

 

Figure 6: Ordination stress plot. The above the red line denotes where stress is poor, above the yellow line is 
fair, above the green line is good, and below the green line is excellent (McCune and Grace, 2002). 

 

 

Figure 7: Ordination distance ~ Observed dissimilarity for the NMDS of both the Jaccard's and Bray-Curtis' 
indices. 
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The ‘MetaMDS’ command in the vegan package (Oksanen et al., 2013) was used to perform 

ordinations because it uses several random starts to find a stable solution. Random starts were 

used until two convergent solutions were obtained. The ‘Ordihull’ command in the vegan 

package (Oksanen et.al., 2013) was then used to draw convex hulls around different groups of 

data separated by region, land use type, vegetation height, or sampling event. Permutational 

multivariate analysis of variance using distance matrices was performed using the ‘adonis’ 

command in the vegan package (Oksanen et. al., 2013). This is a permutation-based MANOVA 

(999 permutations) using pseudo-F ratios to determine significance. This test is less sensitive to 

dispersion effects than anosim or MRPP and is therefore favored in this analysis (Oksanen, 

2013-adonis). 

Indicator Species 

 The R-package indicspecies (DeCaceres and Legendre, 2009) uses the group Indicator 

value (DeCaceres, Legendre, and Moretti, 2010) to produce a set of species that indicate a 

particular environmental variable, with a permutation test to test significance. Groups consistent 

to the highest association, of each level or combination of levels for region, land use type, and 

vegetation height were obtained with 999 permutations. Species component parts of the indicator 

value, were used to determine species fidelity (A), and species specificity (B). A species was 

considered an indicator species at an alpha of 0.05, but all species associations were reported.  

All analyses were completed in R and all code is provided in the appendix. 
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Results 

In total 201 samples were collected from June 20 to November 10 2012, comprising 

approximately 0.208kg or 367,000 mosquitoes, including 28 species.  

Diversity Models 

The most plausible model for species richness with or without the coast is:  

Species Richness ~ Dist + Region + Landuse + Region: Landuse + (Dist|Sampling event) 
 ( 4 ) 

They had an AICc of 669.2 and 662.4 respectively, with the same weight of 0.297 (Table 3, 

Table 4, and Table 6). Two other models had the same AICc and weight for each, but they were 

subsets of these models. This weight is over 8 times higher than the next best model. Distance 

coefficient, region, and region:land use are significantly different from 0 based on the 95% 

confidence intervals for both models (Table 5 and Table 7).  The marginal and conditional R2 is 

0.28 and 0.55 respectively for with coast, and 0.28 and 0.62 for without coast. 
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Table 3: AICc and weights for the five lowest AICc for each species richness model. 
Species Richness with coast 
 AICc weight 

m14 669.2 0.2 

m9 669.2 0.2 

m13 669.2 0.2 

m10 673.5 0.0 

m11 673.5 0.0 

Species Richness without coast 
m9 662.4 0.2 

m14 662.4 0.2 

m13 662.4 0.2 

m1 666.6 0.0 

m10 666.6 0.037 

 

Table 4: Estimates for species richness with coast. 
Random Effects    

 Variance Standard Deviation Correlation 

Sampling Event 50.9 7.1  

Dist 1.1 1.0 -0.9 

Residual 4.6 2.1  

Fixed Effects    

 Estimate Standard Error t-value 

Coast:Developed 26.8 4.1 6.4 

Dist -2.9 0.6 -4.8 

Region-Plains 4.2 0.7 5.8 

Region-Ridge -0.9 0.6 -1.5 

Land use-Natural 0.4 0.6 0.7 

Region:Land use-Plains:Natural 1.4 0.9 1.6 

Region:Land use-Ridge:Natural 4.9 0.9 5.1 
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Table 5: 95% confidence intervals for species richness with coast.  Red numbers indicate sginificantly different from 
zero. 
 2.5% 97.5% 

SD Sampling Event 0.8 12.6 

correlation Dist|sampling event -1.0 -0.8 

SD Dist|Sampling event 0.1 1.8 

residual standard deviation 1.8 2.4 

Region:Land use-Coast:Developed 18.7 34.8 

Dist -4.0 -1.7 

Region-Plains 2.8 5.6 

Region-Ridge -2.2 0.2 

Land use-Natural -0.7 1.6 

Region:Land use-Plains:Natural -0.2 3.3 

Region:Land use-Ridge: Natural 3.1 6.8 

 

Table 6: Estimates for species richness without coast. 
Random Effects: 
 Variance Standard Deviation Correlation 

Sampling Event 79.8 8.9  

Dist 0.9 0.9 -0.9 

Residual 4.1 2.0  

Fixed Effects: 

 Estimate Standard Error t-value 

Region:Land use-Plains:Developed 33.4 5.3 6.2 

Dist -2.9 0.6 -4.6 

Region-Ridge -8.7 1.0 -8.0 

Land use-Natural -0.9 0.5 -1.8 

Region:Land use-Ridge:Natural 6.4 0.9 7.0 

 

 

 

 



29 
 

Table 7: 95% confidence intervals for species richness without coast.  Red numbers indicate significantly different 
from zero. 
 2.5% 97.5% 

SD Sampling Event 3.0 13.9 

correlation Dist|sampling event -1.0 -0.9 

SD Dist|Sampling event 0.2 1.6 

residual standard deviation 1.7 2.2 

Region:Land use-Plains:Developed 22.9 43.7 

Dist -4.1 -1.7 

Region-Ridge -10.8 -6.6 

Land use-Natural -1.9 0.0 

Region:Land use-Ridge:Natural 4.6 8.1 

 

In natural land use the coast is different from the plains and/or ridge which have similarly the 

highest species richness. In developed land use the plains regions is different than the coast 

and/or ridge and the plains has the highest species richness. And only the ridge shows differences 

due to land use for species richness. This is why region, land use and the interaction of the two 

are significantly important predictors for species richness (Figure 8).   

The most plausible model for Jost D with or without the coast is:  

Jost D ~ Dist + Region + Landuse + Region: Landuse + (1|Sampling event) 
 ( 5 ) 

They had an AICc of 401.3 and 428, with weights of 0.284 and 0.279 respectively (Table 8, 

Table 9, and Table 11). Two other models had the same AICc and weight for each, but they were 

subsets of these models. This weight is over 5 times higher than the next most plausible model. 

Distance coefficient, region, land use, and region:land use were significantly different from 0 

based on the 95% confidence intervals for the with coast model. The without coast model is the 
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same, except region is not significant (Table 10 and Table 12). The marginal and conditional R2 

is 0.25 and 0.39 respectively for with coast, and 0.19 and 0.31 for without coast. 

 

 

Figure 8: Species richness mean and 95% confidence intervals, per region and land use (black is natural, blue is 
developed). 
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Table 8: AICc and weights for the lowest AICc for each Jost D model. 
Jost D with Coast 

m9 401.3 0.2 

m13 401.3 0.2 

m14 401.3 0.2 

m1 404.8 0.0 

m10 404.8 0.0 

Jost D without Coast 

m13 428 0.2 

m14 428 0.2 

m9 428 0.2 

m10 431.3 0.0 

m1 431.3 0.0 

 

Table 9: Estimates of Jost D model with coast. 
Random Effects 
 Variance Standard Deviation 

Sampling event 0.1 0.4 

Residual 0.7 0.8 

Fixed Effects 
 Estimate Standard Error t-value 

Region:Land use-Coast:Developed 10.2 1.62 6.3 

Dist -2.5 0.5 -4.7 

Region-Plains -0.8 0.3 -2.9 

Region-Ridge -0.9 0.2 -3.1 

Land use-Natural 1.0 0.2 3.8 

Region:Land use-Plains:Natural 1.8 0.4 4.1 

Region:Land use-Ridge:Natural -0.2 0.3 -0.6 
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Table 10: 95% Confidence intervals for Jost D with coast. Red numbers indicate significantly different from zero. 
 2.5% 97.5% 

SD Sampling event 0.1 0.6 

Residual Standard deviation 0.7 1.0 

Region:Land use-Coast:Developed 7.0 13.4 

Dist -3.5 -1.4 

Region-Plains -1.4 -0.2 

Region-Ridge -1.4 -0.3 

Land use-Natural 0.5 1.6 

Region:Land use-Plains:Natural 0.9 2.7 

Region:Land use-Ridge: Natural -0.9 0.4 

 

Table 11: Estimates of Jost D model without coast. 
Random Effects 
 Variance Standard Deviation 

Sampling event 0.1 0.4 

Residual 0.9 0.9 

Fixed Effects 

 Estimate Standard Error t-value 

Region:Land use-Plains:Developed 9.4 1.7 5.3 

Dist -2.4 0.6 -3.8 

Region-Ridge -0.1 0.2 -0.4 

Land use-Natural 2.3 0.4 5.3 

Region:Land use-Ridge:Natural -1.5 0.4 -3.6 
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Table 12: 95% Confidence intervals for Jost D without coast. Red numbers indicate significantly different from 
zero. 
 2.5% 97.5% 

SD Sampling Event 0.0 0.6 

residual standard deviation 0.8 1.1 

Region:Land use-Plains:Developed 5.9 12.9 

Dist -3.7 -1.2 

Region-Ridge -0.5 0.3 

Land use-Natural 1.4 3.2 

Region:Land use-Ridge:Natural -2.4 -0.7 

 

Natural land use indicate that the ridge is different from the plains and/or coast, but all are 

borderline different with plains have on average higher Jost D. For developed land use none of 

the regions indicate differences. Within each region both the coast and plains show effects of 

land use (Figure 9). 

It should be noted that all models were assessed with and without spatial autocorrelation for 

the most complex model and in all cases including distance gave a smaller AICc and therefore 

the 'Dist' factor was included in all subsequent models. 

In summary, both measures of diversity (species richness and Jost D) obtained consistent 

results, whether analyzed with or without coast data. In both diversity measures, region, land use, 

and region: land use interaction affects adult mosquito diversity. Models did have different 

random effects (species richness- random slope/intercept, Jost D-random intercept only), 

indicating the measures are differently sensitive to the effect of distance. Only vegetation height 

does not seem to have an effect at this scale for either measure.  
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Figure 9: Jost D means and 95% confidence intervals, per region and land use (black is natural, blue is developed). 

 

Logistic Models For Vector Porportions 

 Two models were equally the most plausible model to predict the proportion of vectors 

for Dengue and Chikungunya without the coast and they are:  

Dengue(Chikungunya)~ Region OR Land use  
 ( 6 ) 

They each had an AICc of 4.1, with the same weight of 0.294 (Table 15). This weight is 

nearly 3 times higher than the next most plausible model (Table 13).  
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Table 13: Estimates of Dengue/Chikungunya vector proportions model without coast. 
Region model 

 Estimate Standard Error Z value Pr(>|Z|) 

(Intercept) -12.4 57.4 -0.2 0.8 

Region-Ridge 0.0 81.1 0.0 1.0 

Land use model 

(Intercept) -12.4 57.4 -0.2 0.8 

Land use-Natural 0.0 81.1 0.0 1.0 

 

The most plausible model for Dengue and Chikungunya with coast: 

𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒(𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖)~ 𝐿𝐿𝑖𝑖𝐷𝐷𝐿𝐿 𝐷𝐷𝐽𝐽𝑒𝑒  
 ( 7 ) 

With an AICc of 4.1 and weight of 0.487, which is nearly 3 times higher than the next most 

plausible model (Table 15and Table 14).  

 

Table 14: Estimates of Dengue/Chikungunya vector proportions model with coast. 
 Estimate Standard Error Z value Pr(>|Z|) 

(Intercept) -12.4 57.4 -0.2 0.8 

Land use-Natural 0.0 81.1 0.0 1.0 
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Table 15: AICc and weights for the five lowest AICc for the Dengue and Chikungunya vectors models. 
Dengue/Chikungunya w/out coast 

Model AICc weight 

7 4.1 0.2 

8 4.1 0.2 

3 6.2 0.1 

6 6.2 0.1 

4 8.3 0.0 

Dengue and Chikungunya w/ coast 

8 4.1 0.4 

6 6.2 0.1 

7 6.2 0.1 

3 8.3 0.0 

5 8.3 0.0 

 

Dengue and Chikungunya were predicted most readily by land use and surprisingly, natural 

lands tend to have a higher proportion of vector mosquitoes.  Both  Ae.albopictus and Ae. aegypti 

are container breeders  and containers are common in developed habitats (i.e. gutters, tires, 

flower pots, cemetery vases, etc.) the opposite pattern was expected (Figure 10).  One possible 

explanation for this result is that Ae. ablopictus and Ae. aegypti were so rare except for at the 

coast that the land use effect is dominated by coastal data where ‘natural’ areas are very close to 

developed. 
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Figure 10: Vector proportion means and 95% confidence intervals for Dengue/Chikungunya, per land use. 

 

The most plausible model for WNV with and without the coast is: 

WNV ~ Dist + Region + Land use + Region: Land use + (1|sampling event) 
 ( 8 ) 

With an AICc of 136.5 and 162.2 and weights of 0.309 and 0292, which are over 9 and 7 

times higher than the next most plausible models respectively (Table 16 and Table 17). However, 

the residuals for the with-coast model indicate that it does not represent the data appropriately.  
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Table 16: AICc and weight for the five lowest AICc of each WNV models. 
WNV with coast 

Model AICc weight 

14 136.5 0.3 

13 136.5 0.3 

9 136.5 0.3 

11 141 0.0 

1 141.1 0.0 

WNV w/out coast 

9 162.2 0.2 

14 162.2 0.2 

13 162.2 0.2 

11 166.1 0.0 

1 166.1 0.0 

 

Table 17: Estimates of WNV model without coast. 
Random Effects 

 Variance Standard. Deviation 

Sampling Event 0.3 0.6 

Fixed Effects 
 Estimate Standard Error Z value Pr(>|Z|) 

(Intercept) 18.9 3.6 5.1 0.0 

Dist -27.3 5.3 -5.1 0.0 

Region-Ridge -1.8 0.7 -2.4 0.0 

Landuse-Natural -6.2 1.2 -4.9 0.0 

Region:Land use-Ridge:Natural 5.0 1.2 3.9 0.0 

 

WNV cannot be well predicted when coast is included and therefore I will discuss only the 

model without coast.  There is a general and slight distance decay in WNV vector proportion 

(Figure 11). Natural areas in the plains region tends to have lower vector proportions than in the 

ridge, but in developed areas they are not significantly different (Figure 12).   
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Figure 11: Vector proportions for WNV without coast vs. distance coefficient, per sampling event. Each  color 
represents a different sampling event. 

 

 

Figure 12: Vector proportions for WNV without coast by region and ladn use (black is natural, blue is developed). 
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The most plausible model for SLE with and without the coast is:  

SLE ~ Region ∗ Landuse + Vegetation height + (1|sampling event) 
 ( 9 ) 

With an AICc of 161.8 and 153.5 and weights of 0.322 and 0.288, which are over 10 and 6 

times higher than the next most plausible models, respectively (Table 18, Table 19, and Table 

20).  

 

Table 18: AICc and weights for the five lowest AICc's for each vector proportions model of SLE. 
SLE with coast 

Model AICc weight 

15 161.8 0.3 

11 161.8 0.3 

10 161.9 0.3 

2 166.5 0.0 

13 171.8 0.0 

SLE w/out coast 

14 153.5 0.2 

9 153.5 0.2 

13 153.5 0.2 

10 157.2 0.0 

11 157.2 0.0 
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Table 19: Estimates of SLE models with coast. 
Random Effects 

 Variance Standard Deviation 

Sampling Event 0.9 0.9 

Fixed Effects 
 Estimate Standard Error Z value Pr(>|Z|) 

(Intercept) 0.0 0.6 0.0 0.9 

Region-Plains 1.1 0.7 1.6 0.0 

Region-Ridge 0.6 0.6 0.9 0.3 

Land use-Natural -2.9 0.9 -3.1 0.0 

Vegetation height-Short -1.0 0.5 -2.0 0.0 

Vegetation height-Tall 0.9 0.5 1.7 0.0 

Region:Land use-Plains:Natural 0.0 1.1 0.0 0.9 

Region:Land use-Ridge:Natural 2.7 1.1 2.3 0.0 

 

Table 20: Estimates of SLE models without coast. 
Random Effects 

 Variance Standard Deviation 

Sampling Event 1.0 1.0 

Fixed Effects     

 Estimate Standard Error Z value Pr(>|Z|) 

(Intercept) 18.9 3.5 5.3 0 

Dist -31.0 5.8 -5.2 0 

Region-Ridge -3.0 0.8 -3.6 0 

Land use-Natural -7.7 1.4 -5.3 0 

Region:Land use-Ridge:Natural 8.1 1.6 5.0 0 

 

The SLE model is much more complicated and the only model to include vegetation height.  

For short vegetation height the developed coast has a significantly higher proportion of vectors 

than natural coast; the developed coast also has a marginally significantly higher proportion than 

the plains natural and ridge natural.  In the medium vegetation height the developed plains have a 

higher proportion than natural; coast natural has a significantly lower proportion of than coast 
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developed.  In the tall vegetation height there is not distinction of land use alone, but natural sites 

on the coast have a lower proportion of vectors than coast developed (Figure 13).  

These models vary in the list of predictors more than the diversity models, although they are 

mostly consistent between with- and without-coast.  Dengue/Chikungunya is most predictable as 

a function of land use.  WNV’s model is very similar to the diversity models and this is most 

likely because the more diverse list of vectors includes species that were often the most abundant 

species.  SLE is particularly interesting because it is the only model that includes vegetation 

height as a predictor. 

 

 

Figure 13: Vector proportions for SLE by region and land use and vegetation height (black is natural, blue is 
developed). 
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Compositional Models (NMDS) 

The stressplot for NMDS ordination for Jaccard’s and Bray-Curtis’ indices both had a non-

metric fit R2 = 0.983 and a linear fit R2 = 0.923 and R2 =0.922 respectively, indicating that the 

ordination fits the data well in ordination space (Figure 7).  The final stress value was 12.99 and 

13.00 respectively. The Adonis function also indicated all terms of the most complex model 

(region*landuse + vegetation height) were significant α=0.05 (Table 21 and  

Table 22). However, spatial autocorrelation was not included in NMDS though a partial 

Mantel test showed a correlation between Jaccard index and distance, as well as, Bray-Curtis 

index and distance (Table 21, Table 22, and Figure 14 ). As a result Adonis results are consistent 

with prior analysis but are not a definitive analysis. 

 

Table 21: Adonis output for Jaccard's index. Bright red indicates significance with α=0.05. 
 Df Sums Of Squares Mean Squares F.Model R2 Pr(>F) 

Region 2 3.7 1.8 5.2 0.0 0.0 

Land use 1 2.2 2.2 6.4 0.0 0.0 

Vegetation height 2 2.1 1.0 2.9 0.0 0.0 

Region:Land use 2 1.8 0.9 2.6 0.0 0.0 

Residuals 191 67.6 0.3 0.8   

Total 198 77.6 1    

 
Table 22: Adonis output for Bray-Curtis index. Bright red indicates significance with α=0.05. 
 Df Sums Of Squares Mean Squares F.Model R2 Pr(>F) 

Region 2 4.2 2.1 7.1 0.06 0.0 

Land use 1 2.8 2.8 9.7 0.04 0.0 

Vegetation height 2 2.2 1.1 3.8 0.03 0.0 

Region:Land use 2 1.9 0.9 3.2 0.02 0.0 

Residuals 191 56.3 0.2 0.8   

Total 198 67.6 1    

 



44 
 

 
Table 23: Partial mantel test for NMDS of Jaccard's index. Bright red indicates significance with α=0.05. 

 lag ngroup piecer pval 
[1,] 6500 3046 0.1 0.0 

[2,] 19500 3703 0.0 0.8 

[3,] 32500 914 0.3 0.0 

[4,] 45500 2042 0.2 0.0 

[5,] 58500 2784 -0.0 0.0 

[6,] 71500 242 -0.2 0.0 

[7,] 84500 770 -0.1 0.0 

[8,] 97500 2556 -0.1 0.0 

[9,] 110500 2627 -0.3 0.0 

 

Table 24: Partial mantel test for NMDS of Bray-Curtis’ index. Bright red indicates significance with α=0.05. 
 lag ngroup piecer pval 
[1,] 6500 3046 0.1 0.0 

[2,] 19500 3703 0.0 0.9 

[3,] 32500 914 0.3 0.0 

[4,] 45500 2042 0.2 0.0 

[5,] 58500 2784 -0.0 0.0 

[6,] 71500 242 -0.2 0.0 

[7,] 84500 770 -0.1 0.0 

[8,] 97500 2556 -0.1 0.0 

[9,] 110500 2627 -0.3 0.0 
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Figure 14: Partial mantel correlogram for NMDS of Jaccard and Bray-Curtis index. Closed dots indicate a 
significant difference (α=0.05) and open dots indicate no significant difference. 

 

The multivariate adonis analysis indicated that region*land use + vegetation height are 

significant. Ordination graphs with convex hulls around each grouping (region, land us, and 

vegetation hieght), showed substantial overlap among groups but temporal changes also were 

important. The ordination also shows that all sampling events occupy similar ordination space, 

but if you add each convex hull in sequence, you can see some of the nuances. The first event 

occupies a larger ordination space then the ones that follow. After that the hulls occupy 

approximately the same space until a noticeable shift at event 8 and 9. Finally the space shifts 

back ending with a hull that is of similar size as the first but shifted over. Event 8 and 9 

corresponds to 2 and 4 weeks after tropical storm Isacc landed August 26, 2012. This kind of 

shift in composition could indicate a relatively higher risk of zoonosis often associated with 

storms (Ahern et al., 2005) (for all ordination graphs see appendix Figures 18-41). 
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Indicator Speices 

 Using the indicator species function in R, the coast can be characterized by three species, 

while the plains and ridge are characterized by one each. The combinations of plains:coast and 

plains:ridge have three species that characterize each. No species characterize coast:ridge 

combination, which is expected (Table 25). This suggests that the coast is a very different habitat 

to a mosquito compared to more inland regions.  
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Table 25: Indicator species for each region or combination of regions. 
  A B stat p.value 

Coast  

Ae_albopictus 0.94 0.49 0.68 0.0 

Cu_restuans 0.96 0.23 0.47 0.0 

Ae_taeniorhynchus 1 0.05 0.22 0.0 

Ae_vexans 0.97 0.03 0.18 0.2 

Cu_coronator 0.90 0.03 0.17 0.2 

Ae_sollicitans 0.70 0.03 0.15 0.3 

Ae_fulvus_pallens 1 0.01 0.13 0.2 

Ae_tortilus 1 0.01 0.13 0.2 

Plains 

M_dyari 0.85 0.88 0.87 0.0 

U_sapharrina 1 0.04 0.20 0.0 

Ridge 

Ae_atlanticus 0.78 0.26 0.46 0.0 

Coast and Plains  

Ae_aegypti 0.98 0.22 0.47 0.0 

Cu_declarator 0.96 0.20 0.44 0.0 

Cu_salinarius 0.99 0.17 0.42 0.0 

Ae_triseriatus 1 0.03125 0.177 0.331 

C_melanura 1 0.03125 0.177 0.32 

Plains and Ridge 

P_columbiae 0.98799 0.83571 0.909 0.001 

P_ciliata 0.99342 0.52143 0.72 0.001 

U_lowii 0.90981 0.37143 0.581 0.001 

An_walkeri 0.96884 0.15 0.381 0.168 

P_ferox 0.99639 0.09286 0.304 0.793 

 

 Developed sites are characterized by three species while natural sites by ten. This 

suggests that developed areas have a more narrow range of habitat for mosquitoes than natural 

areas (Table 26).  
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Table 26: Indicator species for each land use type or combination of land use types. 
  A B stat p.value 

Developed 

Ae_aegypti 0.98 0.29 0.53 0.00 

Cu_restuans 0.98 0.21 0.46 0.00 

Cu_declarator 0.74 0.22 0.40 0.01 

Cu_coronator 0.88 0.01 0.13 0.74 

Natural 

An_crucians 0.96 0.91 0.94 0.00 

M_titillians 0.87 0.79 0.83 0.00 

P_ciliata 0.95 0.57 0.73 0.00 

Co_perturbans 0.90 0.53 0.69 0.00 

Ae_infirmatus 0.87 0.37 0.57 0.00 

U_lowii 0.85 0.36 0.55 0.00 

Ae_atlanticus 0.99 0.25 0.49 0.00 

An_walkeri 0.93 0.18 0.41 0.01 

An_quadrimaculatus 0.98 0.16 0.40 0.03 

P_ferox 0.99 0.14 0.38 0.00 

Ae_sollicitans 1 0.03 0.17 0.11 

Ae_taeniorhynchus 1 0.03 0.17 0.08 

C_melanura 0.94 0.03 0.17 0.22 

A_fulvus_pallens 1 0.01 0.10 0.47 

A_tortilus 1 0.01 0.10 0.48 

 

 Medium and tall vegetation heights are characterized by 2 and 3 species respectively, 

while short does not have any species that explicitly characterizes it. The combination of 

medium/tall has one species that characterizes it (Table 27). 
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Table 27: Indicator species for each vegetation height or combination of vegetation height. 
 A B stat p.value 

Medium 

A_aegypti 0.84 0.28 0.49 0.00 

Cu_restuans 0.96 0.21 0.45 0.00 

Short 

A_fulvus_pallens 1 0.01 0.12 0.34 

A_tortilus 1 0.01 0.12 0.32 

Tall 

A_infirmatus 0.91 0.43 0.63 0.00 

U_lowii 0.66 0.40 0.52 0.02 

A_atlanticus 0.93 0.24 0.47 0.00 

Cu_declarator 0.78 0.25 0.44 0.00 

A_vexans 0.99 0.04 0.21 0.09 

Cu_coronator 0.89 0.03 0.16 0.41 

Medium and Short 

P_columbiae 0.73 0.72 0.72 0.56 

M_titillians 0.72 0.66 0.69 0.69 

P_ciliata 0.76 0.43 0.57 0.32 

Medium and tall 

Cu_nigripalpus 0.83 0.94 0.88 0.03 

Cu_erraticus 0.73 0.78 0.75 0.35 

An_crucians 0.73 0.72 0.73 0.66 

M_dyari 0.74 0.61 0.67 0.67 

Co_perturbans 0.70 0.38 0.51 0.75 

Ae_albopictus 0.79 0.27 0.47 0.32 

Cu_salinarius 0.97 0.13 0.37 0.33 

P_ferox 1 0.13 0.36 0.10 

An_quadrimaculatus 0.97 0.12 0.35 0.55 

An_walkeri 0.55 0.16 0.3 0.91 

A_triseriatus 1 0.02 0.17 0.47 

C_melanura 1 0.02 0.17 0.45 

Ae_sollicitans 1 0.02 0.14 0.58 

Ae_taeniorhynchus 1 0.02 0.14 0.72 

U_sapharrina 1 0.02 0.14 0.65 
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Discussion 

 This study established that region, land use, the interaction of region and land use, 

seasonality and geographic distance all significantly affect mosquito diversity. My hypothesis 

that seasonality, geography, and land use are large scale drivers of mosquito diversity and thus 

seasonality, region, and land use can predict mosquito assemblages is supported. IF diversity 

translates to differential disease risk via the Dilution Effect, these predictor variables should be 

able to translate to predicting disease risk probability. 

