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ABSTRACT 

The spotted bird grasshopper, Schistocerca lineata Scudder (Orthoptera: Acrididae), is a 

widely distributed species found throughout most of the continental United States and southern 

Canada.  This species is known to be highly variable in morphology, with many distinct ecotypes 

across its native range.  These ecotypes display high levels of association with type-specific host 

plants.  Understanding the evolutionary relationships among different ecotypes is crucial 

groundwork for studying the process of ecological differentiation.  I examine four ecotypes from 

morphological and phylogeographic perspectives, and look for evidence of distinct evolutionary 

lineages within the species.  I also begin to explore the potential role of the microbial community 

of these grasshoppers in ecological divergence by using 454 pyrosequencing to see if the 

microbial community structure reflects the ecology of the grasshoppers.  I find support for a 

distinct aposematic lineage when approaching the data from a phylogeographic perspective and 

also find that this ecotype tends to harbor a unique bacterial community, different from that of a 

single other ecotype. 
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CHAPTER I: GENERAL INTRODUCTION 

Evolutionary Biology and Ecological Differentiation 

To achieve mechanistic knowledge of the interactions between ecology and evolutionary 

processes is a core aim of evolutionary biology, and is fundamental to understanding the process 

of speciation at the microevolutionary scale [1,2].  Within a single species, populations may 

diverge along a continuum on which the strength of reproductive barriers to gene flow can vary 

from weak to strong [2,3,4,5].  These barriers may arise from postzygotic regulation such as 

hybrid inviability or hybrid breakdown, or from prezygotic sources such as temporal or 

geographic isolation.  Although a variety of prezygotic mechanisms have been proposed as 

potential routes to reproductive isolation, many of these processes remain poorly understood in 

complex systems [3,6,7,8]. 

One such mechanism is ecological differentiation.  Ecological differentiation is a 

divergent process in which disruptive selection from environmental differences or ecological 

interactions act in contrasting directions on two or more populations of a single species, and can 

potentially lead to reproductive isolation.  Fundamental insights about ecological differentiation, 

especially in insects, have come from studies of herbivorous species with ecologically divergent 

host races, sometimes referred to as ecotypes [4,5,9,10].  Host-associated differentiation (HAD) 

is a specific case of ecological differentiation in which host-associated taxa develop divergent 

traits across populations due to associations with different hosts.  This may be especially 

common in herbivorous insects, and numerous studies have investigated this phenomenon in a 

variety of taxa.  Some Drosophila spp. (Diptera: Drosophilidae), as well as numerous 

lepidopterans, have larval stages that are dependent upon a single host plant species, while others 
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have a complex of hosts that they might utilize [11].  Beetles of the genus Neochlamisus 

(Coleoptera: Chrysomelidae) exhibit species-specific host associations, with each species 

feeding, growing, mating, and laying eggs on a single host plant throughout its lifetime [11].  

Neochlamisus bebbianae, however, seems to be at a different point along a divergence 

continuum when compared to the rest of the genus.  Different populations display distinct host-

forms, each associated with one of six plant genera, across five families [12].  Each host-form 

can be ecologically and genetically differentiated from the others [12].  In Timema cristinae 

(Phasmatodea: Timemidae), host plant association has led to the development of two ecotypes, 

each with distinct coloration and morphology, adapted for crypsis on a certain host plant genus 

[13].  An individual of one ecotype experiences increased predation pressure by being active on 

the “wrong” host plant [14].  This may represent a case of incomplete speciation, and it has been 

further suggested that this could be a stage of an ongoing speciation event [15,16].   

System of Study: Schistocerca lineata 

The spotted bird grasshopper Schistocerca lineata Scudder, 1899 (Orthoptera: Acrididae) 

is a widely distributed North American species that occurs in highly localized and potentially 

isolated populations that are often associated with different host plants [17,18,19,20].  This 

species presents a unique opportunity to study patterns of ecological differentiation at the 

microevolutionary scale because of its unique ecology and population-level diversity.  Some 

populations have been shown to display ontogenetic specialization in which juveniles are host 

specific, but adults become more generalist [19,20], and this is likely the general pattern for the 

species.  A recent revision of the Alutacea Group within the genus Schistocerca described four 

ecotypes of S. lineata; (1) aposematic, (2) brown, (3) typical, (4) olive-green; mostly based on 
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external coloration of museum-preserved adult specimens [17].  Each ecotype is associated with 

a particular phenotype, the most obvious component of which is color (Fig. 1). 

 
Figure 1: Ecotypes of S. lineata 
Clockwise from top-left: (1) aposematic; (2) brown; (3) typical; (4) olive-green. 
Photo credits: (1) DiBurro, 2013; (2) Haarstad, Baumert, Sheps, Treon, 2002; (3) Cotinis, 2011; 
(4) Plagens, 2008. 
 
Out of these four ecotypes, only two, both occurring in Texas, have well-characterized ecological 

traits and life histories.  Nymphs of the aposematic ecotype feed on the toxic wafer ash, Ptelea 

trifoliata (L.) and display a characteristic yellow and black pattern (Fig. 1).  These Ptelea-feeders 

exhibit density-dependent aposematism and derive chemical defense from the host plant [21,22].  

The typical ecotype is cryptic in color and is known to be associated with dewberry, Rubus 
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trivialis Michx. in Texas [17,18,19,20].  For these two ecotypes, nymphal survival is strongly 

correlated with the availability of the preferred host plant species, and the two groups have been 

shown to be genetically distinct based on two mtDNA markers [19].  The olive-green ecotype is 

found in Colorado and known to be associated with invasive saltcedar, Tamarix ramosissima 

Ledeb., which was introduced to the region in the early 1900s [18,23].  The brief history of this 

plant in the United States suggests that Colorado populations of S. lineata must have developed 

this association extremely rapidly, but no empirical study has evaluated the strength of the 

association nor tested the hypothesis that this is a genetically distinct group.  Not much is known 

about the ecology of the brown ecotype. 

Other investigations into the ecology of S. lineata indicate that there may be a wide 

variety of distinct host plants with which at least one population of S. lineata is associated 

suggesting that, for some populations, the ecotype designation may be of limited value [17,24].  

The overwhelming intraspecific morphological variation found in S. lineata demands further 

investigation, and provides an excellent opportunity to simultaneously study patterns of 

evolution in a rapidly evolving host-associated, hemimetabolous insect.  In Chapter II, I 

characterize genetic differentiation and identify patterns of morphological divergence across the 

four ecotypes. 

Microbial Community Structure 

In Chapter III, I begin to investigate the potential for a role of symbiotic bacteria in the 

divergence of ecotypes.  Symbiotic bacteria can have a significant influence on the fitness of host 

organisms, and may play an important role in speciation events involving their hosts [25,26,27].  

Nonetheless, investigation of the role of symbiotic bacteria in the processes of speciation has not 
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yet found its way into the mainstream of speciation research, though there are examples 

[25,26,27].  Here, I compare the microbial community structure to the known ecology of the two 

most well understood ecotypes of S. lineata.  It has been shown in the congeneric S. gregaria 

that the gut microbial community is derived from the diet, so it stands to reason that two 

ecotypes with divergent host plant associations might harbor different bacterial communities.  

Using next-generation sequencing (NGS) to quantify the abundances of bacterial genera in eight 

populations, I illuminate a pattern of microbial divergence that reflects both ecological and 

genetic divergence. 
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CHAPTER II: CHARACTER EVOLUTION IN A HOST-ASSOCIATED GRASSHOPPER 

Introduction 

Many insect species exist as numerous divergent populations [4,5,10,19, 28].  

