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ABSTRACT 
 

Polyamines are small cationic molecules that play important roles in most vital cellular 

processes including cell growth and proliferation, regulation of chromatin structure, 

translation and programmed cell death. Cellular polyamine pools are maintained by a 

balance between biosynthesis and transport (export and import). Increased polyamine 

biosynthesis activity and an active transport system are characteristics of many cancer 

cell lines, and polyamine depletion has been shown to be a viable anticancer strategy. 

Polyamine levels can be depleted by α-difluoromethylornithine (DFMO), an inhibitor of 

the key polyamine biosynthesis enzyme ornithine decarboxylase. However, malignant 

cells often circumvent DFMO therapy by up-regulating polyamine import; therefore, there 

is a need to develop compounds that inhibit polyamine transport. Collectively, DFMO and 

polyamine transport inhibitors provide the basis for a combination therapy leading to 

effective intracellular polyamine depletion. Using a Drosophila leg imaginal disc model for 

polyamine transport, I studied three candidate transport inhibitors (Ant444, Trimer44 and 

Triamide44) for their ability to inhibit transport in the Drosophila model. Ant444 and 

Trimer44 effectively inhibited the uptake of the toxic polyamine analog Ant44 that gains 

entry to cells via the polyamine transport system. Ant444 and Trimer44 were also able to 

inhibit the import of exogenous polyamines into DFMO-treated imaginal discs. Triamide44 

was an ineffective inhibitor, however a structurally redesigned compound, Triamide444, 

showed a 50-fold increase in transport inhibition and was comparable to Ant444 and 

Trimer44. Ant444 and Trimer44 showed differences in their relative abilities to block 

import of specific polyamines, and I therefore asked if a cocktail of these inhibitors would 
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be more effective than either alone. My data show that a cocktail of polyamine transport 

inhibitors is more effective than single inhibitors when used in combination with DFMO, 

and suggests the existence of multiple polyamine transport systems.  

 

To further the development of effective transport inhibitors it is important to identify 

components of the transport system. The mechanism of polyamine transport in 

multicellular organisms including mammals is still unknown. Our laboratory has 

developed a simple assay to detect components of the transport system using RNAi 

knockdown and over-expression of candidate genes. However, the assay requires that 

animals live until the pupal stage of development. Pleiotropic effects of individual gene 

products following over-expression or knockdown may result in early developmental 

lethality for reasons unrelated to polyamine transport. Our assay is based on the 

GAL4/UAS system and involves the use of enhancers driving GAL4 expression (GAL4 

driver). GAL4 in turn determines the expression level of UAS-candidate gene constructs 

(UAS responder). I reasoned that in some cases it might be possible to bypass early 

lethality by judicious choice of drivers that reduce responder expression, thus permitting 

survival to the pupal phase. To this end, I used five imaginal disc drivers (30A, 71B, 32B, 

69B, and T80) as well as a ubiquitously expressed control driver to over-express and 

knockdown EGFR and components of the Rho signaling pathway. The relative strength 

of each driver was ranked, and I was able to demonstrate in principle that animals could 

survive to later stages of development in a manner that correlated with the relative 
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strength of the driver. The approach I developed is broadly applicable to other studies of 

Drosophila development. 

 

To identify new components of the polyamine transport system I studied the role of 

proteoglycans in this process. The proteoglycan glypican-1 has been previously 

implicated in mammalian polyamine transport. In particular, the heparin sulfate side 

chains of glypican-1 appear to play an important role. In order to extend our knowledge 

of the role of proteoglycans in polyamine transport, I examined the role of the core 

proteoglycans perlecan and syndecan as well as genes encoding enzymes in the heparin 

sulfate and chondroitin sulfate biosynthetic pathways. I was able to confirm a role for 

glypican-1 in polyamine transport in imaginal discs but not in whole animals. This may 

indicate that glypican-1 is not required for polyamine uptake through the gut. Studies of 

genes encoding perlecan, syndecan and enzymes in the heparin sulfate and chondroitin 

sulfate biosynthetic pathways did not reveal a role for these genes in polyamine transport. 

These studies were conducted in whole animals and my data may reflect tissue-specific 

differences between the imaginal disc and gut transport systems where transport in 

imaginal discs is proteoglycan dependent and transport in the gut is not. 
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CHAPTER ONE: INTRODUCTION 
 

Polyamines are a family of ubiquitous aliphatic polycations containing two to four amine 

moieties separated by methylene groups. The native polyamines include putrescine, 

spermidine and spermine (Figure 1), and are widely distributed in both eukaryotic and 

prokaryotic cells [1].  

 

Polyamines are essential for many cellular processes (reviewed in Miller-Fleming et al., 

2015) [2]. Cell proliferation requires access to a cellular polyamine pool and depletion of 

cellular polyamines following treatment with the polyamine biosynthesis inhibitor 

Difluoromethylornithine (DFMO) causes cultured cells to become cytostatic [3]. DFMO 

acts by inhibiting the activity of ornithine decarboxylase (ODC in figure 1) which catalyzes 

the first step in the biosynthetic pathway. Polyamines also play a role in transcription. 

Polyamines primarily bind to RNA in cells and regulate various stages of protein synthesis 

by modulating the secondary structures of mRNA, tRNA and rRNA [4]. Also, polyamines 

preferably bind to CG-rich regions of DNA and facilitate DNA condensation, which is 

inhibited by histone hyperacetylation [5, 6]. These results suggest that polyamines act as 

transcription repressors in vivo by binding to DNA. A role for polyamines in translation is 

well established. Spermidine is necessary for a unique hypusine modification of eIF5A 

(eukaryotic initiation factor 5A), a key factor for translation and RNA processing [7]. 

Programmed cell death is also regulated by polyamines. In several cell lines, apoptosis 

is activated due to spermine depletion [8]. Moreover, polyamines play important roles in 

cytoskeletal dynamics. Polyamines regulate the activity of RhoGEFs, which are required 
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for cell shape change and migration [9]. Polyamines are involved in regulation of signal 

transduction. Spermidine preferentially stimulates the phosphorylation of p42 and p44 of 

the Ras/MAPK kinase pathway [10]. Polyamines affect signaling transduction by forming 

an ATP-Mg2+-spermine complex, which can affect the activity of protein kinase by 

phosphorylation [11].  

 

 

Figure 1  The polyamine biosynthesis and catabolism pathway in eukaryotes (modified 
from Nowotarski et al., 2013 [12]).  

During the first step of polyamine biosynthesis, putrescine is synthesized from ornithine 
by ornithine decarboxylase (ODC). Then spermidine and spermine are synthesized by 
spermidine synthase and spermine synthase respectively. S-adenosylmethionine (SAM) 
is converted to decarboxylated SAM (dcSAM) by S-adenosylmethionine decarboxylase 
(SAMDC). dcSAM provides the propyl amine component needed to form spermidine and 
spermine. Spermine and spermidine can be back converted by spermidine/spermine N1-
acetyltransferase (SSAT) and polyamine oxidase (APAO). Also, spermine can be 
converted to spermidine directly by spermine oxidase, SMO.  
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Polyamine Biosynthesis and Catabolism  

 

A balance between biosynthesis, catabolism and import/export of polyamines from/into 

the extracellular environment is required to regulate intracellular polyamine pools [13]. 

The polyamine biosynthesis and catabolism pathways have been well documented in 

both eukaryotic and prokaryotic organisms [2]. In contrast, while the mechanisms of 

import and export are well understood in single cell prokaryotic and eukaryotic organisms, 

the transport system is poorly understood in multicellular eukaryotes. 

 

The enzymes involved in polyamine biosynthesis and catabolism are typically present in 

low abundance, have a rapid turnover rate, and are under tight transcriptional and 

translational regulation [13]. For example, ODC is the rate-limiting enzyme in the 

biosynthesis pathway (see Figure 1). ODC expression is controlled at multiple levels 

including transcription, post-transcriptional processing, translation and altered stability of 

the protein [14, 15]. In addition, ODC is regulated by ornithine decarboxylase antizyme 

(OAZ), a unique, nonenzymatic, regulatory protein [16, 17]. Antizyme is synthesized in 

response to high cellular polyamine levels and binds to ODC, which it then recruits to the 

26S proteasome for degradation [18]. Interestingly, OAZ inhibits not only ODC, but also 

polyamine transport activity suggesting a dual role for this important regulator in 

polyamine hemostasis [19].  
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Polyamines and Disease 

 

Polyamines are associated with many human diseases and therefore polyamine 

biosynthesis, catabolism and transport pathways are attractive therapeutic targets. In this 

study, we focus on polyamine transport, especially the development of transport inhibitors. 

Effective polyamine transport inhibitors are needed for treating some parasitic related 

diseases and human cancers.  

 

1. Polyamines and Parasites 

 

In lower eukaryotes such as the parasitic protozoa Leishmania and Treponema, the 

polyamine transport system closely resembles that of bacteria [20, 21]. In general, these 

parasitic eukaryotes are able to biosynthesize sufficient polyamines to meet their needs 

and do not have a great reliance on polyamine transport. Therefore, effective therapies 

against these parasites are primarily focused on inhibition of polyamine biosynthesis. The 

common drug target is the key biosynthetic enzyme ODC (Figure 1). For example, DFMO, 

which targets ODC, has been used successfully to treat West African sleeping sickness 

caused by trypanosomes [22].  

 

In contrast to Leishmania and Treponema, some parasites do depend on polyamine 

transport mechanisms for survival. For example, Plasmodium falciparum, the malaria 

parasite, responds to DFMO induced polyamine depletion by up-regulating the polyamine 

transport system of the host erythrocyte in order to increase the cellular levels of 
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polyamines [23, 24]. This observation illustrates the need for drugs with the ability to target 

the polyamine transport system.  

 

Chagas disease affects more than six million people mainly in Latin America and causes 

premature mortality by cardiac and intestinal damage [25]. There is no effective vaccine 

or drug with acceptable side-effects available for treatment of this disease [25]. The 

Chagas’ disease parasite, Trypanosoma cruzi, lacks an ODC gene and cannot synthesize 

putrescine, which is needed for spermidine and spermine synthesis [26, 27]. Therefore, 

T. cruzi relies on polyamine transport for survival and DFMO is not useful in treating this 

disease [28, 29]. In addition, the human SAMDC inhibitor, methylglyoxal-bis 

(guanylhydrazone) (MGBG), is a poor inhibitor of the T. cruzi SAMDC enzyme [30]. 

Collectively these observations further emphasize the need for effective drugs that target 

the transport system. 

 

2. Polyamines and Cancer 

 

Polyamines are necessary to sustain rapid cell growth. Many cancer cell types, such as 

breast, colon, prostate and skin cancer, show elevated intracellular polyamine levels due 

to up-regulated polyamine biosynthesis and transport [31-34]. Genes in the polyamine 

metabolic pathway are positively regulated by oncogenes such as c-Myc and Ras, whose 

expression is frequently altered in cancer [35-38]. These studies suggest that the 

polyamine biosynthesis and transport pathways are attractive chemotherapeutic targets. 
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The primary mechanisms malignant cells utilize to increase intracellular polyamine levels 

are accelerated biosynthesis and active transport of exogenous polyamines into the cell 

by polyamine transporters [39-42]. Reduction of cellular polyamine content (inhibiting 

biosynthesis/transport) results in cancer cell growth attenuation [40, 43]. It has been 

known for more than 40 years that DFMO is a potent inhibitor of polyamine biosynthesis. 

DFMO has been shown to irreversibly inactivate ODC by formation of enzyme-inhibitor 

complexes [44] and DFMO has been approved as a chemotherapeutic agent to treat a 

number of epithelial malignancies [45, 46]. However, cancer cells treated with DFMO 

frequently circumvent polyamine depletion therapy by upregulating transporter activity 

several fold to increase import of polyamines from the extracellular environment [47-49]. 

While the mechanism for transport upregulation is still unknown, the increase of 

polyamine transport activity is more likely due to an increase of abundance of polyamine 

transporters than a decrease in the inhibition of transport by antizyme [49-51]. Therefore, 

a combination treatment simultaneously targeting polyamine biosynthesis and transport 

is needed to effectively deplete polyamine levels in cancer cells. Although lead 

compounds that target the transport system have been developed [52-55], the lack of a 

clear understanding of the molecular nature of the transporter in multicellular eukaryotes 

is a roadblock to rational drug design. Thus, it is very important to identify the genes and 

gene products involved in polyamine transport and to determine the mechanism of 

transport in multicellular cells. 
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Polyamine Transport 

 

The mechanism of polyamine transport has been studied in different species and cell-

types and these studies have established the foundations of polyamine transport as a 

specific, protein-mediated activity [51, 56]. Polyamine transport has been well 

characterized in unicellular organisms, such as Escherichia coli [57, 58], yeast [59, 60], 

Leishmania [20] and Treponema [21]. However, the polyamine transport components in 

E. coli and yeast do not have orthologs in animal cells. In addition, the transport 

components identified in Leishmania and Treponema are more related to transporters 

found in vascular plants [61]. Only a few polyamine transport system (PTS) components 

have been identified in multicellular eukaryotes [62-65], and it is still unknown how these 

components interact, or whether they comprise one or more transport systems.  

 

Components of the Mammalian Transport System 

 

1. Glypican-1 

 

Glypican-1 was the first transport-related protein linked to polyamine transport in 

mammalian cells [62]. Glypican-1 is a core proteoglycan protein and a member of a small 

family of glycosylphosphatidyl-inositol-anchored cell surface heparan sulfate 

proteoglycans (HSPG; [66]). In Chinese Hamster Ovary (CHO) cells, polyamines bind 

with high affinity to heparan sulfate (HS) glycosaminoglycan side-chains [67]. Treatment 
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of CHO cells with an anti-HS antibody decreases polyamine uptake and attenuates 

polyamine-dependent cell proliferation [68]. In addition, recycled Glypican-1 is co-

localized with spermine, and reduction of Glypican-1 levels inhibits spermine uptake and 

intracellular delivery of spermine [62]. Collectively, these data indicate that polyamines 

bind to heparan sulfate glycosaminoglycan side-chains and are then co-transported with 

Glypican-1 into mammalian cells. 

 

2. Caveolin 

 

Recent work indicates that a dynamin- and caveolae- dependent process is involved in 

polyamine transport in mammals [63]. In the human colon cancer derived cell line HCT-

116, caveolin-1 knock down by antisense RNA leads to significantly increased polyamine 

uptake suggesting that caveolin-1 is a negative regulator of the transport system. In these 

colon cells, K-Ras positively regulates polyamine transport by inducing caveolin-1 

phosphorylation, which inhibits caveolin-1 leading to an increase in caveolar endocytosis 

and polyamine transport [63]. 

 

3. Solute Carrier Transporter Superfamily Members 

 

The solute carrier (SLC) transporter superfamily comprises 384 members and is the 

second largest group of membrane proteins in the human genome [69]. So far, seven 

members of the SLC family have been implicated in polyamine transport (Table 1).  
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Table 1 SLC superfamily members involved in polyamine transport  

Gene Substrate Reference 

SLC7A1 Put and Spd Sharpe and Seidel 2005 [64] 

SLC12A8 Put, Spd and Spm 

Amino acids 

Daigle et al., 2009 [70] 

SLC22A16 PA and BLM-A5 Aouida et al., 2010 [71] 

SLC22A1 Spd and Spm 

Spd conjugate 

Agm 

Busch et al., 1996 [72] 

Abdulhussein and Wallace, unpublished work 

Gründmann et al., 2003; Winter et al., 2011 [73, 74] 

SLC22A2 Agm and Put 

Spd 

Winter et al., 2011 [74] 

Sala-Rabanal et al., 2013 [75] 

SLC22A3 Agm 

Spd 

Grundmann et al., 2003 [73] 

Sala-Rabanal et al., 2013 [75] 

SLC3A2 Put Uemura et al., 2008, 2010 [76, 77] 

(Modified from Abdulhussein and Wallace, 2014) [78]. PA: polyamines not specified by 
author(s), Put: putrescine, Spd: spermidine, Spm: spermine, Agm: agmatine, BLM-A5: 
bleomycin A5. 
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In rat intestinal epithelial cells, polyamine transport has been linked to the y+ amino acid 

uptake pathway [79, 80]. N-ethylmalemide, an inhibitor of the y+ lysine transport system 

decreases both lysine and putrescine transport [64]. In this system lysine and putrescine 

transport is mediated by SCL7A1 (formerly CAT-1), a y+ transporter [64]. Biochemically 

the SLC7A1 transporter has similar properties to the general PTS including Na+ 

independent and electronegativity dependent activities. However, overexpression of 

SLC7A1 in a polyamine transport deficient Chinese Hamster Ovary cell line (CHO-MG) is 

unable to restore polyamine transport activity in this cell line [64]. Therefore, the role of 

SLC7A1 in polyamine transport remains unclear.  

 

SLC12A8 (also called CCC9A, a variant of CCC9) is a member of the cation-Cl- 

cotransporter family and has been proposed to have a role in polyamine transport in 

human HEK-293 cells [70]. Transport activity is specific to spermidine and spermine with 

much lower putrescine transport observed. SLC12A8 activity is inhibited by pentamidine, 

and MGBG, but not paraquat, all of which are potent inhibitors of transport activity [70]. 

Biochemically, the polyamine transport activity of SLC12A8 in human cells is Na+, K+, and 

Cl- ion independent, and stimulated by uptake of amino acids such as glutamate and 

aspartate.  

 

SLC22A16, a member of the SLC22 subfamily (also called OCT/ OAT transporters) has 

been identified as another potential component of the PTS [71]. SLC22A16 shows high 

affinity and saturable polyamine transport activity. SLC22A16 recognizes large polyamine 



  

11 

 

conjugates such as bleomycin A5, a clinically approved anti-cancer drug. Also, SLC22A16 

is able to transport quaternary amino acids, like L-carnitine. As SLC22A16 exhibits a 

restricted pattern of tissue distribution, it may be required in specific tissues and serve as 

a backup system for human polyamine transport. Three additional members of the SLC22 

family, SLC22A1, SLC22A2 and SLC22A3, show spermidine transport activity [75]. 

SLC22A2 is also a bidirectional transporter of putrescine [74]. 

 

SLC3A2 is reported to be a putrescine exporter in CHO cells [76]. In human cells reduced 

expression of SLC3A2 is associated with increased putrescine uptake and decreased 

arginine uptake activity. Additional studies have shown that SLC3A2 can also import 

putrescine when intracellular polyamine levels are low [77] indicating that SLC3A2 is a 

bidirectional putrescine transporter. Expression of SLC3A2 is negatively regulated by K-

Ras, which actives polyamine transport by facilitating caveolar endocytosis [63]. 

Moreover, SLC3A2 co-localizes with spermidine/ spermine N1- acetyltransferase (SAT1) 

and therefore may be involved in excretion of acetylated polyamines [76]. 

 

4. Non- Mammalian Components of the Polyamine Transport System 

 

In Arabidopsis, the LAT (L-type amino acid transporter) family is responsible for 

polyamine transport. There are at least five LAT family members in Arabidopsis and three 

of them are involved in polyamine transport [81]. The RMV1/AtLAT1/AtPUT3 protein is 

the polyamine transporter on the plasma membrane [82]. AtLAT3/AtPUT1 and 

PAR1/AtLAT4/AtPUT2 are involved in polyamine transport in the endoplasmic reticulum 
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and golgi apparatus respectively [83]. An RMV1 knockout mutant showed no change on 

polyamine uptake suggesting that in addition to RMV1/AtLAT1, there are other unknown 

polyamine transporters on the plasma membrane [82]. 

 

A forward genetic analysis for genes in C. elegans encoding resistance to the toxic effects 

of norspermidine has revealed an additional component of a multicellular PTS [65]. In this 

study, genetic analysis showed that resistance to norspermidine and uptake of a toxic 

fluorescent polyamine-conjugate were dependent on the transport protein CATP-5. 

CATP-5 is a P5B-type ATPase associated with the plasma membrane and is expressed 

in the apical membrane of intestinal and excretory cells. C. elegans double mutants for 

CATP-5 and ODC show greatly reduced levels of putrescine and spermidine compared 

to single mutants and wild type animals. Double mutants also show reduced brood size, 

shortened life span and small body size, consistent with a key role in the PTS. Recently, 

my lab has identified a P5B-type ATPase as a polyamine transport component in 

Drosophila (Barnett, Brown and von Kalm unpublished data). Whole animals expressing 

RNAi targeting this P5B-type ATPase have reduced viability when treated with DFMO and 

exogenous polyamines indicating that the transport system is impaired in these animals. 

