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ABSTRACT 

Staphylococcus aureus has an historical relationship with anthropogenic environments, 

particularly hospitals, where infection characteristics differ from community-acquired disease. 

This has promoted a designation of strains as healthcare or community associated. Despite this 

affiliation, genetic approaches have failed to support these groupings. In order to establish the 

genetic relationship between S. aureus from differing anthropogenic environments, I have 

analyzed the relatedness between three cohorts of S. aureus: nasal carriage isolates from 

community participants, infectious isolates from hospitals, and a cohort from an uninvestigated 

environment, an ambulatory clinic. Multilocus Sequence Typing (MLST) and Staphylococcus 

aureus protein a (spa) repeat regions were analyzed and the genetic relationships between 

cohorts at these sites were determined. I found high similarity in recovered sequences within 

and between all cohorts, with cohorts sharing 100% sequence identity across some samples. 

Phylogenetic reconstruction of the combined datasets indicate panmixia, with samples of all 

origins belonging to shared genetic lineages. Additional clustering algorithms supported this 

pattern. The findings of this study indicate that there is strong genetic similarity between both 

infectious strains and nasal carriage strains and between isolates from all cohorts. This research 

has implications for healthcare, as it demonstrates that S. aureus from differing environments 

are genetically similar (often identical), cautioning against delineating strains into nasal carriage 

or infectious based on origin. This research also informs the study of S. aureus evolution – 

strengthening the conclusion that differentiation at stably selected markers in lineages within 
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differing ‘healthcare habitats’ is insufficient to explain observed phenotypic differences, and 

alternative explanations must be explored. 
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AMBULATORY CARE CLINIC A healthcare center that provides professional medical 
care on a strictly outpatient basis 

CARRIAGE Host status in which a potentially infectious agent is 
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COHORT A group of samples collected due to a shared 
characteristic (i.e., sample location, time of sampling, 
ect.) 
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DISEASE An abnormal condition of an organism limiting normal 
function; the result of the interaction of infection and 
host response, or abnormal host response in the absence 
of infection 
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that the host develops clinical symptoms due to cellular 
or systemic damage resulting from the actions of that 
agent 

NOSOCOMIAL Pertaining or originating in a hospital 
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BACKGROUND 

Staphylococcus aureus was first described by Sir Alexander Ogston in 1880, when it was 

discovered in the pus of a surgical incision (Ogston 1882). By 1884, it was defined as the type 

species for the genus Staphylococcus. A gram positive, coagulase positive coccus, S. aureus is 

among the most prevalent species in its genus (alongside Staphylococcus epidemidis), and one 

of the most common constituents of human microflora, as well as being a prominent colonist of 

livestock and other species (Tancrede 1992). As a commensal organism, S. aureus primarily 

colonizes mucosal membranes, including the throat, the epithelium of the anterior nares, 

within the vaginal mucosa, and on the exterior skin, particularly in the axillary and groin (Payne 

1966). Colonization of the human host is facilitated by a number of adhesion-receptor 

interactions, where bacterial tethering proteins bind to carbohydrate moiety in mucin (Shuter 

1996). Asymptomatic colonization of S. aureus is of two types: persistent carriers acquire a 

single strain of S. aureus which they carry for extended periods of time. Longitudinal sampling 

of these individuals demonstrate the persistence of these strains (Wertheim 2005). Intermittent 

carriers alternate between colonization, clearance, and recolonization (Williams 1963). 

Variance in host factors, particularly toll-like receptor 2 (TLR2), are strongly implicated in 

colonization success (Lorenz 2000). Asymptomatically carrying S. aureus longitudinally – 

especially persistently – is a strong indicator of eventual pathogenesis (Kluytmans 1997). 

Staphylococcus aureus physiology strongly promotes opportunistic invasion of other tissues, 

where infection and disease progression occurs. Collagen binding proteins facilitate invasion of 

exposed skeletal tissue, particularly joints, while clumping factors and fibrinogen binding 
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factors allow for S. aureus to colonize incisions on the epithelial tissue (Rohde 2007, Eidhin 

1998). When the circulatory system is accessible, S. aureus tethering proteins are capable of 

inducing endothelium tissue endocytosis, allowing escape from host immune defenses and 

infection of the blood (Clark 2009).  

Widespread use of antibiotics has led to a S. aureus developing numerous resistances, altering 

this species’ epidemiology. With the rare exception, such as vancomycin, S. aureus evolves 

antibacterial resistance rapidly, typically demonstrating tolerance of new antibiotics within the 

span of a few years (Klevens 2007, CDC 2002, Tsiodras 2001). While drugs such as vancomycin 

maintained efficacy against S. aureus for several decades, antibiotic resistance to even these 

treatments have been shown (Tabaqchali 1997). In the case of penicillin, S. aureus 

demonstrated resistance prior to the widespread initial use of the drug (Rammelkamp 1942). 

Staphylococcus aureus’ rapid acquisition of resistance is owed in part to Chromosome 

Recombinase, an enzyme capable of excising regions of S. aureus’ genome (termed 

chromosome cassettes) and exporting them in horizontal transfer events, allowing unrelated 

lineages to rapidly adopt new resistances. Staphylococcus aureus’ ability to horizontally transfer 

these factors is additionally accelerated by the presence of biofilms – a deposited extracellular 

matrix this species is known for (Rohde 2007). Of particular concern for healthcare, methicillin 

resistant S. aureus (MRSA) acquires resistance via the exchange of Staphylococcal Cassette 

Chromosome mec (SCCmec, Ito 2004, Katayama 2000). MRSA strains are more aggressively 

infectious, harder to manage, and more costly to treat than their methicillin susceptible (MSSA) 
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counterparts (Capitano 2003, Chambers 2001). The rapid acquisition of resistance to broad 

spectrum antibiotics prompted the Centers for Disease Control (CDC) to label S. aureus, 

particularly MRSA strains, as high concern for human health. Over 500,000 hospitalizations 

occur annually in the United States, incurring a mean economic cost of 1,332 USD (MSSA) to 

2,607 USD (MRSA) (Capitano 2003). 