Sometimes, these populations are ecologically and morphologically distinct from each other, and 

the term “ecotype” is often used to denote each distinct population.  The concept of ecotype 

dates back to Turesson (1922) who proposed that a species could exist as many ecological units 

that arise as a result of the genetic response to a particular habitat.  Since then, the term ecotype 

has been loosely used throughout the literature.  While conceptually straightforward, the 

delimitation of ecotypes is actually often difficult and can be quite subjective.  For example, if a 

population of an herbivorous insect species has evolved a preference for a particular host plant, 

and if it is possible to readily recognize this ecological characteristic, one may use the term 

ecotype for this population without much hesitation.  Similarly, if another population of the same 

species always displays a certain phenotype and seems to be found in a particular habitat, one 

might also use the term ecotype to denote this population without any regards to feeding biology.  

Thus, the ecotype designation does not necessarily imply a certain evolutionary process 

(selection, drift, or demography), but it does suggest that a particular ecotype is on its own 

evolutionary trajectory, distinct from other ecotypes.  The divergence of ecotypes fits well within 

the concept of speciation continuum [4,5].  If the ecotype continues to persist, it may potentially 

become an incipient species in the context of ecological speciation [28]. 

Ecotypes are recognizable by ecological, phenotypic, or genetic traits, or by any 

combination of these three traits.  Often, multiple ecotypes exist for a given species, but there 

does not seem to be an established explanation that describes a general pattern for the divergence 
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of those traits that are used to recognize these ecotypes.  Although several studies have examined 

host-race or ecotype formation in insects, very few have attempted to describe the patterns of 

character divergence during the very early stages of ecotype divergence [4,5,10,29].  At this 

stage, it is expected that a so-called “mosaic” pattern of character divergence should emerge.  

Mosaic evolution describes a phenomenon when different characters show a variety of different 

patterns of evolution, which is often invoked in paleontological studies [30,31,32].  Although the 

concept originated from a macroevolutionary perspective, it is possible to apply at a 

microevolutionary scale [18,33].  For instance, mosaic patterns can be found when characters 

diverge differentially across multiple populations or ecotypes.  Incomplete lineage sorting is a 

result of mosaic evolution of molecular characters in the sense that individual gene loci evolve at 

different rates resulting in incongruence among those loci.  Similar patterns have been observed 

in morphological data from a variety of taxa [18,34,35].  However, there has not been much 

attention paid to understanding the mosaic patterns of character divergence during the early 

stages of ecological differentiation. 

In this study, I describe patterns of character divergence in several known ecotypes of a 

rapidly-diverging polyphagous grasshopper species. Using a variety of morphological and 

molecular markers, I assess phenotypic and genetic divergence in four ecotypes of Schistocerca 

lineata.  I sample both size-dependent and size-independent morphological characters to evaluate 

how morphology diverges across ecotypes.  Since different host plant species might confer 

differing nutrition to the insect, I hypothesize that size will vary across ecotypes.  Likewise, there 

is known population-level divergence in male sexual structures [18].  Thus, I hypothesize that 

there will be ecotype-level variation in male cerci, which have been shown to be appropriate for 

assessing population-level variation in grasshoppers [18].  Considering that different selection 
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pressures likely exist with regards to ecology and sexual selection, we can expect that these two 

different types of characters may diverge at different rates, exhibiting a mosaic pattern.  

Alternatively, if selection is weak, a mosaic pattern could arise due simply to drift.  It could also 

happen that no difference is seen in either set of characters.  If this were the case, then we would 

expect to see genetic evidence of population panmixis.  Two ecotypes of S. lineata have 

previously been shown to be genetically distinct based on partial sequences of the mitochondrial 

16S and 12S rRNA [19].  I expand both taxon and character sampling to all four described 

ecotypes of S. lineata, and relate the pattern of genetic divergence back to the patterns 

morphological and ecological divergence across ecotypes. 

Methods 

Taxon Sampling 

Specimens of S. lineata were collected from eight localities across the continental United 

States (Table 1).  Specifically, I sampled two populations from Texas and one each from 

Oklahoma and Colorado.  Museum and alcohol preserved specimens from another Oklahoma 

population and from another Colorado population, as well as specimens from a Kansas locality 

were contributed by H. Song.  Adults and nymphs of varied ages were collected using hand 

capture and sweep netting techniques.  Animals were kept alive, transported to the Song 

Laboratory of Insect Systematics and Evolution at UCF, and reared to adulthood in moderate-

density colonies on a 16:8 hour day-night cycle in a temperature-controlled rearing room at 

~26.7ºC.  Grasshoppers were fed a diet of Romaine lettuce and wheat bran, supplemented with 

known or assumed host plants collected from the field ad libitum.  The eighth collecting locality 

(WI) was sampled by a colleague (C. Bomar) who provided the adult specimens preserved 100% 
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ethanol.  Colony-reared specimens were also preserved in 100% ethanol upon natural death and 

stored at –80ºC.  A total of 109 individuals were sampled for use in morphological and molecular 

analyses. 

Morphological Character Sampling 

In this study, I quantified two types of morphological traits (size-dependent linear 

measurements and size-independent shapes) across the eight populations of S. lineata to measure 

population-level divergence. 

Size-dependent Morphology: Hind femur length (F), head width (C), and pronotum length (P), 

have been shown to be good metrics for evaluating overall individual size in grasshoppers [18].  

For hind femur measurements, the entire left leg of the grasshopper was removed and laid flat on 

a standardized ceramic plate.  If the left leg was not present, or had been potentially altered by 

DNA extraction, the right leg was used instead.  This does not present an issue because insects 

are bilaterally symmetrical, and both legs should be identical in length.  Deformed or poorly 

developed grasshoppers were not used in this analysis.  The legs were photographed using the 

high resolution BK Plus Lab Imaging System (Visionary Digital).  Femur measurements were 

taken in Adobe Photoshop CS5, calibrated for the appropriate lens (50mm, f-stop 8.0, zoom 1:6) 

and camera (Canon EOS 7D) settings.  For the purposes of this study, femur length was 

considered to be from the apex of the curve at the base of the femur to the notch where the femur 

meets the tibia at the joint.  Measurements were taken three times and averaged for a final value 

in order to minimize human error.  To obtain values for C and P, I used Mitutoyo ABSOLUTE 

Digimatic digital calipers to manually measure the head at its widest point, below the eyes, and 

to measure the length of the pronotum.  Again, measurements were taken three times, and the 

values averaged.
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Table 1: Collection summary and descriptions of adult phenotypes 
Population (abbr.) Date  Host Plant  Habitat   Adult Coloration (ecotype)    
Altair, TX (TX-RT) July 2011 Rubus trivialis  dense shrubs and grasses yellow-brown with yellow dorsal stripe, some with green 

markings, black hind tibiae (typical) 
 

Austin, TX (TX-PT) July 2011 Ptelea trifoliata  woody area, some canopy bright yellow with yellow dorsal stripe and blue eyes; 
black markings and hind tibiae (aposematic) 
 

Fort Sill, OK (OK-FS) July 2004 unknown  short grass, mixed sandy yellow with black lateral stripes and yellow dorsal 
stripe and black hind tibiae (typical) 
 

Fort Cobb, OK (OK-FC) July 2011 unknown  dry, sandy  rusty to dark brown with yellow dorsal stripe and brown 
or black hind tibiae (typical) 
 