In contrast, DFMO inhibition of development was fully rescued by exogenous polyamine 

in the control animals. These data suggest that this P5B-type ATPase is required for 

polyamine transport in Drosophila. The human ortholog of CATP-5 is ATP13A3. The 

protein expression level of ATP13A3 is increased in the presence of DFMO. siRNA 

against ATP13A3 in DFMO treated L3.6pl human pancreatic cancer cells, is associated 

with significantly reduced ability to be rescued by exogenous spermidine [84] suggesting 
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that ATP13A3 plays a role in polyamine import. In addition, cells with high expression of 

ATP13A3 have high polyamine uptake activity. Another human P5B-type ATPase, 

ATP13A2, has also been shown to have a role in spermidine uptake [85]. 

 

Models for Polyamine Transport  

 

Poulin summarized the main published studies of polyamine transport and proposed three 

models to explain them (Figure 2) [61]. While connections between the models have not 

been established it is quite possible that they are not mutually exclusive. A common 

theme emerging from all three models is that polyamine transport in multicellular 

organisms can be divided into two steps: binding and transport on the membrane followed 

by intracellular sorting and transport. 
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Figure 2  Putative polyamine transport models in mammalian cells (Modified from Poulin 
et al 2012) [61].  

a: model based on Soulet et al. 2004 [86]. b: model based on Belting et al. 2003 [62]. c: 
model based on Uemura et al. 2010 [77].  

NOS2: nitric oxide synthase-2, PA: polyamines, PUT: putrescine, SPM: spermine. 
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The model in figure 2a is based on the work of Soulet and colleagues who studied the 

uptake of fluorescently labeled polyamine analogues with specificity for the PTS [86]. In 

this model polyamines are first imported into the cytosol and then rapidly sequestered 

into polyamine sequestering vesicles (PSVs). Soulet et al. proposed the existence of two 

types of polyamine transporters with different cellular localizations. The first is located on 

the cell membrane (plasma membrane polyamine permease (PMPP) in Figure 2a). 

Transport involving PMPP would be driven by a steep inward polyamine gradient. In 

addition to cell membrane associated transport Soulet et al. also proposed the existence 

of a H+-coupled vesicular polyamine exporter/antiporter responsible for sorting free 

polyamine from the cytosol into small membrane-bound intracellular PSVs utilizing a 

proton/polyamine exchange mechanism. PSVs are acidic vesicles of the late endocytotic 

compartment which includes multivesicular bodies, late endosomes and lysosomes. 

 

The second model (Figure 2b) is based on Belting et al., 2003 [62] and is specific to 

spermine transport. In this model, spermine binds to the heparan sulfate side chain of 

HSPG with Glypican-1 as core protein. Polyamine uptake was blocked when cells were 

treated with heparan sulfate antibody [68]. The binding of spermine triggers receptor 

mediated endocytosis and HSPG is internalized with spermine into the cell. Following 

release of nitric oxide by Nitric oxide synthase (NOS), the heparan sulfate side chain is 

cleaved off the core Glypican-1 protein, followed by release of spermine from the heparan 

sulfate side chain [62]. How spermine is then released from the vesicle is still unknown.  
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Uemura et al., 2010 [77] proposed a model similar to the HSPG model in which 

polyamines bind to an unknown receptor on the cell membrane which triggers caveolin-1 

mediated endocytosis (Figure 2c). K-Ras positively regulates polyamine transport by 

inducing the phosphorylation and inhibition of caveolin-1 leading to an increase in 

caveolar endocytosis and polyamine transport [63]. In the subsequent endocytic sorting 

process nitric oxide triggers release of polyamines from the receptor. The mechanism of 

polyamine release from these caveolin-dependent endosomes is unknown. Putrescine 

export on the plasma membrane is under the control of SLC3A2 [76]. SLC3A2 expression 

is negatively regulated by K-Ras and suppressed in human HCT116 colon cancer cells 

[76]. This suggests that when putrescine concentration is high, cells may respond by 

decreasing caveolin-1 mediated polyamine import and activate putrescine export via 

inactivation of K-Ras. In contrast, when intracellular putrescine concentration is low, 

SLC3A2 can import putrescine by an unknown mechanism [77].  

 

Coordination of Polyamine Biosynthesis and Transport  

 

Polyamine transport is tightly regulated, however, the mechanism by which this occurs is 

largely unknown. As discussed above, polyamine transport activity is regulated by 

antizyme (OAZ), which also regulates polyamine biosynthesis. Thus, OAZ may play a 

critical role in the balance between biosynthesis and transport of polyamines to maintain 

cellular polyamine homeostasis. OAZs are phylogenetically widespread occurring in 

organisms ranging from fungi to metazoans. All three of the OAZ genes found in 
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mammals have similar activities in that they repress ODC activity and polyamine transport 

[87, 88]. The mechanism of OAZ regulation of polyamine transport is currently unknown. 

 

Antizyme inhibitors (AZIN) have also been reported. AZINs have high binding affinity for 

OAZs and are activators of polyamine transport [87]. AZINs are also able to induce ODC 

activity [87]. In the Paju cell line (a human neural-crest-derived tumor cell line) AZINs are 

localized to the trans-Golgi network where they are involved in vesicular membrane 

trafficking, the proposed pathway for polyamine internalization [89]. Both OAZ and AZIN 

proteins have short half-lives allowing the regulatory system to adapt quickly to necessary 

adjustments in intracellular polyamine concentration.  

 

Using Drosophila as a Model for Polyamine Transport 

 

Although a few components of the mammalian PTS have been identified, it is currently 

unclear how the different components interact if at all, or how many different polyamine 

pathways are involved. In order to obtain a clearer idea of the molecular nature of the 

PTS, additional components of a multicellular eukaryotic transporter must be identified. 

Drosophila is a good model system in which to address this problem. Studies in 

Drosophila have been the foundation for characterization of numerous mammalian 

signaling pathways such as Wnt, Hedgehog and Notch signaling pathways [90-92]. 

Polyamine transport is active in Drosophila S2 cells [93], and our own work has 

demonstrated that polyamine transport into an intact developing Drosophila epithelium is 

similar to that observed in mammalian CHO and L1210 cells [94]. In the latter experiments 
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a leg imaginal disc epithelium with all cell-cell contacts and extracellular matrix intact was 

incubated in in vitro culture with a series of polyamine-drug conjugates that exhibit varying 

degrees of ligand specificity for the polyamine transporter. The profile of sensitivity of 

Drosophila leg imaginal discs to the polyamine-drug conjugates was very similar to that 

observed in mammalian cells. Thus, the imaginal disc assay is useful for further 

characterization of compounds that target the transporter in an intact epithelial tissue, and 

can be used to identify novel components of the transport process. An improved 

understanding of the PTS in Drosophila will further our understanding of the polyamine 

transport mechanism in mammals, and contribute to rationale design of drugs that target 

the PTS in malignant cells. 

 

Drosophila Imaginal Discs 

 

One of the most intriguing events in the development of Drosophila is metamorphosis [95]. 

During this process, most larval tissues undergo programmed cell death and adult 

tissue/structures and organs form from imaginal discs. Imaginal discs are clusters of cells 

set aside in the embryo that are pre-destined to form specific adult epithelial structures 

such as wings, legs, eyes and internal organs (Figure 3). Imaginal discs grow by cell 

division during larval development. Mature imaginal discs in late larvae are single cell 

thick sac-like epithelial organs. In response to appearance of the steroid hormone 20- 

hydroxyecdysone which signals the onset of metamorphosis, imaginal discs begin 

development into adult structures and organs while larval tissues undergo programmed 

cell death.  
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Figure 3 Related imaginal disc primordia in the Drosophila embryo and larva and their 
respective fates in the adult [96]. 

Top: related primordia of imaginal discs in the embryo. Middle: imaginal discs in larva. 
Bottom: structures derived from imaginal discs in the adult. Imaginal discs: clypeolabral 
discs (1); eye-antennal discs (2); labial discs (3); prothoracic discs (4); leg discs (5-7); 
wing discs (8); haltere discs (9); genital disc (10).  

 

Drosophila leg imaginal discs are well suited for use in this study. The genetics and cell 

biology of their development is well understood [97]. Leg imaginal discs can be dissected 
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from late larvae and cultured in vitro where, in the presence of 20-hydroxyecdysone, they 

develop into rudimentary legs (Figures 4a, b). Leg imaginal discs can be used to study 

the behavior of polyamine transporter ligands (e.g. Tsen et al., 2008 [94]; Figure 4c) and 

polyamine transport inhibitors (this study). A major advantage of the leg imaginal disc 

system over mammalian cell culture is that cells are studied in their natural environment 

with cell-cell contacts preserved and surrounded by extracellular matrix. In addition, the 

imaginal disc system provides an inexpensive approach to early testing of promising lead 

compounds and can be used to identify genes involved in polyamine transport.  

 

 

Figure 4 Leg imaginal discs cultured in vitro. 

a. dissected, undeveloped leg imaginal disc; b. developed leg imaginal disc after 
treatment with 20-hydroxyecdysone for 18 hours. c. undeveloped leg imaginal disc after 
treatment with 20-hydroxyecdysone and the toxic polyamine analog Ant44 for 18 hours. 
Ant44 enters cells via the PTS [94]. All figures were taken under regular light.  

 

Aims of This Dissertation 

 

Depletion of cellular polyamine content results in cancer cell growth attenuation. A 

combination drug therapy that simultaneously targets polyamine biosynthesis and 
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transport is desirable. Even though DFMO is a potent inhibitor of polyamine biosynthesis, 

cancer cells treated with DFMO frequently circumvent polyamine depletion therapy by 

elevating transporter activity to increase import of polyamines from the extracellular 

environment. To address this need to develop compounds that inhibit polyamine transport, 

we have developed a Drosophila assay that can be used for early testing of potential 

transport inhibitors. Specifically, the Drosophila imaginal disc assay is useful for 

characterization of compounds that target the transporter in an intact epithelial tissue, and 

can be used to identify novel components of the transport process. In this dissertation, 

several putative polyamine transport inhibitors were successfully tested in Drosophila 

imaginal discs. Also, I attempted to identify additional polyamine transport components in 

Drosophila to further our understanding of the polyamine transport mechanism in 

mammals. 

 

Aim 1: Early Stage Animal Model Testing of Inhibitors Targeting Polyamine Transport.  

 

Small molecules that inhibit polyamine transport in a Drosophila multicellular system were 

assayed. The work led to the identification of two new polyamine transport inhibitors. A 

major finding was that the inhibitors have different specificity profiles for the native 

polyamines putrescine, spermidine and spermine suggesting the existence of multiple 

transport systems. This conclusion is reinforced by the observation that a cocktail of 

polyamine transport inhibitors is more effective at inhibiting transport than individual 

compounds alone. 
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Aim 2: A Tool Kit for Expressing and Identifying Genes Required for Polyamine 

Transport. 

 

In order to identify genes required for polyamine transport, it is necessary to knock down 

and overexpress vital genes which may lead to lethality. A set of reagents was developed 

that can be used to avoid lethality when performing knock down and overexpression of 

vital genes. The reagents are broadly applicable to studies of development in Drosophila. 

 

Aim 3: Genetic Characterization of the Role of Proteoglycans in Polyamine Transport. 

 

I hypothesize that heparan sulfate proteoglycans (HSPG) are required for polyamine 

transport in Drosophila. Mutation or RNAi knockdown of genes encoding proteoglycan 

core proteins (glypican, syndecan, and perlecan) and enzymes involved in HSPG 

biosynthesis were tested for involvement of polyamine transport in imaginal discs and 

intact animals. The results suggest tissue-specific differences in the polyamine transport 

system. 
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CHAPTER TWO: EVALUATION OF POLYAMINE TRANSPORT 
INHIBITORS IN A DROSOPHILA EPIPHILIAL MODEL SUGGESTS THE 

EXISTENCE OF MULTIPLE TRANSPOR SYSTEMS 
 

This chapter has been previously published in Medical Sciences on November 14th, 2017. 

Author names: Minpei Wang, Otto Phanstiel, Laurence von Kalm.  

 

Abstract 

 

Increased polyamine biosynthesis activity and an active polyamine transport system are 

characteristics of many cancer cell lines and polyamine depletion has been shown to be 

a viable anticancer strategy. Polyamine levels can be depleted by difluoromethylornithine 

(DFMO), an inhibitor of the key polyamine biosynthesis enzyme ornithine decarboxylase 

(ODC). However, malignant cells frequently circumvent DFMO therapy by up-regulating 

polyamine import. Therefore, there is a need to develop compounds that inhibit polyamine 

transport. Collectively, DFMO and a polyamine transport inhibitor (PTI) provide the basis 

for a combination therapy leading to effective intracellular polyamine depletion. We have 

previously shown that the pattern of uptake of a series of polyamine analogues in a 

Drosophila model epithelium shares many characteristics with mammalian cells, 

indicating a high degree of similarity between the mammalian and Drosophila polyamine 

transport systems. In this report, we focused on the utility of the Drosophila epithelial 

model to identify and characterize polyamine transport inhibitors. We show that a 

previously identified inhibitor of transport in mammalian cells has a similar activity profile 
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in Drosophila. The Drosophila model was also used to evaluate two additional transport 

inhibitors. We further demonstrate that a cocktail of polyamine transport inhibitors is more 

effective than individual inhibitors, suggesting the existence of multiple transport systems 

in Drosophila. Our findings reinforce the similarity between the Drosophila and 

mammalian transport systems and the value of the Drosophila model to provide 

inexpensive early screening of molecules targeting the transport system.   

 

Introduction 

 

The common native polyamines (putrescine 1, spermidine 2 and spermine 3; Figure 5) 

are a family of ubiquitous low molecular weight organic polycations containing two to four 

amine moieties separated by methylene groups. In eukaryotes, polyamines are essential 

for a variety of cellular processes including cell proliferation, transcription, translation, 

apoptosis and cytoskeletal dynamics [4, 35, 98, 99]. Polyamines can also bind to 

intracellular polyanions including nucleic acids and ATP, as well as specific proteins such 

as N-methyl-d-aspartate receptors and inward rectifier potassium ion channels to regulate 

their functions [5, 100-102].  

 

A balance between biosynthesis, degradation and transport of polyamines is required to 

maintain polyamine homeostasis [13, 51, 103, 104] and an increased intracellular 

polyamine content due to increased biosynthesis and transport activity is a hallmark of 
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many types of malignant cells [3, 46, 105]. Difluoromethylornithine (DFMO 4; Figure 5) is 

an inhibitor of polyamine biosynthesis and has been used in the treatment of several 

cancers [3, 46]. DFMO binds irreversibly to ornithine decarboxylase (ODC), the rate 

limiting enzyme of the polyamine biosynthetic pathway, resulting in the proteasomal 

degradation of ODC [105]. The clinical effectiveness of DFMO, however, is often limited 

due to the up-regulation of the polyamine transport system (PTS) to access polyamines 

from the extracellular milieu [106, 107]. To this end, there is a need to develop compounds 

that inhibit polyamine import. Use of polyamine transport inhibitor compounds with DFMO 

should simultaneously inhibit biosynthesis and transport, and efficiently deplete 

polyamine pools in malignant cells. 

 

 
Figure 5 Structures of the native polyamines (1–3), difluoromethylornithine (DFMO) (4), 
polyamine analogue (5) and candidate polyamine transport inhibitors (PTIs; 6–9).   
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The mechanism of polyamine transport has been well characterized in unicellular 

organisms, such as Escherichia coli [57, 58], yeast [59, 60], Leishmania [20] and 

Treponema [21]. In contrast, in multicellular animals only a few PTS components have 

been identified [62-65, 71, 76, 108-111] and it is not understood how these components 

interact, or whether they comprise one or more transport systems. The current 

understanding has been reviewed by Poulin et al., where evidence for three models is 

presented [61]. In one model, cell surface glypican-1-anchored heparan sulfate 

proteoglycans capture extracellular polyamines and these complexes are then 

endocytosed into endosomes [62]. A second model involves caveolin-mediated 

endocytosis of polyamines via an unknown receptor [77]. In both the glypican-1 and 

caveolin-mediated models the sequestration of polyamines into endosomes is followed 

by nitric oxide-mediated release of polyamines from these vesicles. A third model 

proposes that an energy-dependent cell-surface transporter/channel allows entry of free 

polyamines into the cytosol and that these are rapidly sequestered into the endosomal 

sorting pathway, where they are stored or trafficked to specific cellular locations as 

needed [86]. In reality, none of these models are mutually exclusive and the PTS may 

well be a combination of all three. 

 

In previous work, we reported a novel assay to study polyamine transport in Drosophila 

leg imaginal discs [94]. Leg imaginal discs are the embryonic and larval precursors of 

adult legs. In the larval stage prior to adult development, imaginal discs exist as a single-

cell-thick folded epithelium. In response to exposure to the steroid hormone ecdysone at 
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the onset of metamorphosis, they rapidly develop into rudimentary legs (see Figure 6) 

[97]. Using the Drosophila assay we directly compared a series of toxic polyamine ligands 

for their PTS selectivity in Drosophila and mammalian cells. The behavior of the 

polyamine compounds in imaginal discs was very similar to their behavior in mammalian 

cell culture, suggesting broad similarities between the PTS of Drosophila and mammals. 

A major advantage of the leg imaginal disc assay is that compounds that access cells 

through the PTS or inhibit transport can be studied in an environment where cells exhibit 

normal adhesion properties and are surrounded by extracellular matrix. Thus, the 

Drosophila assay potentially provides an inexpensive animal model for early testing of 

compounds targeting the PTS.  

 

 

Figure 6 Drosophila assays used to characterize polyamine transport inhibitors. Native 
PAs: native polyamines; PTIs: polyamine transport inhibitors.  

a. Assay 1: undeveloped leg imaginal discs were incubated with ecdysone to promote 
development. In the presence of Ant44 (5), a toxic polyamine analog that targets the 
transport system, leg imaginal discs will not develop. The ability of candidate PTIs to 
rescue development of imaginal discs treated with Ant44 (5) was then assayed by 
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monitoring and scoring the leg development process. b. Assay 2: leg imaginal discs 
treated with DFMO fail to develop in the presence of ecdysone. Uptake of exogenous 
native polyamines can rescue DFMO inhibition of disc development. The ability of 
candidate PTIs to block rescue of disc development in the presence of DFMO and native 
polyamines was tested. 

 

In this study, we identified and characterized two compounds that act as polyamine 

transport inhibitors in Drosophila. We also demonstrated that a cocktail of polyamine 

transport inhibitors was more effective than individual inhibitors, suggesting the existence 

of multiple transport systems in Drosophila. 

 

Results 

 

In order to identify PTIs using the Drosophila assay, we selected four compounds for 

study. Ant444 (6 in Figure 5) is a N1-anthracenylmethyl substituted polyamine that binds 

tightly to the surface of mammalian A375 cells with high affinity for the PTS, which 

suggests that it could be an effective transport inhibitor [52]. However, the ability of this 

compound to inhibit polyamine transport has never been directly demonstrated. We also 

tested Triamide444 (9 in Figure 5), a compound with relatively high toxicity in Chinese 

Hamster Ovary (CHO) and human pancreatic cancer L3.6pl cells, which precluded an 

analysis of its transport inhibitory properties in these cell lines. Trimer44 (7 in Figure 5) 

has been previously shown to be an effective inhibitor of spermidine uptake in the 

presence of DFMO in mammalian L3.6pl cells [112, 113]. Triamide44 (8 in Figure 5) was 

previously shown to be a poor transport inhibitor [113]. We, therefore, used the transport 

inhibition properties of Trimer44 (7) and Triamide44 (8) as a baseline for comparison to 
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Ant444 (6) and Triamide444 (9). Armed with these molecular tools, we assessed their 

ability to perform as PTIs in the Drosophila model.  

 

1. Compounds Ant444 (6) and Triamide444 (9) Block the Toxicity of the Polyamine 

Analog Ant44 (5) that Gains Entry to Cells via the PTS. 

 

In the first experiments, all compounds were tested in two different Drosophila assays. In 

Assay 1, these compounds were tested for their ability to block toxicity of a polyamine 

analogue, Ant44 (5, Figure 5), which gains access to leg imaginal disc cells via the 

polyamine transport system (Figure 6a) [52, 94]. At the concentrations of Ant44 (5) used 

in our experiments (40-50 µM), fewer than 10% of imaginal discs develop. We 

hypothesized that an effective PTI would inhibit Ant44 uptake or release, and thus reduce 

the toxicity of Ant44 (5) and permit development of leg imaginal discs. A potential caveat 

of this approach is that a toxic PTI compound would generate a false negative result in 

this assay. Therefore, it was critical that we first determine the highest dose of PTI 

compound that could be used without toxicity to avoid biasing the results. 