Given the threat S. aureus poses to human health, extensive efforts have been made to clarify 

its diversity, resulting in a suite of molecular techniques aimed at characterizing strains. Pulse 

Field Gel Electrophoresis (PFGE) is the process of running gel chromatography on whole-protein 

samples with alternating current angle and direction to achieve maximum separation of protein 

bands by weight (Kaufmann 1998). PFGE remains the method that results in the highest 

resolution between strains, allowing for the discrimination between samples that cannot be 

differentiated through other methods. However, this method is sensitive to variation in 

technique and conditions between labs, meaning comparing results across studies is not 

possible (Murchan 2003). Multi Locus Sequence Typing (MLST) was designed to address this 

issue. MLST is applicable to a broad range of microbial species, and requires the sequencing of 

several housekeeping loci. In the case of S. aureus, this corresponds to seven housekeeping loci 

(arcC, aroE, glpF, gmk, pta, tpi, yqiL). Newly sequenced samples are compared to a curated 

online database composed of all previously known alleles, and assigned known numerical labels 

in the case of a match. Novel alleles are given new labels and curated in the database. Unlike 

PFGE, MLST is broadly applicable across studies, at the cost of marginal reduction in 



4 
 

discriminatory power between strains. However, as MLST requires the use of housekeeping 

genes, which by nature slowly accumulate variation due to negative selection, the ability to 

discern closely related samples at local scales suffers (Enright, 2000). New markers have been 

developed in response, including clumping factors a/b, fibrinogen binding factors, and 

Staphylococcal protein a (spa). Virulence factors such as these are far more variable than 

housekeeping genes, and enhance discriminatory power of investigations while simultaneously 

allowing results to be shared across labs.  

The spa locus, specifically, codes for a membrane-tethered virulence factor involved in host-

immune evasion. The portion of the protein extending extracellularly interacts with the 

Fragment Crystallizable (Fc) region of human Immunoglobulin G (IgG), preventing native IgG 

activation of effector immune cells. The membrane spanning region of this protein is of interest 

for evolutionary analysis, as it is formed from variable repeat regions in the corresponding 

portion of the spa locus. The presence and absence of certain nucleotide repeat regions, as well 

as the order in which those repeats occur, allow homology statements to be drawn between 

compared isolates. Typing of strains based on sequence identity match at these repeat regions 

results in discriminatory power of 98% when compared to PFGE (Harmsen 2003). 

Investigations utilizing these techniques have revealed broad themes in S. aureus genetic 

structure. Notably, S. aureus is a remarkably clonal organism. Recombination does occur, but at 

very reduced rate when compared to single-nucleotide point mutations, which occur 15 times 

more frequently (Feil 2003). As a result, S. aureus isolates tend to cluster into clonal complexes 
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(CCs), where a single strain founds an initial population, and subsequent strains originate via 

point mutations from the founder. Resultantly, large demographics of S. aureus are composed 

of only a few clonal complexes. For example, all MRSA isolates in the Meuse-Rhine Region are 

of four European clonal complexes (Deurenberg 2005). 

Given the larger clonal genetic structure of S. aureus, it is expected that a lack of inherited 

variation across lineages would result. However, S. aureus does show remarkable phenotypic 

differentiation across environments. In particular, S. aureus varies across healthcare 

environments, both in specific proteins and in infection profile. This scenario has led to the 

adoption of a community- or hospital-associated designation of strains (Lodise 2003, Steinberg 

1996, Vandenesch 2003). In hospitals, S. aureus antibacterial resistance occurs at significantly 

higher rates than within the community at large (Panlilio 1992, David 2010). Additionally, 

hospital-associated strains are responsible for scalded-skin syndrome in infants in neonatal 

wards, and terminal bacteremia infections (Ladhani 1998, Cosgrove 2013). Within hospitals, it is 

hypothesized that transmission of S. aureus is facilitated by direct attendant transmission, 

accelerating infection rates and therefore strain virulence (Ewald 1993). In contrast, 

community-associated strains exhibit lower prevalence of antibacterial resistance, and terminal 

illness generally results from necrotizing pneumonia – an aggressive condition that usually 

killed within 72 hours of onset (Gillet 2007). These phenotypic differences are the result of 

underlying proteome variation. Hospital-associated S. aureus are more likely to acquire 

methicillin resistance via large SCCmec types I, II, or III. Additionally, they are more likely to 
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possess exfoliatin, an exotoxin responsible for scalded skin syndrome (Zhang 2005 , Melish 

1972). Methicillin resistant Community-associated S. aureus possess smaller SCC mec type IV 

and V, in addition to Panton-Valentine Leucocidin (PVL). PVL is responsible for invasion and 

destruction of lung tissue by those strains (Xu Ma 2002, Vandenesch 2003). 

