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ABSTRACT 

Understanding how predators impact keystone species, like ants, is very important for our 

understanding of ecology because of ants’ importance in shaping community dynamics and ecosystem 

functions. In this thesis I present research investigating the role of the ant-specialized spider Anasaitis 

canosa in influencing the foraging behavior of four ant species (Formica pallidefulva, Odontomachus 

ruginodis, Pheidole obscurithorax & Solenopsis invicta). Collectively, these four species use foraging 

strategies exhibited by most ants. I conducted two experiments to quantify the impacts of spider 

predation on ant prey. The first used forty colonies of four ant species to investigate how A. canosa 

changed foraging behavior at both the individual and colony level. The second used 27 lab-reared S. 

invicta colonies to see if there was any evidence for innate predatory avoidance in foragers and if 

predatory avoidance was influenced by learning. A field study observed the density and prey choices of 

A. canosa in 3 sites within the UCF arboretum. In sum, no consistent change in foraging occurred in the 

presence of A. canosa, over time scales sufficient to detect colony-level impacts and thus colonies as a 

whole appear to be risk insensitive. Naïve colonies had more ants beginning foraging before a single 

ant would return in their first trial compared to the second trial. This suggests forager learning occurs as 

foragers respond to the perception of a predator, and that S. invicta can reduce individual risk through 

increasing forager numbers. A. canosa predation rates and density were calculated and based on these 

estimates an approximate impact upon a colony was made. Most importantly, 13 foragers/m2 inside 

each foraging cohort can be expected to have prior experience with the spider. 
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CHAPTER ONE: INTRODUCTION 

Our understanding of invertebrate ecology is shaped by the interaction of top down and bottom up 

effects forming a network of relationships within a food web (Cummins & Klug, 1979). Ecology as a 

whole is moving towards a more nuanced understanding of how behaviors in a food web structure 

communities and landscapes: two examples are fear and disgust. These overarching theories explore 

how perceptions regarding the likelihood of a lurking disease or predator can influence decisions made 

by an organism. These decisions result in behavior-driven outcomes, called non-consumptive effects, 

which can cause profound and cascading trophic changes not just locally but across the entire 

ecosystem (Terborgh et al. 2001). These theories change our understanding of how communities are 

structured and how we look at species dynamics. 

Models of animal distributions are traditionally based on the availability of, and competition 

for, food (Rosenzweig and MacArthur, 1963) under what is popularly called patch theory (Pickett & 

White, 1985). However, non-consumptive effects have a new method of species distribution modeling 

(Laundré et al. 2010. Laundré et al. 2014). This is the landscape of fear; a theory modeling a 

population’s distribution across micro-habitats (discreet units within a continuous habitat). The 

landscape of fear uses the perception of a predator’s presence as a ‘risk factor’ to explain a species 

distribution across microhabitats prior to information about food and competition (Laundré et al. 2010). 

This risk factor incorporates alterations in behavior, where the prey animal exchanges food for 

increased safety from predators, usually involving reduction in foraging or avoidance of an area. This 

theory has focused on large roaming predators and their prey (Laundré et al. 2001. Miller et al. 2014). 

It is likely that ants have not been studied as prey in the landscape of fear because ants are 

typically considered predators of other arthropods and even some vertebrates (Hölldobler & Wilson, 

1990). Ants still have many predators, and if these predators influence ant behavior in subtle ways, it 
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would have dramatic consequences for ecosystems. Ants are highly abundant in most terrestrial 

ecosystems (Hölldobler & Wilson, 1994) where they impact nutrient cycling (Hölldobler & Wilson, 

1990. Folgarait, 1998.) and distribution of countless species (Hölldobler & Wilson, 1994. Zelikova et 

al. 2011.).  Studies of the competitive impacts of ants and their role as predators have shown that ants 

can and do shape communities (Nelson et al. 2005. Offenberg et al. 2004. Sendoya et al. 2009.), but 

little attention has been given to how predators may affect an ant colony’s behavior and distribution. 

This makes ants a compelling subject to study within the landscape of fear. 

Ants possess a trait that makes them even more important to study within the landscape of fear; 

a trait which has been almost entirely ignored in studies of non-consumptive effects: social interaction. 

Though ants, bees, and other eusocial and social organisms have been studied for non-consumptive 

effects, they have been observed and studied as individuals rather than a group. Ants and other eusocial 

organisms achieve their dominance in an ecosystem through their complex societies. Eusociality is 

defined by three features: cooperative care of young, an overlap of generations and division of labor 

within the group (particularly reproductive division of labor) (Hölldobler & Wilson, 1940). In ants, the 

queen only produces offspring which typically sterile daughters care for as well as performing all other 

tasks in the colony. Ant colonies as a whole act through combined decision making (Conradt & Roper, 

2005). This is the result of complex behavioral interactions between group members mediated through 

the exchange of chemical signals (Conradt & Roper, 2005. Jeanson et al. 2012.). One of the most 

common interactions among ants is recruiting foragers to food sources. This interaction varies slightly 

between the many methods used by ant species; the three most common are mass recruiting, solitary 

foraging and trunk trails. Because ants with trunk trails have received more attention in how predation 

affects foraging (Whitford & Bryant, 1979. Porter & Jorgenson, 1981. Shaffer Jr & Whitford, 1981. 
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Mackay, 1928. Munger 1984. Gentry, 1974. Kwapich & Hölldobler, 2017), I will focus on the two 

other common strategies in the foraging spectrum: mass recruitment and solitary foraging. 

This dissertation aims to discover the relationships between ants and a ubiquitous, widespread 

ant-predator, the twin-flagged jumping spider, Anasaitis canosa. To do this, two lab experiments and a 

field observation were conducted.  
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CHAPTER TWO: LITERATURE REVIEW 

The Landscape of Fear 

Trophic ecology is placing a growing emphasis on understanding non-consumptive effects. Non-

consumptive effects are any of the ways a predator influences prey without actually eating them. These 

effects are important because they can result in trophic cascades, including dramatic changes across 

food webs, that can ultimately impact ecosystem function (Terborgh et al. 2001). A subfield devoted to 

non-consumptive effects called the ‘biology of fear’ arose following the landmark reintroduction of 

wolves into Yellowstone National Park in 1994-1995, reversing their total disappearance since 1970 

(Wolf Restoration). To avoid wolf predation, deer populations changed their feeding habits, spending 

less time in areas where wolves frequented, as well as areas where wolves could easily catch them, 

such as riverbanks (Laundré et al. 2001). This prevented deer over-browsing in these areas and plant 

communities were altered, which eventually changed river dynamics (Ripple & Beschta, 2004. Ripple 

& Beschta, 2007. Ripple et al. 2001). Because the introduction of wolves had impacts that changed 

major features of the landscape, the study of how predators shaped the surrounding communities by 

their presence is often referred to as ‘the landscape of fear’ (Laundré et al. 2014. Laundré et al. 2010). 

Though ‘the landscape of fear’ is a relatively new topic in ecology, the concept of risk being 

physically manifest in the environment is older (Tuan, 1979). Research documenting the responses of 

prey to predation has occurred in biology prior to emergence of the landscape of fear in biology (Lima 

and Dill, 1990) when ecologists observed phenotypic alterations to physical traits triggered by direct 

interaction with a predator which they called ‘trait-mediated indirect interactions’ (Abrams, 1995). 

Although these are non-consumptive effects, these studies are not directly related to the landscape of 
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fear, which is largely concerned with pre-emptive decisions prey make to avoid or reduce predation 

risk.  Thus, the landscape of fear focuses on understanding behavioral traits which are changed due to 

the risk of predation. 

Much of the research in the landscape of fear has focused on large mobile vertebrate predators 

and their prey (Laundré et al. 2001. Miller et al. 2014. Wirsing & Ripple, 2011), commonly mammals 

(Brown, 1988. Laundré, 2010. Laundré et al. 2001) and fish (Geraldi & Powers, 2011. Hammerschlag 

et al. 2015.). Research has shown non-consumptive effects influence invertebrates (Dicke & Grostal, 

2001. Schmitz et al. 2010) especially aquatic ones (Barry, 1994, Ram et al. 2008. Denno et al. 2008. 

Culp et al. 1991. Trekels & Vanschoenwinkel, 2016. Davenport et al. 2014. Ngai & Srivastava, 2006. 

Mccauley et al. 2011.). Invertebrates are shown to spend less time in areas where predators are 

introduced and will avoid regions where they perceive specific signals associated with predators. 

Terrestrial invertebrates studied within the landscape of fear have primarily been plant pests (Hawlena 

et al. 2012. Hawlena & Schmitz, 2010 [1&2]. Schmitz, 2005. Rosenheim et al. 1993. Denno et al. 

2003. Jandricic et al. 2016) and spiders (Hodkinson et al. 2001. Schmitz, 2006. Mestre et al. 2014. 

Hawlena et al. 2012. Hawlena & Schmitz, 2010 [1&2], Schmitz, 2005. Tahir et al. 2017). Eusocial 

insects, like ants, are typically studied as predators to be avoided rather than prey (Li et al. 2014 [1]. 

Nelson et al. 2005. Offenberg et al. 2004. Sendoya et al. 2009. Gonzávez & Rodríguez-Gironés, 2013. 

Harmon & Andow, 2007. Buchanan et al. 2017), sometimes impacting larger vertebrates (Haemig, 

1996. Haemig, 1994. Young et al. 2008. Holtcamp et al. 1997. Dáttilo et al. 2016). Recent findings by 

Goncalves et al. (2017) suggest that ants can even influence adjacent ecosystems they are not directly 

present in. Ants present within bromeliads changed the composition of the aquatic communities, 

despite not having a physical presence under the water. However, the role that the landscape of fear 



 

 

 

6 

 

 

 

plays in the distribution of ants has still not been studied, and it is the goal of this research to fill the 

gap. Collectively, ant colonies make up a large portion of the animal biomass in most habitats on earth 

and their activities can have far-reaching impacts on community structure and ecosystem functions 

(Hölldobler and Wilson 1990). 

The potential ecological impact of predators on ants have been largely ignored except for 

species-specific, nest associated web-building spiders. Studies investigating the interactions between 

ants and spiders have had mixed findings, showing that ants react to spider presence under species 

specific circumstances (Mackay, 1982. Bucher 2014) but also that spiders are generally reactive to the 

presence of ants (Mestre et al. 2014. Halaj et al. 1997.). Here I further explore this dynamic, focusing 

primarily on determining whether ants perceive predator risks that affect whole-colony responses, 

investigating them as prey within the landscape of fear rather than a predator. As I am investigating the 

response of a whole ant colony, the most appropriate behavior to measure is foraging. 

Ant Foraging 

Broadly speaking, ants are central-place foragers, where individual workers forage away from 

the nest (the “central place”) and return with food. Ants begin foraging haphazardly searching on their 

own. Once food has been located, they recruit others, following the relative path of the original scout 

who discovered the food resource. Ants recruited to a food source will in turn enlist other ants and 

eventually all foragers will transition from disarray into an ordered pattern (Li et al. 2014 [2]). Making 

foraging both an individual and colony behavior. The exact mechanics eliciting ants to join the 

recruitment process varies across ant species (Hölldobler & Wilson, 1990) and can involve physical 

stimulation and/or chemical cues from a diverse number of glands (Hölldobler & Wilson, 1990). The 

diverse mechanics of communication between ants, results in a plethora of foraging strategies used by 
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different species of ants. These different strategies are hypothesized to maximize resource acquisition, 

minimize energetic costs, and reduce exposure of workers to predation albeit using different 

mechanisms (Hölldobler & Wilson 1990. Dukas & Edelstein-Keshet, 1998. Pearce-Duvet et al. 2011.). 

At opposing ends of the foraging spectrum are mass recruiting and solitary foraging ants. Solitary 

foraging is the simplest and most primitive foraging strategy (Hölldobler & Wilson, 1990), with ants 

scouting, capturing and returning food to the nest on their own without the aid of nestmates. Solitary 

foragers do not directly recruit others to food sources, (although workers in the nest sometimes start 

foraging after sampling food gathered by returning foragers [Wallis, 1964]).  

 Mass recruiting, on the other hand, is a more complex method of foraging that recruits 

nestmates to food resources (Hölldobler & Wilson, 1990). As a scout returns from a food source, they 

lay down a chemical trail back to the nest. When workers encounter this chemical trail, they are 

stimulated to follow it. In this way a scout rapidly attracts large groups of their nestmates to follow a 

trail using chemical secretions instead of direct communication or contact (Hölldobler & Wilson, 

1990). Each worker then ‘weighs in’ on the route by laying down another trail on their return, 

strengthening the path and making that option more attractive to other ants (Detrain & Denenbourgh, 

2006. Beckers et al. 1990). This helps ants make decisions if presented with multiple paths to take 

(Pratt et al. 2002. Beckers et al. 1990). If the colony is blocked from food, foragers returning empty-

handed will shut down the path with another chemical signal (Dussutour et al. 2009. Robinson et al. 

2005). 

  Foraging behavior has been shown to be affected by many factors which potentially impact 

whole colonies (Gentry, 1974. Whitford & Bryant, 1979. MacKay, 1982. Munger, 1984. Gordon, 

1986. Shaffer & Whitford, 1981.). But, a working hypothesis is that foragers within a colony are 
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expendable (Porter & Jorgenson, 1981), making ants risk insensitive. That is, dangers to individual 

workers (and the loss of individual workers) are not a strong enough selective force to drive adaptive 

behaviors that alter collective foraging. Individual workers are thus “disposable” and foraging 

behaviors will only be shaped by factors that for example, impact large numbers of foragers (Porter & 

Jorgenson, 1981).  Competition is one of the more frequently studied, as both the distribution and 

behavior of an ant colony is affected by its neighbors. These neighboring colonies are in direct 

competition for food and space (Hölldobler and Wilson, 1990). A colony’s hostility towards other ants 

can range from harassment (Gordon, 1988), to seemingly mundane (Gordon, 1992. Gordon, 1989.), all 

of which influence foraging behavior (albeit in different ways). For foraging behavior to exhibit these 

nuanced responses, recruitment must either convey information about the environment or individual 

ants need to be cognizant of these factors.  Other factors impact foraging behaviors as well. Ants with 

experimentally shortened life spans take more risks than those with unaltered life spans (Moroń et al. 

