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ABSTRACT 

 
Since their recent introductions into Florida waters, three nonnative species [Perna viridis 

Linnaeus, 1758 (Asian green mussel), Mytella charruana d’Orbigny, 1846 (charru mussel) and 

Megabalanus coccopoma Darwin, 1854 (pink titan acorn barnacle)] have expanded both north 

and south along the Atlantic coast. Very little research has been done to understand how these 

nonnative species interact with the native eastern oyster (Crassostrea virginica Gmelin, 1791), 

which is a keystone species that provides important ecological services and economic benefits.  

To test the potential effects of P. viridis, M. charruana and M. coccopoma on C. virginica, I 

addressed the following questions:  1a) Does the presence of nonnative species decrease oyster 

larval settlement? 1b) Do oyster larvae avoid settling on oyster shells to which nonnative species 

are attached? 2a) Do nonnative species decrease survival of juvenile oysters (spat)? and 2b) Do 

nonnative species hinder spat growth?  My manipulative experiments showed that the tested 

nonnative species influenced settlement, growth and survival of C. virginica in unique ways. 

Megabalanus coccopoma decreased the total number of settled oyster larvae, but did not 

influence larval preference or survival and growth of spat. Perna viridis negatively influenced 

larval settlement and oyster larvae avoided settling on shells of P. viridis. Mytella charruana had 

no influence on the total number of settled larvae but oyster larvae avoided settling on oyster 

shell with M. charruana or on the mussel shells themselves.  Furthermore, both nonnative 

mussels negatively affected the survival of juvenile oysters, but only M. charruana reduced spat 

growth.  These three nonnative species should be classified as invasive species because all had 

negative effects on the native oyster C. virginica. 
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CHAPTER ONE - INTRODUCTION 

The introduction of nonnative species is a major threat to marine ecosystems (Ruiz et al. 

1997; Molnar et al. 2008; Lewis and Coutts 2010; Thomas and Ohlemüller 2010). Nonnative 

marine species can directly affect native species by altering biodiversity, community structure, 

food availability and predator-prey interactions (Pimentel et al. 2005; Lewis and Coutts 2010), 

and indirectly affect native species by altering water clarity, transporting diseases, and aiding in 

the success of other invaders (Pimentel et al. 2005; Molnar et al. 2008; Perrings et al. 2010).  In 

addition to ecological threats, marine invaders cause economic problems to the fishing and 

aquaculture industries, foul ships and boats, and clog intake pipes of power plants (Ruiz et al. 

1997; Ruiz and Carlton 2003; Rajagopal et al. 2006; Lewis and Coutts 2010; Perrings et al. 2010; 

Galil et al. 2011). 

Mussels and barnacles are infamous sessile marine invaders (Pimentel et al. 2005; 

Lockwood et al. 2007; Perrings et al. 2010). These nonnative organisms are problematic because 

they can be hard to identify, difficult to eradicate, and are continuously transported globally 

(Ruiz et al. 1997). Their invasions date back to the 1880s, but are more common in the past 60 

years due to increased maritime transport (Pimentel et al. 2005; Lewis and Coutts. 2010; Galil et 

al. 2011). One example of a well-documented invasive bivalve is the mussel Mytilus 

galloprovincialis (e.g., Branch and Steffani 2004). Mytilus galloprovincialis, native to the 

Mediterranean, has been repeatedly introduced to South Africa since 1979 and now accounts for 

approximately 74% of the mussel biomass on rocky shores (Hockey and van Erkom Schurink 

1992; Branch and Steffani 2004).  Mytilus galloprovincialis has also become established along 

the east and west coasts of North America (McDonald and Koehn 1988; Vario et al. 1988; Heath 

et al. 1995; Ramirez and Ca’ceros-Martinez 1999; Wonham 1999; Anderson et al. 2002), Hawaii 
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(Apte et al. 2000), Australia (McDonald et al. 1991) and northeastern Asia (Wilkins et al. 1983; 

Lee and Morton 1985; McDonald et al. 1990; Branch and Steffani 2004). Additionally, M. 

galloprovincialis out-competes and hybridizes with two native blue mussels, M. trossulus and M. 

edulis (Branch and Steffani 2004), where their ranges are sympatric.  An example of an invasive 

barnacle is Chthamalus proteus (e.g., Zabin and Altieri 2007). Chthamalus proteus is native to 

the Caribbean and western Atlantic (Southward et al. 1998), but was introduced to Hawaii in 

1973 and has since displaced most species in the intertidal zone (Zabin and Altieri 2007; Zabin 

2009). Very few individuals can coexist with C. proteus on rocky shorelines (Zabin 2009). This 

invasive barnacle has also been found in Guam, the Mariana Islands, and French Polynesia 

(Zabin 2009). Chthamalus proteus not only displaced native species but has also out-competed 

other nonnative barnacles, including Amphibalanus reticulatus, Balanus amphitrite and Balanus 

reticulatus (Zardus and Hadfield 2005; Zabin and Altieri 2007).  

Marine sessile invaders can have an impact on larval and juvenile stages of native 

invertebrates, which can consequently affect the native species through adulthood (Diederich 

2005; Diederich 2006). One example is the native blue mussel Mytilus edulis in the Wadden Sea. 

Mytilus edulis was predominantly found in dense beds at intertidal and subtidal zones; these 

mussel beds have been replaced by oyster reefs composed of invasive Crassostrea gigas (Reise 

1998; Diederich 2006). Diederich (2005) found that C. gigas recruited twice as much in number 

of larvae as M. edulis. Another study found that survival of juvenile mussels was 15% less when 

invasive C. gigas was present as compared to M. edulis alone (Markert et al. 2010).  

