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ABSTRACT

Evaluating relative species competitive strength is a central question in community ecology, with

strong implications for invasion ecology. Models assessing invader success consider three

components: distribution, abundance and per-capita impact. However, relative strength and

interactions among these factors remain unclear when applying to specific invasion scenarios. We

hypothesized that performance of native and non-native species will vary as a function of direct and

indirect effects at different abundances and scales. We conducted a replacement experiment between

two dominant grasses in subtropical grasslands (the native Axonopus fissifolius and the non-native

Paspalum notatum) in central Florida, USA. Thirty fenced plots (1 m x 3 m each) representing a

gradient (15 levels) of increasing non-native groundcover and decreasing native groundcover were set

up in November 2017. We transplanted individuals of these two species in subplots (12 subplots and

36 transplants per plot; 1080 plants in total) in a 2*2 factorial design (mixed /single focal species *

2/4 transplants per subplot). Leaf length/number and plant biomass were evaluated at the beginning

and end of the experiment along with plot species composition and soil nutrients. Over 92% of

transplants of each grass species survived until harvest (11 months). There were significant

differences in leaf length, leaf number and plant biomass between conspecific/allospecific subplots.

Both P. notatum and A. fissifolius performed better when transplanted in non-native P. notatum

subplots. There were also interactions between conspecific/allospecific subplot treatment (direct

effects) and the gradient of increasing Paspalum notatum /decreasing Axonopus fissifolius

groundcover (indirect effects) treatments. Increasing P. notatum in the whole plot made environments

more favorable for both grass species. Effects were consistent for leaf length/number and biomass of
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the two focal species. More comprehensive evaluation on indirect effects need to be considered when

examining competition between non-native species and native species.
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CHAPTER ONE: INTRODUCTION

Understanding the dynamics and consequences of interactions among organisms has been a central

goal in invasion ecology for decades, as they shape ecological processes which affect population

dynamics and community structure (Thompson, 1988; Silander & Antonovics, 1982; Abrams, 2001).

Recent analyses reveal that invasive species impacts are strongly context-dependent on both biotic

and abiotic factors (Chamberlain, Bronstein, & Rudgers, 2014; Weigelt, Steinlein, & Beyschlag, 2002;

Antonovics & Levin, 1980), and may vary in both magnitude and direction (Pyšek et al., 2012; Van

der Putten, Macel, & Visser 2010; Thomsen, Wernberg, Olden, Griffin, & Silliman 2011; Boughton,

Quintana-Ascencio, Bohlen & Nickerson 2011). Although context-dependent outcomes are common

in nature and the research on species interactions has been continued for decades, we still lack enough

knowledge about the magnitude and mechanisms of these phenomena on species interactions

(Chamberlain, Bronstein, & Rudgers, 2014).

Identifying and properly measuring the ecological impact of invasive species, and applying this

knowledge to management of invasive species is critical (Antonio & Meyerson, 2002). Neighboring

plant species can change the direction and magnitude of the interaction among plants and between

plants and other organisms (Bergvall, Rautio, Kesti, Tuomi, & Leimar, 2006; Orians & Bjorkman,

2009), a process known as associational effects (Underwood, Inouye, & Hambäck, 2014). A better

understanding of associational effects may inform management of species invasions since it plays a

central role in competition between non-native and native species.

Associational effects can occur through many mechanisms. For instance, physical masking by
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neighboring species may hinder herbivory by reducing the chance of locating the focal plant

(Hambäck, Inouye, Andersson, & Underwood, 2014; Bergvall, Rautio, Kesti, Tuomi, & Leimar, 2006;

Boughton, Quintana-Ascencio, Bohlen & Nickerson 2011). Neighboring plants can also attract more

pollinators (Feldman, Morris, & Wilson 2004) resulting in higher demographic rates for the focal

species. Conversely, neighboring species can generate higher susceptibility to diseases, leading to

more damage to the focal species (Thomas, 1986). Even though associational effects are measured at

the individual level, they can contribute to population and community level dynamics (Barbosa et al.,

2009) through changes in micro habitat and resource availability. For example, the presence of the

non-native species Lygodium microphyllum, the old world climbing fern in Florida’s pine forest

increased fire frequency and fire intensity by introducing fire into canopy (Pemberton & Ferriter,

1998). Invasion of Prosopis glandulosa, Honey mesquite patches into Texas’s subtropical savanna

caused marked increases in soil C and N pool compared to patches dominated by native herbaceous

resulting in the shift from grass to shrub domination (Hibbard, Archer, Schimel, & Valentine 2001).