 However, this study does not support a simple vector Dilution Effect (Schmidt and 

Ostfeld, 2001) because the study system is complex; multiple factors across regions through 

time/seasons, affect mosquito assemblages. In addition, multiple mosquito species can vector 

multiple viral diseases in Florida and nearby regions (Caribbean islands).  However, we can 

predict areas with relative higher risk of zoonosis in general because variables predict mosquito 

composition and thus vectors.  

This study establishes some of the important predictors of mosquito diversity in south-central 

Florida, but does not give effect size or estimates of these factors.  A more focused study on 

individual predictors would be needed to obtain an effect size of each predictor variable. Species 

richness as a summary measure reveals little useful information about mosquito diversity overall. 

It does show consistency of urban homogenization, with the coast and developed land use overall 

having lower mean species richness (McKinney, 2006). A more detailed view of diversity is Jost 

D, which indicates the effective diversity and accounts for abundances.  Jost D shows a starker 
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difference between natural and developed land use that is again consistent with urban 

homogenization.  

The most detailed analysis (multivariate adonis) indicated that region*land use + vegetation 

height are significant, illustrating the value of more detailed analysis over marginal sums (i.e. 

species richness) to understand the system.  Without this analysis this study would have 

suggested that vegetation height has little importance to mosquito composition, as well as 

revealed the effect of a major weather event on the system. It is important to incorporate these 

types of analysis in appropriate ways that can be descriptive and exploratory to inform future 

more focused studies (James and McCulloch, 1990).   

Vector models differed; it is difficult to generalize about how mosquito borne disease works 

as a whole in the study region, but we can gain some understanding of how each disease can be 

predicted in the landscape.  Each disease in this study had a higher proportion in either certain 

developed areas or in the coastal region.   

 Among all the varied results here, one of the most useful for evaluating mosquito-borne 

disease risk was indicator species analysis.  Dengue and Chikungunya are vectored by Ae. 

albopictus and Ae. aegypti which are most closely associated with the coast or a combination of 

the coast and plains. Using the component parts of the indicator speicies analysis, every coastal 

sample has a probability of 0.49 containing Ae. albopictus, and in the combination of the coast 

and plains a probability of 0.23 containing Ae. aegypti. Assuming these probabilities can be 

extrapolated to the area as a whole, then any point within these regions have a probability of up 

to 0.72 of containing at least one individual that can vector Dengue and Chikungunya (see 
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component B in Table 25). It is difficult to say which of these diseases or vectors imposes a 

bigger risk because the relative biting rates among vectors and/or disease transfer probabilities 

for these diseases are not known in the study area. In addition, Ae. aegypti is also associated with 

developed sites with a probability of 0.29 containing it (see component B in Table 26). 

Regardless of further details on relative biting rates and disease transfer, coastal and plains 

regions clearly are at greater risk of Dengue and Chikungunya exposure than the ridge. 

 West Nile Virus is vectored by species in the Culex genera; three of the six species in this 

study are significantly associated with either the coast or the combination of coast and plains. 

Again, if these probabilities can be extrapolated to the area as a whole, then any point within 

these regions have a probability of up to 0.64 of containing at least one individual that can vector 

WNV. This is relatively higher than other areas, but does not mean there is no or little risk on the 

ridge. Culex species that are not associated with any area are more evenly spread throughout 

South-Central Florida, so depending on relative abundances those species could potentially pose 

a higher risk of WNV. Interestingly, Culex species are associated with a land use are also 

associated with only developed land use, giving developed areas a relatively higher risk than 

natural areas for WNV.  

Culex nigripalpus, is the sole vector of SLE in this study but, is not associated with any 

particular region or land use type. It is significantly associated with the combination of short and 

medium vegetation height, with a staggering probability of 0.94 sites in that class containing C. 

nigripalpus. This suggests that C. nigripalpus selects areas with short and medium height 

vegetation, but can be just about anywhere.  
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None of the zoonosis analysis above suggests any area has no risk of zoonosis; just that those 

mentioned above have a relatively higher risk and should therefore be monitored more closely. 

As such results here should help direct attention to Florida regions that bear most attention 

regarding zoonosis. Also, thus prioritization was separate from human population density and 

considered only mosquito assemblages. For example the Ridge is not associated with any 

particular disease vector, yet many vectors are found there. Overall the coast and plains, and 

developed areas tend to have higher relative risk of zoonosis for all of the diseases evaluated 

here. In fact no vectors of these diseases are associated with natural sites. In addition short 

vegetation height has a relatively low risk of zoonosis for all of these diseases. But diversity 

patterns also vary among regions and land use so that greater zoonosis chance due to vector 

distributions is not a simple function of a Dilution Effect.  

Florida had a fire maintained landscape that would once have naturally kept vegetation 

shorter and with larger gaps. Fire suppression in developed areas reduces the dangers of fire but 

an unintentional consequence may be more suitable mosquito habitat and greater zoonosis risk. 

Fire managed areas could not only restore the ecology of a system, but reduce the relative 

disease risk to humans. Thus, fire management may be considered a public health issue as well 

as an ecosystem issue. The most troubling part of this is that the coast and developed areas also 

have the highest human population coupled with the highest relative risk of zoonosis.  

Region, land use, and vegetation height, contribute to the overall mosquito assemblage, 

which result in a variance in disease risk among those conditions. Because so many factors 

contribute to each of these predictors individually, a simple Dilution Effect model does not 
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adequately describe this system. Yet, we still have the ability to understand our relative 

mosquito-borne disease risk in South-Central Florida and the potential to do something about it 

(i.e. manage with prescribed fires).   
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CHAPTER 3: MOSQUITOES AND FIRE IN THE SCRUB 

Abstract 

Florida is well known for mosquitoes, and mosquito control has been implemented in Florida 

for a long time. With emerging disease (i.e. dengue and chikungunya) expanding into Florida it 

is important to understand the factors that play a role in adult mosquito assemblage patterns. 

Florida scrub is a fire maintained habitat and for the past century or so there has been extreme 

fire suppression throught out the United States. Archbold Biological Station (ABS) has used fire 

return cycles since the 1980s' to try and return its scrub habitat to a more natural state.  This 

study sampled 84 sites for 5 months at ABS with CDC light traps and collected 9,037 individual 

mosquitoes and 14 species.  A mixed-effect model selection approach using AICc was used in 

conjunction with indicator species analysis to determine how Time Since Fire (TSF) and 

vegetation affect mosquito assemblages at ABS on an approximately 4km scale. In general, time 

of season accounted for the largest proportion of the variation in the data and TSF had negligible 

effect on adult mosquito assemblages measured as abundance, speices richness, and Jost D.  

Introduction 

Humans have altered even what is often considered ‘natural’ habitat to a great extent. In the 

United States fire suppression was the standard for a long time and is still common 

(Wagtendonk, 2007). The lack of natural fires has changed ecosystems including species that are 

fire-adapted (Pausas an Keeley, 2009; Weekley and Menges, 2003). In Florida, fire is a natural 

occurrence in scrub habitat (Abrahamson and Abrahamson, 1996), and some scrub plants require 
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fire to germinate or re-sprout. The natural intervals between fires in Florida varied depending on 

habitat from 2-5 years for sandhill to 20-59 years for rosemary scrub (Main and Menges, 1997).  

This variation both causes the difference in habitat as well as maintains it, therefore disturbance 

in these cycles cause difficulties in returning to the original state of the habitat (Abrahamson, 

1984c). Fire is directly related to plant cover; the longer it has been since a fire the more plant 

cover there is (Abrahamson, 1984a). Because adult mosquitoes use vegetation for daily perch 

sites, fire should indirectly affect mosquito presence by affecting vegetation. Surprisingly, no 

information exists in the literature on how fire affects adult mosquitoes, directly or indirectly. 

After an extensive literature search I was only able to find three studies on fire effects on 

mosquitoes and none for adults (Janousek and Olson, 1994; Wallace et al., 1990; Whittle et al., 

1993). In addition, little is also known about mosquito assemblages in Florida scrub, probably 

because scrub habitat is generally considered dry and historically moderately populated by 

humans (which is changing with urban sprawl). However, many adult mosquitoes inhabit scrub 

habitats, and many potential breeding sites exist there.  Understanding how fire affects 

mosquitoes in the scrub could inform prescribed fire management and help support its use in 

areas where fire is still suppressed (e.g. near urban land use). 

Some land management areas have a strong record of attempting to mimic natural fire cycles. 

Archbold Biological Station (ABS) in south-central Florida (Highlands county) is one such 

place. After a short experimental period, ABS began a fire management plan in the early 1980’s, 

which includes a patch work system of fire units that differ in fire return intervals. Using fire 

return intervals instead of strict cycles helps to allow for better success of the system and 
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flexibility due to natural events that may occur at the station. As a result, ABS now includes a 

mosaic of different fire histories that is close to natural systems and rarely has any two adjacent 

units with the exact same fire history (Main and Menges, 1997). Because this system has been so 

closely studied and monitored it is a great setting to understand how any set of organisms 

respond to fire or fire effects.  

Not much is known about mosquitoes at ABS and majority of the information is from recent 

studies. No study has tested how fire affects mosquitoes. Depending on the species, adult 

mosquitoes may migrate in the first few days of life anywhere from 0.5 km up to 3+ km against 

the wind (Bates, 1949), meaning that they are free to select suitable habitats among a variety of 

fire-affected units at ABS. Mosquitoes fly in three ways, migratory, appetential and 

consumatory. Migratory flight lacks a goal, has no return flight, and only occurs in newly 

emerged adults. Appetential flight occurs after the first 24 hrs of emergence, in response to 

physiological stimulus, such as searching for a perch site, breeding site, food source, etc. 

Consumatory flight often, but not always, occurs after appetential flight and is triggered by 

visual and biochemical cues in a short flight from a perch site, to a food source or breeding site 

(Bidlingmayer, 1985, Provost, 1952). All of these flight patterns can be affected by a wide range 

of variables. Given the complexity of mosquito flight behaviors and the mosaic of burn units at 

ABS, the study system provided a unique opportunity to investigate the effects of fire 

management on mosquito habitat selection in Florida scrub.   

The two ideas of what impacts adult mosquito distributions are perch site or breeding site 

preferences and food availability.  Each compete to explain which cues have the biggest impact 
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on dictating if an adult mosquito is found in any particular place. Each of these factors is affected 

by fire which leads me to my second question: How does Time Since Fire (TSF) affect adult 

mosquito assemblages at Archbold Biological Station?  

I addressed this question by a sampling of adult mosquitoes using a CDC light trap at 84 sites 

over 5 months, at ABS, with 3 different TSF categories: short (<1yr), medium (1-5yrs), and long 

(>5yrs).  Mosquitoes may respond to fire and its effects at different scales due to the patchy 

nature of fire, therefore several predictors were selected to determine the most plausible model of 

mosquito assemblages at ABS.  Using a mixed-effects model approach we collected data on each 

site for Time Since Fire (TSF), Gap Light Analysis (GLA-a measurement of the percent canopy 

cover) at different heights, 7 percent vegetatitaion categories, 5 of those had the height of the 

tallest individual in that category recorded, the first 3 Principle Components (PC) of a Principle 

Components Analysis (PCA) for all 12 vegetation categories), and a distance coefficient (Dist- a 

distance weighted auto-covariate).  Several alternative hypotheses were formed with sets of each 

of these predictors that were then compared using model selection with AICc.  The response 

variable as a function of ‘Dist’: time since fire, percent canopy cover at 0m, 1m, and 2m, percent 

vegetation categories, tallest vegetation categories, vegetation categories PCA, and random 

effects. 

My hypotheses are:  

𝑅𝑅𝑒𝑒𝐽𝐽𝑅𝑅𝐽𝐽𝐷𝐷𝐽𝐽𝑒𝑒 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒 ~ 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + 𝑇𝑇𝑇𝑇𝑇𝑇 + (𝑅𝑅𝑖𝑖𝐷𝐷𝐿𝐿𝐽𝐽𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝐽𝐽𝐽𝐽) 
 ( 10 ) 
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𝑅𝑅𝑒𝑒𝐽𝐽𝑅𝑅𝐽𝐽𝐷𝐷𝐽𝐽𝑒𝑒 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒 ~ 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + 𝑃𝑃𝑒𝑒𝑉𝑉𝑐𝑐𝑒𝑒𝐷𝐷𝐽𝐽 𝐶𝐶𝑖𝑖𝐷𝐷𝐽𝐽𝑅𝑅𝑖𝑖 𝐶𝐶𝐽𝐽𝐶𝐶𝑒𝑒𝑉𝑉 + (𝑅𝑅𝑖𝑖𝐷𝐷𝐿𝐿𝐽𝐽𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝐽𝐽𝐽𝐽) 
 ( 11 ) 

 

𝑅𝑅𝑒𝑒𝐽𝐽𝑅𝑅𝐽𝐽𝐷𝐷𝐽𝐽𝑒𝑒 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒 ~ 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + 𝑅𝑅𝑉𝑉𝑒𝑒𝑐𝑐𝑒𝑒𝐷𝐷𝐽𝐽 𝐶𝐶𝑒𝑒𝐷𝐷𝑒𝑒𝐽𝐽𝑖𝑖𝐽𝐽𝑖𝑖𝐽𝐽𝐷𝐷 + (𝑅𝑅𝑖𝑖𝐷𝐷𝐿𝐿𝐽𝐽𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝐽𝐽𝐽𝐽) 
 ( 12 ) 

 

𝑅𝑅𝑒𝑒𝐽𝐽𝑅𝑅𝐽𝐽𝐷𝐷𝐽𝐽𝑒𝑒 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒 ~ 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + 𝐽𝐽𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒𝐽𝐽𝐽𝐽 𝐶𝐶𝑒𝑒𝐷𝐷𝑒𝑒𝐽𝐽𝑖𝑖𝐽𝐽𝑖𝑖𝐽𝐽𝐷𝐷 + (𝑅𝑅𝑖𝑖𝐷𝐷𝐿𝐿𝐽𝐽𝑅𝑅𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝐽𝐽𝐽𝐽) 
 ( 13 ) 

 

𝑅𝑅𝑒𝑒𝐽𝐽𝑅𝑅𝐽𝐽𝐷𝐷𝐽𝐽𝑒𝑒 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒 ~ 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + 𝑉𝑉𝑒𝑒𝐷𝐷𝑒𝑒𝐽𝐽𝑖𝑖𝐽𝐽𝑖𝑖𝐽𝐽𝐷𝐷 𝑃𝑃𝐶𝐶𝑃𝑃 + (𝑅𝑅𝑖𝑖𝐷𝐷𝐿𝐿𝐽𝐽𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝐽𝐽𝐽𝐽) 
 ( 14 ) 

 

𝑅𝑅𝑒𝑒𝐽𝐽𝑅𝑅𝐽𝐽𝐷𝐷𝐽𝐽𝑒𝑒 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒 ~ 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + (𝑅𝑅𝑖𝑖𝐷𝐷𝐿𝐿𝐽𝐽𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝐽𝐽𝐽𝐽) 
 ( 15 ) 

 

Methods 

Study Sites 

This entire study was conducted at ABS, located in south-central Florida at the southern end 

of the Lake Wales Ridge. The Lake Wales Ridge is part of the Florida ridge system which is 

comprised of upland areas that have remained above sea-level since the Pleistocene (James, 

1961; Myers and Ewel, 1990-pgs 70-100). The ridge is home to many endemic species that have 

been isolated on ancient islands. Some of the different natural habitats found on the southern 

portion of the ridge include several types of scrub, flatwoods, southern ridge sandhill, and 

bayheads (Abrahamson et al., 1984a). Much of the natural areas of the ridge have been cultivated 
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for citrus and cattle pasture. The station was farmed for turpentine and lumber in the past but has 

been managed for biological research since 1941 (Main and Menges, 1997).  

 

 

Figure 15: A Generalized map of Natural communities of ABS from 2004. 

 

Most sites were located in scrub or scrubby flatwoods, but some were in rosemary balds. 

This area contains many ephemeral ponds and is dominated by typical scrub plants including: 

palmettos, a mixture of oaks and sparse slash pines. The short TSF sites, are most often still 

covered in charcoal, with stark green newly sprouting plants, with little to no canopy or sub-

canopy.  The medium TSF sites, have denser ground cover, some have sub-canopy and sparse 

canopy.  The long TSF varied much more greatly; often these sites had thick sub-canopy and 

canopy, but if located in or near a rosemary bald, then there was no canopy. 
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Sampling 

Eighty-four sites were sampled using John C. Hock light traps. Each trap was placed a 

minimum of 50m from any road or fire lane to avoid edge effects. The sampling sites were 

chosen to be associated with a wetland for mosquito emergence sampling, those data are not 

considered here. Sites can thus be considered to be haphazardly distributed in burn units of the 

three different TSF categories: short (<1yr), medium (1-5yrs), and long (>5yrs) (Abrahamson 

and Abrahamson, 1996) (Figure 16). Proximity to a wetland was irrelevant in this sampling year 

because extensive flooding occurred; wetlands were combined and "uplands" were flooded for 

extended periods. No trap was placed in standing water.  Twelve traps were placed out during 

any one sampling event, 4 in each TSF category, and no site was ever sampled twice.  Sampling 

occurred from July 2013 until November 2013 when mosquitoes trapped had dwindled to very 

low numbers, for a total of 7 events. Each female mosquito was identified to species when 

possible.  

 



62 
 

 

Figure 16: Map of the sampling sites at Archbold Biological Station. Yellow-short TSF, pink -medium TSF, green -
long TSf. 

 

Each sample site included a light trap, hung ~1m above the ground in the center of a 30m 

diameter macro-plot. Traps were set out just before sunset and retrieved the next morning. The 

samples were then frozen to kill all invertebrates trapped inside and remained frozen prior to 

processing. All non-mosquito invertebrates were excluded and then the sample was weighed to 

the nearest 0.0001 g. 

Each light trap was at the center of a macroplot (30 m radius) (A CDC light trap has an 

estimated non-baited effective distance of approsimately 5 m (Odetoyinbo, 1969)), and three 

micro-plots (5 m in diameter) were randomly placed within each macro-plot using a random 

direction and random distance. Each micro-plot had 3 subplots selected haphazardly by throwing 

a 1m diameter circular PVC frame (Figure 17). Vegetation was evaluated to indicate the relative 

number of perch and vegetative structure sites in that area. The percent cover of palmetto, 

grasses, herbs, sub-shrub (≤50 cm tall), woody shrubs (≥50 cm and ≤200 cm, including scrub 

oak, live oak, Lyonia lucida, etc.), bare sand, and litter were estimated in each subplot. The 
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tallest height (cm) of each of those categories was also recorded when applicable (5 categories). 

At each subplot a vertically –oriented picture was taken at 0, 1, and 2 meters using a 180° fish 

eye lens. Digital photographs were analyzed with Gap Light Analysis software where data was 

recorded as percent canopy cover as an indicator of perch site availability and relative trap 

visibility (Frazer et al., 2001). Data from the nine subplots around a sampling point were 

averaged to represent vegetative structure of the area around the sampling point.  

 

 

Figure 17:  Macro-plot (in green) with trap in center (diamond).  Three 5m diameter micro-plots (in brown) with 3 
1m diameter subplots in black.  Vegetation and GLA data was taken at each black subplot. 

 

Light trap samples generated abundance and presence/absence data for multiple mosquito 

species, so that data comprised a species X sites X time matrix. Those data were evaluated in 

several ways, summarized below. 

Statistical Analysis 

I used a hybrid of methods from Zuur et. al (2009) and model selection with AICc and 

weights (Burnham and Anderson, 2002) on all models. Using the same fixed effects structure, 
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the random structure was determined using Restricted Maximum Likelihood (REML), with 

possible random structures composed of none, random intercept only, or random slope and 

intercept. Sampling event was treated as the random intercept to address the repeated measures 

design. Geographical distance between sampling points was addressed as a distance-weighted 

auto-covariate (Augustin, Mugglestone, and Buckland. 1996; Bivand et. al., 2014) and was 

treated as both a fixed effect and the random slope.  

Models were then validated using the function 'r.squaredGLMM' (MuMIn, 2015) to obtain 

pseudo R squared values. This function provides a marginal R squared value which represents 

variance of the fixed effects, and a conditional R squared value that represents the variance of 

both fixed and random effects. Graphs were created to visually inspect the assumptions of 

homogeneity of factors and normal residuals.  Both the Shapiro-Wilk test (Shapiro and Wilk, 

1965; R core team, 2014) and the Levene test (Levene, 1960; Fox and Weisberg, 2011) were 

employed to evaluate parametric statistical assumptions. If models did not meet these 

assumptions then the model was rejected. In order to interpret the models, means and 95% 

confidence intervals were obtained for all significant factors.   

Models were assessed using three different response variables: abundance, species richness 

and Jost D, or the effective diversity of a sample (Jost, 2006) and was calculated as:  

𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐷𝐷 = 𝑒𝑒H′ 
 ( 16 ) 

 

where H' is Shannon’s diversity: 
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H′ = −� pi i ln pi 
 ( 17 ) 

 

where pi is the proportional abundance of species i.  

Predictors were fixed and/or random effects for 5 different sets of variables: Time Since 

Fire (TSF), canopy cover, vegetation (percent cover predictors), vegetation (tallest predictors), 

and Principle Components Analysis (PCA) of vegetation. All fixed effects portions were 

analyzed with and without the distance coefficient when possible.  

 For model sets with many possible models the function 'expand.grid' (R core team, 2014) 

was used to obtain a matrix of all possible models in conjunction with excel. Each model set had 

a different number of possible models, for which the most plausible was derived with AICc. 

Then each of the most plausible was included in a final comparison to find the most plausible 

model of all the sets. Each sample was one of the three (short, medium, or long) TSF categories 

creating 3 possible models. Percent canopy cover models consisted of three continuous variables 

derived from the GLA pictures averaged at each point at 0 m, 1 m and 2 m. All interactions were 

included in the most complex canopy cover model which makes 127 models. Vegetation (percent 

cover) consisted of the 7 continuous predictors, listed above; only additive effects were evaluated 

for vegetation which makes 127 possible models. Vegetation (tallest) consisted of 5 continuous 

predictors; only additive effects were evaluated for vegetation which makes 31 possible models. 

Also to simplify the vegetation predictors, PCA was used with the function ‘prcomp’ (R core 

team, 2014). The first 3 axes were used as 3 continuous variables yielding 8 models. These axes 
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explain 73.3% of the variation in the vegetation variables (Table 28). Only additive effects of 

PCA axis scores were included, because all vegetation variables are included in each axis. 

Finally, the most plausible model of each of these sets and a model with only geographic 

distance coefficient were compared using AICc to determine which predictors gave the most 

plausible model.  