Within the last thirteen years, the pink titan acorn barnacle, Megabalanus coccopoma 

(Darwin, 1854), the Asian green mussel Perna viridis (Linnaeus, 1758) and the charru mussel 

Mytella charruana (d’Orbigny, 1846) have all been introduced into the southeastern Atlantic 
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coastline of the United States (Power et al. 2004; Boudreaux and Walters 2006; Spinuzzi et al. 

2013). A brief history of these invasions follows:  The barnacle M. coccopoma is native to North 

and Central America’s Pacific coast from southern California to Ecuador (Newman and 

McConnaughey 1987). The first documented introduction was to Brazil in the 1970s where this 

barnacle displaced existing barnacles (Lacombe and Monteiro 1974; Newman and 

McConnaughey 1987; Kerckhof 2002). A few decades later, M. coccopoma was found along the 

coasts of Japan and Belgium (Kerckhof 2002; Yamaguchi et al. 2009; Gilg et al. 2010; Kerckhof 

et al. 2010). In 2006, M. coccopoma was documented along the Atlantic coastline of central 

Florida, and is now established from Georgia to central Florida (Spinuzzi et al. 2013).  

The mussel P. viridis is native to the Indo-Pacific region from the Arabian Gulf to 

southern China and southern Japan (Sidall 1980). Perna viridis has been globally introduced 

through aquaculture and ballast water (Vakily 1989; Rajapopal et al. 2006; Baker et al. 2007). 

These invasions have resulted in unintentional harm in many marine ecosystems in Asia and 

have led to local economic losses (Vakily 1989; Rajapopal et al. 2006). Perna viridis was first 

observed in the United States in Tampa Bay, Florida in 1999, where it was observed attached to 

the cooling system of an electrical power plant (Power et al 2004; Baker et al. 2007). This 

nonnative mussel can now be found along the Atlantic coastline from northern Georgia to central 

Florida, and along the Gulf of Mexico from Florida to Texas (Baker et al. 2007; Spinuzzi et al. 

2013; V. Encomio, pers. comm.).  

The mussel Mytella charruana is native to the Atlantic coast of South America and the 

Pacific coast of Central America from Mexico to Ecuador (Lee 1987; Boudreaux and Walters 

2006). The first U.S. report of M. charruana was at the Northside Generator Power Plant in 

Jacksonville, FL in 1987 (Lee 1987). This mussel clogged the intake pipes until it disappeared in 
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the spring of 1987 (Lee 1987). Mytella charruana was next found on intertidal oyster reefs in 

Mosquito Lagoon in 2004, 212 km south of Jacksonville (Boudreaux and Walters 2006). 

Currently, M. charruana, which has a broad salinity tolerance, can be found along the Atlantic 

coastline from northern Georgia to central Florida (Yuan et al. 2010; Spinuzzi et al. 2013).  

One concern related to the recent invasions of M. coccopoma, P. viridis, and M. 

charruana to the southern United States, is whether or not these nonnative species negatively 

impact the native eastern oyster Crassostrea virginica (Gmelin, 1791). The eastern oyster  is a 

keystone species and ecosystem engineer that creates three-dimensional habitats used by 

numerous species that depend on oysters for food, refuge, and water filtration (Kennedy et al. 

1996). In light of research on other marine invaders, it is likely that one, two, or all three of these 

recent nonnative species are negatively impacting larvae or juvenile stages of native oysters. We 

know from other studies how detrimental invasive species can be on oysters (Kimbro et al. 2009; 

Sanford et al. 2014). Therefore, I examined potential effects of P. viridis, M. coccopoma and M. 

charruana on larval and juvenile (spat) stages of C. virginica in two manipulative experiments. 

In the first experiment, I investigated the effects of nonnative species on the larval stage 

of oysters.  This larval stage experiment had two objectives. First, I sought to determine whether 

oyster settlement was altered by the presence of any of these nonnative species. I hypothesized 

that the introduced species would negatively influence oyster larval settlement. This prediction 

was based on space availability (Zabin 2009), as the nonnative species will decrease the 

available area for oyster settlement. Second, I investigated whether there were any settlement 

location preferences for the oyster larvae that did indeed settle. Here, I hypothesized that a 

reduction of larval settlement would occur on oyster shells with attached introduced species and 

on the shells of the introduced species themselves. This prediction was based on similar studies 
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of barnacle larvae (Denley and Underwood 1979; Underwood and Denley 1984). Some barnacle 

species prefer to settle near conspecifics but would avoid settling if crowded conditions occur 

(Crisp 1961; Denley and Underwood 1979; Underwood and Denley 1984; Minchinton and 

Scheibling 1993).  

For the second experiment, I investigated how oyster spat would be impacted by the 

presence of the three nonnative species. Specifically, I investigated how spat survival and growth 

were impacted by the presence of the nonnative species. I hypothesized that the presence of 

introduced species would physically limit the resources and, thus, have a negative effect on 

survival and growth of oyster spat. This prediction was based on observed detrimental effects 

that the zebra mussel Dreissena polymorpha has on the native species upon which they colonize 

(Nalepa et al. 1995). For example, the weight of epibiont zebra mussels prevents native clams 

from opening their shells to feed, eventually leading to death of the clams (Schloesser and 

Nalepa 1994). The present study will provide basic understanding how specific nonnative 

species interact with the native Crassostrea virginica and whether these nonnative species should 

be considered invasive species. 
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CHAPTER TWO - METHODS 

Species collection sites 

For all experiments, Megabalanus coccopoma Darwin, 1854 (pink titan acorn barnacle) 

were collected from Sea Love Marina at Ponce Inlet, FL (28.083082 N, 80.935111 W). Perna 

viridis Linnaeus, 1758 (Asian green mussel) were collected from two floating docks at Euclid 

Avenue in St. Augustine, FL in 2011 (29.949781 N, 81.310227 W) and Sea Love Marina in 

2012. Due to low numbers of Mytella charruana d’Orbigny, 1846 (charru mussel), this species 

was not included in any of the 2011 experiments. In 2012, M. charruana were collected from a 

floating dock at Arlington Marina, Jacksonville, FL (30.334568 N, 81.612135 W). The native 

Geukensia demissa Dillwyn, 1817 (ribbed mussel) was added as a treatment in 2012 to test for 

the biotic effect of native neighbors. This mussel was collected off rocks in Mosquito Lagoon 

adjacent to the Marine Discovery Center in New Smyrna Beach, FL (29.030700 N, 80.917042 

W).  

