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ABSTRACT 

Biotic interactions are known to shape natural community assemblages and biodiversity. 

Positive interactions such as facilitation have recently received attention in ecological food webs. 

Mechanistic models have improved our understanding of these complex food web interactions. 

Here, focus is given to a three-species food web system with a beach dune natural community in 

mind. In the last decade, there has been a series of studies investigating intraguild predation 

between two major loggerhead sea turtle nest predators, North American raccoons and Atlantic 

ghost crabs. Studies have also highlighted that ghost crab predation assists raccoons in finding 

nests (i.e., facilitated predation). However, the combined effects of these two intraguild 

interactions and their consequences on nests have not been examined explicitly. The aims of this 

study were to (i) develop a three-species, ordinary differential equation model (ii) implement a 

sensitivity analysis to understand the influence of facilitation and other factors in driving species 

richness and abundance and (iii) characterize the dynamic interactions between intraguild 

predators and their effects on a shared resource. Interactions between ghost crabs and sea turtle 

eggs and facilitation can yield a wide variety of species abundance responses and were 

influential factors in the model. I found that high secondary sea turtle egg depredation and low 

facilitated predation by raccoons led to three species co-existence regions in the model. 

Controlling for nest predators at higher abundance levels showed that ghost crabs had a larger 

negative effect on sea turtle egg abundance responses when compared to raccoons. This suggests 

that interactions between sea turtle eggs and ghost crabs appear to be important and potential sea 

turtle nest management implications are discussed such as the use of ghost crab exclusion 

devices. 
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1. INTRODUCTION 

Biotic interactions are known to shape community assemblages and biodiversity (Cornell 

and Lawton 1992; Morrin 1999). Historically, much focus has been given to competition and 

predation (Goldberg and Barton 1992; Gurevitch et al. 1992; Sih et al. 1985). More recently, 

attention has been given to facilitation as a community driver (Callaway 2007; Meyer and Byers 

2005; Soliveres et al. 2015), especially in plant communities (Butterfield 2009). Some studies 

(He et al. 2013; Oviedo et al. 2014) have posited that facilitation is more apparent in stressed 

habitats allowing for species co-existence.  

Food webs are more complex than two species predator-prey systems and studies of 

interactions among multiple predators and the effects on shared prey have been conducted 

(Huxel 2007; Losey 1998; Polis et al. 1989; foodwebs.org). Predation on the basal resource by 

the top predator facilitated by the intermediate predator is defined as facilitated predation (Brown 

2009; Cloutier 1997). Fodrie et al. (2008) at Dauphin Island Sea Lab in Alabama, showed that 

facilitated predation exists in a three species system involving a shared prey, eastern oysters 

(Crassostrea virginica), and two of its main consumers: southern oyster drills (Stramonita 

haemastoma) and stone crabs (Menippe adina). Field experiments and laboratory trials 

demonstrated that when drills and crabs foraged together there was enhanced mortality of 

oysters. The mechanism for this interaction was due to crabs facilitating drills by breeching 

oyster valves and granting easy access for drills to their prey.  

Here, focus is given to three beach dune species, loggerhead sea turtles (Caretta caretta), 

Atlantic ghost crabs (Ocypode quadrata) and North American raccoons (Procyon lotor). The 

loggerhead sea turtle was designated as endangered by the International Union for Conservation 
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of Nature (IUCN 1996). Sea turtles face many anthropogenic (e.g., incidental fisheries by-catch, 

vessel strikes, oil pollution) and natural (e.g., predation, tidal inundation, disease) threats 

throughout all of their life stages which contribute to a decline in population numbers. A 

response to mitigate these losses for the Northwest Atlantic loggerhead population has resulted 

in a recovery plan with that includes minimizing nest depredation (National Marine Fisheries 

Service and U.S. Fish and Wildlife Service 2008).  

Different nesting beaches in the Southeastern United States have different predators of 

loggerhead nests including: Atlantic ghost crabs (Ocypode quadrata), North American raccoons 

(Procyon lotor), coyotes (Canis latrans), foxes (Vulpes vulpes), armadillos (Dasypus 

novemcinctus) and red imported fire ants (Solenopsis invicta) (Allen et al. 2001; Dodd 1988; 

Engeman et al. 2005). Furthermore, dune vegetation roots (Uniola paniculata) are also known to 

invade nests and in essence depredate on sea turtle eggs (Hannan et al. 2007). On some beaches 

nest predators can have an extremely negative effect on sea turtle hatching success. For example, 

in the absence of protective buried wire screens around nests at Canaveral National Seashore, 

Florida, sea turtle nest loss to predation was as high as 97% (McMurtray 1986). 

Raccoons are intraguild predators of ghost crabs in this system (Barton and Roth 2007, 

2008). Intraguild predation is when one predator preys on another that it competes with for a 

common resource (Polis et al. 1989). Ghost crabs are known to burrow into sea turtle nests to 

feed on eggs; chemical cues emitted through the burrow signal foraging raccoons towards the 

nest’s location, thereby facilitating secondary depredation of eggs by raccoons (Brown 2009). By 

directly modulating the availability of resources to other species by causing physical state 
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changes in abiotic materials, in this case tunneling, ghost crabs can be considered to be 

ecosystem engineers (Jones et al. 1994). 

Previous studies have modeled three-species systems using ordinary differential 

equations and have examined their dynamic behavior. In a three-species food chain model with 

non-linear functional responses, nutrient enrichment had adverse effects on higher level 

consumers (Abrams and Roth 1994). Gilpin (1979) looked at a one predator-two prey 

community interaction model developed by Vance (1978) and was able to find chaotic behavior. 

Three species intraguild predation models have been developed (Holt and Polis 1997) and model 

extensions such as alternative prey have been explored (Holt and Huxel 2007). Here I simulate 

the effects of facilitated predation in a three-species intraguild predation model. 