Parker et al., (1999) provided a useful framework to quantify the impact of a species:

� u l � � � � (1)

where overall impact, I, is defined as the product of the range size R (in m2) of a species, its average

abundance per unit area across that range A (in numbers, biomass, or other relevant measure), and E,

the effect per individual or per biomass unit of the invader. The per-capita effect E refers to the ability

of a species to shift and/or modify various ecological level processes and mechanisms, and is

expected to be negative for competitive effects, or positive for facilitative effects.
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Most basic ecological research on invasion impacts identifies the local effect (A*E) as an unspecified

combination of per-capita impact and local abundance (Parker et al., 1999). Despite its apparent

simplicity, interactions among R, A and E components may occur and complicate this framework

(Barney, Tekiela, Dollete, & Tomasek 2013). Additionally, studies have reported both linear and

non-linear relationships between components of this model (Nava-Camberos, Riley, & Harris 2001;

Robinson, Smyth, & Whitehead 2005). For example, an invader can have a wide range but exist in

low abundance in local communities or an invader can have low abundance with a strong per-capita

impact (Hibbard, Archer, Schimel, & Valentine 2001). In contrast, an invader can dominate with

overwhelming densities in communities, but may lack novel traits except for higher demographic

rates (Pierre, Quintana-Ascencio, Boughton, & Jenkins 2017; Smith, Boughton, & Pierre 2015).

Based on Parker et al.’s framework, the overall effect of the most noxious invasive species due to

per-capita (E) and abundance (A) effects is whether the impacts are due primarily to aspects of the

biology of species affecting their performance during the interactions (Simberloff et al., 2013), or to

their sheer numbers or the interaction between these factors.

Understanding A*E may be difficult because the per-capita impact can co-vary (i.e., successful

invaders have high abundance because they have high per-capita impact). The ‘abundance’ of a

competitor could be important at a local or individual neighborhood level through immediate contact,

or at a ‘landscape’ scale through indirect effects. Each level or scale of ‘abundance’ could have its

own effect on per-capita impact E.

In this study, we examined how the effects of neighbor species at different relative abundance (A)

affect the competitive interaction between a non-native and native species (E) at different ecological
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scales. We performed a year-long field competition experiment involving transplanting plants from

three different species (non-native invader = Paspalum notatum, native species = Axonopus fissifolius,

and a phytometer = Phyla nodiflora). We evaluated the effect of abundance of the invader measured at

three different ecological scales, which are ‘individual’, ‘patch’ and ‘plot’ levels respectively. We

included a phytometer species to provide an independent evaluation of the competition environment.

We hypothesized that (1) plant performance will be affected by the multiple levels of ‘abundance’

with potential different magnitude and direction of the responses at each level; (2) An interactive

effect is possible between ‘patch’ and ‘plot’ levels, due to the environmental variations that levels of

‘abundance’ could introduce into the competition; and (3) Soil and canopy effects due to the

abundance of the dominant species in different patches could lead to different communities in plots,

because P. notatum is known to alter soil pH (Tan, Beaty, McCreery, & Jones 1975).
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CHAPTER TWO: MATERIALSAND METHODS

Study Site

Our experiment was conducted at Buck Island Ranch (BIR), a division of Archbold Expeditions, and a

4170 ha commercial cattle ranch in south-central Florida (27 09’ N, 81 11’W). BIR has a humid

subtropical climate with an annual precipitation of ca. 130 cm, (70% of the annual rainfall happens

during the summer rain season; usually from June to October). Two major habitats dominate this

ecosystem: semi-native pastures and agriculturally improved pastures. Agriculturally improved

pastures were fertilized and planted with Bahia grass (Paspalum notatum), an introduced forage grass

from South America. The semi-native pastures were never fertilized and are characterized by a more

diverse plant community dominated by native grasses (i.e Axonopus spp., Andropogon spp. and

Panicum spp.) with locally abundant P. notatum. The experiment was performed in 30 plots

distributed in 10 sites within semi-native pastures (Figure 1). At the beginning of the study, all the

study sites had continuous (> 95% cover) grass cover by Axonopus spp. (Axonopus fissifolius,

Axonopus furcatus).
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Figure 1: Study site and experiment plots location at Buck Island Ranch

Species Selection

Non-native Competitor: Paspalum notatum, Bahia grass. This is a perennial grass with strong, shallow,

horizontal rhizomes, native to South America (Quarin, Burson, & Burton 1984). It adapts best to

sandy soil, can tolerate low soil fertility and low pH, and most of its biomass concentrates at the soil

surface in the extensive networks of rhizomes.

