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REVIEW

Ionizing radiation-induced risks to the central nervous system and
countermeasures in cellular and rodent models

Eloise Pariseta,b, Sherina Malkanib,c, Egle Cekanaviciuteb , and Sylvain V. Costesb

aUniversities Space Research Association, Columbia, MD, USA; bSpace Biosciences Division, NASA Ames Research Center, Moffett Field, CA,
USA; cYoung Scientist Program, Blue Marble Space Institute of Science, Moffett Field, CA, USA

ABSTRACT
Purpose: Harmful effects of ionizing radiation on the Central Nervous System (CNS) are a concern-
ing outcome in the field of cancer radiotherapy and form a major risk for deep space exploration.
Both acute and chronic CNS irradiation induce a complex network of molecular and cellular altera-
tions including DNA damage, oxidative stress, cell death and systemic inflammation, leading to
changes in neuronal structure and synaptic plasticity with behavioral and cognitive consequences
in animal models. Due to this complexity, countermeasure or therapeutic approaches to reduce
the harmful effects of ionizing radiation include a wide range of protective and mitigative strat-
egies, which merit a thorough comparative analysis.
Materials and methods: We reviewed current approaches for developing countermeasures to
both targeted and non-targeted effects of ionizing radiation on the CNS from the molecular and
cellular to the behavioral level.
Results: We focus on countermeasures that aim to mitigate the four main detrimental actions of
radiation on CNS: DNA damage, free radical formation and oxidative stress, cell death, and harmful
systemic responses including tissue death and neuroinflammation. We propose a comprehensive
review of CNS radiation countermeasures reported for the full range of irradiation types (photons
and particles, low and high linear energy transfer) and doses (from a fraction of gray to several
tens of gray, fractionated and unfractionated), with a particular interest for exposure conditions
relevant to deep-space environment and radiotherapy. Our review reveals the importance of com-
bined strategies that increase DNA protection and repair, reduce free radical formation and
increase their elimination, limit inflammation and improve cell viability, limit tissue damage and
increase repair and plasticity.
Conclusions: The majority of therapeutic approaches to protect the CNS from ionizing radiation
have been limited to acute high dose and high dose rate gamma irradiation, and few are translat-
able from animal models to potential human application due to harmful side effects and lack of
blood-brain barrier permeability that precludes peripheral administration. Therefore, a promising
research direction would be to focus on practical applicability and effectiveness in a wider range
of irradiation paradigms, from fractionated therapeutic to deep space radiation. In addition to dis-
covering novel therapeutics, it would be worth maximizing the benefits and reducing side effects
of those that already exist. Finally, we suggest that novel cellular and tissue models for developing
and testing countermeasures in the context of other impairments might also be applied to the
field of CNS responses to ionizing radiation.
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Introduction

Development of medical countermeasures against ionizing
radiation has far-ranging implications from reducing dam-
age to the healthy tissue during radiotherapy, to limiting the
hazards posed by space radiation in deep space exploration,
to protecting public health in the event of a nuclear emer-
gency. Our review focuses on countermeasures for irradi-
ation conditions relevant to radiotherapy (low-linear energy
transfer (LET) ionizing radiation, such as gamma rays and

X-rays, but also high-LET particle radiation, with an
increase use of proton and carbon ions (Ray et al. 2018), at
fractionated doses ranging from 10 to 50Gy total (Barani
and Larson 2015; Lumniczky et al. 2017) and space environ-
ment: primarily galactic cosmic rays, which is the most
damaging and hardest to shield component of the deep-
space radiation environment, but also gamma rays in the
context of low-Earth orbit missions. The radiation doses of
interest to model the exposure conditions of astronauts
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onboard of the International Space Station (ISS) are between
0.1 to 0.4 mGy/day of gamma rays, contributing to the total
dose of about 0.15Gy for a year-long mission, correspond-
ing to the longest time in orbit so far (Beheshti et al. 2018).
In addition, high-LET particle radiation is becoming increas-
ingly important for deep space exploration beyond the pro-
tective magnetic field of the Earth on lunar and Mars
missions (Nelson 2016), where astronauts are exposed to a
total dose of around 0.4 mGy/day of galactic cosmic rays
(Hassler et al. 2014), composed of about 90% protons, 9%
helium particles and 1% high mass and high charge particles
(mainly from 12C to 56Fe).

Countermeasures for extreme irradiation conditions
(unfractionated doses above 2Gy) have been extensively
reported even though they present limited relevance for
human CNS protection. Such doses can be emitted in the
event of nuclear emergencies (Chernobyl 2002; Wong et al.
1993) and in nuclear facilities (Gillies et al. 2017; Azizova et
al. 2020)), but also in novel radiotherapy treatments, such as
gamma knife surgery (Colaco et al. 2016; Hasegawa et al.
2017). They are referenced in this review as potential direc-
tions for future applications targeting more relevant radi-
ation types and doses, with the assumption that some
protective pathways might be extended across ranges of
irradiation conditions (Figure 1).