 

Table 28: Vegetation PCA loadings. 
 PC1 PC2 PC3 

Standard 
Deviation 

2.01 1.62 1.46 

Percent Variation 34 22 18 

Cumulative 
Variation 

34 55 73 

Eigenvalues 4.04 2.61 2.15 

Percent grass 0.09 0.08 0.12 

Tallest grass 0.14 0.00 0.11 

Percent subshrub 0.05 0.20 0.08 

Tallest subshrub 0.04 0.21 0.05 

Percent trees 0.09 0.07 0.16 

Tallest trees 0.15 0.04 0.06 

Percent herbs 0.05 0.10 0.00 

Tallest herbs 0.15 0.01 0.00 

Percent palmetto 0.05 0.11 0.16 

Tallest palmetto 0.08 0.11 0.12 

Percent sand 0.05 0.07 0.11 

Percent litter 0.06 0.00 0.04 

 

The R-package indicspecies (DeCaceres and Legendre, 2009) uses the group Indicator value 

(DeCaceres, Legendre, and Moretti, 2010) to produce a set of species that indicate a particular 

environmental variable, with a permutation test to test significance. Groups most consistent to 
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the highest association, of each category or combination of categories of TSF were obtained with 

999 permutations. Species component parts of the indicator value, were used to determine 

species fidelity (A), and species specificity (B) (DeCaceres, Legendre, and Moretti, 2010). A 

species was considered an indicator species at an alpha of 0.05, but all species associations were 

reported.  

All analysis was completed in R and all code is provided in the appendix. 

Results 

Eighty-four samples were collected over 5 months and consisted of 9,037 individual 

mosquitoes and 14 species including: Oclerotatus atlanticus, Oclerotatus infirmatus, Anopheles 

crucians, Anopheles quadrimaculatus, Mansonia dyari, Mansonia titillans, Coquillettidia 

perturbans, Culex erraticus, Culex nigripalpus, Culex declarator, Psorophora ciliata, 

Psorophora columbiae, Uranotaenia lowii, and Uranotaenia sapphirina. 

Mosquito Abundance 

The most plausible model for abundance by TSF includes only TSF and the random intercept 

and the weight is nearly triple the next most plausible model: 

(log)  𝑃𝑃𝑉𝑉𝐷𝐷𝐷𝐷𝐿𝐿𝑖𝑖𝐷𝐷𝑐𝑐𝑒𝑒 ~ 𝑇𝑇𝑇𝑇𝑇𝑇 + (1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 29) 
 ( 18 ) 
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Table 29: AICc comparison of Abundance ~ TSF models. 
 AICc dAICc df weight 

TSF + (1|Sampling event) 213.7 0 5 0.59 

Dist + TSF + (1|Sampling event) 215.7 2 6 0.22 

Dist + (1|Sampling event) 216 2.3 4 0.19 

 

 The most plausible model for abundance by percent canopy cover includes the percent 

canopy at 1m and random intercept, but the weight is not drastically higher than the next most 

plausible model: 

 

(log) 𝑃𝑃𝑉𝑉𝐷𝐷𝐷𝐷𝐿𝐿𝑖𝑖𝐷𝐷𝑐𝑐𝑒𝑒 ~ −  %𝐶𝐶𝑖𝑖𝐷𝐷𝐽𝐽𝑅𝑅𝑖𝑖 𝑖𝑖𝐽𝐽 1𝑅𝑅 + (1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 30) 
 ( 19 ) 

 

Table 30: AICc comparison of Abundance ~ GLA top 5 models. 
 AICc dAICc df weight 

%canopy1m + (1|Sampling event) 207.9 0 4 0.07 

%canopy1m:%canopy2m + (1|sampling_event) 208.3 0.4 4 0.05 

%canopy0m + %canopy0m:%canopy1m + (1|sampling_event) 209.7 1.8 5 0.03 

%Canopy2m + %canopy1m:%canopy2m + (1|sampling_event) 209.9 2 5 0.02 

%canopy0m:%canopy2m + %canopy0m:%canopy1m:%canopy2m + 
(1|sampling_event) 

209.9 2 5 0.02 

 

The most plausible model for abundance by percent vegetation categories includes percent 

grass cover, percent cover of woody shrubs and random intercept and the weight is nearly double 

the next most plausible model: 

(log) 𝑃𝑃𝑉𝑉𝐷𝐷𝐷𝐷𝐿𝐿𝑖𝑖𝐷𝐷𝑐𝑐𝑒𝑒 ~ %𝐷𝐷𝑉𝑉𝑖𝑖𝐽𝐽𝐽𝐽 + %𝑤𝑤𝐽𝐽𝐽𝐽𝐿𝐿𝑖𝑖 𝐽𝐽ℎ𝑉𝑉𝐷𝐷𝑉𝑉𝐽𝐽 + (1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 31) 
 ( 20 ) 
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Table 31: AICc comparison of Abundance ~ percent vegetation categories top 5 models. 
 AICc dAICc df weight 

%grass + %woody shrubs + (1|Sampling event) 204.3 0 5 0.11 

%woody shrubs + (1|Sampling event) 205.2 0.9 4 0.07 

%woody shrubs + %palmetto + (1|Sampling event) 206 1.8 5 0.04 

%grass + %woody shrubs + %palmetto + (1|Sampling event) 206.3 2.1 6 0.04 

%grass + %woody shrubs + %sand + (1|Sampling event) 206.4 2.1 6 0.04 

 

The most plausible model for abundance by tall vegetation categories includes the tallest 

woody shrub, tallest palmetto, and random intercept and the weight is nearly double the next 

most plausible model: 

(𝑉𝑉𝐽𝐽𝐷𝐷)𝑃𝑃𝑉𝑉𝐷𝐷𝐷𝐷𝐿𝐿𝑖𝑖𝐷𝐷𝑐𝑐𝑒𝑒 ~ 𝐽𝐽𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒𝐽𝐽𝐽𝐽 𝑤𝑤𝐽𝐽𝐽𝐽𝐿𝐿𝑖𝑖 𝐽𝐽ℎ𝑉𝑉𝐷𝐷𝑉𝑉 − 𝑇𝑇𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒𝐽𝐽𝐽𝐽 𝑅𝑅𝑖𝑖𝑉𝑉𝑅𝑅𝑒𝑒𝐽𝐽𝐽𝐽𝐽𝐽 + (1|𝐽𝐽𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 
32) 

 ( 21 ) 

 

Table 32: AICc comparison of Abundance ~ tall vegetation categoreis top 5 models. 
 AICc dAICc df weight 

Tallest woody shrub + tallest palmetto + (1|sampling event) 202.2 0 5 0.27 

Tallest grass + tallest woody shrub + tallest palmetto + 
(1|sampling_event) 

203.2 1 6 0.16 

Tallest subshrub + tallest woody shrub + tallest palmetto + 
(1|sampling event) 

203.4 1.3 6 0.14 

Tallest tree + tallest herb + tallest palmetto + (1|sampling event) 204.5 2.3 6 0.08 

Tallest grass + tallest subshrub + tallest woody shrub +  + tallest 
palmetto + (1|sampling event) 

204.8 2.6 7 0.07 

 

The most plausible model for abundance by vegetation PCA includes PC1, PC2, PC3 and 

random intercept but the weight is not much more than the next most plausible model: 

(𝑉𝑉𝐽𝐽𝐷𝐷) 𝑃𝑃𝑉𝑉𝐷𝐷𝐷𝐷𝐿𝐿𝑖𝑖𝐷𝐷𝑐𝑐𝑒𝑒 ~ −  𝑃𝑃𝐶𝐶1 − 𝑃𝑃𝐶𝐶2 − 𝑃𝑃𝐶𝐶3 + (1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 33) 
 ( 22 ) 
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Table 33: AICc comparison of Abundance ~ vegetation PCA top 5 models. 
 AICc dAICc df weight 

PC1 + PC2 + PC3 + (1|sampling event 206.4 0 6 0.30 

PC2 + PC3 + (1|sampling event) 206.8 0.4 5 0.25 

Dist + PC1 + PC2 + PC3 + (1|sampling event) 207.7 1.3 7 0.16 

PC1 + PC2 + (1|sampling event) 208 1.6 5 0.14 

PC2 + (1|sampling event) 208.3 1.9 4 0.12 

 

Among the above models for mosquito abundance, the most plausible is the tall vegetation  

with an AICc 202.2 of and weight of 0.65 which is 3 times higher than the next most plausible 

model (Table 34). Notably here geographic distance did not contribute to, any of the plausible 

models. Based off the 95% confidence intervals all terms in the tall vegetation category model 

are significantly different from  zero (Table 35).  Although this model shows significant 

predictors the pseudo R2 values indicate that nearly all of the variation explained in the model is 

due to sampling event, the random factor.  The variation explained by the predictors is only 

2.6%, while the combined fixed and random factors explain 88.5% of the variation. 

 

Table 34: AICc comparison of most plausible model from each model set. 
 dAICc df weight 

Tallest woody shrub + tallest palmetto + (1|sampling event) 0 5 0.65 

%grass + %woody shrubs + (1|Sampling event) 2.1 5 0.22 

PC1 + PC2 + PC3 + (1|sampling event 4.3 6 0.07 

%canopy1m + (1|Sampling event) 5.8 4 0.03 

TSF + (1|Sampling event) 11.5 5 0.00 

Dist only 13.8 4 <0.00 
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Table 35: 95% confidence intervals for the most plausible model for abundance (tall vegetation category model). 
 2.5% 97.5% 

SD Sampling event 0.839 2.937 

Residual Standard Deviation 0.531 0.733 

Intercept 1.810 4.690 

Tallest woody shrub 0.003 0.008 

Tallest palmetto -0.011 -0.001 

 

Mosquito Species Richness 

The most plausible model for species richness by TSF only includes the distance coefficient 

and random intercept and the weight is over 5.5 times greater than the next most plausible 

model: 𝑇𝑇𝑅𝑅𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝐽𝐽 𝑅𝑅𝑖𝑖𝑐𝑐ℎ𝐷𝐷𝑒𝑒𝐽𝐽𝐽𝐽 ~ 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + (1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 36) 
 ( 23 ) 

 

Table 36: AICc comparison of species richness ~ TSF models. 
 AICc dAICc df weight 

Dist + (1|sampling event) 294.7 0 4 0.79 

Dist + TSF (1|sampling event) 298.2 3.5 6 0.14 

TSF + (1|sampling event) 299.7 5 5 0.06 

 

The most plausible model for species richness by percent canopy cover includes the distance 

coefficient and the interaction between the percent canopy cover at 1m and 2m and random 

intercept but the weight is only slightly higher than the next most plausible model: 

𝑇𝑇𝑅𝑅𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝐽𝐽 𝑅𝑅𝑖𝑖𝑐𝑐ℎ𝐷𝐷𝑒𝑒𝐽𝐽𝐽𝐽 ~ − 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 −%𝑐𝑐𝑖𝑖𝐷𝐷𝐽𝐽𝑅𝑅𝑖𝑖1𝑅𝑅: %𝑐𝑐𝑖𝑖𝐷𝐷𝐽𝐽𝑅𝑅𝑖𝑖2𝑅𝑅 + (1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 37)  
 ( 24 ) 
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Table 37: AICc comparison of specie richness ~ GLA top 5 models. 
 AICc dAICc df weight 

Dist + %canopy1m:%canopy2m + (1|sampling event) 296.3 0 5 0.05 

Dist + %canopy1m + (1|sampling event) 296.3 0 5 0.05 

Dist + %canopy0m:%canopy1m:%canopy2m + (1|sampling event) 296.4 0.1 5 0.05 

Dist + %canopy0m:%canopy1m + (1|sampling event) 296.5 0.2 5 0.04 

Dist + %canopy0m:%canopy2m +  (1|sampling event) 296.5 0.3 5 0.04 

 

The most plausible model for species richness by percent vegetation categories includes only 

percent grass and random intercept but the weight is not drastically higher than the next most 

plausible model: 

𝑇𝑇𝑅𝑅𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝐽𝐽 𝑉𝑉𝑖𝑖𝑐𝑐ℎ𝐷𝐷𝑒𝑒𝐽𝐽𝐽𝐽 ~ %𝐷𝐷𝑉𝑉𝑖𝑖𝐽𝐽𝐽𝐽 + (1|𝐽𝐽𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 38) 
 ( 25 ) 

 

Table 38: AICc comparison of species richness ~ percent vegetation categories top 5 models. 
 AICc dAICc df weight 

%grass + (1|sampling event) 295.2 0 4 0.06 

%grass + %woody trees + (1|sampling event) 295.7 0.4 5 0.05 

%palmetto + (1|sampling event) 296.9 1.7 4 0.02 

%grass + %palmetto + (1|sampling event) 296.9 1.7 5 0.02 

%grass + %subshrub + (1|sampling event) 297 1.8 5 0.02 

 

The most plausible model for species richness by tall vegetation categories includes distance 

coefficient, tallest grass, and tallest woody shrub and random intercept, but the weight is not 

much higher than the next most plausible model: 

𝑇𝑇𝑅𝑅𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝐽𝐽 𝑅𝑅𝑖𝑖𝑐𝑐ℎ𝐷𝐷𝑒𝑒𝐽𝐽𝐽𝐽 ~ −  𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + 𝑇𝑇𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒𝐽𝐽𝐽𝐽 𝐷𝐷𝑉𝑉𝑖𝑖𝐽𝐽𝐽𝐽 + 𝑇𝑇𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒𝐽𝐽𝐽𝐽 𝑤𝑤𝐽𝐽𝐽𝐽𝐿𝐿𝑖𝑖 𝐽𝐽ℎ𝑉𝑉𝐷𝐷𝑉𝑉 +

(1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 39) 
 ( 26 ) 

 



73 
 

Table 39: AICc comparison of species richness ~ tall vegetation categories top 5 models. 
 AICc dAICc df Weight 

Dist + tallest grass + tallest woody shrub + (1|sampling event) 294.3 0 6 0.13 

Dist + tallest subshrub + (1|sampling event) 294.9 0.7 5 0.09 

Dist + tallest grass + tallest subshrub + tallest woody shrub + 
(1|sampling event) 

295.9 1.6 7 0.06 

Dist + tallest grass + tallest subshrub + (1|sampling event) 296 1.7 6 0.05 

Dist + tallest grass + (1|sampling event) 296.2 1.9 5 0.05 

 

The most plausible model for species richness by vegetation PCA includes the distance 

coefficient and PC2 and the random intercept and the weight is nearly three times higher than the 

next most plausible model: 

𝑇𝑇𝑅𝑅𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝐽𝐽 𝑅𝑅𝑖𝑖𝑐𝑐ℎ𝐷𝐷𝑒𝑒𝐽𝐽𝐽𝐽 ~ − 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 − 𝑃𝑃𝐶𝐶2 + (1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 40) 
 ( 27 ) 

 

Table 40: AICc comparison of species richness ~ vegetation PCA categoreis top 5 models. 
 AICc dAICc df weight 

Dist + PC2 + (1|sampling event) 294.6 0 5 0.41 

Dist + PC2 + PC3 + (1|sampling event) 296.6 2 6 0.15 

Dist + PC1 + PC2 + (1|sampling event) 296.9 2.3 6 0.13 

Dist + PC1 + (1|sampling event) 297 2.4 5 0.12 

Dist + PC1 + PC2 + PC3 + (1|sampling event) 298.9 4.3 6 0.04 

 

Among the species richness models, the most plausible is the tall vegetation category model, 

but the vegetation PCA and the TSF model are not much less plausible based on the AICc 

weights (Table 41). Notably the TSF model is actually the same as the distance only model 

therefore this model was only used once in the AICc sets comparison. In the tall vegetation 

category model both the coefficients for tallest grass and tallest woody shrub were significantly 
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different from zero but distance was not (Table 42). The vegetation PCA and TSF models both 

have no coefficeints that significantly different from zero.  The pseudo R2 for the tall vegetation 

category model for the fixed effects is 0.05 and for the fixed and random effects together was  

0.54, indicating that the majority of the variation was again due to sampling event. 

 

Table 41: AICc comparison of the most plausible models for each set for species richness. 
 AICc dAICc df weight 

Dist + tallest grass + tallest woody shrub + (1|sampling event) 294.3 0 6 0.30 

Dist + PC2 + (1|sampling event) 294.6 0.3 5 0.26 

Dist + (1|sampling event) 294.7 0.4 4 0.24 

Dist + %canopy1m:%canopy2m + (1|sampling event) 296.3 2 5 0.11 

%grass + (1|sampling event) 296.9 2.6 4 0.08 

 

Table 42: 95% confidence intervals for the most plausible model for species richness (tall vegetation category 
model). 
 2.5% 97.5% 

SD sampling event 0.48 2.02 

Residual Standard deviation 0.99 1.37 

Intercept 1.59 11.02 

Dist -2.63 0.12 

Tallest grass 0.00 0.02 

Tallest woody shrub 0.00 0.01 

 

Mosquito Jost D 

The most plausible model for Jost D by TSF only includes the distance coefficient and the 

random intercept and the weight is nearly twice the next most plausible model:  

( 𝑉𝑉𝐽𝐽𝐷𝐷 ) 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐷𝐷 ~ −  𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + (1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 43) 
 ( 28 ) 
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Table 43: AICc comparison of jost D ~ TSF models. 
 AICc dAICc df weight 

Dist + (1|sampling event) 62.3 0 4 0.56 

Dist + TSF + (1|sampling event) 63.3 1 6 0.33 

TSF + (1|sampling event) 65.5 3.2 5 0.11 

 

The most plausible percent canopy model for Jost D includes the distance coefficient and the 

interaction between ther percent canopy at 0m and 1m and the random intercept, but the weight 

is only slightly better than the next most plausible model: 

(𝑉𝑉𝐽𝐽𝐷𝐷)𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐷𝐷 ~ − 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + %𝐶𝐶𝑖𝑖𝐷𝐷𝐽𝐽𝑅𝑅𝑖𝑖0𝑅𝑅: %𝐶𝐶𝑖𝑖𝐷𝐷𝐽𝐽𝑅𝑅𝑖𝑖1𝑅𝑅 + (1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 44) 
 ( 29 ) 

 

Table 44: AICc comparison of jost D ~ GLA top 5 models. 
 AICc dAICc df weight 

Dist + %canopy0m:%canopy1m + (1|sampling event) 61.6 0 5 0.05 

Dist + %canopy0m + (1|sampling event) 61.6 0 5 0.05 

Dist + %canopy0m:%canopy2m + (1|sampling event) 61.8 0.2 5 0.05 

Dist +%canopy0m:%canopy1m:%canopy2m + (1|sampling event) 61.9 0.3 5 0.05 

Dist + %canopy0m:%canopy1m + 
%canopy0m:%canopy1m:%canopy2m + (1|sampling event) 

63.3 1.7 6 0.02 

 

The most plausible percent vegetation categories model for Jost D includes the distance 

coefficient, percent grass, and percent woody shrubs and random intercept, but the weight is only 

slightly higher than the next most plausible model: 

(𝑉𝑉𝐽𝐽𝐷𝐷)𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐷𝐷 ~ − 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + %𝐷𝐷𝑉𝑉𝑖𝑖𝐽𝐽𝐽𝐽 − %𝑤𝑤𝐽𝐽𝐽𝐽𝐿𝐿𝑖𝑖 𝐽𝐽ℎ𝑉𝑉𝐷𝐷𝑉𝑉 + (1|𝐽𝐽𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 45) 
 ( 30 ) 
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Table 45: AICc comparison of jost D ~ percent vegetation categories top 5 models. 

 
AICc dAICc df weight 

Dist + %grass + % woody shrub + (1|sampling event) 51.9 0 6 0.08 

Dist + %grass + (1|sampling event) 52.2 0.3 5 0.06 

Dist + %grass + %palmetto + (1|sampling event) 52.5 0.6 6 0.06 

Dist + %grass + %subshrub  + %woody shrubs + (1|sampling event) 53.5 1.6 7 0.03 

Dist + %grass + %woody shrub + %palmetto + (1|sampling event) 53.6 1.7 7 0.03 

 

The most plausible model for the vegetation tallest categories for Jost D model includes 

tallest grass and tallest subshrub and random intercept but again the weight is only slightly 

higher than the next most plausible model: 

 

(𝑉𝑉𝐽𝐽𝐷𝐷)𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐷𝐷 ~ −  𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + 𝑇𝑇𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒𝐽𝐽𝐽𝐽 𝐷𝐷𝑉𝑉𝑖𝑖𝐽𝐽𝐽𝐽 − 𝑇𝑇𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒𝐽𝐽𝐽𝐽 𝐽𝐽𝐷𝐷𝑉𝑉𝐽𝐽ℎ𝑉𝑉𝐷𝐷𝑉𝑉 + (1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 
46) 

 ( 31 ) 

 

Table 46: AICc comparison of jost D ~ tallest vegetation categories top 5 models. 
 AICc dAICc df weight 

Dist + tallest grass + tallest subshrub + (1|sampling event) 51.9 0 6 0.18 

Dist + tallest grass + (1|sampling event) 52.6 0.7 5 0.13 

Dist + tallest grass + tallest subshrub + tallest palmetto +  
(1|sampling event) 

53.1 1.1 7 0.10 

Dist + tallest grass + tallest subshrub + tallest herb  + tallest palmetto + 
(1|sampling event) 

53.7 1.8 8 0.07 

Dist + tallest grass + tallest subshrub + tallest herb + (1|sampling event) 53.7 1.8 7 0.07 

 

The most plausible PCA model for Jost D includes the distance coefficient, PC1, PC3 and 

random intercept and the weight is 2.5 times higher than the next most plausible model:  
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(𝑉𝑉𝐽𝐽𝐷𝐷)𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐷𝐷 ~ − 𝐷𝐷𝑖𝑖𝐽𝐽𝐽𝐽 + 𝑃𝑃𝐶𝐶1 + 𝑃𝑃𝐶𝐶3 + (1|𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑉𝑉𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐶𝐶𝑒𝑒𝐷𝐷𝐽𝐽) (Table 47) 
 ( 32 ) 

 

Table 47: AICc comparison of jost D ~ vegetation PCA top 5 models. 
 AICc dAICc df weight 

Dist + PC1 + PC3 + (1|sampling event) 51 0 6 0.58 

Dist + PC1 + PC2 + PC3 + (1|sampling event) 52.8 1.8 7 0.23 

Dist + PC3 + (1|sampling event) 54.5 3.4 7 0.10 

Dist + PC2 + PC3 + (1|sampling event) 56.1 5 6 0.04 

Dist + PC1 + (1|sampling event) 58.2 7.1 6 0.01 

 

Among the Jost D models the most plausible is the vegetation PCA model with a weight of 

0.43 which 1.5 times higher than the next most plausible model (Table 48). Notably the TSF 

model is actually the same as the distance only model therefore this model was only used once in 

the AICc sets comparison. Also, the top four models for GLA had similar weights and were 

therefore all included in the final comparison. Based off the 95% confidence intervals for the 

vegetation PCA model all fixed effects are significantly different from zero (Table 49). The 

pseudo R2 for the vegetation PCA model for the fixed effects is 0.11 and for the fixed and 

random effects together is 0.55, indicating that the majority of the variation is again due to 

sampling event. 
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Table 48: AICc comparison of the most plausible models for each set for Jost D. 
 AICc dAICc df weight 

Dist + PC1 + PC3 + (1|sampling event) 51 0 6 0.43 

Dist + tallest grass + tallest subshrub + (1|sampling event) 51.9 0.9 6 0.27 

Dist + %grass + % woody shrub + (1|sampling event) 51.9 0.9 6 0.27 

Dist + %canopy0m:%canopy1m + (1|sampling event) 61.6 10.6 5 0.00 

Dist + %canopy0m + (1|sampling event) 61.8 10.8 5 0.00 

Dist + %canopy0m:%canopy2m + (1|sampling event) 61.9 10.9 5 0.00 

Dist + (1|sampling event) 62.3 11.3 4 0.00 

 

Table 49: 95% confidence intervals for the most plausible model for Jost D (Vegetation PCA model). 
 2.5% 97.5% 

SD sampling event 0.11 0.47 

Residual standard deviation 0.23 0.32 

Intercept 0.89 2.48 

Dist -3.00 -0.57 

PC1 0.00 0.06 

PC3 0.03 0.11 

 

In summary, a few recurring themes occured in the variety of plausible models. Sampling 

event as a random intercept term (i.e., repeated measures model) was always included in the 

most plausible model and accounted for a majority of variation. Other vegetation-related 

variables accounted for less variation but were significant. Woody shrub was always included in 

the most plausible percent vegetation category models. The most plausible model of the sets 

always includes vegetation in some way, either the vegetation model or the PCA vegetation 

model. 

Indicator Species 

Using the indicator species function in R, only (Psorophora ciliata) significantly indicated 

one category, short TSF, all other indicators are not significant (Table 50). This set of results 
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indicates that mosquito species and TSF are not well correlated, and is consistent with relatively 

weak TSF and vegetation effects in analyses above. 

 
Table 50: Indicator speices values for each TSF. Red indicates significantly different from zero. 
 A B stat p.value 

Long TSF 

U.sappharina 1 0.07 0.26 0.31 

Medium TSF 

A.quadrimaculatus 1 0.03 0.18 1 

C.declarator 1 0.03 0.18 1 

Short TSF 

P.ciliata 0.74 0.25 0.43 0.01 

Long and Medium TSF 

O.atlanticus 1 0.14 0.37 0.11 

O.infirmatus 0.93 0.08 0.28 0.49 

Medium and Short TSF 

P.columbiae 0.98 0.23 0.47 0.15 

C.perturbans 1 0.03 0.18 1 

 

Discussion 

This study establishes that the fire management regime at Archbold Biological Station, as 

measured by TSF and related vegetation variables, has little effect on mosquito assemblages.  