 

Addition of Ant444 (6) and Triamide444 (9) at non-toxic concentrations to the assay 

showed significant rescue of imaginal disc development in the presence of Ant44 (5) 

(Figure 7 a, b). Their effectiveness as PTIs was ranked via determination of EC50 values. 

The EC50 value was defined as the effective concentration of the compound which 
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decreased the inhibition of disc development by Ant44 (5) to 50% of the untreated control 

value (i.e., 50% inhibited). For both Ant444 (6) and Triamide444 (9) the EC50 values (3.6 

and 2.8 µM, respectively) were 10 to 15-fold lower than the concentration of Ant44 (5, 

e.g., 40-50 µM) used in the assays. Maximum protection from Ant44 was observed at 10 

µM 6 and 5 µM 9, respectively. These activity profiles are similar to Trimer44 (7) which is 

an effective transport inhibitor in mammalian Chinese Hamster Ovary (CHO) and L3.6pl 

cells (Figure 7c) [113]. In contrast, Triamide44 (8) was a less effective PTI in the 

Drosophila model with an EC50 of 144 µM and gave maximum protection at 300 µM 

(Figure 7d). These observations are consistent with similar findings in mammalian L3.6pl 

cells [113]. 
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Figure 7 Compounds Ant444 (6) and Trimer444 (9) are effective PTIs whereas 
Triamide44 is not.  

Candidate PTIs Ant444 (6) and Triamide444 (9) were tested in the presence of a toxic 
concentration of Ant44 (5) that by itself permitted the development of fewer than 10% of 
imaginal discs. The percentage of imaginal discs that developed was determined for each 
PTI concentration tested. All assays were repeated at least in triplicate. Error bars reflect 
the standard error of the mean (SEM). a-d. Respective dose-response curves of a. 
Ant444 (6), b. Triamide444 (9), c. Trimer44 (7) and d. Triamide44 (8) in blocking the 
inhibitory effect of Ant44 (5) on imaginal disc development. Note: the EC50 value is the 
concentration of the compound needed to block 50% of the inhibitory effect of Ant44 (5) 
on imaginal disc development. 

 

2. Ant444 (6) and Triamide444 (9) Are More Effective Than the Native Polyamines in 

Inhibiting the Toxicity of Ant44 (5) in Imaginal Discs 

 

Compounds containing recognizable polyamine sequences should be able to compete 

for access to the polyamine receptor on the cell surface. Our previous work has shown 
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that spermidine is able to inhibit the toxicity of Ant44 (5) on mammalian cells and 

Drosophila leg imaginal discs by competing for binding and transport via the PTS [94]. In 

the present study, the efficiencies of the native polyamines (spermidine and spermine) in 

rescuing disc development from a toxic concentration of Ant44 (5) were evaluated in 

Assay 1 (Figures 6a and 8a, b). As shown in Figure 8a, the EC50 of spermidine was 43.6 

μM and complete rescue of imaginal disc development was observed at 80 μM. In 

contrast, the EC50 values of Ant444 (6) and Triamide444 (9) are 3.6 μM and 2.8 μM, 

respectively (Figure 7a, b). In short, compounds 6 and 9 were approximately 12-15 times 

better than spermidine in inhibiting the toxicity of Ant44 (5). 

 

Spermine - a native tetraamine - was more effective than spermidine in blocking Ant44 

(5) inhibition of imaginal disc development with an EC50 value of 19.7 μM and afforded 

complete protection at 40 μM (Figure 8b). The EC50 values of Ant444 (6) and Triamide444 

(9) were 5-fold and 7-fold lower than spermine respectively, demonstrating that these 

compounds are more efficient at competing for access to the PTS than either of the native 

polyamines spermidine or spermine. The data for Ant444 (6) and Triamide444 (9) are 

similar to Trimer44 (7). In contrast, Triamide44 (8) (EC50 144 μM; Figure 7d) was 3-fold 

less effective than spermidine and 7-fold less effective than spermine in inhibiting the 

toxicity of Ant44 (5).  
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Figure 8  Spermidine and spermine block the inhibitory effect of Ant44 (5) on imaginal 
disc development. 

Spermidine (2) and spermine (3) were tested at different concentrations in the presence 
of Ant44 (5) and the percentage of imaginal disc development was recorded for each 
concentration. a. Effective concentration of spermidine in blocking the inhibitory effect of 
Ant44 (5) on imaginal disc development; b. Effective concentration of spermine in 
blocking the inhibitory effect of Ant44 (5) on imaginal disc development. Every data point 
was repeated at least in triplicate. Error bars reflect the standard error of the mean (SEM). 
Note: the EC50 value is the concentration of the polyamine needed to block 50% of the 
inhibitory effect of Ant44 (5) on imaginal disc development. 

 

In contrast to spermidine and spermine, the native diamine, putrescine, was unable to 

rescue the inhibition of Ant44 (5) in imaginal discs. Concentrations of up to 1 mM 

putrescine had no effect on the inhibition of imaginal disc development by Ant44 (5) 

(Figure 9). One interpretation of these observations is that the diamine putrescine 

presents fewer charges to the cell surface receptors than Ant44 (5), which is a triamine 

analogue. Therefore, the inability of putrescine to rescue cells from Ant44 (5) could be 

due to differences in relative binding affinity. An alternative interpretation is that Ant44 (5) 

is imported into the cell via a polyamine transporter which does not recognize putrescine. 

Indeed, the existence of multiple polyamine transporters with different affinities and 

selectivity for the native polyamines has been suggested in mammalian cells [56] and 

also in this study (see Section 4). 
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Figure 9  Putrescine fails to block the inhibitory effect of Ant44 (5) on imaginal disc 
development. 

Putrescine (1) was tested at different concentrations in the presence of Ant44 (5) and the 
percentage of imaginal disc development was recorded for each concentration. Error bars 
reflect the standard error of the mean (SEM). Note: the EC50 value is the concentration of 
the polyamine needed to block 50% of the inhibitory effect of Ant44 (5) on imaginal disc 
development. An EC50 value was not calculated as putrescine was unable to block the 
inhibitory effect of Ant44 (5) on imaginal disc development. 

 

In conclusion, Ant444 (6), Trimer44 (7) and Triamide444 (9) are all considerably more 

effective than either of the native polyamines spermidine or spermine in competing with 

Ant44 (5) for access to the PTS. Because putrescine could not rescue Ant44 (5) toxicity 

in disc development, no comparisons can be made for this native diamine. 

 

3. Ant444 (6) and Triamide444 (9) Effectively Prevent Rescue by Native Polyamines 

of DFMO-Treated Imaginal Discs 

 

Assay 1 tested the ability of candidate PTIs to block the toxicity of Ant44 (5), which 

accessed cells via the PTS (Figure 6a). Assay 2 tests the ability of each candidate PTI to 
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block the uptake of exogenous polyamines into DFMO-treated imaginal discs (Figure 6b). 

Since DFMO inhibits polyamine biosynthesis [114], intracellular polyamine levels are 

depleted and cell viability is decreased. The effect of DFMO in mammalian cell culture is 

dose-dependent and typically cytostatic and this inhibition can be reversed by the addition 

of native polyamines to the cell culture medium [3, 106]. Therefore, we investigated if 

DFMO inhibits imaginal disc development and if the compounds Ant444 (6), Trimer44 (7), 

Triamide44 (8) and Triamide444 (9) could prevent the rescue of DFMO-treated imaginal 

disc development by exogenous native polyamines. Essentially, we asked if these 

compounds could effectively compete with native polyamines for access to the PTS in 

DFMO-treated imaginal discs. 

 

When imaginal discs are cultured in the presence of 10 mM DFMO greater than 95% of 

the discs fail to develop (Figure 10). As in mammalian cell culture, DFMO inhibition of 

disc development was dose-dependent. As shown in Figure 10, the 18 h IC50 value of 

DFMO on imaginal disc development was 4.4 mM, a value similar to that reported for 

CHO cells at 48h and L3.6pl cells at 72h [113]. Here the 18 h IC50 value is defined as the 

concentration of DFMO required to inhibit 50% of leg development after 18 h of incubation. 
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Figure 10  DFMO inhibits imaginal disc development.  

DFMO (4) was tested at different concentrations and the percentage of disc development 
was determined for each concentration after 18 h of incubation. All data points were 
repeated at least in triplicate and error bars reflect the standard error of the mean (SEM). 
The IC50 value corresponds to the concentration of DFMO needed to inhibit 50% of discs 
from developing into rudimentary legs. 

 

In the presence of exogenous polyamines, polyamines from outside the cell should enter 

into imaginal disc cells to rescue inhibition of development by DFMO. In contrast, in the 

presence of DFMO and an effective PTI, exogenous polyamines are expected to be 

unable to gain access to the cell resulting in inhibition of development. DFMO was used 

at 10 mM in all experiments because at this dose imaginal discs showed little 

development and retained the same shape as controls treated with culture medium only 

(i.e., with no steroid hormone to stimulate development). Data for these experiments are 

shown in Figures 11 and 12. 

 

Each of the three native polyamines were evaluated for their ability to rescue the 

development of leg discs treated with DFMO. Addition of 500 μM putrescine to the culture 
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medium resulted in a significant increase (5% to 59%, Figure 11a; 4% to 66%, Figure 12a) 

in imaginal disc development compared to DFMO alone (compare blue and green 

columns in both Figures). Similarly, addition of 200 μM spermidine or spermine to DFMO-

treated leg discs also significantly increased imaginal disc development (see Figures 11 

and 12). Thus, each of the native polyamines was able to rescue imaginal disc 

development in the presence of DFMO (10 mM). These results mirror the ability of DFMO-

treated mammalian cells to be rescued by each of the native polyamines. We note that 

the concentrations of native polyamines needed to rescue inhibition by DFMO in the 

Drosophila model assay were much higher (200-500 μM) than those observed in 

mammalian cells (around 1 μM). The higher doses are likely due to the fact that unlike 

cell culture, imaginal discs are an intact epithelial tissue surrounded by extracellular 

matrix, which may impede polyamine access to the PTS. 

 

As with Assay 1, it was important to use a non-toxic dose of each PTI compound because 

in Assay 2 a toxic PTI would generate a false positive. To avoid introducing this bias, non-

toxic concentrations of the PTI compounds were determined and used in both assays. In 

a series of control experiments, Ant444 (6), Trimer44 (7) and Triamide444 (9) were each 

found to be non-toxic to imaginal disc development at 100 μM, whereas Triamide 44 (8) 

was non-toxic at 300 μM. 
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Figure 11  Candidate PTIs prevent native polyamine rescue of imaginal discs treated with 
DFMO.  

Polyamine transport inhibitors at the indicated concentrations were used to block the 
rescue of DFMO treated imaginal discs (10 mM) by the native polyamines putrescine 
(PUT; 1), spermidine (SPD; 2) and spermine (SPM; 3). DFMO alone (10 mM) results in 
approximately 5% imaginal disc development. Native polyamines were tested at the 
following concentrations (putrescine 1: 500 μM; spermidine 2: 200 μM; spermine 3: 200 
μM). Polyamines and PTIs were individually tested in the absence of DFMO to ensure 
there was no inhibition of imaginal disc development at the concentrations used. In 
addition, polyamines and PTIs were tested in combination for possible negative synergy 
on imaginal disc development and none was observed at the concentrations used. 
Compounds are numbered as described in Figure 5. All data points were repeated at 
least in triplicate and error bars reflect the SEM. Significant differences * p < 0.05; ** p < 
0.01; *** p < 0.001 from treatment with DFMO and native polyamine alone are indicated. 
a. Ability of PTIs to prevent rescue of DFMO treated imaginal discs with putrescine; b. 
Ability of PTIs to prevent rescue of DFMO treated imaginal discs with spermidine; c. Ability 
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of PTIs to prevent rescue of DFMO treated imaginal discs with spermine; d. Ability of PTIs 
to prevent rescue of DFMO treated imaginal discs with a cocktail containing all three 
native polyamines (putrescine, spermidine and spermine). 

 

We next asked if non-toxic concentrations of PTIs could block the developmental rescue 

of DFMO-treated imaginal discs by native polyamines. Rescue of DFMO-treated imaginal 

discs by putrescine was significantly reduced by addition of 100 μM of Ant444 (6), 

Trimer44 (7) and Triamide444 (9) (Figures 11a and 12a). Imaginal disc development was 

reduced from 59% (500 μM putrescine, 10 mM DFMO) to 9% in the presence of 100 μM 

Ant444, 500 μM putrescine and 10 mM DFMO, a result which was similar to the control 

with DFMO alone (Figure 11a). Likewise, addition of Trimer44 (100 μM) in the presence 

of putrescine and DFMO reduces imaginal disc development from 59% to 29% (Figure 

11a). Addition of 100 μM Triamide444 reduced imaginal disc development from 66% to 

18% (Figure 12a). While the decrease in imaginal disc development in the presence of 

Ant444 (6), Trimer44 (7) or Triamide444 (9) is significant, our data suggest that Trimer44 

(7) is less effective than Ant444 (6) or Triamide444 (9) in inhibiting the uptake of 

putrescine. Consistent with earlier studies, 100 μM or 300 μM Triamide44 (8) was unable 

to compete with putrescine for access to the Drosophila PTS (Figure 11a). 

 

Similar results were observed with spermidine. At 100 μM, Ant444 (6), Trimer44 (7) and 

Triamide444 (9) were all able to significantly inhibit import of spermidine. In the presence 

of 10 mM DFMO and 200 μM spermidine imaginal disc development decreased from 39% 

to 11% in the presence of 100 μM Ant444 and to 13% in the presence of 100 μM Trimer44 

(Figure 11b). In the presence of 100 μM Triamide444 imaginal disc development 
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decreased from 70% to 34% (Figure 12b). In contrast, Triamide44 (8) failed to inhibit 

import of spermidine even at 300 μM (Figure 11b). 

 

 

Figure 12  Triamide444 (9) is an effective inhibitor of native polyamine uptake. 

The ability of 100 µM Triamide444 (9) to block the rescue of DFMO 4 treated imaginal 

discs (10 mM) by native polyamines putrescine (PUT; 1), spermidine (SPD; 2) and 
spermine (SPM; 3). 10 mM DFMO alone (10 mM) results in approximately 5% disc 
development. Native polyamines were tested at the following concentrations (putrescine 
1: 500 µM; spermidine 2: 200 µM; spermine 3: 200 µM). Triamide444 (9) and individual 

polyamines were tested in the absence of DFMO to ensure there was no inhibition of 
imaginal disc development at the concentrations used. In addition, Triamide444 and 
individual polyamines were tested in combination for possible negative synergy on 
imaginal disc development and none was observed at the concentrations used. All data 
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points were repeated at least in triplicate and error bars reflect the SEM. Significant 
differences * p < 0.05; ** p < 0.01; *** p < 0.001 from treatment with DFMO and native 
polyamine alone are indicated. Ability of Triamide444 (9) to prevent rescue of DFMO 
treated imaginal discs with (a) putrescine; (b) spermidine and (c) spermine. 

 

Finally, we tested the ability of the PTIs to inhibit import of spermine in the presence of 

10 mM DFMO and 200 μM spermine. As shown in Figure 11c, 100 μM Ant444 (6) did not 

reduce uptake of spermine, whereas 100 μM Trimer44 (7) significantly reduced imaginal 

disc development from 67% to 34%. Triamide444 (9) showed even greater ability to 

reduce spermine uptake reducing imaginal disc development from 60% to 15% (Figure 

12c). Thus, the PTIs can be ranked Triamide444 > Trimer44 > Ant444 with respect to 

their relative abilities to inhibit spermine uptake. As with the previous assays, Triamide44 

(8) was unable to inhibit import of spermine even at 300 μM concentration. 

 

In summary, even though Ant444 (6), Trimer44 (7) and Triamide444 (9) have similar EC50 

values for protection against toxicity of Ant44 (5) and a similar concentration of full 

protection against Ant44 (5) (Figure 7a-c), they show different specificities in blocking the 

uptake of native polyamines into imaginal discs treated with DFMO (Figures 11a-c and 

12). Ant444 (6) is better at blocking uptake of putrescine, Ant444 (6) and Trimer44 (7) 

show similar abilities to block uptake of spermidine and Triamide444 (9) is the most potent 

of the PTIs at blocking spermine uptake. These findings suggest that the PTIs have 

different specificities for the polyamine transport systems active in the presence of DFMO. 

In this regard, there may be a basal and DFMO-stimulated PTS in Drosophila. The basal 

PTS is assessed via the Ant44 assay (Assay 1), whereas the DFMO-stimulated PTS is 

assessed via Assay 2 (Figure 6). The poor performance of triamide44 (8) in these assays 
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is consistent with the inability of this compound to block the toxicity of Ant44 (5) (Figure 

7d) and suggests that presenting polyamine chains containing only two charges per 

polyamine arm limits interactions with the putative PTS extracellular receptor (e.g., 

glypican-1 anchored heparan sulfate proteoglycans [62]). 

 

4. A Cocktail of Ant444 (6) and Trimer44 (7) Is More Potent than Either Compound 

Alone at Inhibiting the Import of Native Polyamines Into DFMO-Treated Imaginal 

Discs, Suggesting the Existence of Multiple Transport Systems 

 

In the next experiments, we further examined our finding that the PTIs have different 

specificities for the PTS. Specifically, we asked if a cocktail of PTIs was more effective 

than individual PTIs in inhibiting rescue of DFMO-treated imaginal discs in the presence 

of all three native polyamines. In our prior experiments, we studied the effects of individual 

native polyamines, however, all three polyamines are present in vivo. For example in 

circulating red blood cells, the levels of putrescine, spermidine and spermine were found 

to be 3, 55 and 35 pmol/mg protein respectively [115]. Because Ant444 (6) and Trimer44 

(7) are effective PTIs and showed different specificities towards putrescine, spermidine 

and spermine respectively, a combination of these inhibitors was used to block the rescue 

of DFMO treated leg discs by a mixture of all of the native polyamines. As shown in Figure 

11d, a cocktail of native polyamines (500 μM putrescine, 200 μM spermidine and 200 μM 

spermine) was able to fully rescue inhibition of leg disc development by DFMO (compare 

blue and green columns). In contrast to experiments using just one PTI, 100 μM of either 

Ant444 (6) or Trimer44 (7) alone was unable to significantly inhibit the rescue of DFMO-
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treated discs by the exogenous native polyamine cocktail. In contrast, a combination of 

50 μM Ant444 (6) and 50 μM Trimer44 (7) significantly inhibited rescue by native 

polyamines even though the amount of each PTI was reduced by half compared to 

experiments when only one PTI was used. This result suggests that a combination of 

polyamine transport inhibitors will be more effective in inhibiting the import of all three 

native polyamines than individual inhibitors dosed alone.  

 

The different selectivity of Ant444 (6), Trimer44 (7) and Triamide444 (9) towards native 

polyamines and the ability of a cocktail of PTIs to inhibit transport more effectively than 

individual PTI’s suggests the existence of multiple polyamine transport systems in 

Drosophila as has been observed in unicellular organisms [56]. Ant444 (6) shows a 

greater ability to inhibit uptake of putrescine, whereas Trimer44 (7) is more effective in 

inhibiting uptake of spermine (Figures 11a, c) which may be the underlying basis for the 

improved ability of a cocktail of these compounds to inhibit rescue in the presence of all 

three native polyamines. Further support for multiple transporters with different 

specificities for the native polyamines comes from our observation that 500 µM putrescine 

can rescue inhibition by DFMO (Figure 11a) whereas 1 mM putrescine is unable to rescue 

the toxicity of 40 μM Ant44 (5) (Figure 9), consistent with the notion that putrescine is 

imported into cells through a transport system different from Ant44. The underlying 

transport pathway selection may be charge-dependent because unlike the diamine 

putrescine, Ant44 is a triamine and presents three positive charges to the putative cell 

surface receptor. In addition, Ant44 is a homospermidine analogue and its toxicity can be 

rescued by the higher polyamines, spermidine and spermine. An alternative explanation 
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for our observations is that Ant44 bears both a hydrophobic anthryl substituent along with 

the hydrophilic polyamine head group and thus its amphiphilic properties may facilitate its 

uptake via a specific transport system. 

 

Discussion 

 

Our work reinforces the value of the Drosophila imaginal disc assay as an early and 

inexpensive system in which to evaluate compounds targeting the mammalian PTS. 