The aims of this study were to (i) develop a three-species, ordinary differential equation 

model (ii) implement a sensitivity analysis to understand the influence of facilitation and other 

factors in driving species richness and abundance and (iii) characterize the dynamic interactions 

between intraguild predators, where one species facilitates resource acquisition, and the overall 

effects on a shared resource.   
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2. METHODS 

2.1 Model Development 

An ordinary differential equation model was constructed in order to characterize the 

dynamic interactions between species with both intraguild predation and intraguild facilitation 

and their effects on a shared resource. Software packages STELLA version 9.0 and R were used 

to develop the model. The initial model formulation was derived from a generic food-web point 

of view that involves resource, prey, and consumer species. It was altered to replicate the 

intraguild predation and intraguild facilitation interactions as depicted by the sea turtle egg, ghost 

crab and raccoon system (Figure 1). The model was a slight expansion of Lotka-Volterra 

equations depicting three interacting species. 

                                    
𝑑𝑥1

𝑑𝑡
= (𝑟1 − 𝑎11𝑥1 − 𝑎12𝑥2 −  𝑎13𝑥3 − 𝑑𝑎12𝑥2𝑥3)𝑥1   (1) 

 

                                             
𝑑𝑥2

𝑑𝑡
= (𝑟2 − 𝑎22𝑥2 + 𝑎21𝑥1 −  𝑎23𝑥3)𝑥2   (2) 

 

                                   
𝑑𝑥3

𝑑𝑡
= (𝑟3 − 𝑎33𝑥3 + 𝑎31𝑥1 +  𝑎32𝑥2 + 𝑓𝑎12𝑥2𝑥1)𝑥3   (3) 

The above equations describe the rates of population change, where x1 represents resource 

abundance (eggs), x2 represents prey abundance (ghost crabs) and x3 represents consumer 

(raccoon) abundance. The symbols r1, r2 and r3 represent growth rates for the resource, prey and 

consumer respectively. The symbols a11 – a33 represent interaction coefficients among the three 

species. For example, a12 represents the effect of species 2 on the per capita growth rate of 

species 1. Interaction coefficients can be written as a community matrix C, where the absolute 
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value of the coefficient indicates the relative species effect and the sign indicates direction 

(Levins 1968). 

                                                         𝐶 =  [

−𝑎11 −𝑎12 −𝑎13

+𝑎21 −𝑎22 −𝑎23

+𝑎31 +𝑎32 −𝑎33

]  (4) 
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Figure 1. Interaction di-graph showing model structure. Direction of arrows indicate the species 

being affected and sign indicates a positive or negative interaction. Parameters d and f represent 

depredation and facilitation proportionalities. 
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The term a12x1x2x3 in the resource and consumer equations represent indirect effects of 

prey and is a function of resource, prey, and consumer abundance. All three species are involved 

because they interact with each other and x1x2x3 indicates random encounters of resources, prey 

and consumers. Interaction coefficient a12 is included in this term because the indirect effect 

involves resource and prey. 

The term a12x1x2x3 is additive in the model and can affect the resource and consumer 

differently and is distinguished by symbols d and f. The probability of secondary depredation of 

the resource by the consumer is represented as d. This is intended to represent additional losses 

to the resource. Symbol f represents the degree of facilitation of the consumer due to the 

presence of the prey feeding on the resource. This is intended to represent additional gains to 

consumer abundance. 

To reflect the sea turtle egg, ghost crab and raccoon system, I derived model parameters 

from previously published field studies, whenever possible. Otherwise, I made educated guesses 

based on estimated relative population sizes and assumed autecological properties. Parameter 

values and their potential ranges are listed in Table 1. Values of interaction coefficients (a11 – a33) 

are relative to each other. For example, the effect of sea turtle eggs on ghost crabs is 10 times 

larger than the effect of sea turtle eggs on raccoons. This is reasonable considering that ghost 

crabs have a much smaller body size when compared to raccoons. The rest of the interaction 

coefficients have been estimated using a similar logical approach. Growth rate parameter values 

were also estimated using this comparative approach. For example, ghost crabs have relatively 

shorter lifespans than raccoons, and would have a larger growth rate value when compared to 

raccoons.  
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Table 1. Parameter abbreviation, estimate, range, unit and reference. 

*Estimates for the resource secondary depredation proportionality parameter d were derived from fraction of loggerhead nests 

depredated per season in Canaveral National Seashore, Florida, 1989-2008. Estimates for the facilitation proportionality 

parameter f were derived from raccoons visiting simulated ghost crab predated loggerhead nests (Brown 2009). 

 

 

 

 

 

 

 

Name Parameter Estimate* Min Max Units 

x1 Resource Abundance 10,000 (initial 

population size) 

  individuals 

x2 Prey Abundance 100 (initial 

population size) 

  individuals 

x3 Consumer Abundance 10 (initial population 

size) 

  individuals 

a11 Effect of Resource on itself 0.0000001 0.00000001 0.000001 (x1
2)-1  

a12 Effect of Prey on Resource 0.000001 0.0000001 0.00001 (x1x2)
-1 

a13 Effect of Consumer on Resource 0.000001 0.0000001 0.00001 (x1x3)
-1 

a21 Effect of Resource on Prey 0.000001 0.0000001 0.00001 (x2x1)
-1  

a22 Effect of Prey on itself 0.00001 0.000001 0.0001 (x2
2)-1   

a23 Effect of Consumer on Prey 0.00001 0.0000001 0.0001 (x2x3)
-1  

a31 Effect of Resource on Consumer 0.0000001 0.00000001 0.000001 (x3x1)
-1  

a32 Effect of Prey on Consumer 0.0000001 0.00000001 0.000001 (x3x2)
-1   

a33 Effect of Consumer on itself 0.001 0.0001 0.01 (x1
2)-1  

r1 Resource growth rate 0.05   x1[time]-1  

r2 Prey growth rate 0.0001   x2[time]-1 

r3 Consumer growth rate 0.00001   x3[time]-1    

d Resource secondary depredation 

proportionality 

0.05 (Welicky et al. 