Time or season has the largest effect on mosquito assemblages in this study, and mosquito 

assemblages are not spatially patterned within the study area. Nearly all the variation in the 

models was due to the random effect of sampling event and only a single species was a 

significant indicator of only one TSF category or combination.  

This is the first study of adult mosquito assemblages in a scrub habitat. Other studies have 

demonstrated some distribution patterns for mosquitoes at comparable spatial scales, but these 
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have been in habitats with more topographic variation (Mutuari et al., 2006).  Adult mosquito 

assemblages within ABS seem to be well-mixed with a spatial extent of approximately 4km.  

The previous chapter demonstrated that there was some differentiation of mosquito assemblages 

within a spatial extent of approximately 110km.  This indicates that the mosquitoes respond to 

spatial differentiation on a scale somewhere between these two distances, in south-central 

Florida.  This spatial differentiation will probably change in different locations.   

Also, there is no evidence from these results here that fire management is expected to have a 

substantial local affect on adult mosquito distributions or abundances via effects on vegetation.  

Therefore, fire management in exurban and rural areas cannot be expected to modify exposure to 

mosquitoes or risk of exposure to mosquito-borne disease. Other factors (i.e. host availability or 

hydrology) may be a more fruitful path of study as modifiers of mosquito composition and 

abundance.  In this study year, much of the study area was flooded creating some unique habitat 

homogientiy, which may have caused some of the mosquito assemblage homogenization.  A 

study of similar nature in a drier year may yield greatly different results.  

There has been a debate on whether, vegetation or host availability is more important to 

mosquitoes (Burkett-Cadena et. al., 2013). Because there was no major effect of vegetation, it is 

unlikely that vegetation is playing a major role on mosquito assemblage at this scale.  Host 

availability was not described in this study, but may play a larger role for mosquitoes in a scrub 

habitat.  The weak role of vegetation here may be due to the fact that most scrub plants are 

xerophytic, with small leaves that provide little shade during the day.  Another factor may be the 

brightness of the sand in this scrub habitat and sparse forest canopy.  Even an area with more 
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vegetative structure, the sandy soil reflects so much light, that mosquitoes may not detect strong 

differences among TSF units.  

It is often thought that Florida doesn't have much seasonality, but Florida has distinct wet and 

dry seasons, and ABS has extreme hydrological differences between seasons.  Within only a 

week or so, it can go from a dry desert-like habitat, to nearly a swamp where there is almost no 

differentiation between wetlands and much of the "upland" areas are flooded.  As a result the 

strong effect of season on mosquito assemblages, and the relatively weak effect of TSF and 

vegetation were observed here.  

Unfortunately, this study does not provide evidence for using fire to help control mosquitoes 

or diseases vectored by mosquitoes at this scale.  If much larger fire units were implemented then 

there is a greater possibility that mosquitoes may respond to TSF.  This study does not address 

the immediate effects of fire on mosquitoes, which could be great.  I would suggest a study 

investigating before and after difference in mosquito assemblage in this habitat, that could show 

how fire could be used as a short term fix for mosquito control.  This type of control could be 

implemented just before or just after an event (i.e. hurricane) that would increase mosquito 

abundance and risk of mosquito vectored diseases.    
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CHAPTER 4: CONCLUDING REMARKS ON SOUTH-CENTRAL 

FLORIDA MOSQUITOES 

The first study here was a large scale analysis of mosquito distributions and diversity in a 

Dilution Effect framework, based on several spatial-environmental factors including: region, 

land use, vegetation height, and time.  A mixed-model approach was implemented in conjunction 

with indicator species, with emphasis on disease vector species.  It was discovered that different 

measures of diversity are sensitive to different predictors, although not with great variation.  

There was no evidence for a simple vector Dilution Effect in play in this study. The coast seems 

to have the greatest risk of disease, which is alarming because this is also where there is the 

largest human population. 

The second study was a more intensively sampled small scale investigation on the effects of 

Time Since Fire (TSF) on mosquito assemblages in a Florida scrub habitat.  Again, a mixed 

effects model approach was used in conjunction with indicator species.  Nearly all the variation 

in mosquito assemblage for any measure, abundance, species richness, or Jost D, was due to 

seasonality with a trivial amount due to TSF or vegetation.  This was the first study about adult 

mosquitoes' response to fire, as well as, the most extensive mosquito study in Florida scrub.   

These two studies in conjunction were very different in spatial scale and indicate that 

mosquito assemblages are separated on large scales, but very little on smaller scales in South-

Central Florida.  This is maybe not surprising because they are flying insects that can fly 3+km 

in a single night.  The first study provided some evidence that vegetation plays some role in 
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mosquito diversity, but the second study did not provide the same evidence.  This difference 

suggests that the more extreme differences in vegetation in the first study (and greater spatial 

scales) are necessary to detect an effect on adult mosquitoes.  It also suggests that 

metacommunity analyses of mosquitoes must be conducted at scales exceeding several km. 
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APPENDIX A: FIGURES EXTENDED  



85 
 

 

Figure 18: Ordination (NMDS 1 vs 2) of Jaccard’s index with convex hulls around ridge (red), plains (blue), 
and coast (green) sites. 

 

 

Figure 19: Ordination (NMDS 1 vs 3) of Jaccard’s index with convex hulls around ridge (red), plains (blue), 
and coast (green) sites. 



86 
 

 

Figure 20: Ordination (NMDS 2 vs 3) of Jaccard’s index with convex hulls around ridge (red), plains (blue), 
and coast (green) sites. 

 

 

Figure 21: Ordination (NMDS 1 vs 2) of Jaccard’s index with convex hulls around developed (red) and natural 
(blue) sites. 
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Figure 22: Ordination (NMDS 1 vs 3) of Jaccard’s index with convex hulls around developed (red) and natural 
(blue) sites. 

 

 

Figure 23: Ordination (NMDS 2 vs 3) of Jaccard’s index with convex hulls around developed (red) and natural 
(blue) sites. 
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Figure 24: Ordination (NMDS 1 vs 2) of Jaccard’s index with convex hulls around short (blue), medium 
(green), and tall (red) sites. 

 

 

Figure 25: Ordination (NMDS 1 vs 3) of Jaccard’s index with convex hulls around short (blue), medium 
(green), and tall (red) sites. 



89 
 

 

Figure 26: Ordination (NMDS 2 vs 3) of Jaccard’s index with convex hulls around short (blue), medium 
(green), and tall (red) sites. 

 

 

Figure 27: Ordination (NMDS 1 vs 2) of Jaccard's index with convex hulls around each sampling event. 
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Figure 28: Ordination (NMDS 1 vs 3) of Jaccard's index with convex hulls around each sampling event. 

 

 

Figure 29: Ordination (NMDS 2 vs 3) of Jaccard's index with convex hulls around each sampling event.
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Figure 30: Ordination (NMDS 1 vs 2) of Bray-Curtis with convex hulls around ridge (red), plains (blue), and 
coast (green) sites. 

 

 

Figure 31: Ordination (NMDS 1 vs 3) of Bray-Curtis with convex hulls around ridge (red), plains (blue), and 
coast (green) sites. 
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Figure 32: Ordination (NMDS 2vs 3) of Bray-Curtis with convex hulls around ridge (red), plains (blue), and 
coast (green) sites. 

 

 

Figure 33: Ordination (NMDS 1 vs 2) of Bray-Curtis with convex hulls around developed (red) and natural 
(blue) sites. 
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Figure 34: Ordination (NMDS 1 vs 3) of Bray-Curtis with convex hulls around developed (red) and natural 
(blue) sites. 

 

 

Figure 35: Ordination (NMDS 2 vs 3) of Bray-Curtis with convex hulls around developed (red) and natural 
(blue) sites. 
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Figure 36: Ordination (NMDS 1 vs 2) of Bray-Curtis with convex hulls around short (blue), medium (green), 
and tall (red) sites. 

 

 

Figure 37: Ordination (NMDS 1 vs 3) of Bray-Curtis with convex hulls around short (blue), medium (green), 
and tall (red) sites. 



95 
 

 

Figure 38: Ordination (NMDS 2 vs 3) of Bray-Curtis with convex hulls around short (blue), medium (green), 
and tall (red) sites. 

 

 

Figure 39: Ordination (NMDS 1 vs 2) of Bray-Curtis with convex hulls around sampling events. 
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Figure 40: Ordination (NMDS 1 vs 3) of Bray-Curtis with convex hulls around sampling events. 

 

 

Figure 41: Ordination (NMDS 2 vs 3) of Bray-Curtis with convex hulls around sampling events. 
 

 



97 
 

Table 51: Full results of vegetation PCA. 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

Std. Deviation 2.01 1.62 1.46 1.01 0.83 0.76 0.64 0.49 0.34 0.30 0.24 0.02 

Prop. of Variance 0.34 0.22 0.18 0.08 0.06 0.05 0.03 0.02 0.01 0.01 0.00 0.00 

Cum. Prop. 0.34 0.55 0.73 0.82 0.88 0.92 0.96 0.98 0.99 1.00 1.00 1.00 

 

 

Figure 42: Decay of variance for each axis in the vegetation PCA. 
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Figure 43: Biplot for PC1 and PC2. 

 

 

Figure 44: Biplot for PC1 and PC3. 
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Figure 45: Biplot for PC2 and PC3. 
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APPENDIX B: R CODE 
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Chapter 2 

Species richness without coast 

rm(list=ls(all=TRUE)) 
 
##models for species richness no coast 
modpr<-read.table("only plains and ridge.txt",header=T) 
#packages 
library(spdep) 
library(nlme) 
library(bbmle) 
library(car) 
library(MuMIn) 
 
hist(modpr$spec_rich) 
 
###testing for normality of the response variable 
shapiro.test(modpr$spec_rich) 
 
 
###subsetting to each region to see if this makes a difference 
 
newdata<-modpr[which(modpr$region=='r'),] 
shapiro.test(newdata$spec_rich) 
 
newdata2<-modpr[which(modpr$region=='p'),] 
shapiro.test(newdata2$spec_rich) 
 
#subsetting to landuse 
newdata3<-modpr[which(modpr$landuse=='n'),] 
shapiro.test(newdata3$spec_rich) 
 
newdata4<-modpr[which(modpr$landuse=='d'),] 
shapiro.test(newdata4$spec_rich) 
 
#subsettign to veg 
newdata5<-modpr[which(modpr$veght=='s'),] 
shapiro.test(newdata5$spec_rich) 
 
newdata6<-modpr[which(modpr$veght=='m'),] 
shapiro.test(newdata6$spec_rich) 
 
newdata7<-modpr[which(modpr$veght=='t'),] 
shapiro.test(newdata7$spec_rich) 
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###testing for homegeneity of variance across groups 
leveneTest(modpr$spec_rich,modpr$region,center=median) 
leveneTest(modpr$spec_rich,modpr$landuse,center=median) 
leveneTest(modpr$spec_rich,modpr$veght,center=median) 
 
#subset to region 
leveneTest(newdata$spec_rich,newdata$landuse,center=median) 
leveneTest(newdata$spec_rich,newdata$veght,center=median) 
 
leveneTest(newdata2$spec_rich,newdata2$landuse,center=median) 
leveneTest(newdata2$spec_rich,newdata2$veght,center=median) 
 
#subset to landuse 
leveneTest(newdata3$spec_rich,newdata3$veght,center=median) 
 
leveneTest(newdata4$spec_rich,newdata4$veght,center=median) 
 
###create the autocorrelation scores 
modprcord<-read.table("utm plains and ridge.txt",header=T) 
 
xy3<-SpatialPoints(modprcord,proj4string=CRS("+proj=utm +zone=17+datum=WGS84")) 
#the nobs part of the following line is the largest difference betwen points aht you want to be 

compared 
distspecr<-autocov_dist(modpr$spec_rich,xy3,nbs=59000) 
 
modprd<-cbind(modpr,distspecr) 
 
plot(modprd$distspecr,modprd$spec_rich) 
plot(modprd$samp_event,modprd$spec_rich) 
 
####################### 
####random factors 
m1<-gls(jost_ind~distspecr+region*landuse+veght,data=modprd,method="REML") 
m2<-

lme(jost_ind~distspecr+region*landuse+veght,random=~1|samp_event,data=modprd,method="R
EML") 

lmc <- lmeControl(niter=5200,msMaxIter=5200) 
m3<-

lme(jost_ind~distspecr+region*landuse+veght,random=~distspecr|samp_event,data=modprd,met
hod="REML",control=lmc) 

 
AICctab(m1,m2,m3,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model 3 wins 
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##cant do the with or without dist comparison because of the random structure 
 
 
#######model selection time 
m31<-lme( 

spec_rich~distspecr+region*landuse+veght,random=~distspecr|samp_event,control=lmc,data=m
odprd,method="ML") 

m32<-lme( 
spec_rich~distspecr+region+landuse+veght,random=~distspecr|samp_event,control=lmc,data=m
odprd,method="ML") 

m33<-lme( 
spec_rich~distspecr+region+landuse,random=~distspecr|samp_event,control=lmc,data=modprd,
method="ML") 

m34<-lme( 
spec_rich~distspecr+region+veght,random=~distspecr|samp_event,control=lmc,data=modprd,me
thod="ML") 

m35<-lme( 
spec_rich~distspecr+landuse+veght,random=~distspecr|samp_event,control=lmc,data=modprd,
method="ML") 

m36<-lme( 
spec_rich~distspecr+veght,random=~distspecr|samp_event,control=lmc,data=modprd,method="
ML") 

m37<-lme( 
spec_rich~distspecr+region,random=~distspecr|samp_event,control=lmc,data=modprd,method="
ML") 

m38<-lme( 
spec_rich~distspecr+landuse,random=~distspecr|samp_event,control=lmc,data=modprd,method
="ML") 

m39<-lme( 
spec_rich~distspecr+region+landuse+region:landuse,random=~distspecr|samp_event,control=lm
c,data=modprd,method="ML") 

m310<-lme( 
spec_rich~distspecr+region+veght+region:landuse,random=~distspecr|samp_event,control=lmc,
data=modprd,method="ML") 

m311<-lme( 
spec_rich~distspecr+landuse+veght+region:landuse,random=~distspecr|samp_event,control=lmc
,data=modprd,method="ML") 

#m312<-lme( 
spec_rich~distspecr+veght+region:landuse,random=~distspecr|samp_event,control=lmc,data=m
odprd,method="ML") 

#this model can not work because of the sigularity issue with veght haveing only one per 
region/landuse 

m313<-lme( 
spec_rich~distspecr+region+region:landuse,random=~distspecr|samp_event,control=lmc,data=m
odprd,method="ML") 
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m314<-lme( 
spec_rich~distspecr+landuse+region:landuse,random=~distspecr|samp_event,control=lmc,data=
modprd,method="ML") 

 
 
AICctab(m31,m32,m33,m34,m35,m36,m37,m38,m39,m310,m311,m313,m314,weights=TR

UE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#best model 
mn39r<-lmer( 

spec_rich~distspecr+region+landuse+region:landuse+(distspecr|samp_event),control=lmerContr
ol(optCtrl=list(maxfun=20000) ),data=modprd,method="REML") 

summary(mn39r) 
confmn39r<-confint(mn39r,method="boot",nsim=10000,level=0.95) 
confmn39r 
 
r.squaredGLMM(mn39r) 
 
Species richness with coast 

rm(list=ls(all=TRUE)) 
###models including coast, but excluding events 1-3 and 6 
modc<-read.table("not 1-3 or 6.txt",header=T) 
#packages 
library(spdep) 
library(nlme) 
library(bbmle) 
library(car) 
library(MuMIn) 
 
hist(modc$spec_rich) 
 
###testing for normality of the response variable 
shapiro.test(modc$spec_rich) 
 
#subsetting to each region to see if this makes a difference 
newdata<-modc[which(modc$region=='r'),] 
shapiro.test(newdata$spec_rich) 
 
newdata2<-modc[which(modc$region=='p'),] 
shapiro.test(newdata2$spec_rich) 
 
newdata3<-modc[which(modc$region=='c'),] 
shapiro.test(newdata3$spec_rich) 
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#subsetting to landuse 
newdata4<-modc[which(modc$landuse=='n'),] 
shapiro.test(newdata4$spec_rich) 
 
newdata5<-modc[which(modc$landuse=='d'),] 
shapiro.test(newdata5$spec_rich) 
 
#subsettign to veght 
newdata6<-modc[which(modc$veght=='s'),] 
shapiro.test(newdata6$spec_rich) 
 
newdata7<-modc[which(modc$veght=='m'),] 
shapiro.test(newdata7$spec_rich) 
 
newdata8<-modc[which(modc$veght=='t'),] 
shapiro.test(newdata8$spec_rich) 
 
###testing for homegeneity of variance across groups 
 
leveneTest(modc$spec_rich,modc$region,center=median) 
leveneTest(modc$spec_rich,modc$landuse,center=median) 
leveneTest(modc$spec_rich,modc$veght,center=median) 
 
#subset to region 
leveneTest(newdata$spec_rich,newdata$landuse,center=median) 
leveneTest(newdata$spec_rich,newdata$veght,center=median) 
 
leveneTest(newdata2$spec_rich,newdata2$landuse,center=median) 
leveneTest(newdata2$spec_rich,newdata2$veght,center=median) 
 
leveneTest(newdata3$spec_rich,newdata3$landuse,center=median) 
leveneTest(newdata3$spec_rich,newdata3$veght,center=median) 
 
#subset to landuse 
leveneTest(newdata4$spec_rich,newdata4$veght,center=median) 
 
leveneTest(newdata5$spec_rich,newdata5$veght,center=median) 
 
###create the autocorrelation scores 
modcord<-read.table("coast utms.txt",header=T) 
 
xy3<-SpatialPoints(modcord,proj4string=CRS("+proj=utm +zone=17+datum=WGS84")) 
#the nobs part of the following line is the largest difference betwen points aht you want to be 

compared 
distcspecr<-autocov_dist(modc$spec_rich,xy3,nbs=114000) 
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modcd<-cbind(modc,distcspecr) 
 
plot(modcd$distcspecr,modcd$spec_rich) 
plot(modcd$samp_event,modcd$spec_rich) 
 
####################### 
####random factors 
m1<-gls(spec_rich~distcspecr+region*landuse+veght,data=modcd,method="REML") 
m2<-

lme(spec_rich~distcspecr+region*landuse+veght,random=~1|samp_event,data=modcd,method="
REML") 

lmc <- lmeControl(niter=5200,msMaxIter=5200) 
m3<-

lme(spec_rich~distcspecr+region*landuse+veght,random=~distcspecr|samp_event,data=modcd,
method="REML",control=lmc) 

 
AICctab(m1,m2,m3,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model 3 wins 
 
 
m21<-

lme(spec_rich~distcspecr+region*landuse+veght,random=~distcspecr|samp_event,control=lmc,d
ata=modcd,method="ML") 

m22<-
lme(spec_rich~distcspecr+region+landuse+veght,random=~distcspecr|samp_event,control=lmc,
data=modcd,method="ML") 

m23<-
lme(spec_rich~distcspecr+region+landuse,random=~distcspecr|samp_event,control=lmc,data=m
odcd,method="ML") 

m24<-
lme(spec_rich~distcspecr+region+veght,random=~distcspecr|samp_event,control=lmc,data=mod
cd,method="ML") 

m25<-
lme(spec_rich~distcspecr+landuse+veght,random=~distcspecr|samp_event,control=lmc,data=mo
dcd,method="ML") 

m26<-
lme(spec_rich~distcspecr+veght,random=~distcspecr|samp_event,control=lmc,data=modcd,meth
od="ML") 

m27<-
lme(spec_rich~distcspecr+region,random=~distcspecr|samp_event,control=lmc,data=modcd,met
hod="ML") 
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m28<-
lme(spec_rich~distcspecr+landuse,random=~distcspecr|samp_event,control=lmc,data=modcd,m
ethod="ML") 

m29<-
lme(spec_rich~distcspecr+region+landuse+region:landuse,random=~distcspecr|samp_event,cont
rol=lmc,data=modcd,method="ML") 

m210<-
lme(spec_rich~distcspecr+region+veght+region:landuse,random=~distcspecr|samp_event,contro
l=lmc,data=modcd,method="ML") 

m211<-
lme(spec_rich~distcspecr+landuse+veght+region:landuse,random=~distcspecr|samp_event,contr
ol=lmc,data=modcd,method="ML") 

#m212<-
lme(spec_rich~distcspecr+veght+region:landuse,random=~distcspecr|samp_event,control=lmc,d
ata=modcd,method="ML") 

#this model can not work because of the sigularity issue with veght haveing only one per 
region/landuse 

m213<-
lme(spec_rich~distcspecr+region+region:landuse,random=~distcspecr|samp_event,control=lmc,
data=modcd,method="ML") 

m214<-
lme(spec_rich~distcspecr+landuse+region:landuse,random=~distcspecr|samp_event,control=lmc
,data=modcd,method="ML") 

 
AICctab(m21,m22,m23,m24,m25,m26,m27,m28,m29,m210,m211,m213,m214,weights=TR

UE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#best model 
mn29r<-

lmer(spec_rich~distcspecr+region+landuse+region:landuse+(distcspecr|samp_event),control=lm
erControl(optCtrl=list(maxfun=20000) ),data=modcd) 

summary(mn29r) 
 
confmn29r<-confint(mn29r,method="boot",nsim=10000,level=0.95) 
confmn29r 
r.squaredGLMM(mn29r) 
 
##validation 
par(mfrow=c(2,2)) 
resm29r<-residuals(m29r,type="normalized") 
F29r<-fitted(m29r,level=0) 
plot(fitted(m29r),resm29r,xlab="fitted values", ylab="norm resids") 
plot(distcspecr,resm29r,xlab="distance coefficient",ylab="norm resids") 
boxplot(resm29r~region,data=modcd,main="regions",ylab="norm resids") 
boxplot(resm29r~landuse,data=modcd,main="landuse",ylab="norm resids") 
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hist(resm29r) 
 
Jost D -Coast 
rm(list=ls(all=TRUE)) 
###models including coast, but excluding events 1-3 and 6 
modc<-read.table("not 1-3 or 6.txt",header=T) 
#packages 
library(spdep) 
library(nlme) 
library(bbmle) 
library(car) 
library(lme4) 
library(MuMIn) 
 
hist(modc$jost_ind) 
 
###testing for normality of the response variable 
shapiro.test(modc$jost_ind) 
 
#subsetting to each region to see if this makes a difference 
newdata<-modc[which(modc$region=='r'),] 
shapiro.test(newdata$jost_ind) 
 
newdata2<-modc[which(modc$region=='p'),] 
shapiro.test(newdata2$jost_ind) 
 
newdata3<-modc[which(modc$region=='c'),] 
shapiro.test(newdata3$jost_ind) 
 
#subsetting to landuse 
newdata4<-modc[which(modc$landuse=='n'),] 
shapiro.test(newdata4$jost_ind) 
 
newdata5<-modc[which(modc$landuse=='d'),] 
shapiro.test(newdata5$jost_ind) 
 
#subsettign to veght 
newdata6<-modc[which(modc$veght=='s'),] 
shapiro.test(newdata6$jost_ind) 
 
newdata7<-modc[which(modc$veght=='m'),] 
shapiro.test(newdata7$jost_ind) 
 
newdata8<-modc[which(modc$veght=='t'),] 
shapiro.test(newdata8$jost_ind) 
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###testing for homegeneity of variance across groups 
 
 
leveneTest(modc$jost_ind,modc$region,center=median) 
leveneTest(modc$jost_ind,modc$landuse,center=median) 
leveneTest(modc$jost_ind,modc$veght,center=median) 
 
#subset to region 
leveneTest(newdata$jost_ind,newdata$landuse,center=median) 
leveneTest(newdata$jost_ind,newdata$veght,center=median) 
 
leveneTest(newdata2$jost_ind,newdata2$landuse,center=median) 
leveneTest(newdata2$jost_ind,newdata2$veght,center=median) 
 
leveneTest(newdata3$jost_ind,newdata3$landuse,center=median) 
leveneTest(newdata3$jost_ind,newdata3$veght,center=median) 
 
#subset to landuse 
leveneTest(newdata4$jost_ind,newdata4$veght,center=median) 
 
leveneTest(newdata5$jost_ind,newdata5$veght,center=median) 
####################### 
####random factors 
m1<-gls(jost_ind~distcjost+region*landuse+veght,data=modcd,method="REML") 
m2<-

lme(jost_ind~distcjost+region*landuse+veght,random=~1|samp_event,data=modcd,method="RE
ML") 

lmc <- lmeControl(niter=5200,msMaxIter=5200) 
m3<-

lme(jost_ind~distcjost+region*landuse+veght,random=~distcjost|samp_event,data=modcd,meth
od="REML",control=lmc) 

