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ABSTRACT 

 Molecular data are useful in determining if populations are isolated and for species 

delimitation. Researchers and managers currently recognize five subspecies of raccoons 

(Procyon lotor) in Florida, based largely on perceived geographic isolation due to the island 

ranges of four subspecies. In this study, I provide the first estimate of phylogenetic relationships 

and population divergences within Florida raccoons using a molecular dataset. I analyze the 

mitochondrial control region, cytochrome b gene, and eight nuclear microsatellite loci to test two 

hypotheses: 1) the five, morphologically and geographically-defined subspecies of raccoon in 

Florida represent genetically distinct populations and (2) due to differing range sizes and habitat 

variation between island and mainland subspecies, the four island populations should exhibit 

reduced levels of genetic diversity and smaller effective population sizes compared to the 

mainland population. My results indicate no evidence of historical differentiation between the 

subspecies, but suggest a recent restriction of gene flow among three clusters of raccoons. The 

three clusters do not correlate to traditional geographies for subspecies identification. I provide 

evidence of reduced genetic diversity in island populations of raccoons compared to their 

mainland counterparts. These data stress the importance of using multiple lines of evidence when 

naming taxa to avoid misinforming the taxonomy.   
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INTRODUCTION 

 The occurrence of geographic barriers (e.g. bodies of water, mountain ranges, or 

canyons) may restrict gene flow and cause once-contiguous populations to become separated. 

Once populations have been separated, the restricted gene flow, over time, causes populations to 

diverge owing to genetic drift and potential differential selection in the separate habitats 

(Templeton 1981). These evolutionary processes often lead to physiological and morphological 

differences, and subsequent genetic differentiation, between the once panmictic populations. 

There are many different ways to identify these distinct populations (e.g. species, subspecies, 

distinct population segment, etc.) and all are useful and common in biology to determine levels 

of distinction whether used for taxonomy, management, systematics, or ecological studies. 

However, distinctness is often assumed without rigorous analyses or data collection. When 

populations appear to be morphologically or geographically distinct, isolation (and genetic 

distinction) is usually assumed and taxa are named based on that superficial distinction without 

verifying whether the nomenclature reflects the evolutionary history, thus the taxonomy is 

misinformed (Ryder 1986; Zink 2004). 

There is a trend towards using genetic data to determine existence of evolutionary 

lineages, breeding populations, and genetic diversity to add support in determining taxon 

distinction. This is because problems arise when using only one line of evidence (e.g. 

morphology) to determine taxon differentiation and are exacerbated when researchers assume 

that historic taxonomy reflects separately evolving lineages. Indeed, it is now well established 

that morphological or geographic differentiation does not necessarily equate to patterns of 

genetic differentiation (e.g. Burbrink et al. 2000; Zink 2004; Degner et al. 2007). Therefore, 
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using multiple lines of evidence, including estimates of gene flow, play an important role in 

determining if populations are isolated and how taxa should be named. 

Insular populations, in particular, are often assumed to represent distinct populations as a 

result of their apparent geographic isolation and, in many cases, morphological distinction. For 

example, multiple species of treeshrews on different islands in Indonesia were named as separate 

species or subspecies based on geographic isolation (Sargis et al. 2014).  However, a subsequent 

rigorous morphological study used multivariate analyses of skull and hand measurements of 

these treeshrews to determine that the initial geographically defined taxonomy was not supported 

(Sargis et al. 2014). Supplementing geographic and morphological data with genetics can aid in 

strengthening evidence of isolation, especially when the initial study was based on superficial 

evidence for describing geographic and morphological distinction. Furness et al. (2010)  

compared mitochondrial data (mtDNA) to the geographic and morphological data used to define 

four island subspecies of common eider duck from the Shetland archipelago and found that the 

two data sets did not match and suggested that one of the named subspecies be classified within a 

different subspecies group. Additionally, a genetic study on morphologically recognized 

Podarcis lizards occurring in mainland Greece and adjacent islands examined a segment of the 

mtDNA cytochrome b gene and revealed that the subspecies are paraphyletic, i.e. the molecular 

data did not correspond to morphological data (Poulakakis et al. 2003). Indeed, genetic 

identification of discrete evolutionary lineages is important for aiding conservation efforts to 

maintain the evolutionary trajectory of isolated lineages, especially on islands where 

classification discrepancies often occur. Other studies have found confounding lines of evidence 

between molecular data and taxonomy of birds, and mammal species on islands (e.g. Robertson 

et al. 2011; Eldridge et al. 2014). These studies are just a few of the studies showing the 
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necessity of incorporating thorough analyses using multiple lines of evidence to determine 

whether or not assumed isolation actually exists before naming and describing new taxa.  

 In addition to the high occurrence of morphological and geographic differentiation 

between island and mainland populations, insular populations also tend to exhibit smaller 

population sizes, reduced levels of genetic diversity, and are at greater risk of extinction owing to 

this lack of diversity (Allendorf and Luikart 2007). Determining the levels of genetic diversity is 

important when comparing and contrasting island and mainland populations of a species because 

low genetic diversity may restrict the ability of populations to adapt and persist in altering 

environments (Frankham et al. 2010). For example, New Zealand populations of the tuatara 

exhibit low genetic diversity and small population sizes increasing their risk of extinction (Hay et 

al. 2003). Similarly, Eldridge et al. (1999) found reduced fitness of island populations of the 

black-footed rock-wallaby, compared to mainland populations, due to low levels of genetic 

variation. 