2012) 

0.01 0.1 unitless 

f Facilitation proportionality for 

Consumer 

0.05 (Brown 2009) 0.01 0.1 unitless 

dummy Dummy variable used for 

determining significance in 

eFAST 

N/A 1 10 unitless 
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Sea turtle egg growth rate unit is number of eggs laid on beach per unit time and has a 

larger value than ghost crab and raccoon growth rates. Sea turtle egg abundance was calibrated 

by using an iterative approach of incrementally adjusting parameters so that the simulated 

abundance remained within the bounds of realistic abundances per 1 km section of beach.  

Simulated sea turtle egg densities varied from 100-200,000 eggs / km of beach depending 

on parameter values. In Florida, there were on average 88 nests (i.e., combined loggerhead, green 

turtle, and leatherback) per 1 km survey beach based on statewide nesting beach survey data for 

the 2013 nesting season (Florida Fish and Wildlife Conservation Commission 2014). On 

average, loggerheads, green turtles, and leatherbacks lay 112.4, 136, and 73 eggs per clutch 

respectively (Witherington and Ehrhart 1989a; Miller et al. 2003; Stewart and Johnson 2006). To 

estimate number of eggs per 1 km section of beach I took the average of the above three clutch 

sizes, 107 eggs, and multiplied this by number of observed nests to obtain 9,416 eggs. This 

estimate falls within the bounds of simulated egg abundances. Simulated raccoon abundances 

varied from 7-15,924 individuals. According to Barton (2005), 56 raccoons were removed from 

two east-central Florida beaches measuring approximately 36.5 total km in length in 2003. I 

obtained an estimate of 1 individual per 1 km section of beach by dividing observed raccoon 

numbers by total beach length. Simulated ghost crab abundances varied from 100-1,600 

individuals depending on parameter values. Morrow et al. (2014) observed average densities of 

4-14 burrows per 10x10 meter grid among three Florida west coast beaches. I multiplied 

observed densities by 100 to obtain an estimate of 400-1,400 individuals per 1 km section of 

beach, which is comparable to simulated abundances.   
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2.2 Sensitivity Analysis  

Sensitivity analysis (SA) seeks to learn how the output of a model changes with 

variations in the input (Saltelli et al. 2000) and recent techniques have been applied to ecological 

food web models (Ciric et al. 2012; Saloranta et al. 2006). Following Cariboni et al. (2007) I 

used a variance-based SA approach because the model has a low number of factors (<20). Due to 

the non-linearity of the model I chose an extended Fourier Amplitude Sensitivity Test (eFAST) 

in order to decompose the output variance into the total contributions attributable to each input 

factor (Cariboni et al. 2007).  

The eFAST method is a variance decomposition procedure suited to perform a global, 

quantitative, model-independent sensitivity analysis (Saltelli et al. 1999). It was adapted from the 

FAST method (Cukier et al. 1973) in order to include first and total order sensitivity indices. 

Partitioning the variation of each input parameter works by varying different parameters at 

different frequencies and encoding each parameter with a unique identity frequency. Fourier 

analysis then measures the strength of each parameter’s frequency in the model output through 

the use of two indices, Si and STi. Si is the first-order sensitivity index and represents the fraction 

of model output variance explained by the input variation of a given parameter i. This index 

represents main effects and is the variation in the model output explained by the particular 

parameter alone. STi is the total-order sensitivity index and represents the higher-order, non-linear 

interactions between the parameter of interest and the complementary set of parameters (i.e. all 

parameters except i) (Marino et al. 2008). The index represents total effects and is the variance 

explained by the interactions of the particular parameter with all other parameters. A parameter 

is considered influential if it has a higher index value when compared to other parameters. 
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Sensitivity analyses were conducted using the R package spartan (Alden et al. 2014). The 

R package gplots was also used for assistance in producing figures (Wand 2009). In order to 

attribute the variance in model outputs to its input factors, sampling of the possible parameter 

space was first conducted. This was done by assigning values to each parameter chosen from a 

Fourier frequency search curve through a parameter’s potential range of values given in Table 1. 

Although all parameters are perturbed simultaneously, focus is given to one parameter by 

assigning it a sampling frequency different from the other parameters. A set of simulation input 

parameters then exists for each parameter. The given parameter’s sampling frequency is then 

adjusted and resampling is conducted on a new search curve. There were a total of three search 

curves for my analysis. There are no guidelines to follow regarding sample size NS, but the 

minimum must be greater than 65 (Saltelli et al. 1999).  

The total number of simulation runs N  equals the product of the number of parameters k, 

number of samples and number of search curves NR, N = NS×k×NR (Saltelli et al. 1999). In my 

analysis I had 3 search curves with each curve initially taking 65 samples for each of the 12 

parameters of interest for a total of 2,340 parameter sets used as inputs for simulation runs. 

Uniform distributions were assumed for all model parameters within the minimum to maximum 

ranges (Saltelli et al. 2000). A uniform distribution was used as a conservative choice due to the 

absence of prior information about parameter distributions (Ciric et al. 2012).  

Input parameter sets from sampling were then run through the model and the output 

measures x1, x2, and x3 were stored. I utilized the R package deSolve (Soetaert et al. 2010) which 

includes a numerical ordinary differential equation solver using the 4
th

 order Runge-Kutta 

method. Output measures were stored as a time-series with a total of 2,000 time steps. 
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Medians from each of the initial 2,340 simulation run outputs were then calculated using 

the spartan algorithm. A summary file was then created for each resampling curve, summarizing 

the medians of the initial 65 parameter sample output measures attributed to a parameter. These 

distribution data were then used to partition the output variance to input parameters.  