There are several advantages to our approach. First, mammalian cell culture is not a 

natural cellular environment because cells lack cell-cell contacts and extracellular matrix, 

both of which are factors influencing drug accessibility to cells in vivo. In contrast, the 

imaginal disc assay tests the effects of medicinal compounds on cells in a more natural 

environment. Second, inexpensive early animal model testing of promising compounds 

can reduce the time it takes successful compounds to reach the clinic by up to fifty percent. 

Mice are more expensive to use in the early stages of drug development where most 

compounds will fail, therefore a cheaper system such as our Drosophila assay is useful. 

Third, experiments in mice can only be performed on a small scale, whereas we can 

assay relatively large numbers of imaginal discs, typically more than 100 per assay.  

 

Of course, the imaginal disc assay is only useful to understand mammalian transport if 

the polyamine transport system is similar in Drosophila and mammals. Our work suggests 

that this is the case. In previous work, we compared the uptake of nine polyamine analogs 
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in mammalian CHO and L1210 cells and Drosophila imaginal discs [94]. Two of the 

compounds tested in those experiments, Ant44 (5) and N1-(3-aminopropyl)-N4-

(anthracen-9-ylmethyl) butane-1,4-diamine (Ant43) gain entry to mammalian cells via the 

polyamine transport system as evidenced by spermidine competition experiments and 

greatly reduced uptake in CHO-MG cells, which lack a functional transport system [116]. 

In imaginal discs, uptake of Ant44 and Ant43 is also greatly reduced in spermidine 

competition experiments. In contrast, uptake of the other seven polyamine analogs 

cannot be competed with spermidine in mammalian cells or Drosophila imaginal discs, 

suggesting that they do not utilize the transport system to gain access to cells in either 

system. In addition, Trimer44 (7) has previously been shown to be an effective inhibitor 

in mammalian cells, whereas Triamide44 (8) was not [113] and these results are mirrored 

in the Drosophila assay.  

 

Use of the Drosophila imaginal disc assay has added to our knowledge of polyamine 

transport inhibitors. We show that two compounds that exhibit toxicity in mammalian cell 

culture, Ant444 (6) and Triamide444 (9), are non-toxic in the Drosophila assay and are 

effective PTIs with activity profiles similar to that of Trimer44 (7). The reduced toxicity of 

Ant444 and Triamide444 in Drosophila may due to a lower effective concentration of 

these compounds reaching the cell surface due to the presence of intact cell-cell 

adhesions and extracellular matrix. We also provide activity data for the PTIs against all 

three native polyamines (putrescine, spermidine, spermine) whereas most mammalian 

cell culture studies focus on spermidine uptake. This approach revealed differences in 

the ability of each PTI to inhibit uptake of individual polyamines suggesting the existence 
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of multiple transport systems. This view is further reinforced by our finding that a mixture 

of two PTIs is more effective than either PTI alone at inhibiting uptake of a cocktail of all 

three native polyamines. 

 

In this study, we assayed the ability of PTIs to inhibit the rescue of DFMO treated imaginal 

discs in the presence of exogenous polyamines. This approach is clinically relevant in 

that many tumors circumvent DFMO treatment via upregulation of their polyamine 

transport systems. Our previous work indicates that the PTIs inhibit polyamine uptake. 

Our data are consistent with the reported Ki values for several of these compounds in 

terms of competing with 3H-radiolabeled spermidine for the putative cell surface receptors 

in L1210 murine leukemia cells. The L1210 Ki values for putrescine, spermidine and 

spermine are 208.2, 2.46 and 1.34 μM, respectively [52]. The L1210 cell Ki values for 

Ant44 (5), Ant444 (6) and Trimer44 (7) are 1.8 μM, 0.05 μM and 0.49 μM, respectively 

[52, 112]. Although the Ki value of Triamide44 (8) was not determined in L1210 cells, a 

comparative study of the Trimer44 and Triamide44 compounds in human L3.6pl 

pancreatic cancer cells revealed Ki values of 36 nM and 398 nM, respectively [113], 

suggesting a significantly lower affinity of Triamide44 for the putative cell surface 

receptors of the polyamine transport system.  

 

The low Ki values of Ant44, Ant444 and Trimer44 suggest that these compounds compete 

with the native polyamines for uptake. For example, Ant44 (a triamine) has a L1210 K i 

value of 1.8 μM and provides a fluorescent molecule with similar affinity for the polyamine 

transport system as the native polyamines spermidine (L1210 Ki = 2.46 μM) and spermine 
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(L1210 Ki = 1.34 μM). We speculate that in order to be successfully imported, compounds 

must bind and release from the cell surface receptors. The Ki values of the native 

polyamines (spermidine and spermine) suggest that Ki values in the low μM range are 

optimal for these binding and releasing properties. The related Ant444 compound 6 (a 

tetraamine) has a significantly lower L1210 Ki value (51 nM) indicating high affinity for the 

cell surface receptors. Using confocal microscopy, we have demonstrated that this higher 

affinity of Ant444 was observed as a compound which could not be washed off the surface 

of L1210 cells by phosphate buffered saline (PBS). In contrast, the triamine Ant44 could 

be readily washed off the surface of L1210 cells by PBS and appeared to have improved 

uptake past the cell membrane [52]. This data is consistent with the higher toxicity of 

Ant44 (5: 48 h L1210 IC50 = 0.3 μM) compared to Ant444 (6: 48 h L1210 IC50 = 7.5 μM) 

[52]. In summary, highly charged lipophilic tetraamines like Ant444 tend to stick and not 

enter, which likely contributes to their ability to act as less toxic PTIs.  

 

Our finding that Ant444 (6) and Triamide444 (9) are effective PTIs expands our 

understanding of the chemical rules governing an effective PTI design. Inhibitors 

presenting diamine arms, like Triamide44 (8), are ineffective transport inhibitors. In 

contrast, compounds containing a higher number of charges in their polyamine arms such 

as Trimer44 (7) and Triamide444 (9) are effective PTIs. In this regard, N1-substituted 

triamine and tetraamine analogues can be used to design efficient ligands and inhibitors 

of polyamine transport. Our work and previous studies suggest that presentation of at 

least three or more positive charges is necessary for efficient competitive binding to the 

PTS.  
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A combination therapy using DFMO and a PTI has shown promise in cancer growth 

inhibition [53, 117]. While the lack of knowledge of the genes and proteins involved in 

polyamine transport has hampered the development of PTIs, structure-activity 

relationship studies have nevertheless resulted in the development of effective PTIs. One 

effective PTI is AMXT-1501 (11, Figure 13) [53]. In combination with DFMO, AMXT-1501 

inhibits cancer cell growth in several cancer cell lines and mouse models [117]. Recently 

this compound was also found to reverse immunosuppression in the tumor 

microenvironment [118]. Structurally the compounds we tested here are different from 

AMXT-1501, which is a lipophilic palmitic acid–lysine spermine conjugate. Indeed, the 

hydrophilic compound 12 (Figure 13), which is a N-methylated derivative of Trimer44 (7), 

was recently shown to behave in a similar manner as AMXT-1501 (11) both in its ability 

to shrink tumors in vivo as well as to beneficially modulate the immune response [119]. 

Thus, this report provides alternative three-arm PTI designs and new insights as to how 

combinations of PTIs can be used to effectively inhibit the import of all three native 

polyamines. Going forward the Drosophila model can be used to pre-screen PTIs prior to 

more expensive testing in mouse models. Having a cheap model system for early animal 

testing will reduce the time from conceptual PTI design to future validation in clinical trials.  
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Figure 13 Structures of PTI compounds 11 and 12. 

 

Methods 

 

1. Synthesis 

 

The synthesis of the anthracene-polyamine conjugates (5 and 6) and the aryl-polyamine 

conjugates (7–9) have been described [52, 113]. 

 

2. Drosophila Strains and Larval Collections 

 

The Oregon-R variant of Drosophila melanogaster was used in all experiments. Larval 

preparation and staging were performed as previously described [94, 120]. All larvae used 

in the experiments were synchronized to within 7 h of pupariation, immediately prior to 

the pulse of 20-hydroxyecdysone that triggers imaginal disc development. Imaginal discs 

dissected from larvae at this developmental stage develop into rudimentary legs when 

exposed to 20-hydroxyecdysone in in vitro culture. 
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3. Imaginal Disc Culture and Scoring 

 

Leg imaginal discs were dissected at room temperature in Ringer’s solution (130 mM 

NaCl, 5 mM KCl, 15 mM CaCl2·2H2O) containing 0.1% bovine serum albumin (BSA ,w/v), 

which was added to the Ringer’s solution immediately prior to use. Up to 150 discs were 

dissected in less than 1 h to avoid prolonged storage in Ringer’s solution. After dissection, 

discs were transferred to 12-well plastic culture plates containing Ringer’s solution (1 mL). 

Before the disc culture medium was added, dissected imaginal discs were washed once 

with 1× minimal Robb’s medium (see Section 4). To begin a culture, a solution of 1 mL of 

1× minimal Robb’s medium (final concentration) containing 20-hydroxyecdysone (1 

µg/mL) and each of the compounds to be tested was added to each well. Control 

experiments lacking polyamine transport inhibitor (PTI) were run in parallel. Imaginal 

discs were incubated for 18 h at 25 °C. After 18 h, the discs were scored as developed 

or non-developed. Fully developed discs (the leg is fully extended from the epithelium) 

and partially developed discs (the leg protrudes from the epithelium but is not fully 

extended) were scored as developed. Non-developed discs showed no sign of 

development. For each experiment, the percent development was determined by 

([(number of developed discs)/(total number of discs)] × 100. 

 

4. Robb’s Minimal Medium 

 

2× Minimal Robb’s medium consisting of 80 mM KCl, 0.8 mM KH2PO4, 80 mM NaCl, 0.8 

mM NaH2PO4·7H2O, 2.4 mM MgSO4·7H2O, 2.4 mM MgCl2·6H2O, 2 mM CaCl2·2H2O, 20 
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mM glucose, 8.0 mM L-glutamine, 0.32 mM glycine, 1.28 mM L-leucine, 0.64 mM L-proline, 

0.32 mM L-serine and 1.28 mM L-valine, pH 7.2 was prepared and stored at −20° C. 

Immediately prior to use, 20 μL of 10% BSA (w/v) was added to 1 mL of medium [121]. 

 

5. Statistical Analysis 

 

Statistical analysis was performed using IBM SPSS Statistics 19 with one-way ANOVA. 
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CHAPTER THREE: CHOICE OF IMAGINAL DISC GAL4 DRIVER CAN BE 
USED TO EXPRESS TOXIC UAS RESPONDER CONSTRUCTS 

THROUGHOUT DEVELOPMENT 
 

Introduction  

 

In order to identify genes involved in polyamine transport our laboratory has developed 

an RNAi based assay. In this assay animals are grown on media supplemented with 

DFMO which is lethal at the concentration used (5 mM). Viability of these animals can be 

rescued by the addition of exogenous polyamines to the media. If the expression of a 

candidate gene for polyamine transport is reduced by RNAi, viability of the animals cannot 

be rescued in the presence of DFMO and exogenous polyamines. One drawback to this 

approach is that genes can exhibit pleiotropic effects leading to early/embryonic death 

after RNAi knockdown. Such an outcome would exclude the possibility of testing the gene 

for a role in polyamine transport. I therefore explored the possibility of using the 

GAL4/UAS system [122] to bypass early developmental lethality following RNAi 

knockdown. 

 

The GAL4/UAS system is a powerful technique that allows the expression of a target 

gene in a tissue- and developmental stage- specific manner. The relative strength of a 

driver is an important factor when attempting to circumvent early developmental lethality 

caused by overexpression or RNAi knockdown of a particular gene. To test the hypothesis 

that appropriate choice of GAL4 driver can be used to overcome early developmental 
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lethality I studied the effects of RNAi knockdown and overexpression of genes encoding 

components of the Rho1 signaling pathway and EGFR. UAS constructs expressing some 

of these genes have an embryonic lethal phenotype with commonly used ectodermal 

drivers such as 69B and T80. To address this problem I determined the expression 

patterns of five imaginal disc GAL4 drivers (30A, 71B, 32B, 69B, and T80) in late third 

instar leg, wing and eye antennal discs, ranked their relative strength of expression, and 

assayed the lethal stage of each driver in the presence of Rho1 pathway and EGFR UAS 

responder constructs. The five GAL4 drivers fell into three groups according to their 

expression strength. I also demonstrated that weak drivers are useful to express toxic 

UAS constructs at later times in development. This study provides useful reference points 

for choosing the appropriate GAL4 driver to study overexpression and RNAi knockdown 

of genes required for imaginal disc development and can be adapted for screening for 

genes involved in polyamine transport.  

 

Results and Discussion 

 

While many GAL4 drivers have been documented and are available in the Bloomington 

Stock Center, frequently little is known about their temporal or spatial expression patterns 

or the relative strengths of different GAL4 drivers expressed in the same tissue. The 

relative strength of a driver can be an important factor when attempting to circumvent 

early developmental lethality caused by overexpression or RNAi knockdown of a 

particular gene. Therefore, I determined the expression patterns of five GAL4 drivers (30A, 
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71B, 32B, 69B, and T80) expressed in late third instar leg, wing and eye antennal imaginal 

discs, ranked their relative strength of expression, and assayed the lethal stage of each 

driver in the presence of potentially toxic UAS responder constructs for RNAi knockdown 

and overexpression of components of the Rho1 signaling pathway and EGFR. A 

ubiquitous GAL4 driver Tubulin (TubP) were used as a control in all of these studies.  

 

1. Expression Patterns of GAL4 Drivers in Late Third Instar Imaginal Discs  

 

To determine the expression pattern of GAL4 lines in imaginal discs, a membrane 

tethered green fluorescent protein (GFP) fusion molecule that allows rapid in vivo imaging 

as well as the analysis of fixed tissue was used. Each of the GAL4 lines was crossed to 

UAS-mCD8-GFP [123] and the GFP expression in the progeny was analyzed using a 

fluorescent microscope. The detailed characterization of these GAL4 lines in imaginal 

discs identified a variety of interesting and specific expression patterns, which might be 

of great use in future study. Expression patterns of GAL4 drivers in late third instar 

imaginal discs, including leg disc, wing disc, eye antennal disc and haltere disc are shown 

in Figure 14.  
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Figure 14  Expression patterns of GAL4 drivers in late third instar imaginal discs.  

a: expression pattern of 30A-GAL4 driver; b: expression pattern of 71B-GAL4 driver; c: 
expression pattern of 32B-GAL4 driver; d: expression pattern of 69B-GAL4 driver; e: 
expression pattern of T80-GAL4 driver; f: expression pattern of TubP-GAL4 driver. Each 
set of figures contains three sections (from left to right): fluorescent light only with constant 
settings; white light only; merge of the first two sections. 
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As recorded in Flybase, expression of the 30A-GAL4 driver in leg imaginal disc is focused 

in the dorsal sector [124], however, as shown in Figure 14a, 30A-GAL4 is also expressed 

in distal regions. The expression of 30A-GAL4 in the wing disc and eye antennal discs 

are consistent with data reported in Flybase [122]. In the haltere disc expression of 30A-

GAL4 is primarily in the hinge region. 

 

The expression pattern of the 71B-GAL4 driver is consistent with the description in 

Flybase (Figure 14b) [122, 125]. In leg imaginal discs this driver is expressed in two dorsal 

spots and also in the stalk. In wing imaginal discs expression is observed in part of the 

dorsal and ventral posterior wing pouch and a similar pattern is observed in haltere discs. 

Expression in eye antennal imaginal discs is limited except to the stalk region.  

 

Expression of the 32B-GAL4 driver in leg and eye-antennal imaginal disc is weak (Figure 

14c). In wing discs, it expresses throughout wing blade region with a similar pattern in 

haltere discs, which is consistent with data from Flybase [122].  

 

In contrast to the 32B driver, expression of 69B-GAL4 in imaginal discs of late 3rd instar 

larvae is much stronger (Figure 14d).  69B-GAL4 expression is observed in most parts of 

leg, wing, eye antennal and haltere discs. This expression pattern is similar to T80-GAL4 

and the TubP-GAL4 control driver (Figures 14e, f). 
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In summary, the imaginal discs drivers tested show different expression patterns and 

different degrees of expression making them good candidates to test the hypothesis that 

weak drivers could be used to express toxic UAS constructs. I next asked if the drivers 

with weaker expression could be used to circumvent early lethality of stronger drivers 

expressing Rho1 pathway and EGFR UAS constructs.  

 

2. Use of Weak Imaginal Disc GAL4 Drivers to Express Toxic UAS Responders 

Results in Viable Adult Offspring  

 

I assayed the ability of each driver (30A, 71B, 32B, 69B, T80 and TubP) to permit 

development to the late larval stage and beyond in the presence of potentially toxic UAS 

responder constructs. The 11 UAS constructs tested either reduced expression of Rho1 

signaling pathway components and EGFR by RNAi or overexpressed these genes (Table 

2).  Where viable adults were observed, leg, wing and eye phenotypes were documented. 

Also, in each cross the TubP driver was tested as a control for strong and ubiquitous 

expression (Table 2).  

 

The penetrance and severity of adult leg, wing and eye phenotypes is consistent with the 

expression pattern shown in Figure 14. For example, the overall expression level of the 

30A driver in wing imaginal discs is lower than 71B as shown in Figure 14a and 14b. At 

the same time, whenever there was detectable adult wing phenotype, in most cases the 

71B driver resulted in higher percentage and/or more malformed phenotypes than 30A 



  

58 

 

driver (Table 2).  In contrast, the severity of the malformed leg phenotype was very similar 

in most cases for the 71B and 30A drivers which was consistent with their similar strength 

of expression in leg imaginal discs as shown in Figures 14a and 14b. 
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Table 2 Cross result and phenotypes in leg, wing and eye for all combinations of six GAL4 drivers and eleven UAS 
responders.  