2012. Miler, 2016.), and the primary foragers in an ant colony tend to be workers nearing the end of 

their lifespans (Wilson, 1985). The “expendability” of workers appears to have limits as foragers do 

detect and respond to risk from both environmental dangers, such as overheating (Cerda et al. 1998.), 

as well as inter and intraspecific competitors (Tanner, 2006. Tanner, 2008. Tanner & Adler, 2009.). 

These are factors that potentially affect many or most foragers leaving the nest and thus avoiding or 

reducing these risks appears to be adaptive. There is also an abundance of evidence that ants perceive 

predatory risks, often with dramatic consequences. Nonacs & Dill (1988) found that if Lasius 

pallitarsis, a mass recruiter, merely sees a predatory ant (either along the way to a food source or on the 

return trip back to the colony), then fewer ants recruit to those food patches. Early studies with species-

specific nest-associated spiders observed spider-induced foraging changes in Pogonomyrmex sp. 
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(MacKay, 1982. Macmahon et al. 2000. Gentry, 1974, Kwapich & Hölldobler, 2019) and Pheidole sp. 

(MacKay, 1982). These have been classified into four responses to spider predation/visual recognition 

(Gastreich, 1999. for a detailed summary and the cases where these were discovered, see MacKay, 

1982): blocking the nest entrance, posting guards, direct attack of the spider, and halting foraging at 

resources near the spider. Perhaps the best example of non-consumptive effects in ants is the behavioral 

response of Solenopsis invicta, the red imported fire ant, to the parasitic phorid fly. When encountering 

a phorid fly, S. invicta greatly reduces all foraging (Morrisson, 1999. Porter et al. 1995), and after the 

encounter, the next groups of workers that are born tend to be smaller (Mehdiabadi & Gilbert, 2002.). 

In addition, phorid flies alter the way that a colony competes with other ant species (Feener, 1981). 

These responses to phorid flies are also found in leaf cutter ants (Orr, 1992), Pheidole dentata (Feener 

Jr, 1988) as well as related ants that are not typically parasitized by phorid flies (LeBrun & Feener Jr. 

2002). However, these collective behavior changes have not been shown to impact whole colony 

function (Morrison & Porter, 2005).  

Experimental Overview 

Most of the work on understanding ant forager responses to risk have been focused on mass 

recruiting species. An important gap is understanding risk response across different foraging strategies. 

Here I use a comparative approach to understand how ant foragers utilizing different foraging strategies 

respond to the same risk. This research addresses a critical gap in investigating what role the landscape 

of fear plays in social insect biology. While the fights and clashes between ant species have been 

documented in thrilling detail (e.g. McCook, 1887) there is much less information about how ants are 

impacted by their predators. It is hypothesized that the evolution of foraging behavior was shaped, in 

part, by diverging strategies of predator avoidance (Hunt, 1983). Therefore, different foraging strategies 
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in ants should change the individual and colony-level responses to predation risk exhibited by the 

colony. 

Of ants’ natural predators, spiders represent the best starting point for our understanding of 

foraging response to predation. Spiders exhibit ‘classic’ traits of predators in the ‘landscape of fear’; 

they have discrete territory (a retreat) which they roam around, and a distinct scent/marking inside that 

territory (webbing [Tahir et al. 2017]). As their attacks on prey can fail, their prey can learn avoidance 

behaviors using these two traits (Laundré et al. 2010). As an added benefit, simple modification can 

prevent a spider from being able to successfully feed upon its prey without major inconvenience. There 

is much prior research investigating spiders triggering non-consumptive effects in insects (Hodkinson 

et al. 2001. Schmitz, 2006. Mestre et al. 2014. Hawlena et al. 2012. Hawlena & Schmitz, 2010 [1&2]. 

Schmitz, 2005.Bucher, 2014). Ants have also been shown to influence spiders (Mestre et al. 2014. 

Halaj et al. 1997).  My focus is on a spider’s potential to change foraging dynamics of multiple ant 

species, and if foraging strategy changes how ants interact with the landscape of fear, greatly expanding 

this prior work on spider-ant dynamics. 

Study System 

The specific predator used in my experiments was Anasaitis canosa, the twin-flagged jumping 

spider (Order: Salticidae), a widespread and ubiquitous generalist myrmecophagous spider (Hill et al. 

2006) whose specialized hunting methods and precise attack behaviors render an ant’s otherwise potent 

defenses useless (Edwards et al. 1974). A. canosa’s behavior contrasts with other jumping spiders 

which avoid ants (Edwards & Jackson, 1994.), as well as being a generalist while other 

myrmecophagous spiders are specialist predators of specific ant species with complex predator-prey 

relationships (Heller, 1974). A. canosa has a diverse diet but favors ants over other prey items, although 
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it is not always successful in capturing prey (Edwards et al. 1974). A diverse group of four ant species 

that display either mass recruiting or solitary foraging were selected from the list of known prey items 

for A. canosa (Edwards et al. 1974. Common names are from Deyrup, 2017). Three of the species I 

selected are introduced/invasive (MacGown et al. 2014. Wilson, 1962) from outside the range of A. 

canosa, but since all these ants are abundant and conspicuous and have been present in Florida for 

decades, the fact they are invasive ants seems unlikely to impact the results. I used two species of 

solitary foraging ants, Formica pallidefulva Latreille, the variable fleet formica ant, and 

Odontomachus ruginodis M. R. Smith, the rough petiole snapping ant. Both F. pallidefulva and O. 

ruginodis are large monomorphic ants ~8 mm in length with widespread distributions across Florida 

and the southeastern US. O. ruginodis is a specialized predator of springtails (Order: Collembolla) 

whose ‘spring-loaded’ jaws (Gronenberg, 1995) also are a formidable defense (Patek et al. 2006. Carlin 

and Gladstein, 1989), while F. pallidefulva is a swift generalist predator that also gathers honeydew. I 

also used two mass recruiting ants, Pheidole obscurithorax Naves, the large imported big-headed ant, 

and S. invicta Buren, the red imported fire ant. Both of these ant species exhibit polymorphic workers. 

P. obscurithorax is the largest Pheidole in Florida with workers and majors measuring 3 and 3.5 mm in 

length respectively. S. invicta workers range from 2 mm minors to 6 mm majors (Hedges, 1997).  

Predictions 

These four ants occupy opposing ends of the foraging spectrum and my work will compare 

their responses to the same predation in one experiment, while investigating if the observed responses 

are learned vs innate in a second experiment. Solitary foragers seek for and capture food resources as 

individuals without recruiting nestmates whereas mass recruiting species actively recruit nestmates to 

food resources, rapidly increasing the number of workers to food resources after discovery. My 
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overarching hypothesis for the project is that foraging ants are cognizant of and react to predation risk 

from A. canosa; changing their behavior to reduce the time they spend in areas of perceived risk and 

there will be differences in risk aversion between species where solitary foraging species will be more 

risk averse than mass recruiting species. 

Field Evaluation of Spider Predation 

Anasaitis canosa (Walckenaer, 1837), the twin-flagged jumping spider, (Order: Salticidae) is a pan 

South-eastern US/Cuban (Richman & Cutler, 2012. Richman & Cutler, 1978. Bryant 1940) generalist 

myrmecophagous spider (Hill et al. 2006) which uses specialized hunting methods and precise attack 

behaviors to render an ant’s otherwise potent defenses useless (Edwards et al. 1974). This spider is 

abundant and widespread, likely across the Caribbean (Anasaitis is a Caribbean genera). A. canosa has 

a diverse diet but favors ants over other prey items (Edwards et al. 1974), a behavior which contrasts 

with other jumping spiders which avoid ants (Edwards & Jackson, 1994). In Florida, A. canosa is both 

widespread and ubiquitous (Edwards et al. 1974). Researchers have observed A. canosa hunting 

ants in the field (Hill et al. 2006) and assessed its prey selection in the lab (Edwards et al. 1974). 

From these observations, A. canosa has been classified as exhibiting stenophagy (Pekar et al. 

2012). 

When given the option A. canosa prefers ant prey over non-ant prey (Edwards et al. 

1974), but there are numerous accounts of these spiders eating other plentiful insects such as 

dipterans, leaf-hoppers and moths. A. canosa has been used in laboratory trials as a predator of 

flies (de la Flor et al. 2017). 
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Until now, no efforts have been made to investigate the number or volume of prey 

choices that A. canosa makes in the field. Meaning that although the fundamental niche is well 

understood, the realized niche of the spider remains unknown. Only 1.5% of spiders have well 

documented diets (Pekar et al. 2012) despite being the most important groups that eat insects 

(Nyffeler & Birkhofer, 2017). Completing our understanding of A. canosa will contribute to 

filling gaps in spider ecology. There are still many changes occurring in our understanding of 

spider realized niches, including the potential of vertebrates to be spider prey (Nyffeler et al. 

2017. Jackson et al. 2005. Nyffeler & Knörschild, 2013.). There is currently only limited 

documentation of the realized niche of A. canosa and needs to be expanded on in order to better 

evaluate the role this spider plays within the ecosystem. 

Experimental Overview 

The question of if A. canosa is truly a meaningful predator of ants is of great importance 

for analyzing the results of my laboratory experiments. By pairing existing lab evaluations of 

fundamental niche with field observations of realized niche we can gain a critical component of 

studying A. canosa as a meaningful predator of ants. My aim is to first understand 3 questions: 

First, how abundant is A. canosa? Second, does A. canosa show preference for ants as prey in the 

field? Third, are there certain species of ants that the spider encounters that are preferred and are 

some species of ants more readily captured? This field study aims to find approximations to 

answer these questions, estimating the density of spiders within a patch of representative 

territory, the rate at which these spiders feed upon different food sources and how successful 

they are in their attempts to eat each food source.  
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CHAPTER THREE: METHODOLOGY 

Investigating the Landscape of Fear 

Two experiments were conducted: the first investigated non-consumptive effects in the foraging 

strategies of solitary foraging and mass recruiting (Table 1), while the second investigated if the 

response in S. invicta was an innate or learned response (Table 2). Eight colonies of each species 

(except S. invicta) were collected in fall 2018-spring 2019 from the UCF arboretum by nest excavation. 

Two additional O. ruginodis colonies had to be collected in the summer of 2019 to replace two that 

died prior to completing all trials. Twenty-seven S. invicta colonies were reared from queens found 

post-nuptial flight in the summer 2017. All colonies had their size standardized to reflect the 

approximate worker population of a first-year colony. As there was no established survey of a first-year 

colony for three of the chosen ant species, a size approximation was made based on existing surveys of 

mature colonies (sometimes of related species). F. pallidefulva was estimated at 250 workers + queen 

(King & Trager, 2007), O. ruginodis was estimated at 60 workers + queen (Hart & Tschinkel, 2012), P. 

obscurithorax was estimated at ~1,000 workers + queen (Storz & Tschinkel 2004), and a first-year 

colony of S. invicta is known to contain ~1,000 workers + queen (Wilson, 1962. Tschinkel 1988). 

Care of Ants 

Colonies were housed in a climate-controlled room (photoperiod: 14L/10D, 76 degrees F, 60% 

humidity) each in a ‘colony tray’, a 10” x 21.5” photo-developing tray with a 3/8th inch hole was drilled 

into one wall where a 3/8th inch external diameter tygon tube with a Y- tube at the end was inserted 

(Appendix A). Each tray had at least five test tubes partially filled with water, stoppered with cotton 

and covered in aluminum foil. All ant colonies were provided with food (15% sucrose solutions), water 
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and protein (par boiled crickets or beetle larvae) which were replenished on a weekly basis. When a 

colony was not involved in a trial a loop of tygon tubing was attached to the Y-tube to prevent ants 

from escaping. While in a trial, each end of the Y-tube was attached to a separate ‘foraging tray’, an 

8.5” x 5.5” cafeteria tray covered by a glass plate (appendix A). Each glass plate had a paper tube taped 

to the lid to provide a safe hideaway for the jumping spider to construct a retreat. One of the attached 

arenas contained a spider (the ‘risky’ or treatment arena) and the other did not (the ‘safe’ or control 

arena). Spider side assignment was randomly chosen by coin flip due to inherent side biases that ants 

show when exploring (Hunt et al. 2014). 

Care of Jumping Spiders 

A. canosa spiders were collected into falcon tubes by hand from the UCF arboretum one day 

prior to testing. Upon returning to the lab, the spider was paralyzed with CO2 gas, then liquid bandage 

covered either the spider’s chelicera (preventing it from feeding on ants, the shut treatment), or the 

underside of the cephalothorax (not changing its feeding ability, the risky treatment). This was 

randomly determined by coin flip for experiment 1 (so the order a colony preformed their replicate 

trials was random), while it had a set order for experiment 2 (the treatment group always started with a 

spider with the chelicera glued shut while the control group always started with a spider with its 

mouthparts left unmodified). Jumping spiders were then placed inside one of the two foraging arenas 

chosen by coin flip.  

Experimental Setup 

Foraging arenas were not connected to the housing tray until after a 24-hour adjustment period 

had passed. Immediately prior to connecting the housing tray and foraging arenas, two test tubes (one 

15% sugar and one water) were weighted and placed in each foraging arena. Both foraging arenas were 
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then videotaped using LG Rebel LTE cellphone cameras for 47 minutes (the maximum file size for a 

video on the camera). After this period, the colony was given 24 hours to continue foraging, and then 

filmed again. Once filming ended, the number of dead ants were counted in each arena and the test 

tubes within the foraging arenas were removed and weighed. Foragers were then removed from the 

foraging arenas, and both the tubing and foraging arenas were cleaned with DI water and given at least 

one week before re-use to ensure no residual traces persisted. Each colony was given one week 

between trials (in the case of experiment two colonies went one month between trials). In experiment 

one each colony had a minimum of four trials (two of with the ‘Shut’ treatment and two with the 

‘Risky’ treatment, in random order) in experiment two, half of the colonies had two trials (one ‘Shut, 

one ‘Risky’) and the others had one trial (‘Risky’).  

Table 1: Experimental Design of Experiment One. Trials is number of replicate trials that each colony 

was exposed to. Treatment is a short hand for where liquid bandage was applied to each spider. Arena 

denotes the two arenas that each colony was exposed to. 

Treatment Trials Arena Notes 

Shut 2 Spider w/ Mouth Glued Perceived risk, non-consumptive effects alone 

Control observe normal foraging conditions 

Risky 2 Spider w/ Cephalothorax Glued Perceived risk + Predation, “full impact”  

Control observe normal foraging conditions  

Table 2: Experimental Design for Experiment Two. Treatment is a short hand for where liquid bandage 

was applied to each spider. Arena denotes the two arenas that each colony was exposed to. 