 Raccoons (Procyon spp.) provide an ideal study system in which to investigate questions 

related to taxonomic and phylogenetic congruence in accordance with island subspecies and their 

genetic diversity. There are more than 50 named types (i.e. species or subspecies) of raccoons 

ranging from Central Canada, across North and South America, to the southern Amazon, and the 

current taxonomy is not well-supported (Helgen and Wilson 2003).  In particular, within the state 

of Florida, there are currently five recognized raccoon subspecies: P. l. elucus (mainland Florida 

raccoon; Bangs 1898), P. l. inesperatus (Matecumbe Bay raccoon; Nelson 1930), P. l. auspicatus 

(Key Vaca raccoon; Nelson 1930), P. l. incautus (Torch Key raccoon; Nelson 1930), and P. l. 

marinus (Ten Thousand Islands raccoon; Nelson 1930). Four of these subspecies reside 

exclusively on islands in south Florida (Figure 1). These island subspecies, described by Nelson 
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(1930), were delimited based on geographic and morphological characters such as skull shape, 

size, and pelage coloration (Table 1). Nelson (1930) also included average quantitative 

measurements to help delineate subspecies, such as: weight, total length, length of tail vertebrae, 

hind foot, skull, and condylobasal, zygomatic breadth, interorbital breadth, least width palatal 

shelf, and upper canine-molariform tooth row.  However, there are a few problems associated 

with Nelson's (1930) delimitation method: 1) there is large overlap in the morphological 

characters that demarcate subspecies, 2) although some quantitative measurements are used, the 

morphological characteristics are largely subjective and qualitative, 3) sample sizes used by 

Nelson (1930) to differentiate subspecies were small and inconsistent for both quantitative (e.g. 

four to eight specimens) and qualitative (e.g. 12 to 20) characteristics, and 4) geographic 

isolation is used to assume reproductive isolation. Lazell Jr. (1989) attempted to replicate 

Nelson's (1930) morphological measurements, but obtained contradictory results and suggested 

that there were only three subspecies in Florida: P. l. elucus (the mainland raccoon), P. l. 

marinus (the Ten Thousand Islands raccoon), and P. l. auspicatus (the Key raccoon). 

Additionally, Zeveloff (2002) stated that P. l. marinus range not only includes the Ten Thousand 

Islands, but part of the mainland ranging from Cape Sable northwest to the southwest edge of 

Lake Okeechobee. 

The overlap in morphological characters between subspecies makes it challenging to 

differentiate between subspecies if geographic location of the sample is unknown (Lotze and 

Anderson 1979), and the inconsistency of morphological studies illuminates the need to find 

alternative, independent lines of evidence in which to base differentiation. This is especially 

important given that studies have suggested eradication of raccoons in specific areas where they 

may have negative impacts on endangered species (e.g. Sea turtles and Lower Keys marsh 
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rabbits) (Garmestani and Percival 2005; Schmidt et al. 2010). Genetic data have been useful in 

raccoons for identifying patterns of gene flow and differentiation (e.g. Cullingham et al. 2008; 

Cullingham et al. 2009; Dharmarajan et al. 2009; Castillo et al. 2010; Santonastaso et al. 2012; 

Kyle et al. 2014). Most of these studies are focused on the spread of the rabies disease. However, 

four of the studies used genetic markers to help understand a general pattern of population 

substructure. Cullingham et al. (2008) used mtDNA and tested for genetic evidence of four 

named subspecies, but the data only supported evidence for three subspecies and the authors 

suggested the use of only two names (P. l. elucus and P. l. lotor) to describe the subspecies they 

examined. Three more recent studies used microsatellite markers to assess structure and found 

evidence of two genetic clusters within different sampled regions located in the eastern US 

(Cullingham et al. 2009; Santonastaso et al. 2012; Kyle et al. 2014). A fourth microsatellite study 

tested 29 different neighborhoods in Chicago and found no evidence for structuring 

(Dharmarajan et al. 2009) across this microgeographic scale. Despite efforts to clarify the 

relationships among raccoon subspecies, no genetic work has been conducted with regard to 

Florida subspecies of raccoon.  

In this study, I used genetic data to elucidate if Nelson's (1930) nomenclature of Florida 

raccoons is congruent with their evolutionary history and contemporary genetic structure. I used 

the mtDNA control region (CR), cytochrome b (cyt b) gene, and variation present in eight 

nuclear microsatellite loci to test two hypotheses pertaining to raccoon evolutionary history. 

First, if the seawater isolating these islands acts as a barrier to gene flow for raccoons, then 

Nelson's (1930) naming should correctly reflect raccoon evolutionary history and we should find 

reciprocal monophyly of mtDNA and genetic differentiation of microsatellite markers between 

all five Florida raccoon subspecies. However, I predict that mtDNA and microsatellite data will 
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show incongruences with the current naming. Support for this prediction is based on the 

preponderance of evidence that suggests that raccoons exhibit both substantial natural and 

artificial gene flow. Raccoons have high natural dispersal abilities (Helgen et al. 2008) and have 

been documented swimming across more than 500 meters of seawater (Lazell Jr. 1989). 

Furthermore, raccoons have home ranges varying from 5.1 ha (Lotze and Anderson 1979) to 49 

ha (Urban 1970), depending on population density and openness of the habitat (Prange et al. 

2003). Additionally, artificial gene flow has been documented via human-aided translocations, 

especially for hunting (Lotze and Anderson 1979; Kennedy and Lindsay 1984). My second 

hypothesis is that if the sample sites on islands follow the typical island trend, then they will 

exhibit reduced levels of genetic diversity and lower effective population sizes compared to 

mainland sites. I predict that this trend will be demonstrated regardless of whether island sites 

comprise unique subspecies. This prediction is supported by studies of different taxa that have 

shown lower levels of genetic diversity and effective population sizes in island populations 

versus their mainland counterparts (e.g. Hay et al. 2003; Boessenkool et al. 2007; White and 

Searle 2007). In particular, other studies of Keys endemic taxa show reduced diversity and 

effective population size relative to mainland sister taxa (Ellsworth et al. 1994; Tursi et al. 2012). 

Finally, I discuss these results in light of general patterns of discordance between taxonomy and 

evolutionary history and the implications of such discordance with regard to population 

management.   
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METHODS 

Sampling 

In order to test whether current raccoon nomenclature is congruent with the molecular 

phylogeny, I obtained a total of 173 samples from eight sampling localities throughout mainland 

Florida and the Florida Keys to represent the five currently named subspecies of raccoons that 

occur in Florida, USA (Figure 1). Sample collection was completed haphazardly throughout the 

range of each subspecies with the help of pest control companies, parks, and taxidermists 

throughout Florida who collected samples via live-trapping or the collection of road-kills (by 

taking either hair samples or ear clips) and storing them in tubes filled with Drie-riteTM desiccant, 

as a preservative. In the Lower Keys (Big Pine Key to Key West), I collected a total of 23 

samples representing the putative subspecies of P. l. incautus. Additionally, I acquired five 

samples from the Middle Keys (P. l. auspicatus), 24 from Key Biscayne, and 18 from throughout 

the remainder of the Upper Keys (collected from Key Largo to Lower Matecumbe Key), both of 

which represent P. l. inesperatus, and 13 samples from Ten Thousand Islands (P. l. marinus). 

