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ABSTRACT 

Crayfish are an economically and ecologically important invertebrate, however, 

research on crayfish in native habitats is patchy at best, including in Florida, even 

though the Southeastern U.S. is one of the most speciose areas globally. This study 

investigated patterns of abundance and habitat distribution of two crayfishes 

(Procambarus paeninsulanus and P. fallax) in two Florida spring-fed rivers (Wakulla 

River and Silver River, respectively). Study sites were surveyed once each season from 

April 2015 to March 2016 with baited minnow traps checked every other day, four times 

each survey. Habitat and environmental parameters evaluated included dominant 

vegetation or bottom type, percent cover, organic matter content, water depth, moon 

illumination and dissolved oxygen. Abundance was estimated with N-mixture models. 

Model selection judged the relative evidence between hypotheses relating habitat and 

environmental covariates to crayfish abundance. P. paeninsulanus distribution and 

abundance in Wakulla River was explained by time of year, dissolved oxygen and 

dominant bottom and vegetation type. P. fallax distribution and abundance in Silver 

River was explained by time of year and percent coverage of vegetation. Detection of P. 

paeninsulanus was higher than P. fallax and abundance of P. paeninsulanus was more 

heterogenous than P. fallax (6-18 versus 12-14 per site in summer survey). Distribution 

of P. paeninsulanus as described by vegetation and bottom type also seems to follow 

heterogeneity in management areas in Wakulla River. Results will assist managers in 

understanding potential impact of herbicidal control of Hydrilla verticillata on crayfish. 

This study also fills knowledge gaps on Florida crayfish natural history and ecology. 
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CHAPTER ONE: INTRODUCTION 

Crayfishes (Order Decapoda) are ecologically and economically important to 

freshwater ecosystems worldwide (Hobbs & Lodge, 2010; Helms et al., 2013). They 

have multiple roles, such as contributing to nutrient cycling, acting as prey, predator and 

ecosystem engineer, all of which makes them an important group whose loss could 

negatively impact freshwater ecosystem processes (Crandall & Buhay, 2008).  

Crayfishes engineer ecosystems through their burrowing and feeding activities 

(Creed & Reed, 2004; Moore, 2006). Burrows are used by crayfishes to adjust to 

environmental humidity and temperature, avoid desiccation, brood eggs, and for 

protection from predators. Deep and complex burrows are found in terrestrial areas and 

ephemeral water bodies, but even open water areas have crayfishes that make simple 

and shallow tunnels (Hobbs & Lodge, 2010). This burrowing aerates sediments 

influencing nutrient cycling (Palmer et al., 1997; Covich, Palmer & Crowl, 1999) and 

creates habitat for other species; for example, snakes and toads are documented as 

utilizing burrows of cambarid Fallicambarus gordoni in Mississippi (Welch et al. 2008). 

Crayfishes regulate littoral food webs by eating detritus, plants, other crayfishes and 

invertebrates such as gastropods (Lodge et al., 1994; Momot, 1995; Covich et al., 1999; 

Nystrӧm, 2002; Dorn & Wojdak, 2004). They influence nutrient cycling through grazing 

on and shredding detritus (Anderson & Sedell, 1979; Palmer et al., 1997; Covich, 

Palmer & Crowl, 1999; Graça, 2001). For example, they will increase the rate of 

breakdown of leaf litter and decrease the amount of fine particulate organic matter and 

inorganic sediment in headwater streams (Creed & Reed, 2004).  Crayfishes are prey to 
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many species, including birds, fish and snakes (Hobbs & Lodge, 2010); for instance, 

they are the primary food source of the striped crayfish snake Regina alleni (Family 

Colubridae) in Florida (Franz 1977; Godley 1980). Crayfishes are also a possible place 

of contaminant accumulation in the food web because they bioaccumulate heavy metals 

into tissues available to predators (Kouba, Buřič & Kozák 2010, Suárez-Serrano et al. 

2010).  

Crayfishes are commercially harvested worldwide, have been consumed for 

centuries in European countries and are subsistence food in Papua New Guinea, for 

example (Holdich, 2002). Due to human transport for food, bait or pets (Lodge et al., 

2000; Holdich, 2002), crayfishes have become established in Europe and North 

America as non-native invasive species. For example, the cambarid Procambarus 

clarkii, the Louisiana swamp crayfish, was brought to Italy in the 1980s (Gherardi et al., 

2000) and Pacifastacus leniusculus (Family Astacidae), signal crayfish, was brought to 

Northern Europe (Bubb et al., 2004). Invasive crayfishes impact abundance of prey 

species (e.g., vegetation, snails), directly compete with native species, and are likely the 

source of crayfish fungal parasite (Aphanomyces astaci, ‘crayfish plague’, Family 

Leptolegniaceae) introduction, which appears to be a main factor in decline of native 

European crayfishes (Holdich, 2002; Gherardi & Acquistapacae, 2007; Hobbs & Lodge, 

2010). 

There are crayfish native to all continents except Africa where they are 

introduced and Antarctica (Hobbs & Lodge, 2010). Even though crayfishes are 

widespread and ecologically and economically important, The Society for Freshwater 
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Science meeting in 2012 revealed many gaps in the understanding of basic biology and 

ecology of native crayfishes and called for targeted research on these topics (Helms et 

al., 2013). There has been limited study on the ecology of crayfishes in parts of the 

southeast United States (U.S.), particularly Florida, where this study occurs. The 

southeast U.S., alongside Southeastern Australia, is a center of global crayfish diversity. 

At least 176 species out of 640 known globally occur across the southeast U.S. coastal 

plain and of the 369 known species to the U.S., at least 57 of these species occur in 

Florida (Fetzner, 2016). Most of these are in the genus Procambarus (Family 

Cambaridae).  

 Basic crayfish biology and ecology was explored for the first time for many of 

those species in The Crayfishes of Florida (Hobbs, 1942), which documented life 

history, general species distributions, methods of trapping and methods of identification. 

Aspects of general natural history for Florida Cambaridae species have been addressed 

by other researchers including localities and distributions (Procambarus fallax, 

Procambarus paeninsulanus and Procambarus youngi, Mason, 1994; Cambarus miltus, 

Taylor et al., 2011), population structure (Procambarus spiculifer and P. paeninsulanus, 

Breinholt, Moler & Crandall, 2011), and population response to environmental stress 

(Procambarus alleni, P. fallax, Acosta & Perry, 2001; Dorn & Volin, 2009).  Observation 

and experiments on tolerance to abiotic and biotic factors have been studied for several 

surface and cave species (P. spiculifer, P. paeninsulanus, Procambarus leonensis, 

Procambarus kilbyi, Procambarus horsti, Procambarus orcinus and Cambarus 

cryptodytes, Caine, 1978).  
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However, there are gaps in knowledge regarding habitat distribution, abundance, 

life history, and demography for many species that occur in Florida. Although there is 

high regional (gamma) diversity, there is low local (alpha) diversity; most watersheds 

have a limited number of species each, at most, because original populations were 

isolated then radiated in different, individual watersheds during their evolutionary history 

(Hobbs & Lodge, 2010). So, studying crayfishes in one watershed does not necessarily 

translate to other species or other watersheds. In addition to these global and regional 

research needs, study of crayfish population dynamics, ecology and abundance is 

desired by local managers of Florida rivers (Matt Phillips, unpubl. data). 

To address some of the specific knowledge gaps in rivers associated with two 

major Florida spring systems, this study investigated patterns of habitat distribution and 

abundance of two crayfishes in two Florida spring systems (P. paeninsulanus and P. 

fallax in the Wakulla and Silver Rivers, respectively).  This study confirms previous 

reports of these species’ occurrence in Wakulla and Silver Rivers. Both species are 

commonly reported in streams and lotic environments in Florida and Georgia. Both form 

tertiary (shallow) burrows, although P. paeninsulanus is known to burrow more readily 

than P. fallax., P.paeninsulanus is possibly is a secondary, more complex tunnel 

burrower (Hobbs, 1942; Franz, 2002; Taylor et al., 2007; Crandall, 2010a; Crandall, 

2010b). 

A suite of model hypotheses relevant to the physiology, behavior, life history and 

ecology of crayfish were tested to attempt to explain abundance and detection 

probability of each species across a time span of one year. By comparing a suite of 
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models of habitat and environmental covariates, this study provides new insight into the 

basic ecology and habitat preferences of these species and provides critical population 

information such as relative abundance estimates which can be used as baseline data 

for informing conservation management planning and future management actions 

related to the sustainability of the populations of these species. 
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CHAPTER TWO: METHODS 

Study areas 

The study was conducted in two first magnitude spring-fed rivers in Florida, USA. 

The Wakulla River, in northwest Florida, is approximately 14.5 kilometers long from 

where it originates at Wakulla Springs to where it meets the St. Mark’s River before 

entering the Gulf of Mexico. This survey covers approximately 6.5 kilometers of the river 

from the springhead downstream. Sally Ward, a spring-fed creek that flows into the 

Wakulla River, was also included. The first 4.8 kilometers of the river is closed to the 

public and boat traffic is controlled by the state park. The Wakulla River is one to three 

meters deep and approximately 100 meters at its widest point (Matt Phillips, unpubl. 

data).  

The Silver River, in north central Florida, originates at Silver Spring and runs for 

8 kilometers until it meets the Ocklawaha River. The full length of Silver River was 

surveyed. It is open to public boat traffic. The Silver River may reach depths of up to 6 

meters (J. Sowards, unpubl. data) and approximately 60 meters at its widest point.  

Survey design and crayfish collection 

Each river was sampled in April 2015 (Spring), July & August 2015 (Summer), 

October & November 2015 (Fall) and February & March 2016 (Winter). During each 

survey, 50 minnow traps (except 42 in Wakulla River in April 2015) were set. The traps 

were checked every other day (in other words, set for two nights) four times each 

survey. 
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The choices for trap days and bait type were based on the literature and a pilot 

study. The minnow traps had 2.54-centimeter (one inch) diameter openings. A 

perforated 20 mL plastic vial was filled halfway with canned cat food (Friskies brand 

mixed grill classic paté) as bait and placed in the trap.  I conducted a pilot study in the 

Wakulla River and return on effort was the same for two nights as three to four, so two 

nights were used to reduce total length of each survey to eight days. During the pilot 

study baited minnow traps were also compared with throw traps and baited three-holed 

pyramid traps. Baited minnow traps produced the highest catch, which is commensurate 

with recommendations for trapping crayfishes in vegetated and non-wadeable areas 

(Larson & Olden, 2016). It is known that this method is biased in that juveniles or 

smaller adults and females will be undersampled (Hobbs & Lodge, 2010).  