Native Competitor: Axonopus fissifolius, Common Carpet grass, which is a perennial grass with

creeping stolons, native to Florida and primarily distributed in subtropical areas. In Southern Florida,
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it stays green all year and produce seedheads and stolons during the active growth period (Jun-Oct). It

can be found in pine flatwoods, forests with sandy soils, fields and roadsides (USDA Plant Profile). A.

fissifolius shares similar growth form with P. notatum, including strong vegetative propagation,

similar heights and growing habit of forming dense patch and canopy.

Phytometer: Phyla nodiflora, Turkey Tangle Fogfruit. It is a stoloniferous forb with decumbent stems

and scanty roots (root depth c. 15 cm). It is a native to Florida and other southern states in the US. It is

well adapted to coarse - fine textured soil and has medium tolerance to drought (USDA Plant Profile).

Experimental Design

The experiment involved a 2*2 full factorial transplant procedure combined with a replacement

gradient (Hamilton, 1994) between the two grasses. We considered the effects of three different

“abundance” scales: (1) ‘individual’ level (also a per-capita impact E; considered as direct effects of

abundance), (2) ‘patch’ level (also a per-capita impact E; considered as direct effects of abundance),

and (3) ‘plot’ level (considered indirect effects of abundance) (Figure 2). These three scales

represented multiple components of the competition effects of abundance.
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Figure 2: Illustration of experimental design of one typical experiment site. Three levels are presented as example (a-c). The two by two
transplant design is illustrated in (d). The additional first column describe the transplant of the phytometer.
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Each of the 10 experiment sites contained three plots which represented a replacement gradient

between P. notatum and A. fissifolius ground cover (examples in Figure 2a, 2b, 2c). Every

experimental plot was a 3m * 1m rectangle divided into 27 patches (3 column * 9 rows). P. notatum

ground cover was controlled by removing certain numbers of A. fissifolius patches (each 33 x 33 cm)

and then replaced by same size P. notatum patches. P. notatum patches were obtained from improved

pastures at BIR using a sod cutting machine (sod size: 40 cm * 60 cm). Overall there were 15 levels of

P. notatum abundances at the ‘plot’ level, ranging from 6 (21 for A. fissifolius) to 20 patches (7 for A.

fissifolius) out of the 27 available patches. These plots represented the lowest of 22.2% (77.8 % for A.

fissifolius) to the highest of 74.1% (25.9 % for A. fissifolius) ground cover of P. notatum used within

our experiment (lowest and highest level of ground cover were limited due to the number of patches

that can be transplanted into each plot). Each plot was surrounded by a 0.4 m wide buffer area and

fenced to exclude cattle. Additional A. fissifolius ground cover in the buffer area was replaced by P.

notatum sods to keep the relative percentage of each grass ground cover of the buffer area the same as

in the core area of each plot.

Table 1: Number of patches of P. notatum and A. fissifolius across the 10 experiment sites.

Pasture Site
name

P. notatum abundance levels of plots
(Number of P. notatum patches, out of 27

patches)

A.fissifolius abundance
(Number of A.fissifolius
patches, out of 27 patches)

South
Marsh

Sun 6, 11, 15 21, 16, 12
Mercury 9, 15, 20 18, 12, 7

West
Marsh

Venus 8, 13, 20 19, 14, 7
Earth 12, 16, 19 15, 11, 8
Mars 13, 16, 18 14, 11, 9
Jupiter 6, 9, 17 21, 18, 10

East
Marsh

Saturn 7, 10, 14 20, 17, 13
Uranus 8, 11, 17 19, 16, 10
Neptune 10, 12, 18 17, 15, 9
Pluto 7, 14, 19 20, 13, 8
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To establish individual and patch level abundance levels, we randomly selected 12 patches in each

plot in which we transplanted P. notatum, P. nodiflora and A. fissifolius individuals. Each species had

four different transplant types which represents a 2*2 factorial design for the treatments of individual

and patch level competition (Figure 2d). The ‘patch’ level included two treatments: whether the

individual was transplanted within a P. notatum patch or into A. fissifolius patch (Figure 2: (d1) & (d3)

compare to (d2) & (d4)). The ‘individual’ level included two treatments: whether the transplanted

individuals were accompanied by transplanted P. notatum individuals or not (Figure 2: (d1) & (d2)

compares to (d3) & (d4)).