Both SCC mec and PVL are elements that are preferentially found in either community or 

hospital environments as significantly higher rates than the opposing habitat. However, S. 

aureus’ genome can be broadly divided into three categories: core genes, core variables, and 

mobile genetic elements (MGEs). MGE regions include portions of the genome encoded by 

prophages and Staphylococcal cassettes.  Virulence and antibiotic resistance loci, including 

those that are associated with healthcare environments, are disproportionately represented 

within MGE regions (Lindsay 2010). In addition to virulence and antibiotic resistance proteins, 

many cassettes also encoded for the enzymes needed for their horizontal transmission 

(recombinases), accelerating their propagation independent of S. aureus reproduction. As the 

phylogenetic signal originating from MGE regions may not reflect the evolutionary history of S. 

aureus overall, investigations have been standardized on core variable loci, which include 

previously mentioned MLST and spa loci. Attempts to recover any signal of variation across 

healthcare environments utilizing core variables have been unable to resolve hospital- or 

community-associated strains into monophyletic clades (Lamers 2011). However, portions of 

the core variable regions, including spa have not been utilized in phylogenetic reconstruction. 

Given the lack of clarity surrounding the relationships of phenotypic variation and genetic 
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differentiation within this species, it is important to increase taxonomic sampling, particularly 

by investigating new loci and sampling locations.  
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INTRODUCTION 

Staphylococcus aureus is a widespread human pathogen of high concern to global human 

health (Noskin 2007). This pathogen is most often associated with healthcare settings, where it 

is the leading cause of nosocomial infections (Grundmann 2006). In addition, S. aureus is 

commonly found affecting community demographics not associated with hospital exposure, 

where asymptomatic carriage is implicated in eventual infection (van Belkum 2009). An 

estimated 20-30% of the global human population is colonized by S. aureus persistently, with 

intermittent carriers ranging from 60%-100% of sampled individuals in given populations 

(Heiman 2005, Williams 1963, Dancer 1991, Nouwen 2004, Van Belkum 2009). Despite being 

found commonly in both clinical and nonclinical environments, the narrative in S. aureus 

literature delineates strains into one of two categories: hospital-acquired (HA) strains, and 

strains that are community acquired (CA) (Karauzum 2008, DeLeo 2010, Cheung 2011). 

Phenotypic variation in pathogenesis factors of strains and the symptoms of resulting infections 

are suggestive of such categories (Rudd 2008). Despite a strong historic focus on hospital 

samples, there is growing interest into the epidemiological consequences of community 

carriage, reemphasizing the HA/CA divide (Muthukrishnan 2013). 

Clarifying relationships in species of clinical concern is important in explaining the epidemiology 

of that species (Monis 1998, Oliver 1996). Recent research indicates that genetic structure of 

Staphylococcus is poorly understood and in need of revision (Lamers 2012). Systematic 

investigations into the underlying genetics of HA and CA isolates of S. aureus have failed to 

recover evidence to differentiate these categories (Lamers 2011). This conclusion is surprising, 
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given known protein variation between HA and CA strains of S. aureus (Montgomery 2010, 

Deurenberg 2008). In order to address this disconnect, further genetic investigations of S. 

aureus are necessary, particularly those sampling more variable markers (>1% mean pairwise 

distance, Cooper 2006). 

Classically, samples of S. aureus representing the HA designation have been drawn from 

hospital settings (Holden 2004). However, recent decades have seen the emergence of new 

healthcare facilities distinct from both hospital and community environments. Medical clinics, 

also known as ‘walk-in clinics’ or ambulatory care centers, share similarities between both 

traditional hospital settings as well as nonclinical, community environments (Starfield 1991). 

These similarities, including attendant mediated care and minor surgical procedures, are known 

to have consequences for pathogenesis and disease (Ewald 1993, Kluytmans 1997). Given their 

distinct nature, usage and demographic data pertaining to ambulatory care centers are 

generally collected independently of hospitals (Schappert 1998). Despite this acknowledgment 

of ambulatory care centers as unique environments, little research has been conducted into the 

pathogens circulating within them. Though investigations into the epidemiology of S. aureus in 

ambulatory care centers have been performed, no information regarding isolate genetic 

relationships among S. aureus isolates within these centers is available (Szumowski 2007). 

Ambulatory care clinics may influence the relationships within S. aureus, given that individuals – 

and presumably the pathogens they carry – permeate through these environments more 

rapidly than hospitals, while frequent direct contact by primary care providers within these 

clinics more closely resembles hospital procedures. Population genetics investigations including 
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isolates from ambulatory care centers are necessary for shedding light into the epidemiology of 

S. aureus in this previously unexplored environment. 

S. aureus population structure and phylogenetic relationships have been extensively 

characterized. Pulse-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) 

are methods most often utilized in these investigations (McDougal 2003, Enright 2000).  While 

PFGE results in the highest levels of resolution and differentiation between strains, the method 

is difficult to reproduce precisely, undermining results shared between laboratories and 

investigations (Chung 2000). Comparatively, MLST marginally sacrifices resolution between 

samples to achieve standardized results that are easily compared between studies (Maiden 

1998, Enright 2002). However, the loci utilized in MLST are housekeeping genes, the functions 

of which are vital in preserving S. aureus’ viability. Thus, these loci are, by nature, slowly 

evolving, and the ability to distinguish between closely related samples (e.g., those collected 

from closely-associated localities) suffers (Enright 1999). In order to address this, standardized 

methods aimed at factors exhibiting high variability even at local scales (e.g., virulence factors) 

have been developed. Staphylococcal protein A (spa) typing has emerged as a compromise 

between the resolution of PFGE and the applicability of MLST (Harmsen 2003). While spa typing 

and MLST have been used in the thorough investigation of S. aureus population structure within 

the community and hospitals, no investigation has yet sought to leverage these tools in 

exploring novel environments such as ambulatory care centers. 
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Here, I have performed an evolutionary analysis of seven MLST gene fragments and spa, 

incorporating samples taken from a representative example of previously uninvestigated 

ambulatory care center, with the aim of better understanding how population structure of S. 