Points along the stream bank were randomly selected and traps were placed at 

least 60 meters apart for independence since the analysis used assumes occupancy 

and detection between points is independent. The choices for trap location were based 

upon literature evaluations of general movement, home range behavior and food-finding 

behavior of related crayfishes. Crayfishes use chemical cues to find food. They are 

known to move toward a food source and use various organs including the antennules 

and walking legs to detect food at close and far distances. The outer rami of the 

antennules have been identified in detecting a food source up to a distance of 0.7 

meters in P. clarkii) (Giri & Dunham, 1999; Moore & Grills, 1999; Hobbs & Lodge 2010). 

Sampling areas for baited traps were tested in Florida Everglades for P. alleni and were 

56 meters 2 (Acosta & Perry 2000), indicating that this species can find and detect food 



8 

at least 4.2 meter radius from the trap center. Crayfishes are known to have home 

ranges and have been tracked to move up to 60 meters and less frequently up to 400 

meters (over weeks) (Black, 1963; Gherardi, Barbaresi & Salvi, 2000; Gherardi, 

Tricarico & Ilheu, 2002; Bubb, Thom & Lucas, 2004). See Figure 1 for sampling 

schematic. 

Whole specimens of a subset of 1st form male crayfish and samples of the 1st left 

male pleopod of other first form males were taken for species identification (Hobbs, 

1989; Hobbs & Hobbs, 1991; Fenzter, 2015). Dr. D. Christopher Rogers at the 

University of Kansas was consulted and verified identities and taught identification 

techniques during a visit to his laboratory. Voucher specimens are preserved with 70% 

ethanol and are stored for future researcher use at the Stuart M. Fullerton Collection of 

Arthropods at the University of Central Florida.  

Abiotic and biotic habitat parameters considered important to crayfish physiology, 

feeding or shelter were recorded at each site and during each survey. Parameters 

collected include percent cover of vegetation, species, vegetation or bottom type 

(emergent, submerged or bottom/algae), water depth, moon illumination and dissolved 

oxygen (milligrams/liter) (Caine, 1978; Nyström, 2002; Franke & Hoerstgen-Schwark 

2013).  Species of vegetation (floating, submerged, and emergent) were recorded within 

a 1 m2 quadrat along with percent cover of each species and the total percent cover of 

all vegetation. Percent of algal covered-bottom and bare bottom (sediment) was 

combined and recorded as one value because often these bottom types occurred 

together and without any vegetation. The water depth was recorded to the nearest 
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hundredth of a meter. Dissolved oxygen was recorded with an YSI ProODOTM (Yellow 

Springs, OH, USA) meter; this instrument measures both water temperature and 

milligrams/liter and percent dissolved oxygen. Percent organic matter was determined 

from a sediment sample at a subset of sites selected by dominant vegetation each 

survey. Sediment samples were collected by sweeping a dip net on the bottom to collect 

approximately 3.8 liters (one gallon) of sediment. These sediments were subsequently 

dried at 60°C in a Fisher ScientificTM IsotempTM oven (Waltham, MA, USA). The 

sediments were sifted with a 2mm sieve. Twenty-five grams (in five gram subsamples) 

were ashed in a 550° C Fisher Scientific TM (Waltham, MA, USA) or Neytech Vulcan 3-

550 muffle furnace (Bloomfield, CT) for loss on ignition. Weights before and after ashing 

were used to calculate percent organic matter in each sample. A moon illumination 

index was created by taking the hours the moon was out per day multiplied by the 

fraction of the moon illuminated by the sun (Navy Astronomical Applications) and 

summed across both nights for each of the four survey days.  
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Figure 1. Sampling scheme cartoon. (a) At each trap site, within a 1 m2 quadrat, habitat parameters 

were recorded. (b) Each trap was at least 60 meters apart and bank position was randomly selected. 
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N-mixture modeling justification 

Abundance was estimated with N-mixture models in package unmarked in R 

(Vienna, Austria) (Royle, 2004; Fiske & Chandler 2011). Although capture-mark-

recapture (CMR) is a common and well-known approach, it was not utilized because of 

the specific goals of this study and potential limitations of CMR in the data analysis 

stage. There was no preliminary data in these rivers of capture rates or best method of 

capture before the pilot study. Counts of crayfish were expected to be sparse 

(producing many zero counts), based on other studies of abundance and the n-mixture 

model literature (e.g. Royle, 2004). Because CMR may not make good estimates with 

sparse data, N-mixture models (a class of hierarchical models) were employed. 

N-mixture models require no marking or recapturing, only replication spatially and 

temporally. The end goal of using this approach was to estimate site-level abundance 

termed lambda. This is explained by the state equation, or process model, which takes 

the form of a probability distribution for count data like the Poisson distribution. 

However, since the data were observed counts subject to detection, an equation must 

be included for measurement error. This equation, the observation model, takes the 

form of a binomial distribution and describes the variability in observed counts, given the 

counts per site. The observation model estimates p, or detection probability. Previous to 

these models, there was not a method to estimate both detection probability and 

abundance from the same count data (Anderson, 2003; Kéry, Royle & Schmid, 2005).  

Covariates can be applied to both abundance and detection, and these covariates can 
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be the same (Kéry, 2008). Abundance can be more accurately estimated if imperfect 

detection is accounted for (Kéry et al., 2005).  

An example of this approach in a similar study estimated bird abundance in 

Switzerland (Kéry et al., 2005). In that study, multiple quadrats (sites) were sampled two 

to three times in a breeding season for several species of birds. Habitat covariate data 

included in the analyses were elevation of the mountain and forest cover. They 

compared the covariate models to null models and compared the negative binomial 

versus Poisson mixture distributions on the process model as well. For most of the 

species, the negative binomial covariate models best explained the data when 

compared with AIC (Akaike’s Information Criterion). They found for the species 

surveyed that different relationships occurred between abundance and forest cover 

and/or elevation; for example, the skylark had a negative relationship with both, but 

blackbirds had a positive relationship with forest cover and negative relationship with 

elevation. Detection probability differed between species and between covariates, which 

were effort (minutes spent surveying per kilometer) and survey date (how far along into 

breeding season they were sampling). Previous information was available on difficulty of 

detection of these species, and they found their results commensurate; detection of the 

easier species was on average 0.84 (out of 1.0) and for the harder species was on 

average 0.53. They note that abundance estimates are greater with mixture models 

than with the use of territory mapping (a method of finding bird abundance), possibly 

due to bias in either approach. However, they also note that because mixture modeling 

accounts for detection, the territory method may in fact be underestimated. So, the 
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authors purport that this method seems appropriate for the type of abundance and 

distribution questions they set out to solve, and which are similar to this study. 

Multi-model inference 

Temporally and spatially replicated count data were analyzed and covariates 

applied to both abundance and detection. Inference was based on multi-model 

selection.  A suite of hypotheses was developed. These hypotheses for habitat 

distribution, detection and abundance were carefully chosen based on known crayfish 

general ecology, physiology and behavior from the literature and on the specific 

conditions of the rivers in this study. The models chosen before analysis were those that 

best reflect the hypotheses. The statistical models describe effects of covariates on both 

detection and abundance. 

Detection parameters 

The covariates of moon illumination index, water depth, percent cover of 

vegetation and trap day were selected. These parameters may impact the probability of 

the crayfish to intersect a trap. The phase of the moon is implicated in synchronization 

of molting in Astacus astacaus (Astacidae) (Franke & Hoerstgen-Schwark, 2013) and 

therefore, may relate to how actively they are doing other activities, like food searching, 

since crayfishes will find shelter during molting(Hobbs & Lodge, 2010). Water depth 

may impact the ability to access the trap based on preliminary observation during the 

pilot study. Percent cover of vegetation may influence how crayfish search for food or 

may provide shelter from predators and conspecifics. Trap day (the number of days the 
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trap was set within a survey, i.e. the sampling day) is used to explain possible variation 

that is not ascribed to any other habitat or environmental parameter. Each of the 

parameters was included in a univariate detection model and within additive models 

(see Tables 1 and 3 for statistical models). The null model is included in case none of 

the covariates explain the variation in the data or if there is too little data to assess the 

covariates included. 

Abundance parameters 

The covariates of dissolved oxygen, dominant bottom type (submerged 

vegetation, emergent vegetation or bare/algal-covered bottom), percent cover of 

vegetation, percent organic matter and survey time of year were selected. These 

parameters were considered relevant to defining crayfish abundance at a site and may 

be used as measures of habitat preference or quality. Crayfishes are known to have 

physiological tolerance limits to dissolved oxygen (Caine, 1978). Vegetation is important 

to crayfish shelter and food supply. Organic matter is also a potential food supply. Time 

of year (for example, connected to changes in temperature or day length) is tied to 

breeding and molting to adult and/or reproductive stages (Hobbs & Lodge, 2010). 

Although sites were the same GPS location between seasons they are considered 

unique for the analysis in terms of the crayfish population present and so the sites and 

survey time of year were combined into one data set; time of year therefore is a site 

covariate in the analysis. Temperature of the water, although potentially relevant to 

crayfish physiology (Caine, 1978) was excluded because of its similarity across surveys 

and along the length of the rivers. Each of the covariates was included in a univariate 
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detection model and within additive models. The null model is included in case none of 

the covariates explain the variation in the data or if there is too little data to assess the 

covariates included. See Table 1 for a summary of the parameters used, the expected 

direction of effect for each, and the models in the model set in which that parameter was 

included. 
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Table 1. The parameters included in the models (first column), the effect that each was predicted to 

have on abundance and/or detection probability (second column), and the models into which that 
parameter was included (third and fourth columns). M=moon illumination, WD=water depth, TD=trap day, 
PC=percent cover, DBT=dominant bottom type, DO=dissolved oxygen, OM=organic matter content, 
TOY=survey time of year. 