Although the central nervous system is traditionally not
considered to be the most radiosensitive organ, its damage
can be particularly devastating to the health and the quality
of life, and is difficult to repair. Acute high-dose radiation
during radiotherapy induces bystander damage to CNS,
leading to reduced hippocampal neurogenesis and develop-
ment of neuroinflammation throughout the cortex and
hippocampus, which are associated with cognitive and mem-
ory deficits, particularly harmful to the developing brain in
children and adolescents (Mizumatsu et al. 2003; Monje
et al. 2003; Rooney and Laack 2013). Acute exposure to
galactic cosmic rays or their components causes similar
impairments both in vitro and in vivo: increased neuroin-
flammation, neuronal damage and cognitive deficits similar
to accelerated aging (Cekanaviciute et al. 2018).

Radiation-induced damage to CNS, as to any other organ,
can be classified as a combination of targeted effects of dir-
ect DNA damage and non-targeted effects that are primarily
mediated by oxidative stress responses and cause cellular
damage and death eventually leading to damage at tissue
and organ levels (Heuskin et al. 2016). Thus, CNS responses
to radiation, as shown in Figure 2, can also be analyzed and
mitigated at different levels: from molecular (DNA damage,
reactive oxygen species), to cellular (cell membrane damage,
cell death), to vascular leakage and disrupted electrochemical
connections between neurons, to tissue and organ damage
that eventually culminates in behavioral deficits (Greene-
Schloesser and Robbins 2012).

Current approaches to CNS radioprotection usually con-
sist of eliminating radiation-induced reactive oxygen species
(ROS), increasing DNA protection and repair, and targeting
the downstream effects by limiting inflammation and
increasing cell survival and tissue repair. In general,

countermeasures can be classified as either primarily pro-
tective or mitigative (Rosenthal et al. 2011), depending on
the timing of the administration. Radioprotectors are given
prior to irradiation as preventive measures, while mitigators
refer to treatments started after irradiation, prior to clinical
evidence of radiation injury. Here we focus on five typical
countermeasures, each of which can be either primarily pro-
tective (e.g. reducing DNA damage) or mitigative (e.g. stim-
ulating tissue repair), or combine both effects (e.g. reducing
inflammation and oxidative stress, increasing cell survival)
(Table 1).

Commonly applied countermeasure approaches for
limiting ionizing radiation-induced CNS damage

Reducing oxidative stress

Oxidative stress and ROS production are particularly fre-
quent targets for currently available CNS countermeasures
against both therapeutic and space radiation. ROS is a gen-
eral term including superoxide (O2·

-), hydrogen peroxide
(H2O2) and hydroxyl radicals (·OH), which are generated by
ionizing radiation-induced water radiolysis both within and
outside the cell. In addition to ROS, ionizing radiation also
stimulates nitric oxide synthase, generating reactive nitrogen
species (RNS) (Routledge et al. 1994; Hall and Giaccia
2006), that have lower diffusion coefficients and higher
short-range reactivity compared to ROS (Frongillo 1998;
Lide 2004). RNS are particularly important in the CNS,
because neuronal nitric oxide synthase (nNOS) is constitu-
tively active in neurons where it participates in synaptic
plasticity (F€orstermann and Sessa 2012), and can thus be
subverted for RNS production. Even comparatively low
doses of ionizing radiation generate sufficient ROS and RNS
to damage nucleic acids, proteins and lipids (Halliwell and
Aruoma 1991; Wiseman and Halliwell 1996; Mikkelsen and
Wardman 2003). When ROS and RNS levels exceed the cel-
lular antioxidant defense capacities, oxidative stress can
induce permanent cellular and physiological damage via
apoptosis (in case of high levels of DNA damage that cannot
be repaired, or failures in DNA repair processes), carcino-
genesis (in case of mutations in cell cycle regulation genes)
and phosphorylation/dephosphorylation imbalance (Spitz
et al. 2004). In addition, in brain tissues, redox balance has
been reported to play a major role in neurogenesis (Huang
et al. 2012) (which is the formation and integration of new
neurons that occurs in the hippocampus and subventricular
zone in adult humans and rodents, but also in the olfactory
bulb in rodents); neural stem cell proliferation and differen-
tiation (Iqbal et al. 2017) and neuronal reprogramming
(Klempin et al. 2017). Radiation-mediated oxidative stress
can be reduced either by administering pharmaceutical anti-
oxidants, or by activating existing cellular antioxidative
mechanisms. Supplementary Table 1 compares the experi-
mental conditions and main results of different mitigation
approaches targeting the reduction of oxidative stress.