Sensitivity indices are obtained using the unique frequency assigned to a particular 

parameter and calculating the contribution to the model variance due to that parameter. First-

order indices using the classical FAST approach calculates the unique model variance due to a 

parameter. The total-order sensitivity indices are obtained by considering the residual variance 

that is not accounted for by the first-order indices (Saltelli et al. 2000). P-values were assigned to 

indices using a two-sample t-test by comparing the distribution of a parameter of interest to that 

of the dummy parameter’s distribution. The dummy parameter has zero effect on the model 

output and was used to establish significance among parameters.  

Sensitivity tests were conducted with sample sizes larger than 65 (i.e., NS =1025 and 

2049) and differences were observed in sea turtle egg abundance total sensitivity indices (Figure 

2). Most indices seemed to converge and their standard errors decreased as sample size 

increased. Thus the largest sample size of 2,049 was used to test the parameter sensitivities, 

which led to 73,764 model evaluations. Sensitivity tests were also evaluated at different time 

spans in the model (t=50, 100, 150, 200) and no large differences were observed in sensitivity 

indices. A time span of 200 was used to evaluate the parameter sensitivities.  
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Figure 2. Relationship of the total sensitivity index for sea turtle egg abundance against the 

number of samples taken (Ns = 65, 1025, 2049) within the range of the twelve parameters in the 

model with 200 time steps. 
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2.3 System Dynamics 

In order to understand the behavior of this system more fully, I also explored the 

parameter space defined by the facilitation and depredation by manipulating these variables 

individually. Model behaviors were characterized by incrementally adjusting parameters d and f 

one-at-a-time. One parameter was kept constant, while the other was being sampled. Uniform 

sampling was conducted across the parameter’s range resulting in 100 samples. 

I categorized the possible model behaviors as being either stable focus, stable limit 

cycles, aperiodic, or extinction. Stable focus means that output trajectories converge onto an 

equilibrium point (Upadhyay and Raw 2011). Stable limit cycle behavior means that output 

trajectories converge onto a stable orbit or oscillation between the maximum and minimum 

output values. Aperiodic behavior is characterized by no apparent pattern in the oscillations 

between the maximum and minimum output values. Extinction is when one or more output 

trajectories reach zero. 

2.4 Control Scenarios 

Recognizing that the derived parameters (Table 1) are probably unrealistic, I still wanted 

to evaluate the behavior of the system as a consequence of potential management scenarios. As 

resource managers are concerned with protecting the endangered sea turtles, I investigated how 

controlling for the different nest predators (ghost crab and raccoon) affects sea turtle egg 

abundance. To understand this, nest predator abundances were held constant at low, medium and 

high levels. In the first scenario, ghost crab abundance was held constant at 10, 100 and 250 

individuals. Parameter values used in these simulations are given in table 1. In the second 
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scenario, raccoon abundance was held constant at 10, 1,000 and 10,000 individuals and 

parameter values used are in Table 1. In order to produce a noticeable response, high raccoon 

abundances were used. 
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3. RESULTS 

3.1 Sensitivity Analysis 

Sensitivity indices and their associated errors were produced for all parameters of interest 

(Table 2; Figures 3, 4 & 5). Rankings were assigned to factors influencing species abundances 

(Table 3).  

Total-order sensitivity index for interaction coefficient a11 was significant in producing 

variance in sea turtle egg abundance (STi=0.455, P<0.001). Parameter a11 represents the 

interaction effects of sea turtle eggs on themselves. This limits increases in sea turtle egg 

abundance. Interaction coefficient a21 was significant in producing variance in sea turtle egg 

abundance (Si=0.307, P=0.001; STi=0.703, P<0.001). The interaction coefficient a21 represents the 

effect of sea turtle eggs on ghost crabs and it enhances population ghost crab growth due to sea 

turtle egg consumption. Such high Si and STi values indicate that ghost crab abundance is 

influential in reducing sea turtle egg abundance in the model. The interaction coefficient a21 was 

the most influential factor in the model. Small changes in a21 cause considerable variance to sea 

turtle egg abundance, indicating that sea turtle egg abundance is very sensitive to a21. The 

interaction coefficient a23 was significant in producing variance in sea turtle egg abundance 

(Si=0.061, P=0.019; STi=0.168, P=0.008). The depredation parameter d was significant in 

producing variance in sea turtle egg abundance (Si=0.019, P=0.038; STi=0.079, P=0.038).  
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Table 2. Partitioning of variance values in simulated resource, prey and consumer abundances to 

input interaction coefficients, nest depredation and facilitation parameters for both their main Si 

and total effect STi. Significant parameters and associated values (P<0.05) are in bold.  

Parameter Si±SE P STi±SE P 

Resource x1     
a11 0.107±0.006 0.002 0.455±0.015 <0.001 
a12 0.046±0.026 0.067 0.093±0.044 0.079 
a13 0.004±0.001 0.008 0.035±0.003 0.335 
a21 0.307±0.014 0.001 0.703±0.010 <0.001 
a22 0.015±0.004 0.027 0.053±0.021 0.132 
a23 0.061±0.013 0.019 0.168±0.023 0.008 
a31 0 0.468 0.006±0.001 0.951 
a32 0 0.165 0.012±0.017 0.634 
a33 0.002 0.003 0.038±0.008 0.165 
d 0.019±0.006 0.038 0.079±0.019 0.038 
f 0.001 0.024 0.043±0.008 0.087 
dummy 0 N/A 0.030±0.008 N/A 

Prey x2     

a11 0.008±0.003 0.041 0.086±0.027 0.089 
a12 0.231±0.009 0.001 0.640±0.012 <0.001 
a13 0.001±0 0.012 0.032±0.004 0.707 
a21 0.125±0.011 0.003 0.277±0.012 <0.001 
a22 0.053±0.006 0.005 0.323±0.046 0.012 
a23 0.003±0.005 0.1 0.130±0.024 0.083 
a31 0 0.978 0.061±0.022 0.524 
a32 0 0.716 0.018±0.003 0.884 
a33 0.040±0.008 0.016 0.119±0.012 0.01 
d 0.011±0.002 0.013 0.085±0.003 0.048 
f 0.075±0.056 0.054 0.231±0.066 0.023 
dummy 0 N/A 0.032±0.015 N/A 