Parameter A: effect on abundance 
D: effect on detection 

Models 
for 
detection 

Models for  
abundance  

Moon 
illumination 
index (M) 

A: NA 
D: Higher detection at 
lower illumination 

M 
WD+M 
PC+M 

NA 

Water Depth 
(WD) 

A: NA 
D: Lower detection at 
greater depth 

WD 
WD + PC 
WD + M 

NA 

Trap day 
(TD) 

A: NA 
D: heterogeneity 
between days 

TD NA 

Percent 
cover of 
vegetation 
(PC) 

A: Higher abundance at 
higher coverage 
D: Lower detection at 
higher coverage (more 
difficult to find trap) 

PC 
WD + PC 
M + PC 

PC 
PC + TOY 
PC + DBT + TOY 
PC + DO + TOY 
PC + OM + TOY 
PC * TOY 

Dominant 
bottom type 
(DBT) 

A: Higher abundance in 
vegetated bottom types 
D: NA 

NA DBT 
DBT + TOY 
DBT + DO + TOY 
PC + DBT + TOY 
DBT * TOY 
 

Dissolved 
oxygen (DO) 

A: Higher abundance at 
higher DO 
D: NA 

NA DO 
DO + TOY 
PC + DO + TOY 
DO + DBT + TOY 
DO * TOY 
 

Organic 
matter 
content (OM) 

A: Higher abundance at 
higher organic matter 
content 
D: NA 

NA OM 
OM + TOY 
OM + PC + TOY 
OM * TOY 
 

Survey time 
of year 
(TOY) 

A: Higher abundance in 
summer and fall surveys 
D: NA 

NA TOY; TOY + DO; TOY + OM; TOY + 
DBT; TOY + PC ; TOY + PC + DBT; 
TOY+DBT+DO; TOY+PC+DO; 
TOY+PC+OM; TOY * PC; TOY*DO; 
TOY * OM; TOY*DBT 
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Model selection and averaging 

 AICc model selection was used. AICc is a form of AIC, Akaike Information 

Criterion, that adjusts for smaller sample sizes (Johnson & Omland, 2004). The model 

selection on detection covariates first was conducted with the full interactive abundance 

model applied to all detection models. The most informative model of detection was 

selected, which was then applied to the suite of candidate abundance model 

hypotheses. The Poisson mixture distribution was applied to all models, which has been 

demonstrated as effective for describing count data of organisms provided that the 

covariates can explain spatial variation of abundance not described by just the Poisson 

(Kéry et al., 2005). The Zero-inflated Poisson, although possibly appropriate for a 

distribution of counts like those in Silver River (see Appendix A for histograms of counts 

for both rivers), would be better suited if attempting to estimate ‘true’ abundances 

instead of relative abundances. Adjustment for overdispersion (having high frequency of 

zeros in the count data) was made by applying the Goodness of Fit test ĉ (variance 

inflation factor) (see Appendix B) during the estimation & model-averaging phase. This 

procedure inflates the estimated standard errors to account for uncertainty due to 

unmodeled overdispersion. Estimates of abundance were made by model averaging on 

the candidate model set, whereby the weights of the models were applied to the 

abundance estimates for each model and then those estimates were averaged. Model-

averaging was conducted using package AICcmodavg in R (Mazerolle, 2016).  
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CHAPTER THREE: RESULTS 

Summary of data collected 

The raw count data for each river for each survey are presented in Table 2. Wakulla 

River spring survey produced the fewest crayfish at 109 and fall survey produced the 

most at 456. Silver River winter survey produced the fewest crayfish at 25 and summer 

survey produced the most at 118.  Males made up 56% to 74% of the total individuals 

captured (pooled across time of year and rivers). Table 3 shows summary statistics of 

the site -level habitat covariate data collected for each river pooled across time of year. 

A plant species list and all habitat covariate data plotted and pooled by time of year are 

in Appendix C. 
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Table 2. The raw counts of crayfish for each river and each species for each time of year survey, pooled 
across trap day. So, for Wakulla River in Spring, 109 P. paeninsulanus were recorded after checking the 
42 traps 4 times.  

Survey: Spring Summer Fall Winter 

Wakulla (P. paeninsulanus) 109 444 456 167 

Silver (P. fallax) 92 118 33 25 

 

Table 3. The summary statistics for habitat covariates recorded at the site level, pooled across time of 

year. Rows are minimum, mean and maximum values (except for number of species of vegetation, 
columns 6 and 7).  

 

River Dissolved 
oxygen 
(mg/L) 

Cover of 
vegetation
* (percent) 

Organic 
Matter 
content 
(percent) 

Water 
depth 
(meters) 

Dominant 
emergent 
vegetation 
(species 
no.) 

Dominant 
submerged 
vegetation 
(species 
no.) 

Wakulla Min.   1.90 
Mean 4.94 
Max.  7.73 

0.00 
43.10 
125.00 

0.8 
20.08 
58.90 

0.13 
0.70 
1.80 

6 5 

Silver Min.   1.90 
Mean 5.00 
Max.  7.24 

0.00 
96.28 
275.00 

15.38 
36.45 
67.38 

0.22 
0.83 
1.62 

4 5 

* percent cover of vegetation can be greater than 100 because the coverage of different types of 
vegetation (for example, submerged, emergent and floating vegetation) were summed. 
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Table 4. The most informative models for each river for detection and abundance based on AICc. AICc= 

Akaike’s Information Criterion with correction for small sample size. K is the number of fitted parameters.  
The Δ AICc is a measure of a model relative to the most informative or ‘top’ model.  The AICc weight is 
the relative importance of the model compared to the rest of the set and is applied during model 
averaging. LL is log likelihood. When conducting model selection for detection, the full abundance model 
(~DO:DBT:OM:TOY:PC) was included. When conducting abundance model selection, the corresponding 
detection model was included. M=moon illumination, WD=water depth, TD=trap day, PC=percent cover, 
DBT=dominant bottom type, DO=dissolved oxygen, OM=organic matter content, TOY=survey time of 
year. 

River/Type Model K LL AICc ΔAICc AICc 

weight 

Wakulla-Detection WD+M 16 -1185.10 2405.28 0 0.45 

Wakulla-Abundance DBT+DO+ TOY 10 -1098.30 2217.84 0 0.98 

 
PC+DBT+ TOY 10 -1102.80 2226.81 8.97 0.01 

 
DBT+ TOY 9 -1104.60 2228.13 10.28 0.01 

Silver-Detection TD 17 -604.71 1246.78 0 0.96 

Silver-Abundance PC+ TOY 9 -576.14 1171.23 0 0.27 

 
TOY 8 -577.47 1171.68 0.46 0.21 

 
PC+DO+ TOY 10 -575.88 1172.92 1.70 0.12 

 
PC+OM+ TOY 10 -576.09 1173.35 2.12 0.09 

 
DO+ TOY 9 -577.29 1173.53 2.30 0.09 

 
OM+ TOY 9 -577.41 1173.76 2.53 0.08 

 
DBT+ TOY 10 -576.58 1174.33 3.10 0.06 

 
PC+DBT+TOY 11 -575.98 1175.36 4.13 0.03 

 
DBT+DO+TOY 11 -576.33 1176.06 4.83 0.02 

 
PC*TOY 12 -575.29 1176.26 5.03 0.02 
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Wakulla River (Species: Procambarus paeninsulanus)  

Detection probability 

The top detection model was defined by the additive effect of moon illumination 

and water depth (Table 4, complete model selection tables in Appendix D), and had 

Akaike weight of 0.45. This was the only model with a ΔAICc less than or equal to 2 (Δ2 

is a common cut-off for separating the most informative models from the rest, Anderson 

et al., 2001). Water depth and moon illumination were important to estimate detection 

and did so at approximately 25% detection. Although there were not differences 

between water depths and moon illumination estimates given the 95% confidence 

intervals that overlapped each other, these were still the best parameters of those 

included in the model set. Figure 2 shows estimates of moon illumination and water 

depth divided at the 25%, 50% and 75% quantiles. A table of the values of detection 

probability and confidence intervals shown in Figure 2 is in Appendix E. 

Site-level abundance  

 The top abundance model included the additive effects of dominant bottom type, 

time of year and dissolved oxygen, and had overwhelming support as the top model 

with an Akaike weight of 0.98 (Table 4, complete model selection tables in Appendix D). 

Estimates of abundance and detection probability based on combinations of these 

parameters are shown in Figure 3. Confidence intervals often overlap, but there are 

some differences in abundance between some habitat parameter combinations. For 

example, in Figure 3, spring and winter estimates in bare/algal bottom and submerged 

vegetation were lower than estimates in all dominant bottom types in summer and fall. 



22 

Additionally, in summer, emergent vegetation estimates were greater than submerged 

vegetation estimates. The trend in increased abundance associated with increases in 

dissolved oxygen was also apparent, although confidence intervals overlapped across 

all combinations. The values of lambda and the confidence intervals are in Appendix E. 

Finally, parameter estimates and their confidence intervals demonstrate that the 

dissolved oxygen, emergent vegetation and fall and summer surveys were all significant 

(confidence intervals do not overlap zero) and the parameters of submerged vegetation 

and winter survey were negative making them relatively different from the positive 

values of emergent vegetation, dissolved oxygen, and summer and fall surveys 

(Appendix F). Figure 4 is a map of estimates from summer with a buffer with a 60 

meter2  area (4.4 meter radius), which is the approximate area sampled based on the 

known crayfish movement and response to baited traps as described earlier. The 

estimates range six to 18 crayfish per site depending on combinations of habitat 

parameters found at those sites.  
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Figure 2. Estimates of detection probability from the top detection model (moon illumination + water depth) for Wakulla River at the 25%, 

50% and 75% quantiles of water depth and moon illumination. Bars represent 95% confidence intervals. 
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Figure 3. Estimates of model-averaged abundance for Wakulla River for each survey (spring, summer, fall, winter) at the measured 

values of dissolved oxygen (x-axis) and sorted by dominant bottom type (bare/algal, emergent vegetation and submerged vegetation). 
Bars represent 95% confidence intervals. 
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Figure 4. Map of Wakulla River showing summer survey abundance estimates at each site. The buffer around each point is a 60 meter2 

circle and approximates the maximum area sampled by each trap. Delineation of management areas are included; Sally Ward is a small, 
spring-fed creek that meets the Wakulla River, Boat Tour is where the state park allows only public access on managed boat tours, 
Restricted Area is only researcher and park staff access, and Public Access is not state park managed and where public boat traffic 
occurs.
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Silver River (Species: Procambarus fallax)  

Detection probability 

The top detection model was defined by trap day (Table 4, complete model 

selection tables in Appendix D), and had overwhelming support with an Akaike weight of 

0.96. This was the only model with a ΔAICc less than or equal to 2. Trap day was the 

best covariate to estimate detection, although estimates of detection were less than 

10% across all days; days were not different given that the 95% confidence intervals for 

each day overlap each other (Figure 5). A table of the values of detection probability 

and confidence intervals shown in Figure 5 is in Appendix E. 

Site-level abundance 

The top abundance model included the additive effect of percent cover and time 

of year and had an Akaike weight of 0.27. It was not the only model with a ΔAICc equal 

to or less than 2; the model ‘percent cover + dissolved oxygen + time of year’ and the 

model ‘time of year’ were also relevant (Table 4, complete model selection tables in 

Appendix D). Based on these criteria, percent cover and time of year were the most 

important covariates affecting abundance.  The confidence intervals of estimates were 

wide and overlapped between surveys and measures of percent cover (Figure 6), 

meaning that there were no differences in abundance estimates between these 

measures. The values of lambda and confidence intervals shown in Figure 6 are in 

Appendix E. The parameter estimates for some surveys were significant (confidence 

intervals did not overlap zero) and percent cover and summer survey were positive 

estimates making them relatively different than fall and winter surveys which are 
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negative estimates (Appendix F). Figure 7 is a map of estimates from summer with a 

buffer with a 60 meter2 area (4.4 meter radius). The estimates range from 12 to 14 

crayfish per site depending on percent cover of vegetation at the site.   
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Figure 5. Estimates of detection probability from the top detection model (trap day) for Silver River for each trap day (x-axis is the 

number of days since trap was first set). Bars represent 95% confidence intervals. 
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Figure 6. Estimates of model-averaged abundance for Silver River for each survey for the percent cover of vegetation found during the 

surveys. Bars represent 95% confidence intervals. 
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Figure 7. Map of Silver River showing summer survey abundance estimates at each site. The buffer around each point is a 60 meter2 

circle and approximates the maximum area sampled by each trap.
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CHAPTER FOUR: DISCUSSION 

This study confirmed the identification of the stream-dwelling species of crayfish 

in the Wakulla River as P. paeninsulanus and confirmed the identification of the stream-

dwelling species in the Silver River as P. fallax.  

