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ABSTRACT
Recent improvements in genetic analyses have paved the way in using molecular data to

answer questions regarding evolutionary history, genetic structure, and demography. Key deer
are a federally endangered subspecies assumed to be genetically unique (based on one allozyme
study), homogeneous, and have a female-biased population of approximately 900 deer. | used
985bp of the mitochondrial cytochrome b gene and 12 microsatellite loci to test two hypotheses:
1) if the Moser Channel is a barrier to gene flow, | should expect that Key deer are differentiated
and have reduced diversity compared to mainland deer and (2) if isolation on islands leads to a
higher probability of extinction, I should expect that Key deer exhibit a small population size and
a high risk of extinction. My results indicate that Key deer are genetically isolated from mainland
white-tailed deer and that there is a lack of genetic substructure between islands. While Key deer
exhibit reduced levels of genetic diversity compared to their mainland counterparts, they contain
enough diversity of which to uniquely identify individual deer. Based on genetic identification, |
estimated a census size of around 1,000 individuals with a heavily skewed female-biased adult
sex ratio. Furthermore, I combined genetic and contemporary demographic data to generate a
species persistence model of the Key deer. Sensitivity tests within the population viability
analysis brought to light the importance of fetal sex ratio and female survival as the primary

factors at risk of driving the subspecies to extinction.
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CHAPTER ONE: INTRODUCTION

In the past, scientists have utilized both demographics and genetics as a means to address
the conservation of species of concern (e.g. Petit et al. 1998; Degner et al. 2007; Bristol et al.
2013; Grayson et al. 2014; Robert et al. 2015). Despite that both demographics and genetics have
utility in devising plans for long-term conservation planning, researchers have argued about
which data type provides the best evidence for short-term planning (Lande 1988; Caughley 1994;
Hedrick et al. 1996). Demographically, when there are too few individuals in a population,
random factors such as demographic stochasticity, environmental variation, and rare catastrophic
events may drive a population to extinction (Gilpin & Soule 1986; van Noordwijk 1994). For
example, in 1980 the endangered dusky seaside sparrow experienced a severe bottleneck, due to
habitat alteration, in which the population declined to only six individuals. Consequently, those
six individuals were all male, condemning the population to eventual extinction (Avise & Nelson
1989). On the other hand, genetic drift can also put populations at risk of extinction by loss of
genetic diversity (e.g. Miller & Lambert 2004; Cheng et al. 2012) . For small populations genetic
drift can increase the probability that deleterious alleles will increase in frequency and that rare
alleles will be lost from the population (Soule 1973). In the 1990s, the Florida panther (Puma
concolor coryi) was exhibiting kinked tails, cowlicks, and sperm and heart defects as a result of
inbreeding depression (Roelke et al. 1993). To battle the possible extinction of the subspecies,
management brought Texas cougars (P. c. stanleyana), the closest geographical population, to
Florida (Pimm et al. 2006). The introduction of genetic diversity reduced the effects of
inbreeding depression and encouraged the recovery of the Florida panther (Johnson et al. 2010).

Collectively, demographic instability and reduced genetic diversity can increase the chance of



populations being caught in an extinction vortex (van Noordwijk 1994; Tanaka 2000), where
small populations succumb to inbreeding depression and genetic drift leading to a further
reduction in genetic diversity over time, and hence, reduces population size further. Ultimately,

the understanding of both demographics and diversity are crucial in small populations.

Historically, dissimilarity in sample collection between genetics and demographics
limited researchers to choose which type of data to use for the investigation of how best to
conserve a species. Genetic data have proven to be powerful given their ability to assess loss of
genetic diversity relative to non-endangered species (e.g. O’Leary et al. 2014), amount of gene-
flow among populations (e.g. Robinson et al. 2012), and species delimitations (e.g. Brown et al.
2014). Moreover, genetic techniques have facilitated the evaluation of historical demography
though the estimation of population expansion (e.g. Hoffman & Blouin 2004) and admixture (e.g.
Zachos et al. 2008) via mismatch distribution analysis and historical effective population size via
coalescent techniques such as Bayesian skyline plots (e.g. Grazziotin et al. 2006). Contemporary
demographic techniques have addressed a separate but equally important set of questions with
regard to conservation including age structure (e.g. Martins et al. 2006), survival (e.g. Pradel et

al. 1997), and census size (e.g. Rice & Harder 1977; Cantor et al. 2012).

Recent advances in analyses have enabled genetic techniques to evaluate questions of
contemporary demography, opening the door for studies that combine the investigation of genetic
diversity, structure and evolutionary history with estimates of contemporary demographic
parameters. In combination, these techniques can provide an improved view of conservation for a
particular species. A major step enabling combined genetic/demographic analyses was the

acquisition of noninvasive genetic material facilitating researchers to incorporate genetic data as a



means to estimates census size (e.g. Mowat & Paetkau 2002; Boersen et al. 2003; Coster et al.
2011; Moréan-Luis et al. 2014) and sex ratio (e.g Lindsay & Belant 2008; Brinkman &
Hundertmark 2009; Moran-Luis et al. 2014). However, few studies have used genetic data to
simultaneously answer gquestions regarding genetic diversity, structure and evolutionary history as
well as contemporary demographic questions (e.g. Sugimoto et al. 2014). Moreover, the
combination of these genetic and demographic data can be combined in predictive models to
evaluate the long-term survivability of the species of interest. These models [i.e. population
viability analysis (PVAs)] incorporate genetic information, life history data and estimates of
population parameters, alongside probabilistic functions of stochastic events, to determine the

probability of persistence of a species.

In this study, I sought to evaluate how putative isolation of a wide-ranging species
impacts genetic diversity, structure and evolutionary history as well as contemporary demography
of Key deer (Odocoileus virginianus clavium), a subspecies of white-tailed deer (O. virginianus).
Moreover, | used these data to generate a species persistence model (i.e. PVA) to evaluate the
extinction probability of this island subspecies. Islands provide a model system in which to study
the impact of small populations (Frankham 1998) and reduced genetic diversity (Frankham
1997), as well as the evolutionary history of how natural fragmentation impacts continental
species under quasi-isolated conditions. Insular populations are typically founded by only a few
individuals (Frankham 1998). Thus, the initial founding population must be large enough to avoid
detrimental stochastic events and contain adequate genetic variation to adapt under fragmented
conditions; if not, the population will be unable to persist. Furthermore, taxa that reside on islands

can be seen as a replicate of mainland populations, demonstrating how different selection



pressures may influence the species. Given their unique evolutionary history, islands provide an
ideal setting to apply a combination of phylogeographic and demographic tools in which to
elucidate how evolutionary history, genetic diversity, and demography have influenced the

contemporary composition of a species.

Florida contains a large density of near-shore islands which facilitate examining how
insular systems impact population demography and genetic diversity. During the last glacial
maximum, about 18,000 years ago, the landmass of Florida was much greater in area and
extended beyond the Dry Tortugas (Lazell Jr. 1989). Eight thousand years later, with rising sea
level associated with glacial retreat, the land south of modern day Florida became disjoined, with
the intervening ocean establishing a geographical barrier between the mainland and the Florida
Keys (Lazell Jr. 1989). The contemporary Florida Keys are categorized by three groups of
islands: Upper, Middle, and Lower Keys. The Lower Keys are the farthest group of islands from
the mainland and are separated from the Middle Keys by the 11-km wide Moser Channel. The
Lower Keys contain numerous subspecies which were historically described based on geographic
isolation and morphological distinction of mainland sister taxa. The largest of these taxa, Key
deer, have been found to be genetically unique relative to their mainland sister taxa (Ellsworth et
al. 1994). In addition to their genetic differentiation, Key deer have numerous physical (Hardin et
al. 1976; Klimstra et al. 1991; Klimstra 1992) and behavioral characteristics (Hardin et al. 1976)
which set them apart from their mainland counterparts. Additionally, anthropogenic influences
have further impacted the natural history of Key deer. Most importantly, the subspecies was
hunted to near extinction in the early 1950s and has been listed as federally endangered since

1967 (USFWS 1999).