Consumer x3     

a11 0.091±0.006 0.002 0.284±0.022 0.006 
a12 0.002±0.001 0.042 0.080±0.017 0.957 
a13 0.023±0.002 0.003 0.167±0.031 0.350 
a21 0.016±0.001 0.004 0.217±0.020 0.039 
a22 0.002±0.001 0.045 0.045±0.012 0.983 
a23 0.004±0.002 0.085 0.144±0.032 0.535 
a31 0 0.147 0.061±0.008 0.974 
a32 0 0.299 0.114±0.032 0.859 
a33 0.208±0.039 0.014 0.437±0.012 <0.001 
d 0.159±0.016 0.005 0.408±0.012 0.001 
f 0.138±0.017 0.007 0.276±0.019 0.007 
dummy 0 N/A 0.157±0.024 N/A 
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Figure 3. Proportion of total sea turtle egg abundance x1 variance explained by 12 model 

parameters analyzed using the eFAST method. The top panel represents main effects and is the 

variance explained by the particular parameter alone. The bottom panel represents total effects 

and is the variance explained by the interactions of the particular parameter with all other 

parameters. Parameter values larger than the dummy (red line) were considered significant. 
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Figure 4. Proportion of total ghost crab abundance variance x2 explained by 12 model parameters 

analyzed using the eFAST method. The top panel represents main effects and is the variance 

explained by the particular parameter alone. The bottom panel represents total effects and is the 

variance explained by the interactions of the particular parameter with all other parameters. 

Parameter values larger than the dummy (red line) were considered significant. 
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Figure 5. Proportion of total raccoon abundance x3 variance explained by 12 model parameters 

analyzed using the eFAST method. The top panel represents main effects and is the variance 

explained by the particular parameter alone. The bottom panel represents total effects and is the 

variance explained by the interactions of the particular parameter with all other parameters. 

Parameter values larger than the dummy (red line) were considered significant. 
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Table 3. Factor ranking of species abundances based on eFAST total effect index. Boldened 

variables are considered to be significant. Those in yellow were consistently significant among 

the three species. 

Rank Sea Turtle Egg Abundance Ghost Crab Abundance Raccoon Abundance 

1 a21 a12 a33 

2 a11 a22 d 

3 a23 a21 a11 

4 a12 f f 

5 d a23 a21 

6 a22 a33 a13 

7 f a11 dummy 

8 a33 d a23 

9 a13 a31 a32 

10 dummy a13 a12 

11 a32 dummy a31 

12 a31 a32 a22 
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Raccoon predation on sea turtle eggs a31 was not significant in producing variance in sea turtle 

egg abundance (Si=0, P=0.468; STi=0.006, P=0.951). 

Ghost crab predation on sea turtle eggs a12 had a significant effect on ghost crab 

abundance (Si=0.231, P=0.001; STi=0.640, P=<0.001). The interaction coefficient a12 was the 

most influential parameter for ghost crab abundance. The energy ghost crabs gain from sea turtle 

egg predation a21 had a significant effect on ghost crab abundance (Si=0.125, P=0.003; STi=0.277, 

P=<0.001). The effect of ghost crabs on itself a22 also had a significant effect on ghost crab 

abundance (Si=0.053, P=0.005; STi=0.323, P=0.012). The facilitation parameter had a significant 

effect on ghost crab abundance (Si=0.231, P=0.023). 

The effect of sea turtle eggs on itself a11 had a significant effect on raccoon abundance 

(Si=0.091, P=0.002; STi=0.284, P=0.006). The effect of raccoons on itself a33 had a significant 

effect on raccoon abundance (Si=0.208, P=0.014; STi=0.437, P=<0.001). This was the most 

influential parameter for raccoon abundance. Secondary depredation d of sea turtle nests by 

raccoons had a significant effect on raccoon abundance (Si=0.159, P=0.005; STi=0.408, 

P=0.001). The facilitation parameter f had a significant effect on raccoon abundance (Si=0.138, 

P=0.007; STi=0.276, P=0.007).  

Interaction coefficients a11, a13, a21, a33, facilitation parameter f, and the depredation 

parameter d were consistently important for all three species (Table 3). 

3.2 System Dynamics 

Rich dynamics in this system were initially discovered by varying facilitation and 

depredation parameter values one-at-a-time, while keeping other parameter values constant. The 
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values of the facilitation parameter f was varied across the range [0.01-0.99] and consistently led 

to stable focus. Varying depredation parameter d led to stable focus, stable limit cycles and 

extinction (Table 4). 

The model generated a wide range of behaviors. Regions of stable focus were found for 

sea turtle eggs, ghost crabs and raccoons (Figure 6). Regions of stable limit cycles were found 

for raccoons and ghost crabs. This led to oscillations in abundances (Figure 7). Aperiodic regions 

were found with three species co-existence. There was no pattern of the limits of maximum and 

minimum abundances within these regions (Figure 8). Regions of extinction were found for 

raccoons. Regions of extinction for ghost crabs were not found. Low secondary sea turtle egg 

depredation and high facilitation values led to extinction regions in the model (Figure 9). 

The parameter space was explored by further varying depredation and facilitation 

parameter values simultaneously. Depredation and facilitation parameter values were varied in 

the range [0-1] at 0.1 intervals (Figure 10a). Stable focus regions were found with three species 

co-existence. Extinction regions were also found with two species co-existence. In order to find 

more dynamic regions depredation parameter values were varied in the range [0.001-0.02] at 

0.0025 intervals and facilitation parameter values were varied in the range [0-1] at 0.1 intervals 

(Figure 10b). Depredation values greater than 0.015 and facilitation values less than 0.3 led to 

stable focus regions (Figure 10b). In general, high secondary sea turtle egg depredation and low 

facilitation values led to stable focus behaviors from the model. 
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Table 4. Dynamical outcomes for model system (Equations 1-3). Parameter values were kept 

constant (see Table 1) except for the facilitation (f) and depredation (d) multipliers. 