The results suggest that dissolved oxygen was important to defining P. 

paeninsulanus abundance. Abiotic parameters impact crayfishes in a density-

independent way and can affect physiology (Caine, 1978; Hobbs & Lodge, 2010). The 

values of dissolved oxygen measured in this study are generally within its physiological 

tolerance (above its critical oxygen level). Caine (1978) states the critical oxygen level is 

the level below which respiration starts to become anaerobic. For temperatures of 22 °C 

(closest to measured values in Wakulla River), the critical oxygen level is 1.72 mg/L 

(Caine, 1978). All dissolved oxygen levels recorded are above this threshold, the lowest 

measurement being 1.9 mg/L. It is possible that the lower dissolved oxygen areas reach 

levels outside of the physiological limit (thereby excluding crayfish) but this was not 

detected because dissolved oxygen was not monitored continuously. It has been shown 

that P. paeninsulanus is observed to form relatively shallow and simple burrows, 

withstand drying and lower dissolved oxygen, and can wander terrestrially up to 400 

meters from nearest water source (Hobbs, 1942; Caine, 1978; Breinholt et al. 2011). 

This may contradict the importance of dissolved oxygen to this species. However, and 

in light of this study, it is possible P. paeninsulanus is tolerant of more stressful 

conditions but does not readily detect or select those habitats when better (higher 

dissolved oxygen level) areas are available. 
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The type of bottom cover was important to defining P. paeninsulanus abundance. 

Plants act as food and are a shelter from competitors and predators.  Non-plant (i.e. 

other invertebrates) food source quantity and quality may be impacted by plant species 

and percent cover thereof (Hobbs & Lodge, 2010).  Cronin et al. (2002) found that 

crayfish preferentially feed on more filamentous vegetation, although this preference 

shifts to relative nutrient content when texture is the same. Florida crayfish P. alleni in 

wetlands in the Everglades were more abundant in dense vegetation and used these 

vegetated areas relative to other cover types, seemingly to avoid predators (Jordan, 

DeLeon & McCreary, 1996). In the Wakulla River, P. paeninsulanus prefers emergent 

vegetation over either submerged or bare/algal-covered bottom types. The areas with 

dominant emergent vegetation were anecdotally more diverse than areas with 

submerged vegetation; the submerged areas were usually dominated by one or the 

other of two submerged species (Sagittaria kurziana, Family Alismataceae, and 

Vallisneria americana, Family Hydrocharitaceae). It is possible that emergent vegetation 

provides more root and stem structure that serves as shelter from conspecifics and 

predators and more plant food options than does submerged vegetation.  

The results suggest that there is heterogeneity in habitat across the area of the 

river sampled. Wakulla River has four management areas: Sally Ward, a smaller spring 

run fed by its own springhead; the boat tour area, that is state park run and only allows 

human access via guided pontoon boat tours; the restricted area, where only managers 

and researchers are allowed; and the public access area, which is not state park 

property, and which has public boat traffic and private property along it. There was 
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variation in abundance at the site-level as shown in the map in Figure 4. The sites with 

higher abundance were in the restricted area of the river. These sites were dominated 

by emergent vegetation. The rest of the river areas were dominated by submerged 

vegetation or algal/bare bottom. It is possible that management areas of the river 

influence the type of vegetation that can grow, which therefore defines the 

heterogeneity of habitat and abundance across the landscape.  

Percent cover of vegetation was most important to defining P. fallax’s distribution. 

This is most likely for reasons of protection from conspecifics and predators and 

possibly for food availability. These results supported Hobbs’s (1942) observation that 

P. fallax was found wherever there was sufficient vegetation and that plant species 

composition was not important in defining its distribution. The Silver River’s average 

percent cover of vegetation was high in the sites sampled. Habitat is seemingly 

homogenous across the length of the river, so variation in abundance estimates at the 

site level, as evidenced by summer estimates seen in the map in Figure 7, was low as 

well, when compared to Wakulla River and P. paeninsulanus. 

There may also be other parameters not surveyed in this study that are relevant 

to P. fallax. Dorn & Volin (2009) and Dorn & Trexler (2007) show differences in P. fallax 

residence in different hydroperiods in Florida Everglades and different burrowing 

abilities (a way to avoid desiccation) in different substrates. P. fallax seems to have 

slower growth, requires more inundation and does not burrow in dense sandy 

substrates compared with peat and marl relative to P. alleni. In the future, it would be 
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worthy to add parameters like this that have been assessed for this species in other 

parts of its range.  

Temporal trends of survey time of year explained abundance for P. 

paeninsulanus and P. fallax. Although this study does not replicate over multiple 

seasons, the literature suggests that crayfishes, both males and females, are more 

active during fall for breeding (Hobbs & Lodge, 2010). There is evidence in the Family 

Astacidae that crayfish maturing and mating is in part influenced by water temperature 

and day length which is commensurate with seasonality. Although water temperature 

was fairly constant, day length changes seasonally and may trigger life cycle events in 

these crayfish (Reynolds, 2002). 

Moon illumination and water depth were important to detection of P. 

paeninsulanus. Crayfish molting is shown to synchronize to the new moon lunar phase 

in astacid Aastacus astacus, possibly through triggering an internal clock; crayfish 

behavior changes during molt (less active and usually more secluded) (Franke & 

Hoerstgen-Schwark, 2013). Alternatively, lab-reared crayfish were less active in general 

on moon illuminated nights (Franke & Hoerstgen-Schwark, 2015).  P. paeninsulanus 

may also have this syncing and change in behavior although the direction of response is 

not clear from this study. For P. fallax, detection was quite low but was best explained 

by some differences between trap days. One hypothesis is that detection range of the 

bait changes over the sample days (for example, with variation in flow) and may play 

into crayfish ability to find and enter the trap.  
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This study contributes to potentially understanding P. fallax on a global scale in 

addition to the regional scale. It is the first known parthenogenic decapod crustacean 

(meaning it can reproduce from unfertilized eggs) (Martin et al., 2010; Scholtz et al., 

2013). It is called the ‘Marmorkrebs’ or ‘marbled crayfish’ and is known from the pet 

trade (Faulkes, 2015). Females with eggs have been documented in Ukraine (Novitsky 

& Son, 2016) and the parthenogenic form has also been documented in Germany, 

Netherlands, Italy, Madagascar and Japan (Martin et al., 2010). Broadly, habitat and 

environmental factors important to this species can be applied in predictions of its 

expansion in nonnative ranges and different habitat types and therefore highlight areas 

to focus on preventing its establishment.  
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Management implications and recommendations 

The method employed in this study is trustworthy, even with low detectability, 

because the analysis adjusts abundance based on detection. However, there is 

uncertainty in the area sampled, which makes extrapolating to overall abundance 

estimates difficult and not recommended. The area sampled is a fraction of the area of 

the river that crayfish inhabit and trapping area itself is an approximation. The sum of 

abundance at the sites is likely a small fraction of the total crayfish present.  Monitoring 

for total abundance numbers is inappropriate because of the uncertainty of extrapolating 

the sites sampled to whole-river abundance. However, monitoring at the site-level for 

abundance, with this conservative approach, is useful for future monitoring. Managers 

can trust that the method, if repeated, will produce a reliable estimate based upon 

crayfish caught and give appropriate, if not underestimated, relative crayfish abundance 

at the site or habitat level. Site level changes will reflect changes in the overall crayfish 

population if data collected is repeated across years, seasons and habitat (time and 

space).  

Hypotheses for crayfish die-off 

Taylor et al. (2007) notes that habitat degradation and pollutants are of concern 

to crayfish conservation. This may be true of the crayfishes in this study. Herbicidal 

treatment for control of Hydrilla verticillata (Family Hydrocharitaceae), an invasive 

aquatic plant, has been conducted previously in Wakulla River. During that treatment, a 

pronounced crayfish die-off occurred. The managers of the river note that many 

hundreds of dead crayfish were observed along the length of the river (M. Phillips, 
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unpubl. data). A subsequent laboratory study revealed the treatment concentrations 

used and the levels measure in the river for herbicidal treatment were not lethal to 

crayfish (FDEP, 2005). So, it is possible there was an indirect effect of treatment that 

caused crayfish mortality. There were no baseline population data at that time to inform 

local management of Wakulla River whether such a dieback could have implications 

toward the population stability of P. paeninsulanus. Managers may also use herbicidal 

treatment in Silver River for control of H. verticillata. An herbicide byproduct, 

terbuthylazine-2-hydroxy, although not the product used in this river, showed impact to 

P. fallax growth and causes oxidative stress at concentrations above environmental 

levels (Koutnik et al., 2016), which reinforces the concern that herbicide may impact 

crayfishes in these rivers in a negative way even if they do not kill immediately or 

directly.   

There are a few hypotheses as to why the Wakulla River dieback may have 

occurred. First, crayfish may have responded to reduced dissolved oxygen levels in the 

water column from decomposing vegetation, in which microorganism respiration causes 

a massive reduction in oxygen levels. Second, crayfish may have been feeding on H. 

verticillata and were exposed to levels of herbicide not measured in the FDEP study. 

Third, crayfish olfactory systems may have been impaired, leading to a sustained 

inability to find food; Wolf & Moore (2002) found that other herbicides (metolachlor) 

reduced cambarid crayfish Orconectes rusticus’s ability to search for food with 

chemoreception. Fourth, crayfish may have been feeding on H. verticillata, and lost a 

food source when the plant was removed from the system. These questions may be 
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worthy of further study if the management of H. verticillata in the system becomes more 

routine and frequent. In situ experiments that sample before and after herbicidal 

treatment could elucidate these hypotheses. 

Wakulla River and Silver River monitoring 

Herbicidal treatment will likely occur again in Wakulla River and may occur in 

Silver River since H. verticillata is present. If herbicidal treatment is to occur, a sample 

of ‘sentinel’ crayfish could be collected and placed in traps within the rivers before, 

during and after treatment. These sites should be monitored for herbicide concentration 

as well as dissolved oxygen. Crayfish should be re-collected and observed for mortality. 

That way direct mortality can be related to factors such as the herbicide concentration 

and/or dissolved oxygen. 