Samples of the putative mainland subspecies, P. l. elucus, included 84 samples from three 

mainland sites (Miami=35, Central Florida=24, Tampa=25) and 6 singleton samples scattered 

throughout mainland Florida. For the sake of this study, I based subspecies classifications on 

geography, since I could not adequately evaluate morphologies from roadkill, hair, or tissue 

samples.  
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Genetic Data Collection 

 All tissue samples were extracted using either the Qiagen DNeasy Blood and Tissue kit 

or a Serapure Bead (Rohland and Reich 2012) extraction method. I extracted DNA from hair 

follicles using six to eleven follicles with the Qiagen DNeasy Blood and Tissue kit following 

modifications suggested by Tursi et al. (2012) in which the samples were placed in a water bath 

for 4 – 4.5 hours to ensure a maximum yield of DNA without degradation (due to the low DNA 

yield of hair follicles) and I eluted each sample twice with 50µL of water heated to 70°C.  

 To evaluate the evolutionary history of Florida raccoons, I amplified two mitochondrial 

genes, control region (CR) and cytochrome b (cyt b), by conducting polymerase chain reactions 

(PCRs) with DNA from each individual. For all individuals, I used the forward primer L15997 

(Ward et al. 1991) and the reverse primer H00651 (Kocher et al. 1989) to achieve full coverage 

of the CR (~1300bp). I performed PCR amplifications for the CR in a 20 µL reaction using 1 µL 

of 5-50ng/µL sample DNA, 2 µL of 10x PCR buffer, 1.6 µL of 25mM MgCl2, 1.6 µL of 10 mM 

of dNTPs, 1 µL of 10 µM of each primer, and 0.2 µL of Taq DNA polymerase. Amplifications 

proceeded as follows: initial denaturation of 95°C for 5 min., 30 cycles of 94°C for 30 s, 

annealing at 60°C for 30 s, and 72°C for 30 s, followed by a final extension period at 72°C for 2 

min and then held at 10°C (Cullingham et al. 2008). Likely the result of DNA degradation, some 

samples failed to amplify well with the L15997/H00651 primer pair. To compensate for 

degradation of certain samples, I replaced the original reverse primer with an internal reverse 

primer, PLO-CRL1 (Cullingham et al. 2008), using the same PCR protocol as above, to 

supplement sequence data. For cyt b amplification, I used the primers MTCB-F and MTCB-R, 

which were designed for mammals and previously tested on P. lotor (Naidu et al. 2012). I 
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performed cyt b PCR amplifications in a 20 µL reaction using 1 µL of 5-50ng/µL sample DNA, 

2 µL of 10x PCR buffer, 2 µL of 25mM MgCl2, 1.6 µL of 10 mM of dNTPs, 0.2 µL of DMSO, 1 

µL of 10 µM of each primer, and 0.2 µL of Taq DNA polymerase with and initial denaturation 

step of 95°C for 10 min., 35 cycles of 95°C for 45 s, annealing between 57°C and 53°C for 1 

min, and 72°C for 2 min, followed by a final extension period at 72°C for 10 min and then held 

at 10°C (Naidu et al. 2012). Once I ran the mitochondrial PCR products on an agarose gel to test 

for accurate amplification I cleaned them either using the shrimp alkaline phosphatase and 

exonuclease I (i.e. Exo-SAP purification) method or they were cleaned at the University of 

Arizona Genetics Core (UAGC) or at Eurofins Genomics when sent for sequencing. I edited CR 

and cyt b sequences in Sequencher v5.1 (Gene Codes Inc., Ann Arbor, MI, USA) and aligned 

them using the ClustalW method in MEGA6 (Tamura et al. 2011).  

I also amplified the DNA from each individual at eight microsatellite loci (PLO-M15, 

PLO-M17, PLO-M2, PLO-M20, PLO2-117, PLO2-14, PLO-M3, PLO3-86) developed and 

optimized for P. lotor by Cullingham et al. (2006). I performed microsatellite PCR 

amplifications in a 15 µL reaction using 1.5 µL of 5-50ng/µL sample DNA, 1.5 µL of 10x PCR 

buffer, 0.975 µL of 25mM MgCl2, 1.2 µL of 10 mM of dNTPs, 0.75 µL of florescent dye, 0.375 

µL of 10 µM of each primer, and 0.15 µL of Taq polymerase, edited from Cullingham et al. 

(2006) with an initial denaturation step of 95°C for 5 min., 30 cycles of 95°C for 30 s, annealing 

between 60°C  and 55°C for 1 min, and 72°C for 1 min, followed by a final extension period at 

72°C for 7 min and then held at 10°C. I ran the PCR product on an agarose gel to test for 

accurate amplification and subsequently sent the PCR product to UAGC for genotyping. 

Genotypes were scored in GeneMarker v2.6.3 (SoftGenetics, LLC). 
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Statistical Analyses 

Phylogenetic Reconstruction 

 Due to the hypervariable nature of the CR and the inability to estimate homology within 

this region, a 450bp fragment was discarded from analysis. Since cyt b is a coding gene, I 

confirmed that the sequences did not contain any stop codons, which could indicate the 

amplification of a pseudogene, by translating sequences to amino acids. After concatenating the 

trimmed CR and cyt b sequences, I eliminated individuals from downstream analyses that did not 

have sequence for both genes, which left me with 108 full sequences. I ran Partition Finder with 

unique haplotypes (Lanfear et al. 2012) to determine which partitioning scheme and models of 

evolution would be the most informative to create a phylogeny. The four partitions are defined 

as: the CR, and each codon position of cyt b. To create a graphical depiction of the evolutionary 

relationships of Florida raccoons, I constructed a Bayesian phylogeny of my Florida raccoon 

samples with MrBayes v3.2.2 (Ronquist et al. 2012), using each unique haplotype only once and 

including two GenBank P. lotor samples (accession numbers: AB291073 and AB297804) from 

outside of Florida as outgroups. Conditions for MrBayes included two independent runs of 5×106 

generations with the first 10,000 trees discarded as burn-in. I also analyzed the MrBayes output 

data in Tracer v1.5 (Clement et al. 2000) to confirm stationarity and sufficient sampling of the 

posterior. Finally, I used TCS v1.21 (Clement et al. 2000) to build a haplotype network to 

determine the relationships among haplotypes that may be too similar to exhibit strong nodal 

support within the phylogenetic reconstruction with MrBayes. 
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Genetic differentiation and gene flow 

 To determine whether the eight microsatellite markers conform to the expectations of 

neutral markers, I calculated deviation from Hardy-Weinberg Equilibrium (HWE) using Fischer 

Exact Tests in the program GenePop v4.2.1 (Rousset 2008) with a sequential Bonferroni 

correction (Rice 1989) to account for multiple comparisons. Given that the data indicated no 

consistent patterns deviating from HWE (see Results), I used all sample sites and all loci in 

downstream analyses. 