In general, this study sought to evaluate how genetic data can be used to evaluate genetic
and contemporary demographic questions regarding the conservation status of Key deer.
Specifically, 1 used the mitochondrial cytochrome b gene and variation present in 12
microsatellite loci to assess two hypotheses. First, | hypothesized that if the Moser Channel is a
barrier to gene flow, then Key deer should be differentiated and have reduced genetic diversity
compared to mainland deer. This hypothesis is based on previous work conducted by Ellsworth et
al. (1994), who identified a single, unique haplotype found in Key deer using restriction enzymes.
This hypothesis is further supported by two sources of evidence: a) the geographic distance
between the Keys and mainland Florida, which would suggest that Key deer are unable to
disperse from the Keys to the mainland; and b) research of other insular species which has shown
that island populations typically contain reduced levels of genetic diversity compared to their
mainland counterparts (Frankham 1997). Second, | hypothesized that if isolation on islands leads
to a higher probability of extinction, then Key deer should exhibit a small population size, a
female-biased sex ratio, and a PVA analysis should indicate the fragility of the current population
growth rate. This hypothesis is based on previous estimates of Key deer census size [even a
consistent trend of 5% annual increase in Key deer census size (Lopez et al. 2004) starting with
an estimate of 587 deer (Roberts 2005) would lead to a prediction of 900-1000 deer], sex ratio
[studies on Key deer which have also shown a female-biased adult sex ratio (Lopez et al. 2003)],
and studies that have shown that insular species exhibit higher risk of extinction, which are
typically exacerbated by low genetic diversity, population size, and suboptimal habitat (Alcover

et al. 1998; Frankham 1998; Manne et al. 1999; Ricklefs 2009).



CHAPTER TWO: METHODS

Sampling

In order to evaluate broad-scale differentiation of white-tailed deer throughout Florida, |
collected tissue samples from 6 counties in Florida, USA (Fig. 1): Citrus (n=1), Santa Rosa (n=1),
Collier (n=30), Palm Beach (n=8), Monroe (n=10), and Orange (n=30). Additionally, I collected
samples from Ohio (n=2) and West Virginia (n=2) to compare with the Florida population. I also
obtained 22 sequences from GenBank (Table 1) to determine where my samples fall into the
greater New World deer phylogeny and to be used as outgroups. All white-tailed deer samples
were donated by individuals as a result of legal hunting, road kill, or by Florida Fish and Wildlife

Conservation Commission.

To compare genetic differentiation between mainland white-tailed deer and Key deer and
to evaluate genetic structure and demography within Key deer, | additionally collected fecal (n=
350) and tissue (n=21) samples from Key deer originating from No Name (NNK) and Big Pine
Key (BPK) during two sampling sessions (Fig. 2). These two islands represent the core of the
Key deer population and contain approximately 75% of the global Key deer population (Lopez
2001). The initial sampling occurred from April 2013 through May 2013; the second session
occurred from July 2013 until March 2014. To ensure that collections were sampled uniformly
throughout NNK and BPK, | established 29 1-km grids covering these islands using ArcMap10.
The size of grids was based on the monthly home range size of male Key deer (USFWS 1999)
and the amount of effort needed to collect fecal samples across the two islands. Using a random
number generator, | assigned a direction and distance along the edge of each grid to mark the

starting point of each transect. | then walked each transect in an approximate straight line to a



point 1-km away on the opposite side of the grid. Along each transect, | continuously searched
for piles of fecal pellets. Pellet groups which were scattered or contained an abnormally high
amount of pellets were not collected in order to reduce the risk of a sample being from multiple
individuals. Additionally, only pellet groups which appeared to be shiny with a mucus sheen were
sampled to ensure the highest probability of successful DNA extraction (Brinkman et al. 2010).
Moreover, | did not collect samples within 24 hours of rainfall to maximize collection of pellets
with high DNA quality. Due to environmental conditions in the Keys, | could not estimate the
number of days pellets were exposed to weather conditions. For each pellet group which met my
criteria, | collected 6 pellets and georeferenced the sample site using a Garmin GPSmap 60CSx. |
used fresh gloves for each pellet group and stored samples in Drierite desiccant (W. A. Hammond
Drierite Co., Xenia, OH). Fecal samples were collected during the parturition season; however,
fawn pellets are easily distinguished in size from adult and yearling pellets and were not collected
in this study. In addition to the collection of fecal pellets, tissue samples were taken from Key
deer using biopsy darts (PneuDart, Inc.) in grids with high human population density due to the

difficulty in locating fecal pellets and the inability to walk a transect through private property.

For sex identification, | used the same fecal samples which I collected for the previous
objective. Additionally, for methodological control of sex identification, I collected fresh fecal
samples from three Key deer males and three Key deer females. One control sample male was
collected from BPK, the remaining five control samples were donated by the Ellie Schiller
Homosassa Springs Wildlife State Park, Florida (samples collected from their captive Key deer
population). These six fecal samples were only used to validate the methodology for sex

identification and were not used in any other analyses.



DNA Extraction
| extracted DNA from tissue using serapure beads following the protocol of Rohland &
Reich (2012). Fecal DNA was extracted using two pellets following the Qlamp Stool Kit
(QIAGEN) manufacturer’s instructions with two modifications. First, to account for absorption of
the lysis buffer and maximize DNA yield, | added the minimum amount of lysis buffer to each
sample to obtain a final amount of 1.4mL lysis buffer. The amount of lysis buffer varied by
sample depending on how much of the liquid was absorbed by the pellets. Second, | used 100uL

of water heated to 70° C for the elution step, following recommendations by Tursi et al. (2013).

DNA Amplification

For the broad scale phylogenetic analyses, | sequenced 985 base pairs of the mtDNA
cytochrome b gene. Amplification of the cytb gene was conducted in 40uL reactions using the
following concentrations: 4uL of 10x PCR Buffer, 4uL of 25mM MgCl,, 4uL 10mM dNTP,
0.4uL of DMSO, 1.8uL each of 10uM forward and reverse primer, 0.8uL of Tag polymerase, and
4uL of DNA (50ng/uL). Primers were developed based on published mitochondrial genomes of
O. virginianus within GenBank (Forward 5’-GTCATTCAACTACAAGAACACYA-3’; Reverse
5’-TATTGAATGTACTACAAAGACTTA-3"). Amplification conditions were as follows: 5min
at 95°C, 30 cycles of 1min at 95°C, 30sec at 54°C, 1min at 72°C, followed by a final extension
for 15min at 72°C. Subsequent PCR product was sequenced at Eurofins Genomics and University

of Arizona Genetics Core (UAGC).

To assess fine scale genetic structure and demographic parameters, | genotyped all

samples using twelve previously published polymorphic microsatellite loci which had been



optimized for O. virginianus (Table 2). Microsatellite PCR products were genotyped at UAGC.
PCRs for fecal DNA were conducted in 15ulL reactions using the following concentrations 0.3uL
of 40mM dNTP, 1.5uL of GeneAmp® 10X PCR Gold Buffer, 0.15uL. of DMSO, 0.1875uL of
10uM forward primer, 0.75uL of 10uM 6-fam dye, 0.75uL of 10uM reverse primer, 0.15uL of
AmpliTagq Gold® DNA Polymerase, and 1.5uL of DNA (specific concentration of MgCl, are
shown in Table 2). Amplification conditions were based on the protocol of Anderson et al.
(2002). The following modifications were made for fecal DNA: initial denaturation of 5 minutes,
followed by 40 cycles of 30sec at 95°C, 30sec at T (specific annealing temperatures are shown
in Table 2), and extension for 1 min at 95°C, followed by a final extension of 10 min at 72°C. For
tissue DNA, the protocol was the same as for fecal DNA, but the initial denaturation conducted
for 4min and the amplification was run for 35 cycles. All fecal samples were initially amplified
across 12 loci under the optimal conditions. Samples which failed at greater than 50% of the loci
were discarded from the study. The remaining samples were rerun under the same conditions if
loci failed to amplify during the initial screening. Samples which failed to amplify a second time
under the initial conditions were rerun at decreasing annealing temperature in 2 degree
increments until an annealing temperature of 46°C was reached (Fig. 3). Samples which failed to

display clear peaks went through the amplification temperature-cycle twice.

Sex identification was determined using intron 7 of the zinc-finger locus (Lindsay &
Belant 2008). Amplification of intron 7 was conducted in 10uL reactions following the protocol
of Lindsay & Belant (2008). The X-linked allele (displayed for males and females) is visualized
as a smaller band on a 2% agarose gel, while the Y-linked allele (males only) is double the size of

the X-linked allele caused by an insertion in the Y-linked allele of intron 7. The larger, Y-linked,



allele is at greater risk of allelic dropout in degraded samples such as feces. To monitor allelic
dropout, each PCR reaction was run with two positive controls: one male and one female. As
previously stated, these positive controls were fecal pellets collected from Key deer with known

Sex.