Treatment Arena Notes 

Prior Exposure to spider with mouthparts glued 
(Treatment) 

Spider Observe behavior with experience 

No Spider Control 

No Prior Exposure to spider (Control) Spider Observe innate behavior 

No Spider Control 

Hypotheses 

I hypothesized that arenas with perceived risk (a spider present) will see ants forage for a 

shorter duration and recruit less than the control arena, meaning fewer ants present overall. Colonies 
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will react similarly to spiders whether their mouthparts or cephalothorax are glued, as the ants react to 

their perception of danger rather than the loss of individuals. If one caste is more resilient to the threat 

in question, then mass recruiters divide labor between castes, and the task will be favored by the more 

resilient caste (Kay & Rissing, 2005). However, more energetically expensive castes within the colony 

(majors and larger workers) will be more sensitive to risk than the less energetically expensive ones if 

they are equally at risk of spider predation. In that case, majors will be less common in ‘risky’ areas 

compared to ‘safe’ ones. Similarly, all species will consume less water when a predator is present, but 

sugar (as a more energetically valuable resource) will be unaffected. 

In my second experiment I hypothesize that these reactions are the result of colony level 

learning from foragers interacting with the A. canosa spider. Therefore, when exposed to a predator, 

naïve workers will not change their behavior in their first trial but will adopt avoidance behaviors 

within two replicate trials. As workers acquire and use these behaviors, forager mortality will drop over 

consecutive trials as laid out in appendix B. 

Data Collection 

Variables of interest to this experiment are present in table 5. These variables were 

collected for both experiments by weighing the food and water test tubes before and after the 

experiment concluded, counting the number of dead ants & extracting critical information from 

video files. To do this, a scorer watched each video and recorded the time in seconds when the 

first and second forager entered the arena, when an ant returned to the colony for the first time, 

and how many ants were in the arena when an ant returned for the first time. In cases where one 

or more of these events failed to occur during filming, a time of 3,000 seconds was recorded for 
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the events in question (all videos were less than 48 minutes long, so no overlap occurred between 

‘none observed’ and merely ‘late occurring’ videos). In videos with a spider, interactions 

between the ants and the spider were noted (both the time and number of each interaction). In a 

separate session the number of ants visible in frame at each minute mark were counted, as well 

as the number of ants seen feeding at the sugar and water test tubes at each minute mark. In trials 

with P. obscurithorax, where majors and minors were visually distinct, the number of major ants, 

as well as how many majors were feeding at the water and sugar tests tubes each minute were 

also counted. 

Time to first explorer, delay to second explorer, delay to first return and number of scouts 

in the arena all served as measurements of individual ant behavior. Because no recruitment 

messages were sent back to the colony until after the first ant returned all actions taken before 

that point reflect workers acting solely on their own perceptions. Time to first and second 

explorers shows how quickly they entered the arena and time to first return shows how quickly 

they left (approximately). Number of scouts then shows us how many ants were committing to 

foraging without prior information. The remaining variables were collected to approximate the 

different ways that avoidance behaviors could manifest at the colony level. Depletion of sugar 

and water illustrated colony choice, as the food and water were the primary reasons for ants to 

forage. The number of ants and majors present in the arena showed the degree of recruitment, to 

compliment colony choice (as fewer foragers could remove more food/water to achieve the same 

outcome). The proportion of ants at food/water (calculated from the number of ants at food/water 

divided by the total number of ants) showed the propensity for exploration compared to resource 

removal. 
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Table 3: Variables of Interest in Experiment One & Two. Reason measured provides a short description 

of why the variable was included in the experiment. 

Variables of 

Interest 

Type 

(units) 

Acquired from Calculations/Equations Reason Measured 

Mortality Count Counting number of 

dead workers at 

experiment end in 

each arena 

None. Indirect measure of 

predatory 

impacts/cost of 

foraging. 

Depletion of 

Sugar Source 

Change in 

weight (g) 

Metler Toledo AB54-

S scale. 

Δ treatment arena weight - Δ 
control arena weight 

Energetically 

Valuable Foraging 

Resource 

Depletion of 

Water Source 

Change in 

weight (g) 

Metler Toledo AB54-

S scale. 

Δ treatment arena weight - Δ 
control arena weight 

Foraging Resource 

Number of ants Count Video footage (each 

minute) 

Average Approximation for 

time individual ants 

spend in arena 

Number of 

Ants/Majors in 

Arena/Food/Water 

Count Video footage (each 

minute) 

Average (majors: P. 

obscurithorax only) 

Compares foragers 

exploring vs 

gathering resources 

Number of Scouts Count Video footage (at 

time of 1st return) 

Average Additional measure 

of ant presence in the 

earliest stages of 

foraging. 

Number of Majors Count Video footage (each 

minute) 

Average (P. obscurithorax 

only) 

Number of 

energetically valuable 

ants 

Time to One 

Forager Returning 

Count (s) Video footage 

(continuous) 

Time to 1st Return – Time to 

1st Forager 

Approximation of 

duration spent in the 

arena. 

Delay to Second 

Forager Arriving  

Count (s) Video footage 

(continuous) 

Time to 2nd Forager – Time 

to 1st Forager 

Secondary measure 

of avoidance 

Time until First 

Forager Arrives 

Count (s) Video footage 

(continuous) 

None. Measure avoidance 

of arena 

Statistical Analysis 

In order to remove correlation between some variables the data were standardized, where 

the difference between the first and second forager and the difference between the first forager 

entering and the first return to the tubing were calculated. This is because the time to the first 

forager was always reflected in all ant related measurements of time (if it took 300 seconds for 

the first forager to arrive then it would take a minimum of 300 seconds for the second forager to 

arrive), and by subtracting the time to first forager from the other variables I was able to 
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standardize the variable to the time to the first ant arriving. The average number of ants per 

minute was calculated for each video. The average number of ants at food and water were then 

divided by the number of ants per minute to show the proportion of foragers at each resource. 

Each trial was analyzed as a single unit (rather than two separate arenas) by subtracting each 

measured value in the ‘risky’ arena (the one with the spider) from the ‘safe’ arena (the one 

without the spider). This treatment minus control measurement was used while both constructing 

graphs and preforming analysis in order to treat each experiment as a replicate rather than using 

an overall ‘average’ response for each colony. By subtracting the raw values for each variable 

from the control arena This isolated the effect of the predator on foraging behavior from other 

factors such as humidity, temperature, time of day or species. This allowed for more direct 

comparisons between the different species and foraging strategies. As a consequence of this 

transformation, only experimental trials where both the treatment and control arena experienced 

foraging within the filming period were used in analysis. 

Figures 1 & 2 confirm that treatment minus control arena is a valid transformation that 

accounts for colony learning and makes it appropriate to treat each trial as an individual replicate 

without introducing any new bias. For most of the variables there was little to no divergence from a line 

of y= 0 for the effect of treatment number, so no directional learning appears to have occurred. Overall, 

there was no evidence of ant colonies learning a preference for either arena, nor does variation 

appear to change with repeated trials. 

Because both experiments had nearly identical methodologies. I included results from 

experiment two trials as replicates for experiment one as long as the colony in question had at 
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least four trials completed. Each measurement in table 5 was compared using a Welch’s two 

sample t-test (α = 0.05), as both sample size and variance were different between each sample. 

First the data was simply grouped by treatment, (Risky vs Shut for experiment one, three groups: 

Naïve-Risky Spider, Naïve-Shut spider and Prior Experience-Risky spider for experiment two). 

Each group was compared with a Welch’s two sample t-test (α = 0.05), except in experiment 2, 

as Naïve-Shut and Prior Experience-Risky were compared with a Welch’s paired t-test (α = 

0.05); as these comprised the same colonies. All variables within each treatment was also tested 

with a one sample t-test (α = 0.05) to check for significant difference from zero. For experiment 

one, the data were partitioned into solitary forager and mass recruiting ant groups, then into each 

species and compared the data by treatment with a Welch’s t-test (α = 0.05), this was done to 

observe if different interactions with the predator occurred in distinct foraging strategies or 

species. In cases where the data was not normal, or the sample size was small/unbalanced 

between groups the non-parametric Kruskal-Wallis rank sum test (α = 0.05) was used in place of 

the Welch’s t-test, and a one-sample Wilcoxon test replaced the one-sample t-test. 

Visual Display of Data 

Because experiment one involved multiple replicate trials with each colony of ants, it was 

important to assess whether learning might have affected behaviors over the duration of the 

experiment. Line graphs of each variable over trial number were constructed to check if 

directional learning occurred. A Tukey’s boxplot was constructed for each variable and treatment 

in experiment one and two. In all figures a blue line at y = 0 was included indicating no 
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difference between the treatment and control arena. Any case where there is no overlap between 

the boxplot and the line y = 0 indicates a significant difference from 0 (p < 0.05). 

Spider Survey 

Study Site 

In order to assess the impacts of the spider on ant populations, two 15-day surveys were 

run from 6/24 to 7/8, and 9/6 to 9/21 in 2019. The study site was the Lake Claire natural area on 

the north side of campus, a semi-disturbed forest, with moderate inundation. During this survey, 

one or more researchers would walk into the Lake Claire natural area north of UCF’s campus 

and observe 3 sites of varying dimensions (site 1: 2.1 m2, site 2: 3.4 m2, site 3: 1.212 m2) for 

around 10 minutes each (Appendix C). During this period, a count of the number of observed 

spiders, as well as their gender, relative size and any hunting behavior as well as the outcome 

was noted for each site. Each day of observation, a list of ant species seen foraging was made. 

Each of the 3 sites occurred within 10m of each other and multiple sites were measured for a 

more comprehensive measurement of the spider abundance.  

Predictions 

As this field experiment is strictly exploratory, I have no formal hypotheses going into 

this study. Prior collections of spiders from the field have suggested that the spider is quite 

densely populated. 

Statistical Analysis 

On days when multiple researchers were present in the field, each site had the average 

number of observed spiders for that day calculated. This was done to account for the fact that 
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more researchers might count the same spider twice as well as see more spiders than a single 

researcher. The total number of hunting behaviors was compared to the number of spiders 

observed, and the average number of spiders noted for each day at each site was calculated. The 

averages number of spiders noted for each site were compared by a t-test (df = 28) to see if 

spider populations were spread out or concentrated by comparing the sites to each other. If spider 

populations are spread out across the landscape there should be no significant difference between 

the sites, conversely if the spiders are concentrated in a small area then the sites should be 

different from each other. The density of spiders was calculated by averaging the average 

number of spiders per site per day into an overall average number of spiders per site per day. 

These averages were then divided by the size of each site in order to gain the number of 

spiders/day/m2 for each site, and an overall average of these 3 site averages. Prey capture rate 

was calculated by dividing the number of hunting behaviors by 15 to get a number of attacks per 

hour of observation. This attack/area/hour was multiplied by 12*7 to gain a rough estimate of 

how many attacks occurred within daylight hours in each site in roughly one week. The rough 

estimate was then multiplied by the relative frequencies of observed attacks to determine the 

number of attacks by prey type as well as the number of successful/unsuccessful attacks.  

Visual Display of Data 

A line graph using times of start/end of observation as coordinates was created to show 

when observations occurred as well as the comparative length of observations. By comparing the 

distribution of points along the x-axis the distribution of when spiders were observed is clearly 

visible. By comparing how closely the points adhere to a straight line it can be seen if there was 

major deviance from the 10-minute observation period per site. Pie charts were created using the 
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number of observed attacks, and what prey types were being attacked. The pie chart was divided 

into two sections to separate ant prey from non-ant prey.  
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CHAPTER FOUR: RESULTS 

Experiment one found no significant differences between treatments at any of the levels 

investigated, nor were any of the treatments significantly different from zero. Collectively, these 

results suggest the presence of A. canosa under laboratory conditions has no impact on ant 

foraging behavior. In experiment 2 there was a single statistically significant difference, namely 

that scout numbers were higher in the initial trial compared to the second trial. This suggests that 

there is a response to predation in naïve colonies after first exposure. This pattern appears to be 

consistent in naïve colonies exposed to either treatment. 

Experiment 1 

52 colonies (26 S. invicta, 8 P. obscurithorax, 10 O. ruginodis and 8 F. pallidefulva 

colonies) were used in 172 trials (56 S. invicta, 30 P. obscurithorax, 36 O. ruginodis and 30 F. 

pallidefulva) conducted between July 2018-September 2019. 88 arenas had no foraging occur 

during the 47-minute foraging period (6 S. invicta [5.36% of total], 9 P. obscurithorax [15% of 

total], 35 O. ruginodis [48.61% of total] and 38 F. pallidefulva [63% of total]). Those trials were 

excluded from subsequent analysis. Nine colonies failed to have two replicate trials within each 

treatment (one F. pallidefulva, two O. ruginodis and six S. invicta) and were also removed from 

analysis. Experiment 1 used 86 trials in analysis (38 Shut, 48 Risky treatment [Appendix D]). 

Line graphs of variable over trial number can be seen in figures 1 & 2.  
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Figure 1: Directional learning across the eight collected variables in experiment 1. Red line indicates 

change in variable over trial number. There was no evidence any of the variables changes value over 

trial number 
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Figure 2: Directional learning in water and food associated variables in experiment 1. Red line indicates 

change in variable over trial number. There was no evidence any of the variables changes value over 

trial number. 

Treatments 

There was no significant difference between treatments in any of the variables of interest (table 

4), nor were any of these averages different from 0 (p value > 0.05). There was no difference 

between treatments in number of P. obscurithorax majors in the arena (table 4, fig 3, p-value > 

0.05), at water (table 4, appendix E) or at food (table 4, appendix E) nor were any of these values 

different from 0 (p-value >0.05). 
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Table 4: Average Values for each Variable of Interest in Experiment One. Means reported are Mean +/- 

SD. The degrees of freedom for the Welch’s T-test is displayed in parentheses after the p-value. 