All experiments used disarticulated shells of Crassostrea virginica Gmelin, 1791 

collected from Mosquito Lagoon. All fouling organisms and biofilm were scrubbed from the 

oyster shells and the shells were returned to the lagoon for at least one month to establish a 

natural biofilm. All oyster shells were randomly checked with the aid of a dissecting microscope 

for any new live macro-organisms one day before the experiment; any new macro-organisms 

were removed with forceps.  

Oyster Larval Experiment: Settlement and settlement preferences  
 
Settlement experiments were conducted at the University of Central Florida Marine Field 

Laboratory (Fellers House Field Station) in Canaveral National Seashore (28.906818 N, 

80.821216 W). All oyster settlement experiments were conducted within a 24 h period in 2011 
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and 2012. Each experiment was performed using a recirculating, raceway flume (20 cm wide, 

120 cm long with two semicircular ends as described in Tamburri et al. 1996, Fig. 1) with an 

overall flow rate of 5 cm s-1, which is the mean average mainstream flow rate in Mosquito 

Lagoon, FL (Boudreaux et al. 2009). A motor-driven paddle wheel was used to create the flow in 

the flume. Water was collected from Mosquito Lagoon and filtered through a plankton collector 

with nominal 25 μm opening (Aquarium Pro). Water depth was 10 cm for each experiment. 

Water salinity for each experiment was matched to the salinity in which oyster hatchery larvae 

were received.  For the summer 2011 experiment, oyster larvae were obtained from the Virginia 

Institute of Marine Science in Gloucester Point, VA, at salinities ranging from 16 to 18. For the 

2012 experiment, oyster larvae were obtained from Research Aquaculture, Inc. in Stuart, Florida, 

at a salinity of 27. All treatment species were acclimated to the experimental salinities for a 

minimum of 12 hours.  

One batch of oyster larvae (~ 150,000 eyed larvae in 2011, ~ 2,500,000 eyed larvae in 

2012) was used for each block of trials. A total of three trials per block were conducted in 2011 

and five trials per block in 2012 (Table 1). Oyster larvae were observed using a dissecting 

microscope to ensure larval activity before each trial.  

 
Fig. 1. Flume layout of oyster larvae settlement for each trial 

Motor-driven 
paddle wheel 
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Table 1. Experimental blocks for larval settlement trials in (a) 2011 and (b) 2012. All treatment 
used oyster shell as substratum. Control: C. virginica shells alone. Nonnative species: Perna 
viridis, Megabalanus coccopoma, and Mytella charruana. Native mussel: Geukensia demissa.  

a) 2011 
Trial Block 1 Block 2 Block 3 

1 Control M. coccopoma P. viridis 
2 M. coccopoma P. viridis Control 
3 P. viridis Control M. coccopoma 

b) 2012 
Trial Block 1 Block 2 Block 3 Block 4 Block 5 

1 P. viridis G. demissa M. coccopoma M. charruana Control 
2 G. demissa P. viridis Control M. coccopoma M. charruana 
3 M. coccopoma M. charruana G. demissa Control P. viridis 
4 M. charruana Control P. viridis G. demissa M. coccopoma 
5 Control M. coccopoma M. charruana P. viridis G. demissa 

 

Each trial within a block was comprised of a mix of 50 disarticulated oyster shells and 50 

disarticulated oyster shells with one attached live sessile invertebrate treatment (i.e., M. 

coccopoma, P. viridis, M. charruana, or G. demissa), with the exception of the control trials. 

Each control trial consisted of 100 oyster shells with nothing attached. The position and 

orientation of each oyster shell in the flume and the order of each shell (i.e., control or treatment) 

within a trial were randomized. Each trial was run for 1 h.  

For treatments with M. coccopoma, one barnacle was attached to each oyster shell using 

Gorilla GlueTM. Gluing was necessary because M. coccopoma cannot naturally re-attach to 

substrates after they have been removed from their original substrate. Excess glue was removed 

after drying with a scalpel. A preliminary test of the effect of Gorilla GlueTM on survival of M. 

coccopoma (n = 6) found 100% survival after 2 weeks (W. Yuan, pers. obs.).  

For all mussel treatments, I placed individual mussels onto oyster shells for a minimum 

of 2 h in separate tanks. This allowed each mussel to naturally attach to the oyster shell via 

byssal thread production. The orientation of mussels was not accounted for because the mussels 
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move using their foot and repeatedly attach/re-attach with their byssal threads. Mussels remained 

attached to oyster shells throughout each trial.  

After each trial ended, all oyster shells and the shells of attached species were examined 

with the aid of a dissecting microscope (LEICA EZ4) for newly settled oysters. The surface area 

of all oyster shells and all attached invertebrate shells were traced using a permanent ultra-fine 

point marker onto plastic transparency sheets. The tracings were digitized using ImageJ software 

(Abramoff et al. 2004) to calculate surface areas. This process standardized total surface area 

among treatments and blocks. To calculate the number of settled larvae per cm2/trial, I first 

found total number of larvae that settled in each trial and then divided by the total surface area of 

oyster shells and shells of treatment species in that trial. 