In Wakulla River, sampling should occur at least in areas of emergent vegetation, 

if dissolved oxygen levels are above 4mg/L, in summer and fall surveys to ensure the 

highest catch rate of crayfish. A few key sites could be monitored each year. Habitat 

data at these sites should also be collected in case there are changes in key 

parameters like dissolved oxygen.  These sites can serve as a proxy for the river in 

case of future herbicide treatment. I do not recommend using Sally Ward creek as a 

control site during herbicidal treatment. Counts of crayfish in Sally Ward were 

consistently low, and the important habitat parameters such as dissolved oxygen and 

vegetation type are not reflective of the rest of Wakulla River, so it is likely that 

abundances of crayfish in this area are not reflective of those in the main channel of 

Wakulla River.  
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In Silver River, further full river study could be done to better understand habitat 

parameters that inform P. fallax’s abundance. Estimates of abundance have broader 

confidence intervals because of the low detectability in this river for this species; 

therefore, I also recommend more traps to best guarantee higher catch rates. It is 

possible that several traps could be set in a smaller area for easier access and this 

repeated at several sites across the length of the river. I recommend that sampling be 

conducted in spring and/or summer, when the greatest catch in this study occurred.  

Sampling may be improved by offering multiple food sources (for example, 

chicken liver, Nowicki et al., 2008) and other sampling methods (throw trap or manual 

sampling or higher density of traps). Other sampling methods may also validate the 

densities observed in this study. Count data recorded should be at multiple sites and on 

at least 3 sampling days within a short (1 to 2 week) period of time during each season 

or year sampled. This effort would provide trends across years and seasons (with 

spatial and temporal replication).  
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APPENDIX A: DISTRIBUTIONS OF COUNTS 
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These figures show the frequency histograms of counts and raw count totals and 

recaptures for each season and each river.  

Wakulla River histogram of counts 

 

Figure 8. Wakulla River histogram of crayfish counts where the x-axis is the number of crayfish and the 

y-axis is how many occasions (sites x surveys) this count occurred and with seasons combined. 
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Silver River histograms of counts 

 

Figure 9. Silver River histogram of crayfish counts where the x-axis is the number of crayfish and the y-

axis is how many occasions (sites x surveys) this count occurred and with seasons combined. 
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APPENDIX B: GOODNESS OF FIT TESTS 
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These figures show the results of a Goodness of Fit test for the full interactive model for 

both rivers. 1000 iterations were performed. The overdispersion parameter is listed in 

the figure description.  

Goodness of Fit table and graph (Wakulla River) 

 

Figure 10. Chi square goodness of fit conducted, where observed statistic is 1343.95, number of 

bootstrap samples 1000, and P<0.001. The observed statistic was outside of the 567 to 930 0 to 100% 
quantiles. The estimate of c-hat is 2, and was incorporated into prediction estimates for detection and 
lambda to account for overdispersion.  
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Goodness of Fit table and graph (Silver River) 

 

Figure 11. Chi square goodness of fit conducted, where observed statistic is 1087.32, number of 

bootstrap samples 1000, and P<0.001. The observed statistic was outside of the 663 to 940,  0 to 100% 
quantiles. The estimate of c-hat is 1.44, and was incorporated into prediction estimates for detection and 
lambda to account for overdispersion.  
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APPENDIX C: HABITAT PARAMETER RAW DATA 

  



47 

The below figures show the recorded values for all habitat parameters for both rivers, 

across sites, with seasons combined. 

Wakulla River habitat parameters 

 

 

Figure 12. Wakulla River organic matter (percent) where x-axis is site and y-axis is percent organic 

matter. 
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Figure 13. Wakulla River dissolved oxygen across sites where x-axis is site and y-axis is dissolved 

oxygen (DO) in (mg/L). 
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Figure 14. Wakulla River percent cover of vegetation across sites where x-axis is site and y-axis is 

percent cover. 
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Figure 15. Wakulla River water depth (meters) across sites where x-axis is site and y-axis is depth in 

meters. 
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Silver River habitat parameters 

 

 

Figure 16. Silver River organic matter (percent) across sites where x-axis is site and y-axis is percent 

organic matter. 
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Figure 17. Silver River dissolved oxygen (DO) across sites where x-axis is site and y-axis is DO in 

milligrams/liter. 



53 

 

Figure 18. Silver River percent cover of vegetation across sites where x-axis is site and y-axis is 

percent cover. 
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Figure 19. Silver River water depth (meters) across sites where x-axis is site and y-axis is depth in 

meters.  
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Dominant plants 

Table 5. This table shows the dominant (meaning that it was at least 50% of the cover at least at one 

site) for both rivers; emergent vegetation (above waterline) and submerged vegetation (below waterline) 
are separated (Wunderlin et al. 2016 for plant identification). 

River  Emergent Submerged 

Wakulla Mikania scandens Ceratophyllum demersum 

Polygonum 

hydropiperoides 

Ludwigia spps. 

Pontederia cordata Myriophyllum spps. 

Rhynchospora inundata  Sagittaria kurziana 

Schoenoplectus 

californicus 

Vallisneria americana 

Typha spps.  

Silver 

 

 

 

 

 

 

Hydrocotyle spps. Ceratophyllum demersum 

Nuphar advena Hydrilla verticillata 

Nymphaea odorata Najas guadalupensis 

Pontederia cordata Sagittaria kurziana 

 Vallisneria americana 
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APPENDIX D: MODEL SELECTION TABLES 
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Table 6. Detection model selection for Wakulla River based on AICc. Here, the abundance part of the 

model stayed constant while a suite of detection parameters and additive models were compared. AICc= 
Akaike’s Information Criterion with correction for small sample size. K is the number of fitted parameters.  
The Δ AICc is a measure of a model relative to the most informative or ‘top’ model.  The AICc weight is 
the relative importance of the model compared to the rest of the set and is applied during model 
averaging. LL is log likelihood. M=moon illumination, WD=water depth, TD=trap day, PC=percent cover, 
DBT=dominant bottom type, DO=dissolved oxygen, OM=organic matter content, TOY=survey time of 
year. The full abundance model run was ~ DBT: DO: PC: OM:  TOY. 

 

  

Detection ~ 
K AICc 

Δ 
AICc 

AICc 
Weight LL 

WD+M 16 2405.28 0 .45 -1185.07 

M 15 2407.37 2.09 .16 -1187.31 

WD           15 2407.5 2.22 .15 -1187.37 

Null           14 2408.77 3.49 .08 -1189.18 

WD+PC 16 2409.32 4.04 .06 -1187.09 

PC+M 16 2409.52 4.24 .05 -1187.19 

TD 17 2410.66 5.38 .03 -1186.55 

PC            15 2410.8 5.52 .03 -1189.02 
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Table 7: Abundance model selection for Wakulla River based on AICc. Two-part model includes 

detection covariate from Table 1 (Water Depth + Moon) that stayed constant while the suite of abundance 
parameters, additive models and interactions were compared. AICc= Akaike’s Information Criterion with 
correction for small sample size. K is the number of fitted parameters.  The Δ AICc is a measure of a 
model relative to the most informative or ‘top’ model.  The AICc weight is the relative importance of the 
model compared to the rest of the set and is applied during model averaging. LL is log likelihood. 
M=moon illumination, WD=water depth, TD=trap day, PC=percent cover, DBT=dominant bottom type, 
DO=dissolved oxygen, OM=organic matter content, TOY=survey time of year. 

 

Abundance~ 
K AICc 

Δ 

AICc 

AICc 

Weight LL 

DBT+DO+TOY 10 2217.84 0 0.98 -1098.31 

 PC+DBT+TOY 10 2226.81 8.97 0.01 -1102.79 

DBT+TOY 9 2228.13 10.28 0.01 -1104.56 

DBT*TOY 15 2232.68 14.84 0 -1099.96 

DO*TOY 11 2233.37 15.52 0 -1104.94 

PC+OM+ TOY 9 2241.47 23.63 0 -1111.24 

PC+DO+ TOY 9 2246.38 28.54 0 -1113.69 

DO+ TOY 8 2250.15 32.31 0 -1116.68 

OM* TOY 11 2250.75 32.9 0 -1113.63 

OM+ TOY 8 2253.91 36.07 0 -1118.56 

PC* TOY 11 2257.77 39.93 0 -1117.14 

PC+ TOY 8 2260.18 42.34 0 -1121.69 

TOY 7 2269.54 51.70 0 -1127.46 

DBT 6 2378.03 160.19 0 -1182.79 

DBT: DO: PC: OM:  TOY 16 2405.28 187.44 0 -1185.07 

 DO 5 2430.93 213.09 0 -1210.30 

PC 5 2432.55 214.71 0 -1211.11 

Null 4 2434.01 216.17 0 -1212.90 

OM 5 2435.89 218.05 0 -1212.78 
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Table 8. Detection model selection for Silver River based on AICc. Here, the abundance part of the 

model stayed constant while a suite of detection parameters and additive models were compared. AICc= 
Akaike’s Information Criterion with correction for small sample size. K is the number of fitted parameters.  
The Δ AICc is a measure of a model relative to the most informative or ‘top’ model.  The AICc weight is 
the relative importance of the model compared to the rest of the set and is applied during model 
averaging. LL is log likelihood. M=moon illumination, WD=water depth, TD=trap day, PC=percent cover, 
DBT=dominant bottom type, DO=dissolved oxygen, OM=organic matter content, TOY=survey time of 
year. The full abundance model run was ~ DBT: DO: PC: OM:  TOY. 

Detection~ 
K AICc 

Δ 
AICc 

AICc 
Weight LL 

TD 17 1246.78 0 0.96 -604.71 

WD 15 1254.47 7.69 0.02 -610.93 

WD +M 16 1255.94 9.16 0.01 -610.48 

WD +PC 16 1256.58 9.80 0.01 -610.80 

Null 14 1294.14 47.37 0 -631.94 

M 15 1295.76 48.98 0 -631.58 

PC 15 1296.43 49.65 0 -631.91 

PC+M 16 1298.01 51.23 0 -631.52 
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Table 9. Abundance model selection for Silver River based on AICc. Two-part model includes top 

detection covariate from Table 3 (trap day) that stayed constant while the suite of abundance parameters, 
additive models and interactions were compared. AICc= Akaike’s Information Criterion with correction for 
small sample size. K is the number of fitted parameters.  The Δ AICc is a measure of a model relative to 
the most informative or ‘top’ model.  The AICc weight is the relative importance of the model compared to 
the rest of the set and is applied during model averaging. LL is log likelihood. M=moon illumination, 
WD=water depth, TD=trap day, PC=percent cover, DBT=dominant bottom type, DO=dissolved oxygen, 
OM=organic matter content, TOY=survey time of year. 