Variable Risky Treatment Shut Treatment Welch’s T-test p-

value 

In: 

Ants in Arena 0.9182 +/- 9.913945 

ants/min 

2.1591 +/- 11.04063 

ants/min 

0.5914 (df 75.245) Appendix E 

Delay to 2nd Explorer -22.19 +/- 581.4471 s 99.39 +/- 433.4937 s 0.27 (df 83.734) Fig 3 

Majors in Arena -0.1473 +/- 0.186188 

ants/min 

0.2988 +/- 0.800013 

ants/min 

0.1155 (df 9.7529) Appendix E 

Mortality 1.027 +/- 3.312321 

ants 

-0.36 +/- 3.871692 ants 0.1497 (df 46.092) Fig 3 

Number of Ants at 

Sugar 

-0.2102 +/- 0.850067 

ants/min 

0.13196 +/- 1.202467 

ants/min 

0.1437 (df 64.474) Fig 4 

Number of Ants at 

Water 

0.08754 +/- 0.463221 

ants/min 

-0.01203 +/- 0.260677 

ants/min 

0.2155 (df 74.821) Fig 4 

Number of Majors at 

Sugar 

-0.04255 +/- 0.14792 

ants/min 

0.02572 +/- 0.139717 

ants/min 

0.2709 (df 20.038) Fig 4 

Number of Majors at 

Water 

0.00164 +/- 0.39291 

ants/min 

-0.006383 +/- 0.14361 

ants/min 

0.5067 (df 15.891) Fig 4 

Number of Scouts -0.2083 +/- 3.769747 

ants 

0.6053 +/- 2.964105 ants 0.2657 (df 83.999) Fig 3 

Proportion of Ants at 

Sugar 

-0.04789 +/- 0.198525 -0.02144 +/- 0.154531 0.536 (df 66.874) Fig 4 

Proportion of Ants at 

Water 

0.026638 +/- .13633 -0.006602 +/- 0.022564 0.1472 (df 39.472) Fig 4 

Sugar depletion -0.02843 +/- 0.223737 

g 

0.01184 +/- 0.192766 g 0.3787 (df 81.293) Fig 4 

Time to 1st explorer -22.6 +/- 575.7437 s 42.26 +/- 734.9788 s 0.6568 (df 68.883) Fig 3 

Time to 1st return -68.81 +/- 537.7695 s 79.16 +/- 385.1954 s 0.1413 (df 83.246) Fig 3 

Water depletion 0.1187 +/- 0.144402 g 0.06994 +/- 0.18429 g 0.1215 (df 67.221) Fig 4 

 

Figure 3: Boxplots of relative time to three foraging benchmarks: time to 1st explorer, delay to 2nd 

explorer and time to 1st return (left) and number of scouts entering arena prior to recruitment alongside 

number of ants dead after 24 hours (right) for treatment arena. None of these variables were different 
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between treatment nor were they different from 0 (p-value > 0.05). Whiskers represent furthest point 

within 1.5x Interquartile range. 

 

 

Figure 4: Boxplots of relative depletion of resources (top left), proportional recruitment of workers (top 

right), recruitment of workers (bottom left) and recruitment of majors (bottom right). None of these 

variables were different between treatment nor were they different from 0 (p-value > 0.05). Whiskers 

represent furthest point within 1.5x Interquartile range. 

Foraging Strategy 

There were 64 experiments with mass recruiting ants (36 with the risky treatment, 28 

with the shut treatment), and 22 experiments with solitary foragers (12 with the risky treatment, 

10 with the shut treatment). Because of the small sample size for solitary foragers and the 
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difference in sample size for each treatment the Kruskal-Wallis rank sum test was used to 

compare the data. With the exception of mortality in mass recruiters, there were no significant 

differences in any of the investigated variables between foraging strategy nor were any of the 

means different from 0 (p > 0.05) (appendix F). Mortality for mass recruiting ants was 

significantly higher in the risky treatment compared to the shut, neither of these means were 

however, different from zero. 

Species 

Because species was a subset of the foraging strategy dataset, the Kruskal-Wallis rank 

sum test was used to compare the findings by species. There were no significant differences in 

any of the investigated variables between treatments or between species or between treatment 

within species nor were any of the means different from 0 (p > 0.05 [appendix G]). Thus, there 

were no differences among species in their (lack of) response to the presence of a spider 

predator. 

Experiment 2 

Experiment 2 constituted 40 trials between 6/2018-8/2019 using 26 lab-reared S. invicta 

colonies (12 colonies receiving one trial, 14 colonies receiving two trials). 11 trials were 

removed as no foraging occurred in one or more of the foraging arenas, and four additional trials 

had to be removed since they were lacking a paired trial (due to lack of foraging in the initial 

trial). In the end 25 trials were analyzed (5 colonies receiving one trial, 10 colonies receiving two 

trials). When comparing the relative values for each variable measure between treatments in 

experiment 2, there was no difference between the different experiments (table 5 & 6). There 
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was a significant difference in the number of scouts (table 6) but only between experiment 1 and 

2 (p value 0.02 for paired t-test, p value > 0.05 t-test) (figure 5). However, this significant 

different was rejected by a post-hoc Benjamini-Hochberg Procedure run to correct p-values 

given that 4 different variables were measured to observe the behavior of ‘individual ants’ (table 

6). 

Table 5: Variables of Interest Comparing Naïve Colony Exposure to Each Treatment. Means reported as 

mean +/- SD. All variables are displayed in Appendix H. The degrees of freedom for the Welch’s T-test is 

displayed in parentheses after the p-value. 

Variable Naïve exposure- Risky Naïve exposure- Shut Welch’s T-test p-value 

Number of Scouts 0.6 +/- 0.894427 ants 0.9 +/- 0.994429 ants 0.57 (df 8.9525) 

Sugar Depletion 0.09928 +/- 0.198428 g -0.05643 +/- 0.380788 g 0.317 (12.882) 

Time to 1st Explorer -167.6 +/- 1356.651 s 242.3 +/- 452.8215 s 0.5433 (df 4.4519) 

Time to 1st Return 309 +/- 829.6948 s 102.8 +/- 347.9798 s 0.6183 (df 4.7183) 

Time to 2nd Explorer 171.8 +/- 853.7428 s -37 +/- 568.7032 s 0.6388 (df 5.844) 

Water Depletion -0.0175 +/- 0.118275 g 0.01170 +/- 0.158806 g 0.6969 (df 10.624) 

Number of Ants -0.42188 +/- .611042 

ants/min 

10.23125 +/- 19.27775 ants/min 0.1147 (df 9.0451) 

Number of Ants at 

Sugar 

-0.01042 +/- 0.020833 

ants/min 

-0.26042 +/- 2.256661 ants/min 0.7342 (df 9.0038) 

Number of Ants at 

Water 

0+/- 0 ants/min 0.195833 +/- 0.468449 ants/min 0.22188 (df 9) 

Table 6: Variables of Interest Comparing Naïve Colony Exposure to Subsequent Exposure. Means 

reported as mean +/- SD. The degrees of freedom for the Welch’s T-test is displayed in parentheses after 

the p-value. A Post-Hoc Benjamini-Hochberg Procedure was run to correct p-values for repeated 

measurement. 

Variable Naïve exposure- 

Shut 

Prior Experience- 

Risky 

Welch’s 
Paired T-test 

p-value 

Benjamini-

Hochberg 

Procedure 

Displayed 

in: 

Water Depletion 0.01170 +/- 

0.158806 g 

0.09704 +/- 0.198435 

g 

0.4512 (df 9) NA Appendix H 

Sugar Depletion -0.05643 +/- 

0.380788 g 

-0.00605 +/- 0.19074 

g 

0.678 (df 9) NA Appendix H 

Number of Scouts 0.9 +/- 0.994429 ants -0.2 +/- 0.788811 ants 0.02426 (df 9) 0.0125 Fig 5 

Time to 2nd 

Explorer 

-37 +/- 568.7032 s 120.6 +/-390.0861 s 0.5901 (df 9) 0.025 Appendix H 

Time to 1st Return 102.8 +/- 347.9798 s 84.1 +/- 486.2721 s 0.9193 (df 9) 0.0375 Appendix H 

Time to 1st 

Explorer 

242.3 +/- 452.8215 s 249.6 +/- 937.3096 s 0.9759 (df 9) 0.05 Appendix H 

Number of Ants 10.23125 +/- 

19.27775 ants/min 

9.689815 +/- 

16.90956 ants/min 

0.7604 (df 8) NA Appendix H 
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Number of Ants at 

Sugar 

-0.26042 +/- 

2.256661 ants/min 

0.12037 +/- 2.669631 

ants/min 

0.8403 (df 8) NA Appendix H 

Number of Ants at 

Water 

0.195833 +/- 

0.468449 ants/min 

0.523148 +/- 

0.812129 ants/min 

0.2276 (df 8) NA Appendix H 

 

 

Figure 5: Boxplot of scout number between the 3 groups of trials conducted. Letters below boxplot denote 

significance groups of p>0.05 for Welch’s T-test/paired t-test. There was no difference between Naïve 

colonies exposed to a risky or shut treated spider (p-value > 0.05) or between a colony’s 1st and 2nd trial 

(Benjamini-Hochburg corrected p-value > 0.0125) Whiskers represent furthest point within 1.5x 

Interquartile range. 

Spider Survey 

The spider survey resulted in a total of 484 spiders (70 females, 99 males, 315 unknown 

sex) observed in ~17.5 hours of observation conducted over 30 days (fig 6, fig 8) and, in the 

same period, 14 species of ants were observed (appendix I). Across the three sites, there were 

3.65 +/- 1.56 spiders/day at the 1st site, 5.29 +/- 1.99 spiders/day at the 2nd site and 4.83 +/- 1.67 

spiders/day at the 3rd site (fig 8). As three sites saw no significant differences in number of 

spiders observed (p-value >0.05), I observed an average spider density of 2.43 +/- 1.35 

spiders/day/m2.  

A/- A/A -/A 
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Figure 6: Spider observation period. Range of observation period (left) and range of site observation 
period (right). Deviation from the clustered line indicates longer or shorter observation periods (30 

minutes on left graph, 10 minutes on right graph). Color indicates site number on the right side. Times of 

observation cover morning to early evening, with a higher density of morning observations.  

 

Figure 7: Prey captures from observed spider attacks (n = 32). White dots indicate fraction of 
unsuccessful attacks. The left section of the pie chart represents non-ant prey, the right section indicates 

ant prey. Ants make up slightly less than 50% of the attacks but were more frequently captured 

successfully than non-ant prey. 

P. obscurithorax-successful 
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Over this period 32 attacks (1.83 per hour of observation, 6.61% of spiders attacking 

prey) were observed on a variety of prey, as shown in figure 7, with 40.63 % overall success rate. 

15 attacks were observed on ant foragers, 60% of which were successful (9 attacks successful). 

Attacks on non-ants were also observed, 13 attacks on a variety of dipterans, 15.39% of which 

were successful (2 attacks successful) and 3 attacks against an unidentified insect, with 66% of 

those attacks being successful (2 attacks successful). Finally, there was 1 attack against another 

A. canosa which was not successful. 
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Figure 8: Total number of spiders observed between three sites per day of observation for the first (top 

left) and second (top right) observation period. The number of spiders over time was relatively consistent 

during each observation period, but the first fifteen days had much more variation.  Average number of 

spiders present at each site (below), calculated by combining both observation periods. None of 

the sites were different from each other (p-value > 0.05). Error bars show Standard deviation. 

Assuming that spiders are active for 12 hours of a day, I estimate 21.94 attacks occur per day 

between these 3 sites. Attacks on different prey would be estimated as 10.29 (46.88%) attacks 

per day would be on ants and of these 6.17 (60%) are successful kills. Over a week, this means 
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that 43.2 foraging ants would be killed inside the 6.71 m2 area I surveyed, or 6.44 ants 

killed/m2/week.  
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CHAPTER FIVE: DISCUSSION AND CONCLUSIONS 

Ants in the Landscape of Fear 

In answer to the central question “do ants respond to predatory risk posed by an ant-specialist spider”, I 

conclude that, as a colony, they do not. The main indicators of a large-scale foraging change (the actual 

depletion of resources or significant shift in forager number sustained over time) were not different 

between treatments or between treatment and control for either sugar or water resources (fig 4), nor did 

the overall number of ants per minute have any significant difference between the treatments or the 

treatment vs control (appendix E). For mortality data (fig 3), mortality should be pulled away from 

0 by the spiders with the ability to eat ants feeding upon foragers. But this does not appear to be 

the case, and the hypothesis that mortality would be reduced as ants had repeated exposure to a 

predator was not supported by the data. Specifically, the number of ants that died in 24 hours did 

not change with repeated trials (fig 1).  There was no significant difference for any of the variables 

measured among the treatment groups when assessed across foraging strategy or species. No 

significant divergence from 0 in any of the figures means that the presence and activities of a spider 

predator did not alter ant prey behaviors associated with any measured variables. More specifically, a 

result of no significant difference between the risky vs shut treatments means that the spider’s ability to 

feed upon foragers didn’t have any impact in the way ants responded to the spider. Additionally, 

because there was no difference detected between the foraging strategies or the different species, it 

appears that ants are not impacted by predation risk from A. canosa regardless of foraging strategy or 

species.  
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In sum, foraging ants appear to have no consistent behavioral alterations when they perceive 

a generalist predator’s presence, or even as a consequence of A. canosa’s predation of other foragers. 

Although it is possible that there are other individual level behaviors that may have been altered by the 

spider’s presence, these behavioral changes do not appear to lead to any large-scale changes in the 

outcome of colony foraging that would have been detected in this experiment. Additional analyses did 

not detect any difference from treatment or species (appendix J). These findings lend some support to 

the hypothesis of foragers as an expendable caste, insensitive to risk as individuals (Porter & Jorgenson, 

1981). This means that A. canosa likely does not have cascading impacts from widespread changes in 

ant foraging due to its arrival or persistence in habitats (Pekar et al. 2010). The hypothesis that majors 

will be more risk averse as a more valuable caste was not supported but Figure 4 does show what 

may be an interesting difference in variation, where the shut treatment had a much wider range 

compared to the risky trial. Likewise, figures in appendix E shows the same pattern of much 

higher variation in the shut compared to risky treatments. Fifteen of the trials failed to see majors 

at one or both food and water sources however, so the sample size is quite small and more 

specific testing, focused on the behaviors of foraging majors may be warranted. Further 

replication is necessary (preferably with more species of Pheidole) to really establish the 

relationship between majors and risk of A. canosa predation. Similarly, when comparing the 

mass recruiting ants to the solitary foragers (appendix E), mass recruiting ants appeared to have 

more variation compared to the solitary foragers, but the large difference in number of trials (67 

vs 22) seems the most likely reason for this difference. 