Analyses

To address the genetic isolation of Key deer in hypothesis one, | edited cytb sequences in
Sequencher v5.1 (Gene Codes Inc., Ann Arbor, MI, USA) and aligned the data in MEGAG6
(Tamura et al. 2013) using ClustalW. I first created a TCS network (Clement et al. 2000) using
popART (http://popart.otago.ac.nz) to find unique haplotypes. Next, | determined the highest
likelihood models of evolution for my cytb data and evaluated partitioning of the gene based on
codon position using PartitionFinder v1.1.1 (Lanfear et al. 2012). | constructed a Bayesian
phylogeny utilizing MrBayes v3.2.2 (Ronquist et al. 2012) and partitioned my data by first,
second and third codon positions. Each partition was run under a separate model: HKY+G,
K80+I, and HKY, respectively (see Results). I ran MrBayes with only unique haplotypes
identified from TCS and with two independent runs of 5x10° generations and the first 10,000
trees were discarded as burn-in to generate the phylogeny. To evaluate mitochondrial diversity in
terms of nucleotide and haplotype diversity, | used the program DnaSP v5.0 (Librado & Rozas

2009).

To assess nuclear genetic diversity and structure between the Keys and mainland and
within the Keys, I first determined allele sizes using the program GENEMARKER (SoftGenetics,

LLC) and used GenAlEx6 (Peakall & Smouse 2006) to assess if loci were in Hardy-Weinberg

10



Equilibrium (HWE) for each population. Next, | used FSTAT (Goudet 2001) to estimate levels of
allelic richness and tested for significance between Key deer and mainland deer via Welch's t-test
in R (R Core Team 2013). Finally, to test for structure within and between the mainland and the
Keys | ran the program STRUCTURE (Pritchard et al. 2000) with 10 independent runs for each
value of K (1-6), 100,000 burn-in, and 500,000 iterations. I used the Evanno method (Evanno et
al. 2005) to estimate AK as implemented in the program STRUCTURE HARVESTER (Earl &
VonHoldt 2011). To complement the findings in STRUCTURE, | estimated Fst between the

mainland and the Keys using the program GenePop v4.0 (Rousset 2008).

| calculated the probability of identity (P,p) and probability of sibling identity (Psip) using
GenAlEx6 as a means to uniquely identify individuals. The ability to distinguish between
individuals and siblings is crucial to calculating a census size and is based on the amount of
genetic diversity within the population. | identified unique individuals and possible recaptures of
the same individual utilizing two programs, which use different methods to correct for error. The
first program, COLONY (Jones & Wang 2010), was used to determine full sibs under an
assumption of a 20% error rate. The inclusion of an error rate corrects for known issues involving
noninvasive genetic sampling such as allelic dropout and false alleles (Waits & Paetkau 2005).
By including error into the analyses, | was able to account for inconsistencies in identifying
recaptured individuals which may not be exact matches due to allelic dropout. I estimated
genotyping error rates in the fecal samples by re-amplifying eleven loci across sixteen samples
which had been shown to work successfully. The second program, CERVUS (Kalinowski et al.
2007), identified unique individuals under the conditions of 4 mismatching loci and 6 matching

loci. Assigned matches from CoLoNY and CerRvuUS were further scrutinized by eye to confirm

11



matching individuals. Any single allele that was identified as different between samples
disqualified the classification of samples as matches. However, | allowed four instances of allelic
dropout between possible matches. In many cases, four cases of allelic dropout were not required
to have a match between individuals. Additionally, the majority of possible matches had missing
data for at least one locus (e.g. matched at 10 loci with the eleventh locus missing entirely). To
account for missing data, I recalculated P,p and Psj, for all matches such that the recalculated
value only included loci in which data were present. If the P\p and Psj, did not exceed the
threshold values of 0.001 and 0.05 (Schwartz & Monfort 2008), respectively, they were recorded

as the same individual.

To estimate census size, | used two methodologies: mark-recapture in the program MARK
(White & Burnham 1999) and spatially-explicit capture recapture (SECR) in the package secr
(Efford 2014) in R. In MARK, | used the standard closed capture model (Otis et al. 1978) which
assumes that, for the duration of the experiment, the population does not change through
immigration, emigration, births, or deaths. For the purpose of the study, I can assume that
movement into and out of NNK and BPK are negligible given that the majority of the Key deer
individuals inhabit these two islands (Barrett & Stiling 2006). | further evaluated the assumption
of a closed system using the program CloseTest (Stanley & Burnham 1999). CloseTest tests for
closure in time-specific data using the null hypothesis from Otis et al. (1978) against the Jolly-
Seber open model (Stanley & Burnham 1999). Since CloseTest suggested | met the assumptions
of a closed capture model, | tested two biologically plausible closed capture models based on Otis
et al. (1978). The first model assumed that the probability of capture and recapture remained

equal and constant between first and second captures. The second model allowed time (sampling

12



occasion) to remain constant within captures, but vary between first and second captures. | used
Akaike's Information Criterion (AIC., adjusted for sample size) to determine which model best
explained the data. The second method to estimate census size utilized SECR analysis. SECR
differs from traditional mark-recapture in that it includes individuals found in the same sampling
session (“"occasion™) and uses the coordinates of each sample to estimate the density of Key deer.
| generated a mask area based on the ArcMap shapefile of BPK and NNK using the maptools
package in R. For the SECR analysis, | tested two models, following the same models I used in
MARK, and assessed the best model using AIC.. From the calculation of density estimated in
secr, | multiplied this value by the area of BPK and NNK to estimate the census size (N=DA).
Additionally, | estimated effective population size using COLONY to compare the amount of
diversity present in the Keys population to the estimated census and calculated a census

size/effective size ratio.

To estimate the sex ratio within the Key deer population as part of the second hypothesis,
| counted the number of males and females identified in the Key deer population using gel
electrophoresis. The total number of males and females found in the Key deer population was

then divided by the total number of samples which successfully amplified.

Finally, 1 combined the genetic and demographic data into a species persistence model
using the program VORTEX v10.0.8.0. Life history traits and genetic data were based on results
from this study, previously published literature for Key deer, or standard VORTEX values (Table
3). To determine aspects of the model that impacted species persistence, | ran 20 iterations for
each model while changing individual model parameters, these included: catastrophes, mate

monopolization, maximum age of male reproduction, levels of inbreeding depression, fecundity,
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carrying capacity, fetal sex ratio, male survival, and female survival. Not all model parameters
impacted probability of extinction (see Results); however, for those that did, | ran sensitivity
analyses to determine how varying parameters related to persistence. Specifically, 1 varied
percent males born (59%, 66%, and 74%) and female mortality in the sensitivity analyses. The
values for fetal sex ratio represent the two published extremes (Hardin 1974; Folk & Klimstra
1991) and an intermediate value. Adult female mortality was modeled using two methods:

constant mortality rate and a function to account for negative density-dependent survival:

=18*(EXP(N/K)/EXP(K/K))

with N=census size and K=carrying capacity. The constant in the equation for female mortality
represents the published value for adult mortality (Lopez et al. 2003). In the sensitivity analyses,
female mortality was evaluated under three different levels: decreased mortality (10% fawns,
10% adults), baseline mortality (28% fawns, 18% adults), and increased mortality (38% fawns,
28% adults). I ran the sensitivity analyses for 100 samples to model changes due to stochasticity.

| simulated the data to look 50 years into the future and evaluate likelihood of persistence.
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CHAPTER THREE: RESULTS

Sequencing
A total of 985bp were successfully amplified from 100 samples used for haplotype and
phylogenetic analyses. From these samples, | identified 18 unique haplotypes (Fig. 4) which were
used to create the phylogeny. The final tree was partitioned based on codon position and resulted
in an average standard deviation of split frequencies of about 0.0029. Each codon was
represented by a different model of DNA evolution: HKY+G, K80+I, and HKY (Kimura 1980;

Hasegawa et al. 1985), first, second, and third codon positions, respectively.