Representative dynamical outcome simulations are provided (Figures 6, 7, 8, & 9). 

Parameter varied Range in which parameter 

was varied 

Dynamical Outcome 

f 0.01-0.99 Stable focus 

d 0.001-0.002 

0.003-0.01 

0.02-0.99 

Extinction 

Stable limit cycle 

Stable focus 
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Figure 6. (a) Trajectories for an example of a stable focus for species abundances; (b) 

Corresponding phase plane plot of a stable focus. (d=1, f=0.0001) 
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Figure 7. (a) Trajectories for an example of a stable limit cycle for abundances of model system; 

(b) Corresponding phase plane plot of a stable limit cycle. (d=0.5, f=0.05)  
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Figure 8. (a) Trajectories for an example of aperiodic behavior for abundances of model system; 

(b) Corresponding phase plane plot of aperiodic behavior. (d=0.01, f=0.7) 



28 

 

 

Time

0 50 100 150 200 250 300

E
g
g
 A

b
u
n
d
a
n
c
e
 [
in

d
]

0

50000

100000

150000

200000

250000

300000
C

ra
b
 A

b
u
n
d
a
n
c
e
 [
in

d
]

0

5000

10000

15000

20000

25000

30000

R
a
c
c
o
o
n
 A

b
u
n
d
a
n
c
e
 [in

d
]

0

10000

20000

30000

40000

0

8000

16000

24000

32000

40000

80000

160000

240000

320000

5000
10000

15000
20000

25000

R
a
c
c
o
o
n
 A

b
u
n
d
a
n
c
e
 [
in

d
]

E
gg

 A
bu

nd
an

ce
 [i
nd

]

Crab Abundance [ind]

(a)

(b)

 

Figure 9. (a) Trajectories for an example of extinction for abundances of model system; (b) 

Corresponding phase plane plot of extinction. Raccoon populations go extinct. (d=0.001, f=0.8) 
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Figure 10. Parameter space of depredation and facilitation parameters. In (a) depredation and 

facilitation values are both varied in the range [0-1]. In (b) depredation values vary between 

[0.001-0.02] and facilitation values vary between [0-1]. 
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3.3 Ghost Crab Control Scenario 

Controlling for ghost crabs caused sea turtle egg abundance to increase for all three levels 

in the model. Controlling for ghost crabs at low abundances (x2=10) caused sea turtle egg and 

raccoon abundances to asymptotically approach a plateau (Figure 11a). The plateau value for sea 

turtle eggs for the smallest crab population was larger than found with the medium (x2=100) and 

high (x2=250) crab population levels. Controlling for ghost crabs at medium abundance levels 

caused sea turtle egg and raccoon abundances to approach a plateau asymptotically rather than 

overshooting it then stabilizing had ghost crab abundance not been constant (Figure 11b).  

At the high ghost crab abundance level, sea turtle egg and raccoon abundances increased 

rapidly at first, then decreased and approached a plateau value smaller than the low and medium 

ghost crab control abundances (Figure 11c). Comparison between the two nest predators showed 

that high ghost crab numbers had a larger effect on sea turtle eggs than high raccoon numbers. 

3.4 Raccoon Control Scenario 

Similar to the ghost crab control scenario, controlling for raccoons led to increased sea 

turtle egg and ghost crab abundances for all three levels in the model. Controlling for raccoons at 

the low abundance (x3=10) caused sea turtle egg and ghost crab abundances to increase 

logistically and approach a higher level than medium and low ghost crab control levels (Figure 

12a). At a medium control level (x3=1,000), sea turtle egg and raccoon abundances increased 

then decreased slightly and approached a plateau (Figure 12b). At the high raccoon control level 

(x3=10,000), sea turtle egg and ghost crab abundances oscillated around a value smaller than low 

and medium levels (Figure 12c). 
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Figure 11. The effects of sea turtle nest predator control on simulated abundances. Ghost crab 

abundances were held constant at (a) low (10 individuals), (b) medium (100 individuals) and (c) 

high (250 individuals) levels.  
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Figure 12. The effects of sea turtle nest predator control on simulated abundances. Raccoon 

abundances were held constant at (d) low (10 individuals), (e) medium (1,000 individuals) and 

(f) high (10,000 individuals) levels.   
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4. DISCUSSION 

4.1. Sensitivity Analysis 

A comparison of factors across species abundances showed there were different groups of 

influential factors among the three species (Table 3). Among the influential factors for sea turtle 

eggs were the interaction coefficients that dealt with the effect of sea turtle eggs on ghost crabs 

a21, the effect of sea turtle eggs on itself a11, and the effect of raccoons on ghost crabs a23. One 

aim of this study was to determine the influence of facilitation of raccoons by ghost crabs in this 

system, and how this affects sea turtle egg abundance and drives the system. In this model, 

changes in facilitation f had a lower effect on sea turtle egg abundance than other parameters. 

The interaction coefficient a21 represented the effect of sea turtle eggs on ghost crabs and had the 

highest sensitivity index value and was the main driver of the system. This suggests that the 

interaction between sea turtle eggs and ghost crabs can have a large impact on this food web. 

This parameter is interpreted as the effect of the addition of a single sea turtle egg on the per 

capita ghost crab growth rate. This raises the question: how does sea turtle egg energy enhance 

ghost crab reproduction? In an intensive field experiment in the Cape Verde archipelago, ghost 

crabs depredated an average of 50% of the total number of loggerhead eggs (Marco et al. 2015).  