The brain is particularly vulnerable to oxidative stress
due to the high abundance of polyunsaturated fatty acids in
neuronal cellular and mitochondrial membranes and
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Figure 1. Summary representation of the discussed countermeasures. Numbers refer to the following studies: 1. (Nair and Nair 2013b), 2. (Mohammad et al. 2014),
3. (Wang et al. 2018), 4. (Guelman et al. 2003), 5. (Lamproglou et al. 2003), 6. (Guelman et al. 2005), 7. (Erol et al. 2004), 8. (Limoli et al. 2007), 9. (Manda et al.
2008), 10. (Leu et al. 2017), 11. (Villasana et al. 2013), 12. (Allen et al. 2014), 13. (Lu et al. 2018), 14. (Parihar et al. 2015), 15. (Chmielewski et al. 2016), 16. (Weitzel
et al. 2015), 17. (Raber et al. 2017), 18.(€Unde�ger et al. 2004), 19. (El-Missiry et al. 2018), 20. (Manda et al. 2007), 21. (Facchino et al. 2010), 22. (Yang et al. 2009), 23.
(Yang et al. 2011), 24. (Jiang, Perez-Torres, et al. 2014), 25. (Pena et al. 2000), 26. (El-Missiry et al. 2018), 27. (Andratschke et al. 2004), 28. (Nieder et al. 2006), 29.
(Nieder, Andratschke, et al. 2005), 30. (Nieder, Price, et al. 2005), 31. (Jiang, Perez-Torres, et al. 2014), 32. (Gonzalez et al. 2007), 33. (Jiang, Engelbach, et al. 2014),
34. (Belarbi et al. 2013), 35. (Yang et al. 2018), 36. (Erbayraktar et al. 2006), 37. (Ansari et al. 2007), 38. (Yuan et al. 2003), 39. (Zhao et al. 2007), 40. (Schnegg et al.
2012), 41. (Greene-Schloesser et al. 2014), 42. (Desmarais et al. 2015), 43. (Kim et al. 2004), 44. (Lee et al. 2012), 45. (Tikka et al. 2001), 46. (Feng et al. 2016), 47.
(Feng et al. 2018), 48. (Baulch et al. 2016), 49. (Smith et al. 2020), 50. (Liao et al. 2017), 51. (Wang et al. 2016), 52. (Piao et al. 2015), 53. (Zhou et al. 2015), 54. (Bala
et al. 2017), 55. (Oh et al. 2013), 56. (Sun et al. 2013), 57. (Prager et al. 2016).
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synaptic protein complexes (Joshi and Pratic�o 2014; Shichiri
2014). Membrane disruption not only leads to cell death by
stimulating apoptosis and autophagy, but also further dam-
ages the DNA due to the reactions of highly reactive
byproducts, such as malondialdehyde, with DNA nucleoti-
des. Lipid peroxidation may alter membrane characteristics,
leading to disrupted neuronal transport and synaptic trans-
mission. Further disturbance to synaptic plasticity may be
caused by oxidation of post-synaptic components, for
example, cysteine groups of N-methyl-D-aspartate (NMDA)
receptors (Lu et al. 2001).

In rodent models of therapeutic gamma irradiation, cellu-
lar and DNA damage caused by membrane lipid peroxida-
tion has to some degree been decreased by compounds
developed from natural phytochemicals. For example, the
polyhydroxy-phenolic compound gallic acid, when adminis-
tered one hour prior to irradiation, was demonstrated to
reduce peroxide and increase antioxidant enzyme levels,
concurrently decreasing DNA damage and increasing DNA
repair (Nair and Nair 2013a). These molecular and cellular
radioprotective effects were associated with positive

behavioral outcomes: partial recovery of radiation-induced
loss of body weight, and increased survival, reaching 80% at
12 days post-irradiation compared to 30% for untreated irra-
diated mice (Nair and Nair 2013a).

A more general countermeasure to reduce oxidative stress
in animal models in response to simulated therapeutic or
space radiation is the direct elimination of free radicals by
antioxidant compounds. This approach often utilizes antiox-
idants that are widely available in healthy diets, such as
dried plums (Schreurs et al. 2016), rhubarb (Lu et al. 2015),
watermelon juice (Mohammad et al. 2014) or possibly, epi-
medium extracts (Wang et al. 2018). Besides nutrition-based
antioxidants, the only currently FDA-approved drug to pre-
vent oxidative stress after irradiation is amifostine
(EthylolVR ), usually administered before radiation exposure.
It is mainly used for its free radical scavenging properties,
but the protective mechanism of amifostine also involves the
modulation of natural antioxidant enzymes, induction of
cellular hypoxia, DNA protection and repair acceleration
(Kouvaris et al. 2007) The radioprotective effects of amifos-
tine on the CNS through intraperitoneal or intrathecal