Total oyster settlement data was analyzed using randomized-block ANOVA in JMP 

statistical software (SAS Institute 2009). Multiple comparisons among treatments were analyzed 

using Tukey’s a posteriori tests with Bonferroni corrections with α = 0.002. As no block effects 

were found for either the 2011 and 2012 oyster settlement preference experiments [Random 

block ANOVA: 2011 (F 2, 4 = 0.4, p = 0.6817); 2012 (F 4, 16 = 0.3, p = 0.8849)], these data were 

analyzed with one-way ANOVA. Additionally, t-tests were used to analyze the difference 

between the number of settled larvae on oyster shells and shells of the treatment species 

barnacles and mussels. 

 

Oyster Spat Experiment: Survival and growth 
 
The survival and growth experiment evaluated whether nonnative species negatively 

impacted oyster spat. Oyster spat and all live species were prepared in the laboratory and 
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transferred to floating docks at the New Smyrna Beach Marine Discovery Center. All three 

nonnative species were already present at this study site (Spinuzzi et al. 2013). 

Spat of Crassostrea virginica used in this experiment came from different sources in 

2011 and 2012. In 2011, I used spat that were naturally attached to disarticulated oyster shells 

collected in Mosquito Lagoon. In 2012, I used spat reared by Research Aquaculture, Inc. (Stuart, 

FL) using oysters spawned from St. Augustine, FL. Hatchery spat were used due to the low 

number of spat found in Mosquito Lagoon in 2012. The 2012 spat were cultchless (i.e., 

unattached to any substrate) and were glued to oyster shells using Gorilla GlueTM. All excess 

glue was removed to prevent confounding factors such as bumps or ridges. Prior to my trials, all 

spat were acclimated to field salinity for 5 days.  I tested whether glued spat had different growth 

and survival as compared to naturally attached spat. Glued spat were placed in the field for one 

week. No significant differences (t-test, N = 20, p = 0.6874) were found for growth and survival 

(100%), indicating that the glue was not negatively influencing the glued spat as compared to 

naturally attached spat.   

In 2011, I conducted the trial between 25 June and 6 August. There were three 

treatments: 1) oyster spat, 2) oyster spat with four adult M. coccopoma, and 3) oyster spat with 

four adult P. viridis. For the 2012 experiment, I conducted the trial between 28 July and 8 

September.  The experiment conducted in 2012 consisted of six treatments, one treatment of 

uncaged oyster spat and five caged treatments consisting of: 1) oyster spat, 2) oyster spat with 

four adult M. charruana, 3) oyster spat with four adult M. coccopoma, 4) oyster spat with four 

adult P. viridis, and 5) oyster spat with four adult G. demissa (Fig. 2).  
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Fig. 2. Experimental design of oyster spat survival and growth in 2012 experiment. Total of 6 
treatments (n = 20). One treatment of uncaged oyster spat and five caged treatments consisting of 
oyster spat, oyster spat with four adult M. charruana, oyster spat with four adult M. coccopoma, 
oyster spat with four adult P. viridis, and oyster spat with four adult G. demissa. 

 

Mussels are gregarious; therefore, I used clusters of four mussels in both 2011 and 2012, 

as this was a better representation of the natural environment than a solitary mussel (Bayne et al. 

1976). For each mussel treatment, mussels were allowed to attach via byssal threads to a 

disarticulated oyster shell with one oyster spat. The mussels all attached within 1 cm of the spat. 

Mean shell lengths and standard deviation of mussels used in these trials were: M. charruana (n 

= 20, 48 ± 7 mm), P. viridis (n = 40, 113 ± 28 mm), and G. demissa (n=20, 54 ± 12 mm). 

Similarly, the M. coccopoma (n = 20, mean height: 68 ± 8 mm) treatment consisted of a cluster 

of four barnacles glued onto a disarticulated oyster shell within 5 mm of the previously settled or 

glued oyster spat.  
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Cages were added in 2012 to reduce crab predation after a juvenile stone crab was found 

in the 2011 experiment. These cages were made of aquaculture grade VexarTM mesh with 1.5 cm 

openings and constructed to fit within the experimental mesh bags. Oyster shells of each 

treatment were placed individually in aquaculture grade, 1.5 cm opening diamond-oriented-mesh 

bags (bag dimensions: 16 x 16 x 19 cm). One bag of each treatment was placed in a randomized 

order on PVC frames (50 x 50 cm) hung under a floating dock in New Smyrna Beach. Each PVC 

frame was 0.5 m2 and all bags were attached to the PVC pipe that bisected the frame; bags were 

separated by 5 cm (Fig. 3). A total of 20 PVC frames floated on the surface with all experimental 

bags hanging at a depth of 25 cm. Oyster spat survival was recorded weekly for 6 weeks. Any 

dead barnacles and mussels were replaced once a week thoughout the 6-week experimental 

period.  

 
 

 

Fig. 3. Example of a frame design for 6 treatments in 2012 experiment for oyster spat survival 
and growth. 

Growth was calculated for surviving oysters using the difference between the initial and 

final surface areas for each individual. I traced surface areas at the start and end of each 

experiment with a permanent, ultra-fine point marker onto plastic transparency sheets. The initial 

0.5 m 

0.5 m 
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and final surface area of each oyster spat were then digitized and calculated using ImageJ 

software (Abramoff et al. 2004).  

Survival and growth data were analyzed in JMP statistical software (SAS Institute 2009). 