The top three influential factors for ghost crab abundance were the interaction 

coefficients that dealt with the effect of ghost crabs on sea turtle eggs a12, the effect of ghost 

crabs on itself a22, and the effect of sea turtle eggs on ghost crabs a21. Interactions with sea turtle 

eggs were important and were an influential source of variation for ghost crab abundance. 

Interaction parameter a12 is interpreted as losses to sea turtle eggs due to ghost crab depredation. 
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Interaction parameter a22 is interpreted as losses to ghost crab abundance due to intraspecific 

effects such as competition for space or resources. Interaction parameter a21 is interpreted as 

growth for ghost crabs due to direct predation and was also influential for sea turtle egg 

abundance. Changes in the proportion of facilitation f by ghost crabs to raccoons had a large 

direct impact on ghost crab abundance, in the model (Table 3).  

The top three influential factors for raccoon abundance were the interaction coefficient 

that represented the effect of raccoons on itself a33, the secondary nest depredation proportion d, 

and the interaction coefficient that represented the effect of sea turtle eggs on itself a11.  

4.2. System Dynamics 

 In the model, a combination of low facilitation and high depredation levels led to 

community stability (Figure 10b). High facilitation and low depredation led to community 

instability and lower diversity (Figure 10b) as one or more species would go extinct. There is a 

tradeoff between the negative effect of secondary depredation on the resource versus the positive 

effect (benefit) of facilitation on the consumer. If the consumer does not benefit much (low f), 

but the resource is significantly harmed (high d), there is stability. Vice-versa, if the consumer 

benefits much (high f), but the resource is not significantly harmed (low d), there is instability. 

This could mean that as ghost crabs dig more burrows, raccoons are provided greater access to 

sea turtle nests leading to community instability.  

This system is an example of where increased facilitation leads to community instability. 

Facilitation in an ecological context has been documented extensively in plant communities 

(Brooker et al. 2008) and does not always lead to community instability. For example, a similar 
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case study indicates that Spartina alterniflora facilitates the establishment and persistence of 

cobble beach plant communities by stabilizing the substrate and enabling seedlings to emerge 

and survive (Bruno 2000). However, facilitated predation may not function in the same way as 

simple facilitation and should be studied further in the future. 

This model is an extension of basic intraguild predation models (Polis and Holt 1989; 

Polis and Holt 1992; Polis and Holt 1997; Diehl and Feibel 2000) for exploration of the impacts 

of facilitated predation on resource abundances. I showed that a unidirectional facilitative 

relationship between the prey and consumer had a small effect on resource abundance (Figure 3) 

and does not promote a stable coexistence (Figure 10) in this system with the estimated 

parameter values used. A similar intraguild predation modeling study looked at the unidirectional 

facilitative relationship between the consumer and prey and found that facilitation produced a 

stable coexistence of both predators and led to three-species coexistence (Shchekinova et al. 

2014). Another similar intraguild predation microcosm study involving micro-zooplankton in 

which the consumer facilitates the prey showed that facilitation increased exploitation of a 

common resource and opens the possibility for a stable coexistence (Loder et al. 2014). 

4.3. Potential Management Considerations  

Many studies have focused on sea turtle conservation (Frazer 1992; Hamann 2010; 

McClenachan et al. 2006). Crouse et al. (1987) suggested that the key to improving the outlook 

for loggerhead turtle populations is to reduce mortality in later life stages especially the large 

juveniles based on Southeastern United States loggerhead fecundity, survival and growth rate 

data. Although this would be ideal, the majority of sea turtle work is conducted on nesting 
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beaches and was the focus of this study. Based on the sensitivity analysis and control scenarios, 

there are some management implications that can be considered if maximizing sea turtle 

survivorship is a management goal. It should be acknowledged that there are caveats in the 

model. For example the model does do something unexpected (the raccoon population 

skyrockets) which is not representative of the actual system and occurs when certain parameter 

values are used (Figure 7). However, my results suggest that the system could be more complex 

than expected and perhaps controlling only for raccoons may be inadequate. The possibility for 

controlling for ghost crabs should be explored as a management strategy to maximize sea turtle 

nest production. It may be beneficial if management resources are limited to ignore raccoons and 

focus on excluding ghost crabs from nests. High levels of ghost crabs have a more significant 

impact on sea turtle eggs than high levels of raccoons when Figures 11c and 12c are compared. 

This is supported by Barton and Roth (2008) where the highest rates of egg predation by both 

predators (31%) occurred when raccoon abundance was lowest and ghost crab abundance was 

highest in a Central East-Coast Florida beach study. Also, parameters a21, a23 and a12 involved 

ghost crabs interacting with sea turtle eggs and were ranked as influential in the sensitivity 

analysis. A review of sea turtle hatchling production from Florida beaches between the years 

2002-2012 revealed that ghost crab depredation was more frequent than mammalian depredation 

in all but Southwestern Florida and suggested that mortality from ghost crabs should be more 

closely examined (Brost et al. 2015). If exclusion devices are used (e.g., wire mesh cages) on sea 

turtle nesting beaches, a smaller mesh cage hole size may prevent ghost crabs from entering 

nests. This method would be simple to implement and be relatively inexpensive.  



37 

 

Based on the sensitivity analysis, sea turtle nest secondary depredation proportionality d 

was an influential factor affecting sea turtle egg abundance. The facilitation proportionality f was 

also an influential factor affecting sea turtle egg abundance. This means that interactions between 

raccoons and ghost crabs are important as these indirectly affect sea turtle egg abundance and 

should be considered as part of a management plan. 