John Martin Reservoir,  July 2004 Tamarix ramosissima dry, sandy  olive green with yellow dorsal stripe and red hind tibiae 
CO (CO-JMR)          (olive-green) 
 
Blue Lake, CO (CO-BL) July 2011 Tamarix ramosissima grassy lakeshore  pale green with yellow dorsal stripe and red hind tibiae 
           (olive-green) 
 
Hollister Wildlife Area,  July 2004 Rhus sp.   tall grass prairie  dark brown with yellow dorsal stripe and black hind tibiae 
KS (KS)           (typical) 
 
Wisconsin (WI)  August 2005 unknown  N/A   brown, some lacking yellow dorsal stripe and brown or 

black hind tibae (brown)
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Values of F, C, and P are highly correlated metrics of grasshopper size.  Although any one of 

these measures may have been suitable for direct comparisons across populations, I analyzed all 

three metrics simultaneously via principal components analysis (PCA) using JMP 10.0.0 (SAS 

Institute Inc., 2012).  I used equal numbers of males and females whenever possible.  Mean PC 1 

scores were compared across populations using ANOVA (Table 2), and Tukey’s HSD test was 

used to identify significantly differences between ecotypes (Fig. 2).  

Size-independent Morphology: The shapes of male cerci may provide an indicator of population-

level divergence that is independent of individual grasshopper size [18].  To prepare for images 

for a morphometric analysis, the left cercus of each male was dissected from the specimen and 

photographed on a standardized petri dish-and-slide mount (n = 65).  High-resolution 

photographs of the cerci were taken using a 100mm lens, with an f-stop of 5.6 and zoom 1:1.5. I 

used the software in the TPS series to carry out a landmark-based geometric morphometric 

analysis [36].  I created the input files using tpsUtil and quantified the shape of male cercus as a 

set of landmark coordinates (5 Type-II landmarks and 21 semi-sliding Type-III landmarks) using 

tpsDig2 [36].  I calculated partial warp scores for each specimen based on the landmark data and 

performed a relative warp analysis (a type of PCA) based on the resulting partial warp scores 

using tpsRelW [36].  Deviations of individuals’ structures from the consensus shape are 

expressed as relative warp (RW) scores (Table 3).  These RW scores were then compared for 

ecotype-level differences using MANOVA and Tukey’s HSD test in JMP (Table 4).  R 2.15.1 

(The R Foundation for Statistical Computing, 2012) was used plot RW scores as functions of 

each other, and Inkscape 0.48.4 (The Inkscape Team) was used to draw minimum convex 

polygons (MCPs) representing the occupied morphospace for cerci in each ecotype.  To visualize 

the shape variation in the morphospace along the resulting RW scores, I used tpsDig2 [36]. 
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Molecular Character Sampling 

I generated mitochondrial DNA (mtDNA) sequences from 70 specimens (including 7 

outgroups; 2 S. damnifica, 5 S. shoshone) to use for phylogeographic analysis.  Raw genomic 

DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen) and sequences were 

amplified using standard PCR.  I developed novel specific primers to amplify cytochrome 

oxidase subunit I (COI) in addition to the 12S and 16S genes utilized by Dopman et al. (2002), 

which have all been used to recover relatively recent signals of divergence across a variety of 

taxa.  The transfer RNA (tRNA) valine, which occurs between 12S and 16S, was also amplified 

incidentally during PCR, and was also included in my analysis.  PCR product was cleaned of 

residual primers and reagents using PrepEase 96-well plates (USB Corporation).  Purified PCR 

product was sequenced at the BYU DNA Sequencing Center and proofread for quality using 

Sequencher 4.10.1 (Gene Codes Corporation, 2010).  The resulting sequences were deposited at 

GenBank with accession numbers XXX-XXX.  

Alignment and Phylogeographic Analysis: COI was aligned based on the conservation of amino 

acid sequence using MUSCLE in MEGA 5 [37].  Because rRNA and tRNA contain distinct, 

structurally functional stem and loop regions, I considered the secondary folding structure of 

these genes before building their alignments [38].  I used RNAfold (Institute for Theoretical 

Chemistry) to establish consensus structures for each gene, and RNAsalsa was used to align the 

sequences [39].  rRNA and tRNA alignments were then each divided into stem and loop subsets 

because base pairs in these structures may evolve at different rates, and COI was divided into 

three subsets based on codon position [38].  My final dataset had a total of nine subsets and a 

Bell number of 21,147, which represents the number of possible data partitioning schemes.  

PartitionFinder was used to compare every possible scheme with a Bayesian Information 
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Criterion (BIC) score, based on likelihood scores [38].  Besides recommending the optimal 

partitioning scheme, PartitionFinder also recommends the best-fit model of nucleotide evolution 

for each subset of the partition.  Based on the partitioning scheme and the model of evolution 

recommended by the software, I reconstructed a phylogeny of S. lineata in a Bayesian 

framework using the hybrid MrBayes 3.1.2 build via the CIPRES Science Gateway [40,41].  I 

used default priors for the Bayesian analysis.  Four runs with four chains each were carried out 

for 40 million generations, sampling every 2500 generations.  Convergence was assessed with 

Tracer, and the first 25% of each run was discarded as burn-in.  I also generated individual gene 

trees and trees for pairs of genes to assess the robustness of my topology using the same tree-

building methods outlined above. 

 The same dataset was also reassessed using an alternative methodology to improve the 

robustness of my analyses.  My concatenated dataset was trimmed to exclude uninformative sites 

or loci with too much missing information using the Phylogeny.fr Gblocks 0.91b utility, allowing 

for gaps within the final blocks [42,43].  The output was then analyzed using JModelTest to 

determine appropriate models of nucleotide evolution for each of three partitions (COI, 16S, and 

12S; Valine was excluded from this analysis) [44,45].  A second series of Bayesian haplotype 

trees were generated from this trimmed dataset using default priors using MrBayes via CIPRES. 

 I generated a partial 16S gene tree using data from Dopman et al. (2002) mined from 

GenBank (accession numbers AF155548–AF155566) in addition to my own sequence data.  My 

sequences were trimmed to reflect that dataset, and then the datasets were combined for use in a 

Bayesian phylogenetic analysis informed by PartitionFinder. 
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Results 

Size-dependent Morphology 

PC 1 explained 96.4% of the observed variation in the data, and is interpreted as an 

effective value of “grasshopper size.”  My model identified significant differences in PC 1 across 

the dataset, with significant predictor variables including gender and population nested within 

ecotype, as well as a significant effect of ecotype (Table 2).   

Table 2: ANOVA summary for PC 1 
Response = Grasshopper Size (PC 1) 

 d.f. F Ratio p value 
MODEL 8 102.3567 < 0.0001 
Gender 1 544.8575 < 0.0001 
Pop[Ecotype] 4 36.3729 < 0.0001 
Ecotype 3 38.1115 < 0.0001 

 

Significant differences in grasshopper size across ecotypes were identified by the ANOVA, and 

the Tukey’s HSD test revealed that grasshoppers of the brown ecotype were significantly small 

than grasshoppers of other ecotypes (Fig. 2).  The olive-green ecotype was found to be of 

intermediate size, being significantly larger than the brown ecotype, but smaller than either of the 

other two ecotypes (Fig. 2).  The aposematic and typical ecotypes were not found to be 

significantly different from each other with regards to size, but both ecotypes were significantly 

larger than both the brown and olive-green ecotypes (Fig. 2). 
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Figure 2: Mean size (PC 1) by ecotype 
Means are least squared means.  Error bars represent 95% confidence intervals and capital letters 
are Tukey’s groupings for ecotype.  
 