Kaplan-Meier survival analysis was used to compare survivorship (slopes of weekly survival 

over 6 weeks) and pairwise comparisons were performed to determine if significant differences 

were present in slopes among treatments (SAS Institute 2009).  Final survival data at week 6 

were analyzed with logistic regression. I analyzed the oyster spat growth data in the 2011 

experiment with ANCOVA. This analysis incorporated the significant variation among the initial 

spat sizes (i.e., covariate). In the 2012 experiment, initial spat size was not significantly different 

among treatments (one-way ANOVA, F 2, 41 = 0.8401, p = 0.439). Therefore, one-way ANOVA 

was used to analyze the growth. Growth data was log transformed to meet test assumptions. 
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CHAPTER THREE - RESULTS 

Oyster Larvae: Settlement  
 
In 2011, oyster settlement was significantly affected by the presence of nonnative species 

in the flume (randomized-block ANOVA: F 2, 4 = 7.5, p = 0.0445; Fig 4a; Table 2). Tukey’s a 

posteriori tests showed the number of settled larvae was significantly reduced in treatments with 

the Asian green mussel Perna viridis (Linnaeus, 1758) and the pink titan acorn barnacle, 

Megabalanus coccopoma (Darwin, 1854) when compared to control shells of the eastern oyster, 

C. virginica (Germin, 1791). A difference among blocks was also found in the 2011 experiment 

(randomized-block ANOVA: F 2, 4 = 34.0, p = 0.0031), coinciding with differences in batches of 

larvae received (Fig. 4b).  

Table 2. ANOVA comparison of oyster larval settlement in 2011. Bold and * indicates a 
significant difference at α = 0.05. 

  DF SS MS F-ratio Prob > F 

Treatment 2 24.0 12.0 7.5 0.0445* 

Block 2 109.4 54.7 34.0 0.0031* 

Error 4 6.4 1.6     

Total 8 139.8       
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Fig. 4. Average number of settled larvae per cm2 on shells of C. virginica alone (control) or 
attached to oyster shells with nonnative species attached. a) 2011 mean number of settled larvae 
(n=3), b) 2011 mean number of settled larvae for each block, c) 2012 mean number of settled 
larvae (n=5), and d) 2012 mean number of settled larvae for each block. Capitalized letters in 
graphs indicates significant differences at α = 0.05 as determined by Tukey’s a posteriori tests 
with Bonferroni corrections. 
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Similarly, in the 2012 experiment, oyster settlement was significantly affected by the 

presence of nonnative species in the flume (randomized-block ANOVA: F 4, 16 = 3.3, p = 0.0364; 

Table 3, Figs. 4c). Tukey’s a posteriori tests showed the number of settled larvae was 

significantly reduced by M. coccopoma as compared to Geukensia demissa (Dillwyn, 1817), but 

not as compared to the charru mussel Mytella charruana (d’Orbigny, 1846), P. viridis or the 

control shells of C. virginica only. A difference among blocks was also found in the 2012 

experiment (randomized-block ANOVA: F4, 16 = 80.1, p = 0.0001; Table 3, Figs. 4d). 

Table 3. ANOVA comparison of oyster larval settlement in 2012. Bold and * indicates a 
significant difference at α = 0.05. 

  DF SS MS F-ratio Prob > F 

Treatment 4 1.5 0.4 3.3 0.0364* 

Block 4 36.4 9.1 80.1 0.0001* 

Error 16 1.8 0.1 
  

Total 24 39.7 
    

Oyster Larvae: Settlement preference 
 

For larvae that settled, there was no preference or avoidance of shells of C. virginica with 

attached mussels or barnacles in the 2011 experiment (One-way ANOVA: F 2, 6 = 3.3, p = 

0.1100; Fig. 5a; Table 4). However, in the 2012 experiment a significant difference was found 

among treatments in the number of settled oysters on control shells and shells with attached 

native or nonnative invertebrates (One-way ANOVA: F 4, 20 = 2.9, p = 0.0490; Table 5]. Tukey’s 

a posteriori test showed that shells with M. charruana had significantly less settlement than 

shells with attached G. demissa (Fig. 5b).  
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Fig. 5. Larval settlement preferences of nonnative species for a) 2011: Megabalanus coccopoma 
and Perna viridis, b) 2012: P. viridis, M. coccopoma, Mytella charruana and native Geukensia 
demissa. Positive values indicate oyster larvae settled more on disarticulated oyster shells with 
attached sessile species, while negative values indicate oyster larvae settled more on 
disarticulated oyster shells without attached sessile species (i.e., control). 
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Table 4. ANOVA comparison for oyster settlement preference in 2011.  

  DF SS MS F-ratio Prob > F 

Treatment 2 72.1 36.1 3.3 0.1100 

Error 6 64.8 11.0     

Total 8 137.9       
 

 
Table 5. ANOVA comparison for oyster settlement preference in 2012. Bold and * indicates a 
significant difference at α = 0.05. 

 

  DF SS MS F-ratio Prob > F 

Treatment 4 1.7 0.4 2.9  0.0490* 

Error 20 2.9 0.1     

Total 24 4.5       
 

 

Further analyses were conducted on oyster shells with attached invertebrates by 

comparing the number of larvae settled on the oyster shell versus the shell of the barnacles and 

mussels (Fig. 6). In the 2012 experiment, oyster larvae preferred to settle on oyster shell over the 

shells of M. charruana (t-test: N= 250, p = 0.0159; Fig. 6e), G. demissa (t-test: N= 250, p = 

0.0053; Fig. 6f) and P. viridis (t-test: N=250, p = 0.0410; Fig. 6c).  However, the shells of P. 

viridis was not preferred in 2011 experiment (t-test: N = 150, p = 0.1468; Fig. 6a). The shells of 

M. coccopoma was not preferred or avoided by oyster larvae either year (Figs. 6b, d).  
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Fig. 6. Settlement location of oyster larvae on oyster shells with native or nonnative species 
attached to the shell. The number of settled larvae on nonnative species is shown for a) 2011: 
Perna viridis, b) 2011: Megabalanus coccopoma, c) 2012: P. viridis, d) 2012: M. coccopoma, e) 
2012: Mytella charruana and f) 2012: native Geukensia demissa. Native/nonnative shell 
indicates number of oyster larvae settled on the shells of attached invertebrates. Oyster shell 
indicates number of oyster larvae settled on the oyster shell with invertebrates attached. 
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Oyster Spat: Survival  