 
AICctab(m1,m2,m3,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
 
#######model selection time 
 
m21<-

lme(jost_ind~distcjost+region*landuse+veght,random=~1|samp_event,data=modcd,method="M
L") 

m22<-
lme(jost_ind~distcjost+region+landuse+veght,random=~1|samp_event,data=modcd,method="M
L") 
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m23<-
lme(jost_ind~distcjost+region+landuse,random=~1|samp_event,data=modcd,method="ML") 

m24<-
lme(jost_ind~distcjost+region+veght,random=~1|samp_event,data=modcd,method="ML") 

m25<-
lme(jost_ind~distcjost+landuse+veght,random=~1|samp_event,data=modcd,method="ML") 

m26<-lme(jost_ind~distcjost+veght,random=~1|samp_event,data=modcd,method="ML") 
m27<-lme(jost_ind~distcjost+region,random=~1|samp_event,data=modcd,method="ML") 
m28<-lme(jost_ind~distcjost+landuse,random=~1|samp_event,data=modcd,method="ML") 
m29<-

lme(jost_ind~distcjost+region+landuse+region:landuse,random=~1|samp_event,data=modcd,met
hod="ML") 

m210<-
lme(jost_ind~distcjost+region+veght+region:landuse,random=~1|samp_event,data=modcd,meth
od="ML") 

m211<-
lme(jost_ind~distcjost+landuse+veght+region:landuse,random=~1|samp_event,data=modcd,met
hod="ML") 

#m212<-
lme(jost_ind~distcjost+veght+region:landuse,random=~1|samp_event,data=modcd,method="ML
") 

#this model can not work because of the sigularity issue with veght haveing only one per 
region/landuse 

m213<-
lme(jost_ind~distcjost+region+region:landuse,random=~1|samp_event,data=modcd,method="M
L") 

m214<-
lme(jost_ind~distcjost+landuse+region:landuse,random=~1|samp_event,data=modcd,method="
ML") 

m215<-lme(jost_ind~ 
region*landuse+veght,random=~1|samp_event,data=modcd,method="ML") 

m216<-lme(jost_ind~ 
region+landuse+veght,random=~1|samp_event,data=modcd,method="ML") 

m217<-lme(jost_ind~ region+landuse,random=~1|samp_event,data=modcd,method="ML") 
m218<-lme(jost_ind~ region+veght,random=~1|samp_event,data=modcd,method="ML") 
m219<-lme(jost_ind~ landuse+veght,random=~1|samp_event,data=modcd,method="ML") 
m220<-lme(jost_ind~ veght,random=~1|samp_event,data=modcd,method="ML") 
m221<-lme(jost_ind~ region,random=~1|samp_event,data=modcd,method="ML") 
m222<-lme(jost_ind~ landuse,random=~1|samp_event,data=modcd,method="ML") 
m223<-lme(jost_ind~ 

region+landuse+region:landuse,random=~1|samp_event,data=modcd,method="ML") 
m224<-lme(jost_ind~ 

region+veght+region:landuse,random=~1|samp_event,data=modcd,method="ML") 
m225<-lme(jost_ind~ 

landuse+veght+region:landuse,random=~1|samp_event,data=modcd,method="ML") 
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#m226<-lme(jost_ind~ 
veght+region:landuse,random=~1|samp_event,data=modcd,method="ML") 

#this model can not work because of the sigularity issue with veght haveing only one per 
region/landuse 

m227<-lme(jost_ind~ 
region+region:landuse,random=~1|samp_event,data=modcd,method="ML") 

m228<-lme(jost_ind~ 
landuse+region:landuse,random=~1|samp_event,data=modcd,method="ML") 

 
AICctab(m21,m22,m23,m24,m25,m26,m27,m28,m29,m210,m211,m213,m214,m215,m216,

m217,m218,m219,m220,m221,m222,m223,m224,m225,m227,m228,weights=TRUE,delta=TRU
E,base=TRUE,sort=TRUE) 

AICctab(m21,m22,m23,m24,m25,m26,m27,m28,m29,m210,m211,m213,m214,weights=TR
UE,delta=TRUE,base=TRUE,sort=TRUE) 

 
#best model 
mn29r<-

lmer(jost_ind~distcjost+region+landuse+region:landuse+(1|samp_event),data=modcd) 
summary(mn29r) 
confmn29r<-confint(mn29r,method="boot",nsim=10000,level=0.95) 
confmn29r 
r.squaredGLMM(mn29r) 
coef(mn29r) 
 
##validation 
par(mfrow=c(2,2)) 
resm29r<-residuals(m29r,type="normalized") 
F29r<-fitted(m29r,level=0) 
plot(fitted(m29r),resm29r,xlab="fitted values", ylab="norm resids") 
plot(distcjost,resm29r,xlab="distance coefficient",ylab="norm resids") 
boxplot(resm29r~region,data=modcd,main="regions",ylab="norm resids") 
boxplot(resm29r~landuse,data=modcd,main="landuse",ylab="norm resids") 
hist(resm29r) 
 
Jost D without coast 
rm(list=ls(all=TRUE)) 
modpr<-read.table("only plains and ridge.txt",header=T) 
#packages 
library(spdep) 
library(nlme) 
library(bbmle) 
library(car) 
library(lme4) 
library(MuMIn) 
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######plots 
hist(modpr$jost_ind) 
hist(sqrt(modpr$jost_ind)) 
 
###testing for normality of the response variable 
shapiro.test(modpr$jost_ind) 
shapiro.test(sqrt(modpr$jost_ind)) 
 
#subsetting to each region to see if this makes a difference 
newdata<-modpr[which(modpr$region=='r'),] 
shapiro.test(newdata$jost_ind) 
 
newdata2<-modpr[which(modpr$region=='p'),] 
shapiro.test(newdata2$jost_ind) 
 
#subsetting to landuse 
newdata3<-modpr[which(modpr$landuse=='n'),] 
shapiro.test(newdata3$jost_ind) 
 
newdata4<-modpr[which(modpr$landuse=='d'),] 
shapiro.test(newdata4$jost_ind) 
 
#subsettign to region:landuse 
newdata5<-modpr[which(modpr$region=='r' & modpr$landuse=='n'),] 
shapiro.test(newdata5$jost_ind) 
 
newdata6<-modpr[which(modpr$region=='r' & modpr$landuse=='d'),] 
shapiro.test(newdata6$jost_ind) 
 
newdata7<-modpr[which(modpr$region=='p' & modpr$landuse=='n'),] 
shapiro.test(newdata7$jost_ind) 
 
newdata8<-modpr[which(modpr$region=='p' & modpr$landuse=='d'),] 
shapiro.test(newdata8$jost_ind) 
 
###testing for homegeneity of variance across groups 
 
leveneTest(modpr$jost_ind,modpr$region,center=median) 
leveneTest(modpr$jost_ind,modpr$landuse,center=median) 
leveneTest(modpr$jost_ind,modpr$veght,center=median) 
 
 
#subset to region 
leveneTest(newdata$jost_ind,newdata$landuse,center=median) 
leveneTest(newdata$jost_ind,newdata$veght,center=median) 
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leveneTest(newdata2$jost_ind,newdata2$landuse,center=median) 
leveneTest(newdata2$jost_ind,newdata2$veght,center=median) 
 
#subset to landuse 
 
leveneTest(newdata3$jost_ind,newdata3$veght,center=median) 
 
leveneTest(newdata4$jost_ind,newdata4$veght,center=median) 
 
#subset to region:landuse 
leveneTest(newdata5$jost_ind,newdata5$veght,center=median) 
leveneTest(newdata6$jost_ind,newdata6$veght,center=median) 
leveneTest(newdata7$jost_ind,newdata7$veght,center=median) 
leveneTest(newdata8$jost_ind,newdata8$veght,center=median) 
 
###create the autocorrelation scores 
modprcord<-read.table("utm plains and ridge.txt",header=T) 
 
xy3<-SpatialPoints(modprcord,proj4string=CRS("+proj=utm +zone=17+datum=WGS84")) 
#the nobs part of the following line is the largest difference betwen points aht you want to be 

compared 
distjost3<-autocov_dist(modpr$jost_ind,xy3,nbs=59000) 
 
modprd<-cbind(modpr,distjost3) 
 
plot(modprd$distjost3,modprd$jost_ind) 
plot(modprd$samp_event,modprd$jost_ind) 
 
 
########## 
####random factors 
m1<-gls(jost_ind~distjost3+region*landuse+veght,data=modprd,method="REML") 
m2<-

lme(jost_ind~distjost3+region*landuse+veght,random=~1|samp_event,data=modprd,method="R
EML") 

lmc <- lmeControl(niter=5200,msMaxIter=5200) 
m3<-

lme(jost_ind~distjost3+region*landuse+veght,random=~distjost3|samp_event,data=modprd,met
hod="REML",control=lmc) 

 
 
 
AICctab(m1,m2,m3,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
#model 2 wins! 
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#######model selection time 
 
 
m21<-

lme(jost_ind~distjost3+region*landuse+veght,random=~1|samp_event,data=modprd,method="
ML") 

#everything is significant. according to model simplification I am done, but lets see what 
happens 

m22<-
lme(jost_ind~distjost3+region+landuse+veght,random=~1|samp_event,data=modprd,method="
ML") 

m23<-
lme(jost_ind~distjost3+region+landuse,random=~1|samp_event,data=modprd,method="ML") 

m24<-
lme(jost_ind~distjost3+region+veght,random=~1|samp_event,data=modprd,method="ML") 

m25<-
lme(jost_ind~distjost3+landuse+veght,random=~1|samp_event,data=modprd,method="ML") 

m26<-lme(jost_ind~distjost3+veght,random=~1|samp_event,data=modprd,method="ML") 
m27<-lme(jost_ind~distjost3+region,random=~1|samp_event,data=modprd,method="ML") 
m28<-lme(jost_ind~distjost3+landuse,random=~1|samp_event,data=modprd,method="ML") 
m29<-

lme(jost_ind~distjost3+region+landuse+region:landuse,random=~1|samp_event,data=modprd,m
ethod="ML") 

m210<-
lme(jost_ind~distjost3+region+veght+region:landuse,random=~1|samp_event,data=modprd,met
hod="ML") 

m211<-
lme(jost_ind~distjost3+landuse+veght+region:landuse,random=~1|samp_event,data=modprd,me
thod="ML") 

#m212<-
lme(jost_ind~distjost3+veght+region:landuse,random=~1|samp_event,data=modprd,method="M
L") 

#this model can not work because of the sigularity issue with veght haveing only one per 
region/landuse 

m213<-
lme(jost_ind~distjost3+region+region:landuse,random=~1|samp_event,data=modprd,method="
ML") 

m214<-
lme(jost_ind~distjost3+landuse+region:landuse,random=~1|samp_event,data=modprd,method="
ML") 

m215<-lme(jost_ind~ 
region*landuse+veght,random=~1|samp_event,data=modprd,method="ML") 

m216<-lme(jost_ind~ 
region+landuse+veght,random=~1|samp_event,data=modprd,method="ML") 
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m217<-lme(jost_ind~ region+landuse,random=~1|samp_event,data=modprd,method="ML") 
m218<-lme(jost_ind~ region+veght,random=~1|samp_event,data=modprd,method="ML") 
m219<-lme(jost_ind~ landuse+veght,random=~1|samp_event,data=modprd,method="ML") 
m220<-lme(jost_ind~ veght,random=~1|samp_event,data=modprd,method="ML") 
m221<-lme(jost_ind~ region,random=~1|samp_event,data=modprd,method="ML") 
m222<-lme(jost_ind~ landuse,random=~1|samp_event,data=modprd,method="ML") 
m223<-lme(jost_ind~ 

region+landuse+region:landuse,random=~1|samp_event,data=modprd,method="ML") 
m224<-lme(jost_ind~ 

region+veght+region:landuse,random=~1|samp_event,data=modprd,method="ML") 
m225<-lme(jost_ind~ 

landuse+veght+region:landuse,random=~1|samp_event,data=modprd,method="ML") 
#m226<-lme(jost_ind~ 

veght+region:landuse,random=~1|samp_event,data=modprd,method="ML") 
#this model can not work because of the sigularity issue with veght haveing only one per 

region/landuse 
m227<-lme(jost_ind~ 

region+region:landuse,random=~1|samp_event,data=modprd,method="ML") 
m228<-lme(jost_ind~ 

landuse+region:landuse,random=~1|samp_event,data=modprd,method="ML") 
 
AICctab(m21,m22,m23,m24,m25,m26,m27,m28,m29,m210,m211,m213,m214,m215,m216,

m217,m218,m219,m220,m221,m222,m223,m224,m225,m227,m228,weights=TRUE,delta=TRU
E,base=TRUE,sort=TRUE) 

AICctab(m21,m22,m23,m24,m25,m26,m27,m28,m29,m210,m211,m213,m214,weights=TR
UE,delta=TRUE,base=TRUE,sort=TRUE) 

 
#best model 
mn29r<-

lmer(jost_ind~distjost3+region+landuse+region:landuse+(1|samp_event),data=modprd) 
summary(mn29r) 
 
confmn29r<-confint(mn29r,method="boot",nsim=10000,level=0.95) 
confmn29r 
r.squaredGLMM(mn29r) 
 
Dengue models  
rm(list=ls(all=TRUE)) 
###this is for vector anslysis 
###Dengue using A. albopictus and A. aegypti as vectors 
library(spdep) 
library(nlme) 
library(bbmle) 
library(car) 
library(lme4) 
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library(glmmADMB) 
library(MuMIn) 
dengmod<-read.table("dengue no coast.txt",header=T) 
 
###autocorrelation stuff--load spdep package 
modcord<-read.table("deng_vector utms no coast.txt",header=T) 
 
xy3<-SpatialPoints(modcord,proj4string=CRS("+proj=utm +zone=17+datum=WGS84")) 
#the nobs part of the following line is the largest difference betwen points aht you want to be 

compared 
distdeng<-autocov_dist(dengmod$Dengue,xy3,nbs=114000) 
 
dengmod<-cbind(dengmod,distdeng) 
 
hist(dengmod$Dengue) 
plot(dengmod$distdeng,dengmod$Dengue) 
plot(dengmod$samp_event,dengmod$Dengue) 
 
fsamp_event<-factor(dengmod$samp_event) 
####random factors 
m1<-glmmadmb(Dengue~distsle+region*landuse+veght,data=dengmod,family="binomial") 
m1.2<-

glmmadmb(Dengue~distsle+region*landuse+veght,data=dengmod,family="binomial",zeroInflati
on=TRUE) 

m2<-glmmadmb(Dengue~distsle+region*landuse+veght+ 
(1|fsamp_event),data=dengmod,family="binomial") 

m2.2<-glmmadmb(Dengue~distsle+region*landuse+veght+ 
(1|fsamp_event),data=dengmod,family="binomial",zeroInflation=TRUE) 

m3<-glmmadmb(Dengue~distsle+region*landuse+veght+ 
(distsle|fsamp_event),data=dengmod,family="binomial") 

m3.2<-glmmadmb(Dengue~distsle+region*landuse+veght+ 
(distsle|fsamp_event),data=dengmod,family="binomial",zeroInflation=TRUE) 

 
AICctab(m1,m1.2,m2,m2.2,m3,m3.2,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE)  
 
 
#m1 wins, with no zero inflation or random effects 
###not coast 
md1<-glmmadmb(Dengue~distcdeng +region*landuse+veght, data=dengmod 

,family="binomial" ) 
md2<-glmmadmb(Dengue~region+landuse+veght, data=dengmod ,family="binomial" ) 
md3<-glmmadmb(Dengue~region+landuse, data=dengmod ,family="binomial" ) 
md4<-glmmadmb(Dengue~region+veght, data=dengmod ,family="binomial" ) 
md5<-glmmadmb(Dengue~landuse+veght, data=dengmod ,family="binomial" ) 
md6<-glmmadmb(Dengue~veght, data=dengmod ,family="binomial" ) 
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md7<-glmmadmb(Dengue~region, data=dengmod ,family="binomial" ) 
md8<-glmmadmb(Dengue~landuse, data=dengmod ,family="binomial" ) 
md9<-glmmadmb(Dengue~region+landuse+region:landuse, data=dengmod 

,family="binomial" ) 
md10<-glmmadmb(Dengue~region+veght+region:landuse, data=dengmod 

,family="binomial" ) 
md11<-glmmadmb(Dengue~landuse+veght+region:landuse, data=dengmod 

,family="binomial" ) 
#md12<-glmmadmb(Dengue~veght+region:landuse, data=dengmod ,family="binomial" ) 
#this model can not work because of the sigularity issue with veght haveing only one per 

region/landuse 
md13<-glmmadmb(Dengue~region+region:landuse, data=dengmod ,family="binomial" ) 
md14<-glmmadmb(Dengue~landuse+region:landuse, data=dengmod ,family="binomial" ) 
md15<-glmmadmb(Dengue~ region*landuse+veght, data=dengmod ,family="binomial"  ) 
 
 
AICctab(md1,md15,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#better without distance 
 
AICctab(md15,md2,md3,md4,md5,md6,md7,md8,md9,md10,md11,md13,md14,weights=T

RUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#md8 and md7 
 
summary(md7) 
par(mfrow=c(2,2)) 
resmd7<-residuals(md7,type="pearson") 
plot(fitted(md7),resmd7,xlab="fitted values", ylab="norm resids",main="md7") 
boxplot(resmd7~landuse,data=dengmod,main="landuse",ylab="norm resids") 
hist(resmd7) 
 
 
summary(md8) 
par(mfrow=c(2,2)) 
resmd8<-residuals(md8,type="pearson") 
plot(fitted(md8),resmd8,xlab="fitted values", ylab="norm resids",main="md8") 
boxplot(resmd8~landuse,data=dengmod,main="landuse",ylab="norm resids") 
hist(resmd8) 
 
R.squaredGLMM(md7) 
R.squaredGLMM(md8) 
 
###not 1-3,6 
dengcmod<-read.table("dengue 1_3_6_not.txt",header=T) 
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hist(dengcmod$Dengue) 
###autocorrelation stuff--load spdep package 
modcordc<-read.table("deng_vector utms w_coast.txt",header=T) 
 
xy3<-SpatialPoints(modcordc,proj4string=CRS("+proj=utm +zone=17+datum=WGS84")) 
#the nobs part of the following line is the largest difference betwen points aht you want to be 

compared 
distcdeng<-autocov_dist(dengcmod$Dengue,xy3,nbs=114000) 
 
dengcmod<-cbind(dengcmod,distcdeng) 
 
####random effects 
m1<-

glmmadmb(Dengue~distcdeng+region*landuse+veght,data=dengcmod,family="binomial") 
m1.2<-

glmmadmb(Dengue~distcdeng+region*landuse+veght,data=dengcmod,family="binomial",zeroI
nflation=TRUE) 

m2<-glmmadmb(Dengue~distcdeng+region*landuse+veght+ 
(1|fsamp_event),data=dengcmod,family="binomial") 

m2.2<-glmmadmb(Dengue~distcdeng+region*landuse+veght+ 
(1|fsamp_event),data=dengcmod,family="binomial",zeroInflation=TRUE) 

m3<-glmmadmb(Dengue~distcdeng+region*landuse+veght+ 
(distcdeng|fsamp_event),data=dengcmod,family="binomial") 

m3.2<-glmmadmb(Dengue~distcdeng+region*landuse+veght+ 
(distcdeng|fsamp_event),data=dengcmod,family="binomial",zeroInflation=TRUE) 

 
AICctab(m1,m1.2,m2,m2.2,m3,m3.2,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
 
modc1<-

glm(Dengue~distcdeng+region*landuse*veght,data=dengcmod,family="binomial",weight=samp
_event) 

modc2<-glm(Dengue~distcdeng+region*landuse*veght-
region:landuse:veght,data=dengcmod,family="binomial",weight=samp_event) 

modc3<-glm(Dengue~distcdeng+region*landuse*veght-region:landuse:veght-
region:landuse,data=dengcmod,family="binomial",weight=samp_event) 

modc4<-glm(Dengue~distcdeng+region*landuse*veght-region:landuse:veght-
region:veght,data=dengcmod,family="binomial",weight=samp_event) 

modc5<-glm(Dengue~distcdeng+region*landuse*veght-region:landuse:veght-
landuse:veght,data=dengcmod,family="binomial",weight=samp_event) 

modc6<-glm(Dengue~distcdeng+region*landuse*veght-region:landuse:veght-
region:landuse-region:veght,data=dengcmod,family="binomial",weight=samp_event) 

modc7<-glm(Dengue~distcdeng+region*landuse*veght-region:landuse:veght-
region:landuse-landuse:veght,data=dengcmod,family="binomial",weight=samp_event) 
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modc8<-glm(Dengue~distcdeng+region*landuse*veght-region:landuse:veght-region:veght-
landuse:veght,data=dengcmod,family="binomial",weight=samp_event) 

modc9<-
glm(Dengue~distcdeng+region+landuse+veght,data=dengcmod,family="binomial",weight=samp
_event) 

modc10<-
glm(Dengue~distcdeng+region+landuse,data=dengcmod,family="binomial",weight=samp_event
) 

modc11<-
glm(Dengue~distcdeng+region+veght,data=dengcmod,family="binomial",weight=samp_event) 

modc12<-
glm(Dengue~distcdeng+landuse+veght,data=dengcmod,family="binomial",weight=samp_event) 

modc13<-
glm(Dengue~distcdeng+region,data=dengcmod,family="binomial",weight=samp_event) 

modc14<-
glm(Dengue~distcdeng+landuse,data=dengcmod,family="binomial",weight=samp_event) 

modc15<-
glm(Dengue~distcdeng+veght,data=dengcmod,family="binomial",weight=samp_event) 

AICctab(modc1,modc15,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#better without distance 
 
AICctab(modc15,modc2,modc3,modc4,modc5,modc6,modc7,modc8,modc9,modc10,modc1

1,modc13,modc14,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
#mdc8 wins 
 
summary(mdc8) 
par(mfrow=c(2,2)) 
resmdc8<-residuals(mdc8,type="pearson") 
F27<-fitted(mdc8,level=0) 
plot(fitted(mdc8),resmdc8,xlab="fitted values", ylab="norm resids",main="md8") 
boxplot(resmdc8~landuse,data=dengmod,main="landuse",ylab="norm resids") 
hist(resmdc8) 
 
 
confdmdc8<-confint(mdc8,method="boot",nsim=1000,level=0.95) 
confdmdc8 
 
WNV 
 
###this is for vector anslysis 
###West Nile Virust using culex as vectors 
rm(list=ls(all=TRUE)) 
library(spdep) 
library(nlme) 
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library(bbmle) 
library(car) 
library(lme4) 
library(glmmADMB) 
 
wnvmod<-read.table("wnv no_coast.txt",header=T) 
 
hist(wnvmod$wnv) 
 
###autocorrelation stuff--load spdep package 
modcordw<-read.table("wnv utms no_coast.txt",header=T) 
 
xy3w<-SpatialPoints(modcordw,proj4string=CRS("+proj=utm +zone=17+datum=WGS84")) 
#the nobs part of the following line is the largest difference betwen points aht you want to be 

compared 
distwnv<-autocov_dist(wnvmod$wnv,xy3w,nbs=114000) 
 
wnvmod<-cbind(wnvmod,distwnv) 
 
fsamp_event<-factor(wnvmod$samp_event) 
###not coast 
#random 
m1<-glm(wnv~distwnv+region*landuse+veght,data=wnvmod,family="binomial") 
m2<-glmer(wnv~distwnv+region*landuse+veght+ 

(1|samp_event),data=wnvmod,family="binomial") 
m3<-glmer(wnv~distwnv+region*landuse+veght+ 

(distwnv|samp_event),data=wnvmod,family="binomial") 
 
AICctab(m1,m2,m3,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
 
#fixed 
mw1<-glmer(wnv~distwnv +region*landuse+veght+ (1|samp_event), data=wnvmod 

,family="binomial" ) 
mw2<-glmer(wnv~distwnv +region+landuse+veght+ (1|samp_event), data=wnvmod 

,family="binomial" ) 
mw3<-glmer(wnv~distwnv +region+landuse+ (1|samp_event), data=wnvmod 

,family="binomial" ) 
mw4<-glmer(wnv~distwnv +region+veght+ (1|samp_event), data=wnvmod 

,family="binomial" ) 
mw5<-glmer(wnv~distwnv +landuse+veght+ (1|samp_event), data=wnvmod 

,family="binomial" ) 
mw6<-glmer(wnv~distwnv +veght+ (1|samp_event), data=wnvmod ,family="binomial" ) 
mw7<-glmer(wnv~distwnv +region+ (1|samp_event), data=wnvmod ,family="binomial" ) 
mw8<-glmer(wnv~distwnv +landuse+ (1|samp_event), data=wnvmod ,family="binomial" ) 
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mw9<-glmer(wnv~distwnv +region+landuse+region:landuse+ (1|samp_event), 
data=wnvmod ,family="binomial" ) 

mw10<-glmer(wnv~distwnv +region+veght+region:landuse+ (1|samp_event), data=wnvmod 
,family="binomial" ) 

mw11<-glmer(wnv~distwnv +landuse+veght+region:landuse+ (1|samp_event), 
data=wnvmod ,family="binomial" ) 

#mw12<-glmer(wnv~distwnv +veght+region:landuse+ (1|samp_event), data=wnvmod 
,family="binomial" ) 

#this model can not work because of the sigularity issue with veght haveing only one per 
region/landuse 

mw13<-glmer(wnv~distwnv +region+region:landuse+ (1|samp_event), data=wnvmod 
,family="binomial" ) 

mw14<-glmer(wnv~distwnv +landuse+region:landuse+ (1|samp_event), data=wnvmod 
,family="binomial" ) 

mw15<-glmer(wnv~region*landuse+veght+ (1|samp_event), data=wnvmod 
,family="binomial"  ) 

 
mw1L<-refitML(mw1) 
mw2L<-refitML(mw2) 
mw3L<-refitML(mw3) 
mw4L<-refitML(mw4) 
mw5L<-refitML(mw5) 
mw6L<-refitML(mw6) 
mw7L<-refitML(mw7) 
mw8L<-refitML(mw8) 
mw9L<-refitML(mw9) 
mw10L<-refitML(mw10) 
mw11L<-refitML(mw11) 
mw13L<-refitML(mw13) 
mw14L<-refitML(mw14) 
mw15L<-refitML(mw15) 
 