4.4 Conclusions 

A global sensitivity analysis such as the one used here can be a valuable tool in 

identifying influential vs. non-influential parameters in many ecological models (e.g., 

population, meta-population, habitat, landscape). This then allows one to conduct additional 

analysis on influential parameters. Food-web interactions are complex and consideration of other 

biotic factors such as other sea turtle nest predators and abiotic factors such as beach dune 

environmental characteristics could also be coupled to the model. A local stability analysis could 

be conducted to determine local model behavior around an equilibrium point This is done by 

taking partial derivatives of the system around an equilibrium point (or stable focus), producing a 

Jacobian matrix and then calculating eigenvalues λ1, λ2, and λ3 (Acevedo et al. 2013). Further 

investigation of facilitation could be looked at in this system and its response to habitat stress 

gradients such as human-used beaches. Although the analysis of this multispecies system was a 

case study, using different derived parameter values, this model could also be used as a 

foundation to study similar interactions in other natural communities. Also, exclusion 

experiments may be appropriate to further elucidate the complex relationships between the 

species in this simple, yet complex 3-species model. 
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APPENDIX A. STELLA MODEL MAP AND EQUATIONS USED DURING MODEL 

DEVELOPMENT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

 
 

Ghost_Crabs(t) = Ghost_Crabs(t - dt) + (GC_dynamics) * dt 

INIT Ghost_Crabs = 100 

GC_dynamics = Ghost_Crabs*(rGC-GC_GC*Ghost_Crabs+GC_STE*Sea_Turtle_Eggs-

GC_R*Raccoons) 

Raccoons(t) = Raccoons(t - dt) + (R_dynamics) * dt 

INIT Raccoons = 10 

R_dynamics = Raccoons*(rR-

R_R*Raccoons+R_GC*Ghost_Crabs+R_STE*Sea_Turtle_Eggs+Facilitation) 

Sea_Turtle_Eggs(t) = Sea_Turtle_Eggs(t - dt) + (ST_Eggs_Dynamics) * dt 

INIT Sea_Turtle_Eggs = 10000 

ST_Eggs_Dynamics = Sea_Turtle_Eggs*(rSTE-STE_STE*Sea_Turtle_Eggs-

STE_GC*Ghost_Crabs-STE_R*Raccoons-Secondary_Depredation) 

Depredation_proportion = .001 

Facilitation = Facilitation_Proportion*STE_GC*Sea_Turtle_Eggs*Ghost_Crabs 

Facilitation_Proportion = .01 

GC_GC = .00001 

GC_R = 0.00001 

GC_STE = 0.000001 

R_GC = 0.0000001 

R_R = .001 

Ghost Crabs
Raccoons

Sea Turtle Eggs

GC dynamics R dynamics

ST Eggs Dynamics

GC STE GC RGC GC R RR STE R GC

STE STE STE GC STE R

rGC rR

rSTE

Facilitation

Facilitation Proportion

Secondary Depredation

Depredation proportion
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R_STE = 0.0000001 

rGC = 0.0001 

rR = .00001 

rSTE = .05 

Secondary_Depredation = Depredation_proportion*STE_GC*Ghost_Crabs*Raccoons 

STE_GC = 0.000001 

STE_R = .000001 

STE_STE = .0000001 
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APPENDIX B. THE 3-SPECIES FACILITATIVE AND INTRAGUILD PREDATION 

MODEL USING THE R SOFTWARE THAT WAS USED FOR THE EFAST 

SENSITIVITY ANALYSIS 
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# The working directory to the folder where input parameter sample files are saved 

setwd("E:/R_eFAST_10_10_2014/Samples") 

 

# Creates a list of the directory file strings as an array in csv format 

x <- list.files(pattern = ".csv") 

 

# Number of files in directory 

nfiles <- length(x) 

 

# Zero array that will hold model output values  

spp <-0 

############ 

sp <- 0 

xp <- array(0,c(2340,3)) 

for (i in 1:3){ 

for (j in 1:12){ 

for (k in 1:65) { 

sp <- sp +1 

xp[sp,] <- c(i,j,k)}}} 

############# 

 

# Outer loop that reads in each csv file 

for (y in (1:nfiles)){ 

   

     # Stores csv file data         

     dataSet <- read.csv(x[y]) 

 

     # dataSet dimensions 

     d <- dim(dataSet) 

 

     # Inner loop that reads in one row at a time from a particular csv file 

     for (i in 1:d[1]){    

  

          # dataSet row values that will be used as input parameter values for the model 

          p <- dataSet[i,] 

   

          # Constant parameters not used in the analysis 

          r1=0.05 

          r2=0.0001 

          r3=0.00001 

     

          # Initial conditions 

          X <- c(x1=10000,x2=100,x3=10) 
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          # Defines the ordinary differential equation model 

          lotka3sp <- function(t,X,p) 

          {with(as.list(c(X,p)), 

          { 

            dx1 <- (r1 - a11*x1 - a12*x2 - a13*x3 - dep*a12*x2*x3)*x1 

            dx2 <- (r2 - a22*x2 + a21*x1 - a23*x3)*x2 

            dx3 <- (r3 - a33*x3 + a31*x1 + a32*x2 + fac*a12*x2*x1)*x3       

            list(c(dx1,dx2,dx3)) 

          })} 

 

          # Model time span and time step 

          times <- seq(0,200,by=0.1) 

 

          # Import the differential equation solver package 

          library(deSolve) 

 

          # Stores differential equation model output 

          t.X <- ode(y=X, times=times, func=lotka3sp, parms=p) 

 

          # Omits time column 

          A <- matrix(c(t.X[,2],t.X[,3],t.X[,4]), nrow=2001, ncol=3) 

 

          # Adds column names 

          colnames(A) <- c('x1','x2','x3') 

 

          #Print(xp) 

          spp <- spp+1 

          print(spp) 

 

           # Creates output file directory 

output_file <-      

paste("E:/R_eFAST_10_10_2014/Simulation_Results/",toString(xp[spp,1]),"/",toString(x

p[spp,2 ]),"/", toString(xp[spp,3]),"/1","/Results.csv",sep = "")     

 

          # Saves output file directory 

          write.csv(A, file = output_file,row.names=FALSE) 

 

     } 

} 
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