For the 2011 experiment, there was a significant difference in final oyster survival among 

all tested treatments (logistic regression: r = 0.1879, chi2 = 13.4, p = 0.0002). Spat on the oyster 

shell - only treatment had a 90% survivorship at the end of experiment. The survivorship of spat 

on oyster shell was not significantly different from oyster shells with M. coccopoma (85% 

survivorship), but different from oyster shells with P. viridis (45% survival, Fig. 7a).  In the 2012 

experiment, there was also a significant difference in final survival among treatments (logistic 

regression: r = 0.0269, chi2 = 4.35, p = 0.0411). Caged-control (60% survivorship) and uncaged-

control (55% survivorship) treatments were not significantly different, suggesting that cages had 

no effect on oyster spat survival (chi2 = 0.1023, p = 0.749).  Spat surrounded by clusters of P. 

viridis had the lowest survival; only 20% of spat survived. In the presence of M. charruana, M. 

coccopoma and G. demissa, 25, 35, and 45% of oysters survived, respectively (Fig. 7b).  

Kaplan-Meier survival analysis for the 2011 experiment showed that there was a 

significant difference (p = 0.0006) in spat survival slopes among the treatments over six weeks 

(Fig. 7a). Pairwise analyses then showed that there was a significant difference (p = 0.0061) 

between spat-only treatment and spat with Perna viridis. However, no significant difference in 

survivorship (p = 0.5537) was shown between control and spat in the M. coccopoma treatment 

over the course of the experiment (Fig. 7a). In 2012, the survival analysis again showed that 

there was a significant overall difference (p = 0.0060) in survivorship of spat among the 

treatments over six weeks. The two nonnative mussels, P. viridis and M. charruana, had the 

greatest impact (20 and 25% survived, respectively) on oyster spat survival. The survivorship 

curve for the spat with M. charruana showed a large decrease during the third to fourth week 

(Fig. 7b). The spat in the uncaged control treatment, the caged control treatment, and in the 
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native mussel treatment (Geukensia demissa) had similar survival curves with final survival of 

55, 60, and 45% (Fig. 7b). The spat in the Megabalanus coccopoma treatment had a steady 

decline over the course of six weeks with a final survival of 35% (Fig. 7b).  
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Fig. 7. Survival over time of oyster spat (Crassostrea virginica) exposed to native or nonnative 
species a) 2011: Megabalanus coccopoma and Perna viridis and b) 2012: M. coccopoma. P. 
viridis, Mytella charruana and Geukensia demissa. Cage control treatment was added in 2012. 
Treatments were compared using Kaplan-Meier multiple pairwise comparisons for survival over 
time; different letters at week 6 indicate significant differences at α = 0.05. 
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Oyster Spat: Growth 

With regard to oyster spat overall growth in the 2011 experiment, the initial spat size was 

significantly different among treatments (ANCOVA, F 1, 40 = 10.7, p = 0.0020; Table 6; Fig. 8a) 

and treatment did not have an effect on growth (F 1, 40 = 2.3, p = 0.11, Table 6; Fig. 8a) because 

the initial size of oyster spat influenced growth. The interaction of initial spat size and treatments 

was not significant (ANCOVA, F2, 38 = 0.57, p = 0.57); therefore, an interactive effect was not 

included in this analysis.    

Table 6. ANOVA comparison for oyster spat growth in 2011. Bold and * indicates a significant 
difference at α = 0.05. 

  DF SS MS F-ratio Prob > F 
Initial size 
(covariate) 1 36.4 36.4  10.7 0.0020* 

Treatment 2 15.6 7.8 2.3 0.1100 

Error 40 
 

135.8 3.4     

C. Total 43 180.1       
 

 
Initial spat size was not significantly different among the tested treatments in 2012 

experiment (One-way ANOVA, F 5, 114 = 0.0563, p = 0.9979; Table 7). There was a significant 

difference in the growth of spat among treatments (One-way ANOVA, F5, 42 = 3.5, p=0.0098; 

Fig. 8b; Table 8). Tukey’s a posteriori showed oyster growth in the presence of M. charruana 

was significantly slower than uncaged oyster spat, caged oyster spat, and spat with G. demissa. 

In 2012, cages had no effect on spat growth as no significant difference was detected between 

spat with and without cages (Tukey’s a posteriori: p = 0.7337). 
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Fig. 8. Oyster spat growth of Crassostrea virginica after exposed to different nonnative species. 
a) 2011: Megabalanus coccopoma and Perna viridis. The treatments were analyzed with 
ANCOVA. The regression lines show best fit lines for each treatment. b) 2012: M. coccopoma, 
P. viridis, Mytella charruana and native Geukensia demissa. The treatments were analyzed with 
one-way ANOVA. Cage treatment for control was added in 2012. Treatments with different 
letters indicate significant differences at α = 0.05 as determined by pairwise comparisons in 2011 
and Tukey’s a posteriori tests with Bonferroni corrections in 2012. 
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Table 7. ANOVA comparison for initial oyster spat size in 2012. 

 
DF SS MS F-ratio Prob > F 

Treatment 5 0.0002 0.000038 0.1 0.9979 

Error 114 0.1 0.000682 
  

Total 119 0.1 
    

Table 8. ANOVA comparison for oyster spat growth in 2012. Bold and * indicates a significant 
difference at α = 0.05. 