Figure 2. Representation of radiation-induced responses of the CNS. [1–4] ¼ (Belka et al. 2001; Satyamitra et al. 2007; Lowe et al. 2009; Baluchamy et al. 2010;
Beckhauser et al. 2016), [5–16] ¼ (Fournier and Taucher-Scholz 2004; Limoli et al. 2004; Kim et al. 2006; Al-Jahdari et al. 2008; Eriksson and Stigbrand 2010;
Chakraborti et al. 2012; Parihar and Limoli 2013; Shirai et al. 2013; Kempf et al. 2014; Parihar et al. 2015), [17–24] ¼ (Clatworthy et al. 1999; Sannita et al. 2007;
Machida et al. 2010; Sanchez et al. 2010; Marty et al. 2014; Rudobeck et al. 2014; Sokolova et al. 2015), [25–46] ¼ (Tofilon and Fike 2000; Vazquez and Kirk 2000;
van Vulpen et al. 2002; Maier 2003; Mizumatsu et al. 2003; Lyubimova and Hopewell 2004; Raber et al. 2004; Rola et al. 2004; Casadesus et al. 2005; Rola et al.
2005; Hwang et al. 2006; Fike et al. 2009; Huang et al. 2010; Moravan et al. 2011; Kadir et al. 2012; Monje and Dietrich 2012; York et al. 2012; Rivera et al. 2013;
Greene-Schloesser et al. 2014; Morganti et al. 2014; Hur and Yoon 2017), [47–60] ¼ (Brouwers and Poplack 1990; Hall et al. 2004; Butler and Haser 2006; Rosi et al.
2008; Zeltzer et al. 2009; Liu et al. 2010; Britten et al. 2012; Greene-Schloesser and Robbins 2012; Armstrong et al. 2013; Greene-Schloesser, Moore, and Robbins
2013; Kumar et al. 2013; Britten et al. 2014; Makale et al. 2017; Acharya et al. 2019).
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administration have been demonstrated with increased sur-
vival and improved behavioral outcomes in newborn and
young rats (Guelman et al. 2003; Lamproglou et al. 2003), as
well as protection of rat cerebellar granular cells in vitro
(Guelman et al. 2005). However, the clinical use of amifos-
tine is limited to the protection against xerostomia induced

by radiotherapy and is frequently associated with severe side
effects (Rades et al. 2004).

In addition to amifostine, other free radical scavengers
have also been demonstrated to reduce radiation-induced
neurodegeneration and behavioral impairments in irradiated
rodents. For example, following therapeutic irradiation

Table 1. Summary of the discussed countermeasure agents classified into five main approaches (targeting reactive oxygen species, DNA damage, cell survival,
inflammation and tissue repair), according to the type of CNS impairment to be treated.

Impairments Reactive oxygen species DNA damage Cell survival Inflammation Tissue repair