 In order to evaluate whether Nelson's (1930) subspecies represent distinct genetic 

clusters, I used GenePop to estimate global FST as well as pairwise FST values among all sample 

sites and used STRUCTURE v2.3.4 (Pritchard et al. 2000), a Bayesian-based clustering method 

for multilocus data, to determine the number of clusters (K) supported by the data. I completed 

10 runs for each K value from 1 to 11 with a burn-in period of 100000 iterations. To determine 

the number of clusters for all STRUCTURE runs, I used Structure Harvester (Earl and vonHoldt 

2012). I also tested for substructure within each population using STRUCTURE to identify if 

additional clusters could be identified within the clusters identified from the initial screen 

(Degner et al. 2010). 

 I tested for a pattern of isolation by distance (IBD) using the genetic distances/similarities 

function in the isolation by distance web service v3.23 (Jensen et al. 2005), which uses Mantel 

tests with 10,000 randomizations, to determine if limited dispersal across space was detected. 

Due to the non-linear arrangement of sample sites in this study, I used log-transformed 

geographic distances for this correlation analysis. Additionally, in order to determine whether my 

modified regional groupings better described the genetic structure than groupings identified by 
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Nelson (1930), I conducted an analysis of molecular variance (AMOVA; Excoffier et al. 1992) 

in GenAlEx v6.5 (Peakall and Smouse 2006, 2012) using two different groupings (i.e. a priori 

and a posteriori; see Results). Furthermore, I ran BayesAss v3 (Wilson and Rannala 2003), 

which uses Markov chain Monte Carlo resampling techniques, with 3,000,000 iterations at a 

sampling frequency of 2,000 and a burn-in of 999,999, to estimate recent migration rates 

between all pairs of sample sites.  

 

Genetic diversity and effective population size 

In order to evaluate whether levels of genetic diversity and effective population size on 

island sample sites were lower than sites on the mainland, I estimated nucleotide diversity (π) 

and gene diversity (h) of mtDNA variation, allelic richness (AR) and expected heterozygosity 

(HE) of microsatellite variation, and effective population size (Ne), for each sample site. I 

determined π  and h using the concatenated cyt b and CR dataset in DNASP v5.10 (Librado and 

Rozas 2009) and I calculated AR and HE with FSTAT v1.2 (Goudet 1995). I performed Welch’s t-

tests in R (R Core Team 2013), for both π and h, to identify significant differences between 

mainland and island geographic sites of mtDNA diversity. For differences in microsatellite 

genetic diversity between mainland and island sites, I ran a two-way analysis of variance 

(ANOVA) in R (R Core Team 2013). Additionally, I estimated effective population size for each 

sample site using ONeSAMP (Tallmon et al. 2008) with priors for effective population size set 

from 2 (minimum) to 500 (maximum). I then compared the 95% confidence intervals between 

each site to determine whether significant differences were detected in effective population size 

between mainland and island populations.   
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RESULTS 

Phylogenetic Reconstruction 

 My phylogenetic analysis included a total of 1991 base pairs (bp), consisting of 851 bp of 

trimmed CR and the complete cyt b gene (1140 bp) sequenced for 108 individuals throughout 

Florida (P. l. elucus = 52, P. l. marinus = 12, P. l. inesperatus = 24, P. l. auspicatus = 5, and P. l. 

incautus = 15). From these 108 samples, I identified 37 unique haplotypes defined by 64 variable 

sites, 36 of which were parsimony informative (Table 2). I created the final phylogenetic tree 

with the maximum partition setup (i.e. 4 partitions: CR and each codon position of cyt b) and the 

best model of DNA evolution for each partition was: HKY+I+G, K80+I, F81, and HKY, 

respectively (Kimura 1980; Felsenstein 1981; Hasegawa et al. 1985). Well-supported clades (> 

95% posterior probability) in the phylogenetic tree uncovered paraphyly of each subspecies 

except P. l. marinus (Figure 2), refuting the hypothesis that the subspecies named by Nelson 

(1930) represent monophyletic clades.  

In order to build the 95% statistical parsimony haplotype network, I removed a total of 15 

bp from the ends of sequence fragments to create equal fragment sizes for all samples. In 

correspondence with the phylogenetic tree, the haplotype network (Figure 3) did not reveal any 

support for distinct haplogroups differentiating the subspecies defined by Nelson (1930), except 

possibly P. l. marinus. Haplotypes 14 and 15 are the only haplotypes found in Ten Thousand 

Islands (P. l. marinus) and these haplotypes are not shared among any other subspecies. 

Moreover, these two haplotypes are separated by a single mutation and are four mutations from 

the next most closely related haplotype (H13). In addition to a lack of monophyly among 

subspecies, many haplotypes are shared between pairs of described subspecies. H13 is a shared 
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haplotype between P. l. incautus (Lower Keys) and P. l. auspicatus (Middle Keys). H1 is shared 

between P. l. elucus (Miami) and P. l. incautus (Lower Keys), and H6 is shared between P. l. 

inesperatus (Upper Keys) and P. l. incautus (Lower Keys). Due to H36 being too different (31 

steps), it did not fall within the 95% probability limit achieved at 19 steps and fewer. Therefore, 

haplotype H36 (putative P. l. elucus collected in Central Florida) was not included in Figure 3.  

  

Genetic differentiation and gene flow 

 I successfully genotyped 168/173 samples for all eight microsatellite loci. Fifty-five of 56 

locus-sample site comparisons conformed to HWE expectations after a Bonferroni correction. 

The one comparison that was out of HWE equilibrium was Miami at PLO-M17 (p = 0.0002). 

However, since there was no overall pattern of locus by sample site out of HWE, all loci and 

sites were included in downstream analyses. With all sample sites included, we found that the 

Bayesian algorithm in STRUCTURE identified K = 3 as the highest level of genetic structure. 