RNAi 
Responder 

Driver 
Phenotype 

Note 
Mlf-legs Wing Eye 

UAS-Rho1 
N19 

30A-GAL4 Pupae lethal  
71B-GAL4 Pupae lethal  
32B-GAL4 Embryonic lethal: food was untouched with dead eggs on top  
69B-GAL4 Embryonic lethal: food was untouched with dead eggs on top  
T80-GAL4 Larval lethal: 79.9% larvae hatched from eggs (565/707)  

TubP-GAL4 Embryonic lethal：0% larvae hatched from eggs (0/337)  

UAS-
Rho1Sph1.21 
(3rd 
Chromosome) 

 

30A-GAL4 

F 18.9% 
(17/90) 

F 12.9% thicker ACV (9/70), 1.4% extra vein 
material (1/70) 

F 0% 
(0/90) 

 

M 19.0% 
(8/42) 

M 17.1% thicker ACV (12/70) M 0% 
(0/42) 

 

71B-GAL4 

F 6.3% 
(4/63) 

F 16.7% thicker ACV (13/78) F 0% 
(0/63) 

 

M 2.8% 
(2/71) 

M 25.7% thicker ACV (18/70) M 0% 
(0/71) 

 

32B-GAL4 
F 0% 
(0/3) 

F 100% crumpled wings (6/6) N/A Reduced 
viability 

M lethal 

69B-GAL4 

F 78.4% 
(76/97) 

F 23.6% crumpled wings (26/110), 42.7% partial 
PCV (47/110), 0.9% partial ACV (1/110) 

100% 
rough eye 
(48/48) Reduced 

viability M 97.3% 
(36/37) 

M 32.9% crumpled wings (23/70), 30% partial ACV 
(21/70), 12.9% partial PCV (9/70) 

100% 
rough eye 
(26/26) 

T80-GAL4 Pupae lethal  

TubP-GAL4 Larval lethal：84.5% larvae hatched from eggs （142/168)  
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RNAi 
Responder 

Driver 
Phenotype 

Note 
Mlf-legs Wing Eye 

UAS-Rho1 
RNAi 

(BL27727) 

30A-GAL4 

F 0% 
(0/4) 

F 42.9% crumpled wings with unscorable pattern 
(3/7), 42.9% unflatten wings with normal pattern 
(3/7) 

F 0% (0/4) 

Reduced 
viability M 50% 

(3/6) 
M 66.7% crumpled wings with unscorable pattern 
(8/12), 16.7% unflatten wings with normal pattern 
(2/12) 

M 0% 
(0/6) 

71B-GAL4 Pupae lethal  
32B-GAL4 Larval lethal  
69B-GAL4 Larval lethal  
T80-GAL4 Pupae lethal  

TubP-GAL4 Larval lethal：94.4% larvae hatched from eggs 168/178)  

UAS-Sb 6.1.4-

13A(2) 

30A-GAL4 

F 100% 
(66/66) 

F 16% thicker ACV (16/100) N/A  

M 96.1% 
(49/51) 

M 5.6% crumpled wings (3/54) N/A  

71B-GAL4 

F 95.1% 
(77/81) 

F 32.7% crumpled wings (32/98) N/A  

M 98.1% 
(106/108) 

M 43.6% crumpled wings (34/78) N/A  

32B-GAL4 Pupae lethal (Only 1 adult eclosed with crumpled wings and mlf-legs)  

69B-GAL4 

F 100% 
(11/11) 

F 40% crumpled wings (8/20) F 0% 
(0/11) 

Reduced 
viability 

M 100% 
(10/10) 

M 31.6% crumpled wings (6/19) M 0% 
(0/10) 

T80-GAL4 Larval lethal：93.0% larvae hatched from eggs （304/327)  

TubP-GAL4 Embryonic lethal  

UAS-Sb RNAi 30A-GAL4 
F 0% 
(0/39) 

F 7.4% crumpled wings (5/68) F 0% 
(0/39) 
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RNAi 
Responder 

Driver 
Phenotype 

Note 
Mlf-legs Wing Eye 

UAS-Sb RNAi 

30A-GAL4 
M 0% 
(0/19) 

M 0% crumpled wings (0/36) M 0% 
(0/19) 

 

71B-GAL4 

F 0% 
(0/46) 

F 1.2% partial L4 (1/84), 1.2% crumpled wings 
(1/84) 

F 0% 
(0/46) 

 

M 0% 
(0/40) 

M 2.9% crumpled wings (2/70) M 0% 
(0/40) 

 

32B-GAL4 

F 58.7% 
(27/46) 

F 65.8% crumpled wings (50/76) F 0% 
(0/46) 

 

M 37.1% 
(13/35) 

M 75.8% crumpled wings (47/62) M 0% 
(0/35) 

 

69B-GAL4 

F 100% 
(43/43) 

F 100% crumpled wings (75/75) F 0% 
(0/43) 

 

M 96.4% 
(27/28) 

M 100% crumpled wings (52/52) M 0% 
(0/28) 

 

T80-GAL4 
F: pupae lethal Reduced 

viability M 100% 
(4/4) 

M 100% crumpled wings (6/6) N/A 

TubP-GAL4 Pupae lethal  

UAS-EGFR1 
 

30A-GAL4 

F 27.3% 
(3/11) 

F 100% crumpled wings with normal vein pattern 
(22/22) 

F 0% 
(0/11) 

Reduced 
viability 

M 0% 
(0/1) 

M N/A M 0% 
(0/1) 

71B-GAL4 

F 0% 
(0/14) 

F 7.1% crumpled wings (2/28), 78.6% extra vein 
material (22/28), 57.1% partial AVC (16/28) 

F 0% 
(0/14) Reduced 

viability M 0% 
(0/3) 

M 100% extra vein material (6/6), 50% partial AVC 
(3/6) 

M 0% 
(0/3) 

32B-GAL4 
Pupae lethal small-

sized 
pupa 
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RNAi 
Responder 

Driver 
Phenotype 

Note 
Mlf-legs Wing Eye 

UAS-EGFR1 

69B-GAL4 Pupae lethal  
T80-GAL4 Pupae lethal: 65.3% larvae formed pupae (130/199)  

TubP-GAL4 Larval lethal：73.7% larvae hatched from eggs (160/217)   

UAS-EGFR2 
 

30A-GAL4 
 

F 0% 
(0/37) 

F 100% crumpled wings with normal vein pattern 
(74/74) 

F 0% 
(0/37) 

Reduced 
viability 

M 0% 
(0/32) 

M 100% crumpled wings with normal vein pattern 
(60/60) 

M 0% 
(0/32) 

71B-GAL4 
 

F 4.7% 
(4/85) 

F 17.7% crumpled wings (29/164), 92.1% extra vein 
material (151/164), 7.9% tumor-like wing (bubble in 
wing) (13/164), 1.8% partial AVC (3/164) 

F 1.2% 
heart-
shape eye 
(1/85) 

Reduced 
viability, 
small-
sized 
pupa M 0% 

(0/96) 
M 12.1% crumpled wings (23/190), 93.7% extra 
vein material (178/190), 2.1% tumor-like wing 
(bubble in wing) (4/190), 3.7% partial AVC (7/190) 

M 0% 
(0/96) 

32B-GAL4 Pupae lethal small-
sized 
pupa 

69B-GAL4 Pupae lethal small-
sized 
pupa 

T80-GAL4 Larval lethal：96.8% larvae hatched from eggs (454/469)  

TubP-GAL4 Larval lethal：79.9% larvae hatched from eggs (183/229)  

UAS-EGFR 
RNAi 

30A-GAL4 

F 0% 
(0/53) 

F 0.9% missing ACV (1/108), 8.3% crumpled wings 
(9/108) 

F 0% 
(0/53) 

 

M 0% 
(0/38) 

M 4.5% crumpled wings (3/66) M 0% 
(0/38) 
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RNAi 
Responder 

Driver 
Phenotype 

Note 
Mlf-legs Wing Eye 

UAS-EGFR 
RNAi 

71B-GAL4 

F 0% 
(0/33) 

F 7.6% crumpled wings (5/66), 3.0% missing PCV 
(2/66), 92.4% loss/partial L3, L4 and ACV (61/66), 
4.5% partial L2 (3/66), 18.2% partial L5 (12/66), 
12.1% extra vein material male (8/66) 

F 97% 
mild rough 
eye 
(32/33) Reduced 

viability M 0% 
(0/34) 

M 13.3% crumpled wings (8/60), 3.3% missing PCV 
(2/60), 88.3% loss/partial L3, L4 and ACV (53/60), 
45% partial L2 (27/60), 40% partial L5 (24/60), 
33.3% extra vein material male (20/60) 

M 64.7% 
mild rough 
eye 
(22/34) 

32B-GAL4 Pupae lethal  
69B-GAL4 Pupae lethal  
T80-GAL4 Pupae lethal  

TubP-GAL4 Larval lethal：48.1% larvae hatched from eggs （51/106)  

UAS-
RhoGEF2 

30A-GAL4 

F 0% 
(0/105) 

F 0.5% crumpled wings (1/205) F 0% 
(0/105) 

 

M 0% 
(0/88) 

M 4.6% crumpled wings (8/174) M 0% 
(0/88) 

 

71B-GAL4 

F 0% 
(0/74) 

F 0.7% extra vein (1/146), 3.4% crumpled wings 
(5/146) 

F 0% 
(0/74) 

Reduced 
viability 

M 0% 
(0/61) 

M 10% crumpled wings (12/120) M 0% 
(0/61) 

32B-GAL4 

F 0% 
(0/54) 

F 22.6% crumpled wings (24/106) F 0% 
(0/54) 

Reduced 
viability, 
growth 
delay 

M 0% 
(0/29) 

M 20.7% crumpled wings (12/58) M 0% 
(0/29) 

69B-GAL4 

F 0% 
(0/70) 

F 4.3% crumpled wings (6/140), 20.7% partial PCV 
(29/140), 2.1% extra vein (3/140), 2.9% curly wings 
(4/140) 

F 0% 
(0/70) 

Reduced 
viability, 
growth 
delay 

M 0% 
(0/46) 

M 6.7% crumpled wings (6/90), 2.2% partial PCV 
(2/90) 

M 0% 
(0/46) 
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RNAi 
Responder 

Driver 
Phenotype 

Note 
Mlf-legs Wing Eye 

UAS-
RhoGEF2 

T80-GAL4 

F 0% 
(0/10) 

F None (0/20) F 0% 
(0/10) 

Reduced 
viability 

M 0% 
(0/8) 

M None (0/16) M 0% 
(0/8) 

TubP-GAL4 Embryonic lethal：9.9% larvae hatched from eggs （14/142)  

RhoGEF2 
RNAi 

30A-GAL4 

F 0% 
(0/63) 

F 4.9% crumpled wings (4/82) F 0% 
(0/63) 

 

M 3% 
(2/67) 

M 7% crumpled wings (9/128) M: 25% 
mild rough 
eye 
(16/64) 

 

71B-GAL4 

F 0% 
(0/124) 

F 4.9% extra vein (10/203) F 0% 
(0/124) 

 

M 0% 
(0/95) 

M 7.6% crumpled wings (12/158), 2.5% extra vein 
(4/158) 

M 0% 
(0/95) 

 

32B-GAL4 Larval lethal (Lots of dead larvae in the food, 1 pupa formed)  
69B-GAL4 Larval lethal (Lots of dead larvae in the food, 1 pupa formed)  

T80-GAL4 

F 80% 
(4/5) 

F 100% crumpled wings (8/8) F 0% (0/5) Reduced 
viability 

M 100% 
(2/2) 

M 75% crumpled wings (3/4), 25% thicker ACV 
(1/4) 

M 0% 
(0/2) 

TubP-GAL4 Larval lethal：86.1% larvae hatched from eggs (149/173)  

UAS-RhoGAP 
p190 

30A-GAL4 

F 0% 
(0/70) 

None (0/140) F 0% 
(0/70) 

 

M 0% 
(0/63) 

None (0/126) M 0% 
(0/63) 

 

71B-GAL4 
F 1.8% 
(1/57) 

F 73.0% extra wing vein material (84/115) F 0% 
(0/57) 
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RNAi 
Responder 

Driver 
Phenotype 

Note 
Mlf-legs Wing Eye 

UAS-RhoGAP 
p190 

71B-GAL4 
M 8.0% 
(4/50) 

M 85.0% extra wing vein material (85/100) M 0% 
(0/50) 

 

32B-GAL4 

F 0% 
(0/52) 

F 88.2% extra wing vein material (90/102) F 0% 
(0/52) 

 

M 0% 
(0/41) 

M 84.0% extra wing vein material (68/81) M 0% 
(0/41) 

 

69B-GAL4 

F 0% 
(0/47) 

F 100% extra wing vein material (94/94) F 0% 
(0/47) 

 

M 3.1% 
(1/32) 

M 100% extra wing vein material (62/62) M 0% 
(0/32) 

 

T80-GAL4 
F: 50% 
(3/6) 

F 33.3% crumpled wing (4/12), 58.3% extra wing 
vein material (7/12) 

F: 0% 
(0/6) 

Reduced 
viability 

M pupae lethal 
TubP-GAL4 Pupae lethal: 18.5% larvae formed pupae (37/200)  

F: female; M: male; N/A = not available; Mlf-legs: malformed legs.
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I also demonstrated that weak drivers are useful to express toxic UAS constructs at later 

times in development. For example, expression of a dominant negative Rho1N19 

construct is embryonic lethal in combination with the 69B or T80 drivers, but in the 

presence of the 30A and 71B drivers, animals survive until the pupal stage permitting 

studies of the effects of impaired Rho1 signaling during imaginal disc morphogenesis 

(Table 2). Also, UAS constructs like UAS-Rho1, UAS-Rho1 RNAi, UAS-RhoGEF2 RNAi, 

UAS-EGFR1 and UAS-EGFR2 were lethal when crossed to strong drivers, however, 

when combined with the 30A and 71B drivers they were viable and resulted in a high 

frequency of leg malformation and wing phenotypes (Table 2). Thus, the 30A and 71B 

drivers are useful for expression of toxic UAS constructs. 

 

Based on the data in Table 2 the relative strength of expression of each driver was ranked 

(Figure 15). The 32B, 69B and T80 drivers fell into one group with the strongest relative 

strength of expression and in general these commonly used drivers are not useful to 

express toxic UAS constructs. The strength of the 32B, 69B and T80 drivers varied with 

UAS responder tested. For example, following expression of a dominant negative 

Rho1N19 construct or Rho1 RNAi, the lethal stage is earlier when in combination with the 

69B or 32B drivers than with the T80 driver (Table 2). However, the T80 driver was a 

stronger driver than 69B or 32B when expressing UAS-Rho1, UAS-Sb, UAS-Sb RNAi and 

UAS-EGFR2 (Table 2). Meanwhile, these drivers had similar outcomes when expressing 

UAS-EGFR1 and UAS-EGFR RNAi (Table 2).  
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3. Data Analysis 

 

The penetrance and severity of leg, wing and eye phenotypes was used to rank GAL4 

driver expression strength for all combinations of drivers and responders. Phenotypes 

were scored from 0 to 40. While treating the rates as the ordinal data, the non-parametric 

Friedman’s test was implemented to compare the strength of drivers. The results 

indicated four distinct groups from weakest to strongest: 30A-GAL4<71B-GAL4<32B-

GAL4, 69B-GAL4, T80-GAL4< TubP-GAL4 (Figure 15). These rankings are consistent 

with the driver expression patterns showing in Figure 14. A similar ranking was obtained 

when using Tukey’s range test following one-way ANOVA if the rates were treated as the 

numerical data (data not shown). 
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Figure 15  Friedman’s test to rank the strength of expression of GAL4 drivers. P values 
were shown between drivers and expression strength of two GAL4 drivers is significantly 
different if p< 0.05.   

 

Methods 

 

1. Fly Stocks 

 

All the fly stocks used in the study are listed in Table 3. If the stock was homozygous 

viable, homozygotes were used to set up crosses.  
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Table 3 Stocks used in Chapter 3. 

Stock 
Chromosome 

location 
Balancer Source Note 

30A-GAL4 2 CR2 Lab stock Homozygous 

viable 

71B-GAL4 3 N/A BL1747  

32B-GAL4 3 N/A BL1783 TM3 floating 

69B-GAL4 3 N/A Lab stock TM6B floating 

T80-GAL4 2 CR2 or  

Cyo, actGFP 

Lab stock  

TubP-GAL4 3 TM3 or  

TM6B, dfd-EYFP 

BL5138  

UAS-Rho1 N19 3 N/A BL7328  

UAS-Rho1Sph1.21 3 N/A Lab stock  

UAS-Rho1 RNAi 3 N/A BL27727  

UAS-Sb 6.1.4-13A(2) 2 CR2 Lab stock Homozygous 

viable 

UAS-Sb RNAi 3 TM6B From V1613  

UAS-EGFR1 3 N/A BL9532  

UAS-EGFR2 3 N/A BL9535  

UAS-EGFR RNAi 3 N/A BL36770  

UAS-RhoGEF2 2 N/A BL9387  

UAS-RhoGEF2 

RNAi 

3 N/A BL34643  

UAS-RhoGAP 

p190 

2 Cyo or  

Cyo, actGFP 

BL6684 Cyo floating 

UAS-mCD8:GFP 2 N/A BL5137 Cyo floating 

N/A= not available. 
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2. GAL4 Driver Expression Pattern 

 

All of the GAL4 drivers were crossed to UAS-mCD8-GFP [123] and late third instar larvae 

were harvested for dissection. 20 virgin females of the UAS-mCD8-GFP strain were 

crossed to 5 males of each GAL4 driver in bottles. Crosses were turned over onto fresh 

media after 2 days. Adults were cleared after 2 days to avoid over-crowding in the culture. 

The larvae dissected in the experiments were staged to within 7 h of pupariation but have 

not been exposed to the pulse of 20-hydroxyecdysone that triggers imaginal disc 

morphogenesis. Bromophenol blue dye (0.1%) was added to the media which allowed for 

the selection of late third instar larvae based on the light blue color of the gut [120]. The 

gut of younger animals appeared purple and older animals appeared pale blue or white 

in color. GFP expressing larvae were selected by fluorescence microscopy. Leg, wing, 

eye antennal disc and haltere discs were dissected from larvae in Ringer’s solution 

(130mM NaCl, 5mM KCl, 1.5mM CaCl2 ∙2H2O, 0.1% BSA). Freshly dissected imaginal 

discs were analyzed and pictured live without prior fixation using a Leica MZ16FA 

fluorescent microscope equipped with a Diagnostic Instruments RTKE spot 7.2 color 

mosaic camera.  

 

3. Fly Crosses 

 

All crosses were performed at 25⁰C. Most of the crosses were set up using female UAS 

responder and GAL4 driver males except for UAS-Sb and experiments to determine the 

lethal phase. Progeny from each cross were scored using a light microscope for leg, wing 
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and eye phonotypes. Initially, crosses were set up in vials with 10 females and 5 males. 

Parental flies were turned over once after 5 days, and flies in vials were cleared after 5 

days. F1 generations were scored for leg, wing and eye phonotypes until 18 days after 

the crosses were set up. All non-homozygous responders/ GAL4 drivers were rebalanced 

over florescent balancers (Cyo, actGFP or TM6B, dfd-EYFP). Crosses were set up with 

100-150 females per cages (GAL4 driver) and 50 males (UAS responder). The media 

was changed every 22 hours.  Prior to embryo collection the media was changed every 

two hours for three times. Embryo collections were incubated at 25⁰C and fluorescent 

eggs were removed from the plates after 22 hours. The number of hatched and un-

hatched eggs was then scored for 46 hours. For experiments to determine pupal lethality 

newly hatched larvae were transferred to vials after counting (50 larvae per vial). The vials 

were then scored for pupal formation for 18 days. In addition, test crosses were set up 

(e.g. GAL4 drivers X UAS-Rho1 N19) to confirm that the drivers were behaving as 

expected. 

 

4. Data Analysis 

 

The penetrance and severity of leg, wing and eye phenotypes was used to rank GAL4 

expression strength for all combinations of drivers and responders. For non-parametric 

analysis, scores for each driver were treated as ordinal scale (score from 0-40 as 

penetrance and severity of phenotypes increases). Embryonic lethality was scored as 40, 

larval lethality as 35, pupal lethality as 30. Reduced adult viability was scored from 15 to 
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25 (n >30 as 15, 30≥n>10 as 20, n≤10 as 25) plus severity of leg, wing and eye 

phenotypes with a full score of 5 (81-100% as 5/3 each, 61-80% as 4/3 each, 41-60% as 

3/3 each, 21-40% as 2/3 each, 1-20% as 1/3 each and 0% as 0 each). Crosses showing 

leg, wing and eye phenotypes with no effect on viability were scored with full score 15 

(81-100% as 5 each, 61-80% as 4 each, 41-60% as 3 each, 21-40% as 2 each, 1-20% 

as 1 each and 0% as 0 each). The resulting scores were ranked using Friedman's non-

parametric test. 
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CHAPTER FOUR: HEPARAN SULFATE PROTEOGLYCANS HAVE A 
TISSUE-SPECIFIC ROLE IN POLYAMINE TRANSPORT IN DROSOPHILA 

 
Abstract 

 

Polyamine transport is a basic biological process found in almost all living organisms. 

Polyamines have been linked to many human diseases, like cancer, Africa sleeping 

disease and malaria. Intracellular polyamine content is tightly regulated by polyamine 

biosynthesis, catabolism and transport. The polyamine biosynthesis pathway has been 

well studied in both prokaryotes and eukaryotes. However, the mechanism of polyamine 

transport in multicellular organisms is still largely unknown after decades of studies. 

Although a few components of the mammalian transporter have been identified, it is 

currently unclear how many different polyamine transporters are involved, or whether the 

known transporter components belong to one or more transport systems. Glypican-1 was 

identified as having a role in polyamine transport in Chinese Hamster Ovary (CHO) cells. 

In this chapter, I demonstrate that Glypican-1 is required for polyamine transport in 

Drosophila imaginal discs but is apparently not required for transport across the gut. Two 

additional proteoglycan core proteins, Perlecan and Syndecan, and specific enzymes of 

the heparan sulfate biosynthesis pathway were tested but their involvement in polyamine 

transport could not be confirmed. The genes, nitric oxide synthase (Nos), scaffold 

attachment factor B (SafB) and huntingtin interacting protein 1 (Hip1) were tested in whole 

animals and do not appear to have a role in polyamine transport in Drosophila.  



  

74 

 

Introduction 

 

Glypican-1 is a member of the core proteins constituting a family of glycosylphosphatidyl-

inositol-anchored cell surface heparan sulfate proteoglycans (HSPG) [66]. In Chinese 

Hamster Ovary (CHO) cells, polyamines bind with high affinity to heparan sulfate (HS) 

glycosaminoglycan side-chains [67]. Treatment of CHO cells with an anti-HS antibody 

decreases polyamine uptake and attenuates polyamine-dependent cell proliferation [68]. 