Size-independent Morphology 

Relative warp analysis summarized the variation in male cerci shapes as 48 RW scores. 

The first six RW scores explained more than 90% of the overall variation (Table 3).   

Table 3: Summary of RW analysis 
RW SV  % Var.  Cum. % 
1 0.33396 37.68% 37.68%  
2 0.23320 18.37% 56.05%  
3 0.21146 15.11% 71.16%  
4 0.17552 10.41% 81.57%  
5 0.12601 5.36%  86.93%  
6 0.09818 3.26%  90.19%  
7 0.08246 2.30%  92.49%  
8 0.07430 1.87%  94.35%  
9 0.06023 1.23%  95.58%  
10 0.05200 0.91%  96.49% 
SV = Singular Value.  Second column shows the percent of variation explained by each relative 
warp (RW), and the third column shows the cumulative percent variation explained. 
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My MANOVA model identified significant differences across the dataset for the first three RW 

scores, which cumulatively explain 71.16% of the observed variation.  Although the variation in 

RW 1 was explained by the effect of population nested within ecotype, variation in RW 2 and 

RW 3 was due to the effect of ecotype (Table 4).   

Table 4: MANOVA summary for first 6 RW scores 
Response = RW 1     Response = RW 2     
  d.f. F Ratio p value   d.f. F Ratio p value 
MODEL 7 2.2256 0.0452 MODEL 7 5.4539 < 0.0001 
Pop[Ecotype] 4 3.5181 0.0123 Pop[Ecotype] 4 0.6792 0.6092 
Ecotype 3 0.3747 0.7716 Ecotype 3 11.4574 < 0.0001 
        
Response = RW 3     Response = RW 4     
  d.f. F Ratio p value   d.f. F Ratio p value 
MODEL 7 2.3912 0.0324 MODEL 7 1.1128 0.3678 
Pop[Ecotype] 4 1.875 0.1273 Pop[Ecotype] 4 1.3745 0.2542 
Ecotype 3 3.2134 0.0295 Ecotype 3 0.7706 0.5152 
        
Response = RW 5     Response = RW 6     
  d.f. F Ratio p value   d.f. F Ratio p value 
MODEL 7 1.0614 0.4 MODEL 7 1.0073 0.4359 
Pop[Ecotype] 4 0.2913 0.8825 Pop[Ecotype] 4 1.2351 0.3063 
Ecotype 3 2.0694 0.1144 Ecotype 3 0.8483 0.4733 
        

 
A Tukey’s HSD test for RW 2 indicated that the olive-green ecotype was significantly different 

in shape from the other ecotypes, while the Tukey’s test for RW 3 identified the aposematic 

ecotype as the significantly distinct group (Figs. 3 & 4). 
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Figure 3: Mean shape (RW 2) by ecotype 
Means are least squared means.  Error bars represent 95% confidence intervals and capital letters 
are Tukey’s groupings for ecotype.  
 

  
Figure 4: Mean shape (RW 3) by ecotype 
Means are least squared means.  Error bars represent 95% confidence intervals and capital letters 
are Tukey’s groupings for ecotype.  



18 
 

Although RW 2 and RW 3 together only explained 33.48% of the observed variation, they were 

the only two metrics in which variation was driven by the effect of ecotype, making them 

appropriate for visualization of the morphospace divergence across ecotypes.  I plotted the scores 

of RW 3 as a function of RW 2 and illustrated minimum convex polygons (MCPs) to represent 

the relative occupied morphospaces for cerci of each ecotype (Fig. 5).  This type of visualization 

is interpreted by looking at the overlap in MCPs for each group.  When groups are 

morphologically distinct, the morphospaces are expected to overlap very little or not at all; more 

overlap indicates a higher degree of similarity.  We found that there is a high amount of variation 

in shape both within and across ecotypes.  The typical and olive-green ecotypes display a greater 

amount of variation within an ecotype than the brown and aposematic ecotypes, as shown by the 

larger area of the MCPs in those ecotypes.  The morphospaces for all four ecotypes overlap to 

some extent, indicating that although there may be a signal of divergence between ecotypes, 

there is still some similarity.  I also visualized the shape of cercus at specific points at the 

extreme ends of the axes (Fig. 5).
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Figure 5: Relative morphospaces of male cerci 
RW 3 is plotted as a function of RW 2 for each of four ecotpyes on the left.  Minimum convex polygons (MCPs) denote boundaries of 
the occupied morphospaces.  Singular value (SV) and percent of variation explained (% Var.) are shown in parentheses.  Hypothetical 
extremes generated using TPS software for both RW axes are illustrated on the right and correspond to the shapes that would occur at 
the points denoted on the plot to the left.  2a and 2b represent extremes for RW 2; 3a and 3b represent extremes for RW 3.
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Phylogeography 

PartitionFinder recommended the use of a single partition consisting of the entire 

concatenated data set under the HKY + I + G model. All four runs of the Bayesian analysis 

converged.  Although numerous trees were actually constructed as part of my analysis, I present 

here the haplotype tree based on the BIC best-fit partitioning scheme as recommended by 

PartitionFinder (Fig. 6).   

 
Figure 6: Bayesian haplotype tree for S. lineata 
Terminal node labels indicate collecting locality. 
*Internal nodes denoted with an asterisk show strong support (posterior probability ≥ 95%). 
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Removal of any one gene or any combinations of multiple genes from the analysis did not affect 

the topology of the tree at nodes with strong support.  The analysis informed by Gblocks 

likewise revealed a pattern of genetic divergence congruent with the PartitionFinder-based 

analysis.  JModelTest recommended use of a HKY + I model for COI and 12S and a GTR + I 

model for the 16S gene. 

In both analyses, Schistocerca lineata was recovered as a monophyletic clade with strong 

nodal support, and as sister to S. shoshone (Thomas, 1873), which is consistent with published 

literature [17].  A large majority of the taxa were recovered as a large polytomy that was mostly 

undifferentiated internally.  One notable exception was the TX-PT population, which was 

relatively well-differentiated from the other populations, forming a distinct monophyletic group 

within the polytomy, although its relationship within the rest of the clade is unclear.  Neither the 

geography nor the assumed ecology of these populations was reflected in the topology of the 

tree, with the exception of the TX-PT population, representative of the aposematic ecotype. 

The partial 16S gene tree including data from Dopman et al. (2002) shows a similar 

pattern to my Bayesian tree based on four mitochondrial genes (Fig. 7).  Taxa representing the 

aposematic ecotype collected by Dopman et al. (2002) form a monophyletic clade with 

specimens from the TX-PT population.  Furthermore, specimens designated as Rubus-feeding (a 

subset of the typical ecotype), which form a monophyletic group sister to the aposematic ecotype 

in the Dopman et al. (2002) study, are distributed throughout the polytomy with specimens from 

other ecotypes and without forming a distinct clade.  
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Figure 7: Bayesian 16S gene tree including data from Dopman et al. (2002) 
Terminal node labels indicate collecting locality. 
*Internal nodes denoted with an asterisk show strong support (posterior probability ≥ 95%). 
 