The three regions of genetic structure did not reveal a split between the mainland and island 

sample sites or the five putative subspecies. Instead, they support a mainland Florida (including 

Ten Thousand Islands) population, a Florida Keys (excluding Key Biscayne) population, and a 

Key Biscayne population (Figure 6). Further STRUCTURE assessment within each of these 

three genetic clusters resulted in a K = 1 for all analyses, indicating no evidence of additional 

substructure. It is important to note that since I had a sample size of five for the Middle Keys, 

these individuals were grouped with Upper Keys (excluding Key Biscayne) for further 

microsatellite analyses. This grouping was informed by the findings from STRUCTURE. 

Overall, with regard to differentiation among sample sites, global FST was moderate (0.066) 
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among all sites. Pairwise FST values were significant and ranged from 0.009 (between Central 

Florida and Miami) to 0.15 (between Key Biscayne and Middle/Upper Keys). Interestingly, Key 

Biscayne had moderate to high FST values between all sample sites, ranging from 0.09 to 0.15 

(Table 3).  

Additionally, I found no evidence of a correlation between genetic distance and 

geographic distances (IBD) among all sample sites (r = -0.1977, p = 0.7545). However, I did find 

that the modified populations (i.e. clusters) defined by STRUCTURE better described the pattern 

of genetic structuring found in Florida. Here, two AMOVA’s were run using a priori groups 

(defined by Nelson (1930)) and a posteriori groups (as defined by the STRUCTURE analysis of 

this study). The highest amount of genetic variation for both runs was found within sample sites 

(Table 4). However, variance among regions increased from 0% to 5% variance explained after 

differentiating the sites to match the three clusters that STRUCTURE demonstrated (i.e. a 

posteriori grouping), showing that the genetic regions identified by this study better explained 

patterns of isolation (Table 4). Migration rates calculated from BayesASS v3 tended to show 

high assignment back to home sites (0.6795 – 0.9255) and low assignment between sample sites. 

Two exceptions to this pattern suggested evidence for migration from Miami to three different 

locations (Tampa, Central Florida, and Ten Thousand Islands) and from the Middle/Upper Keys 

to the Lower Keys (Table 5) confirming the general contemporary patterns of genetic 

differentiation uncovered by STRUCTURE.  
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Genetic diversity and effective population size 

 I tested for statistically significant differences in genetic diversity between mainland and 

island sites, representative of the four island sample sites (e.g. Ten Thousand Islands, Key 

Biscayne, Middle/Upper Keys, and Lower Keys) versus the three mainland sample sites (Tampa, 

Central FL, and Miami). Overall, average nucleotide diversity (π) was 0.00372 in the mainland 

geographic sites as compared to the island sites that averaged 0.00138 (Table 2). The average 

estimates for gene diversity (h) between mainland and island sites were 0.863 and 0.405, 

respectively (Table 2). However, the results from running the Welch’s t-test demonstrate that π 

was not significantly different between mainland and island sites (t = -1.5451, df = 3.765, p = 

0.2016), whereas h was significantly greater in the mainland sites than the island sites (t = -

3.899, df = 4.059, p = 0.0171). I estimated average allelic richness (AR) of microsatellites in 

mainland geographic sites at 8.768 and in islands at 7.298 (Table 2). Additionally, expected 

heterozygosity (HE) in mainland averaged 0.84 and island geographic sites averaged 0.78. The 

two-way ANOVA results indicated that mainland genetic diversity is significantly higher than 

island diversity for both AR and HE (AR: p = 5.55e-05, Figure 4; HE: p = 0.00586, Figure 5). 

Finally, effective population size estimates between island and mainland geographic sites 

exhibited no significant differences based on pairwise comparisons of the 95% confidence 

intervals.   



17 
 

DISCUSSION 

 Researchers commonly assign subspecies names to morphological variants within 

species, especially when these differentiated morphological populations occur in unique 

locations, such as islands. In this study I employed genetic analyses to evaluate evolutionary 

histories, patterns of differentiation, and genetic diversity in the mainland Florida raccoon (P. l. 

elucus) and its four island sister subspecies (P. l. marinus, P. l. inesperatus, P. l. auspicatus, and 

P. l. incautus) to evaluate whether the current nomenclature (described in 1930) corresponds to 

the evolutionary history of these raccoons. This study provides evidence for the discordance 

between earlier subspecies designations based on morphology and geography and the 

evolutionary history elucidated here. In accordance with my predictions, my results do not 

demonstrate genetic support for Nelson's (1930) taxonomy, but do loosely support the typical 

island trend in which island sites display reduced levels of genetic diversity and small effective 

population sizes. Overall, these data shed new light on the evolutionary history of P. lotor 

subspecies, and the consequences of incongruences between taxonomy and phylogeny. 

 

Contemporary genetic structure 

I found three genetic patterns that would have been undetectable without the genetic 

analyses employed by this study: evidence of distinct groups, the presence of recent gene flow 

between the mainland and island sites, and evidence of long-distance dispersal. First, I found 

molecular evidence for two genetically distinct island groups using microsatellite data: Key 

Biscayne and all other Florida Keys. Surprisingly, the Key Biscayne sample site is a single 

distinct population. This Key Biscayne population displayed the highest amount of pairwise 
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differentiation (FST = 0.09 to 0.15), especially compared to the Upper Keys sample site (FST = 

0.15) of the same named subspecies (P. l. inesperatus). In contrast, the remaining Keys all 

grouped together as a single cluster. These data suggest that high gene flow exists throughout the 

Keys (excluding Key Biscayne) and that there is restricted gene flow between all Keys and the 

mainland. Initially, this pattern of high gene flow within the Keys, but restriction of gene flow to 

and from Key Biscayne, seems inconsistent with their geographic arrangement in that both 

regions (Keys and Key Biscayne) are separated from the mainland by seawater and connected 

only by bridges with abundant traffic. However, artificial connectivity may help to explain some 

of the connectivity between the Key Largo and Key West. In 1912, a railway was built to enable 

easy transportation spanning the Keys (excluding Key Biscayne). This railway stopped 

functioning in 1935, when parts of it were destroyed by hurricanes, but the structure has 

remained largely intact (Wilkinson 2011). Interestingly, raccoons have been seen travelling on 

the deserted railway (personal observation). Additionally, the current overseas highway, was 

completed in 1938 creating a second (albeit more dangerous) route between islands. In contrast, 

there is only a single route connecting Key Biscayne to the mainland and this bridge opened for 

travel in 1947. Overall, the connectivity from mainland to Key Biscayne appears more difficult 

for raccoon travel compared to connectivity throughout the rest of the Keys and may contribute 

to the contemporary pattern of high gene flow within the Keys and restricted gene flow to and 

from the mainland.  