In addition, recycled Glypican-1 is co-localized with spermine, and reduction of Glypican-

1 levels inhibits spermine uptake and intracellular delivery of spermine [62]. Collectively, 

these data indicate that polyamines bind to heparan sulfate (HS) glycosaminoglycan side-

chains and are then co-transported with Glypican-1 into mammalian cells. However, it is 

unknown if Glypican is the only proteoglycan core protein involved in polyamine transport 

or if any specific structure of heparan sulfate side chain is necessary for polyamine 

binding. In this study, I tested three proteoglycan core proteins, glypican, perlecan and 

syndecan for roles in polyamine transport in Drosophila. Heparan sulfate side chain 

biosynthetic enzymes were also tested. 

 

Our laboratory has shown that a Drosophila P5B-Type ATPase is required for polyamine 

transport (Barnett, Brown and von Kalm unpublished data). Based a high throughput 

screen for protein-protein interactions I identified two proteins, huntingtin interacting 

protein 1 (Hip1) and scaffold attachment factor B (SafB), that exhibited high confidence 

physical interactions with the Drosophila P5B-Type ATPase [126]. Hip1 is a clathrin coat 
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binding protein active in endocytosis, the process through which polyamines enter the 

cell [86, 127, 128]. Hip1 is overexpressed in a variety of malignancies and lymphomas 

and is critical for cell survival [129-131]. Interestingly, Hip1 is also a membrane associated 

protein in sperm and is critical for spermatogenesis, a process involving spermine [127, 

132]. SafB is a scaffold protein and interacts physically with a serine/arginine protein 

kinase, which is an important component of polyamine transport in yeast [133, 134]. In 

addition, SafB was recently reported to be involved in to breast cancer [135]. Finally, I 

studied Nitric oxide synthase (Nos) which is required for release of polyamines from 

HSPG binding in T24 cells and HCT116 colon cancer cells [62]. 

 

Results and Discussion 

 

Drosophila has three proteoglycan core proteins: Glypican, Perlecan and Syndecan. In 

Drosophila there are two Glypican genes, dally and dally-like, and one gene for Perlecan 

and Syndecan respectively. At the Bloomington Stock Center there are 3 stocks targeting 

3 unique sequences of the gene dally for RNAi, 4 stocks targeting 3 different sequences 

of the gene dally-like for RNAi, 3 stocks targeting 3 unique sequences of the gene 

Perlecan for RNAi, and 1 RNAi stock for Syndecan. 
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1. Results of Crossing Six GAL4 Drivers with or Without Dicer Expression to RNAi 

Lines of Proteoglycan Core Proteins 

 

To test the involvement of proteoglycan core proteins in polyamine transport using 

imaginal disc culture, RNAi against proteoglycan core proteins was used. RNAi 

expression was controlled by crossing these UAS-RNAi lines to different GAL4 drivers. 

In order to get viable imaginal discs to test in culture, the viability of flies following RNAi 

expression was verified (Table 4). In Table 4, six GAL4 drivers were crossed to 11 lines 

expressing RNAi against proteoglycan core proteins. Dicer is a protein involved in RNAi 

processing, which enhances the RNAi effect in Drosophila [136]. Therefore, five GAL4 

drivers with added Dicer expression were also tested. Introduction of UAS-Dicer into flies 

containing the TubP-GAL4 driver caused lethality so this driver-UAS-Dicer combination 

was not used.  
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Table 4 Results of six GAL4 drivers with or without Dicer expression crossing to RNAi lines of proteoglycan core proteins 

at 25°C. 

GAL4 

driver 

Dally RNAi lines Dally-like RNAi lines Perlecan RNAi lines 
Syndecan 

RNAi line 

V1413

6 

BL2874

7 

BL3395

2 

V1029

9 

V1029

8 

BL3408

9 

BL3409

1 
V24549 

BL2944

0 

BL226

42 
V13322 

- 

D

cr 

 

3

0

A 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:11 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 7 d 

E:10 d 

A: viable 

P: 7 d 

E:12 d 

A: viable 

P: 6 d 

E:10 d 

A: viable 

P: 6 d 

E:10 d 

A: viable 

N/A 

P: 7 d 

E:11 d 

A: viable 

7

1

B 

P:7 d 

E:11 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:11 d 

A: 

viable 

P: 6 d 

E:11 d 

A: 

viable 

P: 6 d 

E:11 d 

A: 

viable 

P: 6 d 

E:10 d 

A: viable 

P: 5 d 

E:9 d 

A: viable 

P: 6 d 

E:10 d 

A: viable 

P: 6 d 

E:11 d 

A: viable 

N/A 

P: 7 d 

E:11 d 

A: viable 

3

2

B 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 7 d 

E:11 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 7 d 

E:11 d 

A: viable 

P: 7 d 

E:11 d 

A: viable 

P: 6 d 

E:10 d 

A: viable 

P: 6 d 

E:10 d 

A: viable 

N/A 

P: 7 d 

E:11 d 

A: viable 
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GAL4 

driver 

Dally RNAi lines Dally-like RNAi lines Perlecan RNAi lines 
Syndecan 

RNAi line 

V1413

6 

BL2874

7 

BL3395

2 

V1029

9 

V1029

8 

BL3408

9 

BL3409

1 
V24549 

BL2944

0 

BL226

42 
V13322 

- 

D

cr 

 

6

9

B 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:11 d 

A: 

viable 

P: 6 d 

E:10 d 

A: viable 

P: 7 d 

E:11 d 

A: viable 

P: 6 d 

E:10 d 

A: viable 

P: 7 d 

E:11 d 

A: viable 

N/A 

P: 7 d 

E:11 d 

A: viable 

T

8

0 

 

P: 7 d 

E:11 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 7 d 

E:12 d 

A: 

viable 

P: 7 d 

E:11 d 

A: 

viable 

P: 6 d 

E:11 d 

A: 

viable 

P: 7 d 

E:11 d 

A: viable 

P: 6 d 

E:11 d 

A: viable 

P: 7 d 

A: pupal 

lethal 

P: 7 d 

E:11 d 

A: viable 

N/A 

P: 7 d 

E:11 d 

A: viable 

T

u

b

P 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 6 d 

E:10 d 

A: 

viable 

P: 7 d 

E:10 d 

A: 

viable 

P: 7 d 

E:11 d 

A: 

viable 

P: 7 d 

E:11 d 

A: 

reduced 

viability 

P: 7 d 

E:11 d 

A: viable 

Larval or 

embryon

ic lethal 

No 

eclosion 

Larval 

or 

embry

onic 

lethal 

P: 8 d 

A: pupal 

lethal 
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GAL4 

driver 

Dally RNAi lines Dally-like RNAi lines Perlecan RNAi lines 
Syndecan 

RNAi line 

V1413

6 

BL2874

7 

BL3395

2 

V1029

9 

V1029

8 

BL3408

9 

BL3409

1 
V24549 

BL2944

0 

BL226

42 
V13322 

+ 

D

cr 

3

0

A 

 

P: 7 d 

E:11 d 

A: 

viable 

P: 7 d 

E:12 d 

A: 

viable 

P: 7 d 

E:11 d 

A: 

viable 

P: 7 d 

E:11 d 

A: 

viable 

P: 8 or 

9 d 

E:12 d 

A: 

viable 

P: 7 d 

E:12 d 

A: viable 

P: 7 d 

E:12 d 

A: viable 

P: 7 d 

E:11 d 

A: viable 

P: 7 d 

E:10 d 

A: viable 

P: 8 d 

E:12 d 

A: 

viable 

P: 7 d 

E:11 d 

A: viable 

7

1

B 

P: 7 d 

E:11 d 

A: 

viable 

P: 7 d 

E:13 d 

A: 

viable 

P: 9 d 

E:12 d 

A: 

viable 

P: 7 d 

E:12 d 

A: 

viable 

P: 7 d 

E:14 d 

A: 

viable 

P: 8 d 

E:12 d 

A: viable 

P: 8 d 

E:12 d 

A: viable 

P: 8 d 

E:14 d 

A: viable 

P: 8 d 

E:12 d 

A: viable 

P: 7 d 

E:12 d 

A: 

viable 

P: 9 d 

E:15 d 

A: 

reduced 

viability 

3

2

B 

P: 7 d 

E:11 d 

A: 

viable 

P: 7 d 

E:11 d 

A: 

viable 

P: 7 d 

E:11 d 

A: 

viable 

P: 7 d 

E:12 d 

A: 

viable 

P: 7 d 

E:11 d 

A: 

viable 

P: 7 d 

E:11 d 

A: viable 

P: 7 d 

E:12 d 

A: viable 

P: 7 d 

E:11 d 

A: 

reduced 

viability 

P: 7 d 

E:12 d 

A: viable 

P: 8 d 

E:12 d 

A: 

viable 

P: 7 d 

E:14 d 

A: 

reduced 

viability, 

malformed 

wings 
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GAL4 

driver 

 

Dally RNAi lines 

 

Dally-like RNAi lines 

 

Perlecan RNAi lines 

Syndecan 

RNAi line 

V1413

6 

BL2874

7 

BL3395

2 

V1029

9 

V1029

8 

BL3408

9 

BL3409

1 
V24549 

BL2944

0 

BL226

42 
V13322 

+ 

D

cr 

6

9

B 

P: 7 d 

E:12 d 

A: 

viable 

P: 7 d 

E:12 d 

A: 

viable 

P: 7 d 

E:12 d 

A: 

viable 

P: 7 d 

E:12 d 

A: 

viable 

P: 7 d 

E:13 d 

A: 

viable 

P: 7 d 

E:11 d 

A: viable 

P: 7 d 

E:12 d 

A: viable 

P: 7 d 

E:13 d 

A: viable 

P: 7 d 

E:11 d 

A: viable 

P: 8 d 

E:12 d 

A: 

viable 

P: 8 d 

E:17 d 

A: 

reduced 

viability, 

malformed 

wings 

T

8

0 

 

P: 7 d 

E:12 d 

A: 

viable 

P: 7 d 

E:11 d 

A: 

viable 

P: 7 d 

E:11 d 

A: 

viable 

P: 7 d 

E:12 d 

A: 

reduce

d 

viabilit

y 

P: 7 d 

E:11 d 

A: 

viable 

P: 7 d 

E:13 d 

A: viable 

P: 8 d 

E:12 d 

A: viable 

P: 7 d 

A: pupal 

lethal 

No 

eclosion 

P: 7 d 

A: 

pupal 

lethal 

Larval or 

embryonic 

lethal 

Dcr: UAS-Dicer-2D; P: pupa forming day from crosses set up; E: eclosion day from crosses set up; A: adult viability.  
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As show in Table 4, all RNAi lines were viable when crossed to 30A-GAL4 and 71B-GAL4, 

which is consistent with my findings in chapter 3 as these two weak drivers are useful to 

obtain viable animals when expressing of toxic constructs. Introduction of Dicer 

expression to 30A-GAL4 did not alter viability but did slow down development by 1 to 2 

days in some cases. Introduction of Dicer expression to 71B-GAL4 slowed down 

development but did not change viability except the Syndecan RNAi line. The 32B-GAL4 

and 69B-GAL4 drivers, which have stronger expression strength, were also tested. In the 

absence of Dicer expression, all RNAi lines were viable when crossed to the 32B-GAL4 

and 69B-GAL4 drivers. Introduction of Dicer slowed down development and in some 

cases resulted in reduced viability and malformation of adult wings. T80-GAL4 is a strong 

driver and is expressed ubiquitously in the Drosophila embryo and third instar larval 

stages [137]. Following crossing to T80-GAL4, all RNAi lines were viable without Dicer 

expression and introducing Dicer expression resulted in delay of development, viability 

reduction and in some cases death. Finally, TubP-GAL4 is a driver that expresses 

strongly and ubiquitously during all stages of development. TubP-GAL4 in the absence 

of Dicer expression resulted in reduced viability and death in many RNAi lines as shown 

in Table 4. 
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2. Crossing the Actin5-GAL4 Driver with Dicer Expression to RNAi Lines of 

Proteoglycan Core Proteins 

 

Our laboratory has developed a simple assay to identify genes involved in polyamine 

transport in vivo. Briefly intact animals or cultured imaginal discs are grown/incubated in 

the presence of DFMO to block polyamine biosynthesis and induce lethality. Exogenous 

polyamines are added to the culture medium and if the transport system is functional 

these polyamines will be taken up and animal/imaginal disc viability will be rescued. 

However, if RNAi against a particular gene inactivates the transport system, animal/disc 

viability will not be rescued in the presence of DFMO indicating that the gene is required 

for polyamine transport. In the experiments employing this assay I used an Actin5-GAL4 

driver (with Dicer expression) to drive RNAi expression. The results of RNAi against 

proteoglycan core proteins are shown in Table 5. For dally RNAi, flies of all 3 lines were 

viable. However, for dally-like RNAi expression, only 2 of the 4 RNAi lines were fully viable, 

1 line showed reduced viability and the other line was pupal lethal. For Perlecan, viabilities 

of all 3 RNAi lines were reduced. Syndecan RNAi resulted in larval or embryonic death at 

25°C. 
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Table 5 Results of Actin5- GAL4 driver with Dicer expression crossing to RNAi lines of proteoglycan core proteins at 25°C. 

P: pupa forming day from crosses set up; E: eclosion day from crosses set up; A: adult viability. 

 

  

GAL4 

driver 

Dally RNAi lines Dally-like RNAi lines Perlecan RNAi lines 
Syndecan 

RNAi line 

V1413

6 

BL287

47 

BL3395

2 

V1029

9 
V10298 

BL340

89 

BL340

91 
V24549 

BL2944

0 

BL2264

2 
V13322 

Actin5  

+ Dcr 

P: 8 d 

E:12 d 

A: 

viable 

P: 8 d 

E:12 d 

A: 

viable 

P: 8 d 

E:12 d 

A: 

viable 

P: 8 d 

A: 

pupal 

lethal 

P: 8 d 

E:12 d 

A: 

reduced 

viability 

P: 8 d 

E:12 d 

A: 

viable 

P: 8 d 

E:12 d 

A: 

viable 

P: 8 d 

E:13 d 

A: 

reduced 

viability 

P: 8 d 

E:14 d 

A: 

reduced 

viability 

P: 8 d 

E:12 d 

A: 

reduced 

viability 

Larval or 

embryonic 

lethal 
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3. Glypican-1 Is Required for Polyamine Transport in Imaginal Discs 

 

After determining the viability of proteoglycan core protein RNAi lines, I asked if these 

genes were required for polyamine transport in imaginal discs. I used two different assays 

to test for involvement in polyamine transport. The first approach involved treating RNAi 

expressing lines with a toxic polyamine analogue Ant44. Ant44 is taken up into imaginal 

discs via polyamine transport system [94]. I expected to see reduced sensitivity to Ant44 

in RNAi lines if the core protein was involved in polyamine transport. The second 

approach involved testing the ability of native polyamines to rescue DFMO treated 

imaginal discs. In this case I expect to see inhibition of rescue by the native polyamines 

in RNAi lines where the core protein is required for transport. 

 

3.1 Ant44 Effect on Glypican RNAi Lines 

 

Ant44 at 50µM was toxic to disc development in wild type animals (Oregon R), resulting 

in less than 2%-disc development (Figure 16). RNAi expression against the dally or dally-

like glypican genes of Drosophila reduced Ant44 toxicity and resulted in about 30% and 

20%-disc development respectively (Figure 16). Thus, dally and dally-like are likely to be 

involved in the import of Ant44 into imaginal discs. 

 



  

85 

 

 

Figure 16  Dally and Dally-like RNAi expressing larvae are less sensitive to Ant44 in 
imaginal disc culture. 

In this graph, 50µM Ant44 treated wild type (Oregon R) data is based on 2 replicates and 
50µM Ant44 treated Dally RNAi BL28747 data is based on results of 3 replicates. All other 
data was calculated from 1 replicate. TubP-GAL4 was used in these experiments to drive 
RNAi expression. 

 

3.2 Rescuing DFMO Inhibition by Native Polyamines in Dally RNAi Lines 

 

Two dally RNAi lines were tested for their ability to rescue DFMO inhibition when 

supplemented with native polyamines (Figures 17 and 18). In all the RNAi line 

experiments, the sibling lines from the same cross were used as control lines in order to 

get the closest matched genetic background. In Figure 17, one of the dally RNAi lines 
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(BL33952) was able to block DFMO rescue by exogenous putrescine, spermidine and 

spermine. The IC50 of DFMO inhibition to imaginal disc development was 4mM. Line 

BL33952 had similar sensitivity to DFMO as the control line at both 10mM and 4mM, 

indicating that the decreased rescue was not due to increased sensitivity to DFMO in the 

RNAi expressing line. 

 

 

Figure 17  Dally RNAi expression (BL33952) blocked DFMO inhibition rescued by native 
polyamines. 

All experiments were repeated at least 3 times separately except the 4mM DFMO data, 
which was the result of 1 replicate. The control line was the sibling class from the cross. 
T80-GAL4 with UAS-Dicer was used in these experiments to drive RNAi expression. 
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Another dally RNAi line (V14136) was able to block DFMO rescue by putrescine and 

spermine, but not spermidine at 300µM (Figure 18). Therefore, the concentration of 

spermidine was titrated to rescue DFMO inhibition in both the control line and the RNAi 

expressing line. Though only tested once, the control line and the RNAi line showed a big 

difference in DFMO rescue by spermidine at 100µM and 50µM.  

 

 

Figure 18  Dally RNAi expression (V14136) blocked DFMO inhibition rescued by native 
polyamines. 

The first 4 sets of data shown in the figure were repeated at least 3 times separately. The 
rest were results from 1 replicate. The control line was the sibling class from the cross. 
T80-GAL4 with UAS-Dicer was used in these experiments to drive RNAi expression. 
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3.3 Rescuing DFMO Inhibition by Putrescine in Dally-like RNAi Line (BL34091) 

 

Rescuing DFMO inhibition in the dally-like RNAi line was tested once using putrescine 

(Figure 19). Compared to the control line, the ability of putrescine to rescue DFMO 

inhibition was decreased in the dally-like RNAi expressing line indicating that dally-like is 

required for polyamine transport.  

 

 

Figure 19  Dally-like RNAi expression (BL34091) blocked DFMO inhibition rescued by 
putrescine. 

All data were results from 1 replicate. Control line was the sibling class from the cross. 
T80-GAL4 with UAS-Dicer was used in these experiments to drive RNAi expression. 
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culture. Thus, both glypican proteins are required for polyamine transport in imaginal 

discs. 

 

I did not use the imaginal disc assay for further experiments because it was very difficult 

to get enough material for dissection. Instead I performed the assay in a whole animal 

context which essentially assays for uptake through the gut. 

 

4. Glypican, Perlecan, Syndecan and Enzymes in the Heparan Sulfate Biosynthesis 

Pathway Are Not Required for Polyamine Transport in Intact Animals 

 

The whole animal assay described above has been successfully used to identify a 

component of the polyamine transport in Drosophila (Barnett, Brown and von Kalm 

unpublished data). In this study, the involvement of HSPG (including core proteins and 

biosynthetic enzymes of the heparan sulfate side chain) and some other genes (Nos, 

Hip1 and SafB) were tested for a role in polyamine transport by using RNAi, mutants or 

overexpression of candidate genes. A summary of genes tested is shown in Table 6.  

  

  



  

90 

 

Table 6 Summary of genes tested in whole animals for involvement in polyamine transport in Drosophila 

Name of Genes Stocks Results Note 

 

 

 

 

 

 

 

Heparan 

Sulfate 

Proteoglycan 

 

 

 

 

 

 

Core 

proteins 

Dally (Glypican) 3 RNAi lines No effect  

Dally-like (Glypican) 4 RNAi lines No effect 

2 stocks have reduced 

viability following 

RNAi 

Perlecan 2 RNAi lines No effect Reduced viability 

Syndecan 

1 RNAi line 

4 mutants 

1 overexpression line 

No effect 

Reduced viability 

(RNAi and 

overexpression) 

Dally/Dally-like double 

knockdown 
2 RNAi lines No effect Reduced viability 

Dally/Syndecan double 

knockdown 
1 RNAi line No effect 

Increased viability 

than Sdc RNAi alone 

at 18 °C 

 

 

Biosynthetic 

enzymes 

 

Sugarless 1 RNAi line No effect Reduced viability 

Slalom (PAPS) 2 RNAi lines No effect 
Both stocks have 

reduced viability 

Tout velu 1 RNAi line No effect Reduced viability 

Brother of Tout velu 1 RNAi line No effect Reduced viability 
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Name of Genes Stocks Results Note 

 

Heparan 

Sulfate 

Proteoglycan 

 

Biosynthetic 

enzymes 

Fringe Connection 

(GlcAT) 
2 RNAi lines No effect  

Sulfateless (NDST) 2 RNAi lines No effect Reduced viability 

Hsepi 1 mutant No effect  

Other genes 

Nitric Oxide Synthase 

(Nos) 

1 RNAi line 

1 mutant 
No effect Reduced viability 

Scaffold attachment 

factor B (SafB) 
1 mutant No effect  

Huntingtin interacting 

protein (Hip1) 

1 RNAi line 

1 mutant 
No effect  
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4.1 Testing Involvement of Heparan Sulfate Proteoglycans (HSPG) in Polyamine 

Transport Using Intact Animals  

 

Heparan sulfate proteoglycans (HSPG) are required for polyamine transport in vertebrate 

cells [62, 67]. One of the core proteins, Glypican-1 has been identified as a component in 

polyamine transport and is required for spermine uptake into mammalian cells. Moreover, 

the heparan sulfate (HS) glycosaminoglycan side-chains of HSPG are required for 

polyamine transport into CHO cells [67]. Polyamines bind to HS side-chains and are co-

transported with Glypican-1 into the cell following HS side-chain cleavage [62, 68]. 