aureus varies across heterogeneous environments. Isolates were taken from employees of the 

University of Central Florida’s Health Center, a representative ambulatory care center. This 

sample site was additionally attractive as it was adjacent to a previous sampled community, 

allowing us to eliminate the effects of geographic distance which can influence the resulting 

phylogeny (Lamers 2011, Muthrukrishnan 2012, Slatkin 1990). Given the systematic uncertainty 

within S. aureus and the specific inability to validate differences between hospital and 

community isolates, I hypothesized that isolates from the ambulatory care center will not be 

genetically differentiated based on their origin. Therefore, I predicted similar sequence identify, 

shared haplotypes, and no signal of differentiation within the phylogenetic reconstruction 

among and between all cohorts. 
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MATERIALS AND METHODS 

Ethics Statement 

 

Samples were collected from willing participants, under the guidance of procedures approved 

by University of Central Florida’s Institutional Review Board (IRB) approved procedures 

(Muthrukishnan, 2012). Informed consent was acquired from all participants prior to sampling. 

All investigators involved in sample collection were properly instructed and granted 

Collaborative Institutional Training Initiative (CITI) certification. 

Bacterial Isolates 

 

141 healthy employees of the University of Central Florida’s Health Center underwent pre-

screening for bacterial isolates. Participants volunteered demographic information in order to 

inform the population structure of recovered bacterial isolates. Of the screened participants, 29 

(20.5%) resulted in positive identification of S. aureus. Isolates were collected via participant 

insertion of a cotton swab into both nostrils and circulation for approximately 5-10 seconds. 

Swabs were immersed in glycerol-Trypticase™ Soy Broth (TSB) solution during transport, 

followed by plating on Trypticase™ Soy Agar (TSA) impregnated by 5% sheep’s blood. Isolates 

were incubated at 37oC for 16 hours. Resultant colonies were tested with Staphyloslide™ Latex 

Test reagent to positively identify cultures as S. aureus.  Verified S. aureus colonies were 

isolated and inoculated in TSB for an additional 16 hours at 37oC at 250rpm in preparation for 
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DNA extraction. Chi-squared tests of donor carriage were performed to determine the 

uniformity of carriage within the ACC cohort. 

DNA Extraction 

 

1.5mL of each bacterial inoculate was centrifuged at 16,000g for two minutes. Supernatant was 

removed, and the remaining pellet was utilized in the extraction protocol. DNA was extracted 

utilizing GenElute Bacterial Genomic DNA kits (Sigma-Aldrich Co., St. Louis, Missouri), in 

accordance with manufacturer’s instructions. Fragments of seven MLST loci (arc, aroE, glpF, 

gmk, pta, tpi, yqiL) ranging from 402-512 base pairs were amplified (Enright 2000). Additionally, 

approximately 500 base pair fragments of spa were amplified. Approximately 30 ng of genomic 

DNA was added to 30 uL reactions mixtures containing: .02U/uL Platinum™Taq DNA 

Polymerase high Fidelity, 1X PCR buffer, 2mM MgSO4, 0.3 mM dNTPs, 0.3 uM of external 

forward and reverse primers (Table 1), and 2% dimethyl sulfoxide (DMSO). PCR amplification 

was achieved using Peltier Thermal Cyclers (PTC) 200 (MJ Research) for 30 cycles under the 

following cycle parameters: initial denaturation at 95oC for five minutes, annealing at 55oC for 

one minute, extension at 72oC for one minute, followed by denaturation at 95oC for one 

minute. A final extension step at 72oC for five minutes followed. 

DNA Sequence Analysis 

 

Following amplification, PCR products were purified utilizing QiaQuick PCR Purification Kit 

(QiaGen, Redwood City, Ca). All Sanger Sequencing was performed at University of Arizona’s 

Genetics Core. Forward and reverse reads were visualized with Sequencher 5.1 (Gene Codes 
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Co., Ann Harbor, Michigan). Sequences were organized in MEGA 5.2 and aligned with ClustalW. 

Sequence Types (STs) were determined for each sample based on alleles identified for each of 

the seven MLST loci. Alleles were cross-referenced against the S. aureus database curated at 

MLST.net. Novel alleles – or novel combinations of known alleles – were submitted to the MLST 

database for curation, whereupon new allele designation and STs were obtained. 

Phylogenetic Reconstruction 

 

In order to infer the relationships between samples of hospital, community, and ambulatory 

care center origins, phylogenetic analysis was performed on a concatenated dataset of all eight 

sequenced loci for all samples. Datasets representing community samples were constructed 

utilizing 141 samples from a previous study of the University of Central Florida’s student, staff, 

and faculty body. Examination of this data revealed no overlap from samples from the 

community and clinical cohorts. Gene sequences from 15 strains associated with hospital 

infection were acquired from NCBI GenBank and included in this analysis. The previously 

sequenced hospital strains were N315, Mu50, COL, MRSA252, MSSA476, MW2, 

USA300_FPR3757, NCTC8325, JH1, JH9, Newman, Mu3, USA300_TCH1516, 04-02981, and 

TW20. These strains were selected as they were both utilized as references in the previous UCF 

community sampling (Lamers, 2011) as well as being representative of common clonal types 

found within hospitals across the United States. The concatenated dataset of all samples was 

partitioned by gene fragment and codon position, with models of evolution being assigned by 

Akaike Information Criterion (AIC) within PartitionFinderv1.1.1 (Lanfear 2012) (Table 3). Once 

partitioned, phylogenetic reconstruction of the data was performed using Metropolis-Hastings 
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Coupled Markovnikov Chain Monte Carlo in BEAST v1.8 (Drummond 2012). Two independent 

Bayesian Inference (BI) runs were carried out using random starting trees. After five million 

iterations, runs were terminated and visualized utilizing Tracer v1.5 (Rambaut 2014). The most-

likely tree was summed utilizing TreeAnnotatorv1.8.2 and visualized with FigTreev1.4.0 

(http://tree.bio.ed.ac.uk/software/figtree). 