Based on the haplotype network, the most distinct group (three haplotypes found in the
Keys and Collier County) are separated by 23 base pairs from the next most closely related group.
Within Ohio there are two haplotypes. One Ohio haplotype was shared between Ohio and Collier
County and was more closely related to the samples from West Virginia than the Florida
haplotypes. The second haplotype found in Ohio was more closely related to samples in Florida.
Within the Keys, | found that all samples exhibit a single unique cytb haplotype. The Keys

haplotype differs from its closest related haplotype, found in Collier County, by one base pair.

The phylogeny produced interesting results with regards to Key deer, white-tailed deer,
and placement of genera within New World deer. Based on the phylogenetic analysis, | found that
Key deer, like mule deer (O. hemionus) are nested within white-tailed deer (Fig. 5). However, the
genus Odocoileus itself forms a monophyletic clade, excluding O. virginianus 6 (Fig. 5).
Additionally, two other genera within New World deer (Pudu and Mazama) formed a

paraphyletic clade that includes the monophyletic Odocoileus clade (Fig. 5).
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Population Genetics

| found all 12 microsatellite loci were polymorphic within and among the mainland deer
samples, whereas only 11 of the loci were polymorphic within the Key deer population. In the
mainland | tested for Hardy-Weinberg equilibrium (HWE) in Collier, Orange, Monroe, and Palm
Beach counties. After conducting a sequential Bonferroni correction (Rice 1989), only three loci
were out of HWE (loci R and IGF1 in Collier County and locus R in Orange County). | saw no
patterns of loci or populations that were consistently out of HWE; therefore, all populations and
loci were used in downstream analyses, despite the possibility for low frequency null alleles in
some populations. Citrus and Santa Rosa counties, as well as Ohio and West Virginia, were not
tested for HWE due to small sample sizes. However, samples from these populations were not
evaluated for within-population levels of genetic diversity or among-population genetic
differentiation. In contrast to the mainland populations tested, the Keys population deviated from
HWE expected values in 11 out of 12 loci. However, this result was not surprising given known
issues associated with noninvasive genetic sampling (Waits & Paetkau 2005). The average error
rate across all loci was 8.52% (Table 2). The one locus that did not deviated from HWE was
Locus BL25, the monomorphic locus in the Keys. Average allelic richness varied from 3.37 in
the Keys to 5.51 in Orange County (Table 4). Key deer were found to contain significantly
reduced levels of allelic richness compared to the mainland population (Welch's t-test; t=-2.771,
df=20.501, P= 0.012). Based on the genetic diversity estimate, the P,p (2.4x10°°) and Pgjs, (2.4%10"
) were calculated to be less than the threshold (Schwartz & Monfort 2008) which allowed for the

genetic tagging of individuals.
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Based on STRUCTURE, | identified K=2 clusters as the best fit for the data using the
Evanno et al.( 2005) method: the Keys and mainland Florida (Fig. 6). Although all pairwise Fst
values were significant except for the comparison between Collier and Monroe Counties, the
numerical values were much greater between the Keys and the mainland (0.155 — 0.207) than
among mainland populations (0.022 — 0.074; Table 5), further supporting that these populations
fall into two clusters (i.e. mainland versus Keys). One caveat of the high Fsr value is that the
Keys population is out of HWE leading to a possible inaccurate estimate of Fst. However, Smith
& Wang (2014) determined that when error rates are less than 20%, estimates of Fst and genetic
diversity are able to be evaluated. Only one locus exhibited an error rate above 20% (Table 2);
hence, these data should reflect accurate estimates of differentiation between Keys and mainland

populations.

Demographics

| was able to successfully genotype 164/350 samples collected (47% success rate). Combined
with 21 tissue samples, I identified 173 unique deer to be used in downstream demographic
analyses. Within sampling session one | found six matches (i.e. samples that were identical within
the first sampling session), sampling session two had two matches. Comparisons between
sampling sessions revealed eight recaptures of sampling session one deer in sampling session
two. The model assumptions did not significantly (P=2.0) deviate from those of a closed
population model based on the program CloseTest. In MARK and secr, the most supported model
stated that the probability of capture remains constant within sampling sessions, but varies
between sessions (Table 6). Both programs gave similar results: MARK estimated a census size

of 986.69 (SE = 316.81) individuals and secr estimated 1,006.93 (SE = 242.30) individuals

17



(Table 6). These numbers are surprisingly higher than the genetic effective population size, which
was estimated to be 11 individuals (95% CI: 6-28). Therefore, the ratio of effective/census

population size is approximately 0.011. Finally, | was able to successfully amplify intron 7 of the
zinc-finger locus in 70 samples. Out of the 70 samples, | was able to identify 65 females and five

males showing a heavily female-biased adult population.

Population Viability Assessment

By altering individual parameters, | found that only two variables (female survival and
fetal sex ratio) impacted long-term census size and species persistence of the Key deer. When all
remaining variables were substituted with alternative values (Table 3), the model of species
persistence was minimally impacted. In contrast, when female survival is increased or decreased
beyond the value estimated from field data (Lopez et al. 2003), | found that female survival itself
is the primary factor impacting persistence (Fig. 7). Whereas when female survival is at the value
estimated from the field, persistence is dependent upon fetal sex ratio. Fetal sex ratio impacted
the rate of extinction such that at higher male-biased fetal sex ratios (e.g. 74% males), extinction
was reached more quickly (Fig. 7). Under all scenarios, when the species is extinction bound,

density-dependent mortality slows the rate of extinction.
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CHAPTER FOUR: DISCUSSION

This study highlights the utility in using modern genetic techniques to answer questions
related to both genetics and contemporary demography. My results indicate that Key deer are
genetically isolated from mainland white-tailed deer and that there is a lack of genetic
substructure between BPK and NNK. Moreover, Key deer exhibit reduced levels of genetic
diversity compared to their mainland counterparts; however, they contain enough diversity of
which to uniquely identify individual deer. Based on genetic identification, | estimated a census
size of around 1,000 individuals with a heavily skewed female-biased adult sex ratio. Moreover, |
was able to combine genetic and contemporary demographic data to generate a species
persistence model of the Key deer. Sensitivity tests within the PVA brought to light the
importance of fetal sex ratio and female survival as the primary factors at risk of driving the
subspecies to extinction. Below, I discuss the evolutionary history of Key deer, contemporary
demographic estimates of Key deer and how each of these factors contributes to species

persistence.

Evolutionary History
Overall, I sequenced and acquired samples from GenBank in which to evaluate the
phylogenetic relationship of three genera of New World deer (Odocoileus, Mazama and Pudu) as
a means to determine the placement of Key deer within this phylogeny. I found that all three
genera are paraphyletic. Pudu and Mazama are paraphyletic with regard to each other, which
parallels the findings of Duarte et al. (2008) and Hassanin et al.(2012). Odocoileus is

paraphyletic owing to a single sample of O. virginianus that was sampled from the most southern
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part of the contiguous species range (i.e. Colombia). Other than this one sample, Odocoileus
forms a monophyletic clade, which contains white-tailed deer, mule deer and Key deer. However,
white-tailed deer are not monophyletic as both mule deer and Key deer are nested within the
white-tailed deer phylogeny. The mule deer phylogenetic placement may be largely impacted by
introgression between mule deer and white-tailed deer (Cathey et al. 1998). Key deer, on the
other hand, are likely nested within white-tailed deer owing to the recent isolation of the

population (6-10 kya; Lazell Jr., 1989).