AICctab(mw1L,mw15L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#better with distcance 
 
AICctab(mw1L,mw2L,mw3L,mw4L,mw5L,mw6L,mw7L,mw8L,mw9L,mw10L,mw11L,m

w13L,mw14L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 #9,14, and 13 are equally as plausible, but I choose 9 because it includes the others 
 
summary(mw9) 
par(mfrow=c(2,2)) 
resmw9<-residuals(mw9,type="pearson") 
plot(fitted(mw9),resmw9,xlab="fitted values", ylab="norm resids",main="mw9") 
boxplot(resmw9~landuse,data=wnvmod,main="landuse",ylab="norm resids") 
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boxplot(resmw9~region,data=wnvmod,main="region",ylab="norm resids") 
hist(resmw9) 
 
confdmw9<-confint(mw9,method="boot",nsim=1000,level=0.95) 
confdmw9 
 
###not 1-3,6 
wnvcmod<-read.table("wnv w_coast.txt",header=T) 
hist(wnvcmod$wnv) 
###autocorrelation stuff--load spdep package 
modcordcw<-read.table("wnv utm w_coast.txt",header=T) 
 
xy3cw<-SpatialPoints(modcordcw,proj4string=CRS("+proj=utm 

+zone=17+datum=WGS84")) 
#the nobs part of the following line is the largest difference betwen points aht you want to be 

compared 
distcwnv<-autocov_dist(wnvcmod$wnv,xy3cw,nbs=114000) 
 
wnvcmod<-cbind(wnvcmod,distcwnv) 
 
#random 
m1<-glm(wnv~distcwnv+region*landuse+veght,data=wnvcmod,family="binomial") 
m2<-glmer(wnv~distcwnv+region*landuse+veght+ 

(1|samp_event),data=wnvcmod,family="binomial") 
m3<-glmer(wnv~distcwnv+region*landuse+veght+ 

(distwnv|samp_event),data=wnvcmod,family="binomial") 
 
AICctab(m1,m2,m3,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#m2 wins 
 
#fixed 
mwc1<-glmer(wnv~distcwnv +region*landuse+veght+ (1|samp_event), data=wnvcmod 

,family="binomial" ) 
mwc2<-glmer(wnv~distcwnv +region+landuse+veght+ (1|samp_event), data=wnvcmod 

,family="binomial" ) 
mwc3<-glmer(wnv~distcwnv +region+landuse+ (1|samp_event), data=wnvcmod 

,family="binomial" ) 
mwc4<-glmer(wnv~distcwnv +region+veght+ (1|samp_event), data=wnvcmod 

,family="binomial" ) 
mwc5<-glmer(wnv~distcwnv +landuse+veght+ (1|samp_event), data=wnvcmod 

,family="binomial" ) 
mwc6<-glmer(wnv~distcwnv +veght+ (1|samp_event), data=wnvcmod ,family="binomial" ) 
mwc7<-glmer(wnv~distcwnv +region+ (1|samp_event), data=wnvcmod ,family="binomial" 

) 
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mwc8<-glmer(wnv~distcwnv +landuse+ (1|samp_event), data=wnvcmod ,family="binomial" 
) 

mwc9<-glmer(wnv~distcwnv +region+landuse+region:landuse+ (1|samp_event), 
data=wnvcmod ,family="binomial" ) 

mwc10<-glmer(wnv~distcwnv +region+veght+region:landuse+ (1|samp_event), 
data=wnvcmod ,family="binomial" ) 

mwc11<-glmer(wnv~distcwnv +landuse+veght+region:landuse+ (1|samp_event), 
data=wnvcmod ,family="binomial" ) 

#mwc12<-glmer(wnv~distcwnv +veght+region:landuse+ (1|samp_event), data=wnvcmod 
,family="binomial" ) 

#this model can not work because of the sigularity issue with veght haveing only one per 
region/landuse 

mwc13<-glmer(wnv~distcwnv +region+region:landuse+ (1|samp_event), data=wnvcmod 
,family="binomial" ) 

mwc14<-glmer(wnv~distcwnv +landuse+region:landuse+ (1|samp_event), data=wnvcmod 
,family="binomial" ) 

mwc15<-glmer(wnv~region*landuse+veght+ (1|samp_event), data=wnvcmod 
,family="binomial"  ) 

 
mwc1L<-refitML(mwc1) 
mwc2L<-refitML(mwc2) 
mwc3L<-refitML(mwc3) 
mwc4L<-refitML(mwc4) 
mwc5L<-refitML(mwc5) 
mwc6L<-refitML(mwc6) 
mwc7L<-refitML(mwc7) 
mwc8L<-refitML(mwc8) 
mwc9L<-refitML(mwc9) 
mwc10L<-refitML(mwc10) 
mwc11L<-refitML(mwc11) 
mwc13L<-refitML(mwc13) 
mwc14L<-refitML(mwc14) 
mwc15L<-refitML(mwc15) 
 
AICctab(mwc1L,mwc15L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#better with distcance 
 
AICctab(mwc1L,mwc2L,mwc3L,mwc4L,mwc5L,mwc6L,mwc7L,mwc8L,mwc9L,mwc10L,

mwc11L,mwc13L,mwc14L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#9,13, and 14 win, but i choose 9 again 
 
summary(mwc9) 
par(mfrow=c(2,2)) 
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resmwc9<-residuals(mwc9,type="pearson") 
plot(fitted(mwc9),resmwc9,xlab="fitted values", ylab="norm resids",main="mw9") 
boxplot(resmwc9~landuse,data=wnvmod,main="landuse",ylab="norm resids") 
boxplot(resmwc9~region,data=wnvmod,main="region",ylab="norm resids") 
hist(resmwc9) 
 
confdmwc9<-confint(mwc9,method="boot",nsim=1000,level=0.95) 
confdmwc9 
 
SLE 
 
###this is for vector anslysis 
###St. Louis Encephalitis using cu. nigripalpus as vector 

 
rm(list=ls(all=TRUE)) 
library(spdep) 
library(nlme) 
library(bbmle) 
library(car) 
library(lme4) 
library(glmmADMB) 
 
slemod<-read.table("sle no_coast.txt",header=T) 
 
hist(slemod$sle) 
###autocorrelation stuff--load spdep package 
modcords<-read.table("sle utm no coast.txt",header=T) 
 
xy3s<-SpatialPoints(modcords,proj4string=CRS("+proj=utm +zone=17+datum=WGS84")) 
#the nobs part of the following line is the largest difference betwen points aht you want to be 

compared 
distsle<-autocov_dist(slemod$sle,xy3s,nbs=114000) 
 
slemod<-cbind(slemod,distsle) 
 
###not coast 
####random factors 
m1<-glm(sle~distsle+region*landuse+veght,data=slemod,family="binomial") 
m2<-glmer(sle~distsle+region*landuse+veght+ 

(1|samp_event),data=slemod,family="binomial") 
m3<-glmer(sle~distsle+region*landuse+veght+ 

(distsle|samp_event),data=slemod,family="binomial") 
 
AICctab(m1,m2,m3,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE)  
#m2 wins 
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ms1<-glmer(sle~distsle +region*landuse+veght+ (1|samp_event), data=slemod 

,family="binomial" ) 
ms2<-glmer(sle~distsle +region+landuse+veght+ (1|samp_event), data=slemod 

,family="binomial" ) 
ms3<-glmer(sle~distsle +region+landuse+ (1|samp_event), data=slemod ,family="binomial" 

) 
ms4<-glmer(sle~distsle +region+veght+ (1|samp_event), data=slemod ,family="binomial" ) 
ms5<-glmer(sle~distsle +landuse+veght+ (1|samp_event), data=slemod ,family="binomial" ) 
ms6<-glmer(sle~distsle +veght+ (1|samp_event), data=slemod ,family="binomial" ) 
ms7<-glmer(sle~distsle +region+ (1|samp_event), data=slemod ,family="binomial" ) 
ms8<-glmer(sle~distsle +landuse+ (1|samp_event), data=slemod ,family="binomial" ) 
ms9<-glmer(sle~distsle +region+landuse+region:landuse+ (1|samp_event), data=slemod 

,family="binomial" ) 
ms10<-glmer(sle~distsle +region+veght+region:landuse+ (1|samp_event), data=slemod 

,family="binomial" ) 
ms11<-glmer(sle~distsle +landuse+veght+region:landuse+ (1|samp_event), data=slemod 

,family="binomial" ) 
#ms12<-glmer(sle~distsle +veght+region:landuse+ (1|samp_event), data=slemod 

,family="binomial" ) 
#this model can not work because of the sigularity issue with veght haveing only one per 

region/landuse 
ms13<-glmer(sle~distsle +region+region:landuse+ (1|samp_event), data=slemod 

,family="binomial" ) 
ms14<-glmer(sle~distsle +landuse+region:landuse+ (1|samp_event), data=slemod 

,family="binomial" ) 
ms15<-glmer(sle~region*landuse+veght+ (1|samp_event), data=slemod ,family="binomial"  

) 
 
ms1L<-refitML(ms1) 
ms2L<-refitML(ms2) 
ms3L<-refitML(ms3) 
ms4L<-refitML(ms4) 
ms5L<-refitML(ms5) 
ms6L<-refitML(ms6) 
ms7L<-refitML(ms7) 
ms8L<-refitML(ms8) 
ms9L<-refitML(ms9) 
ms10L<-refitML(ms10) 
ms11L<-refitML(ms11) 
ms13L<-refitML(ms13) 
ms14L<-refitML(ms14) 
ms15L<-refitML(ms15) 
 
AICctab(ms1L,ms15L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
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#better with distcance 
 
AICctab(ms1L,ms2L,ms3L,ms4L,ms5L,ms6L,ms7L,ms8L,ms9L,ms10L,ms11L,ms13L,ms1

4L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#14,9, 13 are equally plausible, but will use 9 becasue it encompasses 14 and 13 
 
summary(ms9) 
par(mfrow=c(2,2)) 
resms9<-residuals(ms9,type="pearson") 
plot(fitted(ms9),resms9,xlab="fitted values", ylab="norm resids") 
boxplot(resms9~landuse,data=slemod,main="landuse",ylab="norm resids") 
boxplot(resms9~region,data=slemod,main="region",ylab="norm resids") 
hist(resms9) 
 
confdms9<-confint(ms9,method="boot",nsim=1000,level=0.95) 
confdms9 
 
###########################################################################

###################################### 
###with coast 
slecmod<-read.table("sle w_coast.txt",header=T) 
 
hist(slecmod$sle) 
 
###autocorrelation stuff--load spdep package 
modcordsc<-read.table("sle utm w coast.txt",header=T) 
 
xy3sc<-SpatialPoints(modcords,proj4string=CRS("+proj=utm +zone=17+datum=WGS84")) 
#the nobs part of the following line is the largest difference betwen points aht you want to be 

compared 
distslec<-autocov_dist(slecmod$sle,xy3sc,nbs=114000) 
 
slecmod<-cbind(slecmod,distslec) 
 
####random factors 
m1<-glm(sle~distslec+region*landuse+veght,data=slecmod,family="binomial") 
m2<-glmer(sle~distslec+region*landuse+veght+ 

(1|samp_event),data=slecmod,family="binomial") 
m3<-glmer(sle~distslec+region*landuse+veght+ 

(distsle|samp_event),data=slecmod,family="binomial") 
 
AICctab(m1,m2,m3,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
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#model 2 wins 
 
#fixed 
msc1<-glmer(sle~distslec +region*landuse+veght+ (1|samp_event), data=slecmod 

,family="binomial" ) 
msc2<-glmer(sle~ region+landuse+veght+ (1|samp_event), data=slecmod 

,family="binomial" ) 
msc3<-glmer(sle~region+landuse+ (1|samp_event), data=slecmod ,family="binomial" ) 
msc4<-glmer(sle~region+veght+ (1|samp_event), data=slecmod ,family="binomial" ) 
msc5<-glmer(sle~landuse+veght+ (1|samp_event), data=slecmod ,family="binomial" ) 
msc6<-glmer(sle~veght+ (1|samp_event), data=slecmod ,family="binomial" ) 
msc7<-glmer(sle~region+ (1|samp_event), data=slecmod ,family="binomial" ) 
msc8<-glmer(sle~landuse+ (1|samp_event), data=slecmod ,family="binomial" ) 
msc9<-glmer(sle~region+landuse+region:landuse+ (1|samp_event), data=slecmod 

,family="binomial" ) 
msc10<-glmer(sle~region+veght+region:landuse+ (1|samp_event), data=slecmod 

,family="binomial" ) 
msc11<-glmer(sle~landuse+veght+region:landuse+ (1|samp_event), data=slecmod 

,family="binomial" ) 
#msc12<-glmer(sle~veght+region:landuse+ (1|samp_event), data=slecmod 

,family="binomial" ) 
#this model can not work because of the sigularity issue with veght haveing only one per 

region/landuse 
msc13<-glmer(sle~region+region:landuse+ (1|samp_event), data=slecmod 

,family="binomial" ) 
msc14<-glmer(sle~landuse+region:landuse+ (1|samp_event), data=slecmod 

,family="binomial" ) 
msc15<-glmer(sle~region*landuse+veght+ (1|samp_event), data=slecmod 

,family="binomial"  ) 
 
msc1L<-refitML(msc1) 
msc2L<-refitML(msc2) 
msc3L<-refitML(msc3) 
msc4L<-refitML(msc4) 
msc5L<-refitML(msc5) 
msc6L<-refitML(msc6) 
msc7L<-refitML(msc7) 
msc8L<-refitML(msc8) 
msc9L<-refitML(msc9) 
msc10L<-refitML(msc10) 
msc11L<-refitML(msc11) 
msc13L<-refitML(msc13) 
msc14L<-refitML(msc14) 
msc15L<-refitML(msc15) 
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AICctab(msc1L,msc15L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#better with distcance 
 
AICctab(msc15L,msc2L,msc3L,msc4L,msc5L,msc6L,msc7L,msc8L,msc9L,msc10L,msc11

L,msc13L,msc14L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#m15/ll and close followed by 10 are winners 
#but 15 includes the others so I will choose that one 
 
summary(msc15) 
par(mfrow=c(2,2)) 
resmsc15<-residuals(msc15,type="pearson") 
plot(fitted(msc15),resmsc15,xlab="fitted values", ylab="norm resids") 
boxplot(resmsc15~landuse,data=slemod,main="landuse",ylab="norm resids") 
boxplot(resmsc15~region,data=slemod,main="region",ylab="norm resids") 
hist(resmsc15) 
 
confdmsc15<-confint(msc15,method="boot",nsim=1000,level=0.95) 
confdmsc15 
 
 
########################################################################## 
###running the models with out distances 
 
###no coast 
modn1<-

glm(sle~region*landuse*veght,data=slemod,family="binomial",weight=samp_event) 
modn2<-glm(sle~region*landuse*veght-

region:landuse:veght,data=slemod,family="binomial",weight=samp_event) 
modn3<-glm(sle~region*landuse*veght-region:landuse:veght-

region:landuse,data=slemod,family="binomial",weight=samp_event) 
modn4<-glm(sle~region*landuse*veght-region:landuse:veght-

region:veght,data=slemod,family="binomial",weight=samp_event) 
modn5<-glm(sle~region*landuse*veght-region:landuse:veght-

landuse:veght,data=slemod,family="binomial",weight=samp_event) 
modn6<-glm(sle~region*landuse*veght-region:landuse:veght-region:landuse-

region:veght,data=slemod,family="binomial",weight=samp_event) 
modn7<-glm(sle~region*landuse*veght-region:landuse:veght-region:landuse-

landuse:veght,data=slemod,family="binomial",weight=samp_event) 
modn8<-glm(sle~region*landuse*veght-region:landuse:veght-region:veght-

landuse:veght,data=slemod,family="binomial",weight=samp_event) 
modn9<-

glm(sle~region+landuse+veght,data=slemod,family="binomial",weight=samp_event) 
modn10<-glm(sle~region+landuse,data=slemod,family="binomial",weight=samp_event) 
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modn11<-glm(sle~region+veght,data=slemod,family="binomial",weight=samp_event) 
modn12<-glm(sle~landuse+veght,data=slemod,family="binomial",weight=samp_event) 
modn13<-glm(sle~region,data=slemod,family="binomial",weight=samp_event) 
modn14<-glm(sle~landuse,data=slemod,family="binomial",weight=samp_event) 
modn15<-glm(sle~veght,data=slemod,family="binomial",weight=samp_event) 
 
AICctab(modn1,modn2,modn3,modn4,modn5,modn6,modn7,modn8,modn9,modn10,modn1

1,modn12,modn13,modn14,modn15,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
AICctab(modn1,mod8,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
###with coast 
#models 
modcn1<-

glm(sle~region*landuse*veght,data=slecmod,family="binomial",weight=samp_event) 
modcn2<-glm(sle~region*landuse*veght-

region:landuse:veght,data=slecmod,family="binomial",weight=samp_event) 
modcn3<-glm(sle~region*landuse*veght-region:landuse:veght-

region:landuse,data=slecmod,family="binomial",weight=samp_event) 
modcn4<-glm(sle~region*landuse*veght-region:landuse:veght-

region:veght,data=slecmod,family="binomial",weight=samp_event) 
modcn5<-glm(sle~region*landuse*veght-region:landuse:veght-

landuse:veght,data=slecmod,family="binomial",weight=samp_event) 
modcn6<-glm(sle~region*landuse*veght-region:landuse:veght-region:landuse-

region:veght,data=slecmod,family="binomial",weight=samp_event) 
modcn7<-glm(sle~region*landuse*veght-region:landuse:veght-region:landuse-

landuse:veght,data=slecmod,family="binomial",weight=samp_event) 
modcn8<-glm(sle~region*landuse*veght-region:landuse:veght-region:veght-

landuse:veght,data=slecmod,family="binomial",weight=samp_event) 
modcn9<-

glm(sle~region+landuse+veght,data=slecmod,family="binomial",weight=samp_event) 
modcn10<-glm(sle~region+landuse,data=slecmod,family="binomial",weight=samp_event) 
modcn11<-glm(sle~region+veght,data=slecmod,family="binomial",weight=samp_event) 
modcn12<-glm(sle~landuse+veght,data=slecmod,family="binomial",weight=samp_event) 
modcn13<-glm(sle~region,data=slecmod,family="binomial",weight=samp_event) 
modcn14<-glm(sle~landuse,data=slecmod,family="binomial",weight=samp_event) 
modcn15<-glm(sle~veght,data=slecmod,family="binomial",weight=samp_event) 
 
AICctab(modcn1,modcn2,modcn3,modcn4,modcn5,modcn6,modcn7,modcn8,modcn9,modc

n10,modcn11,modcn12,modcn13,modcn14,modcn15,weights=TRUE,delta=TRUE,base=TRUE,
sort=TRUE) 

 
AICctab(modcn1,modc1,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
summary(modcn1) 
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Ordination 
rm(list=ls(all=TRUE)) 
library(BiodiversityR) 
library(vegan) 
library(labdsv) 
 
###This is to get the Jaccard's indices.  The txt file associated with this 
#has been adjusted for both the regression sampled 
mrja<-read.table("abund for jaccards.txt",header=T) 
vari<-read.table("ordivari.txt",header=T) 
newmrja <- mrja[c(7:34)] 
mrjavar<-mrja[c(2:6)] 
 
###change this line around in order to get different dissimilarity indices 
jac<-vegdist(newmrja,method="jaccard") 
 
 
###trying to figure out correct number of dimensions for jaccards 
screedim2<-NULL 
for(i in 1:30){ 
 screedim2 [i]= isoMDS(jac,k=2)$stress 
} 
screedim3<-NULL 
for(i in 1:30){ 
 screedim3 [i]= isoMDS(jac,k=3)$stress 
} 
screedim4<-NULL 
for(i in 1:30){ 
 screedim4 [i]= isoMDS(jac,k=4)$stress 
} 
screedim5<-NULL 
for(i in 1:30){ 
 screedim5 [i]= isoMDS(jac,k=5)$stress 
} 
screedim6<-NULL 
for(i in 1:30){ 
 screedim6 [i]= isoMDS(jac,k=6)$stress 
} 
scree.frame<-cbind(c(screedim2),c(screedim3),c(screedim4),c(screedim5),c(screedim6)) 
write.csv(scree.frame,"scree.plotiso4_27_15.csv") 
 
 
 
###MNDS actual ordination--the metaMNDS uses several random starts in order to avoid  
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#a local minimum, also you need to change the number of "trymax" until when you call 
#the ordination it tells you that you had at least 2 convergent solutions 
ordj1<-metaMDS(jac,k=3,trymax=100,engine="isoMDS",autotransform=FALSE) 
ordj1 
 
ordj2<-

metaMDS(jac,k=3,trymax=100,engine="isoMDS",autotransform=FALSE,previous.best=ordj1) 
ordj2 
 
###plotting the ordination 
par(mfrow=c(2,2)) 
plot(ordj2,display=c("sites"),choices=c(1,2),type="p") 
plot(ordj2,display=c("sites"),choices=c(1,3),type="p") 
plot(ordj2,display=c("sites"),choices=c(3,2),type="p") 
ordiplot3d(ordj2) 
stressplot(ordj2) 
 
###goodness of fit 
good1<-goodness(ordj1) 
plot(good1) 
 
###oridnation graphics 
#region 
par(mfrow=c(1,3)) 
plot(ordj1,display=c("sites"),choices=c(1,2),type="p") 
with(vari,ordihull(ordj1,region,show.groups="p",col="blue",lwd=2,draw="lines",label=TRU

E,cex=1.5)) 
with(vari,ordihull(ordj1,region,show.groups="c",col="dark 

green",lwd=2,draw="lines",label=TRUE,cex=1.5)) 
with(vari,ordihull(ordj1,region,show.groups="r",col="red",lwd=2,draw="lines",label=TRUE,

cex=1.5)) 
 
plot(ordj1,display=c("sites"),choices=c(1,3),type="p") 
with(vari,ordihull(ordj1,region,show.groups="p",col="blue",lwd=2,draw="lines",label=TRU

E,cex=1.5)) 
with(vari,ordihull(ordj1,region,show.groups="c",col="dark 

green",lwd=2,draw="lines",label=TRUE,cex=1.5)) 
with(vari,ordihull(ordj1,region,show.groups="r",col="red",lwd=2,draw="lines",label=TRUE,

cex=1.5)) 
 
plot(ordj1,display=c("sites"),choices=c(2,3),type="p") 
with(vari,ordihull(ordj1,region,show.groups="p",col="blue",lwd=2,draw="lines",label=TRU

E,cex=1.5)) 
with(vari,ordihull(ordj1,region,show.groups="c",col="dark 

green",lwd=2,draw="lines",label=TRUE,cex=1.5)) 
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with(vari,ordihull(ordj1,region,show.groups="r",col="red",lwd=2,draw="lines",label=TRUE,
cex=1.5)) 

 
#landuse 
par(mfrow=c(2,2)) 
plot(ordj1,display=c("sites"),choices=c(1,2),type="p") 
with(vari,ordihull(ordj1,landuse,show.groups="n",col="blue",lwd=2,draw="lines",label=TR

UE,cex=1.5)) 
with(vari,ordihull(ordj1,landuse,show.groups="d",col="red",lwd=2,draw="lines",label=TRU

E,cex=1.5)) 
 
plot(ordj1,display=c("sites"),choices=c(1,3),type="p") 
with(vari,ordihull(ordj1,landuse,show.groups="n",col="blue",lwd=2,draw="lines",label=TR

UE,cex=1.5)) 
with(vari,ordihull(ordj1,landuse,show.groups="d",col="red",lwd=2,draw="lines",label=TRU

E,cex=1.5)) 
 
plot(ordj1,display=c("sites"),choices=c(2,3),type="p") 
with(vari,ordihull(ordj1,landuse,show.groups="n",col="blue",lwd=2,draw="lines",label=TR

UE,cex=1.5)) 
with(vari,ordihull(ordj1,landuse,show.groups="d",col="red",lwd=2,draw="lines",label=TRU

E,cex=1.5)) 
 
#veg height 
par(mfrow=c(2,2)) 
plot(ordj1,display=c("sites"),choices=c(1,2),type="p") 
with(vari,ordihull(ordj1,veght,show.groups="s",col="blue",lwd=2,draw="lines",label=TRUE

,cex=1.5)) 
with(vari,ordihull(ordj1,veght,show.groups="m",col="dark 

green",lwd=2,draw="lines",label=TRUE,cex=1.5)) 
with(vari,ordihull(ordj1,veght,show.groups="t",col="red",lwd=2,draw="lines",label=TRUE,

cex=1.5)) 
 
plot(ordj1,display=c("sites"),choices=c(1,3),type="p") 
with(vari,ordihull(ordj1,veght,show.groups="s",col="blue",lwd=2,draw="lines",label=TRUE