Therefore, I asked if Glypican and HS side-chain biosynthetic enzymes are required for 

polyamine transport into the Drosophila gut. Also, I expanded this study by looking at the 

involvement of other core proteins (Perlecan and Syndecan) in polyamine transport.  

 

i. Testing Involvement of Core Proteins of HSPG in Polyamine Transport 

 

Three proteoglycan core proteins were studied for polyamine transport using the whole 

animal method. A summary is shown in Table 6 and details were shown in Appendix 

Figures 20-40.   

 

Dally: Three dally RNAi lines were tested (Appendix Figure 20-24). One of these RNAi 

lines was from the Vienna Stock Center and the other two were from the Transgenic RNAi 

Project. These RNAi lines target different sequences of the gene and had different genetic 
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backgrounds. When using the Actin5-GAL4 driver for RNAi expression, none of these 

stocks showed reduced viability (Table 5). However, none of them showed inhibition of 

polyamine rescue in the presence of DFMO, which indicated polyamine transport was 

functioning in these RNAi lines. Similar results were obtained using the T80-GAL4 and 

TubP-GAL4 as drivers for RNAi expression (data not shown).  

 

Since glypican 1 was expected to be involved in polyamine import, these results with 

RNAi against glypican 1, contradicted prior cell culture data and the results obtained with 

the imaginal disc assay. One possible explanation may be that in the whole animal 

method the primary affected tissue of the animals is the gut and dally is not required for 

polyamine transport in this specific tissue. Another explanation is the possible redundancy 

of the transport system in whole animals compared to cell culture or imaginal discs of 

Drosophila, which are isolated cells or tissues. 

 

Dally-like: Four dally-like RNAi lines were tested (Appendix Figures 25-29). Two of them 

were from the Vienna Stock Center targeting the same sequences of the gene and the 

other two were from the Transgenic RNAi Project targeting different sequences of the 

gene. When driven with Actin5-GAL4, the two lines from the Vienna Stock Center could 

not form viable adults (Table 5), which indicated RNAi expression was working properly. 

However, none of them showed the ability to inhibit polyamine rescue in the presence of 

DFMO, which indicated polyamine transport was functioning in these RNAi lines. Some 
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of these experiments were repeated using the T80-GAL4 and TubP-GAL4 drivers with 

similar results (data not shown). 

 

Perlecan: Two perlecan RNAi lines were tested (Appendix Figures 30-31). One of them 

was from the Vienna Stock Center and the other one was from the Transgenic RNAi 

Project. Each of them targeted different sequences of the gene. When driving with Actin5-

GAL4, neither line could form viable adults (Table 5), which indicated RNAi expression 

was working properly. However, neither of the lines showed the ability to block polyamine 

rescue in the presence of DFMO suggesting that perlecan is not involved in polyamine 

transport in the presence of DFMO. 

 

Syndecan: One RNAi line, one overexpression line and four mutants were tested for 

involvement of syndecan in polyamine transport in Drosophila (Appendix Figures 32-37). 

When driving with Actin5-GAL4, the RNAi line was larval lethal at 25⁰C (Table 5), 

therefore, this experiment was performed at 18⁰C to reduce GAL4 expression. The 

overexpression line driven by Actin5-GAL4 could not form viable adults. However, neither 

RNAi expression or the over-expression line had an ability to inhibit polyamine rescue in 

the presence of DFMO (Appendix Figures 32-33). Homozygous unviable mutants were 

tested as heterozygotes (Appendix Figures 34-37), however, none showed the ability to 

inhibit polyamine rescue in the presence of DFMO. 
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Double knockdown: In order to see if redundancy was the reason for the inability to block 

polyamine rescue in the presence of DFMO, double knockdown stocks of dally/dally-like 

and dally/syndecan were made and tested using the whole animal method (Appendix 

Figures 38-40).  However, none of these lines showed an ability to inhibit polyamine 

rescue in the presence of DFMO. 

 

In conclusion, we could not confirm the involvement of glypican (dally and dally-like), 

Perlecan or Syndecan in polyamine transport using the whole animal method. While 

redundancy of the polyamine transport system in the whole animal context provides one 

explanation, the double knockdown experiments above suggest otherwise. Another 

explanation of our failure to see the desired phenotype (inhibition of polyamine rescue in 

the presence of DFMO) is that the primary tissue affected in the whole animal method is 

the gut and the core proteoglycan proteins may not be required for polyamine transport 

in this specific tissue.  

 

ii. Testing Involvement of Biosynthetic Enzymes of HSPG in Polyamine 

Transport 

 

The biosynthetic enzymes required for constructing the heparan sulfate side chain were 

tested using RNAi lines as a way to assess the requirement of specific heparan structures 

in polyamine transport. The following enzymes were evaluated for their role in polyamine 

transport: Sugarless, Slalom, Tout velu (Ttv), Brother of Tout velu (Botv), Fringe 
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Connection, Sulfateless, Hsepi. None of the lines were able to form viable adults following 

RNAi expression (Appendix Figures 41-52). In addition, none of the RNAi experiments 

showed the ability to inhibit polyamine rescue in the presence of DFMO. 

 

In conclusion, we could not confirm the involvement of Heparan sulfate biosynthetic 

enzymes in polyamine transport.  

 

4.2 Involvement of Genes that Interact Physically with Polyamine Transporters Using 

Whole Animal Method 

 

For Nos, one RNAi line and one mutant were tested for inhibition of polyamine rescue in 

the presence of DFMO (Appendix Figures 53-54). For the RNAi line, no viable adults 

eclosed from the RNAi expressing class, which indicated the RNAi was functioning. The 

mutant was a transposon insertion in intron 5, therefore, it is not sure if gene function was 

disrupted in the mutant. Neither the RNAi line or mutant inhibited rescue by polyamines 

in the presence of DFMO.  

 

For Hip1, two RNAi lines and one mutant were tested for their ability to inhibit polyamine 

import in the presence of DFMO (Appendix Figures 55-57). The insertion site of the 

mutant tested in this studied was in the second to last exon. In both RNAi lines, no 

reduction of viability was observed when crossing to Actin5-GAL4 for RNAi expression. 
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However, these stocks could be rescued by supplementing polyamines in the presence 

of DFMO, which suggested that polyamine transport was functioning.  

 

For SafB there was only one mutant available to test (Appendix Figure 58). The insertion 

site of the mutant tested in this study was in the 5’ UTR. Similar as to what was found 

with Nos and Hip1, no block of rescue by polyamines in the presence of DFMO was 

observed.  

 

In conclusion, we could not confirm the involvement of Nos, Hip1 or SafB in polyamine 

transport in Drosophila using this whole animal method. 

 

Materials and Methods 

 
1. Stocks Information 

 

Table 7 and Table 8. 
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Table 7  Information of RNAi, mutant and overexpression lines used in experiments. 

Targeting Gene Stock 
Chromosome 

location 
Balancer Source Note 

Dally-like RNAi 

V10298 3 TM6B, Tb, Sb, 

EYFP 

Vienna These two stocks target the same 

sequence of the gene 

V10299 3 N/A Vienna 

BL34089 3 N/A Trip V20 

BL34091 3 N/A Trip V20 

Dally RNAi 

V14136 3 N/A Vienna  

BL33952 3 N/A Trip V20 

BL28747 3 N/A Trip V10 

Perlecan RNAi 

V24549 2 N/A Vienna  

BL29440 3 TM6B, Tb, Sb, 

EYFP 

Trip V10, w floating 

Syndecan RNAi V13322 3 N/A Vienna  

Syndecan 

overexpression 

BL8564 3 N/A Bloomington  

Syndecan 

mutants 

BL23972 2 N/A Bloomington Transposon was inserted in intron 1 

BL19695 2 Cyo Bloomington Testing heterozygous, transposon 

was inserted in the last intron 
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Targeting Gene Stock 
Chromosome 

location 
Balancer Source Note 

Syndecan 

mutants 

BL36954 2 SM6a Bloomington Testing heterozygous, transposon 

was inserted in intron 4 

BL37444 2 SM6a Bloomington Testing heterozygous, transposon 

was inserted in intron 4 

Sulfateless 

RNAi 

V5070 3 N/A Vienna  

BL34601 3 N/A Trip V20 

Tout velu RNAi V4871 3 N/A Vienna  

Brother of Tout 

velu RNAi 

V37185 2 N/A Vienna  

Fringe 

Connection 

RNAi 

V47542 2 Cyo, dfd-EYFP Vienna  

V47543 3 N/A Vienna  

Slalom RNAi 

V12148 3 N/A Vienna  

V12149 3 TM6B, Tb, Sb, 

EYFP 

Vienna  

Sugarless RNAi V29434 2 N/A Vienna  

Nitric Oxide 

Synthase RNAi 
BL28792 3 N/A Trip V10 
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Targeting Gene Stock 
Chromosome 

location 
Balancer Source Note 

Nitric Oxide 

Synthase 

mutant 

BL18555 2 N/A Bloomington Transposon was inserted in intron 5 

Hsepi mutant 
BL13498 2 N/A Bloomington Cyo, ry floating, transposon was 

inserted in exon 3, in the 5’ UTR 

Hip1 RNAi 
BL38377 2 N/A Trip V20, Sc, Cyo floating 

BL32504 3 N/A Trip V20 

Hip1 mutant 
BL42355 3 N/A Bloomington TM3, Sb1, Ser1 floating, transposon 

was inserted in the 2nd last exon 

SafB mutant 
BL32026 3 N/A Bloomington TM6C floating, transposon was 

inserted in exon 1, in 5’ UTR 

CG32000 

mutant 

BL23396 4 N/A Bloomington  

BL16262 4 N/A Bloomington  
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Table 8  GAL4 driver information 

GAL4 drivers 
Stock 

number 

Chromosome 

location 
Balancer Source Note 

Act5-GAL4 BL25708 2 Cyo, dfd-EYFP Trip 
Including UAS-Dcr2 on the 1st 

chromosome 

TubP-GAL4 BL5138 3 TM6B, Tb, Sb, EYFP Bloomington  

T80-GAL4 BL1878 2 Cyo, dfd-EYFP Bloomington 
With/ without UAS-Dcr2 on the 3rd 

chromosome 

30A-GAL4 BL1795 2 Cyo, dfd-EYFP Bloomington 
With/ without UAS-Dcr2 on the 3rd 

chromosome; homozygous viable 

71B-GAL4 BL1747 3 N/A Bloomington 
With/ without UAS-Dcr2 on the 2nd 

chromosome 

69B-GAL4 Lab stock 3 N/A Bloomington 
With/ without UAS-Dcr2 on the 2nd  

chromosome 

32B-GAL4 BL1782 3 N/A Bloomington 
With/ without UAS-Dcr2 on the 2nd  

chromosome 
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2. Crossing GAL4 Drivers with or Without Dicer Expression to RNAi Lines of 

Proteoglycan Core Proteins 

 

Crosses were set up using 5 males and 5 females in each vial. Vials were turned over 

into a second vial 4 days after setup. Flies in the second vial were cleared after 4 days. 

In all crosses, GAL4 drivers were virgin females except for one of the perlecan RNAi lines 

(BL22642). Crosses using this perlecan RNAi line (BL22642) were set up with virgin 

females of the RNAi line instead. GAL4 drivers used in all crosses were tested by crossing 

to UAS-RhoN19. No adult progeny survived in these test crosses, which indicated that 

the drivers were functioning properly. All the crosses were cultured at 25⁰C.  

 

3. Crossing the Actin5-GAL4 Driver with Dicer Expression to RNAi Lines of 

Proteoglycan Core Proteins 

 

Crosses were set up using 5 males and 5 females in each vial. Vials were turned over 

into a second vial 5 days after setup. Flies in the second vial were cleared after 5 days.  

In all crosses, virgin females were Actin5-GAL4 driver. The Actin5-GAL4 driver was tested 

by crossing to UAS-RhoN19. No adult progeny survived which indicated the driver was 

functioning properly. All the crosses were cultured at 25⁰C.  
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4. Larval Collections for Imaginal Disc Culture 

 

The larvae used in the experiments were within 7 h of pupariation but have not been 

exposed to the pulse of 20-hydroxyecdysone that triggers imaginal disc morphogenesis. 

Bromophenol blue dye (0.1%) was added to the fly food and allowed for the selection of 

the late third instar larvae based on the light blue color of the larvae’s gut [120]. The gut 

of younger animals appeared purple and older animals appeared pale blue or white in 

color. Imaginal discs dissected from larvae at this developmental stage are able to 

develop when exposed to 20-hydroxyecdysone in in vitro culture. For RNAi expression 

lines, crosses were set up in bottles using 20 female virgins and 5 males. RNAi expressing 

larvae were selected using a fluorescent microscope, where RNAi expressing lines were 

not fluorescent and the control sibling classes were fluorescent.  

 

5. Imaginal Disc Culture and Scoring 

 

Late 3rd instar larvae were selected for leg imaginal disc dissection via the blue food 

approach described above. Leg imaginal discs were dissected at room temperature in 

Ringer’s solution (130 mM NaCl, 5mM KCl, 15 mM CaCl2 ·2H2O) containing 0.1% BSA 

(w/v), which was added to the Ringer’s solution immediately prior to use. The dissection 

was finished in approximately one hour so that the dissected leg imaginal discs would not 

be exposed to the Ringer’s solution for too long, which may affect disc eversion. After 

dissection, discs were transferred to 12-well plastic culture plates containing Ringer’s 

solution (1 mL). Before the disc culture medium was added, dissected leg imaginal discs 
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were washed once with 1× minimal Robb’s medium. To begin cultures, a solution of 1 mL 

of 1× minimal Robb’s medium (final concentration) containing 20-hydroxyecdysone 

(1µg/mL) and the tested compound was added to each well. A control experiment without 

added any tested compound was run in parallel. Imaginal discs were incubated for 18 h 

at 25°C. After 18 h, the discs were scored as developed or non-developed. Fully 

developed discs (the leg is fully extended from the epithelium) and partially developed 

discs (the leg protrudes from the epithelium but is not fully extended) were scored as 

developed. Non-developed discs showed no sign of development. For each experiment, 

the percent development was determined by ([(number of developed discs)/(total number 

of discs)] × 100). 

 

6. Robb’s Minimal Medium 

 

2× Minimal Robb’s medium consisting of 80 mM KCl, 0.8 mM KH2PO4, 80 mM NaCl, 0.8 

mM NaH2PO4 ·7H2O, 2.4 mM MgSO4 ·7H2O, 2.4 mM MgCl2 ·6H2O, 2 mM CaCl2 ·2H2O, 

20 mM glucose, 8.0 mM L-glutamine, 0.32 mM glycine, 1.28 mM L-leucine, 0.64 mM L-

proline, 0.32 mM L-serine, and 1.28 mM L-valine, pH 7.2) was prepared using a standard 

protocol and stored at -20° C. Immediately prior to use, 20 μL of 10% BSA (w/v) was 

added to 1 mL of medium. 
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7. Whole Animal Experiments 

 

Crosses or mutants were set up in cages with about 200 virgin females and 50 males. 

Grape plates attaching to the cage were changed every 22 hours. Newly hatched larvae 

(less than 4 h after hatching) with the right genotype were picked and transferred to freshly 

made instant food (Jazz Mix, from Fisher Scientific) with or without treatment added. 

Newly hatched larva were picked and cultured in food with or without treatment. Then the 

survival rate was scored. In every experiment, eight different conditions were tested. Four 

controls were used: no DFMO and no polyamine supplemented in the food; putrescine 

only; spermidine only and spermine only. Four treatment conditions were used: DFMO 

only; DFMO plus putrescine; DFMO plus spermidine and DFMO plus spermine. A 

previous study showed that 5mM DFMO was sufficient to knockdown survival rate to less 

than 5% in wild type flies (Oregon R). Also, in wild type Oregon R flies, neither putrescine, 

spermidine nor spermine showed any toxicity up to 1 mM and at this concentration all 

three types of native polyamines could rescue adult survival to untreated levels in the 

presence of 5 mM DFMO (unpublished data). Dilution experiments showed that 0.4 mM 

putrescine/ 0.2 mM spermidine/ 0.2 mM spermine were the minimum concentrations 

needed to rescue 5mM DFMO to untreated levels in wild type flies. Therefore, 

experiments were performed using these minimum concentrations as mentioned in the 

figures. Instant food preparation was done in the standard way as described in the 

manufacturer’s instructions. Compounds were dissolved in water and added to instant 

food when it was at 50⁰C. The total volume of instant food was 6 mL per vial and fifty of 

the selected larvae were added per vial. Experiments were kept at 25⁰C (or 18⁰C as 
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mentioned). The number of adult eclosed was recorded every day until no eclosion 

occurred for 3 consecutive days or 25 days after the start of the experiment. If there was 

no or low numbers of adults, pupae were scored.  In each experiment, 3 replicates vials 

for each treatment were set up in the same week on 3 different days.  

 

8. Statistical Analysis 

 

Statistical analysis was performed using IBM SPSS Statistics 19 with one-way ANOVA. 
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CHAPTER FIVE: GENERAL DISCUSSION 
 

Cellular polyamine content is tightly regulated by a combination of biosynthesis, 

biodegradation, import and export [13]. Polyamine levels are elevated in many cancer cell 

types by upregulated biosynthesis and import activity, and depletion of cellular polyamine 

content results in cancer cell growth attenuation [40, 43]. Therefore, polyamine depletion 

is an attractive chemotherapeutic target. Polyamine biosynthesis can be inhibited by -

difluoromethylornithine (DFMO), an inhibitor of the key polyamine biosynthesis enzyme 

ornithine decarboxylase [44]. However, malignant cells frequently circumvent DFMO 

therapy by up-regulating polyamine import and thus a combination drug therapy that 

simultaneously targets polyamine biosynthesis and transport is desirable [47-49]. To this 

end there is a need to identify compounds that inhibit polyamine transport, however the 

development of novel polyamine transport inhibitors (PTIs) is hindered by a poor 

understanding of the polyamine transport system in multicellular organisms.  

 

This dissertation has two objectives. The first objective is to characterize polyamine 

transporter inhibitors. Four candidate polyamine transport inhibitors were assayed for 

their ability to inhibit transport in Drosophila. Three of the compounds effectively inhibited 

the uptake of a toxic polyamine analog Ant44 that gains entry to cells via the polyamine 

transport system, and were also able to inhibit the import of exogenous polyamines. In 

addition, a cocktail of polyamine transport inhibitors was found to be more effective than 

individual inhibitors at blocking transport. 
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The second objective was to identify new components of the polyamine transport system, 

which will help with transport inhibitor development. In this study, core proteins of the 

heparan sulfate proteoglycans and biosynthesis enzymes of the heparan sulfate side 

chain were tested for involvement in polyamine transport. Glypican-1 was demonstrated 

to be involved in polyamine transport in Drosophila imaginal discs confirming reports in 

mammalian cell culture.  

 

Drosophila as a Model to Study Polyamine Transport 

 

Drosophila is an excellent model system in which to study polyamine transport and many 

genes in Drosophila are functionally conserved in mammals. Studies in Drosophila have 

been the foundation for the characterization of numerous mammalian signaling pathways, 

including the Wnt, Hedgehog and Notch signaling pathways [90-92]. In addition, 

Drosophila has a polyamine transporter with properties similar to those observed in 

mammalian cells. Polyamine transport is active in Drosophila S2 cells [93] and our own 

work has demonstrated that polyamine transport into imaginal discs is similar to that 

observed in CHO and L1210 cells [94, 138]. 