Animal mortality Gallic Acid (GA)1 COX-2 inhibitor42

Brain edema Melatonin7 Anti-VEGF
antibodies32,33

Oxidative stress Watermelon Juice2

Amifostine6

Lipoic Acid8

MnSOD mimetics16,17

AFMK20 PPAR-d agonist40

Cognitive, motor and
behavioral deficits

Herb Epimedium
Extracts3

Amifostine4,5

Lipoic Acid9,11

DMFO12

Mitochondrial Catalase14

MnSOD mimetics16,17

CCR2 knockout34

PPAR-c agonist39

PPAR-a agonist41

ACE inhibitor44

PLX562246,47

Carbamylated
erythropoietin36

Stem cell-derived
microvesicles48

Mesenchymal stem
cellsþ nimodipine51

Oligodendrocyte precursor
cells52,56

Hippophae extract SBL-154

Baicalein55

Dendritic and synaptic
damage to neurons

Mitochondrial
Catalase14,15

CCR2 knockout34

PLX5622136
Stem cell-derived

microvesicles48,49

Mesenchymal stem cells50

Mesenchymal stem
cellsþ nimodipine4

Hippophae extract SBL-154

Baicalein55

Demyelination MnSOD mimetics16 Mesenchymal stem cells50

Mesenchymal stem
cellsþ nimodipine51

Oligodendrocyte precursor
cells52,56

Valproic acid53

Impaired neurogenesis Herb Epimedium
Extracts3

MnSOD mimetics10

BMI1 overexpression21 CCR2 knockout34 Baicalein55

Resveratrol57

Brain tissue and cellular
damage

Herb Epimedium
Extracts3

Amifostine6

Melatonin7

Vitamin E7

MnSOD mimetics10

Glutathione
Peroxidase13

EGCG19

Lithium22

GSK-3b inhibitor23,24

EGCG26 GSK-3b inhibitor31

Anti-VEGF antibodies33

HIF-1a inhibitor35

CXCR4 antagonist35

Carbamylated
erythropoietin36

ACE inhibitor43

Minocycline45

Doxycycline45

Cephalosporin45

Mesenchymal stem cells50

Mesenchymal stem
cellsþ nimodipine51

Inflammation Platelet-Derived Growth
Factor27,28

Insulin-like Growth
Factor (IGF-1)29

Combined IGF-1 and
Amifostine30

Minocycline45

PLX562246,47
Stem cell-derived

microvesicles48,49

Mesenchymal stem cells50

Hippophae extract SBL-154

Cerebrovascular damage Fibroblast Growth
Factor25

Acid Sphingomyelinase
knockout25

Anti-VEGF
antibodies32,33

Anti-TNFA antibodies37

Anti-ICAM-1
antibodies38

Valproic acid53

Hypoxia Anti-TNFA antibodies37

Numbers refer to the following studies: 1. (Nair and Nair 2013b), 2. (Mohammad et al. 2014), 3. (Wang et al. 2018), 4. (Guelman et al. 2003), 5. (Lamproglou
et al. 2003), 6. (Guelman et al. 2005), 7. (Erol et al. 2004), 8. (Limoli et al. 2007), 9. (Manda et al. 2008), 10. (Leu et al. 2017), 11. (Villasana et al. 2013), 12.
(Allen et al. 2014), 13. (Lu et al. 2018), 14. (Parihar et al. 2015), 15. (Chmielewski et al. 2016), 16. (Weitzel et al. 2015), 17. (Raber et al. 2017), 18.(€Unde�ger
et al. 2004), 19.(El-Missiry et al. 2018), 20.(Manda et al. 2007), 21.(Facchino et al. 2010), 22.(Yang et al. 2009), 23.(Yang et al. 2011), 24.(Jiang, Perez-Torres,
et al. 2014), 25. (Pena et al. 2000), 26. (El-Missiry et al. 2018), 27. (Andratschke et al. 2004), 28. (Nieder et al. 2006), 29. (Nieder, Andratschke, et al. 2005), 30.
(Nieder, Price, et al. 2005), 31. (Jiang, Perez-Torres, et al. 2014), 32. (Gonzalez et al. 2007), 33. (Jiang, Engelbach, et al. 2014), 34. (Belarbi et al. 2013), 35. (Yang
et al. 2018), 36. (Erbayraktar et al. 2006), 37. (Ansari et al. 2007), 38. (Yuan et al. 2003), 39. (Zhao et al. 2007), 40. (Schnegg et al. 2012), 41. (Greene-Schloesser
et al. 2014), 42. (Desmarais et al. 2015), 43. (Kim et al. 2004), 44. (Lee et al. 2012), 45. (Tikka et al. 2001), 46. (Feng et al. 2016), 47. (Feng et al. 2018), 48.
(Baulch et al. 2016), 49. (Smith et al. 2020), 50. (Liao et al. 2017), 51. (Wang et al. 2016), 52. (Piao et al. 2015), 53. (Zhou et al. 2015), 54. (Bala et al. 2017), 55.
(Oh et al. 2013), 56. (Sun et al. 2013), 57. (Prager et al. 2016).
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paradigm of 2 sequences of 3.6Gy, melatonin was shown to
significantly reduce edema, necrosis and neuronal degener-
ation in rat parietal cortex, while vitamin E only had a sig-
nificant effect on necrosis (Erol et al. 2004). Meanwhile,
when used as a countermeasure against simulated space
(heavy ion) radiation lipoic acid induced a significant
decrease in intracellular ROS level in vitro in rat neural pre-
cursor cells, with higher performances for post-irradiation
treatment compared to pre-irradiation treatment (Limoli
et al. 2007). Similarly in vivo lipoic acid significantly miti-
gated spatial memory impairments and cerebellar cell death
in space radiation component 56Fe-irradiated mice (Manda
et al. 2008). Prevention of spatial memory loss in lipoic
acid-treated 56Fe-irradiated mice was also demonstrated by
Villasana et al (Villasana et al. 2013), but this was accompa-
nied with significant inhibition of novel object recognition
and conditioned fear memory responses, suggesting that the
use of lipoic acid as an antioxidant might induce other cog-
nitive side effects.

An alternative method of reducing oxidative stress after
irradiation is to increase the natural cellular expression of
antioxidants by either pharmacological or genetic means.
One such pharmacological tool is the chemical compound
difluoromethylornithine (DMFO), which was shown to
increase the levels of two antioxidant (thioredoxin 1 and
peroxiredoxin 3) enzymes in the hippocampus and signifi-
cantly improve spatial memory in mice subjected to com-
bined 4Gy gamma-irradiation and traumatic brain injury in
order to better simulate the cognitive impacts in the context
of a nuclear attack (Allen et al. 2014). These results are par-
ticularly promising given that DMFO was simply adminis-
tered through enriched water, starting 24 h post-recovery
from the traumatic brain injury. However, the potential
therapeutic benefits of DMFO or thioredoxin 1/peroxire-
doxin 3 directly in other radiation contexts, including ther-
apy and space radiation, remain to be discovered.

Cellular responses to oxidative stress include the upregu-
lation of various natural antioxidants, such as superoxide
dismutases (SOD), glutathione peroxidase (GHS) and cata-
lase, which reduce ROS by converting superoxide and
hydroxide ions to water (Smith et al. 2017). In the context
of CNS, the disruption of the glutathione-glutamate homeo-
stasis by oxidative stress (Koga et al. 2011) can lead to syn-
aptic dysfunction and has been associated with epilepsy
(Sedlak et al. 2019). Augmenting the levels of cellular anti-
oxidants by intraperitoneal administration of glutathione
(GSH) in tumor-bearing mice before or after 6 Gy X-ray
therapeutic radiation model improved mouse cognitive per-
formance in the water maze (Lu et al. 2018). GSH is particu-
larly promising for radiotherapy as it shows high
performance when administered post-irradiation and does
not interfere with the efficiency of the tumor treatment.
Genetic upregulation of antioxidants has also been used in
transgenic mice overexpressing human catalase localized to
the mitochondria (Parihar et al. 2015; Chmielewski et al.
2016) in space radiation paradigms. Catalase overexpression
reduced ROS, increased neuronal arborization and dendritic
complexity, and improved performances in object

recognition tests in mice following space-relevant low-dose
0.5Gy proton irradiation. However, this option cannot be
directly translated to human radioprotection and would
require targeting catalase by a pharmacological agent
instead.