,cex=1.5)) 
with(vari,ordihull(ordj1,veght,show.groups="m",col="dark 

green",lwd=2,draw="lines",label=TRUE,cex=1.5)) 
with(vari,ordihull(ordj1,veght,show.groups="t",col="red",lwd=2,draw="lines",label=TRUE,

cex=1.5)) 
 
plot(ordj1,display=c("sites"),choices=c(2,3),type="p") 
with(vari,ordihull(ordj1,veght,show.groups="s",col="blue",lwd=2,draw="lines",label=TRUE

,cex=1.5)) 
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with(vari,ordihull(ordj1,veght,show.groups="m",col="dark 
green",lwd=2,draw="lines",label=TRUE,cex=1.5)) 

with(vari,ordihull(ordj1,veght,show.groups="t",col="red",lwd=2,draw="lines",label=TRUE,
cex=1.5)) 

 
#by sampling event 
plot(ordj1,display=c("sites"),choices=c(1,2),type="p") 
with(vari,ordihull(ordj1,samp_event,show.groups="1",col="blue",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="2",col="black",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="3",col="red",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="4",col="pink",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="5",col="green",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="6",col="cadetblue",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="7",col="chocolate",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="8",col="cornflowerblue",lwd=2,draw="li

nes")) 
with(vari,ordihull(ordj1,samp_event,show.groups="9",col="darkgoldenrod",lwd=2,draw="li

nes")) 
with(vari,ordihull(ordj1,samp_event,show.groups="10",col="darkorchid",lwd=2,draw="lines

")) 
with(vari,ordihull(ordj1,samp_event,show.groups="11",col="gold",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="12",col="deeppink",lwd=2,draw="lines")

) 
 
plot(ordj1,display=c("sites"),choices=c(1,3),type="p") 
with(vari,ordihull(ordj1,samp_event,show.groups="1",col="blue",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="2",col="black",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="3",col="red",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="4",col="pink",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="5",col="green",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="6",col="cadetblue",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="7",col="chocolate",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="8",col="cornflowerblue",lwd=2,draw="li

nes")) 
with(vari,ordihull(ordj1,samp_event,show.groups="9",col="darkgoldenrod",lwd=2,draw="li

nes")) 
with(vari,ordihull(ordj1,samp_event,show.groups="10",col="darkorchid",lwd=2,draw="lines

")) 
with(vari,ordihull(ordj1,samp_event,show.groups="11",col="gold",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="12",col="deeppink",lwd=2,draw="lines")

) 
 
plot(ordj1,display=c("sites"),choices=c(2,3),type="p") 
with(vari,ordihull(ordj1,samp_event,show.groups="1",col="blue",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="2",col="black",lwd=2,draw="lines")) 
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with(vari,ordihull(ordj1,samp_event,show.groups="3",col="red",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="4",col="pink",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="5",col="green",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="6",col="cadetblue",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="7",col="chocolate",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="8",col="cornflowerblue",lwd=2,draw="li

nes")) 
with(vari,ordihull(ordj1,samp_event,show.groups="9",col="darkgoldenrod",lwd=2,draw="li

nes")) 
with(vari,ordihull(ordj1,samp_event,show.groups="10",col="darkorchid",lwd=2,draw="lines

")) 
with(vari,ordihull(ordj1,samp_event,show.groups="11",col="gold",lwd=2,draw="lines")) 
with(vari,ordihull(ordj1,samp_event,show.groups="12",col="deeppink",lwd=2,draw="lines")

) 
 
 
#region:land 
par(mfrow=c(2,2)) 
plot(ordj2,display=c("sites"),choices=c(1,2),type="p") 
with(vari,ordihull(ordj2,reg_land,draw="lines",col=c(1,2,3,4,5,6),  label=TRUE)) 
 
plot(ordj2,display=c("sites"),choices=c(1,3),type="p") 
with(vari,ordihull(ordj2,reg_land,draw="lines",col=c(1,2,3,4,5,6),  label=TRUE)) 
 
plot(ordj2,display=c("sites"),choices=c(2,3),type="p") 
with(vari,ordihull(ordj2,reg_land,draw="lines",col=c(1,2,3,4,5,6),  label=TRUE)) 
 
#region:veg 
par(mfrow=c(2,2)) 
plot(ordj2,display=c("sites"),choices=c(1,2),type="p") 
with(vari,ordihull(ordj2,reg_veg,draw="lines",col=c(1,2,3,4,5,6,7,8,9),  label=TRUE)) 
 
plot(ordj2,display=c("sites"),choices=c(1,3),type="p") 
with(vari,ordihull(ordj2,reg_veg,draw="lines",col=c(1,2,3,4,5,6,7,8,9),  label=TRUE)) 
 
plot(ordj2,display=c("sites"),choices=c(2,3),type="p") 
with(vari,ordihull(ordj2,reg_veg,draw="lines",col=c(1,2,3,4,5,6,7,8,9),  label=TRUE)) 
 
#land:veg 
par(mfrow=c(2,2)) 
plot(ordj2,display=c("sites"),choices=c(1,2),type="p") 
with(vari,ordihull(ordj2,land_veg,draw="lines",col=c(1,2,3,4,5,6,7,8,9),  label=TRUE)) 
 
plot(ordj2,display=c("sites"),choices=c(1,3),type="p") 
with(vari,ordihull(ordj2,land_veg,draw="lines",col=c(1,2,3,4,5,6,7,8,9),  label=TRUE)) 
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plot(ordj2,display=c("sites"),choices=c(2,3),type="p") 
with(vari,ordihull(ordj2,land_veg,draw="lines",col=c(1,2,3,4,5,6,7,8,9),  label=TRUE)) 
 
#reg:land:veg 
par(mfrow=c(2,2)) 
plot(ordj2,display=c("sites"),choices=c(1,2),type="p") 
with(vari,ordihull(ordj2,reg_l_v,draw="lines",col=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1

7,18),  label=TRUE)) 
 
plot(ordj2,display=c("sites"),choices=c(1,3),type="p") 
with(vari,ordihull(ordj2,reg_l_v,draw="lines",col=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1

7,18),  label=TRUE)) 
 
plot(ordj2,display=c("sites"),choices=c(2,3),type="p") 
with(vari,ordihull(ordj2,reg_l_v,draw="lines",col=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1

7,18),  label=TRUE)) 
 
 
 
###MRPP 
#mrpp1<-mrpp(jac,mrjavar$region,permutations=999,weight.type=1) 
#mrpp1 
 
#mrpp2<-mrpp(jac,mrjavar$landuse,permutations=999,weight.type=1) 
#mrpp2 
 
#mrpp3<-mrpp(jac,mrjavar$veght,permutations=999,weight.type=1) 
#mrpp3 
 
#mrpp4<-mrpp(jac,mrjavar$Loc,permutations=999,weight.type=1) 
#mrpp4 
 
#mrpp5<-mrpp(jac,mrjavar$samp_event,permutations=999,weight.type=1) 
#mrpp5 
 
###adonis stuff 
ad1<-

adonis(jac~region*landuse+veght,data=mrjavar,permutations=999,strata=mrjavar$samp_event) 
ad1 
 
Indicator species 
 
rm(list=ls(all=TRUE)) 
library(indicspecies) 
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###adjusted for both the regression sampled 
mrja<-read.table("abund for jaccards.txt",header=T) 
vari<-read.table("ordivari.txt",header=T) 
newmrja <- mrja[c(7:34)] 
 
###indicator species analysis 
#use func="IndVal.g" because it equalizes the statistic for gouping together groups 
ind1<-multipatt(newmrja,vari$region,func="IndVal.g",control=how(nperm=999)) 
summary(ind1,indvalcomp=TRUE,alpha=1) 
summary(ind1) 
 
ind2<-multipatt(newmrja,vari$landuse,func="IndVal.g",control=how(nperm=999)) 
summary(ind2,indvalcomp=TRUE,alpha=1) 
summary(ind2) 
 
ind3<-

multipatt(newmrja,vari$veght,func="IndVal.g",control=how(nperm=999),restcomb=c(1,2,3,4,5)) 
summary(ind3,indvalcomp=TRUE,alpha=1) 
summary(ind3) 
 
Chapter 3 
 
Abundance models 
 
rm(list=ls(all=TRUE)) 
## models for abundance 
library(spdep) 
library(lme4) 
library(bbmle) 
library(car) 
library (lattice) 
library(influence.ME) 
library(nlme) 
mosfire<-read.table("variables.txt",header=T) 
 
labd<-log(mosfire$abundance+1) 
 
mosfireabd<-cbind(mosfire,labd) 
 
 
####### create distance variable 
 
cord<-read.table("ptutms.txt",header=T) 
 
xy1<-SpatialPoints(cord,proj4string=CRS("+proj=utm +zone=17+datum=WGS84")) 
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#the nobs part of the following line is the largest difference betwen points aht you want to be 
compared 

distlabd<-autocov_dist(mosfireabd$labd,xy1,nbs=4000) 
 
mosfireabd<-cbind(mosfireabd,distlabd) 
 
### testing for normality of the response variable 
 
shapiro.test(mosfireabd$labd) 
 
 
newdata<-mosfire[which(mosfireabd$tsf=='s'),] 
shapiro.test(log(newdata$abundance+1)) 
 
newdata1<-mosfire[which(mosfire$tsf=='l'),] 
shapiro.test(log(newdata1$abundance+1)) 
 
newdata2<-mosfire[which(mosfire$tsf=='m'),] 
shapiro.test(log(newdata2$abundance+1)) 
 
#### look normal 
 
#testing for hoeogeneity of variance across groups 
 
leveneTest(log(mosfire$abundance+1),mosfire$tsf,center=median) 
 
#looks good 
hist(mosfireabd$abundance) 
hist(mosfireabd$labd) 
 
plot(mosfireabd$labd,mosfireabd$distlabd,main="log abundance v dist coef") 
boxplot(mosfireabd$labd~mosfireabd$sampling_event,main="log abundance v sampling 

event") 
boxplot(mosfireabd$labd~mosfireabd$location,main="log abundance v location") 
 
 
################################## 
boxplot(mosfireabd$labd~mosfireabd$tsf,main=" log abundance v tsf") 
 
###models for abundance and tsf 
#random structure 
###v tsf random factors 
m1<-gls(labd~distlabd+tsf,data=mosfireabd,method="REML") 
m2<-lmer(labd~distlabd+tsf+(1|sampling_event),data=mosfireabd) 
m3<-lmer(labd~distlabd+tsf+(distlabd|sampling_event), data= mosfireabd) 
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m4<-lmer(labd~distlabd+tsf+(1|location),data=mosfireabd) 
m5<-lmer(labd~distlabd+tsf+(distlabd|location),data=mosfireabd) 
m6<-lmer(labd~distlabd+tsf+(1|sampling_event) + (1|location),data=mosfireabd) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model 2 wins 
 
##fixed sturcture 
m2a1<-lmer(labd~distlabd+tsf+(1|sampling_event),data=mosfireabd) 
m2a1L<-refitML(m2a1) 
m2a2<-lmer(labd~distlabd+(1|sampling_event),data=mosfireabd) 
m2a2L<-refitML(m2a2) 
m2a3<-lmer(labd~tsf+(1|sampling_event),data=mosfireabd) 
m2a3L<-refitML(m2a3) 
 
AICctab(m2a1L,m2a2L,m2a3L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model m2a3L wins 
 
summary(m2a3) 
confm2a3<-confint(m2a3,method="boot",nsim=1000,level=0.95) 
confm2a3 
 
#validation 
par(mfrow=c(2,2)) 
resm2a3<-residuals(m2a3,type="pearson") 
F2a3r<-fitted(m2a3,level=0) 
plot(fitted(m2a3),resm2a3,xlab="fitted values", ylab="norm resids") 
boxplot(resm2a3~mosfireabd$tsf,xlab="time since fire", ylab="norm resids") 
hist(resm2a3) 
 
 
 
##################### 
#gla pictures 
plot(mosfireabd$cnpy0,mosfireabd$cnpy1) 
plot(mosfireabd$cnpy0,mosfireabd$cnpy2) 
plot(mosfireabd$cnpy1,mosfireabd$cnpy2) 
 
#random sturcture 
m1<-gls(labd~distlabd+cnpy0*cnpy1*cnpy2,data=mosfireabd,method="REML") 
m2<-lmer(labd~distlabd+cnpy0*cnpy1*cnpy2+(1|sampling_event),data=mosfireabd) 
m3<-lmer(labd~distlabd+cnpy0*cnpy1*cnpy2+(distlabd|sampling_event), data= mosfireabd) 
m4<-lmer(labd~distlabd+cnpy0*cnpy1*cnpy2+(1|location),data=mosfireabd) 
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m5<-lmer(labd~distlabd+cnpy0*cnpy1*cnpy2+(distlabd|location),data=mosfireabd) 
m6<-lmer(labd~distlabd+cnpy0*cnpy1*cnpy2+(1|sampling_event) + 

(1|location),data=mosfireabd) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model 2 wins 
 
#find mods in "gla abund mods.txt" 
bm3<-lmer(labd~  +cnpy1 +  +  +  +  +  + (1|sampling_event),data=mosfireabd) 
lbm3<-refitML(bm3) 
#model m2b32wins 
summary(m2b32) 
confm2b32<-confint(m2b32,method="boot",nsim=1000,level=0.95) 
confm2b32 
 
par(mfrow=c(2,2)) 
resm2b32<-residuals(m2b32,type="pearson") 
Fm2b32<-fitted(m2b32,level=0) 
plot(fitted(m2b32),resm2b32,xlab="fitted values", ylab="norm resids") 
plot(mosfireabd$cnpy1,resm2b32,xlab="% canopy at 0",ylab="norm resids") 
hist(resm2b32) 
 
 
######################################################################## 
###full percent veg data 
#random structure 
m1<-gls( labd~distlabd+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter,data=mosfireabd,method="REML") 
m2<-lmer( labd~distlabd+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(1|sampling_event),data=mosfireabd) 
m3<-lmer( labd~distlabd+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(distlabd|sampling_event), data= mosfireabd) 
m4<-lmer( labd~distlabd+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(1|location),data=mosfireabd) 
m5<-lmer( labd~distlabd+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(distlabd|location),data=mosfireabd) 
m6<-lmer( labd~distlabd+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(1|sampling_event) + (1|location),data=mosfireabd) 
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AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
#model 2 wins 
 
 
n <- 7 
l <- rep(list(0:1), n) 
 
vegmat<-expand.grid(l) 
write.csv(vegmat,"pervegmat.csv") 
 
m6<-lmer(labd~ per_grass +per_wood_trees + (1|sampling_event),data=mosfireabd) 
lm6<-refitML(m6) 
 
#vegmods are in the "per veg abund mods.txt" file 
 
summary(m6) 
confm6<-confint(m6,method="boot",nsim=10000,level=0.95) 
confm6 
 
par(mfrow=c(2,2)) 
resm6<-residuals(m6,type="pearson") 
Fm6<-fitted(m6,level=0) 
plot(fitted(m6),resm6,xlab="fitted values", ylab="norm resids") 
plot(mosfireabd$per_grass,resm6,xlab="percent grass",ylab="norm resids") 
plot(mosfireabd$per_wood_trees,resm6,xlab="percent woody trees",ylab="norm resids") 
hist(resm6) 
 
################################### 
#tallest veg mods 
m1<-gls(labd~distlabd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto,data=mosfireabd,method="REML") 
m2<-lmer(labd~distlabd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(1|sampling_event),data=mosfireabd) 
m3<-lmer(labd~distlabd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(distlabd|sampling_event), data= mosfireabd) 
m4<-lmer(labd~distlabd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(1|location),data=mosfireabd) 
m5<-lmer(labd~distlabd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(distlabd|location),data=mosfireabd) 
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m6<-lmer(labd~distlabd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(1|sampling_event) + (1|location),data=mosfireabd) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#mod 2 wins 
n <- 5 
l <- rep(list(0:1), n) 
 
tvegmat<-expand.grid(l) 
write.csv(tvegmat,"tallvegmat.csv") 
 
m21<-lmer(labd~   +  +tall_tree +  +tall_palmetto +(1|sampling_event),data=mosfireabd) 
lm21<-refitML(m21) 
#vegmods are in the "per veg abund mods.txt" file 
 
summary(m21) 
confm21<-confint(m21,method="boot",nsim=10000,level=0.95) 
confm21 
 
par(mfrow=c(2,2)) 
resm21<-residuals(m21,type="pearson") 
Fm21<-fitted(m21,level=0) 
plot(fitted(m21),resm21,xlab="fitted values", ylab="norm resids") 
plot(mosfireabd$tall_tree,resm21,xlab="tallest tree",ylab="norm resids") 
plot(mosfireabd$tall_palmetto,resm21,xlab="tallest palmetto",ylab="norm resids") 
hist(resm21) 
 
 
########################################################## 
###just distance v abundance 
### random structure 
d1<-gls(labd~distlabd ,data=mosfireabd,method="REML") 
d2<-lmer(labd~distlabd+(1|sampling_event),data=mosfireabd) 
d3<-lmer(labd~distlabd+(distlabd|sampling_event), data= mosfireabd) 
d4<-lmer(labd~distlabd+(1|location),data=mosfireabd) 
d5<-lmer(labd~distlabd+(distlabd|location),data=mosfireabd) 
d6<-lmer(labd~distlabd+(1|sampling_event) + (1|location),data=mosfireabd) 
 
AICctab(d1,d2,d3,d4,d5,d6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
#2 wins again 
 
ld2<-refitML(d2) 
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summary(d2) 
confd2<-confint(d2,method="boot",nsim=1000,level=0.95) 
confd2 
 
par(mfrow=c(2,2)) 
resd2<-residuals(d2,type="pearson") 
Fm2<-fitted(d2,level=0) 
plot(fitted(d2),resd2,xlab="fitted values", ylab="norm resids") 
plot(distlabd,resd2,xlab="distance coefficient",ylab="norm resids") 
hist(resd2) 
 
############################### 
#pca veg 
 
vegdata<-mosfire[,15:26] 
 
summary(model1<-prcomp(vegdata,scale=TRUE)) 
plot(model1,main="",col="green") 
biplot(model1) 
 
 
yv<-predict(model1)[,1] 
yv2<-predict(model1)[,2] 
yv3<-predict(model1)[,3] 
 
### random structure 
m1<-gls(labd~distlabd+yv+yv2+yv3,data=mosfireabd,method="REML") 
m2<-lmer(labd~distlabd+yv+yv2+yv3+(1|sampling_event),data=mosfireabd) 
m3<-lmer(labd~distlabd+yv+yv2+yv3+(distlabd|sampling_event), data= mosfireabd) 
m4<-lmer(labd~distlabd+yv+yv2+yv3+(1|location),data=mosfireabd) 
m5<-lmer(labd~distlabd+yv+yv2+yv3+(distlabd|location),data=mosfireabd) 
m6<-lmer(labd~distlabd+yv+yv2+yv3+(1|sampling_event) + (1|location),data=mosfireabd) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#fixed structure 
m21<-lmer(labd~distlabd+yv+yv2+yv3+(1|sampling_event),data=mosfireabd) 
m22<-lmer(labd~yv+yv2+yv3+(1|sampling_event),data=mosfireabd) 
m23<-lmer(labd~yv+yv2+(1|sampling_event),data=mosfireabd) 
m24<-lmer(labd~yv+yv3+(1|sampling_event),data=mosfireabd) 
m25<-lmer(labd~yv2+yv3+(1|sampling_event),data=mosfireabd) 
m26<-lmer(labd~yv+(1|sampling_event),data=mosfireabd) 
m27<-lmer(labd~yv2+(1|sampling_event),data=mosfireabd) 
m28<-lmer(labd~yv3+(1|sampling_event),data=mosfireabd) 
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lm21<-refitML(m21) 
lm22<-refitML(m22) 
AICctab(lm21,lm22,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
lm22<-refitML(m22) 
lm23<-refitML(m23) 
lm24<-refitML(m24) 
lm25<-refitML(m25) 
lm26<-refitML(m26) 
lm27<-refitML(m27) 
lm28<-refitML(m8) 
AICctab(lm21,lm22,lm23,lm24,lm25,lm26,lm27,lm28,weights=TRUE,delta=TRUE,base=T

RUE,sort=TRUE) 
 
summary(m22) 
 
confm22<-confint(m22,method="boot",nsim=1000,level=0.95) 
confm22 
 
par(mfrow=c(3,2)) 
resm22<-residuals(m22,type="pearson") 
Fm22<-fitted(m22,level=0) 
plot(fitted(m22),resm22,xlab="fitted values", ylab="norm resids") 
plot(yv,resm22,xlab="PCA Axis 1",ylab="norm resids") 
plot(yv2,resm22,xlab="PCA Axis 2",ylab="norm resids") 
plot(yv3,resm22,xlab="PCA axis 3",ylab="norm resids") 
hist(resm22) 
 
 
 
################################################ 
#AIC comparisons 
 
 
AICctab(lm22,lm6,lm21,ld2,m2b32l,m2a3L,sort=T,weights=T,delta=T,nobs=nrow(mosfirea

bd)) 
 
library(MuMIn) 
r.squaredGLMM(lm6) 
 
Jost D 
 
rm(list=ls(all=TRUE)) 
mosfire<-read.table("variables.txt",header=T) 
library(spdep) 
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library(lme4) 
library(bbmle) 
library(car) 
library (lattice) 
library(influence.ME) 
library (nlme) 
#### 
check for normality 
 
shapiro.test(mosfire$jost_ind) 
shapiro.test(log(mosfire$jost_ind)) 
 
leveneTest(mosfire$jost_ind,mosfire$tsf,center=median) 
 
leveneTest(log(mosfire$jost_ind),mosfire$tsf,center=median) 
 
###### 
ljd<-(log(mosfire$jost_ind)) 
mosfirejd<-cbind(mosfire,ljd) 
 
cord<-read.table("ptutms.txt",header=T) 
 
xy1<-SpatialPoints(cord,proj4string=CRS("+proj=utm +zone=17+datum=WGS84")) 
#the nobs part of the following line is the largest difference betwen points aht you want to be 

compared 
distljd<-autocov_dist(mosfirejd$ljd,xy1,nbs=4000) 
 
mosfirejd<-cbind(mosfirejd,distljd) 
 
hist(mosfirejd$jost_ind) 
hist(mosfirejd$ljd) 
 
plot(mosfirejd$ljd,mosfirejd$distljd,main="log jost v dist coef") 
boxplot(mosfirejd$ljd~mosfirejd$sampling_event,main="log jost v sampling event") 
boxplot(mosfirejd$ljd~mosfirejd$location,main="log jost v location") 
 
 
 
################################## 
boxplot(mosfirejd$ljd~mosfirejd$tsf,main=" log jost v tsf") 
 
###v tsf random factors 
m1<-gls(ljd~distljd+tsf,data=mosfirejd,method="REML") 
m2<-lmer(ljd~distljd+tsf+(1|sampling_event),data=mosfirejd) 
m3<-lmer(ljd~distljd+tsf+(distljd|sampling_event), data= mosfirejd) 
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m4<-lmer(ljd~distljd+tsf+(1|location),data=mosfirejd) 
m5<-lmer(ljd~distljd+tsf+(distljd|location),data=mosfirejd) 
m6<-lmer(ljd~distljd+tsf+(1|sampling_event) + (1|location),data=mosfirejd) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model 2 wins 
#####fixed factors 
 
 
m2a1<-lmer(ljd~distljd+tsf+(1|sampling_event),data=mosfirejd) 
m2a1L<-refitML(m2a1) 
m2a2<-lmer(ljd~distljd+(1|sampling_event),data=mosfirejd) 
m2a2L<-refitML(m2a2) 
m2a3<-lmer(ljd~tsf+(1|sampling_event),data=mosfirejd) 
m2a3L<-refitML(m2a3) 
 
AICctab(m2a1L,m2a2L,m2a3L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
plot(m2a2) 
summary(m2a2) 
confm2a2<-confint(m2a2,method="boot",nsim=1000,level=0.95) 
confm2a2 
 
##validation 
par(mfrow=c(2,2)) 
resm2a2<-residuals(m2a2,type="pearson") 
F2a2r<-fitted(m2a2,level=0) 
plot(fitted(m2a2),resm2a2,xlab="fitted values", ylab="norm resids") 
plot(distljd,resm2a2,xlab="distance coefficient",ylab="norm resids") 
hist(resm2a2) 
 
 
 
 
###################################################################### 
### jost v gla pics 
plot(mosfirejd$cnpy0,mosfirejd$cnpy1) 
plot(mosfirejd$cnpy0,mosfirejd$cnpy2) 
plot(mosfirejd$cnpy1,mosfirejd$cnpy2) 
 
### random structure 
m1<-gls(ljd~distljd+cnpy0*cnpy1*cnpy2,data=mosfirejd,method="REML") 
m2<-lmer(ljd~distljd+cnpy0*cnpy1*cnpy2+(1|sampling_event),data=mosfirejd) 
m3<-lmer(ljd~distljd+cnpy0*cnpy1*cnpy2+(distljd|sampling_event), data= mosfirejd) 
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m4<-lmer(ljd~distljd+cnpy0*cnpy1*cnpy2+(1|location),data=mosfirejd) 
m5<-lmer(ljd~distljd+cnpy0*cnpy1*cnpy2+(distljd|location),data=mosfirejd) 
m6<-lmer(ljd~distljd+cnpy0*cnpy1*cnpy2+(1|sampling_event) + 