In experiment 2, given that no difference was seen in experiment 1, I did not expect to see 

evidence of an innate aversion to a predator. It is of particular interest then, that naïve colonies had 
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more scouts enter the arena containing a predator, but in the second trial, had no difference between the 

two arenas (fig 5), meaning behaviors which influenced their interactions with the spider appear to be 

lost in one trial rather than gained. This significant difference appears to be a consequence of the 

number of variables collected in this experiment rather than a truly significant effect (table 6), so a 

concrete conclusion is not possible. But these results did not support my hypothesis that predator 

avoidance is a rapidly acquired behavior. The control group showed the same scouting bias towards the 

arena with a predator (fig 5), which provides further evidence that having prior experience with the 

predator did change the response of individual foragers. It is important to note however that there was 

not a significant difference between the treatment and control groups in the second half of experiment 

2, but this fact is likely due to a reduction in degrees of freedom comparing a paired and independent 

samples t-test, as well as the much smaller sample size of the control group. These results suggest that 

S. invicta foragers could be responding to predatory risk by increasing the number of scouts in the 

arena, likely lowering the risk which an individual ant experiences; a herd effect (Ioannou, 2017). 

Given the reduction in number of initial scouts between trial 1 and 2 in experiment 2 (fig 12) 

experience may play an important role in how scouts respond to this risk, and this makes biological 

sense. As scouts are the oldest and most vulnerable foragers in fire ant colonies (Tschinkel, 2010), 

having additional scouts appear when there is a perceived threat may be a response to the likelihood 

that predation could reduce the number of scouts present within the territory. Future studies into this 

topic should verify these results. 

One concern with the experimental design was that although brood was collected and present in 

all colonies some species (especially F. pallidefulva) may not have had enough brood to stimulate 

foraging. Brood number and hunger drives the foraging behavior of ant colonies (Cook et al. 2010). 
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Thus, small colonies of solitary foraging species sometimes failed to forage in both arenas (or in some 

cases struggled to forage at all). All the S. invicta colonies were queenright but the majority of the other 

species were not, as no queen was collected during a typical colony excavation. While collecting 

colonies in the field polygene colonies of O. ruginodis were found, as O. ruginodis is not noted as 

polygyne, these colonies were split into monogyne colonies with appropriate worker numbers. Future 

work using similar methodology should increase the size of solitary foraging colonies (and to be sure 

that ample brood are present to stimulate colony hunger).  

The spider may have been attractive as a potential food item for the ants, as during seven trials 

(one F. pallidefulva, three S. invicta and three P. obscurithorax) ants attacked the spider and brought 

some or all of it back to the colony (probably to be eaten as protein). The fact that ants may 

successfully perceive and capture these spiders as prey may contribute to the lack of avoidance of 

spider predators, especially if colonies are hungry.  There were other factors that impacted data 

availability for some of the experiments. For example, in some cases after day 1 filming had concluded, 

the ants broke through the cotton ball on either the water or sugar test tube and flooded the arena, 

preventing accurate measurement of mortality and resource depletion. Finally, there was an assumption 

that all but the lab-reared S. invicata colonies had prior experience with A. canosa. The result of the 

spider survey suggest that this is likely true, however, and even if field collected colonies had no 

experience, they could nevertheless learn within 1 to 2 trials that the spider was a predator. Based on 

the significant difference found in scout numbers in experiment 2 after 1 trial, this appears to be an 

appropriate assumption (fig 5).  
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Spider predation did not manifest in a significant difference in the number of dead ants in the 

arena after 24 hours overall (figure 3) but it was significant in the case of mass recruiting ants 

(appendix F), and there is a larger range of mortality in mass recruiting ants compared to solitary 

foragers (appendix F). This is not surprising as scouts and foragers are older individuals and mortality 

occurs at a regular rate in this behavioral caste (Tschinkel, 2006). Predation did occur during the 

experiment and was observed by filming for each species on at least 1 occasion. Deprived of other food 

sources, the spider attacked and successfully ate foraging ants of all four species during the initial 50-

minute observation period (one F. pallidefulva, three O. ruginodis, 12 P. obscurithorax and 28 S. 

invicta [appendix K]). The fact that only mass recruiting ants ended up being a significant result (and 

taken individually, neither S. invicta nor P. obscurithorax had a significant difference in mortality, 

[appendix G]) seems to indicate a fundamental difference in the spider’s willingness to eat different ant 

species. In nature A. canosa may exhibit prey preference that does not put foragers of the species I 

chose routinely in danger from this particular predator. Unfortunately, there was no observed 

interactions between A. canosa and 3 of my four species in the field (fig 7), despite the presence of 

most of my ant species within the sites (appendix I). 

Understanding how predators influence the distributions and behavior of their prey remains a 

critical goal in ecology. Because ants play a large role in the environments they live in as both 

ecosystem engineers and predators, it is very important that we, as ecologists understand the role that 

predators play in mediating how ants interact with the environment. From this experiment it would 

appear that foragers can be responsive to predation risk, but these impacts are not collectively sufficient 

to impact colony-level foraging. This distinction suggests that solitary predators like jumping spiders 

do not create a landscape of fear for ant colonies. This differs from collective responses of foraging ants 



 

 

 

42 

 

 

 

in response to web-building spiders that may capture and kill large numbers of foragers (Kwapich & 

Hölldobler, 2019). 

Future directions for our understanding of how ant colonies, and other eusocial and social 

groups operate in the landscape of fear are: to expand species list to include a greater variety of 

species, colony sizes and foraging strategies. Additionally, accounting for worker age would 

verify the assumption that older workers take more risks, and also see if the age cohorts of 

foragers is altered by the perception of risk. 

Spider Survey 

My field survey results indicated A. canosa is not only abundant but likely densely 

populated (fig 8). My results also show that spiders capture many ants as prey, and that a large 

number of foraging ants likely survive encounters with this spider at regular intervals. Although 

my estimate suggests that 6.44 ants are killed each week/m2 area of spider territory, it also 

suggests that 4.48 ants are exposed to a spider and survive the encounter every week/m2. Thus, 

A. canosa represents a small, but consistent predatory threat to a variety of ant species and that 

most ant colonies should have prior experience with these spiders in the field. 

Ant colonies cover a variable sized patch of ground, but foraging ranges routinely span 

50 cm to many meters from the nest (Hölldobler and Wilson, 1990). The total space a colony 

considers its territory also is variable but estimates of at least 2 m2 are likely conservative for all 

but the smallest of ant species. Worker ants live for a few months to more than 1 year (Gordon & 

Hölldobler, 1988), and typically forage towards the end of their lifespan, typically a time span of 

1-2 months, although higher turnover is also common during periods of stress (Schmid-Hempel, 
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1984). Under an assumption of 1-month turnover inside a colony, that would mean that each 

foraging cohort within a colony should contain approximately 13 ants that have prior experience 

with A. canosa for every m2 of exclusive foraging territory where the spider is found. Although 

ant colonies are territorial, they sometimes overlap in foraging areas with non-competitive 

species, so they will in all likelihood not be the only species experiencing spider predation within 

that space, reducing the number of foragers that would have prior experience. However, even a 

small number of ants are able to spread knowledge effectively through information sharing 

(Franks & Richardson, 2006), and age is not a factor in the ability to share information with 

nestmates (Franklin et al. 2012). This means that colonies in regions where A. canosa is found 

should have ample opportunity for foragers to learn and respond to the spider’s presence. One 

important point remains in the feeding data for A. canosa, namely that the overall number of ants 

killed by the spider is somewhat small (over 1 month a colony should have ~19.32 foragers 

killed/m2 of spider habitat that the colony exclusively forages in) and this may mean that A. 

canosa isn’t a major impact on foragers themselves, meaning that even if ants were not behaving 

under the disposable caste hypothesis, perhaps A. canosa is not a threat workers need to be aware 

of. Another critical factor in my estimates, is that the hunting data I observed included 3 attacks 

on C. rimosus, a heavily armored ant, which has been concluded to not be a possible food source 

for A. canosa (Edwards et al. 1974). This provides further evidence that the spiders, as an 

opportunistic forager, don’t turn down opportunities to attack any insect.  

My observations were conducted across the length of a day (fig 6) but were heavily 

concentrated in the mid-morning (10-11 am). This may have introduced a bias into my data since 

only 4 observations occurred in the afternoon. 
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Pekar et al. (2012) noted that on average 7% of spiders observed should have prey, 

meaning that 500 spiders are a sufficient number to gain an understanding of the spiders foraging 

behaviors. In my study I observed slightly fewer than 500 spiders but observed only 6.612% of 

spiders with prey. This difference in rate of feeding is could be due to the methodology applied 

in this experiment, although there is a close match between my observations and Pekar et al.’s 

(2012) predictions. 

Since jumping spider behavior and feeding in the wild are typically different between 

male and female spiders (ex: Scheidemantel, 1997), being unable to distinguish between male 

and female spiders due to immaturity poses a very important drawback to this research, as it 

leaves the realized prey niche for A. canosa slightly uncertain. A. canosa is an indirect hunter 

(Hill, 2019) which means that determining the spiders food preference is more challenging than 

for other spiders, due to the difficulty in determining where a spider ‘misses’ a chance to feed, or 

distinguishing preparations to attack a moving prey item (such as a fly or foraging ant) from the 

spider simply moving from place to place. In addition to the highly distinctive attacks, there were 

also numerous cases of spiders showing stalking behavior of an ant or dipteran that failed to 

result in an attack which were not included in the attack data. Finally, not all the insects attacked 

could be accurately identified or identified beyond order, and a few of the observed attacks were 

inferred from spiders observed carrying prey, rather than observing them catching it. 

From this field study, I am uncertain if A. canosa is truly a stenophageous spider. A 

sizeable chunk (40.6%) of the attacks observed targeted flies (fig 7), and the spider seemed to be 

more of an opportunist (even scavenging dead insects placed before it) than a true specialist. 
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Although A. canosa has evolved specialist hunting behaviors that make it more successful at 

hunting ants (60% success rate against ant prey vs. 25% success rate against non-ant prey), 

spiders seems to stalk and attack anything that gets close to where they wait. 

An observation period of 30 minutes appears to have been sufficient time to locate 

spiders, however, spiders are very prone to vibrational cues (Virant-Doberlet et al. 2019) and my 

walking through the habitat could have driven many spiders into hiding. Given that spiders were 

typically located within 2 minutes of starting to collect data, this does not appear to have been a 

major concern in this project. My estimates for spider numbers and predation rates are then likely 

underestimates due to vibrations from my movement changing spider behavior within the sites. 

Certainly, this vibrational cue altered the personality of spiders I saw in the field, as bolder 

spiders would emerge from hiding faster, or not hide at all, so the most conspicuous spiders were 

also likely the boldest. This personality skew should not have impacted the feeding rate data, as 

research in other jumping spiders has not seen changes in feeding choices based on personality 

(Chang et al. 2017). 

First and foremost, other researchers must duplicate these results across the range of A. 

canosa to increase our understanding of both the spider’s ecology and its relationship to ants and 

other local fauna. This project is relatively short, requires minimal training and would be an 

excellent way to expose students to the natural environment. Replicating this work in local 

habitats wherever A. canosa can be found would be an excellent project for citizen science or 

students at either the high school or college level. Subsequent surveys should use random sites to 

asses true spider abundance. 
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Overall Conclusions 

Drawing upon both studies I completed, there is limited that interactions between ant 

foragers and an abundant generalist spider predator mediated foraging patterns at the level of the 

colony, although there was some evidence that prior experience in mass recruiters may affect 

scouting behavior. A. canosa maintains a diverse diet of ants and dipterans in the field (appendix 

I) and can be expected to be a known threat to ant colonies which maintain medium to large 

foraging territories in semi-natural areas in Florida. Further study is necessary to explore the 

process of how workers convey information about risk, best accomplished using the strongly 

selective competitive threats of other ants (Gordon, 1989). Once this has been done a comparison 

can be performed to see how the risk of spider predation is either conveyed differently or not 

conveyed to other mass-recruiting ants. It would also be beneficial to preform experiment two 

again using naïve colonies of solitary foraging ants to see if the same herd effect is seen. Overall, 

ant colonies do appear to be risk insensitive and foragers (even if they have changes to behavior 

to protect themselves) are disposable.  
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APPENDIX A: EXPERIMENTAL HOUSING AND TEST SETUP 
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Figure 9: Mock Experimental Setup for Laboratory Studies. One arena at random receives a randomly 

treated spider in each experimental trial. 
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APPENDIX B: PREDICTIONS FOR LABORATORY EXPERIMENTS 
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Table 7: Predictions for Experiment One. All predictions are for the treatment arena compared to control 

arena. 

Treatment Regular Spider Glued Shut 

Number of Ants in Arena Greatly reduced Slightly reduced 

Number of Ants at Food Greatly reduced Slightly reduced 

Water Depletion Reduced Reduced 

Number of Majors Reduced Reduced 

Sugar Depletion No Change No Change 

 

Table 8: Predictions for Experiment Two. All predictions are for the treatment arena compared to control 

arena. 

Treatment Prior 

Exposure  

No Prior Exposure 

Food/water Depletion Reduced No change 

Mortality No change Higher 
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APPENDIX C: MAP OF FIELD SITES 
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Figure 10: Map of Field Sites for Field Survey, Stars Indicate Field Sites. 

Original map from: UCF Arboretum, Landscape & Natural Resources.  

Retrieved from: https://arboretum.ucf.edu/resources/trails/  10/5/2019. 

  

https://arboretum.ucf.edu/resources/trails/
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APPENDIX D: TABLE OF TRIALS CONDUCTED 
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Table 9: Estimation of Power for One-tailed T-test in Experiment. 

Level of Analysis Power Estimate (medium effect size) Power Estimate (high effect size) 

by Treatment 0.7386582 0.9777591 

Solitary Forager by 

Treatment 

0.3027321 0.5634899 

Mass recruiter by 

Treatment 

0.624657 0.9325567 

S. invicta by Treatment 0.46666665 0.8031083 

P. obscurithorax by 

Treatment 

0.310511 0.5774244 

F. pallidefulva by 

Treatment 

0.1750403 0.3051127 

O. ruginodis by Treatment 0.2013883 0.3620295 

Experiment two: Paired t-

test. 