 Second, in contrast to the patterns described above, the presence of contemporary gene 

flow between Ten Thousand Islands and all mainland sample sites is surprising if seawater 

provides a barrier to gene flow. The high gene flow between the Ten Thousand Islands site and 

mainland sites begs the question of why Ten Thousand Islands exhibits a genetic pattern 
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different than the other island sites. Here, it is likely the natural formation of the islands that 

provides insight into the genetic patterns. The Ten Thousand Islands were formed by the build-

up of peat and oyster beds over time (Hoffmeister 1974), whereas the Keys were formed during 

the glacial retreat coupled with rising sea level which isolated the islands from the mainland 

(Lazell Jr. 1989). These differences in origin cause alterations in how the islands are 

contemporaneously separated from the mainland. The Keys are disjoint, with about 3000 meters 

of seawater between mainland and Keys. In contrast, the Ten Thousand Islands are separated 

from the mainland by small waterways, which raccoons are likely able to cross (Lazell Jr. 1989).  

 The third interesting genetic pattern that I discovered was the presence of an individual, 

collected from Central Florida, that exhibited a haplotype (i.e. H36) that was more than twice as 

divergent (at 1.5% uncorrected sequence divergence) as the next most divergent haplotype 

(H12). In comparison with the haplotype groups of Cullingham (2008), this sample most closely 

grouped within Cullingham’s lineage II, a lineage generally found in the Mid-Western United 

States. There are two likely explanations for the occurrence of this sample in central Florida: 

artificial translocation or natural long-distance dispersal. In finding a genetic outlier like H36, we 

need to consider that human interferences may obscure our interpretations of genetic data. 

Indeed, forced migrations have been documented, especially when raccoon hunting was a 

popular past-time (Lotze and Anderson 1979; Kennedy and Lindsay 1984) and even in recent 

years as raccoons are often seen as nuisance animals and are trapped and relocated. 

Alternatively, H36 could be a rare long-distance disperser. Natural long distance dispersal has 

been documented previously in raccoons, with individuals recorded as traveling over 200 km 

(Zeveloff 2002). Although we cannot rule out natural dispersal, it seems that the distance 
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traveled in this case (approximately 3000km to the Mid-Western United States) increases the 

likelihood that this individual was an artificial transplant.  

 

Contemporary versus historic differentiation 

Many studies utilize one type of molecular marker which may be problematic if there are 

differences between recent and historical patterns of divergence. Historical divergence may go 

undetected if using only microsatellite markers, because microsatellites tend to reveal 

contemporary patterns of gene flow.  Whereas, contemporary patterns of gene flow may be 

undetectable when using only mtDNA, because mtDNA tends to uncover patterns of 

evolutionary history. For example, a phylogenetic study conducted on the subspecies status of 

mainland and island populations of the Indochinese box turtle, exclusively utilized mtDNA 

markers and found that the island population is not genetically divergent from the mainland 

populations of Laos and Vietnam (Stuart and Parham 2004). Although this study has strong 

evidence for historic gene flow, it is still possible that more contemporary patterns of genetic 

differentiation exist, but went undetected. The differences between mtDNA and microsatellite 

patterns of gene flow can be used to determine if populations exhibit historic versus 

contemporary genetic isolation, providing information on the degree of population divergence 

(Crandall et al. 2000). 

By comparing and contrasting the data from different molecular markers, I was able to 

evaluate differences of contemporary versus historic patterns of gene flow. In the case of island 

populations, seawater may act as a barrier for dispersal, isolating these island populations from 

the mainland, therefore allowing genetic differentiation to accumulate over time. Given that it 
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typically takes about 4Ne generations to reach reciprocal monophyly (Neigel and Avise 1986), 

any populations that were completely isolated and have an Ne less than 1000 (assuming shortest 

time since isolation) should exhibit reciprocal monophyly. Since, the Florida Keys have been 

isolated from the mainland for about 6,000 to 10,000 years (Lazell Jr. 1989) and the Ten 

Thousand Islands formed about 4,000 years ago (Hoffmeister 1974; Randazzo and Jones 1997), I 

would expect a pattern of historic differentiation. Yet, all of the patterns of island isolation 

discussed in the previous section are based on contemporary estimates of gene flow (i.e. 

microsatellites). When we evaluate evolutionary history via mtDNA variation, the data tend 

towards a lack of monophyly between clades with haplotypes shared among subspecies, 

suggesting historic panmixia. 

One exception to this pattern is the mtDNA structure found in Ten Thousand Islands.  

Despite evidence for recent gene flow connecting Ten Thousand Islands (P. l. marinus) to the 

mainland, mtDNA haplotypes from this site are not shared with other sites and form a 

monophyletic Ten Thousand Islands clade. This is interesting because no other sites display a 

pattern of historic isolation, even those that demonstrate contemporary divergence. Three 

possible explanations for the signal of historic isolation in Ten Thousand Islands exist. First, this 

site was historically isolated, leading to a monophyletic lineage present on this island group. 

However, in more contemporary time gene flow has increased causing Ten Thousand Islands to 

be more similar to the mainland. This explanation is not likely given that it would require one-

way gene flow from Ten Thousand Islands to the mainland, as no mainland haplotypes occur on 

this island group. Second, genetic structure is influenced by sex-biased dispersal. A study on sex-

biased dispersal in red deer revealed that estimates of population structure were eight times 

higher when using mtDNA as opposed to microsatellite markers, indicating male-biased 
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dispersal (Perez-Espona et al. 2010). Male raccoons disperse earlier (within year one) and further 

(18.9 km on average) than females who tend to be philopatric and remain in their natal areas 

(Zeveloff 2002), which is typical of mammals (Greenwood 1980). If a male raccoon travels to or 

from Ten Thousand Islands and reproduces, this will not be detected by mtDNA since 

mitochondria are maternally inherited. The problem with this explanation is that it does not 

address why other populations exhibit patterns of panmixia for mtDNA. Third, Ten Thousand 

Islands is actually isolated from the mainland. This explanation is similar to the first in that the 

Ten Thousand Islands were indeed isolated, but here my evidence of contemporary gene flow 

between mainland and Ten Thousand Islands is called into question. Specifically, since I was 

only able to genotype 13 individuals from Ten Thousand Islands, these individuals may be too 

few to be distinguished from the 80 mainland individuals in the substructure analysis. As with 

the previous explanations, this one also does not seem likely. Specifically, it seems unlikely that 

FST between Ten Thousand Islands and the other mainland sites would be so low (or migration 

rates so high) if Ten Thousand Islands was truly isolated. With regard to Crandall et al. (2000), 

the population divergence among all populations falls into “Case 8” – treat as a single 

population, so long as there is no evidence of recent ecological (or historical) divergence. 