Discussion 

The ecotype concept implies that different ecological units within a species are following 

their own evolutionary trajectories [4,5,9,10], which can be reflected by divergence in 

ecological, morphological, or genetic traits.  However, this concept is often not tested 

empirically, and I have shown that the ecotype concepts within S. lineata do not corroborate with 
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the data.  Song (2004) originally described four ecotypes (aposematic, brown, olive-green, and 

typical) based on museum specimens as well as published and anecdotal ecological information 

on host-plant association.  I find that only the aposematic ecotype (TX-PT) is genetically distinct 

and I find no evidence for genetic clustering of the other three ecotypes.  In terms of 

morphology, I find no pattern supporting the distinctness of any of the four ecotypes.  My study 

suggests that a mosaic pattern of evolution may accurately describe the patterns of character 

divergence from both morphological and molecular traits when the taxon of interest is 

undergoing the early stages of ecological speciation.  I draw this conclusion from the patterns 

observed from three distinct character sets: (1) size, (2) shape, and (3) mitochondrial DNA and 

below I expand further on my findings. 

Size is an Insufficient Indicator of Ecotype 

  My study shows that size alone is not an effective diagnostic trait for all ecotypes in S. 

lineata.  Song and Wenzel (2008) compared three populations of S. lineata from Colorado, 

Kansas and Oklahoma and suggested that each population has a characteristic body size.  

However, my present study includes these three populations (CO-JMR, KS, and OK-FS), as well 

as five additional populations, and I observed that the pattern described in Song and Wenzel 

(2008) disappears as more data are analyzed simultaneously.  

Although size may be a good character for distinguishing some ecotypes from one 

another, not all ecotypes have a characteristic size.  The brown ecotype (WI) and the olive-green 

ecotype (CO-JMR, CO-BL) are both significantly smaller than the aposematic and typical 

ecotypes, and the brown ecotype is smaller still than the olive-green ecotype, but the aposematic 

ecotype (TX-PT) is not statistically different from the typical ecotype (OK-FS, TX-RT, KS, and 

OK-FC) (Fig. 2).  There may be biological reasons as to why size is confounded as a diagnostic 
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character for the designation of ecotypes.  For one, insect size is known to be intimately tied to 

the availability of suitable nutrition [46].  A variety of factors may contribute to local 

fluctuations in availability of suitable host plants for populations of S. lineata.  For instance, 

some populations were collected during drought years, in which associated host plants may have 

been sparse or of poor quality.  Furthermore, some populations were collected as adults in the 

field, whereas others were collected as nymphs and reared in the lab.  It is possible that the 

rearing conditions affected the adult size lab-reared specimens.  There may also be a latitudinal 

or geographic effect, as Bergmann’s rule may hold true within widely distributed insect species 

[47].  These, and other environmental factors, could potentially influence the overall size of a 

population, potentially from year-to-year, and it is therefore necessary to examine traits that are 

independent of size to fully understand the pattern of ecotype divergence in my system. 

Shape is an Insufficient Indicator of Ecotype 

Similarly to size, I find that the shape of male cercus alone does not clearly delineate all 

ecotypes.  Using the Tukey’s HSD tests and minimum convex polygons (MCPs) based on RW 2 

and RW 3 scores, I find that different size-independent morphological characters appear to 

diverge independently from one another.  The brown ecotype (WI) has the narrowest shape 

divergence within the population, but its male cercus shape is embedded in the center of the 

morphospace, overlapping with all other ecotypes.  This low amount of variation may be 

influenced by small sample size (n = 5).  Within the typical ecotype (TX-RT, OK-FS, and OK-

FC), I observe the largest amount of shape variation, occupying the broadest shape space.  The 

original designation of this ecotype was not based on any particular morphological or ecological 

traits, which would indicate that it was an arbitrary designation for calling ecologically divergent 

populations as one ecotype [17].  There is moderate overlap between the typical ecotype and 
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olive-green ecotype, which also displays a large amount of intra-ecotype variation; however, 

these ecotypes appear to diverge towards opposite extremes of RW 2, and the olive-green 

ecotype is significantly different from the typical and aposematic ecotypes for RW 2 (Fig. 3).  

When examining RW 3, the aposematic ecotype emerges as a divergent group, being 

significantly different than both the brown and typical ecotypes (Fig. 4). 

The observed pattern suggests that a considerable amount of shape variation in male 

cercus exists in S. lineata within the limit of species-specific shape.  Some characters diverge in 

shape across ecotypes, but others are less variable.  Additionally, some characters diverge 

differentially in different ecotypes.  Song and Wenzel (2008) compared the shape of male cercus 

among OK-FS, KS, and CO-JMR and found that CO-JMR had a distinctly different shape, but 

when I expanded this study to include more ecotypes, the uniqueness of CO-JMR disappeared. 

It is important to consider the function and possible selective pressures that a 

morphological trait faces when studying ecotype-level variation.  Functionally, male cerci may 

play an important sensory role during copulation in S. lineata (Song, pers. comm.).  In fact, the 

shape of male cerci is considered an important species diagnostic character in Schistocerca, 

which implies that there may be a strong selective pressure, possibly from sexual selection, 

resulting in rapid morphological divergence [17].  If male cerci were indeed under selection, I 

would expect to see the largest amount of shape divergence between the ecotypes that are 

geographically close.  Two populations in Texas (TX-PT and TX-RT) are geographically close, 

but ecologically very divergent, representing the aposematic and typical ecotypes respectively, 

which may result in a reduced selective pressure on male cercus.  Of course, there is a possibility 

that divergence or non-divergence of male cerci is simply a by-product of drift and has little to 

do with selection. 



26 
 

mtDNA is an Insufficient Indicator of Ecotype 

I find that even a fairly comprehensive molecular dataset consisting of four mitochondrial 

loci is not capable of recovering a phylogeographic pattern of relatedness for four ecotypes of S. 

lineata.  This is unusual because it implies that mtDNA markers, which are commonly used for 

estimating divergence at the intra-specific level, may be insufficient for this system.  

Alternatively, it implies that the rate of divergence of populations or ecotypes within S. lineata 

may be more rapid than that of mtDNA.  One exception is the aposematic ecotype (TX-PT), 

which stands out as a strong monophyletic group with a relatively long branch (Figs. 6 & 7).   

 Dopman et al. (2002) studied whether two known host races of S. lineata in Texas 

(represented by TX-PT and TX-RT in my study) were genetically distinct from each other.  They 

found that the host race associated with feeding on toxic Ptelea trifoliata and another feeding on 

non-toxic Rubus trivialis formed reciprocally monophyletic groups and suggested that resource-

associated divergence might have played an important role in the formation of these two host 

races.  However, S. lineata exists as many more host races, populations, and ecotypes, and 

Dopman et al. (2002) only included the two host races in their study along with several divergent 

outgroup species [11,12].  In my study, I find a congruent pattern that the Ptelea-associated 

aposematic ecotype (TX-PT) is genetically distinct, but I do not recover a monophyly of the 

Rubus-associated population (TX-RT).  When including data from Dopman et al. (2002), I 

recover a polytomy consisting of all non-Ptelea-feeding populations, and the eight Ptelea-feeders 

from that study (representing four other collecting localities) form a monophyletic group with 

my aposematic TX-PT population.  The result from Dopman et al. (2002) might have been 

somewhat biased because they only included two feeding groups – one of which is genetically 

very divergent, which by default makes the other ecotype monophyletic.  We find that this 
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reciprocal monophyly breaks down when including specimens from other feeding groups, but 

that all Ptelea-feeding populations form a well-supported clade. 

This shows that resource-associated genetic divergence clearly exists in S. lineata, but is only 

demonstrated in the Ptelea-associated aposematic ecotype and not for other ecotypes or host 

races, based on mtDNA data.   