 
DF SS MS F-ratio Prob > F 

Treatment 5 1.1 0.2 3.5 0.0098* 

Error 42 2.5 0.1 
  

Total 47 3.6 
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CHAPTER FOUR – DISCUSSION 

This study sought to investigate how three recent marine invaders [(Megabalanus 

coccopoma (Darwin, 1854), Perna viridis (Linnaeus, 1758), and Mytella charruana (d’Orbigny, 

1846)] impact two life history stages (larvae and spat) of the native eastern oyster Crassostrea 

virginica (Gmelin, 1791). I found that all three tested nonnative species negatively affected in 

some manner C. virginica. Two of the three species, M. coccopoma and P. viridis, reduced larval 

settlement and all mussel species [M. charruana, P. viridis and Geukensia demissa (Dillwyn, 

1817)] influenced the attachment location for larvae that did settle (Table 9). In addition, spat 

survival was reduced by M. charruana and P. viridis, while spat growth was reduced when 

surrounded by M. charruana (Table 9). Below I discuss how these three nonnative species 

impact oyster settlement, survival and growth of oyster spat and compare these species to other 

known marine invaders. This study concludes by discussing the risks these species pose to the 

native oyster populations in the southeastern United States. 
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Table 9. Summary of results for oyster larval and spat experiment. Settlement refers to larval 
choice to settle or not settle. Settlement preference refers to any location preference made by 
oyster larvae.  

 

Chemicals that repel oyster settlement and the consumption of oyster larvae before 

settlement are two mechanisms that have been shown to reduce oyster settlement (Kennedy 

1996). First, allelopathic chemicals (surface-bound or excreted) produced by benthic species 

have been found to repel larvae from settling on or near defended species (Goodbody 1961).  For 

example, Johnson and Strathmann (1989) found larvae of Balanus glandula avoid settling on and 

near the snail Nucella lamellosa, a predator of barnacles, because of chemicals contained in the 

mucus they produced. Based on my results, the release of chemicals that prevented oyster larvae 

from settling is possible only for P. viridis. It is unlikely that M. coccopoma released deterrent 

chemicals because larvae were found both on and near M. coccopoma. Second, some large 

sessile species are known to prey on oyster larvae. Benthic predators such as sea anemones, 

barnacles, and ascidians are all predators of oyster larvae and, thus, reduce oyster larval 

settlement (MacKenzie 1977, Steinberg and Kennedy 1979, Osman et al. 1989; Kennedy 1996). 

  

Larvae of Crassostrea virginica Spat of Crassostrea virginica 

Settlement 
Settlement 
Preference Survival Growth 

2011 2012 2011 2012 2011 2012 2011 2012 

M. coccopoma 
* ** X X X X X X 

P. viridis * X X * * * X X 

M. charruana  - X - * - * - * 

G. demissa  - X - * - X - X 

*   indicates a significant difference between nonnative species and control.  
** indicates a significant difference between nonnative species and native G. demissa only.  
X  indicates no statistical difference was found between treatment and control.  
 -   indicates not tested in 2011. 
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Steinberg and Kennedy (1979) observed that barnacles ingested as well as partially digested 

larvae found in their guts. In my study, predation by M. coccopoma and P. viridis was potentially 

a cause of the reduction of larval settlement. Egan and Anderson (1986) documented that adult 

Balanus amphitrite used their cirral fans to capture and prey on zooplankton, including oyster 

larvae. Megabalanus coccopoma was approximately twice the size of the barnacles used in the 

study by Egan and Anderson (1986), so it is possible that M. coccopoma was also able to 

consume oyster larvae. In other studies, predation by adult barnacles decreased larval settlement 

of benthic species by 65 - 100% (Anderson 1994, Navarrete and Wieters 2000). Much like 

barnacles, large marine mussels can ingest zooplankton, including larvae of invertebrates 

(Lehane and Davenport 2002). Perna canaliculus, a congener to P. viridis, has been found to 

consume zooplankton up to 430 μm in size (Zeldis et al. 2004), which is larger than the average 

size of oyster larvae (250 μm) used in my study.  

For the oyster larvae that settled, individuals avoided shells of mussels and showed no 

settlement preference or avoidance of barnacle and oyster shells. This difference was not likely 

due to the composition of the shells because the shells of oysters, barnacles and mussels are all 

composed of calcium carbonate (Bourget 1987; Osman and Whitlatch 1995; Hamester et al. 

2012).  Preference for specific shell surface topographic complexity is a plausible explanation for 

the oyster larvae that settled on barnacle shells, but not mussel shells (Steinberg and Kennedy 

1979; Osman and Whitlatch 1995). Surface topography often regulates the location where larvae 

settle (Walters and Wethey 1991, Walters 1992, Tamburri et al. 2008). Oyster and barnacle 

shells shared similar surface roughness and texture; creating small crevices for oyster larvae to 

settle (Osman and Whitlatch 1995). Additionally, Diederich (2005) found larvae of the Pacific 

oyster C. gigas preferred shells of oysters over mussels or a mixture of both. Even larvae of the 
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gregarious barnacle Elminius modestus preferred to settle on the shells of oysters over mussels as 

substratum (Kochmann et al. 2008).  

In my study, the reductions in survival and growth of oyster spat may be, in part, the 

results of weight from P. viridis and M. charruana on oyster spat, as well as from byssal threads 

produced by the mussels that covered the shells of the oyster spat. Competition from epibiont 

organisms is one of the main causes of mortality and reduction in growth for some juvenile 

basibionts (Osman et al. 1989; Kennedy et al. 1996). First, calcareous epibionts can increase 

weight and decrease accessibility to resources (food, space) for basibionts (Wahl 1989). For 

example, Royer et al. (2006) found that epibionts, such barnacles, mussels, polychaetes and 

ascidians, can increase the total weight (oyster and epibionts) up to 35.2% within a six month 

period. Second, studies have shown that the production of byssal threads of mussels can restrict 

the amount of food availability for basibionts; this includes oysters and mussels (Zardi et al. 