In order to test the likelihood of competing hypotheses against the unconstrained tree, Bayes 

Factor Topography Testing was performed (Figure 1). Additional BI runs were performed, 

utilizing identical operational parameters (run length, number of chains, ect). BEAST v1.8 allows 

for the forced monophyly of designated taxa. Summarized phylogenies were reconstructed for 

my dataset when all taxa were constrained to be monophyletic given their origins (i.e., HA, AAC, 

or CA). The log marginal likelihood of the unconstrained, maximum-likelihood tree (B0) and the 

constrained hypotheses trees (BA) were calculated using two methodologies: Bayesian Stepping 

Stone and Path Sampling. Bayes Factors for alternative hypotheses were calculated as 𝐵𝐵𝐵𝐵 =

 𝑃𝑃(𝐷𝐷|𝑀𝑀0)
𝑃𝑃(𝐷𝐷|𝑀𝑀𝐴𝐴)

 where 𝑃𝑃(𝐷𝐷|𝑀𝑀𝑥𝑥) is the marginal likelihood of model 𝑥𝑥 – essentially a ratio between 

marginal likelihoods of competing models. Calculations for Bayes Factors were adopted from 

Rafferty, 1996. Interpretation of Bayes Factors were informed by Posada and Buckley 2004, 

stating that Bayes Factors exceeding 150 are considered very strong indication of a less likely 

tree, with those falling between 12 and 150 considered good indication of a less likely tree, and 

those between 3 and 12 weakly indicative of a less likely tree. Bayes Factors below 3 are 

considered insignificant. 
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Population Structure: MLST Data 

 

Sequence Types were grouped based on clusters sharing six of seven MLST alleles in common 

with at least one other member of the cluster. Clustering was performed in eBURSTv3 (Feil 

2004), which provides for a query set of clinical samples to be tested against the reference set 

of community and hospital samples. Clustering of samples of six of seven shared alleles is 

reflective of eBurst procedures designed to account for the potential for high variation in single 

alleles to result from recombination, rather than differentiation within the lineage. Bootstrap 

support for clusters were inferred based on 1,000 resampled iterations. 

In order to visualize population structure at MLST loci without masking recombination at a 

single locus, PopART (http://popart.otago.ac.nz) was utilized to produce a minimum spanning 

network of all mutational steps.  
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RESULTS 

Multilocus sequence typing demonstrates similarity between isolates of varying origins 

 

MLST analysis of the 29 samples isolated from my sampling scheme within UCF Health Services 

identified 10 different sequence types (STs), one of which was new. Of these 10 STs, five were 

previously recovered in a sampling of the adjacent community. Of the remaining five samples, 

four were previously identified as HA strains (STs 105,109, 20, and 1) and one was novel. 

Overall, carriage rate within the ACC cohort was 20.6%. χ2 tests of  demographic information 

indicated that carriage was not evenly distributed across groups. Notably, carriage was 10% for 

non-Hispanic black donors. This difference was predominately driven by a low carriage rate of 

4.5% by non-Hispanic black females. Non-Hispanic black males had a carriage rate of 25%. 

Asian/Pacific Islanders had a significantly higher than average carriage rate at 36%. This result 

was driven by females within this group (50%). No tested male Asian/Pacific Islander was 

positive for S. aureus carriage.  Neither age of donor nor length of employment were significant 

predictors of carriage, though length of employment did approach significance (p=.07, figure 2). 

It appears that there is an inverse correlation between extensive employment within the health 

center and likelihood of carriage, possibly indicating an increase in hygienic practices and 

caution in inveterate primary care physicians. 

Of the 10 recovered sequence types, the most prevalent was ST30, accounting for 9 of 29 

isolates (31%). Sequence types 5 and 45 were the second and third most commonly identified 

sequence types following ST30, with 6 (21%) and 4 (14%) instances respectively. These results 
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are roughly comparable with the prevalence of prominent sequence types in the prior UCF 

sampling (Lamers, 2011).  

Phylogenetic reconstruction of MLST data shows lack of differentiation between taxa 

 

Genetic similarities of ACC isolated were apparent from the most likely phylogenetic tree 

(Figure 2). In the unconstrained tree, no monophyly between samples of clinic, hospital, or 

community origin were recovered; clades containing combinations of all three origins were 

recovered with strong nodal support. Investigation into the demographic information of the 

donors of these samples revealed that they were in no shared demographic category (dissimilar 

ages, sex, race, position, ect). Many samples in the phylogeny were grouped into large, 

unresolved polytomies containing HA, CA and ACC isolates, indicating low differentiation 

amongst those samples consistent with recent common ancestors and ongoing geneflow 

between origins. 