 

Abundance~ K AICc Δ 

AICc 

AICc 

Weight 

LL 

PC+TOY 9 1171.23 0 0.27 -576.14 

TOY 8 1171.68 0.46 0.21 -577.47 

PC+DO+ TOY 10 1172.92 1.7 0.12 -575.88 

PC+OM+ TOY 10 1173.35 2.12 0.09 -576.09 

DO+ TOY 9 1173.53 2.3 0.09 -577.29 

OM+ TOY 9 1173.76 2.53 0.08 -577.41 

DBT+ TOY 10 1174.33 3.1 0.06 -576.58 

PC+DBT+ TOY 11 1175.36 4.13 0.03 -575.98 

DBT+DO+ TOY 11 1176.06 4.83 0.02 -576.33 

PC* TOY 12 1176.26 5.03 0.02 -575.29 

DO* TOY 12 1179.42 8.19 0 -576.87 

OM*TOY 12 1180.22 8.99 0 -577.28 

DBT* TOY 16 1180.28 9.05 0 -572.66 

 DO 6 1232.5 61.27 0 -610.03 

 Null 5 1236.09 64.86 0 -612.89 

 PC 6 1237.94 66.71 0 -612.75 

 OM 6 1238.21 66.98 0 -612.89 

 DBT 7 1240.05 68.82 0 -612.73 

DBT: DO: PC: OM:  TOY 17 1246.78 75.55 0 -604.71 
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APPENDIX E: LAMBDA AND DETECTION PROBABILITY TABLES OF 
VALUES AND CONFIDENCE INTERVALS 
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Table 10. The lambda estimates with 95% confidence intervals for Wakulla River. For example, row one shows the lambda, 

lower confidence level, upper confidence level, and the habitat parameter corresponding to that estimate. For bottom type, 
B=bare/algal, E=emergent vegetation and S=submerged vegetation. For season, A=spring, B=summer, C=fall, D=winter. 
DO=dissolved oxygen.  

Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom 
Type 

Season DO Percent 
Cover 

Organic 
Matter 

2.34 1.45 3.75 S A 4.45 100.0 3.44 

2.96 1.85 4.72 B A 4.10 50.0 0.80 

2.43 1.52 3.88 S A 4.80 88.0 3.44 

3.16 2.00 5.01 B A 4.71 30.0 0.80 

2.43 1.52 3.90 S A 4.79 100.0 3.44 

2.42 1.50 3.88 S A 4.84 63.0 34.92 

2.50 1.56 4.01 S A 5.02 100.0 3.44 

3.36 2.10 5.37 B A 5.15 44.0 0.80 

2.53 1.56 4.09 S A 5.18 62.5 3.44 

2.77 1.65 4.61 S A 5.88 75.0 34.92 

2.64 1.62 4.28 S A 5.46 87.5 3.44 

3.56 2.12 5.94 B A 5.71 0.0 0.80 

2.70 1.65 4.41 S A 5.63 94.0 3.44 

2.76 1.64 4.59 S A 5.85 69.0 3.44 

3.09 1.94 4.91 B A 4.58 0.0 0.80 

2.90 1.82 4.61 B A 4.08 0.0 0.80 

2.56 1.53 4.24 B A 3.05 0.0 0.80 

3.26 2.04 5.19 B A 4.97 18.5 0.80 

3.33 2.06 5.35 B A 5.15 12.5 0.80 

3.34 2.06 5.39 B A 5.19 6.0 0.80 

2.45 1.43 4.17 B A 2.69 0.0 0.80 

2.02 1.18 3.42 S A 3.26 100.0 18.64 

2.09 1.25 3.47 S A 3.54 100.0 18.64 

3.18 2.00 5.04 B A 4.77 19.0 0.80 

2.48 1.55 3.96 S A 4.94 100.0 18.64 

4.91 2.98 8.06 E A 4.84 56.0 3.87 

2.65 1.62 4.33 B A 3.34 6.0 0.80 

2.78 1.72 4.49 B A 3.66 31.0 0.80 

2.00 1.16 3.41 S A 3.16 100.0 18.64 

2.09 1.25 3.47 S A 3.55 100.0 18.64 

4.80 2.91 7.89 E A 4.56 94.0 3.87 

5.41 3.26 8.94 E A 5.57 75.0 3.87 

2.90 1.82 4.61 B A 4.08 0.0 0.80 

4.72 2.85 7.80 E A 4.41 100.0 3.87 
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Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom 
Type 

Season DO Percent 
Cover 

Organic 
Matter 

4.85 2.94 7.97 E A 4.63 100.0 4.38 

5.24 3.18 8.60 E A 5.32 75.0 3.87 

2.86 1.66 4.87 S A 6.15 62.5 18.64 

3.82 2.17 6.63 B A 6.24 0.0 0.80 

2.66 1.63 4.32 S A 5.53 87.5 18.64 

3.55 2.11 5.89 B A 5.67 0.0 0.80 

3.81 2.16 6.62 B A 6.23 0.0 0.80 

3.50 2.15 5.66 B A 5.48 38.0 0.80 

9.20 6.05 13.97 B B 4.20 12.5 22.05 

10.23 6.54 15.95 B B 4.94 56.3 22.05 

9.75 6.25 15.13 B B 4.68 0.0 22.05 

9.74 6.34 14.93 B B 4.59 37.5 22.05 

6.92 4.20 11.36 S B 4.05 100.0 16.92 

8.99 5.92 13.66 B B 4.05 0.0 22.05 

9.33 6.12 14.21 B B 4.22 50.0 22.05 

8.97 5.92 13.60 B B 3.94 37.5 22.05 

7.15 4.35 11.71 S B 4.37 75.0 16.92 

14.03 9.03 21.75 E B 4.17 50.0 19.82 

9.02 5.96 13.64 B B 4.01 25.0 22.05 

9.00 5.92 13.68 B B 4.06 0.0 22.05 

6.40 3.82 10.66 S B 3.41 100.0 16.92 

6.30 3.79 10.44 S B 3.36 75.0 16.92 

7.66 4.88 11.97 B B 2.76 0.0 22.05 

8.03 5.23 12.33 B B 3.15 0.0 22.05 

8.12 5.31 12.42 B B 3.24 0.0 22.05 

8.17 5.35 12.48 B B 3.29 0.0 22.05 

8.21 5.38 12.52 B B 3.32 0.0 22.05 

8.29 5.45 12.62 B B 3.39 6.2 22.05 

7.43 4.65 11.80 B B 2.51 0.0 22.05 

7.40 4.54 11.95 B B 2.40 25.0 22.05 

7.64 4.87 11.96 B B 2.74 0.0 22.05 

14.28 9.24 22.05 E B 4.22 87.5 19.82 

9.05 5.95 13.76 B B 4.10 0.0 22.05 

14.34 9.24 22.19 E B 4.21 100.0 8.77 

6.90 4.08 11.53 B B 1.89 0.0 22.05 

7.81 5.03 12.10 B B 2.92 0.0 22.05 

7.85 5.06 12.14 B B 2.96 0.0 22.05 

8.07 5.27 12.37 B B 3.19 0.0 22.05 
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Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom 
Type 

Season DO Percent 
Cover 

Organic 
Matter 

14.97 9.58 23.29 E B 4.68 50.0 19.95 

14.70 9.53 22.64 E B 4.48 75.0 19.95 

9.54 6.17 14.69 B B 4.51 0.0 22.05 

15.39 9.87 23.95 E B 4.73 125.0 19.95 

18.87 11.14 31.60 E B 6.36 106.3 8.77 

17.14 10.73 27.25 E B 5.61 112.5 19.95 

18.48 10.63 31.57 E B 6.30 56.3 19.82 

17.55 10.42 29.15 E B 5.92 50.0 19.82 

9.89 6.40 15.24 B B 4.66 56.3 22.05 

14.30 9.21 22.16 E B 4.32 50.0 19.95 

15.22 9.83 23.52 E B 4.68 106.3 19.82 

9.70 6.31 14.89 B B 4.59 25.0 22.05 

9.88 6.29 15.42 B B 4.79 0.0 22.05 

9.02 5.93 13.70 B B 4.07 0.0 22.05 

9.75 6.25 15.13 B B 4.68 0.0 22.05 

14.17 9.17 21.87 E B 4.19 75.0 19.82 

14.17 9.10 22.00 E B 4.25 50.0 28.77 

9.37 6.10 14.35 B B 4.37 0.0 22.05 

9.98 6.32 15.65 B B 4.87 0.0 22.05 

10.45 6.61 16.44 B B 5.12 50.0 22.05 

13.07 7.88 21.42 B C 6.28 50.0 18.98 

9.98 5.76 17.03 S C 6.43 75.0 58.00 

13.27 7.55 22.79 B C 6.49 0.0 18.98 

10.07 5.77 17.29 S C 6.50 75.0 58.00 

8.61 5.47 13.52 S C 5.21 100.0 58.00 

11.20 7.24 17.22 B C 5.17 0.0 18.98 

8.77 5.48 13.97 S C 5.42 75.0 58.00 

17.41 10.92 27.58 E C 5.27 50.0 23.70 

8.77 5.39 14.14 S C 5.45 50.0 27.14 

12.36 7.69 19.67 B C 5.88 31.3 18.98 

12.07 7.61 19.00 B C 5.71 25.0 18.98 

11.98 7.43 19.11 B C 5.70 0.0 18.98 

8.70 5.51 13.71 S C 5.30 100.0 58.00 

8.62 5.48 13.54 S C 5.22 100.0 58.00 

9.94 6.66 14.85 B C 4.21 0.0 18.98 

9.17 6.02 13.92 B C 3.47 25.0 18.98 

9.19 6.07 13.88 B C 3.56 0.0 18.98 

15.78 9.99 24.77 E C 4.35 100.0 58.90 
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Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom 
Type 