Focusing on Odocoileus found in Florida, | found that there is high haplotype diversity
among all samples and even within populations. There are three possible causes to the high levels
of diversity observed: translocation, historic polymorphism, and long distance dispersal. In the
1900s, southeastern white-tailed deer were overexploited and subsequently restocked with deer
ranging throughout the United States (Blackard 1971). Although in recent years, translocations
have been stopped owing to measures to decrease the spread of chronic wasting disease (Garrison
& Gedir 2006), historic translocations from previously isolated regions could leave the observed
pattern. Historic polymorphism could also explain the pattern of diversity. Under this scenario,
historic abundance and large effective population sizes of white-tailed deer could enable the
retention of historic diversity even as drift causes haplotypes to be lost over time. Lastly, white-
tailed deer range throughout the Americas and have been shown to exhibit low structure between
broad regions (Robinson et al. 2012), suggesting that long-distance dispersal can occur. However,
males are the primary dispersers in white-tailed deer and thus are unlikely to impact mtDNA

genetic structure.
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Despite the haplotype diversity found within Florida, I did not identify high haplotype
diversity in the Key deer. Indeed, Key deer all contained a single mtDNA haplotype. This
haplotype was most closely related to two haplotypes from Collier County and these three
haplotypes were quite distinct from the next closest haplotype (2.3% uncorrected sequence
divergence). Key deer haplotype diversity indicates a lack of structure within Key deer. Although
the lack of structure contrasts with studies of Key deer movement (Lopez 2001), it is paralleled
by the nuclear markers, which supported a single panmictic population between BPK and NNK.
In addition, I identified a reduced level of allelic richness relative to mainland deer, supporting
the lack of gene flow between Key deer and mainland deer identified using mtDNA. To further
provide evidence, previous to this study | screened an additional seven loci (BM415, K, BBJ11,
eth152, O, D, BM848), which | chose not to genotype across all samples owing to
monomorphism within the Key deer samples. The inclusion of these monomorphic loci would
almost certainly have further decreased the genetic diversity estimates for the Keys. It is not
surprising that Key deer exhibit such a reduction in genetic diversity relative to their mainland
white-tailed deer ancestors. In addition to their insularization, Key deer experienced an extreme
bottleneck due to overexploitation and the population plummeted to about 25 individuals in the

early 1950s (USFWS 1999).

Contemporary Demography
Upon examination of the census estimates for both models in MARK and secr, | found
that they were similar and ranged from about 987-1012 individuals. Other studies have evaluated
the census size estimates between secr and other mark-recapture programs (e.g. CAPTURE and

MARK) and found similar population estimates between programs (e.g Gray & Prum 2012;
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Rayan et al. 2012). A census size estimate of around 1,000 individuals suggests that the Key deer
population is continuing to increase from the estimated 25 individuals in the 1950s until present
or that previous studies have underestimated census size. The last census count of Key deer on
BPK and NNK estimated 555-619 deer in 2005 (Roberts 2005). In a previous study by Lopez et
al. (2004), estimating a population size between 453-517 in 2001, they noted that the Key deer
population on BPK and NNK is increasing at about 5% annually. Based on the 5% annual
increase starting from the last census estimate in 2005, the Key deer population should consist of
around 900 individuals, which is similar to my estimate, thus matching the prediction of Lopez et

al. (2004) and has not yet stabilized.

The continuous increase of the population since the early 1950s may be due to 1) the
population recovering and not reaching carrying capacity or 2) recent habitat changes have
favored the Key deer. Historic population size has been estimated to be between 600-700
individuals (Seal et al. 1990) with previous estimates of carrying capacity to be around 607
(Harveson et al. 2006). However, my current estimate exceeds historical estimates and carrying
capacity. Thus, my data suggest that carrying capacity has not been reached. Humans may have
artificially increased their carrying capacity by the addition of fresh water and food (Peterson et
al. 2005). In fact, Key deer have increased their use of urban developments from the times of
1970-2000 (Harveson et al. 2007). Even with few houses providing additional sustenance, the

extra resources can significantly influence population dynamics (Peterson et al. 2005).

Previous work on sex ratio in Key deer focused on two separate life-history stages and
found contrasting results. In two different studies (Hardin 1974; Folk & Klimstra 1991), the fetal

sex ratio was observed to be skewed towards males. Contradictory to the fetal sex ratio, Lopez
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(2001) reported an adult female-biased (approximately 3:1) sex ratio during an observational
study. My results support a pattern similar to Lopez (2001); however, my results suggested a
more striking 13:1 female: male adult sex ratio. Here, the explanation for the extreme female-
biased sex ratio does not likely have natural causes. Rather, road mortality data likely play a role
in skewing the sex ratio. Specifically, studies have revealed a greater number of male deaths
each year caused by deer-vehicle collisions (DVCs; Lopez et al. 2003). Moreover, deer behavior
is a likely culprit as to why DVCs favor male deer. Similar to mainland white-tailed deer, Key
deer males are the primary dispersers (Lopez 2001), making them more likely to move across

roads than female deer and collide with vehicles.

Persistence Modeling

| utilized both genetic and demographic data to evaluate the persistence of Key deer for
the next 50 years. The genetic data informed the number of populations to be equal to one,
consisting of all individuals found on BPK and NNK and provided the input of allele frequency
data into the model to evaluate loss of genetic diversity. The demographic data informed the
initial census size for all models and provided information with regard to the adult sex ratio.
Surprisingly, only two variables (female survival and fetal sex ratio) were the main drivers of
species persistence. The models illuminated the importance of females within the Key deer
population. Variables that increased the number of females increased the likelihood of long-term
persistence. On the other hand, the number of males does not influence time to extinction.
Assuming that Key deer, similar to mainland white-tailed deer and other ungulates, are
polygamous (Clutton-Brock 1989), I should expect that it would require few males to sustain the

population. In other words the limiting factor, with regard to long-term persistence of Key deer, is
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the number of females. When evaluating the combined role of fetal sex ratio and female survival,
this study revealed that the tipping point for species persistence in the Key deer is near 66% fetal
sex ratio, 28% female fawn survival, and 18% adult female density-dependent survival. Values
less favorable lead to extinction while values more favorable lead to growth capped at carrying

capacity.

In summary, Key deer provided a model system in which to use modern genetic
techniques to evaluate questions related to traditional genetic data (e.g. genetic structure and
diversity) and demography. | found that Key deer are genetically isolated from mainland white-
tailed deer and contain reduced levels of genetic diversity. However, they contain enough genetic
diversity to identify individual deer to estimate census size using genetic tagging. Through
genetic mark-recapture, | found that the Key deer population is continuing to increase from their
historic population size of around 25 individuals. To evaluate population stability in Key deer,
management should continue to monitor the census size of the population. Moreover, because
females are critical for Key deer survival, future studies should focus on obtaining more accurate
estimates of fetal sex ratio and methods to reduce female mortality. Ultimately, | provide
evidence that Key deer are recovering and under continued management practices, | expect their

continued persistence into the next 50 years.
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Figure 1. Map of sampling locations. Samples were collected from six counties within Florida to
represent the Florida mainland population. Ohio and West Virginia samples were collected as
outgroup samples.
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Figure 2. Sampling locations of Key deer. BPK and NNK are the easternmost islands in the
Lower Keys of Florida. Sampling session one is denoted by pink dots; second session by green
dots.
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Figure 3. Amplification cycle of fecal samples. Samples were run repeatedly until a clear peak was distinguishable or until a
sample went through the cycle two times per locus.
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Figure 4. Haplotype network of samples collected in this study. As shown, the haplogroup containing the Keys and Collier
County are several basepairs away from the next related haplotypes. Samples from Orange County are not shared with any of the
other populations.
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Figure 5. New World deer phylogeny based on the cytb gene. Posterior probabilities, greater than 0.5, are indicated at their
respective nodes. Samples used in this study are named according to their haplotype number. The remaining samples found in
the phylogeny were obtained from GenBank. Numbers next to taxon name correspond to the GenBank accession numbers in
Table 1. Outgroups: Rangifer tarandus and Capreolus capreolus.
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Figure 6. Output of the STRUCTURE analysis when K=2. The output shows structure between the Keys (Keys=1) and mainland
(Collier=2, Orange=3, Monroe=4, Palm Beach=>5) with no structure within the Keys or mainland.
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Figure 7. VORTEX simulations for persistence of Key deer. All six graphs are shown with changing fetal sex ratios, but each
graph varies according to female mortality. (A) Decreased and constant mortality, (B) baseline and constant mortality, (C)

increased and constant mortality, (D) decreased density-dependent mortality, (E) baseline and density-dependent mortality, and
(F) increased and density-dependent mortality.
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Table 1. GenBank samples used in phylogeny. Sample names given correlate to taxa naming.
Citations correlate to studies which generated the sequence and accession number refers to

GenBank.