The whole experiment had 30 experimental plots, of which 15 plots represented a full replicate of

‘plot’ level abundances, with increasing P. notatum/decreasing A.fissifolius abundances. Each plot

contained a 2*2 factorial transplanting design of ‘individual’ * ‘patch’ level abundance treatments.

The arrangement of transplanted patches location in the second replicate of the 15 plots was

distinctive from the first replicate set (Figure 3). The 30 plots were then randomly assigned to 10 sites

(Table 1). They were set up within a week in Mid-November in 2017, four months before the

transplant of the individual plants.
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Figure 3. Illustration of the whole picture of experiment design.

Plant collection for transplants

Transplants were collected from the field and planted in 10.5 cm diameter pots in November, 2017.

For A. fissifolius and P. notatum, the whole individual was carefully dug out minimizing any damage

to the roots and moved to pots. For P. nodiflora, establishment was stimulated with the application of

rooting powder (0.10% Indole-3-butyric Acid, BONIDE PRODUCT INC). All transplanted

individuals were then maintained in a shade house (with free airflow but partial sunlight) to

homogenize their growth for 3 months until Feb 2018, when they were randomly transplanted to the

field plots.

Data Collection

We counted total leaf number for all three species and measured cumulative leaf length (cm) for P.
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notatum and A. fissifolius, cumulative stem length for P. nodiflora) of each transplanted individual in

February 2018, immediately after being transferred to the field, and finally in December 2018. Plant

survival was recorded in May and September 2018. Biomass was estimated for each alive individual

at the beginning and measured at the end of the experiment. To measure biomass, entire individuals

were carefully harvested, kept at 80 oC in an oven for 24 h, and weighed. We also surveyed the

vegetation of each plot at the beginning and end of the experiment. We recorded the cover of all

vascular plant species present in each of the 12 focal patches per plot. In October 2018, we collected

three soil cores per focal patch (each core was 3 cm diameter and 15 cm deep). The three cores were

mixed and consolidated as one sample. We determined the amount of Ammonia (NH4+), Nitrate

(NO3-), Ortho-P (PO3-), pH, and total organic matter in each focal patch using standard protocols.

(Sparks, et al., 1996)

Statistical Analysis

To estimate initial biomass of the transplanted individuals, we built an allometric relationship between

plant height and plant biomass for each species. To do this, we randomly selected 30 individuals of

each species among the same set scheduled to be transplanted (r2 = 0.738; 0.767; 0.659 respectively

for P. notatum, A. fissifolius and P. nodiflora) (Appendix).

We used Generalized Linear Mixed Models (GLMM) to evaluate the variation of soil parameters

among the two levels of abundance (patch and plot). We used GLMMs to evaluate the effects of

treatments (individual, patch and plot) on plant performance, including survival, number of leaf, and

proportional size change in cumulative leaf length and biomass (i.e. End/Start). We included ‘site’ as a
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random intercept effect. For the survival model, we used binomial errors distribution and the logit link

function. For the model of total number of leaves, we included initial number of leaves as a covariate

and used negative binomial distributions and the logarithm link function. Change in leaf length and

change in biomass were natural log-transformed and corresponding models used Gaussian error

distribution and the identity link function. We used model selection based on AICc to identity the

most likely models (Burnham &Anderson, 2002). Effect sizes (R2) of the most plausible models were

calculated using methods proposed by Nakagawa and Schielzeth (2013). (Appendix).

We used NMDS with the ‘Bray-Curtis’ distance to evaluate changes in species composition between

plots. We repeated this analysis after removing the focal species (P. notatum and A. fissifolius).

Analyses were performed using glmmADMB, vegan, piecewiseSEM package in R 3.5.0 program (R

Core Team, 2018).
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CHAPTER THREE: RESULTS

Effect of Initial Plant Conditions and Plant Survival

We found no significant effect of initial variables on the final condition for any of the three focal

species. The average initial total summed leaf number was different among species with 40.77 leaves

(SE= 23.09) for P. nodiflora, 21.30 leaves (SE= 9.83) for P. notatum, and 8.73 (SE= 4.21) for A.

fissifolius. Initial cumulative leaf (stem) length was 17.51 cm (SE= 11.29) for P. nodiflora, 171.56 cm

(SE= 85.87) for P. notatum, and 57.15 cm (SE= 30.50) for A. fissifolius. By the end of the experiment

in November, 2018, 92.5% of the focal A. fissifolius individuals, 97.5% of P. notatum individuals and

40.4% of P. nodiflora individuals survived; 94.7% of the P. notatum individuals used as competitors at

individual level for all three focal species survived.