Season DO Percent 
Cover 

Organic 
Matter 

9.96 6.68 14.85 B C 4.21 6.2 18.98 

8.73 5.58 13.59 B C 3.06 25.0 18.98 

6.72 4.09 10.98 S C 3.22 75.0 58.00 

6.94 4.24 11.28 S C 3.42 100.0 58.00 

10.29 6.90 15.34 B C 4.36 50.0 18.98 

8.93 5.45 14.51 S C 5.60 56.3 58.00 

12.05 7.57 19.02 B C 5.71 18.8 18.98 

6.25 3.58 10.71 S C 2.62 50.0 5.17 

10.61 7.10 15.83 B C 4.61 50.0 18.98 

9.34 6.21 14.05 B C 3.70 0.0 18.98 

9.88 6.62 14.76 B C 4.16 0.0 18.98 

15.40 9.88 23.93 E C 4.20 75.0 7.74 

16.17 10.35 25.16 E C 4.66 50.0 7.74 

15.35 9.85 23.87 E C 4.19 68.8 1.96 

9.90 6.65 14.73 B C 4.11 25.0 18.98 

16.34 10.53 25.28 E C 4.62 100.0 7.74 

17.12 10.96 26.64 E C 5.08 75.0 23.70 

15.82 10.16 24.56 E C 4.38 93.8 23.70 

10.27 6.91 15.27 B C 4.41 25.0 18.98 

10.45 7.01 15.59 B C 4.49 50.0 18.98 

10.72 7.14 16.06 B C 4.78 18.8 18.98 

10.99 7.28 16.56 B C 4.97 25.0 18.98 

9.92 6.59 14.91 B C 4.04 56.3 18.98 

9.56 6.30 14.46 B C 3.75 50.0 18.98 

10.00 6.71 14.89 B C 4.16 37.5 18.98 

9.61 6.43 14.35 B C 3.88 18.8 18.98 

9.67 6.45 14.49 B C 3.88 37.5 18.98 

9.95 6.69 14.79 B C 4.15 25.0 18.98 

10.04 6.72 15.00 B C 4.29 0.0 18.98 

10.22 6.82 15.29 B C 4.43 0.0 18.98 

3.84 2.41 6.07 B D 6.91 0.0 34.63 

3.55 2.31 5.44 B D 6.23 38.0 34.63 

2.82 1.73 4.55 S D 6.67 50.0 13.22 

3.71 2.40 5.73 B D 6.59 31.3 34.63 

2.56 1.59 4.13 S D 5.82 100.0 13.22 

3.34 2.17 5.13 B D 5.82 6.2 34.63 

2.57 1.60 4.10 S D 5.96 50.0 13.22 

3.36 2.18 5.16 B D 5.89 0.0 34.63 
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Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom 
Type 

Season DO Percent 
Cover 

Organic 
Matter 

2.48 1.54 3.99 S D 5.63 75.0 13.22 

2.79 1.73 4.49 S D 6.61 50.0 31.92 

3.46 2.26 5.30 B D 6.07 25.0 34.63 

3.30 2.14 5.09 B D 5.76 0.0 34.63 

2.44 1.48 3.99 S D 5.41 100.0 13.22 

2.41 1.45 3.97 S D 5.31 100.0 13.22 

3.70 2.36 5.76 B D 6.63 0.0 34.63 

2.86 1.72 4.71 B D 4.59 0.0 34.63 

3.46 2.25 5.31 B D 6.11 0.0 34.63 

3.81 2.40 6.00 B D 6.85 0.0 34.63 

3.80 2.40 5.99 B D 6.84 0.0 34.63 

3.86 2.43 6.10 B D 6.94 6.2 34.63 

2.38 1.15 4.71 B D 3.03 0.0 34.63 

2.27 1.36 3.77 S D 5.00 50.0 17.34 

3.12 1.96 4.93 B D 5.22 31.3 34.63 

2.69 1.68 4.29 S D 6.20 100.0 17.34 

3.15 1.87 5.25 S D 7.41 100.0 17.34 

5.67 3.62 8.88 E D 6.55 75.0 4.92 

2.77 1.58 4.76 B D 4.23 25.0 34.63 

3.00 1.86 4.80 B D 4.97 6.2 34.63 

2.06 1.14 3.67 S D 4.19 50.0 17.34 

2.27 1.31 3.87 S D 4.82 100.0 17.34 

5.56 3.54 8.73 E D 6.40 75.0 10.73 

6.02 3.82 9.47 E D 7.02 75.0 10.73 

5.43 3.42 8.57 E D 6.26 50.0 9.38 

5.29 3.27 8.50 E D 5.93 100.0 10.73 

3.61 2.34 5.55 B D 6.33 50.0 34.63 

5.95 3.79 9.33 E D 6.87 100.0 9.38 

5.75 3.64 9.07 E D 6.72 50.0 9.38 

5.30 3.33 8.42 E D 6.08 50.0 9.38 

3.98 2.46 6.38 B D 7.16 6.2 34.63 

6.07 3.83 9.58 E D 7.08 75.0 21.87 

6.61 4.03 10.77 E D 7.73 75.0 10.73 

4.30 2.54 7.19 B D 7.71 25.0 34.63 

3.79 2.44 5.87 B D 6.70 50.0 34.63 

3.51 2.28 5.40 B D 6.23 0.0 34.63 

3.83 2.41 6.05 B D 6.89 0.0 34.63 

5.64 3.57 8.88 E D 6.56 50.0 9.38 
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Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom 
Type 

Season DO Percent 
Cover 

Organic 
Matter 

3.83 2.41 6.05 B D 6.89 0.0 34.63 

3.90 2.43 6.21 B D 7.02 0.0 34.63 

3.92 2.43 6.27 B D 7.07 0.0 34.63 

3.96 2.44 6.38 B D 7.15 0.0 34.63 

 

Table 11. The detection probability estimates with 95% confidence intervals for Wakulla River. For example, row one shows 

detection probability, lower confidence level, upper confidence level, and the parameter corresponding to that estimate. 

Detection probability Lower Confidence 
Level 

Upper Confidence 
Level 

Moon Illumination Depth 

0.24 0.17 0.34 3.09 0.52 

0.22 0.15 0.31 7.37 0.52 

0.21 0.14 0.30 11.65 0.52 

0.25 0.18 0.35 3.09 0.70 

0.23 0.16 0.32 7.37 0.70 

0.22 0.15 0.31 11.65 0.70 

0.26 0.18 0.36 3.09 0.88 

0.24 0.17 0.34 7.37 0.88 

0.23 0.16 0.32 11.65 0.88 
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Table 12. The lambda estimates with 95% confidence intervals for Silver River. For example, row one 

shows the lambda, lower confidence level, upper confidence level, and the habitat parameter 
corresponding to that estimate. For bottom type, B=bare/algal, E=emergent vegetation and S=submerged 
vegetation. For season, A=spring, B=summer, C=fall, D=winter. DO=dissolved oxygen. 

Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom Type Season DO Percent 
Cover 

Organic 
Matter 

10.24 2.64 39.53 E A 4.01 179.9 32.97 

9.52 2.48 36.47 S A 4.01 100.0 39.85 

9.44 2.47 36.14 E A 4.01 93.7 32.97 

9.57 2.48 36.81 S A 4.03 100.0 16.03 

9.73 2.54 37.24 S A 4.31 118.7 34.01 

10.22 2.63 39.46 S A 3.98 174.9 34.01 

9.61 2.50 36.95 S A 4.36 100.0 16.03 

9.57 2.48 36.80 S A 4.00 100.0 16.03 

9.98 2.59 38.29 S A 4.10 150.0 39.85 

9.54 2.49 36.53 S A 4.16 100.0 39.85 

9.56 2.48 36.80 S A 3.99 100.0 16.03 

9.80 2.55 37.64 S A 4.08 125.0 16.03 

10.04 2.60 38.66 S A 4.17 150.0 16.03 

9.71 2.54 37.13 E A 4.00 125.0 32.97 

10.69 2.70 41.86 S A 5.13 199.9 16.03 

9.59 2.49 36.86 S A 4.16 100.0 16.03 

10.28 2.64 39.83 S A 4.15 174.9 16.03 

9.52 2.49 36.38 E A 4.18 100.0 32.97 

10.02 2.61 38.45 S A 4.32 150.0 34.01 

9.59 2.50 36.72 S A 4.47 100.0 34.01 

9.51 2.49 36.34 E A 4.26 100.0 41.53 

9.86 2.56 37.85 S A 4.54 125.0 16.03 

9.66 2.51 37.14 S A 4.72 100.0 16.03 

11.41 2.72 46.42 E A 4.78 274.9 41.53 

9.71 2.52 37.38 S A 5.07 100.0 16.03 

9.86 2.58 37.72 E A 5.07 125.0 32.97 

9.47 2.45 36.47 S A 5.11 75.0 34.01 

9.45 2.45 36.34 E A 5.21 75.0 32.97 

9.68 2.51 37.22 S A 4.85 100.0 16.03 

9.55 2.46 36.99 S A 5.41 75.0 16.03 

9.70 2.52 37.26 E A 5.50 100.0 32.97 

9.58 2.49 36.85 S A 4.13 100.0 16.03 

9.57 2.46 37.13 S A 5.83 75.0 34.01 

8.78 2.16 35.11 B A 5.95 0.0 57.69 
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Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom Type Season DO Percent 
Cover 

Organic 
Matter 

9.71 2.52 37.31 E A 5.55 100.0 32.97 

9.81 2.53 37.98 S A 5.73 100.0 16.03 

11.05 2.73 43.97 S A 5.86 224.9 34.01 

9.60 2.46 37.40 S A 6.07 75.0 34.01 

9.83 2.51 38.35 B A 6.28 125.0 57.69 

10.05 2.56 39.29 B A 6.18 150.0 57.69 

11.36 2.74 46.01 S A 5.99 249.9 34.01 

9.66 2.50 37.22 E A 5.72 93.7 41.53 

8.89 2.25 34.93 B A 5.46 25.0 57.69 

9.05 2.32 35.18 B A 5.27 50.0 57.69 

9.92 2.58 38.12 E A 5.60 125.0 41.53 

9.67 2.52 37.13 E A 5.44 100.0 41.53 

11.18 2.73 44.77 S A 4.91 249.9 34.01 

8.91 2.29 34.55 B A 4.17 50.0 57.69 

9.61 2.49 36.98 E A 3.21 125.0 32.97 

8.78 2.23 34.34 B A 4.59 25.0 57.69 

11.70 3.13 43.59 B B 3.83 25.0 27.55 

11.64 3.11 43.46 B B 4.29 12.5 27.55 

12.13 3.27 44.89 B B 4.33 56.2 27.55 

11.78 3.16 43.83 B B 4.35 25.0 27.55 

13.83 3.58 52.63 S B 4.13 168.7 24.61 

13.68 3.57 51.70 E B 4.62 162.4 58.75 

12.06 3.26 44.68 B B 4.38 50.0 27.55 

13.17 3.51 49.12 S B 4.26 125.0 46.25 

13.41 3.54 50.35 S B 4.25 137.5 24.61 

12.34 3.33 45.67 B B 4.31 75.0 27.55 

12.80 3.43 47.63 S B 4.35 100.0 67.37 

13.25 3.52 49.56 S B 4.32 125.0 24.61 

12.06 3.25 44.65 B B 4.33 50.0 27.55 

13.52 3.55 50.97 E B 3.91 156.2 36.40 

14.02 3.62 53.56 S B 4.65 174.9 24.61 

12.84 3.44 47.78 S B 4.56 100.0 67.37 

12.40 3.35 45.91 B B 4.22 81.2 27.55 

11.82 3.17 43.96 B B 4.56 25.0 27.55 

11.85 3.08 45.35 E B 1.88 50.0 36.40 

12.54 3.37 46.50 S B 4.71 68.7 46.25 

11.84 3.18 44.05 B B 4.69 25.0 27.55 

13.27 3.51 49.78 S B 5.11 125.0 67.37 
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Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom Type Season DO Percent 
Cover 