2006; Wahl 2008). In these studies, the epibionts decreased growth and eventually caused 

mortality of the basibionts (Zardi et al. 2006; Wahl 2008). Koganezawa (1972) found that 

clusters of three and seven mussels reduced oyster growth by 20% and 40%, respectively in the 

field. Similar to Kogenazawa (1972), I placed clusters of mussels (4/cluster) around each oyster 

spat. Additionally, I expected P. viridis to have equal or greater effect on oyster spat because P. 

viridis was twice the size of M. charruana. However, the reduction of spat growth was not 

observed with P. viridis. Although the lack of observable impact of P. viridis on oyster spat 

growth was counter to what I expected, this result was likely due to the fact that P. viridis 

affected spat differentially that resulted in spat mortality. This is evident from high mortality 

occurring within the first two weeks of the experiment in treatments with P. viridis, whereas, 

spat with M. charruana experienced higher mortality after week 3. Another surprising result was 
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that only M. charruana reduced oyster growth rate even though M. charruana and G. demissa 

were similarly sized. Invasive M. charruana may have greater detrimental effects on oyster spat 

than native G. demissa due to a higher production of byssal threads (Brodsky et al. 2011). 

Brodsky et al. (2011) found that M. charruana produced twice as many byssal threads as G. 

demissa at 23°C in 7 days. When sufficient numbers are present, byssal threads from mussels can 

decrease food consumption of basibionts by restricted bivalves from opening as well as 

hindering water flow (Haag et al. 1993). 

In my study, I found that barnacles had no effect on the survival or growth of oyster spat. 

These results are counter to results from Boudreaux et al. (2009), also working in Mosquito 

Lagoon, who found that the presence of the native barnacle B. eburneus and the nonnative 

barnacle B. amphitrite reduced oyster spat growth. This result was independent of barnacle 

density. In the same study, oyster survival was negatively affected by high barnacle density but 

not by the presence of barnacles (Boudreaux et al. 2009). It is possible that higher densities of M. 

coccopoma than those used in in my study (clusters of 4/spat) are needed to impact oyster 

survival.  

 Differences in larval settlement and differences in spat survival of control treatments 

were found between experiments run in 2011 and 2012. First, higher density of oyster larvae 

settled in 2011 compared to 2012 in the larval experiment using a recirculating flume with local 

water. This was surprising as there were 10X more larvae used in 2012. It is possible that the 

brown tide alga Aureoumbra lagunensis influenced oyster settlement in 2012 as cell densities of 

A. lagunensis reached 3.2 billion/liter in Mosquito Lagoon during my study (St. Johns River 

Water Management District 2013). My larval settlement experiment in 2012 coincided with the 

first appearance of A. lagunensis in the Mosquito Lagoon, the source of the water used in my 
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experiment. Although the water used in the flume was filtered with a nominal opening of 25 μm, 

the smaller A. lagunensis (4-5 μm) would not be completely filtered out (Gobler and Sunda 

2012). The variation between years in the proportions of settled larvae could also be due to 

differences in larval sources or the age of the larvae when tested. The larvae came from two 

different hatcheries; Virginia was the source of larvae for the 2011 experiment and Florida was 

the source in 2012. The hatcheries shared the same basic protocols but there were unavoidable 

differences in handling, equipment and shipping time. It is possible that the oyster larvae in the 

2011 experiment were more competent to settle than in 2012. Second, one surprising conclusion 

was that there were observed year-to-year differences in how P. viridis impacted oyster larval 

settlement (Fig. 4). A statistically significant reduction was found in 2011 experiment, but not in 

2012. However, the overall trend did show a small reduction in larval settlement in the presence 

of P. viridis (p = 0.3199). Third, there was a 35% difference in spat survival of the control 

treatments for the field experiment between the two years (Fig. 7). The additive effects of A. 

lagunensis plus high salinity (40 during my experiment) likely contributed to the differences in 

spat survival and growth. Gobler et al. (2013) found that A. lagunensis was associated with a 

significant reduction in the size of C. virginica that settled in summer of 2012 when compared to 

previous 3 years. Unlike the larval experiment in the flume where I was able to modify salinity, I 

was unable to adjust the salinity for the field experiment for spat survival and growth.  

Like other sessile invaders, M. coccopoma, P. viridis and M. charruana are now 

established along the southeastern US and it would be almost impossible to eradicate all three 

populations (Thresher and Kuris 2004; Molnar et al. 2008). The densities of these nonnative 

species depend on environmental factors such as temperature and salinity (Yuan et al. 2010; 

Spinuzzi et al. 2013; Yuan et al. unpublished data) as well as propagule pressure (number of 
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introductions which is currently unknown). Years with warmer winters yielded higher counts of 

nonnative species (Spinuzzi et al. 2013); global climate change will likely influence the number 

of these nonnative species in the introduced range as the projections for temperature are 

increasing over time (Molnar et al. 2008; Lewis and Coutts 2010). The negative effects of 

nonnative species competing for resources can amplify the global stress already present for reefs 

of C. virginica (Beck et al. 2011; zu Ermgassen et al. 2013). My study showed that the three 

tested nonnative invertebrates do, in fact, negatively affect C. virginica during two different life-

stages (i.e., larval and early juvenile). Given these negative effects, all three of these nonnative 

species should be categorized as invasive according to Executive Order 13112 (1999), whereby 

invasive species are defined as nonnative species that either cause economic or environmental 

harm or impact to human health. The combined impact of these challenges can put oysters in a 

vulnerable state, which may leave them more susceptible to the effects of other abiotic and biotic 

stressors. This study provides important insights that will help conserve remaining oyster reef 

habitats, as well as underscore the threats that invasive species pose to the conservation of this 

imperiled ecosystem. 
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