Effect of Treatments on Plant Performance

We did not find any significant effects of dominant grass species at patch level or plot level abundance

on survival of the two focal grass species. P. nodiflora was strongly outcompeted by both grasses.

However, we did not observe any significant effect of immediate competitor grass species identity or

competitor grass abundance (at patch or plot levels) on the performance of P. nodiflora (Figure 4).
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Figure 4: P. nodiflora performance in two types of patches treatment (P. notatum = circles and A.
fissifolius = triangles) along the ‘plot’ gradient. Small symbols are all patch observations and
large symbols are means by ‘plot’ level.
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Table 2: Summary of effects of abundance treatments for all three focal species and performance variables.

Response
Variable

Focal
Species

Most Plausible Model dAICc
(Weight)

Null model
dAICc
(Weight)

Coefficients (Intercept +
SE)

Effect Size of Top Model

Patch*
Context

Patch Marginal
R2

Conditional
R2

B
io
m
as
s

P. not ~ Patch * Plot + Individual +
(1|Site)

0.7
(0.293)

18.3
(<0.001)

0.038±
0.017

(p=0.025)

-0.187±
0.231

(p=0.418)

0.077 0.229

A. fis ~ Patch * Plot + (1|Site) 0.0
(0.334)

3.1
(0.071)

0.044±
0.022

(p=0.041)

-0.364+
0.295

(p=0.218)

0.038 0.084

P. nod - - 0.0
(0.477)

- - - -

Cu
m
ul
at
iv
e
le
af

le
ng
th

P. not ~ Patch * Plot + (1|Site) 0.0
(0.307)

22.2
(<0.001)

0.034±
0.021

(p=0.107)

0.026±
0.291

(p=0.93)

0.072 0.452

A. fis ~ Patch + (1|Site) 0.0
(0.382)

0.7
(0.271)

- 0.201±
0.121

(p=0.095)

0.012 0.044

P. nod - - 0.0
(0.478)

- - - -

To
ta
lL

ea
fN

um
be
r P. not ~ Patch * Plot + (1|Site) 1.5

(0.208)
56.4

(<0.001)
0.204±
0.121

(p=0.091)

0.016±
0.009

(p=0.066)

0.200 0.331

A. fis ~ Patch + (1|Site) 0.0
(0.471)

20.3
(<0.001)

- 0.238±
0.085

(p =0.005)

0.258 0.326

P. nod - - 1.0
(0.2637)

- - - -
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The most plausible model for all three performance variables of P. notatum included a significant

interaction between plot level abundance and patch identity (Figure 5 a, b and c; Table 2). P. notatum

performance was higher when transplanted in P. notatum patches and when plot-level P. notatum

abundance increased (biomass = 0.038 ± 0.017; cumulative leaf length = 0.034 ± 0.021; and total leaf

number = 0.024 ± 0.016; model coefficient ± SE used below unless specified). Although random

effect (site) was negligible, we identified differences between ranch regions. South marsh plots (Sun,

Mercury) being lower than the mean, while West marsh (Uranus, Pluto, Neptune and Saturn) larger

than the mean and East marsh (Earth, Mars, Jupiter, Venus) around the mean (Figure 5 d, e and f).

Thus P. notatum appeared to perform best with conspecifics than with the native grass, consistent with

inter-specific effects being greater than intraspecific effects.
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Figure 5: P. notatum performance in two types of patches (P. notatum = circles and A. fissifolius
= triangles) along the plot gradient with random effects by site. Small symbols represents all
patches and large symbols are mean by ‘plot’ level. Shaded polygons are 95% CI. In plots d, e
and f bars represent 95% CI.
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However, A. fissifolius performance was not a mirror image of P. notatum performance. Instead, A.

fissifolius performance varied across abundance levels but showed different patterns for different

variables (Figure 6 a, b and c; Table 2). Relative biomass growth of A. fissifolius was higher in P.

notatum patches and increased (0.044 ± 0.022) as plot-level P. notatum increased. A. fissifolius

number of leaves (0.238 ± 0.085) and cumulative leaf length (0.201 ± 0.121) were higher in P.