However, if there is evidence of recent ecological divergence, this divergence changes the 

management recommendation for the mainland and Keys populations. For example, these 

populations would then fall under “Case 5” – treat as distinct populations, instead of “Case 8”. In 

contrast, in order for the Ten Thousand Islands site to be deemed distinct, we would need to posit 

evidence for the lack of both recent genetic and ecological exchangeability. This would cause the 

Ten Thousand Islands population to be treated as a separate species (“Case 2”). I suggest that 

further research be conducted to obtain evidence to better understand whether sites exhibit 
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ecological exchangeability and whether greater sample sizes at Ten Thousand Islands would 

reveal a contemporary genetic pattern different than I observed. 

 

Genetic diversity and effective population size 

Species living in sympatry to the Keys population of raccoons have been found to exhibit 

reduced genetic diversity and lower effective population sizes compared to mainland 

counterparts. Genetic patterns of these species: Key deer (Villanova 2015), Lower Keys marsh 

rabbit (Tursi et al. 2012), and silver rice rat (Indorf and Gaines 2013), lead me to predict that I 

would find evidence to support this trend even though levels of genetic divergence of Florida 

raccoons do not support Nelson's (1930) current subspecies naming. The island sites do show the 

typical pattern of reduced genetic diversity, which may be a factor of founder effect or a 

population bottleneck (Mayr 1970; Maruyama and Fuerst 1985). Patterns of lower genetic 

diversity are usually coupled with smaller effective population sizes, but interestingly, my data 

does not show a trend of significantly lower NE values on islands compared to mainland sites. 

Overall the effective population size estimates were low for all sites. One exception was the 

Miami site, which had high effective population size estimates and high unidirectional migration 

rates to Tampa (0.2114), Central Florida (0.2538), and Ten Thousand Islands (0.2032), 

suggesting that this site may be a source “population” of raccoons to the rest of mainland 

Florida. 
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Subspecific naming 

Why is the naming of taxa so important? Scientists need to be cautious so they do not 

split species unnecessarily, thus wasting effort and funds on widespread and abundant taxa (e.g. 

American puma: Culver et al. 2000; willow flycatcher: Zink 2015) or lump species that are 

actually distinct and denying protection from taxa in need of support (e.g. Kemp’s Ridley sea 

turtle: Bowen and Avise 1996).  

Overall, the results of my study do not support the current subspecies naming of Florida 

raccoons based on historic and contemporary patterns of genetic structure. These data provide 

adequate evidence to suggest two revisions in the current taxonomy. First, the use of the Ten 

Thousand Islands raccoon subspecies (P. l. marinus) should be discontinued and synonymized 

with P. l. elucus, as there is no evidence of differentiation from the mainland. The Keys group 

(excluding Key Biscayne) should be synonymized to P. l. auspicatus, as suggested by Lazell Jr. 

(1989) in a study using blood protein analyses and supported by microsatellite data in this study. 

The Key Biscayne population must be further studied to determine whether it is distinct enough 

to warrant management of these genetic variants and should keep its current name (P. l. 

inesperatus) for the time being. This would leave Florida with three raccoon subspecies: the 

Florida raccoon (P. l. elucus), the Keys raccoon (P. l. auspicatus), and the Key Biscayne raccoon 

(P. l. inesperatus). While my genetic data do not support Nelson's (1930) taxonomy, the 

evidence for revised taxonomy would benefit from a thorough morphological assessment since 

Nelson's (1930) morphological accounts overlap in their descriptions and have been met with 

difficulty when other researchers have tried to reanalyze them. 
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Similar studies are being used to revise taxonomies, across multiple taxa, using genetic 

information to guide the accuracy of naming. For example, Burbrink et al. (2000) also called for 

a taxonomic revision in light of the evolutionary history they uncovered in a study of North 

American rat snakes in which the named subspecies were mixed throughout the phylogeny and 

did not exhibit reciprocal monophyly. Moreover, islands appear especially problematic owing to 

the geographic isolation they exhibit relative to mainland taxa. A recent study used genomic 

scans of flightless Caribbean crickets across the Virgin Islands and showed population level 

divergences between island populations without patterns of long-term isolation, and suggested 

that all populations be considered the same species (Papadopoulou and Knowles 2015). On the 

contrary, not all studies find incongruences. For example, another island study found taxonomy 

and phylogeny congruence by illustrating that the evolutionary histories corroborated the species 

status of Philippine forest mice using nuclear and mitochondrial genes because they grouped into 

well-supported monophyletic clades (Justiniano et al. 2015). 

  

Conservation Implications 

Identifying differentiation among island populations enables resource managers to make 

informed decisions with regard to controlling nuisance populations of P. lotor. Zeveloff (2002) 

stated that it is extremely difficult to devise conservation plans when there is uncertainty about 

the classification of the focal species. Here, our focal species (P. lotor) is not endangered, but 

rather is considered a pest that may have direct negative impacts on sympatric endangered 

species in different areas of their range. They are known to raid sea turtle nests for the 

consumption of eggs, and a recent study also found that Torch Key raccoons (P. l. incautus) are a 
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threat to the Lower Keys marsh rabbit (Sylvilagus palustris hefneri) by limiting their persistence 

and recovery due to predation (Schmidt et al. 2010). Based on these data, it has been suggested 

that managers should consider removal or eradication of P. lotor from turtle nesting beaches 

(Garmestani and Percival 2005) and even the entire Lower Keys (Schmidt et al. 2010). 

According to my data, the Ten Thousand Islands site is part of the mainland population and can 

be managed as such. Sea turtles are not known to nest on Key Biscayne, so this population does 

not pose a major issue with regard to the conservation of sea turtles. Lastly, although the Lower 

Keys site is grouped with the rest of the Keys sites, they are different from other Florida 

populations and should not be completely eradicated, but do not require special protection.   