In order to determine the strength of the most likely tree compared to those that represent 

competing hypotheses, additional trees were constructed, demarcated by factors that could 

potentially influence evolutionary trajectories (locality of sampling, ethnicity of participant, 

profession of participant, ect). All trees representing competing hypotheses were significantly 

worse at representing the data than the most likely unconstrained tree, based on BF analysis 

(Table 3). 
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I was also interested in determining the relative contribution of genetic markers of varied origin 

(ie, housekeeping MLST vs variable repeat regions in spa) on my reconstruction. Additional 

phylogenies were constructed, weighting the conserved genes more heavily than the 

hypervariable spa locus. Weights were assigned based on mean pairwise genetic distance 

between samples. Average genetic distance between all seven MLST loci was .6%; between spa 

alleles, comparatively, there was a mean genetic distance of 4.7%. The marginal likelihood of 

the resulting weighted phylogeny was compared against the unconstrained tree (Table 4). The 

weighted tree vastly outperformed the unweighted tree in my Bayes Factors hypothesis-testing 

framework (BF>150). 

eBURST produces clusters containing S. aureus from all sample categories 

 

MLST eBURST clustered samples from all origins (ACC, HA, CA) into 10 distinct groups, with 13 

remaining singletons that were not assigned to a cluster (Figure 3). These singleton STs were 

most often represented by a single isolate, though ST 20 was not clustered, and contained two 

individual isolates from my clinical subset. Of my clusters, three (3, 7, 9) contained only 

community samples. All other clusters contained an admixture of all categories of samples. 

Groups 2 and 8 were founded by CA STs, with the remaining clusters founded by shared 

sequence types. 

In order to demonstrate inferred haplotypes and interconnect clusters without the influence of 

hypothetical recombination, PopArt was utilized on MLST data in order to build a minimum 

spanning network (Figure 4).The results acquired from the minimum spanning network were in 
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agreement with the clusters resolved by eBURST. Highly successful haplotypes (e.g., ST 30, ST 5) 

were shared between both ACC and CA isolates, with no monophyly of samples for any sample 

origin. 
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DISCUSSION 

Well characterized relationships with few uncertainties is important when examining the 

epidemiology of pathogenic species. Due to the nomenclature surrounding S. aureus 

relationships across healthcare environments, it was the goal of this study to examine the 

evolutionary trajectory, relatedness and genetic structure of S. aureus in a previously unstudied 

medical environment in comparison to previously assessed cohorts. As STs originating in my 

ACC cohort were similar, and often identical, to CA and HA samples, I conclude that ACC do not 

represent a distinct environment containing independently evolving S. aureus. The inclusion of 

a new molecular marker of high sequence variation within my phylogenetic reconstruction was 

expected to increase resolution when compared to previous reconstructions. I never-the-less 

found no major clade exclusive to a single sample origin, strengthening previously drawn 

conclusions from phylogenetic reconstructions of only HA and CA isolates with only MLST data 

(Lamers 2011). Ultimately, I conclude that no significant variation divides S. aureus samples in 

regards to the origin of isolation included in this study. 

The potential divide between community and healthcare strains may seem to impact the 

effectiveness of sampling schemes such as the one employed in this study. On first examination 

of S. aureus literature, HA S. aureus appears adapted to causing disease, as representative 

examples of healthcare associated strains including those included in my phylogenetic 

reconstruction are almost universally isolated from infected, not asymptomatic, individuals 

(Tenover 2004, Tsiodras 2001, Rotun 1999, Cosgrove 2013). It could be argued that by sampling 

only healthy individuals within my cohort and the reference community cohort, my scheme 
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biased my search against S. aureus strains adapted for disease, and therefore healthcare 

associated strains. However, the relationship between HA S. aureus and disease progression is 

likely spurious and the reflective of the treatment demands of hospitals. This is not surprising, 

given that the primary interest of hospital case studies is the monitoring and description of 

disease; individuals not exhibiting disease, including those asymptomatically colonized, warrant 

no case study. In short, most HA samples have come from individuals who first became 

diseased, and then subsequently were sampled without having been screened for the same 

carriage asymptomatically prior (Tenover 2004, Tsiodras 2001, Rotun 1999, Cosgrove 2013). 

Studies that have sampled hospitalized individuals for asymptomatic nasal carriage have shown 

that the same HA strain of S. aureus that ultimately results in fatal disease was first carried 

asymptomatically for some time before progressing to disease (Young 2012). Additionally, 

monitoring of asymptomatic carriage of new patients entering hospitals demonstrated that 

only a minority of patients newly colonized by S. aureus while hospitalized – the literal 

definition of HA – progressed to a diseased state (Davis 2004). Additionally, there is a growing 

body of evidence that demonstrates that community-associated strains are fully capable of 

progressing to infection and disease (Davis 2007, Rieg 2005, Voyich 2006). Ultimately, it 

appears that host-factors, rather than pathogen-adaptation, are responsible for disease 

progression (Cole 1999, Quinn 2007). In short, HA and CA designations do not relate to 

infectious and noninfectious strains, respectively, strengthening my confidence in the validity of 

my sampling. 
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Phylogenetic analyses perform best when moderately variable sequences are utilized to build 

homology statements between pairs of taxa. In instances such as this study, where genetic 

differentiation is very low, posterior support values tend to suffer. This lack of variation in MLST 

loci is attributed to their role as housekeeping loci that encode for proteins necessary for S. 

aureus viability, most commonly metabolic enzymes. In my cohort, the average genetic distance 

between MLST loci was less than a single percentage point (.6%). This tendency has been noted 

in previous phylogenetic reconstructions incorporating these loci, including the study that 

generated my reference community cohorts (Muthrukrishnan 2012). The lack of variation in 

these loci and the resulting potential loss of confidence in analyses in studies at the local scale 

has been known since the inception of these sites as markers (Enright 2000). Efforts have been 

made to design markers that retain MLST’s ability to be exported between labs without 

sacrificing variability, including spa, clumping factors a/b, and fibrinogen binding factor 