notatum patches, but we found no evidence that these variables changed significantly with changes in

plot-level grass competitor abundance. The overall random effects were negligible for biomass (mean

of the variance, 0.019), cumulative leaf length (0.020) and total leave number (1.58e-07), and spatial

pattern of random effects was minor for A. fissifolius (Figure 6 d, e and f).
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Figure 6: A. fissifolius performance in two types of patches (P. notatum = circles and A.
fissifolius = triangles) along the plot gradient with the random effects by site. Small symbols
represents all patches and large symbols are mean by ‘plot’ level. Shaded polygons are 95% CI.
In plots d, e and f bars represent 95% CI.
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Effect of Treatment on Soil Characteristics

We did not find any significant effects of abundance treatments on the soil variables measured except

for pH. Patch pH decreased slightly with increased P. notatum and decreased A. fissifolius (0.010 ±

0.003, p =0.004) abundance in the plot. We observed a significant interaction between abundance

treatment and patch identity (P. notatum patch vs. A. fissifolius patch) on pH (0.0104 ± 0.005, p =

0.026). Due to collinearity, we did not include pH in subsequent plant performance analysis.

Multivariate Analysis

We recorded a total of 68 plant species across the 30 plots. Plant species diversity changed from 31

species during the dry season (February 2018) to 61 species at the end of wet season (November

2018). The ordination analysis indicated evidence of significant differences by season and the

dominant grass in the patch, whether or not we included the two dominant grass species (P. notatum,

A. fissifolius) in the analysis (Figure 7). A permutational multivariate analysis of variance

(PERMANOVA) confirmed effects of patch type (r2 = 0.75, p=0.001) and season (r2 = 0.078, p=0.001)

when the dominant grasses were included (Figure 7a) and when excluded (Figure 7b)(Patch r2 = 0.038,

p=0.008; Season r2 = 0.24, p=0.001)
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Figure 7: Plant species ordinations by patch type and season. In the left plot all species were
included while in the right plot the two dominant grasses were excluded.
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CHAPTER FOUR: DISCUSSION

Responses of Plants and Environmental Variation

Our study was designed to address the interaction between per-capita impact and abundance for the

competition between a non-native plant and a native plant. We performed an experiment that enabled

simultaneous evaluation of the effects of abundance levels of three interacting species and per capita

impacts on focal species performance. By separating plot and patch effects we were able to measure

different components of abundance and per-capita impact E from; both direct and indirect effects. We

found evidence of a direct effect at the patch level, and evidence of indirect effects (apparently

mediated by biotic changes in soil pH) at plot level. Contrary to expectations based on competitive

effects between native and nonnative species, the magnitude and direction of those effects were

relatively consistent between the focal species (P. notatum and A. fissifolius), where both species

performed better when located in nonnative P. notatum patches. A positive indirect effect was

indicated because both focal species had increased performance when surrounded by more P. notatum.

It has been public impressions and an ecological assumption that invasive and non-native species have

negative effects on native species and ecosystems (García-Díaz, Cassey, Richardson, Pyšek, &

Blackburn 2016; Benjamin & Franck, 2016). We provided evidence that more aspects of interaction

between non-native and native species need to be considered. Beyond the variation of direction of

interactions, the scales of where effects come from should be paid more attention. Instead of including

only relative straight-forward immediate contact direct effect, indirect effect beyond the immediate

contact could be substantial or even leading in shaping the interaction effects.

Not all performance variables (biomass, total leaf number, cumulative leaf length) responded similarly
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to treatments at patch and plot level, meaning that inferences based on only one variable may miss

effects. Models for biomass included more relevant responses to abundance levels, while leaf number

and length show relatively weak responses from treatments. Biomass is a more comprehensive

variable summarizing energy accumulation and long-term performance, while cumulative leaf length

and leaf number are more instantaneous signals of plant performance which can be more heavily

influenced by the season. This may explain why no interactive effects between plot and patch level

treatment was recognized for A. fissifolius.

While areas dominated by P. notatum and A. fissifolius may be harsh competition environments for

other species (e.g, the phytometer here), habitats dominated by P. notatum were more benign for both

focal grasses than those dominated by A. fissifolius. Our evidence on biotic change of soil pH in the

plot suggest a possible mechanism contributing to the more benign environment in P. notatum patches.

It is known that P. notatum can decrease soil pH facilitating their own growth by reducing Ca2+ and

K+ in the soil (Tan, Beaty, McCreery, & Jones 1975). Since both grasses are well adapted to low pH

soil, this may have mediated the facilitation effect from P. notatum to both itself and A. fissifolius.