Mosaic Pattern of Character Divergence 

When different characters show different patterns of divergence, mosaic evolution is said 

to have occurred [33].  In this study, I have shown that size, shape, and DNA are unable to 

consistently delimit ecotypes when each trait is examined individually, and furthermore, they 

show different patterns of divergence from each other.  With regards to ecology, it is known that 

host plant association has evolved several times, including the well-characterized cases of 

Ptelea-feeding and Rubus-feeding populations and a suspected case of a Tamarix-feeding 

population [17,18].  In terms of adult coloration, there are at least three unique morphs 

(aposematic, olive-green, and brown) and one type (typical) that appears to be highly variable.  

When size, shape, DNA, ecology, and color, are collectively considered, it is possible to identify 

distinct groups within S. lineata, but it is clear that different characters diverge separately from 

each other. 

 The most distinct ecotype within S. lineata is the aposematic ecotype associated with 

Ptelea trifoliata.  It has a characteristic yellow and black pattern both as adults and nymphs, and 

it is genetically divergent from other populations.  However, in terms of body size and male 

cercus shape, it is not necessarily distinct from other groups.  On the other hand, a Rubus-feeding 

population (TX-RT) is distinct only in terms of feeding ecology.  Its color is non-descriptive, and 

it is not genetically distinct from other populations.  It is also indistinguishable from others in 
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terms of body size and male cercus shape.  The brown ecotype from Wisconsin is smaller than 

any of the populations and characteristically brown in color, but it is not distinct in terms of male 

cercus shape or mtDNA.  The olive-green ecotype has a unique color pattern and possibly a 

distinct feeding ecology, but it is not genetically distinct, and it is morphologically divergent by 

some measures of morphology, but not by others. 

 Understanding how reproductive isolation (barriers to gene flow) evolves is fundamental 

to studying speciation [1,3,8,28].  While the best-studied systems emphasize the role of 

ecological divergence or geographical isolation, in reality, most species must experience a 

combination of selection, drift, and demographic stochasticity, which can result in numerous 

divergent-looking populations or ecotypes [4,5,6,7,8,9,10,29].  From my study, it is clear that 

there is no one path that results in an independent evolutionary trajectory.  Also, my study 

suggests that within a widespread, highly mobile, herbivorous species with a tendency to 

associate with host plants, there can be multiple evolutionary trajectories varied in their positions 

along a speciation continuum, which can eventually evolve into reproductively isolated new 

lineages.  For example, I believe that the Ptelea-associated population (TX-PT) is much further 

along a speciation continuum than the Rubus-associated population (TX-RT) and that they are 

headed towards two different trajectories.  The rates at which different morphological, 

ecological, and genetic traits accumulate along these trajectories differs considerably among 

different populations, and there is no one clear explanation that describes the pattern, other than 

the fact that a mosaic pattern of character divergence is expected at this level of differentiation.
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CHAPTER III: MICROBIAL COMMUNITY STRUCTURE RELFECTS FEEDING 
ECOLOGY 

Introduction 

The spotted bird grasshopper Schistocerca lineata Scudder, 1899 (Orthoptera: Acrididae) 

is a widely distributed North American species that occurs in highly localized and potentially 

isolated populations that are often associated with different host plants [17,18,24].  Although 

there is a diversity of color morphs and feeding habits within the species, there are only two 

feeding groups with well-characterized ecologies [19,20].   Both found in Texas, the first feeding 

group is associated with dewberry, Rubus trivialis Michx., and is tan in color, while the second 

group feeds almost exclusively on the toxic wafer ash, Ptelea trifoliata (L.), and displays 

density-dependent aposematism and derives chemical defense from its host plant [20,21,22].  

Nymphs of Ptelea-feeders have been shown to be highly preferential in feeding habit and 

consume wafer ash readily, whereas Rubus-feeding nymphs will refuse wafer ash and starve if 

not provided an alternative host option [20].  This suggests that Ptelea-feeders may be equipped 

in some way to deal with the P. trifoliata toxicity, whereas Rubus-feeders are not. 

A potential explanation for the Ptelea-feeders’ ability to deal with a toxic host plant may 

involve a tri-trophic interaction.  Bacterial endosymbionts have been shown to help herbivorous 

insects withstand gut-borne pathogens and may promote rapid evolution and adaptation in their 

hosts [25,26,48,49].  They are also known to contribute to nutrition for insects on suboptimal 

diets [25,26].  In the desert locust Schistocerca gregaria, the gut microbial community is 

dominated by a relatively low number of species acquired from the diet [50].  These microbes 

metabolize secondary plant chemicals that might otherwise be detrimental to the host [48].  

Considering that P. trifoliata is known to be cytotoxic, it may be that Ptelea-feeders harbor a 
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microbial community different from that of Rubus-feeders (who may not need to metabolize 

particular plant secondary chemicals), enabling them to associate with such a toxic host plant 

[51].  Here, using early instar nymphs, which are most strongly-associated with their host plants, 

I assess the microbial community structure of eight populations of S. lineata, and relate this 

structure back to the known ecology of those grasshoppers.  This study makes use of a next-

generation sequencing (NGS) technique called 454 pyrosequencing and subsequent 

bioinformatics to generate absolute and relative bacterial abundance data for 79 individual 

grasshoppers.  I hypothesize that populations of the same ecotype will cluster statistically based 

on the relative composition of their respective microbial communities.   

Methods 

Taxon Sampling 

I collected 10 first, second, and third instar nymphs from 5 populations of Ptelea-feeders 

and 3 populations of Rubus-feeders across their native range in Texas (Table 5).  For one 

population (LCR), only nine individuals were available.  These specimens were collected 

directly into 100% ethanol and complete genomic DNA was extracted using the QIAGEN 

DNeasy Kit.  Because this kit is non-specific, this process also extracts DNA from all bacteria in 

the sample.  Although I originally planned to target the insects’ midguts, the early instar nymphs 

proved too small to dissect efficiently and extract a high enough concentration of quality DNA.  

Instead, we used DNA from the entire body of the grasshopper, except for the hind legs which 

were removed as backup genetic material.
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Table 5: Collection summary and description of nymphal habitat 
Population (abbr.)     Host Plant  Habitat      
Lake Whitney (LW)     Rubus trivialis  shrubby lakeshore, minimal canopy 
 
College Station (CS)     Rubus trivialis  grass and shrubs, arid, no canopy 
 
Altair (AT)      Rubus trivialis  dense R. trivialis, arid, no canopy 
 
Balcones Canyonlands Doeskin Tract (BCD) Ptelea trifoliata elevated hillside, near water, no canopy   
 
Brackenridge Field Lab. (BFL)   Ptelea trifoliata woody area, some canopy  
 
McKinney Falls (MKF)    Ptelea trifoliata woody area, near water, thick canopy  
 
Lower Colorado River (LCR)    Ptelea trifoliata woody area, near water, thick canopy 
  
Bamberger Nature Park (BNP)   Ptelea trifoliata woody area, some canopy   
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The whole nymph was ground with a motorized pestle and tissue lysed overnight at 56ºC.  After 

extraction, DNA concentrations were quantified using a Qubit 2.0 Fluorometer (Thermo Fisher 

Scientific Inc.).  The set of 20 µL aliquots were then shipped in dry ice overnight to Research 

and Testing Labs, Lubbock, Texas. 