(1|location),data=mosfirejd) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#mod 2 wins 
 
###fixed structure 
 #find mods "gla jost mods.txt" 
 
bm9<-lmer(ljd~distljd+  +  +  +cnpy0:cnpy1 +  +  +  + (1|sampling_event),data=mosfirejd) 
bm2<-lmer(ljd~distljd+cnpy0 +  +  +  +  +  +  + (1|sampling_event),data=mosfirejd) 
bm17<-lmer(ljd~distljd+  +  +  +  +cnpy0:cnpy2 +  +  + (1|sampling_event),data=mosfirejd) 
bm65<-lmer(ljd~distljd+  +  +  +  +  +  +cnpy0:cnpy1:cnpy2 + 

(1|sampling_event),data=mosfirejd) 
lbm9<-refitML(bm9) 
lbm2<-refitML(bm2) 
lbm17<-refitML(bm17) 
lbm65<-refitML(bm65) 
 
 
summary(bm9) 
confbm9<-confint(bm9,method="boot",nsim=1000,level=0.95) 
confbm9 
 
##validation 
par(mfrow=c(3,2)) 
resbm9<-residuals(bm9,type="pearson") 
Fbm9<-fitted(bm9,level=0) 
plot(fitted(bm9),resbm9,xlab="fitted values", ylab="norm resids") 
plot(distljd,resbm9,xlab="distance coefficient",ylab="norm resids") 
plot(mosfirejd$cnpy0,resbm9,xlab="% canopy at 0",ylab="norm resids") 
plot(mosfirejd$cnpy1,resbm9,xlab="% canopy at 1",ylab="norm resids") 
hist(resbm9) 
 
 
########################################################################## 
###veg 
vegie<-mosfirejd[,15:26] 
pairs(vegie) 
 
### random structure 
m1<-gls(ljd~distljd+per_grass+per_subshrub + 
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 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter,data=mosfirejd,method="REML") 
m2<-lmer(ljd~distljd+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(1|sampling_event),data=mosfirejd) 
m3<-lmer(ljd~distljd+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(distljd|sampling_event), data= mosfirejd) 
m4<-lmer(ljd~distljd+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(1|location),data=mosfirejd) 
m5<-lmer(ljd~distljd+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(distljd|location),data=mosfirejd) 
m6<-lmer(ljd~distljd+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(1|sampling_event) + (1|location),data=mosfirejd) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model 2 wins 
 
#n <- 6 
#l <- rep(list(0:1), n) 
 
#vegmat<-expand.grid(l) 
#write.csv(vegmat,"vegmatsmall.csv") 
 
 
#find veg mods at "per veg jost mods.txt" 
 
#used vegadd mods to do the rest of the models 
m6<-lmer(ljd~distljd+ per_grass +per_wood_trees + (1|sampling_event),data=mosfirejd) 
lm6<-refitML(m6) 
 
summary(m6) 
confm6<-confint(m6,method="boot",nsim=10000,level=0.95) 
confm6 
 
##validation 
par(mfrow=c(3,2)) 
resm6<-residuals(m6,type="pearson") 
Fm6<-fitted(m6,level=0) 
plot(fitted(m6),resm6,xlab="fitted values", ylab="norm resids") 
plot(distljd,resm6,xlab="distance coefficient",ylab="norm resids") 
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plot(mosfirejd$per_grass,resm6,xlab="percent grass",ylab="norm resids") 
plot(mosfirejd$per_wood_trees,resm6,xlab="percent woody trees",ylab="norm resids") 
hist(resm6) 
 
############################################################ 
### random structure 
m1<-gls(ljd~distljd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto,data=mosfirejd,method="REML") 
m2<-lmer(ljd~distljd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(1|sampling_event),data=mosfirejd) 
m3<-lmer(ljd~distljd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(distljd|sampling_event), data= mosfirejd) 
m4<-lmer(ljd~distljd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(1|location),data=mosfirejd) 
m5<-lmer(ljd~distljd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(distljd|location),data=mosfirejd) 
m6<-lmer(ljd~distljd+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(1|sampling_event) + (1|location),data=mosfirejd) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model 2 wins 
 #find mods in "tall veg jost mods.txt" 
m4<-lmer(ljd~distljd+ tall_grass +tall_subshrub +  +  +  

+(1|sampling_event),data=mosfirejd) 
lm4<-refitML(m4) 
 
summary(m4) 
confm4<-confint(m4,method="boot",nsim=10000,level=0.95) 
confm4 
 
par(mfrow=c(3,2)) 
resm4<-residuals(m4,type="pearson") 
Fm6<-fitted(m4,level=0) 
plot(fitted(m4),resm4,xlab="fitted values", ylab="norm resids") 
plot(distljd,resm4,xlab="distance coefficient",ylab="norm resids") 
plot(mosfirejd$tall_grass,resm4,xlab="tall grass",ylab="norm resids") 
plot(mosfirejd$tall_subshrub,resm4,xlab="tall subshrub",ylab="norm resids") 
hist(resm4) 
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############################################################## 
###just distance 
 
### random structure 
d1<-gls(ljd~distljd ,data=mosfirejd,method="REML") 
d2<-lmer(ljd~distljd+(1|sampling_event),data=mosfirejd) 
d3<-lmer(ljd~distljd+(distljd|sampling_event), data= mosfirejd) 
d4<-lmer(ljd~distljd+(1|location),data=mosfirejd) 
d5<-lmer(ljd~distljd+(distljd|location),data=mosfirejd) 
d6<-lmer(ljd~distljd+(1|sampling_event) + (1|location),data=mosfirejd) 
 
AICctab(d1,d2,d3,d4,d5,d6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#m2 wins 
ld2<-refitML(d2) 
 
plot(distljd,ljd) 
 
##validation 
par(mfrow=c(2,2)) 
resd2<-residuals(d2,type="pearson") 
Fm2<-fitted(d2,level=0) 
plot(fitted(d2),resd2,xlab="fitted values", ylab="norm resids") 
plot(distljd,resd2,xlab="distance coefficient",ylab="norm resids") 
hist(resd2) 
 
confd2<-confint(d2,method="boot",nsim=1000,level=0.95) 
confd2 
 
summary(d2) 
 
 
 
################################### 
##pca veg 
vegdata<-mosfire[,15:26] 
 
summary(model1<-prcomp(vegdata,scale=TRUE)) 
plot(model1,main="",col="green") 
biplot(model1) 
 
 
yv<-predict(model1)[,1] 
yv2<-predict(model1)[,2] 
yv3<-predict(model1)[,3] 
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mosfirejd<-cbind(mosfirejd,yv,yv2,yv3) 
 
### random structure 
m1<-gls(ljd~distljd+yv+yv2+yv3,data=mosfirejd,method="REML") 
m2<-lmer(ljd~distljd+yv+yv2+yv3+(1|sampling_event),data=mosfirejd) 
m3<-lmer(ljd~distljd+yv+yv2+yv3+(distljd|sampling_event), data= mosfirejd) 
m4<-lmer(ljd~distljd+yv+yv2+yv3+(1|location),data=mosfirejd) 
m5<-lmer(ljd~distljd+yv+yv2+yv3+(distljd|location),data=mosfirejd) 
m6<-lmer(ljd~distljd+yv+yv2+yv3+(1|sampling_event) + (1|location),data=mosfirejd) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model 2 wins again 
 
 
m21<-lmer(ljd~distljd+yv+yv2+yv3+(1|sampling_event),data=mosfirejd) 
m22<-lmer(ljd~yv+yv2+yv3+(1|sampling_event),data=mosfirejd) 
m23<-lmer(ljd~distljd+yv+yv2+(1|sampling_event),data=mosfirejd) 
m24<-lmer(ljd~distljd+yv+yv3+(1|sampling_event),data=mosfirejd) 
m25<-lmer(ljd~distljd+yv2+yv3+(1|sampling_event),data=mosfirejd) 
m26<-lmer(ljd~distljd+yv+(1|sampling_event),data=mosfirejd) 
m27<-lmer(ljd~distljd+yv2+(1|sampling_event),data=mosfirejd) 
m28<-lmer(ljd~distljd+yv3+(1|sampling_event),data=mosfirejd) 
 
lm21<-refitML(m21) 
lm22<-refitML(m22) 
lm23<-refitML(m23) 
lm24<-refitML(m24) 
lm25<-refitML(m25) 
lm26<-refitML(m26) 
lm27<-refitML(m27) 
lm28<-refitML(m28) 
AICctab(lm21,lm22,lm23,lm24,lm25,lm26,lm27,lm28,weights=TRUE,delta=TRUE,base=T

RUE,sort=TRUE) 
 
summary(m24) 
 
confm24<-confint(m24,method="boot",nsim=10000,level=0.95) 
confm24 
 
par(mfrow=c(3,2)) 
resm24<-residuals(m24,type="pearson") 
Fm24<-fitted(m24,level=0) 
plot(fitted(m24),resm24,xlab="fitted values", ylab="norm resids") 
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plot(distljd,resm24,xlab="distance coefficient",ylab="norm resids") 
plot(yv,resm24,xlab="PCA Axis 1",ylab="norm resids") 
plot(yv3,resm24,xlab="PCA axis 3",ylab="norm resids") 
hist(resm24) 
 
 
 
 
############################################# 
#AIC comparisons 
 
AICctab(m2a2L,lm24,lm4,lm6,lbm9,lbm2,lbm17,lbm65,sort=T,weights=T,delta=T,base=T) 
 
library(MuMIn) 
r.squaredGLMM(lm24) 
 
Species richness models 
 
rm(list=ls(all=TRUE)) 
mosfire<-read.table("variables.txt",header=T) 
####### create distance variable 
library(spdep) 
library(lme4) 
library(bbmle) 
library(car) 
library (lattice) 
library(influence.ME) 
library (nlme) 
 
cord<-read.table("ptutms.txt",header=T) 
 
xy1<-SpatialPoints(cord,proj4string=CRS("+proj=utm +zone=17+datum=WGS84")) 
#the nobs part of the following line is the largest difference betwen points aht you want to be 

compared 
distspr<-autocov_dist(mosfire$spec_rich,xy1,nbs=4000) 
 
mosfirespr<-cbind(mosfire,distspr) 
 
 
### testing for normality of the response variable 
shapiro.test(mosfirespr$spec_rich) 
shapiro.test((log(mosfirespr$spec_rich+1))) 
 
 
### 
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newdata1<-mosfirespr[which(mosfirespr$tsf=='l'),] 
shapiro.test(newdata1$spec_rich) 
 
newdata2<-mosfirespr[which(mosfirespr$tsf=='m'),] 
shapiro.test(newdata2$spec_rich) 
 
##with log trans 
newdata<-mosfirespr[which(mosfirespr$tsf=='s'),] 
shapiro.test(newdata$lspr) 
 
newdata1<-mosfirespr[which(mosfirespr$tsf=='l'),] 
shapiro.test(newdata1$lspr) 
 
newdata2<-mosfirespr[which(mosfirespr$tsf=='m'),] 
shapiro.test(newdata2$lspr) 
 
#testing for hoeogeneity of variance across groups 
library(car) 
 
leveneTest(mosfirespr$spec_rich,mosfirespr$tsf,center=median) 
  
leveneTest(mosfirespr$lspr,mosfirespr$tsf,center=median) 
 
hist(mosfirespr$spec_rich) 
hist(mosfirespr$lspr) 
 
plot(mosfirespr$spec_rich,mosfirespr$distspr,main="  species richness v dist coef") 
boxplot(mosfirespr$spec_rich~mosfirespr$sampling_event,main="  species richness v 

sampling event") 
boxplot(mosfirespr$spec_rich~mosfirespr$location,main="  species richness v location") 
 
################################################################## 
###v tsf random factors--use the models with b in it becasue it takes out the location part 
m1<-gls(spec_rich~distspr+tsf,data=mosfirespr,method="REML") 
m2<-lmer(spec_rich~distspr+tsf+(1|sampling_event),data=mosfirespr) 
m3<-lmer(spec_rich~distspr+tsf+(distspr|sampling_event), data= mosfirespr) 
m4<-lmer(spec_rich~distspr+tsf+(1|location),data=mosfirespr) 
m5<-lmer(spec_rich~distspr+tsf+(distspr|location),data=mosfirespr) 
m6<-lmer(spec_rich~distspr+tsf+(1|sampling_event) + (1|location),data=mosfirespr) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model 6 wins 
 
#fixed structure 
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m2a1<-lmer(spec_rich~distspr+tsf+(1|sampling_event) + (1|location),data=mosfirespr) 
m2a1L<-refitML(m2a1) 
m2a2<-lmer(spec_rich~distspr+(1|sampling_event) + (1|location),data=mosfirespr) 
m2a2L<-refitML(m2a2) 
m2a3<-lmer(spec_rich~tsf+(1|sampling_event) + (1|location),data=mosfirespr) 
m2a3L<-refitML(m2a3) 
 
AICctab(m2a1L,m2a2L,m2a3L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model m2a2L wins 
 
bm2a1<-lmer(spec_rich~distspr+tsf+(1|sampling_event) ,data=mosfirespr) 
bm2a1L<-refitML(bm2a1) 
bm2a2<-lmer(spec_rich~distspr+(1|sampling_event),data=mosfirespr) 
bm2a2L<-refitML(bm2a2) 
bm2a3<-lmer(spec_rich~tsf+(1|sampling_event),data=mosfirespr) 
bm2a3L<-refitML(bm2a3) 
 
AICctab(bm2a1L,bm2a2L,bm2a3L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
AICctab(m2a2L,bm2a2L,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
summary(bm2a2) 
confbm2a2<-confint(bm2a2,method="boot",nsim=10000,level=0.95) 
confbm2a2 
 
##validation 
par(mfrow=c(2,2)) 
resbm2a2<-residuals(bm2a2,type="pearson") 
Fb2a2r<-fitted(bm2a2,level=0) 
plot(fitted(bm2a2),resbm2a2,xlab="fitted values", ylab="norm resids") 
plot(distspr,resbm2a2,xlab="distance coefficient",ylab="norm resids") 
hist(resbm2a2) 
 
##################################################################### 
#####GLA pics 
### random structure 
m1<-gls(spec_rich~distspr+cnpy0*cnpy1*cnpy2,data=mosfirespr,method="REML") 
m2<-lmer(spec_rich~distspr+cnpy0*cnpy1*cnpy2+(1|sampling_event),data=mosfirespr) 
m3<-lmer(spec_rich~distspr+cnpy0*cnpy1*cnpy2+(distspr|sampling_event), data= 

mosfirespr) 
m4<-lmer(spec_rich~distspr+cnpy0*cnpy1*cnpy2+(1|location),data=mosfirespr) 
m5<-lmer(spec_rich~distspr+cnpy0*cnpy1*cnpy2+(distspr|location),data=mosfirespr) 
m6<-lmer(spec_rich~distspr+cnpy0*cnpy1*cnpy2+(1|sampling_event) + 

(1|location),data=mosfirespr) 
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AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#mod 2 wins 
###fixed structure 
 
#find mods in "gla spec rich mods.txt" 
bm33<-lmer(spec_rich~distspr+  +  +  +  +  +cnpy1:cnpy2 +  + 

(1|sampling_event),data=mosfirespr) 
lbm33<-refitML(bm33) 
 
summary(bm33) 
confbm33<-confint(bm33,method="boot",nsim=10000,level=0.95) 
confbm33 
 
##validation 
par(mfrow=c(3,2)) 
resbm33<-residuals(bm33,type="pearson") 
Fbm33<-fitted(bm33,level=0) 
plot(fitted(bm33),resbm33,xlab="fitted values", ylab="norm resids") 
plot(distspr,resbm33,xlab="distance coefficient",ylab="norm resids") 
plot(mosfirespr$cnpy1,resbm33,xlab="% canopy at 1",ylab="norm resids") 
plot(mosfirespr$cnpy2,resbm33,xlab="% canopy at 2",ylab="norm resids") 
hist(resbm33) 
 
 
###########################################################################

## 
######full veg data 
### random structure 
m1<-gls(spec_rich~distspr+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter,data=mosfirespr,method="REML") 
m2<-lmer(spec_rich~distspr+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(1|sampling_event),data=mosfirespr) 
m3<-lmer(spec_rich~distspr+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(distspr|sampling_event), data= mosfirespr) 
m4<-lmer(spec_rich~distspr+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(1|location),data=mosfirespr) 
m5<-lmer(spec_rich~distspr+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(distspr|location),data=mosfirespr) 
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m6<-lmer(spec_rich~distspr+per_grass+per_subshrub + 
 per_wood_trees+per_Herb+per_palmetto+ 
 +per_sand+per_litter+(1|sampling_event) + (1|location),data=mosfirespr) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model 2 wins 
 
#for fixed look in the file "per veg spec rich mods.txt" 
 
#lm 2 wins 
m2<-lmer(spec_rich~ tall_grass +  +  +  +  +(1|sampling_event),data=mosfirespr) 
lm2<-refitML(m2) 
summary(m2) 
confm2<-confint(m2,method="boot",nsim=10000,level=0.95) 
confm2 
 
par(mfrow=c(2,2)) 
resm2<-residuals(m2,type="pearson") 
Fm2<-fitted(m2,level=0) 
plot(fitted(m2),resm2,xlab="fitted values", ylab="norm resids") 
plot(mosfirespr$per_grass,resm2,xlab="percent grass",ylab="norm resids") 
hist(resm2) 
 
######################################################### 
#tall veg mods 
m1<-gls(spec_rich~distspr+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto,data=mosfirespr,method="REML") 
m2<-lmer(spec_rich~distspr+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(1|sampling_event),data=mosfirespr) 
m3<-lmer(spec_rich~distspr+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(distspr|sampling_event), data= mosfirespr) 
m4<-lmer(spec_rich~distspr+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(1|location),data=mosfirespr) 
m5<-lmer(spec_rich~distspr+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(distspr|location),data=mosfirespr) 
m6<-lmer(spec_rich~distspr+tall_grass+ 
 tall_subshrub+tall_tree+tall_herb+ 
 tall_palmetto+(1|sampling_event) + (1|location),data=mosfirespr) 
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AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#model 2 wins 
m6<-lmer(spec_rich~distspr+ tall_grass +  +tall_tree +  +  

+(1|sampling_event),data=mosfirespr) 
lm6<-refitML(m6) 
 
#for fixed look in the file "veg mods for spec rich.txt" 

 
#lm 6 wins 
 
summary(m6) 
confm6<-confint(m6,method="boot",nsim=10000,level=0.95) 
confm6 
 
par(mfrow=c(3,2)) 
resm6<-residuals(m6,type="pearson") 
Fm6<-fitted(m6,level=0) 
plot(fitted(m6),resm6,xlab="fitted values", ylab="norm resids") 
plot(distspr,resm6,xlab="distance coefficient",ylab="norm resids") 
plot(mosfirespr$tall_grass,resm6,xlab="tallest grass",ylab="norm resids") 
plot(mosfirespr$tall_tree,resm6,xlab="tallest tree",ylab="norm resids") 
hist(resm6) 

 
################################################################ 
#just distance 
### random structure/fixed 
d1<-gls(spec_rich~distspr ,data=mosfirespr,method="REML") 
d2<-lmer(spec_rich~distspr+(1|sampling_event),data=mosfirespr) 
d3<-lmer(spec_rich~distspr+(distspr|sampling_event), data= mosfirespr) 
d4<-lmer(spec_rich~distspr+(1|location),data=mosfirespr) 
d5<-lmer(spec_rich~distspr+(distspr|location),data=mosfirespr) 
d6<-lmer(spec_rich~distspr+(1|sampling_event) + (1|location),data=mosfirespr) 
 
AICctab(d1,d2,d3,d4,d5,d6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#mod 6 wins 
 
ld6<-refitML(d6) 
summary(d6) 
confd6<-confint(d6,method="boot",nsim=1000,level=0.95) 
confd6 
 
 
##validation 
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par(mfrow=c(2,2)) 
resd6<-residuals(d6,type="pearson") 
Fm6<-fitted(d6,level=0) 
plot(fitted(d6),resd6,xlab="fitted values", ylab="norm resids") 
plot(distspr,resd6,xlab="distance coefficient",ylab="norm resids") 
hist(resd6) 
 
 
 
 
 
################################################################### 
###PCA for veg models 
vegdata<-mosfire[,15:26] 
 
summary(model1<-prcomp(vegdata,scale=TRUE)) 
plot(model1,main="",col="green") 
biplot(model1, pc1,pc3) 
biplot(model1, choices=c(1,3)) 
biplot(model1, choices=c(2,3)) 
 
yv<-predict(model1)[,1] 
yv2<-predict(model1)[,2] 
yv3<-predict(model1)[,3] 
 
 
mosfirespr<-cbind(mosfirespr,yv,yv2,yv3) 
### random structure 
m1<-gls(spec_rich~distspr+yv+yv2+yv3,data=mosfirespr,method="REML") 
m2<-lmer(spec_rich~distspr+yv+yv2+yv3+(1|sampling_event),data=mosfirespr) 
m3<-lmer(spec_rich~distspr+yv+yv2+yv3+(distspr|sampling_event), data= mosfirespr) 
m4<-lmer(spec_rich~distspr+yv+yv2+yv3+(1|location),data=mosfirespr) 
m5<-lmer(spec_rich~distspr+yv+yv2+yv3+(distspr|location),data=mosfirespr) 
m6<-lmer(spec_rich~distspr+yv+yv2+yv3+(1|sampling_event) + 

(1|location),data=mosfirespr) 
 
AICctab(m1,m2,m3,m4,m5,m6,weights=TRUE,delta=TRUE,base=TRUE,sort=TRUE) 
 
#mod 2 wins 
 
#fixed sturcture 
m21<-lmer(spec_rich~distspr+yv+yv2+yv3+(1|sampling_event),data=mosfirespr) 
m22<-lmer(spec_rich~yv+yv2+yv3+(1|sampling_event),data=mosfirespr) 
m23<-lmer(spec_rich~distspr+yv+yv2+(1|sampling_event),data=mosfirespr) 
m24<-lmer(spec_rich~distspr+yv+yv3+(1|sampling_event),data=mosfirespr) 
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m25<-lmer(spec_rich~distspr+yv2+yv3+(1|sampling_event),data=mosfirespr) 
m26<-lmer(spec_rich~distspr+yv+(1|sampling_event),data=mosfirespr) 
m27<-lmer(spec_rich~distspr+yv2+(1|sampling_event),data=mosfirespr) 
m28<-lmer(spec_rich~distspr+yv3+(1|sampling_event),data=mosfirespr) 
 
lm21<-refitML(m21) 
lm22<-refitML(m22) 
lm23<-refitML(m23) 
lm24<-refitML(m24) 
lm25<-refitML(m25) 
lm26<-refitML(m26) 
lm27<-refitML(m27) 
lm28<-refitML(m8) 
AICctab(lm21,lm22,lm23,lm24,lm25,lm26,lm27,lm28,weights=TRUE,delta=TRUE,base=T

RUE,sort=TRUE) 
 
summary(m27) 
 
confm27<-confint(m27,method="boot",nsim=10000,level=0.95) 
confm27 
 
par(mfrow=c(2,2)) 
resm27<-residuals(m27,type="pearson") 
Fm27<-fitted(m27,level=0) 
plot(fitted(m27),resm27,xlab="fitted values", ylab="norm resids") 
plot(distspr,resm27,xlab="distance coefficient",ylab="norm resids") 
plot(yv2,resm27,xlab="PCA Axis 2",ylab="norm resids") 
hist(resm27) 
############################### 
#AIC comparisons 
 
AICctab(bm2a2L,lbm33,lm2,lm6,lm27,sort=T,weights=T,delta=T,base=T) 
library(MuMIn) 
r.squaredGLMM(lm6) 
 
 
 
PCA 
 
rm(list=ls(all=TRUE)) 
mosfire<-read.table("variables.txt",header=T) 
vegdata<-mosfire[,15:26] 
 
summary(model1<-prcomp(vegdata,scale=TRUE)) 
plot(model1,main="",col="green") 
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biplot(model1) 
 
loading<-(model1$rotation) 
loading 
(loading)^2 
yv<-predict(model1)[,1] 
yv2<-predict(model1)[,2] 
yv3<-predict(model1)[,3] 
window(7,4) 
par(mfrow=c(1,3)) 
plot(mosfire$tsf,yv,pch=16,xlab="time since fire",ylab = "pc1",col="red") 
plot(mosfire$tsf,yv2,pch=16,xlab="time since fire",ylab = "pc2",col="red") 
plot(mosfire$tsf,yv3,pch=16,xlab="time since fire",ylab = "pc3",col="red") 
 
Indicator species 
 
rm(list=ls(all=TRUE)) 
library(indicspecies) 
mosfireind<-read.table("mosfire_siteid_abund.txt.",header=T) 
newmosind<-mosfireind[c(5:18)] 
 
###indicator species analysis 
#use func="IndVal.g" because it equalizes the statistic for gouping together groups 
ind1<-multipatt(newmosind,mosfireind$tsf,func="IndVal.g",control=how(nperm=999)) 
summary(ind1,indvalcomp=TRUE,alpha=1) 
summary(ind1) 
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