This effect could be highly context dependent, as at BIR soils are generally sandy with relative low

pH (Swain, Boughton, Bohlen, & Lollis 2013). This facilitation effect could be flipped to competitive

when soil conditions are different.

There are other mechanisms that could be the causes of these effects, but our experiment was not able

to address them. Patch and individual levels effects may due to immediate contact of roots leading to

direct competition for macro nutrients and water availability in the soil. Light competition can be

another important mechanism, since both P. notatum and A. fissifolius have a dense canopy. Changes
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of microclimate due to different ground cover of P. notatum and A. fissifolius may result from the last

species capturing more humidity during morning fog in dry season and holding back or slowing down

evaporation and transpiration after frequent raining in wet season. At the plot level, associational

effects of herbivory would be potential important mechanism (Orians & Bjorkman, 2009; Feldman,

Morris, & Wilson 2004). Different densities and spatial patterns of plant groups could affect the

herbivory intensity due to physical shading and chemical attraction (Bergvall, Rautio, Kesti, Tuomi, &

Leimar 2006; Hambäck, Inouye, Andersson, & Underwood 2014). Changes in pollination, predation,

herbivory and nutrient competition may lead to significant differences in survival rate at population

level (Barbosa et al., 2009). This could be a mechanism lead to community level shifting.

From NMDS analysis, we observed that the 2 most dominant species (P. notatum and A. fissifolius)

were the major factors causing community differences. If those 2 dominant species were excluded

from NMDS, then the change of season helped explain community differences. The co-existence of

other species may have resulted from the different competition environment created with different

types and abundance of patches. This could be a mechanism leading to community level shifting in a

long term from neighboring species effects beyond the scope of our year-long experiment

The replacement of the abundance of the two grasses at the plot level across the 30 plots provided a

more unbiased and comprehensive understanding on the relationships between P. notatum and A.

fissifolius. However, this design had also drawbacks. The embedded individuals within the patch

creates a lack of independence among these factors that inflated the confidence intervals of some our

model coefficients. The individual level effect could not be completely separated from patch effect,

due to the focal species individuals are always nested in the patch, which overwhelms any effect of
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the transplanted individuals.

Wlocated in P. notatum patch. Also both focal species experienced an interactive effect of increased

performance when there were more P. notatum patches in one plot. Performance variables (biomass,

leaf number, leaf length) were not consistent in showing the significance of the treatment effects at

patch and plot level. Models for biomass included more relevant responses to abundance levels, while

leaf number and length show relatively more dim responses from treatments. Biomass is a more

comprehensive variable summarizing energy accumulation and long-term performance, while

cumulative leaf length and leaf number are more instantaneous signals of plant performance which

can be more heavily influenced by the season. This may explain why no interactive effects between

plot and patch level treatment was recognized for A. fissifolius.

Application

With lots of literature addressing ecological impacts of non-native species, most of them are

compared under a ‘worst-case’ scenario (e.g., invaded vs un-invaded), few studies address the change

of impacts along abundance gradients (Jackson, Ruiz-Navarro,& Britton 2015). The direction of

invaders’ effects at multiple scales may vary and the magnitude of these effects may change in

non-linear fashions (Yokomizo, Possingham, Thomas, & Buckley 2009; Jackson, Ruiz-Navarro &

Britton 2015). Depending on the shape of the non-linear relationships, different management priorities

and strategies could be deployed to maximize their efficiency (Brown, Huth, Banks, & Singleton 2007;

Nava-Camberos, Riley, & Harris 2001). Preventing arrival and establishment of non-native species

with low-threshold curves (i.e., species that show remarkable impacts even at relatively low
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abundance) should be a priority of management. While optimal investment at relative low abundance

is justified for high-threshold species (i.e., species that show remarkable impacts only when reached

relatively high abundance) (Yokomizo, Possingham, Thomas, & Buckley 2009).

Future Directions

Successful observation of indirect effects depends on proper selection of study scales (Underwood,

Inouye, & Hambäck 2014). In our experiment, there were two important scales, the patch level (direct

effects) and plot level (indirect effects). We determined these scales based on observation of focal

species’ biological characteristics (e.g, depth and length of roots, length of leaf, density of shoots,

canopy shading) and working experience with the focal species. Based on the study species,

ecosystems and response variables, the relevant scales could vary from a grass sod, to meter size plots,

to the whole community and landscape (Underwood, Inouye, & Hambäck 2014). Expanding temporal

and spatial scale of studies on indirect effects would be also helpful for identifying more significant

variables for population and community processes. The evidence and information on responses of

species’ survival, reproduction rates and dispersal at multiple scales could better enable us to evaluate

another dimension from Parker’s model of “I = R*A*E”, the distribution (R), instead of only

addressing A*E interaction in this study.
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APPENDIXA: INITIAL BIOMASS ESTIMATIONMODELS
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Appendix A: Linear regression models summary for initial biomass estimation