Organic 
Matter 

12.71 3.41 47.29 S B 4.87 75.0 24.61 

12.37 3.32 45.94 E B 5.06 50.0 36.40 

11.52 3.06 43.20 B B 4.36 0.0 27.55 

12.94 3.47 48.14 E B 5.22 100.0 58.75 

12.23 3.28 45.48 B B 5.32 50.0 27.55 

13.68 3.56 51.91 S B 5.42 150.0 67.37 

12.23 3.26 45.77 E B 5.33 31.2 27.55 

12.68 3.38 47.38 S B 5.39 75.0 67.37 

12.55 3.37 46.74 B B 5.49 75.0 27.55 

13.04 3.47 48.70 B B 4.67 125.0 27.55 

11.99 3.19 44.89 B B 5.55 25.0 27.55 

11.70 3.09 44.12 B B 5.45 0.0 27.55 

12.46 3.33 46.46 E B 5.53 50.0 36.40 

12.83 3.43 47.76 S B 4.53 100.0 67.37 

13.10 3.49 48.97 S B 5.28 100.0 24.61 

13.00 3.46 48.66 S B 5.41 100.0 67.37 

13.08 3.49 48.90 S B 5.53 100.0 46.25 

11.99 3.19 44.92 B B 5.58 25.0 27.55 

12.35 3.31 45.98 E B 5.31 50.0 58.75 

12.04 3.23 44.78 B B 5.08 37.5 27.55 

12.59 3.37 46.83 S B 4.88 75.0 67.37 

11.95 3.19 44.63 B B 5.32 25.0 27.55 

12.74 3.38 47.77 S B 5.69 75.0 67.37 

12.21 3.29 45.26 E B 4.53 50.0 58.75 

12.84 3.44 47.78 S B 4.56 100.0 67.37 

11.62 3.10 43.41 B B 4.19 12.5 27.55 

12.50 3.37 46.33 E B 4.97 62.5 36.40 

12.39 3.30 46.39 S B 5.41 50.0 67.37 

4.57 1.19 17.44 S C 4.05 162.4 15.39 

4.31 1.15 16.21 S C 4.47 100.0 17.26 

4.32 1.15 16.24 S C 4.52 100.0 15.39 

3.98 1.05 15.12 B C 4.54 50.0 65.56 

4.83 1.22 18.81 S C 4.94 199.9 18.13 

4.39 1.17 16.46 E C 4.50 125.0 36.15 

4.33 1.15 16.31 S C 4.73 100.0 15.39 

3.99 1.05 15.14 B C 4.60 50.0 65.56 

4.34 1.15 16.36 S C 4.87 100.0 15.39 

4.33 1.15 16.31 S C 4.74 100.0 15.39 
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Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom Type Season DO Percent 
Cover 

Organic 
Matter 

4.32 1.15 16.26 S C 4.62 100.0 17.26 

4.36 1.16 16.40 S C 4.73 106.2 17.26 

4.27 1.13 16.06 S C 4.68 87.5 20.01 

4.29 1.14 16.05 E C 4.59 100.0 33.35 

4.32 1.15 16.27 S C 4.65 100.0 17.26 

4.33 1.15 16.31 S C 4.79 100.0 17.26 

4.47 1.18 16.89 S C 4.76 131.2 17.26 

4.01 1.05 15.24 B C 4.89 50.0 65.56 

4.54 1.19 17.19 E C 4.96 150.0 33.35 

4.36 1.15 16.46 S C 5.17 100.0 18.13 

4.31 1.15 16.18 E C 5.00 100.0 36.15 

4.21 1.11 16.02 S C 5.31 62.5 17.26 

4.52 1.18 17.22 S C 5.53 131.2 20.01 

4.43 1.17 16.76 E C 5.49 118.7 33.35 

3.92 1.02 15.02 B C 4.88 25.0 65.56 

4.27 1.14 15.99 E C 4.36 100.0 33.35 

4.27 1.14 15.98 E C 4.72 93.7 36.15 

4.42 1.17 16.62 E C 4.60 131.2 36.15 

4.24 1.13 15.87 E C 4.65 87.5 36.15 

4.33 1.15 16.31 S C 4.79 100.0 17.26 

4.48 1.18 16.94 S C 4.91 131.2 18.13 

4.05 1.07 15.29 E C 4.03 50.0 33.35 

4.00 1.04 15.27 B C 5.14 43.7 65.56 

4.17 1.09 15.88 S C 5.32 50.0 18.13 

3.95 1.02 15.21 B C 5.36 25.0 65.56 

4.28 1.14 16.12 S C 4.03 100.0 17.26 

4.56 1.19 17.37 E C 3.95 168.7 33.35 

4.48 1.18 16.93 E C 4.19 150.0 36.15 

3.99 1.05 15.13 B C 4.31 56.2 65.56 

4.19 1.11 15.77 S C 4.17 75.0 20.01 

3.80 0.97 14.76 B C 4.47 0.0 65.56 

4.06 1.08 15.32 E C 4.23 50.0 36.15 

4.18 1.11 15.76 S C 4.00 75.0 17.26 

3.96 1.04 15.02 B C 4.08 50.0 65.56 

4.31 1.15 16.22 S C 4.49 100.0 17.26 

4.27 1.13 16.08 S C 4.51 100.0 59.02 

4.41 1.17 16.62 S C 4.27 125.0 17.26 

4.39 1.16 16.56 S C 4.02 125.0 17.26 
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Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom Type Season DO Percent 
Cover 

Organic 
Matter 

4.25 1.13 15.89 E C 4.33 93.7 33.35 

4.22 1.12 15.93 S C 3.71 100.0 59.02 

2.82 0.72 10.96 E D 5.15 125.0 32.92 

2.79 0.71 10.90 S D 5.32 106.2 19.27 

2.80 0.72 10.91 S D 5.30 118.7 56.16 

2.77 0.71 10.76 S D 5.39 100.0 35.92 

2.73 0.70 10.63 E D 5.99 81.2 32.92 

2.76 0.71 10.70 E D 5.37 100.0 32.92 

2.69 0.68 10.61 S D 6.57 50.0 35.92 

2.68 0.68 10.56 S D 6.03 50.0 19.27 

2.92 0.74 11.49 S D 6.16 150.0 56.16 

2.77 0.71 10.79 S D 5.86 100.0 56.16 

2.77 0.71 10.78 S D 5.51 100.0 35.92 

2.97 0.75 11.69 E D 5.66 168.7 32.92 

2.85 0.73 11.12 E D 5.70 125.0 17.58 

2.84 0.73 11.03 E D 5.68 125.0 32.92 

2.63 0.67 10.30 B D 5.77 68.7 65.18 

2.72 0.70 10.63 S D 5.95 75.0 35.92 

2.81 0.72 10.89 E D 5.90 112.5 44.10 

2.82 0.72 11.03 S D 6.08 106.2 19.27 

2.79 0.71 10.88 S D 6.26 100.0 56.16 

2.65 0.67 10.44 B D 6.45 68.7 65.18 

2.63 0.66 10.38 B D 6.55 56.2 65.18 

2.72 0.68 10.80 B D 7.25 81.2 65.18 

2.82 0.72 11.10 S D 6.87 100.0 35.92 

2.96 0.73 11.79 E D 4.35 181.2 32.92 

2.91 0.74 11.44 S D 4.96 156.2 35.92 

2.91 0.74 11.38 E D 5.64 150.0 32.92 

2.50 0.62 9.96 B D 4.95 25.0 65.18 

2.76 0.71 10.80 S D 4.95 100.0 19.27 

2.74 0.71 10.64 E D 5.76 87.5 32.92 

2.70 0.69 10.53 S D 5.28 75.0 35.92 

2.83 0.72 11.06 S D 4.76 131.2 35.92 

2.81 0.72 10.96 S D 5.19 112.5 19.27 

2.70 0.69 10.56 B D 5.09 106.2 65.18 

2.45 0.60 9.90 B D 5.16 0.0 65.18 

2.66 0.68 10.38 E D 5.80 56.2 44.10 

2.81 0.72 11.01 S D 6.59 100.0 35.92 
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Lambda Lower 
Confidence 
Level 

Upper 
Confidence 
Level 

Bottom Type Season DO Percent 
Cover 

Organic 
Matter 

2.98 0.75 11.75 E D 6.40 162.4 32.92 

2.80 0.71 11.00 S D 6.69 100.0 56.12 

2.84 0.72 11.23 S D 7.00 100.0 19.27 

2.84 0.72 11.22 S D 6.99 100.0 19.27 

2.80 0.72 10.94 E D 6.67 100.0 44.10 

2.61 0.66 10.32 B D 6.47 50.0 65.18 

2.76 0.70 10.84 S D 6.51 75.0 19.27 

2.78 0.71 10.79 E D 6.18 100.0 52.91 

2.95 0.74 11.62 E D 6.77 150.0 44.10 

2.85 0.73 11.08 E D 6.08 125.0 44.10 

2.80 0.72 10.95 S D 5.16 112.5 19.27 

2.74 0.70 10.70 S D 4.50 100.0 35.92 

2.66 0.67 10.43 S D 4.36 75.0 56.12 

2.80 0.72 10.90 S D 6.19 100.0 35.92 

 

Table 13. The detection probability estimates with 95% confidence intervals for Silver River. For 

example, row one shows detection probability, lower confidence level, upper confidence level, and the 
parameter corresponding to that estimate. 

Detection 
Probability 

Lower Confidence 
Level 

Upper Confidence 
Level 

Trap 
Day 

0.02 0.01 0.08 2 

0.03 0.01 0.13 4 

0.07 0.02 0.23 6 

0.07 0.02 0.22 8 
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APPENDIX F: PARAMETER ESTIMATES 
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This appendix provides the estimates of the model-averaged parameters and their 

confidence intervals.  

Table 14. Model-averaged parameter estimates. Estimates and confidence intervals are not back-

transformed. The highlighted parameters have confidence intervals that do not overlap zero. 

 

River Parameter Estimate Confidence Interval 

Wakulla Dissolved Oxygen 0.19 0.04-0.33 

 Dominant bottom type -Emergent 0.42 0.15-0.69 

 Dominant bottom type-Submerged -0.30 -0.65-0.06 

 Season- Summer 0.22 0.71-1.57 

 Season -Fall 1.22 0.84-1.59 

 Season - Winter -0.08 -0.59-0.43 

 Intercept  (reference – includes 

Season-Spring and Dominant Bottom 

Type-Bare) 

1.18 0.72-1.65 

Silver Percent Cover 0.10 -0.50 – 0.25 

 Season - Summer 0.30 -0.80, 0.67 

 Season – Fall -0.80 -1.29, -0.32 

 Season - Winter -1.26 -1.84, -0.67 

 Intercept (reference – includes 

Season-Spring) 

2.24 0.90-3.59 
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