 

In these studies, I used Drosophila leg imaginal discs to investigate polyamine transport. 

A major advantage of the leg imaginal disc assay is that compounds that access cells 

through the PTS or inhibit transport can be studied in an environment where cells exhibit 
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normal adhesion properties and are surrounded by extracellular matrix [97]. This 

environment is more reflective than cell culture of the environment candidate drugs will 

encounter in vivo. I have shown that the Drosophila model is a robust indicator of the 

effectiveness of PTIs in mammalian systems, and in the future it will be possible to pre-

screen PTIs in Drosophila prior to conducting more expensive testing in mouse models. 

Having a cheap model system for early animal testing will greatly reduce to time from 

conceptual design of PTIs to validation in clinical trials.  

 

Evidence for Multiple Polyamine Transporters  

 

In this study, I have shown that 1 mM putrescine is unable to rescue the toxicity of 40 µM 

Ant44 (Chapter 2, Figure 9). This result is consistent with the notion that putrescine and 

Ant44 utilize different transporters to gain entry to cells. The choice of transporter may be 

charge-dependent because unlike the diamine putrescine, Ant44 is a triamine and 

presents three positive charges to the putative cell surface receptor. Consistent with these 

observations, Ant44 is a homospermidine analogue and its toxicity can be rescued by the 

higher polyamines SPD and SPM.  

 

Interestingly, even though Ant444 and Trimer44 have similar EC50 values for protection 

against Ant44 toxicity, and similar profiles for full protection against Ant44 (Chapter 2, 

Figure 7a, c), they show different specificities in blocking the uptake of native polyamines 
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in DFMO treated imaginal discs. Ant444 is more effective than Trimer44 in inhibiting the 

import of putrescine, whereas Trimer44 is more effective in inhibiting the import of 

spermine (Chapter 2, Figures 11a, c). The differential selectivity of Ant444 and Trimer44 

may be the underlying basis for the improved ability of a cocktail of these compounds to 

inhibit rescue in the presence of all three native polyamines (Chapter 2, Figure 11d). This 

difference in selectivity is consistent with the existence of multiple polyamine transport 

systems in Drosophila similar to those observed in the unicellular organisms E. coli and 

yeast.  

 

E. coli contains putrescine and spermidine, but not spermine. It has a spermidine-

preferential uptake system (PotABCD), putrescine transporter (PotE) and a putrescine- 

specific uptake system (PotFGHI) [57, 58, 139]. The Km values for spermidine and 

putrescine with these transporters are different [56], which further illustrates the diversity 

of polyamine transporters existing in E.coli.  

 

Polyamine uptake in yeast is energy-dependent. There are a least 10 proteins involved 

in polyamine transport in yeast. In the plasma membrane, four transmembrane proteins 

have been identified as polyamine transport components: Dur3, Sam3, Agp2 and Gap1 

[60, 140, 141]. Also, UGA4, which is a transporter of 4-aminobutyric acid on the vacuolar 

membrane can take up putrescine [142]. A general transporter of amino acids on the 

plasma membrane called GAP1 can transport putrescine and spermidine [60]. A 

polyamine export system is known in yeast. TOP1 and TOP4 are exporters for putrescine, 
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spermidine and spermine. TOP2 and TOP3 are spermine-specific exporters [143, 144]. 

Both uptake and export of polyamines in yeast are regulated by phosphorylation and 

dephosphorylation [56]. However, the known polyamine transport components in E. coli 

and yeast do not have close orthologs in animal cells. 

 

In multicellular organisms, a few polyamine transport system (PTS) components have 

been identified [62, 63, 65, 76]. It is still unknown how these components interact, or 

whether they comprise one or more transport systems. However, our data support the 

existence of multiple polyamine transport systems. 

 

Rational Design of Compounds Inhibiting Polyamine Transport 

 

The polyamine transport system shows relatively high substrate tolerance. Many 

polyamine analogues are imported into cells via the polyamine transport system and the 

notion was explored that polyamine uptake could provide selective targeting of cancer 

cells via their upregulated polyamine transport activity. As a result, numerous polyamine 

analogues were developed as anti-tumor agents starting in the mid-1980s [145]. However, 

these analogues had off-target effects (including neurotoxicity and nephrotoxicity), which 

were dose limiting. 
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In our study, Triamide44 could not inhibit the uptake of either Ant44 or the import of 

exogenous polyamines. By increasing the chain length and the number of amine groups 

on the arms of the Triamide44, this compound was converted into a good PTI. Therefore, 

the PTI efficiency of Triamide444 was tested to evaluate how a PTI with tetraamine arms 

performed vs the triamine arms present inTriamide44.  

 

The EC50 of Triamide444 (2.8 µM) was comparable to Ant444 (3.6 µM) and Trimer44 (4.8 

µM) and showed a 50-fold improvement in potency compared to Triamide44 (144 µM) 

(Chapter 2, Figure 7). Triamide444 effectively blocks the rescue of DFMO by PUT (Figure 

12a), SPD (Figure 12b) and SPM (Figure 12c). Triamide444 appeared to be a more 

effective PTI than Ant444, which was unable to inhibit SPM uptake at 100 µM, and in 

general showed an improved ability to inhibit SPM than either Ant444 or Trimer44 

(Chapter 2, Figure 11). Therefore, the structure activity relationships explored here 

demonstrate that it is possible to use Drosophila models to develop improved polyamine 

transport inhibitors. 

 

Feasibility of a Combination Drug Therapy Targeting Both Polyamine Biosynthesis 

Pathway and the Transport System  

 

A combination therapy using DFMO and a PTI has shown promise in cancer growth 

inhibition. While the lack of knowledge of the genes and proteins involved in polyamine 
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transport has hampered the development of PTIs, SAR studies have nevertheless 

resulted in the development of several effective PTIs. 

 

The HIV-Tat transduction peptide is a cationic peptide (GRKKRRQRRRPPQC). It can 

bind to heparin sulfate of proteoglycans with high affinity and is well known to carry large 

cargo (e.g., nuclear acids and proteins) across the cell membrane into the cytoplasm and 

nuclear compartment of mammalian cells [146, 147]. Previous studies showed that HIV-

Tat competitively inhibited the uptake of polyamines in human bladder carcinoma T24 

cells in the presence of DFMO [55]. Spermine transport was facilitated by heparan sulfate 

binding and HIV-Tat may share the same binding receptor on the cell surface. In a mouse 

model, HIV-Tat was able to inhibit T24 carcinoma-cell tumor growth in the presence of 

DFMO, and no serious side effects were noticed [55]. Therefore, HIV-Tat in combination 

with DFMO is a feasible treatment for tumor growth. However, no further studies have 

been published concerning HIV-Tat in tumor treatment. Off-target effects are a major 

problem of Tat cell-penetrating peptides and it is not clear if this off-target problem exists 

with the specific HIV-Tat transduction peptide used. 

 

One of the most effective PTIs is AMXT-1501. It is relatively non-toxic (IC50 value of 62µM 

in MDA-231 cells) and facilitated oral delivery [53]. In combination with DFMO, AMXT-

1501 inhibits cancer cell growth in several cancer cell lines and mouse models [53, 117]. 

Recently this compound was found to reverse immunosuppression in the tumor 
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microenvironment. In combination with DFMO, AMXT-1501 blocked tumor growth in 

immunocompetent mice but not in athymic nude mice lacking T cells. This combined 

treatment prevented immune escape by tumors [118].  

 

Together, a combination drug therapy targeting both the polyamine biosynthesis pathway 

and the transport system is feasible. Combining with DFMO, polyamine transport 

inhibitors can inhibit cancer growth by blocking polyamine import and can result in 

sustained intracellular polyamine depletion. Structurally the compounds we developed 

and tested are different from AMXT-1501 which is a lipophilic lysine spermine conjugate.  

Our more hydrophilic designs will likely have different absorption and excretion profiles 

which may provide a clinical benefit.  

 

Use of A Combination of Polyamine Transport Inhibitors May Be More Effective Than 

Individual Inhibitors Alone 

 

A combination of Ant444 and Trimer44 was shown to be more effective at blocking DFMO 

rescue by native polyamines than either inhibitor alone (Figures 11d). This is the first time 

a cocktail of PTIs has been used in combination with DFMO to target both polyamine 

transport and biosynthesis in cells. The different selectivity of Ant444 and Trimer44 may 

be the underlying basis for the improved ability of a cocktail of these compounds to inhibit 

rescue in the presence of all three native polyamines. Rational design of PTIs with 
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different selectivity to polyamine transporters may further improve PTI efficiency in 

inhibiting rescue in the presence of native polyamines. 

 

Future Directions  

 

Polyamine content is elevated in malignant cells as compared with normal tissues. In 

combination with DFMO, AMXT-1501 blocked tumor growth in a T cell-dependent manner 

[118]. This suggests that polyamine blockade promotes antitumor immunity [148]. In 

future studies, Ant444, Trimer44 and Triamide444 can be used to test them to induce 

antitumor immunity in combination with DFMO. However, these compounds will need to 

be tested in systems other than Drosophila, because of Drosophila’s lack of an adaptive 

immune system.  

 

My work suggests that multiple polyamine transport systems exist in multicellular 

organisms like Drosophila. These transport systems may have different affinity for each 

of the three native polyamines as has been observed in unicellular organisms. Rational 

design of PTIs with different selectivity to polyamine transporters may further improve PTI 

efficiency. 

 

While the lack of knowledge of the genes and proteins involved in polyamine transport 

has hampered the development of PTIs, polyamine transporter characterization is still 
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one of the most important tasks in this area in the future. Moreover, future studies are 

needed to test how these known transport components interact, or whether they comprise 

one or more transport systems. 
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APPENDIX A: RESULTS OF GENES TESTED FOR INVOLVEMENT IN 
POLYAMINE TRANSPORT USING WHOLE ANIMAL METHOD 
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Part I: Result of Testing Heparan Sulfate Proteoglycan Core Protein Genes for 

Involvement in Polyamine Transport Using Whole Animal Method 

 

There are four heparan sulfate proteoglycan core protein genes in Drosophila: Dally, 

Dally-like, Perlecan and Syndecan. In this study both RNAi stocks, over-expression 

constructs and insertional mutants were tested if stocks are available. 

 

1. Dally RNAi Stocks: BL33952, V14136, BL28747 

 

1.1  BL33952: y1scv1; +; UAS-dally RNAi (TRiP, V20) 

 

  

Figure 20 Rescue DFMO inhibition by native polyamines at 1mM in whole animals of 
Dally RNAi (BL33952) driven by Actin5-GAL4. 
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Figure 21  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Dally RNAi (BL33952) driven by Actin5-GAL4. 

 

1.2  V14136: w1118; +; UAS-dally RNAi (Vienna Stock, 1 Off-target) 

 

 

Figure 22  Rescue DFMO inhibition by native polyamines at 1mM in whole animals of 
Dally RNAi (V14136) driven by Actin5-GAL4. 
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Figure 23  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Dally RNAi (V14136) driven by Actin5-GAL4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0%

20%

40%

60%

80%

100%

0 mM

DFMO/

0mM PA

5 mM

DFMO/

0mM PA

0 mM

DFMO/

0.4mM

PUT

5 mM

DFMO/

0.4mM

PUT

0 mM

DFMO/

0.2mM

SPD

5 mM

DFMO/

0.2mM

SPD

0 mM

DFMO/

0.2mM

SPM

5 mM

DFMO/

0.2mM

SPM

%
 o

f 
S

u
rv

iv
a

l

V14136 x Actin5-GAL4



  

139 

 

1.3  BL28747: y1v1; +; UAS-dally RNAi (TRiP, V10) 

 

 

Figure 24  Rescue DFMO inhibition by native polyamines at 1mM in whole animals of 
Dally RNAi (BL28747) driven by Actin5-GAL4. 
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2 Dally-like Stocks: BL34089, BL34091, V10298, V10299 

 

2.1  BL34089: y1scv1; +; UAS-dlp RNAi (TRiP, V20)  

 

 

Figure 25  Rescue DFMO inhibition by native polyamines at 1mM in whole animals of 
Dally-like RNAi (BL34089) driven by Actin5-GAL4. 
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2.2  BL34091: y1scv1; +; UAS-dlp RNAi (TRiP, V20)  

 

 

Figure 26  Rescue DFMO inhibition by native polyamines at 1mM in whole animals of 
Dally-like RNAi (BL34091) driven by Actin5-GAL4. 

 

 

Figure 27  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Dally-like RNAi (BL34091) driven by Actin5-GAL4. 
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2.3  V10298: w1118; +; UAS-dlp RNAi/ TM6B, Dfd-EYFP, Tb,Hu,Sb (Vienna Stock, 6 

Off-targets) 

 

 

Figure 28  Rescue DFMO inhibition by native polyamines at 1mM in whole animals of 
Dally-like RNAi (V10298) driven by Actin5-GAL4 (pupa data). 
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2.4  V10299: w1118; +; UAS-dlp RNAi (Vienna Stock, 6 Off-targets) 

 

 

Figure 29  Rescue DFMO inhibition by native polyamines at 1mM in whole animals of 
Dally-like RNAi (V10299) driven by Actin5-GAL4 (pupa data). 
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3 Perlecan RNAi Stocks: BL29440, V24549 

 

3.1  BL29440: y1v1;+; UAS-trol RNAi/TM6B,EYFP,Sb,Tb,Hu,ca (w floating, TRiP 

V10 ) 

 

 

Figure 30  Rescue DFMO inhibition (both 5mM and 10mM) by native polyamines at 
1mM in whole animals of Perlecan RNAi (BL29440) driven by Actin5-GAL4 (pupa data). 
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3.2  V24549: w1118; UAS-trol RNAi (Vienna Stock) 

 

 

Figure 31  Rescue DFMO inhibition by native polyamines at 1mM in whole animals of 
Perlecan RNAi (V24549) driven by Actin5-GAL4 (pupa data). 
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4 Syndecan 

 

4.1  RNAi Stock: V13322- w1118; UAS-sdc RNAi (Vienna Stock) 

 

 

Figure 32  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Syndecan RNAi (V13322) driven by Actin5-GAL4 at 18⁰C (pupa data). 
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4.2  Overexpression Stock: BL8564- yw;+; UAS-sdc (Bloomington Stock) 

 

 

Figure 33  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Syndecan overexpression (BL8564) driven by Actin5-GAL4 (pupa 
data). 
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5 Mutants: BL23972, BL19695, BL36954, BL37444 

 

5.1 BL23972: w1118; SdcMB02461 

 

 

Figure 34  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Syndecan mutant (BL23972). 
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5.2 BL19695: y1w67c23; SdcEY04602/Cyo 

 

 

Figure 35  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Syndecan mutant (BL19695). 
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5.3 BL36954: yw; SdcM103925/SM6a 

 

 

Figure 36  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Syndecan mutant (BL36954). 
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5.4 BL37444: y1w; SdcM104345/SM6a 

 

 

Figure 37  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Syndecan mutant (BL37444). 
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6 Dally/dally-like RNAi Stocks: BL33952/BL34089, BL33952/BL34091 

 

6.1  BL33952/BL34089 

 

 

Figure 38  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Dally/Dally-like RNAi (BL33952/BL34089) driven by Actin5-GAL4. 
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6.2  BL33952/BL34091 

 

 

Figure 39  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Dally/Dally-like RNAi (BL33952/BL34091) driven by Actin5-GAL4. 
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7 Dally/Syndecan RNAi Stock: BL33952/V13322 

 

 

Figure 40  Rescue DFMO inhibition by native polyamines at minimum concentration in 

whole animals of Dally/Syndecan RNAi (BL33952/V13322) driven by Actin5-GAL4 at 

18⁰C (pupa data). 
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1. Sugarless RNAi Stock: V29434- w1118; UAS-sugarless RNAi (Vienna Stock) 

 

 

Figure 41  Rescue DFMO inhibition (both 5mM and 10mM) by native polyamines at 
1mM in whole animals of Surgarless RNAi (V29434) driven by Actin5-GAL4 (pupa 
data). 
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2. Slalom RNAi Stocks: V12148, V12149 

 

2.1  V12148: w1118;+;UAS-slalom RNAi (Vienna Stock, 1 Off-target) 

 

 

Figure 42  Rescue DFMO inhibition (both 5mM and 10mM) by native polyamines at 
1mM in whole animals of Slalom RNAi (V12148) driven by Actin5-GAL4 (pupa data). 
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2.2  V12149: w1118;+;UAS-slalom RNAi/ TM6B,Tb,Sb,EYFP (Vienna Stock, 1 Off-

target) 

 

 

Figure 43  Rescue DFMO inhibition (both 5mM and 10mM) by native polyamines at 
1mM in whole animals of Slalom RNAi (V12149) driven by Actin5-GAL4 (pupa data). 
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3. Tout Velu RNAi Stock: V4871- w1118;+;UAS-ttv RNAi (Vienna Stock) 

 

 

Figure 44  Rescue DFMO inhibition (both 5mM and 10mM) by native polyamines at 
1mM in whole animals of ttv RNAi (V4871) driven by Actin5-GAL4 (pupa data). 
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4. Brother of Tout Velu RNAi Stock: V3718- w1118;UAS-bttv RNAi (Vienna Stock) 

 

 

Figure 45  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of bttv RNAi (V3718) driven by Actin5-GAL4 (pupa data). 
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5. Fringe Connection RNAi Stocks: V47542, V47543 

 

5.1  V47542: w;UAS-frc RNAi/Cyo, EYFP (Vienna Stock) 

 

 

Figure 46  Rescue DFMO inhibition (both 5mM and 10mM) by native polyamines at 
1mM in whole animals of Fringe Connection RNAi (V47542) driven by Actin5-GAL4. 
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5.2  V47543: w1118;+;UAS-frc RNAi (Vienna Stock) 

 

 

Figure 47  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Fringe Connection RNAi (V47543) driven by Actin5-GAL4. 
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6. Sulfateless RNAi Stocks: V5070, BL34601 

 

6.1  V5070: w1118;+;UAS-sulfateless RNAi (Vienna Stock) 

 

 

 

Figure 48  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Sulfateless RNAi (V5070) driven by Actin5-GAL4 (pupa data). 
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Figure 49  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Sulfateless RNAi (V5070) driven by Actin5-GAL4 (pupa data)-Repeat. 

 

 

Figure 50  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Sulfateless RNAi (V5070) driven by Actin5-GAL4 (pupa data) at 18⁰C. 
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6.2  BL34601: y1scv1;+;UAS-sulfateless RNAi (TRiP) 

 

 

Figure 51  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Sulfateless RNAi (BL34601) driven by Actin5-GAL4 (pupa data). 
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7. Hsepi Mutant: BL13498- y1w67c23; Hsepi [KG02877] 

 

 

Figure 52  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Hsepi mutant (BL13498). 
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1. Nitric Oxide Synthase (NOS) 

 

1.1  RNAi Stock: BL28792: y1v1;+; NOS RNAi 

 

 

Figure 53  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of NOS RNAi (BL28792) driven by Actin5-GAL4 (pupa data). 
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1.2  Mutant: BL18555- w1118; NOSf02469 

 

 

Figure 54  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of NOS mutant (BL18555). 

 

 

 

 

 

 

 

 

 

0%

20%

40%

60%

80%

100%

0 mM

DFMO/

0mM PA

5 mM

DFMO/

0mM PA

0 mM

DFMO/

0.4mM

PUT

5 mM

DFMO/

0.4mM

PUT

0 mM

DFMO/

0.2mM

SPD

5 mM

DFMO/

0.2mM

SPD

0 mM

DFMO/

0.2mM

SPM

5 mM

DFMO/

0.2mM

SPM

%
 o

f 
S

u
rv

iv
a

l

BL18555



  

168 

 

2. Huntingtin Interacting Protein (Hip1) 

 

2.1  RNAi Stocks: BL32504, BL38377 

 

i. BL32504- y1scv1;+; Hip1 RNAi 

 

 

Figure 55  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Hip1 RNAi (BL32504) driven by Actin5-GAL4. 
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ii. BL38377- y1v1;+; Hip1 RNAi 

 

 

Figure 56  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Hip1 RNAi (BL38377) driven by Actin5-GAL4. 
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2.2  Hip1 Mutant: BL42355- y1w; Hip1 [M105905] 

 

 

Figure 57  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of Hip1 mutant (BL42355). 
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3. SafB Mutant: BL32026- w1118; +; Saf-B[G16146] 

 

 

Figure 58  Rescue DFMO inhibition by native polyamines at minimum concentration in 
whole animals of SafB mutant (BL32026). 
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