Public models tested for each species Species Best
model

Estimation formula Multiple R2

Model 1
(Aboveground Biomass ~ Total Leaf Length + Average Leaf Length

+ Total Leaf Number)

A.
fissifolius

Model 4 0.00395*(Total Leaf Length) + 0.0432 0.738

Model 2
(Aboveground Biomass ~ Total Leaf Length + Total Leaf Number)

P. notatum Model 2 0.00347*(Total Leaf Number) +
0.00986*(Total Leaf Length) + (-0.018913)

0.767

Model 3
(Aboveground Biomass ~ Average Leaf Length + Total Leaf

Number)

P.
nodiflora

Model 4 0.00241*(Total Leaf Length) + 0.139 0.659

Model 4
(Aboveground Biomass ~ Total Leaf Length)
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APPENDIX B: TREATMENT EFFECTS ON SOIL PARAMETERS

MODELS
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Appendix B: Model selection summary of treatment effects on soil parameters

Public models tested for each
variable

Soil variable Transformation Best model dAICc
(Weight)

Null model dAICc
(Weight)

Significance of
treatments

Model 1
~ Individual + (1|Site)

Total Organic
Matter

log Model 1
0.0 (0.276)

0.5 (0.212) No evidence

Model 2
~ Plot + (1|Site)

Total Mineral
Content

(NH4+ NO3-)

log (x+1) Null model
0.0(0.34)

- -

Model 3
~ Patch * Plot + (1|Site)

Ortho-P
(PO3-)

log Model 3
0.0 (0.414)

1.3 (0.212) No evidence

Model 4
~ Patch * Plot + Individual +

(1|Site)

pH inverse Model 4
0.0 (0.892)

13.6 (0.001) Patch * Plot
(p=0.0414)
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APPENDIX C: MODELS SELECTION ON PLANT PERFORMANCE

RESPONSE
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Appendix C: Model selection summary of treatment effects on plant performance

Public models tested for
each species and variable

Response
Variable

Transformation Error
family

Link Focal
Species

Best model
by AICc

Most plausible
model used in

paper

Note

Model 1
~ Individual + (1|Site)

Model 2
~ Patch + (1|Site)

Model 3
~ Patch * Plot + (1|Site)

Model 4
~ Patch * Plot +

Individual + (1|Site)

Model 5
~ Patch * Plot + Patch *

(Plot^2) + (1|Site)

Model 6

~ Patch * Plot + (Plot^2)
+ (1|Site)

Model 7
~ Patch * Plot +
Individual + (1+

Patch|Site)

Re
sp
on
se
ra
tio

of
B
io
m
as
s Log

(Nov/Feb)

Gaussian Identity
P. not Model 5

(0.0, 0.426)
Model 4

(0.7, 0.293)
95% CI inflated by

model 5
A. fis Model 3

(0.0, 0.334)
Model 3

(0.0, 0.334)
P. Nod Null model

(0.0, 0.477)
-

Re
sp
on
se
ra
tio

of
To
ta
lL

ea
f

Le
ng
th

Log

(Nov/Feb)

Gaussian Identity
P. not Model 3

(0.0, 0.307)
Model 3

(0.0, 0.307)
A. fis Model 2

(0.0, 0.382)
Model 2

(0.0, 0.382)
P. nod Null model

(0.0, 0.478)
-

To
ta
lL

ea
fN

um
be
r

(N
ov
em

be
r)

- Negative

binomial

Logarithm
P.not Model 2

(0.0, 0.449)
Model 3

(1.5, 0.208)
Interaction

observed in data
pattern

B. fis Model 2
(0.0, 0.471)

Model 2
(0.0, 0.471)

P. nod Model 1
(0.0, 0.708)

- No difference from
null model

Su
rv
iv
al

(N
ov
em

be
r)

- Binomial Logit
P.not Model 1

(0.0, 0.437)
Null model
(0.9, 0.275)

No difference
from null model

C. fis Null model
(0.0, 0.473)

-

P. nod Null model
(0.0, 0.403)

-

Note: In models evaluating Total Leaf number, the total leaf number in February was added as a co-variable in the model
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