0.2931756 0.7544248 

Experiment two: t-test. 0.2179579 0.397235 

 

Power estimates in the table 9 were made in r with the ‘pwr’ package using only medium and high effect 

sizes because non-consumptive effects were expected to be amplified in a colony level response. Power 

under medium effect size used 0.5 for effect size while under high effect size calculations used 0.8 

following Cohen’s suggested effect size at those levels.  
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APPENDIX E: ADDITIONAL GRAPHICAL REPRESENTATION OF 

EXPERIMENT 1 DATA  



 

 

 

56 

 

 

 

 

Figure 11: Boxplots of relative recruitment of worker ants (left) and majors (right) into treatment arena. 

Neither of these variables were different between treatment nor were they different from 0 (p-value > 

0.05). Whiskers represent furthest point within 1.5x Interquartile range. 
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APPENDIX F: BY-FORAGING STRATEGY DATA FROM EXPERIMENT 

ONE. 
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Table 10: Comparing Treatment by Foraging Strategy. Due to small sample size which differed between 

treatments, p-value is for a Kruskal-Wallis rank sum test. * indicates a value is different from 0 according 

to a Wilcoxon signed rank test (p<0.05). 

Variable Solitary 

Foraging-Risky 

Solitary 

Foraging- Shut 

p-

value 

Mass 

Recruiting- 

Risky 

Mass 

Recruiting- 

Shut 

p-value 

Water -0.003858 0.05272 0.4683 0.01742 0.07632* 0.131 

Sugar -0.03619 -0.00436 0.8951 -0.02557 0.01783 0.8703 

Explorer 1 -220.8 265.1 0.1661 43.47 -37.32 0.9407 

Explorer 2 180.2 237.1 0.7416 -89.67 50.21 0.6166 

Num-Food -0.25675 -0.04043 0.7915 -0.1942 0.19352 0.6309 

Num-Water 0.05014 -0.0383 0.6569 0.10036 -0.002643 0.8934 

Pro-Food -0.09664 0.07174 0.5136 -0.030474 -0.058555 0.5064 

Pro-Water 0.095517 -0.005807 0.5898 0.002038 -0.006927 0.2814 

Scouts -0.25 -0.2 0.4537 -0.1944 0.8929 0.6349 

Num -0.5082 -0.3505 0.9474 1.4072 3.0554 0.279 

Return -196.0 56.8 0.1468 -26.42 87.14 +/- 

435.9769 

0.1916 

Mortality -0.3333 -0.1111 0.6403 1.68+/- 

3.848376* 

-0.50 +/- 

4.885352 

0.02458* 

 

 

Figure 12: Boxplots of number of ants per minute in treatment arena (left), at sugar (center) and at water 

(right) for each foraging strategy. None of these variables were different between treatment nor were they 

different from 0 (p-value > 0.05). Whiskers represent furthest point within 1.5x Interquartile range. 
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Figure 13: Boxplots of relative number of scouts (top left), total mortality (top right), time to first 

explorer (bottom left), delay to second explorer (bottom middle), and time to first return (bottom right) in 

treatment arena for each foraging strategy. * indicates difference between treatment and control (p -value 

< 0.05). Of these variables, only mass recruiter mortality was different between treatment (p-value < 0.05 
[appendix 8]) and no variables were different from 0 (p-value > 0.05). Whiskers represent furthest point 

within 1.5x Interquartile range. 

  

* 
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APPENDIX G: BY SPECIES RESULTS FROM EXPERIMENT ONE 
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When comparing the species data, a major hurdle was the very small sample sizes (especially for 

the solitary foraging species). To compensate for this, and the different sample sizes between the 

two treatments a non-parametric Kruskal-Wallis rank sum test was used. 

Table 11: Comparing the Means of Solitary Foraging Species. P-value is for a Kruskal-Wallis Rank Sum 

Test. 

Variable F. pallidefulva-

Risky 

F. pallidefulva- 

Shut 

p-

value 

O. ruginodis- 

Risky 

O. ruginodis- 

Shut 

p-

value 

Water 0.02707 0.02453 0.6698 -0.03478 0.07152 0.2002 

Sugar 0.04225 -0.002975 0.5224 -0.11463 -0.005283 0.631 

Explorer 1 -370 -32.75 0.3938 -71.67 463.7 0.2002 

Explorer 2 -13.17 387.2 0.5224 373.67 137.0 1 

Num-Food -0.24044 -0.14362 0.5224 -0.27305 0.02837 0.4217 

Num-

Water 

0.13475 -0.09043 0.4951 -0.03447 -0.003546 0.8703 

Pro-Food -0.1059 0.12058 0.6242 -0.08739 0.03267 0.6015 

Pro-Water 0.20040 0.007058 1 -0.009368 -0.0161 0.6752 

Scouts -0.1667 -0.25 0.5066 -0.3333 -0.1667 0.5228 

Num -0.4526 -0.68617 0.6698 -0.5638 -0.12666 0.7488 

Return -195.3 -52.25 0.6698 -196.67 129.5 0.1495 

Mortality 0 +/- 0 -0.25 0.2207 -0.6667 0 +/- 0 0.1736 
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Table 12: Comparing the Means of Mass Recruiting Species. P-value is for a Kruskal-Wallis Rank Sum 

Test. 

Variable S. invicta- 
Risky 

S. invicta- 
Shut 

p-value P. obscurithorax- 
Risky 

P. obscurithorax- 
Shut 

p-
value 

Water 0.03872 0.03061 0.6491 -0.017 0.15404 0.121 

Sugar -0.007727 0.008182 0.8874 -0.05629 0.03424 0.8041 

Explorer 1 -111.8 -39.61 0.4306 318.2 -33.2 0.3211 

Explorer 2 -62.35 87.94 .4005 -138 -17.7 0.6641 

Num-Food -0.0595 -.02079 0.5137 -0.4223 0.5793 0.3211 

Num-

Water 

0.18384 -0.04728 0.28519 -0.04092 0.07771 0.3657 

Pro-Food -0.021758 -0.032746 0.5157 -0.042095 -0.091727 0.5978 

Pro-Water 0.002726 -0.007246 0.5459 0.0011203 -0.006545 0.3532 

Scouts 0.3043 0.2778 1 -1.077 2 0.367 

Num 4.072 1.5142 0.8687 -3.1031 5.83 0.1724 

Return -16.39 48.67 0.713 -44.15 156.4 0.1724 

Mortality 2.5* -.6667 0.09219 0.6364 -0.2857 0.1237 

 

Figure 14: Relative number of ants per minute in treatment arena by species. None of these variables 
were different between treatment nor were they different from 0 (p-value > 0.05). Whiskers represent 

furthest point within 1.5x Interquartile range. 
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Figure 15: Relative number of ants per minute at water (left) or sugar (right) in treatment arena by 

species. None of these variables were different between treatment nor were they different from 0 (p-value 

> 0.05). Whiskers represent furthest point within 1.5x Interquartile range. 

 

Figure 16: Relative number of scouts in treatment arena by species. None of these variables were 

different between treatment nor were they different from 0 (p-value > 0.05). Whiskers represent furthest 

point within 1.5x Interquartile range. 
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Figure 17: Relative delay to 1st return in treatment arena by species. None of these variables were 

different between treatment nor were they different from 0 (p-value > 0.05). Whiskers represent furthest 

point within 1.5x Interquartile range.  

 

Figure 18: Relative mortality in treatment arena by species. None of these variables were different 

between treatment nor were they different from 0 (p-value > 0.05). Whiskers represent furthest point 

within 1.5x Interquartile range. 



 

 

 

65 

 

 

 

 

Figure 19: Relative delay to 2nd explorer in treatment arena by species. None of these variables were 

different between treatment nor were they different from 0 (p-value > 0.05). Whiskers represent furthest 

point within 1.5x Interquartile range. 

 

Figure 20: Relative depletion of sugar water in treatment arena by species. None of these variables were 

different between treatment nor were they different from 0 (p-value > 0.05). Whiskers represent furthest 

point within 1.5x Interquartile range. 
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Figure 21: Relative depletion of water in treatment arena by species. None of these variables were 
different between treatment nor were they different from 0 (p-value > 0.05). Whiskers represent furthest 

point within 1.5x Interquartile range. 

 

Figure 22: Relative time to 1st explorer in treatment arena by species. None of these variables were 

different between treatment nor were they different from 0 (p-value > 0.05). Whiskers represent furthest 

point within 1.5x Interquartile range.  
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APPENDIX H: ADDITIONAL GRAPHICAL REPRESENTATION OF 

EXPERIMENT 2 DATA  
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Figure 23: Boxplots of relative resource depletion (top), time to first explorer (bottom left), delay to 

second explorer (bottom center) and time to first return (bottom right) in experiment 2. None of these 

variables were different between treatment nor were they different from 0 (p-value > 0.05). Whiskers 

represent furthest point within 1.5x Interquartile range. 
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Figure 24: Boxplots of relative number of ants in treatment arena comparing naïve exposure to 

subsequent exposure (top) and comparing naïve exposure with a risky spider to naïve exposure with a 

shut spider (bottom) in experiment 2. None of these variables were different between treatment nor were 

they different from 0 (p-value > 0.05). Whiskers represent furthest point within 1.5x Interquartile range. 
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Figure 25: Boxplot of relative number of ants at sugar resources in treatment arena comparing naïve 
exposure to subsequent exposure (top) and comparing naïve exposure with a risky spider to naïve 

exposure with a shut spider (bottom) in experiment 2. None of these variables were different between 

treatment nor were they different from 0 (p-value > 0.05). Whiskers represent furthest point within 1.5x 

Interquartile range. 
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Figure 26: Boxplot of relative number of ants at water resources in treatment arena comparing naïve 

exposure to subsequent exposure (top) and comparing naïve exposure with a risky spider to naïve 

exposure with a shut spider (bottom) in experiment 2.None of these variables were different between 

treatment nor were they different from 0 (p-value > 0.05). Whiskers represent furthest point within 1.5x 

Interquartile range. 
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APPENDIX I: ANT SPECIES IN FIELD OBSERVATION 
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Table 13: Ant Species List from Field Observations. Highlighted rows were species used in laboratory 

experiments. 

Species name Total observed Per day 
observation 

Relative 
Abundance 

% of all observed 
Feeding behavior 

(% of ant 

behavior) 

Brachymyrmex sp. 3 0.1 0.014851 NA 

Cyphomyrmex 

rimosus 
43 1.433333 

0.212871 

9.6774% 

(21.4286 %) 

Camponotus sp. 29 0.966667 0.143564 NA 

Crematogaster 

pinicola 
12 0.4 

0.059406 

NA 

Formica palidefulva 3 0.1 0.014851 NA 

Nylanderia sp 6 0.2 0.029703 NA 

Odontomachus 

ruginodis 
9 0.3 

0.044554 

NA 

Brachyponera 

chinensis 
1 0.033333 

0.00495 

NA 

Pheidole dentata 1 0.033333 0.00495 NA 

Pheidole 

obscurithorax 
69 2.3 

0.341584 

6.4516 % 

(14.2857 %) 

Pheidole sp. 8 0.266667 
0.039604 

3.2258 %  

(7.1429 %) 

Pseudomyrmex 

gracilis 
9 0.3 

0.044554 

NA 

Pseudomyrmex 

pallidus 
1 0.033333 

0.00495 

NA 

Unknown 8 0.266667 
0.039604 

25.8065% 
(57.1429 %) 
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APPENDIX J: PRIMARY COMPONENT ANALYSIS OF EXPERIMENT 1 

DATA 
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Figure 27: PCA of Raw Average Number of Ants/Minute by Species (Left) and by Treatment (Right).  

There was no evidence for differentiation of any group from the others. 

 

Figure 28: PCA of Transformed Data by Species. All Variables are relative to control arena. There was 

no evidence for differentiation of any group from the others. 
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Figure 29: PCA of Transformed Data by Treatment. All Variables are relative to control arena. There 

was no evidence for differentiation of any group from the others. 

For Figure 27 & 28: Num = Number of Scouts, Right side = 0 if left, 1 if right side, Sugar = depletion of 

sugar, Water = depletion of water, Mort = number dead, Return = delay to 1st return, Exp1 = time to 1st 

explorer, Explore = delay to 2nd explorer. 

  



 

 

 

77 

 

 

 

REFERENCES 

Abrams, P.A. (1995). Implications of Dynamically Variable Traits for Identifying, Classifying, and 

Measuring Direct and Indirect Effects in Ecological Communities. The American Naturalist, 

146(1):112-134. 

Barry, M. J. (1994). The costs of crest induction for Daphnia carinata. Oecologia, 97: 278–288.  

Beckers, R., Deneubourg, J. L., Goss, S., & Pasteels, J. M. (1990). Collective decision making through 

food recruitment. Insectes Sociaux, 37(3): 258–267. 

Brown, J. S. (1988). Patch use as an indicator of habitat preference, predation risk, and competition. 

Behavioral Ecology and Sociobiology, 22(1): 37–47. 

Bryant, E.B. (1940). Cuban spiders in the Museum of Comparative Zoology, Bull. Mus. Comp. Zool. 

136:249-532. 

Buchanan, Amanda L., Hermann, Sara L., Lund, Margaret, Szendrei, Zsofia. (2017). A meta-analysis of 

non-consumptive predator effects in arthropods: the influence of organismal and environmental 

characteristics. Oikos, 126: 1233-1240. 

Bucher, R. (2014). Non-Consumptive Effects of spiders and ants: does fear matter in terrestrial interaction 

webs? Dissertation. Universität Koblenz-Landau. 

Carlin, N. F., & Gladstein, D. S. (1989). The “bouncer” defense of Odontomachus ruginodis and other 
odontomachine ants (Hymenoptera: Formicidae). Psyche, 96(1-2): 1-20. 

Cerda, X., Retana, J., & Cros, S. (1998). Critical thermal limits in mediterranean ant species: trade-off 

between mortality risk and foraging performance. Functional Ecology, 12(1): 45–55. 

Chang, C.C., Ng, P.J. & Li, D.. Aggressive jumping spiders make quicker decisions for preferred prey but 

not at the cost of accuracy. Behavioral Ecology. 28(2):497-484. 

Conradt, L. & Roper T.J. (2005). Consensus decision making in animals. Trends in Ecology & Evolution, 

20(8):449-456. 