(Harmsen 2003, Lamers 2011). My inclusion of spa in this study is the first phylogenetic 

reconstruction to utilize this region, and doing so increased the variability across my cohort, as 

spa demonstrated a mean genetic distance of 4.7%. I none-the-less recovered low posterior 

values at the tips of my tree, resulting in broad polytomies. This variation in my markers also 

demonstrated itself in the Bayes Factors I recovered for my weighted tree. Based on mean 

genetic distances across my loci of interest, it appears that MLST loci are eight times less likely 

to demonstrate nucleotide diversity between any two individuals at any given position, likely 

due to the influence of negative selection maintaining relative homogeneity at these sites 

(Enright, 2000). By informing the reconstruction to weigh autapomorphies at these loci eight 
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times more heavily than those in spa, I recovered a more likely tree than the unweighted 

phylogeny alone. This tree mainly increased posterior probabilities at deep nodes, however, 

and the polytomies at the tips of the tree were unresolved. This underscores the highly 

conserved nature of MLST loci, and demonstrates the need for new variable marker discovery 

in order to strengthen investigations into S. aureus. 

These conclusions were largely confirmed by eBURST analysis. The purpose of clustering 

algorithms such as eBURST is to delineate groupings of samples into familial groups (in this 

case, clonal clusters). The clustering of our samples were consistent with a population 

reproducing across environments. As gene flow is high, with identical haplotypes being seen in 

both ACC and CA samples, it is unlikely that any lineage specific differentiation or adaptation in 

the core genome of S. aureus is likely to arise due to any divide caused by anthropogenic 

healthcare environments. Additionally, as the sequence data I utilized in these analyses are 

reflective of different regions of the core variable portions of S. aureus genome, it can be 

inferred from our results that historical differentiation has not occurred within these regions. 

Differentiation may be better explained by the phylogenetic reconstruction of alternative 

regions of S. aureus’ genome – such as mobile genetic elements – which are known to harbor 

loci coding for specific proteins responsible for phenotypic variation in this species. 

Ultimately, phylogenetic analyses, eBURST clustering, and minimum spanning haplotype 

networking of my samples all support the conclusion that isolates taken from ambulatory care 

clinic employees are not significantly isolated from isolates extracted both from healthy 
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community carriers or hospitalized individuals. This additionally supports the previous findings 

which assert that nasal carriage community strains were not themselves differentiated from 

pathogenic hospital isolates (Feil 2003, Wertheim 2005, Feil 2004) and underscores a lack of 

differentiation between groupings of S. aureus based on locality of sampling. 

My research reinforces the growing confidence that S. aureus lineages are homogenous at core 

variable markers irrespective of sample origins, even when utilizing highly variable virulence loci 

such as spa. Additionally, as even geographically correlated samples (UCF ACC and UCF CA) 

were rendered paraphyletic and in polytomies with diffusely distributed HA samples, this 

genetic homogeneity in core variables is not seemingly influenced by the effects of distance. 

Based on this conclusion, future investigations into S. aureus differentiation would best be 

served by looking into variation into markers selected for variability – such as those coding for 

highly selected proteins that regulate the expression of phenotypes that vary between hospitals 

and the community. Additionally, the findings of my study clear the way for investigations into 

alternate explanations for apparent strain differentiation, such as phenotypic plasticity, or 

modulation of S. aureus biology based on host-response rather than pathogen-genetics. From a 

healthcare perspective, the conclusions laid forth by my study have implications for 

management of S. aureus. The failure to delineate strains based on origin of isolation would 

suggest the potential epidemiology of this species to be unified across environments, as there 

seems to be no genetic bases for differentiation. More specifically, these results caution against 

disregarding asymptomatically carried samples within ambulatory care clinics as potentially 

disease causing agents within those environments, as they are genetically indistinguishable 
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from strains proven capable of causing disease. Ultimately of concern from a healthcare 

perspective, the general homogeneity of S. aureus underlying genetics encourages the practice 

of assuming all strains have the potential to be infectious given the correct circumstances, 

regardless of origin of isolation. 
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CONCLUSION 

It is clear based on the results of my study that samples of Staphylococcus aureus taken from 

medical clinics are not significantly differentiated from either hospital or community samples 

based on sequence data. Therefore, I conclude that medical environments – specifically ACCs – 

do not serve to generate uniquely adapted lineages. Moreover, my study has reiterated recent 

findings that S. aureus may be relatively homogenous genetically across a wide expanse of 

anthropogenic environments, as both hospital and community isolates appear indistinguishable 

from both clinics and one another. 

The results of my study have implications from both a healthcare perspective as well as 

potential to inform future investigations into pathogen evolution. Given the high similarity of 

STs across clinics, community-carriage, and hospital samples, management efforts of S. aureus 

should be aware of the indistinct separation of these isolates. Specifically, managing S. aureus 

as ‘community- or healthcare-associated’ is not reflective of the genetic structure 

demonstrated by this and other studies (Lamers 2011). By delineating isolates into these two 

groups, it is possible that epidemiology of this species will not take into account the ability for 

strains to easily disperse in and out of healthcare settings, as strongly evidenced by MLST data. 

In short, the results of my study suggest that the monitoring and management of S. aureus 

should be more closely married across anthropogenic environments. 