Name in Phylogeny Citation Accession Number
O. virginianus 1 Pitra et al. 2004 AY607035
O. virginianus 2 Gilbert et al. 2006 DQ379370
O. virginianus 3 Hassanin et al. 2012 JN632671
O. virginianus 4 Hassanin et al. 2012 JN632672
O. virginianus 5 Cronin et al. 2006 DQ673136
O. virginianus 6 Hassanin et al. 2012 JN632673
O. hemionus 1 Hassanin & Douzery 1999 AF091630
O. hemionus 2 Naidu et al. 2012 HM222707
O. hemionus 3 Hassanin et al. 2012 JN632670
Mazama temama 1 Unpublished KC146956
Mazama temama 2 Unpublished KC146957
Mazama temama 3 Unpublished KC146958
Mazama temama 4 Unpublished KC146959
Mazama americana 1 Hassanin et al. 2012 JN632657
Mazama americana 2 Hassanin et al. 2012 JN632656
Mazama pandora 1 Unpublished KC146954
Mazama pandora 2 Unpublished KC146955
Pudu mephistophiles Hassanin et al. 2012 JN632691
Mazama rufina Hassanin et al. 2012 JN632661
Pudu puda Hassanin et al. 2012 JN632692
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Name in Phylogeny Citation Accession Number
Mazama nemorivaga 1 Hassanin et al. 2012 JN632659
Mazama nemorivaga 2 Hassanin et al. 2012 JN632660
Blastocerus dichotomus Hassanin et al. 2012 JN632603
Hippocamelus antisensis Hassanin et al. 2012 JN632646
Hippocameuls bisulcus 1 Duarte et al. 2008 DQ789177
Hippocameuls bisulcus 2 Duarte et al. 2008 DQ789178
Mazama gouazoupira Hassanin et al. 2012 JN632658
Ozotocerus bezoarticus Hassanin et al. 2012 JN632681
Rangifer tarandus Unpublished NC_007703
Capreolus capreolus Hassanin et al. 2012 JN632610
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Table 2. Primers and PCR conditions for microsatellite data generated for Key deer. All PCR
reactions were run using a standard protocol (see Methods). Concentration of MgCl, and primer
annealing temperatures varied by locus (TA). Error rates within noninvasive samples are
calculated from the re-amplification of 16 samples.

Locus Citation [MgCl;] | Ta | Error rate

BL25 Bishop et al. 1994 2.0mM |52 | N/A

ILSTS011 | Brezinsky etal. 1993 | 2.0mM | 52 | 6.25%

OarFCB193 | Talbot et al. 1996 2.0mM |52 | 0%

INRAO11 Vaiman et al. 1992 2.0mM |52 | 0%

Cervidl DeWoody et al. 1995 | 2.56mM | 52 | 25%

P Jones et al. 2000 2.0mM |52 | 0%

R Jones et al. 2000 3.5mM |52 | 12.5%
IGF1 Kirkpatrick 1992 3.0mM |52 | 6.25%
N Jones et al. 2000 2.0mM |52 | 18.75%
Rt9 Wilson et al. 1997 3.0mM |54 | 12.5%

BM4107 Talbot et al. 1996 2.5mM | 52 | 12.5%

Q Jones et al. 2000 2.0mM | 52 | 0%
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Table 3. Final parameters input into program VORTEX. All data input into the persistence model
were based on results from this study, previously published Key deer literature, or standard
VORTEX Values. During model examination, parameters in bold were evaluated for impacts on
species persistence. The (}) illustrates values used in the standard model when multiple values
were evaluated, yet variation did not influence likelihood of extinction. Parameters italicized
were used in sensitivity analyses due to their importance in species persistence.

Parameter Value Source
Inbreeding Inbreeding depression =0, 3, 6.29*f, 12 *Standard value given by
depression VORTEX

Percent due to recessive lethal alleles = 25, 50*

*Standard value given by
VORTEX

Reproductive

Polygynous*

*Based on white-tailed deer

system (Clutton-Brock 1989)
Age of first offspring females = 1* *(USFWS 1999)
Age of first offspring males = 2* *(USFWS 1999)
Maximum lifespan = 7* *(Lopez et al. 2003)
Maximum number of broods per year = 1* *(USFWS 1999)
Maximum number of progeny per brood = 3* *(USFWS 1999)
Sex ratio at birth -- in % males = 59, 66, 74 See Methods
Maximum age of female reproduction = 7* *(Lopez et al. 2003)
Maximum age of male reproduction = 3*}, 7 *(Klimstra 1992)

Reproductive % adult females breeding = 82* *(Folk & Klimstra 1991)

rates

SD in % breeding due to EV = 10*

*Standard value given by
VORTEX

Distribution of number of offspring per female pe
brood (4 combinations tested: 1, 2, 3 offspring
respectively):

*(Folk & Klimstra 1991;
USFWS 1999)

Combination 1 =83, 17,0

Combination 2 = 60, 40, 0

Combination 3 = 20, 50, 30

Combination 4*} =82, 17,1

Mortality rates

Females = See Methods

(Lopez et al. 2003)

SD dueto EV =0.1*

*Standard value given by
VORTEX

Males — Age 0-1 = 28, 32*}

*(Lopez et al. 2003)

Males — Age 1-2 = 18, 39*t, 50

*(Lopez et al. 2003)

Males — Age after age 2 = 18, 39*, 50

*(Lopez et al. 2003)

SD dueto EV =0.1*

*Standard value given by
VORTEX
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Parameter

Value

Source

Catastrophes Number of catastrophes = 2* *Standard value given by
VORTEX
Frequency = 17, 50 Modeled range from 1%-50%
and showed no change
Severity — Reproduction = 1* *(Lopez et al. 2003)
Survival = 1* *(Lopez et al. 2003)
Mate Males in breeding pool = 25, 100} Modeled range from 25%-

Monopolization

100% and showed no change

Initial population
size

Population size = 1006*

*This study

Stable Age Distribution with no males surviving
after age 3*

*(Klimstra 1992)

Carrying capacity | 250, 607, 1500%+, 2000 *This value represents a 50%
increase over estimated census
size

Harvest None Phillip Hughes (pers. comm)

Supplementation | None Phillip Hughes (pers. comm)

Genetics Additional loci only and 11 neutral loci to be This study

modeled
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Table 4. Genetic diversity for five populations of mainland Florida white-tailed deer. Genetic diversity shows number of
individuals used (n), number of haplotypes, number of segregating sites, nucleotide diversity (i), haplotype diversity (h) and

allelic richness. Nucleotide diversity, haplotype diversity, and allelic richness are reported as mean + standard error.

Mitochondrial diversity

Microsatellite diversity

No. of No. of Allelic
Population n haplotypes segregating I1 h n richness
sites
Keys 34 1 0 0 0 185 3.747+0.354
Collier 21 44 0.018+£0.000 0.714+0.01 30 5.349+0.551
4
Orange 27 7 47 0.019£0.000 0.769+0.01 30 5.509+0.586
1
Monroe 4 0 0 0 10 5.076+0.435
Palm 7 0 0 0 8 5.266+0.452
Beach
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Table 5. Pairwise Fst values between populations. The Keys have the highest amount of
differentiation when compared to other populations. Within the mainland, there is little
differentiation between populations. Numbers in bold are significantly greater than zero.

Population | Keys | Collier | Orange | Monroe Palm Beach
Keys — — — — —
Collier 0.204 — — — —
Orange 0.202 | 0.041 — — —
Monroe | 0.207 | 0.022 | 0.074 — —
Palm 0.155 | 0.052 | 0.040 0.057 —
Beach
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Table 6. Models tested and AICc scores and weight for census size. The two best models for each
method are in bold. See text for contents of these models.

Program Model AIC, AIC. weight Census
Estimate
MARK  {N, p(constant)=c(constant)} -1139.65 0.18 1012.97
MARK {N, p(time) = c(time)} -1142.74 0.82 986.69
secr g0 883.98 0.17 1006.93
secr gOt 880.86 0.83 1006.93

41



REFERENCES

Alcover JA, Sans A, Palmer M (1998) The extent of extinctions of mammals on islands. Journal
of Biogeography, 25, 913-918.

Anderson JD, Honeycutt RL, Gonzales RA et al. (2002) Development of microsatellite DNA
markers for the automated genetic characterization of white-tailed deer populations. Journal
of Wildlife Management, 66, 67—74.

Avise JC, Nelson WS (1989) Molecular genetic relationships of the extinct dusky seaside
sparrow. Science, 243, 646-648.

Barrett MA, Stiling P (2006) Effects of Key deer herbivory on forest communities in the lower
Florida Keys. Biological Conservation, 129, 100-108.

Bishop MD, Kappes SM, Keele JW et al. (1994) A genetic linkage map for cattle. Genetics, 136,
619-639.