Molecular Character Sampling 

The bacterial 16S genes for all bacteria in an individual were amplified using 454 

pyrosequencing.  Each sample was fixed with a unique NGS sequencing barcode, which was 

used to identify the individual grasshopper of origin for each bacterial sequence.  These 

sequences were then denoised and assembled de novo.  Denoising included trimming of low 

quality ends from each read or trimming of entire reads that did not meet quality standards, 

removal of sequences that failed to cluster with other reads, and elimination of chimeric 

sequences.  Clusters of reads known as operational taxonomic units (OTUs) were then assigned a 

likely species of origin identified using BLAST, providing presence-absence data for every 

bacterial species across the dataset.  It was also possible to infer the relative abundances of each 

bacterial species in each grasshopper by estimating from the number of reads per OTU.  I 

checked for sampling bias with regards to concentration of genomic DNA by carrying out an 

ANOVA and a Tukey’s HSD test in JMP Pro 10.0 using population as the categorical predictor 

of DNA concentration.  I also ran a regression to test for correlation of microbial diversity (I 

transformed the raw bacterial generic richness for each individual using the Shannon-Weiner 

Index) with initial DNA concentration. 

Hierarchical Clustering Analyses 

I carried out a hierarchical clustering analysis (HCA) in R 2.15.1 based on the mean 

relative abundances of the 24 most abundant bacterial genera, as well as based on the entire 
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dataset (98 bacterial genera) and compared the clustering pattern to the ecology of the two 

feeding groups [19].  I carried out the HCA at the generic level because it allowed me to account 

for a much larger portion of the dataset then if I were to analyze at the specific level. 

Results 

There were some significant differences in the initial concentrations of DNA in the raw 

genomic extracts across populations (Fig. 8).  Some samples did not amplify and/or sequence 

efficiently and were dropped from the analysis (n = 72). 

 
Figure 8: Mean concentrations of DNA extract for eight populations of S. lineata 
ANOVA results: p = 0.0003, F7,65 = 4.6860.  Capital letters are Tukey’s groupings.  
 
Although most of the populations showed relatively similar mean concentrations, the mean 

concentration for the BCD population was significantly lower than those of the BFL and MKF 

populations.  These means were associated with a relatively large variance, and my regression of 



34 
 

microbial diversity by DNA concentration showed a very weak correlation (adj. R2 = 0.041667), 

providing evidence for a negligible effect of initial DNA concentration (Fig. 9).  

 
Figure 9: Correlation of diversity by initial concentration of DNA extract 
Linear regression: y = 0.4395748 + 0.0150857x; adj. R2 = 0.041667. 
ANOVA results: p = 0.0459, F1,71 = 4.1305. 
 

Hierarchical Clustering Analyses 

My HCA based on relative bacterial abundance of the 24 most abundant bacterial genera 

revealed a clustering pattern that nearly reflected the ecology of the host grasshoppers, with a 

single exception; BCD, a Ptelea-feeding population, clustered with the three Rubus-feeding 

populations (Fig. 10).  These 24 most abundant genera accounted for roughly 97% of the total 

bacterial abundance across all populations.  One can also see from the heat map, that bacteria of 

the genus Methylobacterium dominate the microbial communities in all eight populations, 

contributing a mean of 64.1% of the total abundance across the dataset.  
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Figure 10: Clustering dendrogram (HCA) 
Illustrates similarity of the bacterial community structure across populations, based on the 24 
most abundant bacterial genera.  Lighter colors indicate higher relative abundance.  Percentages 
in each box indicate the mean relative contributions of those genera to the bacterial community 
in each population.  Ecotype for each population is shown at the bottom.  
 
In four of the Ptelea-feeding populations, bacteria of the Pseudomonas, Pantoea, Massilia, and 

Enterobacter genera are relatively abundant, likely causing the strong clustering pattern seen in 
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the dendrogram, although Kluyvera has relatively high abundance in one of these populations, 

and some genera are not as abundant in some populations as they are in others.  Although I do 

not present it here, the HCA including all bacterial genera yielded the same clustering 

topography as the analysis run with only the 24 most abundant bacteria. 

Discussion 

 This study provides a unique look into the potential role of bacteria in ecological 

divergence in a host-associated grasshopper.  I found that there could be vast differences in 

microbial community structure between populations within an ecotype.  Assuming that bacterial 

identification of OTUs was reliable, our dataset provides a unique opportunity to explore life 

histories of the dominant bacterial genera and explore other aspects of ecology with regards to 

the microbial community structure observed in this system. 

Microbial Community Reflects Ecology 

Nymphs of S. lineata likely hatch in an area of soil near an appropriate host plant since 

females of host-associated species tend to oviposit in close association with that host plant 

[24,52].  Thus, it stands to reason that nymphs quickly find their way to their first meal, and 

remain in close proximity to the host plant throughout their early life.  The bacterial load 

observed in these populations can likely be explained by the unique life history traits of this 

species.  However, it is crucial to understand the bacteria themselves, and relate this information 

back to the ecology of the grasshoppers to fully understand the data. 

Methylobacterium is a genus of nitrogen-fixing bacteria commonly associated with soil, 

leaves, and other plant parts [53].  Because this group was found to be cosmopolitan and to be 

the dominant microbial genus across all populations, it is likely that the grasshoppers are 
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exposed to Methylobacterium spp. throughout their entire lives, which is concordant with the life 

cycle of the species. 

Pseudomonas, Massilia, Pantoea, and Enterobacter are the four microbial genera that 

seem to drive the clustering of the BNP, BFL, MKF, and LCR populations in my HCA (Fig. 10).  

Pseudomonas is a diverse genus of aerobic gammaproteobacteria that includes members species 

ranging from human and plant pathogens to soil flora [54].  Like Methylobacterium spp., S. 

lineata nymphs are probably exposed to Pseudomonas spp. early in life in the soil, and probably 

continue to acquire the bacteria from association with the host plant.  Massilia is a similarly 

diverse genus, with samples being isolated from human patients, soil, and the air [55,56,57,58]. 

 Of particular interest are the Pantoea and Enterobacter bacterial genera, both of which 

belong to the Enterobacteriaceae family.  These genera have been identified as part of the natural 

microbial community for a number of insects, and some species have been shown to confer 

benefits to the host grasshopper [25,48,50].  Microbial metabolism of secondary plant chemicals 

by Enterobacteriaceae in the locust gut has been shown produce phenolics useful to the locust 

host [48].  Pantoea aggomerans, in particular, which accounts for 3.01% of the bacterial 

abundance across the dataset and 4.52% of the bacterial community in Ptelea-feeders, has been 

shown to produce an antifungal compound in grasshopper guts [48].  This collectively suggests 

that Ptelea-feeders, whose microbial communities harbor relatively high abundances of these 

genera, may receive some benefit from these bacteria, perhaps through metabolism of P. 

trifoliata cytotoxins.  Again, it is most likely that these microbes are acquired from the diet, 

which raises an interesting question – If Ptelea-feeding S. lineata populations draw their ability 

to metabolize plant toxins from diet-acquired bacteria, then why do Rubus-feeders outright reject 

P. trifoliata as a suitable host plant? 
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Misunderstood Interactions in Complex Communities 

 Grasshoppers rely on visual and chemical cues to identify suitable host plants [24,52].  