Additionally, my study will inform future investigations into S. aureus evolution. By addressing 

the potential hypothesis of lineage differentiation across anthropogenic environments, my 

study lays the foundation for future work in which alternative explanations for S. aureus 
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variation might arise. In particular, assessing the distribution of virulence factors, especially 

highly mobile elements such as resistance islands and prophages. Investigating these elements 

independently of S. aureus lineages may reveal patterns of inheritance that better explain the 

epidemiology of this species. Furthermore, the results of my study provide emphasis to the idea 

that pathology of this species may be driven by host factors. If lineages of S. aureus that are 

associated with hospital disease are indistinguishable from strains taken from healthy 

individuals in communities and clinics, as shown in my study, then it is plausible that 

pathogenesis is the result of maladaptive host traits. Further research into this area is 

necessary. 

Finally, my study indicates the importance of continuing to develop new genetic markers for S. 

aureus. The weighted phylogeny’s outperformance of the unweighted tree indicates that 

variable markers such as spa may strongly drive phylogenetic inference over less variable 

markers such as MLST if correct weighting parameters are not applied. Given a relative paucity 

of available markers and a reliance on MLST in previous studies, further investigation should 

prioritize enhancing the suite of available loci.  
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APPENDIX A: TABLES 

  



30 
 

 

Table 1: Demographic information of participants (a) and positive donors (b) by race. Asterisks denote positive numbers that 
were significantly different than expected (p<=.05) 

Racial categories Females Males Total Percentage  
White  49 25 74 52.48 

Asian Pacific Islanders 8 3 11 7.80 

Black or African American 22 8 30 21.28 

American Indian or Alaskan Native 0 0 0 0.00 

More than one race 6 1 7 4.96 

Unknown 16 3 19 13.48 

Total of all subjects 101 40 141 100.00 
b) 

Racial categories Females Males Total Percentage  
White  13 6 19 65.5 

Asian Pacific Islanders 4* 0* 4 13.7 

Black or African American 1* 2 3 10.3 

American Indian or Alaskan Native 0 0 0 0.00 

More than one race 0* 0 0 0 

Unknown 0* 3* 3 10.3 

Total of all subjects 18 11 29 100.00 
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Table 2: Sequence of Primers utilized in PCR 

Gene Primer Sequence (5’-3’) 
Carbamate kinase (arcC) arcCF TTGATTCACCAGCGCGTATTGTC 
 arcCR AGGTATCTGCTTCAATCAGCG 

Shikimate dehydrogenase (aroE) aroEF ATCGGAAATCCTATTTCACATTC 
 aroER GGTGTTGTATTAATAACGATATC 

Glycerol kinase (glpF) glpF CTAGGAACTGCAATCTTAATCC 
 glpR TGGTAAAATCGCATGTCCAATTC 

Guanylate kinase (gmk) gmkF ATCGTTTTATCGGGACCATC 
 gmkR TCATTAACTACAACGTAATCGTA 

Phosphate acetyltransferase (pta) ptaF GTTAAAATCGTATTACCTGAAGG 
 ptaR GACCCTTTTGTTGAAAAGCTTAA 

Triosphosphate isomerase (tpi) tpiF TCGTTCATTCTGAACGTCGTGAA 
 tpiR TTTGCACCTTCTAACAATTGTAC 

Acetyl coenzyme A yqiLF CAGCATACAGGACACCTATTGGC 
Acetyltransferase (yqiL) yqiLR CGTTGAGGAATCGATACTGGAAC 
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Table 3: Partition of gene fragments and codon positions, with associated evolutionary models. Models include Felsenstein 1981 
(F81), Hasegawa, Kishino, and Yano 1985 (HKY) and Generalised time-reversible (GTR, Tavare 1986). Variable site distributions 
are equal unless otherwise noted as proportion invariate (I) and Gamma distributions (G). 

Gene Fragment CP1 CP2 CP3 
arcC HKY+I+G F81+I HKY+G 
aroE HKY+I+G F81+I HKY+I+G 
glpF HKY+I+G F81+I HKY+I+G 
gmk HKY+I+G F81+I HKY+I+G 
pta HKY+I+G F81+I HKY+G 
tpi HKY+I+G F81+I HKY+I+G 
yqiL HKY+I+G F81+I HKY+I+G 
spa GTR+I HKY+I HKY+I 
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Table 4: Bayesian Factor Hypotheses testing of various competing hypotheses against the unconstrained (most likely) phylogeny. 
Bayesian factors exceeding a value of 150 are considered decisively significant – those exceeding 12 are strongly significant. 
Higher values indicate less likely hypotheses. 

Hypothesis BF (Stepping Stone) BF (Path Sampling) 
Constrained Hospital 399 400 

Constrained Community 862 864 

Constrained Clinical 852 854 

Constrained Profession 163 163 

Weighted 128 115 
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APPENDIX B: FIGURES 
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Figure 1: Schematic representation of all competing hypotheses as calculated utilizing Bayes Factor Testing. H0 representing 
sample panmixia serves as the unconstrained reference tree that constrained alternative hypotheses are tested against. 
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Figure 2: Logistic Regression of donor characteristics as predictors for carriage. 
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Figure 3: Most likely phylogenetic tree. Red taxa labels indicate NCBI hospital samples, blue taxon labels correspond to clinical 
samples, and black taxon to community samples. Solid circles on nodes indicate posterior probability values of 100. 
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Figure 4: MLST EBURST of samples. Blue circles represent projected founder strains. Green labels represent strains shared 
between medical clinic and community cohorts. Black labels are community only, and red are clinical only. Size of circles are 
proportional to sampled number of isolates conforming to that strain. 
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Figure 5: Minimal Spanning network of MLST data. Dashes represent inferred haplotypes not recovered in this sampling scheme. 
Numerical labels indicate the STs of isolates. Size of haplotype circle schematics are proportional to number of isolates recovered 
of that ST. Coloured wedges indicate proportion of ST owed to each sampled origin. 
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