27 
 

APPENDIX A: FIGURES  
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Figure 1. Map of eight sample localities in Florida, including six scattered singleton samples (S1-S6), and 
the putative subspecies names for each location. Numbers in parentheses indicate number of samples per 
site. 
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Figure 2. Concatenated mitochondrial control region and cytochrome b haplotype phylogeny generated in MrBayes v3.2.2, with node posterior 
probabilities (Pp) ≥ 0.5. Haplotype labels correspond to haplotypes in Figure 3. 
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Figure 3. 95%  Parsimony network of concatenated mitochondrial control region and cytochrome b 
haplotypes generated in TCS v1.21. Circles represent distinct haplotypes; pie sizes and numbers in 
parentheses indicate the number of samples with that haplotype, no number indicates one individual; and 
colors represent subspecies: blue = P. l. elucus, purple = P. l. inesperatus, orange = P. l. auspicatus, green 
= P. l. incautus, and gray = P. l. marinus.
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Figure 4. Two-way ANOVA boxplot of allelic richness comparing levels of genetic diversity in mainland 
and island geographic sites for all eight microsatellite loci. Prefix “PLO” was removed from the locus 
names.   
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Figure 5. Two-way ANOVA boxplot of heterozygosity to compare levels of genetic diversity in mainland 
and island geographic sites for all eight microsatellite loci. Prefix “PLO” was removed from the locus 
names.
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Figure 6. Output of the STRUCTURE analysis with K=3. The output shows structure between the Keys (green), Key Biscayne (red), and mainland 
(blue), with no structure between Ten Thousand Islands and the mainland. 
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Table 1. Summary of the ranges and morphological characters of the Florida subspecies of Procyon lotor.  
Subspecies 
Classification Common Name Range Morphological Traits Citation 

Procyon lotor elucus 
 

 
Mainland Florida 
Raccoon 

Peninsular Florida and extreme 
southern Georgia 

Medium sized, dark colored 
 

 
 
Bangs (1898) 
 

 
Procyon lotor marinus 
 

Ten Thousand 
Islands Raccoon 

Ten Thousand Islands group 
(South of Naples to Shark River 

Small, more restricted mask, depressed frontal skull 
 

Nelson (1930) 
 

 
Procyon lotor inesperatus 
 

Matacumbe Bay 
Raccoon 

Upper Keys group (Virginia 
Key to Lower Matecumbe Key) 

Small, grey, more restricted mask, small hind foot, 
depressed frontal skull 

Nelson (1930) 
 

Procyon lotor auspicatus 
 

Key Vaca Raccoon 
 

 
Middle Keys group (Long Key 
to Knights Key) 

Very small, pale, depressed frontal skull 
 

Nelson (1930) 
 

Procyon lotor incautus 
 
 

Torch Key Raccoon 
 
 

Lower Keys group (No Name  
Key to Key West) 
 

Small, palest, smaller molariform teeth, elevated 
frontal skull, greater interorbital compression 
 

Nelson (1930) 
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Table 2. Basic diversity statistics and effective population size estimates of mainland and island geographic sites of Procyon lotor in Florida. Basic 
diversity statistics shows number of individuals used (n), number of haplotypes, number of segregating sites, nucleotide diversity (π), haplotype 
diversity (h), allelic richness (AR), heterozygosity (HE), and standard deviation (SD) for each estimate. Effective population size (Ne) results show 
estimates based on approximate Bayesian computation using a max prior of 500 with 95% credibility limits.  
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Table 3. Pairwise estimates of FST between sample sites. Key Biscayne has the highest amount of differentiation when compared to all other sites. 
There is little to no differentiation among mainland sites, including Ten Thousand Islands, except between Ten Thousand Islands and Tampa. 
Within the Keys, there is little differentiation between sites. All estimates of FST are significantly greater than zero.  

Population Tampa Lower Keys Central FL Key Biscayne Miami 
Ten Th 
Islands 

Lower Keys 0.0590           

Central FL 0.0200 0.0407         

Key Biscayne 0.1165 0.1355 0.1055       

Miami 0.0369 0.0315 0.0099 0.0983     

Ten Thousand Islands 0.0528 0.0527 0.0374 0.1293 0.0195   

Middle/Upper Keys 0.0545 0.0290 0.0352 0.1510 0.0338 0.0391 
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Table 4. Data generated from an AMOVA showing that regional groupings with Ten Thousand Islands included in the mainland and Key 
Biscayne separate from the rest of the Upper Keys (a posteriori groups based on the STRUCTURE results) were more informative in explaining 
the amount of genetic variation present among the regions than the a priori subspecies groupings. 

  

 
Source of variation df Sum of squares 

Percentage of 
variation 

a priori Among regions 3 37.768 0 

 
Among sites within regions 3 41.187 6 

 
Within sample sites 303 976.758 93 

 
a posteriori Among regions 2 46.137 5 

 
Among sites within regions 4 32.818 3 

 
Within sample sites 303 976.758 92 



39 
 

Table 5. Migration rates (m) between all sample sites estimated with BayesAss v3. Standard deviations for all distributions were <0.05 except the 
three italicized values. Migration rates greater than 0.1 are bolded. Values along the diagonal are proportions of individuals derived from the 
source site each generation. Sites from which individuals migrated are listed in the columns and sites that from which each individual was sampled 
are listed in the rows. 

 
Tampa Lower Keys Central FL 

Key 
Biscayne Miami 

Ten Th 
Islands 

Mid/Up 
Keys 

Tampa 0.7185 0.0119 0.0124 0.0121 0.2114 0.011 0.0227 
Lower Keys 0.0099 0.6795 0.0096 0.0101 0.0474 0.0099 0.2335 
Central FL 0.0112 0.0101 0.6802 0.0178 0.2538 0.0161 0.0108 
Key Biscayne 0.0107 0.0108 0.0111 0.9255 0.0192 0.0111 0.0116 
Miami 0.0099 0.0094 0.0099 0.0363 0.898 0.0097 0.0268 
Ten Thousand Islands 0.013 0.0137 0.0162 0.0141 0.2032 0.6987 0.041 
Middle/Upper Keys 0.0119 0.0128 0.0146 0.0135 0.0987 0.0171 0.8314 
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