However, most polyphagous species will readily consume other, less-preferred plants rather than 

starve.  This is not the case when presenting Rubus-feeders with P. trifoliata, who will die 

without even attempting to consume the plant [20].  A potential explanation for Rubus-feeders’ 

rejection of P. trifoliata could be that they are cuing in on the plant’s toxicity and avoiding it, 

whereas Ptelea-feeders might be attracted to that same chemical cue.  Interestingly, my data 

suggest that grasshoppers of both ecotypes acquire their microbial communities from association 

with their host plants.  If some component of microbial diversity confers the ability to metabolize 

P. trifoliata, then Rubus-feeders should theoretically be able to consume P. trifoliata and, in 

doing so, acquire the necessary microbial symbionts needed to deal with the plant’s toxicity.  

This reveals an important disconnect in our understanding of the interactions of plant toxicity 

and microbial metabolism because if diet-acquired bacteria allow for processing of plant toxins, 

then any insect should be able to consume that plant, essentially negating the benefit of toxicity 

to the plant.  Furthermore, if non-associated insects could possibly herbivorize a toxic plant but 

do not do so because of some cue, then what could induce an initial host plant shift to that plant? 

 Another wrench in the proverbial cogs is represented by my population of Ptelea-feeders 

collected from Balcones Canyonlands – Doeskin Tract (BCD).  This population was one of the 

largest I observed in the field, with hundreds of nymphs on dozens of P. trifoliata bushes along 

an upland stream.  This population harbored relatively low abundances of bacterial genera that 

were found in other Ptelea-feeding populations [48,50].  Additionally, the Pantoea and 

Enterobacter genera, which were the most likely candidates for a symbiosis in this system, are in 

relatively low abundance compared to the other Ptelea-feeding populations (Fig. 10).  This 
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suggests then that the microbial community structure may be influenced by factors other than 

feeding preference.  Notice that for all Ptelea-feeding populations other than BCD, there is some 

plant canopy structure, whereas the lack of canopy observed at BCD reflects a local plant 

assemblage more similar to those of the R. trivialis habitats (Table 5).  It is possible that the local 

microflora available to the grasshoppers is influenced by plant community structure or that the 

BCD population is otherwise ecologically different from the other Ptelea-feeders in some 

unidentified way.  Alternatively, it may be that multiple bacteria play similar roles in different 

populations of grasshoppers feeding on the same host plant.  For a more robust understanding, 

bacteria should be identified to species, and their origins in the grasshopper body as well as their 

function within the animal should be fully explored.  Furthermore, examination of the 

biochemistry and metabolism of P. trifoliata after consumption by the grasshopper will be 

crucial to understanding the tri-trophic interactions in this system. 
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CHAPTER IV: GENERAL DISCUSSION AND CONCLUDING REMARKS 

 From the literature and from my two studies, I can conclude that the Ptelea-feeding, 

aposematic ecotype of Schistocerca lineata represents a genetically and ecologically distinct 

lineage from the rest of the species.  I identified a mosaic pattern of character evolution across 

size-dependent and size-independent measures of morphology, indicating that morphology may 

be unreliable for demarcation of ecotype.  Genetic data provided a clearer, more robust 

indication of ecotype, suggesting that morphologically-defined or ecologically-defined ecotypes 

in other taxa should be evaluated from a phylogeographic perspective, especially since we 

interpret the term “ecotype” as reflecting distinct evolutionary lineages.  While ecological 

divergence may eventually lead to reproductive isolation in some taxa, ecological traits found in 

a population might also be ephemeral, having no genomic consequence. 

I also found evidence that microbial community composition may differ across ecotypes 

and that microbial load is likely acquired from the diet.  Although I only examined a subset of 

populations of S. lineata, the genetically distinct Ptelea-feeding ecotype harbored a unique and 

diverse microbial community that may or may not play a role in their divergence.  Microbial 

diversity across the remainder of the species’ range should also be assessed to see if this pattern 

truly reflects the ecology of the grasshopper or if it is a function of more complex community-

wide interactions.  With future work, I will illuminate the tri-trophic interactions between the 

grasshoppers, their host plants, and the diet-acquired bacteria, and to understand the 

microevolutionary consequences of these interactions in ecologically divergent species. 
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APPENDIX A: NOVEL PCR PRIMERS 
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 This appendix includes information about novel PCR primers that were created to be 

species-specific to Schistocerca lineata for the purposes of amplification of the COI gene.  The 

primers’ names contain an “F” or an “R” to signify forward and reverse primers respectively.  

Primer sequences and annealing temperatures are also provided. 

Name Sequence Anneal. Temp. (°C) 
SlinF-192 CCT AAA ATT CAG CCA TCT TAC CGC 56.2 
SlinF-737 TAT GAT CTG TAG CTA TTA CAG CCC 53.7 
SlinF-1104 CAT CAG CAA CAA TAA TTA TTG CCG 53.2 
SlinF-1327 ATT ATC TAT AGG AGC AGT ATT CGC 51.8 

   
SlinR-leu TTA AAT CTA CTG CAC TAA TCT GCC 52.8 

SlinR-1073 TGC TCG TGT GTC AAC ATC TAT TCC 57.0 
SlinR-1348 TGA ATA ACA CCT CCT ATA ATT GCG 52.8 
SlinR-544 AAC TGT TCA TCC TGT ACC AGC ACC 59.0 
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APPENDIX B: CONCENTRATIONS OF GENOMIC DNA FOR PYROSEQUENCING 
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 Research and Testing Labs, Lubbock, Texas, recommends DNA concentrations of 20 

ng/μL or greater for reliable amplification and sequencing of the bacterial 16S gene.  This 

appendix lists the samples (listed by population and numbered individually) that I submitted for 

my bacterial 16S assay and the initial concentrations of DNA for each sample. 

Sample ID (ng/μL) Sample ID (ng/μL) Sample ID (ng/μL) 
AT 1 29.4 BFL 8 18.3 LCR 5 32.40 
AT 2 14.8 BFL 9 55 LCR 6 45.60 
AT 3 17.5 BFL 10 50.4 LCR 7 41.60 
AT 4 21 LW 1 17.5 LCR 8 47.00 
AT 5 26.2 LW 2 19.6 LCR 9 54.80 
AT 6 20.6 LW 3 20 MKF 1 18.40 
AT 7 14.8 LW 4 20.8 MKF 2 28.60 
AT 8 14.8 LW 5 34.6 MKF 3 25.20 
AT 9 31 LW 6 26.6 MKF 4 46.00 
AT 10 19.4 LW 7 17.8 MKF 5 41.80 
CS 1 53.4 LW 8 18.5 MKF 6 14.00 
CS 2 38 LW 9 17.7 MKF 7 24.00 
CS 3 45.2 LW 10 45.2 MKF 8 33.80 
CS 4 43 BNP 1 39 MKF 9 49.40 
CS 5 38.8 BNP 2 26.6 MKF 10 59.00 
CS 6 30.8 BNP 3 25.6 BCD 1 15.00 
CS 7 31 BNP 4 18.7 BCD 2 11.70 
CS 8 23.8 BNP 5 22.8 BCD 3 11.50 
CS 9 26.2 BNP 6 19.3 BCD 4 18.40 
CS 10 33.4 BNP 7 19 BCD 5 26.80 
BFL 1 37.4 BNP 8 16.2 BCD 6 12.00 
BFL 2 14.6 BNP 9 37.6 BCD 7 22.40 
BFL 3 20.6 BNP 10 38.6 BCD 8 13.40 
BFL 4 50.2 LCR 1 25.4 BCD 9 12.90 
BFL 5 25 LCR 2 22.4 BCD 10 24.20 
BFL 6 10.2 LCR 3 31   
BFL 7 29.4 LCR 4 37.2   
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