Finally, ionizing radiation causes oxidative stress not only
by the formation of ROS from water radiolysis in the cyto-
plasm, but also by mitochondrial dysfunction. Because of
their significant spatial occupation in the cell (typically
between 4 to 25% (Leach et al. 2001)), mitochondria are a
likely target of radiation impact. ROS already exist in mito-
chondria as by-products of oxidative phosphorylation (Kim
et al. 2005), and can be amplified by ionizing radiation lead-
ing to mutations in mitochondrial DNA and to disturbed
expression of critical proteins for mitochondrial and cellular
functions (Azzam et al. 2012). Moreover, the high proximity
between mitochondria near the nucleus (Davis and Clayton
1996) allows easy nuclear propagation of the oxidative signal
from the irradiated mitochondrion. Interestingly, oxidative
damage in mitochondrial DNA is several-fold higher than in
nuclear DNA (Richter 1992), probably because of the prox-
imity of mitochondrial DNA to ROS, the lack of protective
histone proteins for mitochondrial DNA and less efficient
DNA repair mechanisms (Wiseman and Halliwell 1996).

The main natural radioprotectant in mitochondria is an
enzyme called Manganese Superoxide Dismutase (MnSOD)
(Guo et al. 2003). Thus, artificial elevation of MnSOD levels
is a logical radioprotective approach (Rosenthal et al. 2011).
Numerous SOD mimetics have been synthesized with a
lower molecular weight compared to native SODs, in order
to increase their cell permeability and circulating half-time
(Bonetta 2018). MnBuOE appears as the most promising
MnSOD mimetic compound for radiotherapy use and is
currently in a phase 2 trial (NCT02655601). It has been
demonstrated to reduce neuronal damage and demyelination
and improve motor proficiency of 8Gy gamma-irradiated
mice (Weitzel et al. 2015), notably acting both as a neuro-
protector and as a radiosensitizer on glioblastoma cells,
especially when administered 1week prior to irradiation
(Leu et al. 2017). Another promising MnSOD mimetic,
EUK-207, similarly demonstrated significant mitigation of
cognitive impairments in 15Gy gamma-irradiated mice
(Raber et al. 2017), and was effective even post-irradiation.

Decreasing DNA damage

A critical consequence of ionizing radiation exposure is
DNA damage, which can lead to cellular damage, cell death
and accumulation of mutations that eventually contribute to
carcinogenesis. Ionizing radiation causes DNA damage
either in a targeted manner, by energy deposition along the
path traversed by the radiation beam, or in a non-targeted
manner, by ROS, RNS and peroxidized lipids formed during
oxidative stress (Marnett 2002; Islam 2017; Sage and
Shikazono 2017). During X-ray and gamma radiation two
thirds of DNA damage are estimated to be targeted and the
remaining one-third non-targeted (Sage and Shikazono
2017). The different strategies and experimental conditions
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for countermeasures to radiation-induced DNA damage in
the brain are summarized in Figure 3. In general, targeted
DNA damage has proven difficult to prevent, unless by
shielding, which is not always possible in a therapeutic set-
ting. As a result, research in radiobiology has been more
focused on preventing non-targeted DNA damage and on
repairing its outcomes.

The collective ensemble of pathways and proteins that
participate in DNA repair after radiation-induced DNA
damage is called the DNA damage response (DDR). DDR is
responsible for dealing with radiation induced single strand
breaks, which occur more frequently, as well as double
strand breaks, which are less frequent, but more dangerous
to the cell (Santivasi and Xia 2014; O’Connor 2015; Delia
and Mizutani 2017). Single strand breaks undergo repair
through base excision repair, (Wallace 2014; O’Connor
2015), while double strand breaks are mainly repaired
through either homologous recombination or non-homolo-
gous end joining (Santivasi and Xia 2014; O’Connor 2015).
Homologous recombination is a highly accurate DDR pro-
cess in which a homologous sister chromatid is used as a
template for repairing the DSB site, but it is slow, depends
on an undamaged sister chromatid, and can only occur in S
phase of the cell cycle (Kobayashi et al. 2008; Shrivastav
et al. 2008; Lord and Ashworth 2012; Santivasi and Xia
2014; O’Connor 2015; Delia and Mizutani 2017). Non-hom-
ologous end joining is faster, because it occurs in all phases
of the cell cycle, but is more error-prone because it repairs
double stranded breaks by simply ligating the ends of the
lesion together (Kobayashi et al. 2008; Shrivastav et al. 2008;
Lord and Ashworth 2012). Regardless of the type of DDR,
failure to repair DNA damage, or mistakes during repair,
can lead to genomic instability, tumorigenesis or cell death
via signaling by transcription factor p53 (Santivasi and Xia
2014; Delia and Mizutani 2017).