Blackard JJ (1971) Restoration of the white-tailed deer to the southeastern United States.
Louisiana State University, Baton Rouge, USA.

Boersen MR, Clark JD, King TL (2003) Estimating black bear population density and genetic
diversity at Tensas River, Louisiana using microsatellite DNA markers. Wildlife Society
Bulletin, 31, 197-207.

Brezinsky L, Kemp SJ, Teale AJ (1993) Five polymorphic bovine microsatellites (ILSTS010-
014). Animal Genetics, 24, 75-76.

Brinkman TJ, Hundertmark KJ (2009) Sex identification of northern ungulates using low quality
and quantity DNA. Conservation Genetics, 10, 1189-1193.

Brinkman TJ, Schwartz MK, Person DK, Pilgrim KL, Hundertmark KJ (2010) Effects of time
and rainfall on PCR success using DNA extracted from deer fecal pellets. Conservation
Genetics, 11, 1547-1552.

Bristol RM, Tucker R, Dawson DA et al. (2013) Comparison of historical bottleneck effects and
genetic consequences of re-introduction in a critically endangered island passerine.
Molecular Ecology, 22, 4644-4662.

Brown RM, Weghorst JA, Olson KV et al. (2014) Conservation genetics of the Philippine

tarsier: cryptic genetic variation restructures conservation priorities for an island archipelago
primate. PLoS ONE, 9, e104340.

42



Cantor M, Wedekin LL, Daura-Jorge FG, Rossi-Santos MR, Simdes-Lopes PC (2012) Assessing
population parameters and trends of Guiana dolphins (Sotalia guianensis): An eight-year
mark-recapture study. Marine Mammal Science, 28, 63-83.

Cathey JC, Bickham JW, Patton JC (1998) Introgressive hybridization and nonconcordant
evolutionary history of maternal and paternal lineages in North American deer. Evolution,
52, 1224-1229.

Caughley G (1994) Directions in conservation biology. Journal of Animal Ecology, 63, 215-244.

Cheng Y, Sanderson C, Jones M, Belov K (2012) Low MHC class Il diversity in the Tasmanian
devil (Sarcophilus harrisii). Immunogenetics, 64, 525-533.

Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene
genealogies. Molecular Ecology, 9, 1657-1659.

Clutton-Brock TH (1989) Mammalian mating systems. Proceedings of the Royal Society of
London, B. Biological Sciences, 236, 339-372.

Coster SS, Kovach Al, Pekins PJ, Cooper AB, Timmins A (2011) Genetic mark-recapture
population estimation in black bears and issues of scale. Journal of Wildlife Management,
75, 1128-1136.

Cronin M a, Macneil MD, Patton JC (2006) Mitochondrial DNA and microsatellite DNA
variation in domestic reindeer (Rangifer tarandus tarandus) and relationships with wild
caribou (Rangifer tarandus granti, Rangifer tarandus groenlandicus, and Rangifer tarandus
caribou). The Journal of heredity, 97, 525-30.

Degner JF, Stout 1J, Roth JD, Parkinson CL (2007) Population genetics and conservation of the
threatened southeastern beach mouse (Peromyscus polionotus niveiventris): subspecies and
evolutionary units. Conservation Genetics, 8, 1441-1452.

Duarte JMB, Gonzalez S, Maldonado JE (2008) The surprising evolutionary history of South
American deer. Molecular Phylogenetics and Evolution, 49, 17-22.

Earl DA, VonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for
visualizing STRUCTURE output and implementing the Evanno method. Conservation
Genetics Resources, 4, 359-361.

Efford MG (2014) secr: Spatially explicit capture-recapture models. R package version 2.9.0.
Ellsworth DL, Honeycutt RL, Silvy NJ, Bickham JW, Klimstra WD (1994) Historical

biogeography and contemporary patterns of mitochondrial DNA variation in white-tailed
deer from the southeastern United States. Evolution, 48, 122-136.

43



Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the
software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620.

Folk MJ, Klimstra WD (1991) Reproductive performance of female Key deer. Journal of Wildlife
Management, 55, 386—-390.

Frankham R (1997) Do island populations have less genetic variation than mainland populations?
Heredity, 78, 311-327.

Frankham R (1998) Inbreeding and extinction: island populations. Conservation Biology, 12,
665-675.

Garrison E, Gedir J (2006) Ecology and management of white-tailed deer in Florida.
Gilbert C, Ropiquet A, Hassanin A (2006) Mitochondrial and nuclear phylogenies of Cervidae
(Mammalia, Ruminantia): Systematics, morphology, and biogeography. Molecular

Phylogenetics and Evolution, 40, 101-17.

Gilpin ME, Soule ME (1986) Minimum viable populations: processes of species extinction. In:
Conservation Biology: the Science of Scarcity and Diversity, pp. 19-34.

Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices.

Gray TNE, Prum S (2012) Leopard density in post-conflict landscape, Cambodia: evidence from
spatially explicit capture-recapture. Journal of Wildlife Management, 76, 163—-169.

Grayson KL, Mitchell NJ, Monks JM et al. (2014) Sex ratio bias and extinction risk in an isolated
population of tuatara (Sphenodon punctatus). PLoS ONE, 9.

Grazziotin FG, Monzel M, Echeverrigaray S, Bonatto SL (2006) Phylogeography of the Bothrops
jararaca complex (Serpentes: Viperidae): past fragmentation and island colonization in the
Brazilian Atlantic Forest. Molecular Ecology, 15, 3969-3982.

Hardin JW (1974) Behavior, socio-biology, and reproductive life history of the Florida Key deer,
Odocoileus virginianus clavium. Southern Illinois University, Carbondale, IL, USA.

Hardin JW, Silvy NJ, Klimstra WD (1976) Group size and composition of the Florida Key deer.
Journal of Wildlife Management, 40, 454-463.

Harveson PM, Grant WE, Lopez RR, Silvy NJ, Frank PA (2006) The role of dispersal in Florida
Key deer metapopulation dynamics. Ecological Modelling, 195, 393-401.

Harveson PM, Lopez RR, Collier BA, Silvy NJ (2007) Impacts of urbanization on Florida Key
deer behavior and population dynamics. Biological Conservation, 134, 321-331.

44



Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock
of mitochondrial dating. Journal of Molecular Evolution, 22, 74-86.

Hassanin A, Delsuc F, Ropiquet A et al. (2012) Pattern and timing of diversification of
Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of
mitochondrial genomes. Comptes Rendus Biologies, 335, 32-50.

Hassanin A, Douzery EJ (1999) Evolutionary affinities of the enigmatic saola (Pseudoryx
nghetinhensis) in the context of the molecular phylogeny of Bovidae. Proceedings of the
Royal Society of London, B. Biological Sciences, 266, 893—900.

Hedrick PW, Lacy RC, Allendorf FW, Soule ME (1996) Directions in conservation biology:
comments on Caughley. Conservation Biology, 10, 1312-1320.

Hoffman EA, Blouin MS (2004) Evolutionary history of the northern leopard frog: reconstruction
of phylogeny, phylogeography, and historical changes in population demography from
mitochondrial DNA. Evolution, 58, 145-159.

Johnson WE, Onorato DP, Roelke ME et al. (2010) Genetic restoration of the Florida panther.
Science, 329, 1641-1645.

Jones KC, Levine KF, Banks JD (2000) DNA-based genetic markes in black-tailed and mule deer
for forensic applications. California Fish and Game, 86, 115-126.

Jones OR, Wang J (2010) Colony: a program for parentage and sibship inference from multilocus
genotype data. Molecular Ecology Resources, 10, 551-555.

Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS
accommodates genotyping error increases success in paternity assignment. Molecular
Ecology, 16, 1099-1106.

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions
through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16,
111-120.

Klimstra WD (1992) Key Deer. In: Rare and Endangered Biota of Florida, volume 1: mammals
(ed Humphrey SR), pp. 201-215. University Press of Florida, Gainesville, FL.

Klimstra WD, Folk MJ, Ellis RW (1991) Skull size of two insular and one mainland subspecies
of Odocoileus virginianus from the Southeast. Transactions of the Illinois State Academy of
Science, 84, 185-191.

Lande R (1988) Genetics and demography in biological conservation. Science, 241, 1455-1460.

45



Lanfear R, Calcott B, Ho SYW, Guindon S (2012) Partitionfinder: combined selection of
partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology
and Evolution, 29, 1695-1701.