Cook, S.C., Eubanks, M.D., Gold, R.E., Behmer, S. T. (2010). Colony-level macronutrient regulation in 

ants: mechanisms, hoarding and associated costs. Animal Behaviour, 79(2):429-437.  

Culp, J. M., Glozier, N. E., & Scrimgeour, G. J. (1991). Reduction of predation risk under the cover of 

darkness: avoidance responses of mayfly larvae to a benthic fish. Oecologia, 86(2):163–169. 

Cummins, K.W., & Klug, M.J. (1979). Feeding Ecology of Stream Invertebrates. Annual review of 

ecology and systematics, 10(1): 147-172. 

Cushing, P. E. (2012). Spider-ant associations: an updated review of myrmecomorphy, myrmecophily, 

and myrmecophagy in spiders. Psyche, 2012.  

Dáttilo, W., Marquitti, F. M.D., Guimarᾶes Jr. P.R., & Izzo T.J. 2016. The structure of ant-plant 

ecological networks. Is abundance enough?. Ecology, 95(2):475-485. 

Davenport, J. M., Hossack, B. R., & Lowe, W. H. (2014). Partitioning the non-consumptive effects of 

predators on prey with complex life histories. Oecologia, 176:149–155. 



 

 

 

78 

 

 

 

de la Flor, M., Chen, L., Manson-Bishop, C., Chu, T., Zamora, K., Robbins, D., Gunaratne, G. & Roman, 

G. (2017). Drosophila increase exploration after visually detecting predators. PLoS ONE, 12(7): 

e0180749. 

Denno, R. F., Gratton, C., Dobel, H., & Finke, D. L. (2003). Predation risk affects relative strength of top-

down and bottom-up impacts on insect herbivores. Ecology, 84(4):1032–1044. 

Denno, R. F., Gruner, D. S., & Kaplan, I. (2008). Potential for entomopathogenic nematodes in biological 

control: a meta-analytical synthesis and insights from trophic cascade theory. Journal of 

Nematology, 40(2):61–72. 

Detrain, C., & Deneubourg, J. (2006). Self-organized structures in a superorganism: do ants “behave” like 
molecules? Physics of Life Reviews, 3:162–187. 

Deyrup, M. (2017). Ants of Florida: identification and natural history. Boca Raton, Taylor & Francis 

Group. Print. 

Dicke, M., & Grostal, P. (2001). Chemical detection of natural enemies by arthropods: an ecological 

perspective. Annual Review of Ecology and Systematics, 32:1–23. 

Dukas, R. & Edlestein-keshet, L. (1998). The Spatial Distribution of Colonial Food Provisioners. Journal 

of Theoretical Biology, 190(2):121-134. 

Dussutour, A., Beekman, M., Nicolis, S. C., & Meyer, B. (2009). Noise improves collective decision-

making by ants in dynamic environments. Proceedings of the Royal Society of Biological 

Sciences, 276(1677):4353–4361. 

Edwards, G. B., & Jackson, R. R. (1994). The role of experience in the development of predatory 

behaviour in Phidippus regius, a jumping spider (Areneae, Stalticidae) from Florida. N. Z. J. 

Zool. 21:269-277. 

Edwards, G. B., Carroll, J. F., & Whitcomb, W. H. (1974). Stoidis aurata (Araneae: Salticidae), a spider 

predator of ants. The Florida Entomologist, 57(4):337–346. 

Feener Jr, D. H. (1988). Effects of parasites on foraging and defense behavior of a termitophagous ant, 
Pheidole titanis Wheeler (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 

22(6):421–427. 

Feener, D. H. (1981). Competition between ant species: outcome controlled by parasitic flies. Science, 

New Series, 214(4522):815–817. 

Folgarait, P.J. (1998). Ant biodiversity and its relationship to ecosystem functioning: a review. 

Biodiversity & Conservation, 7(9):1221-1244. 

Franklin, E.L., Robinson, E. J.H., Marshall, J.A.R. Marshall, Sendova-Franks, A.B. (2012). Do ants need 

to be old and experienced to teach?. Journal of Experimental Biology. 215:1287-1292. 

Franks, N.R. & Richardson, T. (2006). Tapping into the dialogue between leader and follower reveals an 

unexpected social skill. Nature, 439(12):153.  

Gastreich K.R. (1999). Trait-Mediated Indirect Effects of a Theridiid Spider on an Ant-Plant Mutualism. 
Ecology, 80(3):1066-1070. 

Gentry, J.B. (1974). Response to Predation by Colonies of the Florida Harvester Ant, Pogonomyrmex 

badius. Ecology, 55(6):1328-1338. 



 

 

 

79 

 

 

 

Geraldi, N. R., & Powers, S. P. (2011). Subtle changes in prey foraging behavior have cascading effects 

in a shallow estuary. Marine Ecology Progress Series, 427:51–58. 

Goncalves, A. Z., Srivastava, D. S., Oliveira, P. S., & Romero, G. Q. (2017). Effects of predatory ants 

within and across ecosystems in bromeliad food webs. Journal of Animal Ecology, 86:790-799. 

Gonzávez, F. G., & Rodríguez-gironés, M. A. (2013). Seeing is believing: information content and 

behavioural response to visual and chemical cues. Proceedings: Biological Sciences, 

280(1763):1–8. 

Gordon, D. M. (1986). The dynamics of the daily round of the harvester ant colony (Pogonomyrmex 

barbatus). Animal Behaviour, 34(5):1402–1419. 

Gordon, D. M. (1988). Nest-plugging: interference competition in desert ants (Novomessor cockerelli and 

Pogonomyrmex barbatus). Oecologia, 75(1):114–118. 

Gordon, D. M. (1989). Ants distinguish neighbors from strangers. Oecologia, 81(2):198-200. 

Gordon, D. M. (1992). How colony growth affects forager intrusion between neighboring harvester ant 

colonies. Behavioral Ecology and Sociobiology, 31:417–427. 

Gordon, D.M & Hölldobler, B. 1988. Worker longevity in harvester ants. Psyche, 94:341-346. 

Gronenberg, W. (1995). The fast mandible strike in the trap-jaw ant Odontomachus. Journal of 

Comparative Physiology A, 176(3):399-408. 

Haemig, P. D. (1994). Effects of ants on the foraging of birds in spruce trees. Oecologia, 97(1):35–40. 

Haemig, P. D. (1996). Interference from ants alters foraging ecology of great tits. Behavioral Ecology and 

Sociobiology, 38(1):25–29. 

Halaj, A. J., Ross, D. W., & Moldenke, A. R. (1997). Negative effects of ant foraging on spiders in 

Douglas-Fir canopies. Oecologia, 109(2):313–322. 

Hammerschlag, N., Broderick, A. C., Coker, J. W., Coyne, M. S., Dodd, M., Frick, M. G., … Hawkes, L. 
A. (2015). Evaluating the landscape of fear between apex predatory sharks and mobile sea turtles 
across a large dynamic seascape. Ecology, 96(8):2117–2126. 

Harmon, J. P., & Andow, D. A. (2007). Behavioral mechanisms underlying ants’ density-dependent 

deterrence of aphid-eating predators. Oikos, 116(6):1030–1036. 

Hart, L.M., & Tschinkle, W. (2012). A seasonal natural history of the ant, Odontomachus brunneus. 
Insectes Sociaux, 59(1):45-54. 

Hawlena, D., & Schmitz, O. J. (2010). Herbivore physiological response to predation risk and 

implications for ecosystem nutrient dynamics. Proceedings of the National Academy of Sciences, 
107(35):15503–15507. 

Hawlena, D., & Schmitz, O. J. (2010). Physiological stress as a fundamental mechanism linking predation 

to ecosystem functioning. The American Naturalist, 176(5):537–556. 

Hawlena, D., Strickland, M. S., Bradford, M. A., & Schmitz, O. J. (2012). Fear of predation slows plant-

litter decomposition. Science, 336(6087):1434–1438. 

Hedges, S.A. (1997). Moreland, D., ed. Handbook of Pest Control (8th ed.). Mallis Handbook and 

Technical Training Company. pp. 531–535. Print. 



 

 

 

80 

 

 

 

Heller, G. (1974). Zur biologie der ameisenfressenden Spinne Callilepis nocturna L. 1758 (Aranea, 

Drassodidae). Dissertation, Universität Mainz. 

Hill, D. E., Horse, W., Drive, C., & Carolina, S. (2006). Predatory pursuit of ants by Anasaitis canosa 

(Araneae, Salticidae). Invertebrate Biology, 1–6. 

Hodkinson, I. D., Coulson, S. J., Harrison, J., & Webb, N.R. (2001). What a wonderful web they weave: 

spiders, nutrient capture and early ecosystem development in the high Arctic – some counter‐
intuitive ideas on community assembly. Oikos, 95(2):349-352. 

Hölldobler, B. & Wilson, E.O. (1990), “The Ants”, The Belknap Press of Harvard University Press, Print. 
Hölldobler, B. & Wilson, E.O. (1994). Journey to the Ants. Harvard University Press. Print. 

Holtcamp, W. N., Grant, W. E., & Vinson, S. B. (1997). Patch use under predation hazard: effect of the 

red imported fire ant on deer mouse foraging behavior. Ecology, 78(1):308–317. 

Hunt, E. R., Shea-wheller, T. O., Albery, G. F., Bridger, T. H., Gumn, M., & Franks, N. R. (2014). Ants 

show a leftward turning bias when exploring unknown nest sites. Biol. Lett., 10:4–7. 

Hunt, J. H. (1983). Foraging and morphology in ants: the role of vertebrate predators as agents of natural 

selection. In Social Insects in the Tropics (pp. 83–104). 

Ioannou C. (2017). Grouping and Predation. In: Shackelford T., Weekes-Shakelford V (eds). 

Encyclopedia of Evolutionary Psychological Science. Springer, Cham. 

Jackson R.R., Nelson, X. J. & Sune G.O. (2005). A spider that feeds indirectly on vertebrate blood by 

choosing female mosquitoes as prey. PNAS. 102(42):15155-15160. 

Jackson, R. R., & Pollard, S. D. (1996). Predatory behavior of jumping spiders. Annual Review of 

Entomology, 41:287–308. 

Jandricic, S. E., Schmidt, D., Bryant, G., & Frank, S. D. (2016). Non-consumptive predator effects on a 

primary greenhouse pest: predatory mite harassment reduces western flower thrips abundance and 

plant damage. Biological Control, 95:5–12. 

Jeanson, R., Dussutour, A. & Fourcassié V. (2012). Key factors for the emergence of collective decision 

in invertebrates. Frontiers in Neuroscience, 6(121):1-15. 

John Seger. Ed: Laurent Keller. (1993) Queen Number and Sociality in Insects Chptr 1: Opportunities and 

Pitfalls in co-operative reproduction. Oxford Science Publications. Print. 

Kay, A., & Rissing, S. W. (2005). Division of foraging labor in ants can mediate demands for food and 

safety. Behavioral Ecology and Sociobiology, 58(2):165–174. 

King J.R. & Trager, J. C. (2007). Natural history of the slave making ant, Polyergus lucidus, sensu lato in 
northern Florida and its three Formica pallidefulva group hosts. Journal of Insect Science, 7:42. 

Kwapich, C. & Hölldobler, B. (2019). Destruction of Spiderwebs and Rescue of Ensnared Nestmates by a 

Granivorous Desert Ant (Veromessor pergandei). The American Naturalist, 194(3): 395-404. 

Laundré, J. W. (2010). Behavioral response races, predator — prey shell games, ecology of fear, and 

patch use of pumas and their ungulate prey. Ecology, 91(10):2995–3007. 

Laundré, J. W., Hernández, L., & Altendorf, K. B. (2001). Wolves, elk, and bison: reestablishing the 

“landscape of fear” in Yellowstone National Park, U.S.A. Can. J. Zool., 1409(79):1401–1409. 



 

 

 

81 

 

 

 

Laundré, J. W., Hernández, L., & Ripple, W. J. (2010). The landscape of fear: ecological implications of 

being afraid. The Open Ecology Journal, 3:1–7. 

Laundré, J. W., Hernández, L., Medina, P. L., López-portillo, J., González-romero, A., Grajales-tam, K. 
M., … Browning, D. M. (2014). The landscape of fear: the missing link to understand top-down 

and bottom-up controls of prey abundance? Ecology, 95(5):1141–1152. 

LeBrun, E. G., & Feener Jr, D. H. (2002). Linked indirect effects in ant-phorid interactions: impacts on 

ant assemblage structure. Oecologia, 133(4):599–607. 

Li, J., Wang, Z., Tan, K., Qu, Y., & Nieh, J. C. (2014). Giant asian honeybees use olfactory 

eavesdropping to detect and avoid ant predators. Animal Behaviour, 97:69–76. 

Li, L., Peng, H., Kurths, J., Yang, Y., & Schellnhuber, H. J. (2014). Chaos-order transition in foraging 

behavior of ants. Proceedings of the National Academy of Sciences, 111(23):8392–8397. 

Lima, S. L., & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review and 

prospectus. Canadian Journal of Zoology, 68(4):619–640. 

MacGown, J.A., Boudinot, B., Deyrup, M. & Sorger, D.M. 2014. A review of the Nearctic 

Odontomachus (Hymenoptera: Formicidae: Ponerinae) with a treatment of the males. Zootaxa 

3802(4):515-552. 

Mackay, W. P. (1982). The effect of predation of western widow spiders (Araneae: Theridiidae) on 

harvester ants (Hymenoptera: Formicidae). Oecologia, 53(3):406–411. 

Macmahon, J. A., Mull, J. F., & Crist, T. O. (2000). Harvester Ants (Pogonomyrmex spp.): their 

community and ecosystem influences. Annual Review of Ecology and Systematics, 31:265-291. 

Mccauley, S. J., Rowe, L., & Fortin, M. J. (2011). The deadly effects of “nonlethal” predators. Ecology, 
92(11):2043–2048. 

McCook, H.C. (1887). Modification of Habit in Ants through fear of Enemies. Proceedings of the 

Academy of Natural Sciences of Philadelphia, 39(1):27-30. 

Mehdiabadi, N. J., & Gilbert, L. E. (2002). Colony-level impacts of parasitoid flies on fire ants. 
Proceedings: Biological Sciences, 269(1501):1695–1699. 