Most of the success in preventing radiation-induced
DNA damage in brain tissues has been achieved by free rad-
ical scavenging and mitigation of ROS production, described
in detail in the previous section. These approaches focus on
clearing cells of detrimental free radicals and ROS before
they have the chance to damage nucleic acids. For example,
administration of melatonin or epigallocatechin-3-gallate
prior to simulated therapeutic irradiation has been shown to
reduce DNA damage in brains of rats irradiated with
respectively 10Gy and 4Gy gamma rays (€Unde�ger et al.
2004; El-Missiry et al. 2018); pretreatment with melatonin
also reduced DNA damage in mice exposed to 6Gy X-rays
(Manda et al. 2007).

Instead of DNA damage prevention, other countermeas-
ures focus on enhancing DNA repair in damaged cells to
rescue them from cell death or genomic instability. Tumor
cells such as glioblastoma have been found to be particularly
efficient in repairing DNA damage and avoiding cell death
(Lord and Ashworth 2012). Consequently, studying what
makes these cancer cells radioresistant and emulating their
DDR mechanisms has been an advantageous strategy for the
discovery of countermeasures aimed at DNA damage repair.
For example, BMI1, a gene typically known for its

importance in stem cell maintenance, has been found to be
significantly upregulated in highly radioresistant glioblast-
oma cells as compared to normal brain cells (Bruggeman
et al. 2007). This finding inspired the study of human neural
stem cells (NSCs) infected with lentivirus to overexpress
BMI1, which led to faster DNA repair in vitro (Facchino
et al. 2010); although viral gene expression and the facts
that it would have to be limited to the bystander cells avoid-
ing tumor cells, not to mention a potential side effect of
tumorigenesis, limit its therapeutic applicability.

Another approach of targeting DNA repair mechanisms is
repurposing the agents that have been neuroprotective in
other CNS injuries, such as lithium, which protects the brain
during stroke and oxidative stress (Dell’Osso et al. 2016).
Indeed, lithium-based pharmaceuticals have been demon-
strated to enhance the repair of double stranded DNA breaks
in mouse hippocampal neurons in vitro and in vivo (Yang
et al. 2009). Since lithium is an inhibitor of glycogen synthase
kinase 3 beta isoform (GSK3b), direct inhibition of GSK3b
using a small molecule SB216763 has similarly accelerated
DNA repair in mouse hippocampal neurons and in vivo
(Yang et al. 2011) in response to 3-6Gy simulated radiother-
apy irradiation. However, GSK3b inhibition might have
improved the cellular health in a less specific manner as well,
due to it being involved in multiple Wnt/b-catenin signaling
pathways that regulate trophic support to cells and the cell
cycle. A notable advantage of radioprotection through lith-
ium treatment and through GSK3b inhibition is that the pro-
tective effects did not extend to tumor cells: mouse glioma
cells (GL261) and human glioma cells (D54) showed no sig-
nificantly different repair kinetics between treated and
untreated groups following 3Gy of gamma irradiation. This
difference in protective potential may be explained by
impairments of GSK3b signaling in tumor cells. The ability
to selectively protect non-tumor cells during radiotherapy
treatments is highly necessary to prevent necrosis of healthy
tissue as well as to avoid increasing malignancy and metasta-
ses of existing tumors (Lord and Ashworth 2012; Santivasi
and Xia 2014). Moreover, the inhibition of GSK3 by small
molecule SB415286 was also shown to downregulate inflam-
matory responses for reduction of mouse brain necrosis
(Jiang, Perez-Torres, et al. 2014).

In summary, although DNA damage is widely studied
as a biomarker and as a metric, the DDR has not been
extensively or effectively targeted as a countermeasure
itself, especially with regard to the CNS. The majority of
published studies instead aim to reduce non-targeted DNA
damage through antioxidant and anti-inflammatory mecha-
nisms. On the other hand, it is important to consider that
increasing DNA repair just-enough to prevent cell death
may be harmful for the tissue and the whole organism by
retaining DNA mutations and increasing carcinogenesis.
Therefore, an alternative approach to radioprotection would
be enhancing overall tissue health by diminishing DNA
repair so that injured cells die quickly (Zhou et al. 2015).
It conveys a potential benefit to the whole tissue if injured
cells are silenced quickly, before they can harm surround-
ing cells through bystander effects or initiate carcinogenesis
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through accrued genomic instability (Jeggo 2009; Zhou
et al. 2015).