Lazell Jr. JD (1989) Wildlife of the Florida Keys: a natural history. Island Press, Washington,
D.C.

Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA
polymorphism data. Bioinformatics, 25, 1451-1452.

Lindsay AR, Belant JL (2008) A simple and improved PCR-based technique for white-tailed deer
(Odocoileus virginianus) sex identification. Conservation Genetics, 9, 443-447.

Lopez RR (2001) Population ecology of the Florida Key deer. Texas A&M University, College
Station, TX.

Lopez RR, Silvy NJ, Pierce BL et al. (2004) Population density of the endangered Florida Key
deer. Journal of Wildlife Management, 68, 570-575.

Lopez RR, Vieira MEP, Silvy NJ et al. (2003) Survival, mortality, and life expectancy of Florida
Key deer. Journal of Wildlife Management, 67, 34-45.

Manne LL, Brooks TM, Pimm SL (1999) Relative risk of extinction of passerine birds on
continents and islands. Nature, 399, 258-261.

Martins EG, Bonato V, Da-Silva CQ, dos Reis SF (2006) Seasonality in reproduction, age
structure and density of the gracile mouse opossum Gracilinanus microtarsus (Marsupialia:
Didelphidae) in a Brazilian cerrado. Journal of Tropical Ecology, 22, 461-468.

Miller HC, Lambert DM (2004) Genetic drift outweighs balancing selection in shaping post-
bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae).
Molecular Ecology, 13, 3709-3721.

Moran-Luis M, Fameli A, Blanco-Fontao B et al. (2014) Demographic status and genetic tagging
of endangered capercaillie in NW Spain. PloS ONE, 9, €99799.

Mowat G, Paetkau D (2002) Estimating marten Martes americana population size using hair
capture and genetic tagging. Wildlife Biology, 8, 201-2009.

Naidu A, Fitak RR, Munguia-Vega A, Culver M (2012) Novel primers for complete

mitochondrial cytochrome b gene sequencing in mammals. Molecular Ecology Resources,
12, 191-6.

46



Van Noordwijk AJ (1994) The interaction of inbreeding depression and environmental
stochasticity in the risk of extinction of small populations. In: Conservation Genetics (eds
Loeschcke V, Tomiuk J, Jain SK), pp. 131-146. Birkhauser Verlag, Basel, Switzerland.

O’Leary SJ, Dunton KJ, King TL, Frisk MG, Chapman DD (2014) Genetic diversity and
effective size of Atlantic sturgeon, Acipenser oxyrhinchus oxyrhinchus river spawning
populations estimated from the microsatellite genotypes of marine-captured juveniles.
Conservation Genetics, 1173-1181.

Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on
closed animal populations. Wildlife Monographs, 62, 3-135.

Peakall R, Smouse PE (2006) GenAlEXx 6: genetic analysis in Excel. Population genetic software
for teaching and research. Molecular Ecology Notes, 6, 288-295.

Peterson MN, Lopez RR, Laurent EJ et al. (2005) Wildlife loss through domestication: the case
of endangered Key deer. Conservation Biology, 19, 939-944,

Petit RJ, EI Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of
genetic markers. Conservation Biology, 12, 844-855.

Pimm SL, Dollar L, Bass OL (2006) The genetic rescue of the Florida panther. Animal
Conservation, 9, 115-122.

Pitra C, Fickel J, Meijaard E, Groves PC (2004) Evolution and phylogeny of old world deer.
Molecular Phylogenetics and Evolution, 33, 880-895.

Pradel R, Johnson AR, Viallefont A, Nager RG, Cezilly F (1997) Local recruitment in the greater
flamingo: a new approach using capture-mark-recapture data. Ecology, 78, 1431-1445.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus
genotype data. Genetics, 155, 945-959.

Rayan DM, Mohamad SW, Dorward L et al. (2012) Estimating the population density of the
Asian tapir (Tapirus indicus) in a selectively logged forest in Peninsular Malaysia.
Integrative Zoology, 7, 373-380.

Rice WR (1989) Analyzing tables of statistical tests. Evolution, 43, 223-225.

Rice WR, Harder JD (1977) Application of multiple aerial sampling to a mark-recapture census
of white-tailed deer. Journal of Wildlife Management, 41, 197-206.

47



Ricklefs RE (2009) Dynamics of colonization and extinction on islands. In: The Theory of Island
Biogeography Revisted (eds Losos JB, Ricklefs RE), pp. 388—414. Princeton University
Press, Princeton, NJ.

Robert A, Colas B, Guigon | et al. (2015) Defining reintroduction success using IUCN criteria for
threatened species: a demographic assessment. Animal Conservation.

Roberts CW (2005) Estimating density of Florida Key deer. Texas A&M University, College
Station, TX.

Robinson SJ, Samuel MD, Lopez DL, Shelton P (2012) The walk is never random: subtle
landscape effects shape gene flow in a continuous white-tailed deer population in the
Midwestern United States. Molecular Ecology, 21, 4190-4205.

Roelke ME, Martenson JS, O’Brien SJ (1993) The consequences of demographic reduction and
genetic depletion in the endangered Florida panther. Current Biology, 3, 340-350.

Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for
multiplexed target capture. Genome Research, 22, 939-46.

Ronquist F, Teslenko M, van der Mark P et al. (2012) MrBayes 3.2: Efficient Bayesian
phylogenetic inference and model choice across a large model space. Systematic Biology, 61,
539-42.

Rousset F (2008) GENEPOP’007: a complete re-implementation of the genepop software for
Windows and Linux. Molecular Ecology Resources, 8, 103-6.

Schwartz MK, Monfort SL (2008) Genetic and endocrine tools for carnivore surveys. In:
Noninvasive Survey Methods for North American Carnivores (eds Long RA, MacKay P,
Ray JC, Zielinski W), pp. 228-250. Island Press, Washington, D.C.

Seal U, Lacy RC, Participants W (1990) Florida Key deer population viability assessment.

Smith O, Wang J (2014) When can noninvasive samples provide sufficient information in
conservation genetics studies? Molecular Ecology Resources, 14, 1011-1023.

Soule M (1973) The epistasis cycle: a theory of marginal populations. Annual Review of Ecology,
Evolution and Systematics, 4, 165-187.

Stanley TR, Burnham KP (1999) A closure test for time-specific capture-recapture data.
Environmental and Ecological Statistics, 6, 197—209.

48



Sugimoto T, Aramilev V V., Kerley LL et al. (2014) Noninvasive genetic analyses for estimating
population size and genetic diversity of the remaining Far Eastern leopard (Panthera pardus
orientalis) population. Conservation Genetics, 15, 521-532.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGAG: Molecular evolutionary
genetics analysis version 6.0. Molecular Biology and Evolution, 2725-2729.

Tanaka Y (2000) Extinction of populations by inbreeding depression under stochastic
environments. Population Ecology, 42, 55-62.

Team RC (2013) R: A language and environment for statistical computing.

Tursi RM, Hughes PT, Hoffman EA (2013) Taxonomy versus phylogeny: evolutionary history of
marsh rabbits without hopping to conclusions. Diversity and Distributions, 19, 120-133.

USFWS (1999) South Florida multi-species recovery plan.

Vaiman D, Osta R, Mercier D, Grohs C, Leveziel H (1992) Characterization of five new bovine
dinucleotide repeats. Animal Genetics, 23, 537-541.

Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review
of applications and recommendations for accurate data collection. Journal of Wildlife
Management, 69, 1419-1433.

White GC, Burnham KP (1999) Program MARK: survival estimation from populations of
marked animals. Bird Study, 46, S120-S139.

Zachos FE, Otto M, Unici R, Lorenzini R, Hartl GB (2008) Evidence of a phylogeographic break

in the Romanian brown bear (Ursus arctos) population from the Carpathians. Mammalian
Biology, 73, 93-101.

49



	Genetic Structure and Demographic Analysis of Key deer (Odocoileus virginianus clavium)
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	CHAPTER TWO: METHODS
	Sampling
	DNA Extraction
	DNA Amplification
	Analyses

	CHAPTER THREE: RESULTS
	Sequencing
	Population Genetics
	Demographics
	Population Viability Assessment

	CHAPTER FOUR: DISCUSSION
	Evolutionary History
	Contemporary Demography
	Persistence Modeling

	APPENDIX A: FIGURES
	APPENDIX B: TABLES
	REFERENCES