Mestre, L., Bucher, R., & Entling, M. H. (2014). Trait-mediated effects between predators: ant chemical 

cues induce spider dispersal. Journal of Zoology, 293(2):119–125. 

Miler, K. (2016). Moribund ants do not call for help. Plos One, 11(3):e0151925. 

Miller, J. R. B., Ament, J. M., & Schmitz, O. J. (2014). Fear on the move: predator hunting mode predicts 

variation in prey mortality and plasticity in prey spatial response. Journal of Animal Ecology, 

83(1):214–222. 

Moroń, D., Lenda, M., Skórka, P., & Woyciechowski, M. (2012). Short-lived ants take greater risks 

during food collection. The American Naturalist, 180(6):744–750. 

Morrisson, L.W. (1999). Indirect effects of phorid fly parasitoids on the mechanisms of interspecific 
competition among ants. Oecologia, 121(1):113-122. 

Morrisson, L.W., Porter, S.D. (2005). Testing for population-level impacts of introduced Pseudacteon 

tricuspis flies, phorid parasitoids of Solenopsis invicta fire ants. Biological Control, 33(1):9-19. 



 

 

 

82 

 

 

 

Munger, J. C. (1984). Long-term yield from harvester ant colonies: implications for horned lizard 

foraging strategy. Ecology, 65(4):1077–1086. 

Naves, M. A. (1985). A monograph of the genus Pheidole In Florida (Hymenoptera: Formicidae). Insecta 

Mundi, 519. 

Nelson, X. J., Jackson, R. R., Edwards, G. B., & Barrion, A. T. (2005). Living with the enemy: jumping 

spiders that mimic weaver ants. American Arachnological Society, 33(3):813–819. 

Ngai, J. T., & Srivastava, D. S. (2006). Predators accelerate nutrient cycling in a bromeliad ecosystem. 

Science, 314(10):963. 

Nonacs, P. (1990). Death in the distance: mortality risk as information for foraging ants. Behaviour, 

112(1):23–35. 

Nonacs, P., & Calabi, P. (1992). Competition and predation risk: their perception alone affects ant colony 

growth. Proceedings: Biological Sciences, 249(1324):95–99. 

Nonacs, P., & Dill, L. M. (1988). Foraging response of the ant Lasius pallitarsis to food sources with 

associated mortality risk. Insectes Sociaux, 35(3):293–303. 

Nyffeler, M. (1999). Prey selection of spiders in the field. Journal of Arachnology, 27(1):317-328. 

Nyffeler, M. and Knörnschild, M. (2013). Bat Predation by Spiders. PLoS ONE, 8(3):e58120. 

Nyffeler, M., & Birkhofer, K. (2017). An estimated 400-800 million tons of prey are annually killed by 
the global spider community. The Science of Nature, 104(3-4). 

Nyffeler, M., Edwards, G.B., and Krysko, K.L.. (2017). A vertebrate-eating jumping spider from Florida, 

USA. Journal of Arachnology. 45(2): 238-241. 

Offenberg, J., Nielsen, M. G., MacIntosh, D. J., Havanon, S., & Aksornkoae, S. (2004). Evidence that 

insect herbivores are deterred by ant pheromones. Proceedings of the Royal Society B: Biological 

Sciences, 271(Suppl_6):S433–S435. 

Orr, M. R. (1992). Parasitic flies (Diptera: Phoridae) influence foraging rhythms and caste division of 
labor. Behavioral Ecology and Sociobiology, 30(6):395–402. 

Patek, S. N., Baio, J. E., Fisher, B. L., & Suarez, A. V. (2006). Multifunctionality and mechanical origins: 

ballistic jaw propulsion in trap-jaw ants. Proceedings of the National Academy of Sciences, 

103(34):12787-12792. 

Pearce-duvet, J. M. C., Moyano, M., Adler, F. R., & Feener Jr, D. H. (2011). Fast food in ant 

communities: how competing species find resources. Oecologia, 167(1), 229–240. 

Pekar S. Coddington, J.A. & Blackledge T.A. (2012). Evolution of Stenophagy in Spiders (Araneae): 
Evidence Based on the Comparative Analysis of Spider Diets. Evolution, 66(3):776-806. 

Porter, S.D, Vander Meer, R. K., Pesquero, M.A., Campiolo S., Fowler, H.G. (1995). Solenopsis 
(Hymenoptera: Formicidae) Fire Ant Reactions to Attacks of Pseudacteon Flies (Diptera: 

Phoridae) in Southeastern Brazil. Annals of the Entomological Society of America, 88(4):570-
575. 

Porter, S.D. & Jorgenson, C.D. (1981). Foragers of the harvester ant, Pogonomyrmex owyheei: a 

disposable caste?. Behavioral Ecology and Sociobiology, 11:287-293. 



 

 

 

83 

 

 

 

Pratt, S. C., Mallon, E. B., Sumpter, D. J. T., Franks, N. R., Ecology, S. B., Jul, N., … Franks, N. R. 
(2002). Quorum sensing, recruitment, and collective decision-making during colony emigration 

by the ant Leptothorax albipennis. Behavioral Ecology and Sociobiology, 52(2):117–127. 

Ram, K., Gruner, D. S., McLaughlin, J. P., Preisser, E. L., & Strong, D. R. (2008). Dynamics of a subterranean 

trophic cascade in space and time. Journal of Nematology, 40(2):85–92.  

Richman, D.B. & Cultler, B (2012). Salticidae of North America, including Mexico. Peckhamia, 95.3: 1-

88. 

Richman, D.B. & Cutler, B. (1978). A list of the jumping spiders (Araneae: Salticidae) of the United 

States and Canada. Peckhamia, 1:82-110. 

Ripple, W. J., & Beschta, R. L. (2004). Wolves and the ecology of fear: can predation risk structure 

ecosystems? Bioscience, 54(8):755–766. 

Ripple, W. J., & Beschta, R. L. (2007). Restoring Yellowstone’s aspen with wolves. Biological 
Conservation, 138(September 2007):514–519. 

Ripple, W. J., Larsen, E. J., Renkin, R. A., & Smith, D. W. (2001). Trophic cascades among wolves, elk 

and aspen on Yellowstone National Park’s northern range. Biological Conservation, 102:227–
234. 

Robinson, E. J. H., Jackson, D. E., Holcombe, M., & Ratnieks, F. L. W. (2005). “No entry” signal in ant 
foraging. Nature, 438(24):442. 

Rosenheim, J. A., Wilhoit, L. R., & Armer, C. A. (1993). Influence of intraguild predation among 

generalist insect predators on the suppression of an herbivore population. Oecologia, 96:439–449. 

Rosenzweig, M. L., & MacArthur, R. H. (1963). Graphical representation and stability conditions of predator-prey 

interactions. American Naturalist, 97(895):209–223. 

Scheidemantel, D.D. (1997). Behavioral and natural history studies of the jumping spider Habronattus 

oregonensis and inquiry based secondary laboratory lesson development stemming from university 

research. Thesis. University of Arizona. 

Schmid-Hempel, P. (1984). Life duration and turnover of foragers in the ant Cataglyphis bicolor 

(Hymenoptera, Formicidae). Insectes Sociaux, 31(4):345-360. 

Schmitz, O. J. (2005). Scaling from plot experiments to landscapes: Studying grasshoppers to inform 

forest ecosystem management. Oecologia, 145(2):225–234.  

Schmitz, O. J., Hawlena, D., & Trussell, G. C. (2010). Predator control of ecosystem nutrient dynamics. 

Ecology Letters, 13(10):1199–1209. 

Schmitz, O.J. (2006). Predators have large effects on ecosystem properties by changing plant diversity, 

not plant biomass. Ecology, 87(6):1432-1437. 

Sendoya, S. F., Freitas, A. V. L., & Oliveira, P. S. (2009). Egg‐laying butterflies distinguish predaceous 
ants by sight. The American Naturalist, 174(1):134–140.  

Shaffer Jr., D. T., & Whitford, W. G. (1981). Behavioral responses of a predator, the round-tailed horned 

lizard, Phrynosoma modestum and its Prey, honey pot ants, Myrmecocystus spp. The American 

Midland Naturalist, 105(2):209–216. 



 

 

 

84 

 

 

 

Sortz, S.R. & Tschinkle, W.R. (2004). Distribution, spread, and ecological associations of the introduced 

ant Pheidole obscurithorax in the southeastern United States. Journal of Insect Science, 4(1).  

Tahir, H., Hamza A., Khalid, N., Khan, A. & Shahzad, U. (2017). Indirect effects of spiders on herbivory 

of insects: A review. Journal of Entomology and Zoology Studies, 5(4):753-757. 

Tanner, C. J. (2006). Numerical assessment affects aggression and competitive ability: a team-fighting 

strategy for the ant Formica xerophila. Proc R. Soc. B, 273:2737–2742. 

Tanner, C. J. (2008). Resource characteristics and competition affect colony and individual foraging 

strategies of the wood ant Formica integroides. Ecological Entomology, 33:127–136. 

Tanner, C. J., & Adler, F. R. (2009). To fight or not to fight: context-dependent interspecific aggression in 

competing ants. Animal Behaviour, 77:297–305. 

Terborgh, J., Lopez, L., Nunez, P. V., Rao, M., Shahabuddin, G., Orihuela, G., … Balbas, L. (2001). 

Ecological meltdown in predator-free forest fragments. Science, 294. 

Trekels, H., & Vanschoenwinkel, B. (2016). When fear kicks in: predator cues initially do not but 

eventually do affect insect distribution patterns in a new artificial pond cluster. Hydrobiologia. 

Tschinkel, W.R. (2010) The organization of foraging in the fire ant, Solenopsis invicta.  J. Insect Sci.  

10:26 online at http://jinsectscience.oxfordjournals.org/content/11/1/26 

Tschinkle (1988). Colony growth and the ontogeny of worker polymorphism in the fire ant, Solenopsis 

invicta. Behavioral Ecology and Sociobiology. 22(2):103-115. 

Tuan, Y. (1979). Landscapes of Fear. The University of Minnesota Press: Minneapolis, MN. Print. 

Virant-Doberlet, M., Kuhelj, A., Polajnar, J. and Sturm, R.. (2019). Predator-Prey Interactions and 

Evesdropping in Vibrational Communication Networks. Frontiers in Ecology and Evolution. 

7(23):1-15. 

W.R. Tschinkel. 2006. The fire ants. Harvard University Press, Cambridge, MA, USA. 

Wallis, D. I. (1964). The Foraging behaviour of the ant, Formica fusca. Behaviour, 23(1/2):149–176. 

Weinstein, S. B., Buck, J. C., & Young, H. S. (2018). A landscape of disgust. Ecology, 359(6381):1213-

1214.  

Whitford, W. G., & Bryant, M. (1979). Behavior of a predator and its prey: the horned lizard 

(Phrynosoma cornutum) and harvester ants (Pogonomyrmex spp.). Ecology, 60(4):686–694. 

Wilson, E. O. (1962). Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. 

Smith) the organization of mass-foraging. Animal Behaviour, 10(1):134–147.  

Wilson, E. O. (1985). The sociogenesis of insect colonies. Science. 

Wilson, E. O. (2003). Pheidole in the new world: a dominant, hyperdiverse ant genus (Vol. 1). Cambridge 

(Mass.): Harvard University Press. Print. 

Wirsing, A. J., & Ripple, W. J. (2011). A comparison of shark and wolf research reveals similar 

behavioral responses by prey. Frontiers in Ecology and the Environment, 9(6):335–341. 

Wolf Restoration. (2017, June & July). Retrieved August 01, 2017, from 

https://www.nps.gov/yell/learn/nature/wolf-restoration.htm  



 

 

 

85 

 

 

 

Wuellner, C. T., Dall’Aglio-Holvorcem, C. G., Benson, W. W., & Gilbert, L. E. (2002). Phorid fly 

(Diptera: Phoridae) oviposition behavior and fire ant (Hymenoptera: Formicidae) reaction to attack 

differ according to phorid species. Annals of the Entomological Society of America, 95(2):257-266. 

Young, H., Fedigan, L. M., & Addicott, J. F. (2008). Look before leaping: foraging selectivity of 

capuchin monkeys on acacia trees in Costa Rica. Oecologia, 155(1):85–92. 

Zelikova T.J., Sanders N.J., & Dunn, R.R. (2011). The mixed effects of experimental ant removal on 

seedling distribution, belowground invertebrates and soil nutrients. Ecosphere, 2(5):1-14. 


	Fear and Loathing in the Super Organism: Foraging Strategy Doesn't Change Forager Response in a Landscape of Fear.
	STARS Citation

	ABSTRACT
	AGKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	CHAPTER TWO: LITERATURE REVIEW
	The Landscape of Fear
	Ant Foraging
	Experimental Overview
	Study System
	Predictions


	Field Evaluation of Spider Predation
	Experimental Overview


	CHAPTER THREE: METHODOLOGY
	Investigating the Landscape of Fear
	Care of Ants
	Care of Jumping Spiders
	Experimental Setup
	Hypotheses
	Data Collection
	Statistical Analysis
	Visual Display of Data

	Spider Survey
	Study Site
	Predictions
	Statistical Analysis
	Visual Display of Data


	CHAPTER FOUR: RESULTS
	Experiment 1
	Treatments
	Foraging Strategy
	Species

	Experiment 2
	Spider Survey

	CHAPTER FIVE: DISCUSSION AND CONCLUSIONS
	Ants in the Landscape of Fear
	Spider Survey
	Overall Conclusions

	APPENDIX A: EXPERIMENTAL HOUSING AND TEST SETUP
	APPENDIX B: PREDICTIONS FOR LABORATORY EXPERIMENTS
	APPENDIX C: MAP OF FIELD SITES
	APPENDIX D: TABLE OF TRIALS CONDUCTED
	APPENDIX E: ADDITIONAL GRAPHICAL REPRESENTATION OF EXPERIMENT 1 DATA
	APPENDIX F: BY-FORAGING STRATEGY DATA FROM EXPERIMENT ONE.
	APPENDIX G: BY SPECIES RESULTS FROM EXPERIMENT ONE
	APPENDIX H: ADDITIONAL GRAPHICAL REPRESENTATION OF EXPERIMENT 2 DATA
	APPENDIX I: ANT SPECIES IN FIELD OBSERVATION
	APPENDIX J: PRIMARY COMPONENT ANALYSIS OF EXPERIMENT 1 DATA
	REFERENCES