Enhancing cell survival

As has been observed in radiotherapy, cellular exposure to
high doses of ionizing radiation or prolonged irradiation
can lead to increasing damage until cell death. Four main
modes of cell death have been reported so far in the context
of irradiation responses and are represented in Figure 4
(Eriksson and Stigbrand 2010): apoptosis (programmed and
rapid death), necrosis (membrane disruption and cell swel-
ling), autophagy (self-consumption of the cell) and senes-
cence (essentially defined by a permanent growth arrest and
alteration of neighboring cell functions). Indeed, the senes-
cence phenotype can spread into the microenvironment of
the senescent cell through the release of signaling molecules
(Campisi 2013), which (same as apoptosis) can be beneficial
when limited to eliminating the potentially cancerous sur-
rounding cells. The specific mode of cell death gets deter-
mined by the type and dose of ionizing radiation, and also
by the type and functions of the cell (Abend 2003).
Apoptosis is a controlled cell death process that causes the

least possible damage to the organism. When its control
cannot be implemented, cell death occurs through necrosis
or autophagy, inducing damage to neighbor cells; while sen-
escence is experienced by irradiated cells following high lev-
els of DNA damage (Abend 2003). The different approaches
targeting these cell death mechanisms to enhance the
survival rate of irradiated cells are summarized in
Supplementary Table 3.

Transcription factor p53 has an essential role in the
induction of cell death and is often referred to as the guard-
ian of the genome (Efeyan and Serrano 2007). According to
the extent of damaged DNA and cell type, p53 activates
either DNA damage repair genes or apoptosis and senescence
genes (Eriksson and Stigbrand 2010). Recently, therapeutic
inhibition of p53-induced apoptosis was demonstrated
through oral administration of epigallocathechin-3-gallate
(EGCG), the main polyphenol found in green tea, in 4Gy
gamma-irradiated rats (El-Missiry et al. 2018). EGCG is a
promising neuroprotective compound due to its ability to
pass through the blood-brain barrier (Poga�cnik et al. 2016).
However, this approach needs to be further investigated in
order to evaluate the associated detrimental effects of p53
inhibition, because it has been reported that even though p53

Figure 3. Flowchart of the main discussed processes of radiation-induced targeted and non-targeted DNA damage effects, and associated countermeasures. RIBE:
radiation-induced bystander effects, CNPs: anti-histone antibody complexed nanoparticles, R-Cu: resveratrol-copper, ROS: reactive oxygen species, RNS: reactive
nitrogen species, SSBs: single-stranded breaks, DSBs: double-stranded breaks, DDR: DNA damage response, BER: base excision repair, HR: homologous recombin-
ation, NHEJ: non-homologous end joining. Numbers refer to the following studies: 18. (€Unde�ger et al. 2004), 19. (El-Missiry et al. 2018), 20. (Manda et al. 2007), 21.
(Facchino et al. 2010), 22. (Yang et al. 2009), 23. (Yang et al. 2011), 24. (Jiang et al. 2014) Supplementary Table 2 provides additional information regarding the
model, irradiation, administration conditions and main results for each of the discussed countermeasures.
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mutation or deletion allows cells to evade apoptosis, they
instead undergo several cycles of cell division with severe
DNA damage eventually inducing necrosis or autophagy
(Eriksson and Stigbrand 2010), which would be even worse
for the organism.

Complementary to inhibiting cell death, a number of
studies have investigated the use of growth factors to prevent
cellular damage during irradiation. Intrathecal administration
of PDGF (platelet-derived growth factor) in the first 4 days
after therapeutic gamma irradiation was shown to signifi-
cantly reduce myelopathy in rats for 12months afterwards
(Andratschke et al. 2004). Nonetheless, treatment efficacy
was highly dependent on the administered PDGF dose; and a
different administration method (than intrathecal injection)
and time (after irradiation) might be more relevant for
human applications. However, late administration of PDGF
not only did not improve outcomes, but worsened them by
accelerating tissue damage (Nieder et al. 2006).

Meanwhile, another growth factor, IGF-1 (Insulin-like
Growth Factor 1), which has the advantage of crossing the
blood-brain barrier (Pan and Kastin 2000), has similarly
reduced myelopathy in 12-month long studies on therapeutic
gamma irradiated rats (Nieder, Price, et al. 2005; Nieder,
Zimmermann, et al. 2005). However, since IGF is a major
activator of cell growth and survival (Valenciano et al. 2012),
its administration carries the risk of inducing unwanted
stimulation of tumor growth and reducing the efficacy of
radiotherapeutic treatments. Thus, overall, the modulation of
cell cycle processes is a complex approach for radioprotective
measures since it has the risk of negatively influence the bal-
ance between cell repair, apoptosis and proliferation.
Specifically, the side effects associated with growth factors
suggest that cell and tissue survival might better be targeted
by alternative approaches, such as localized stem cell therapy,
instead of changing the growth factor levels in the irradiated
organism.

Reducing inflammation

Inflammation is one of the most important responses to ion-
izing radiation exposure that can contribute to tissue impair-
ments years after the irradiation. Inflammatory responses to
radiation are complex and include vascular damage, immune
cell migration and release of inflammatory regulators, as
represented in Figure 5. As described in previous sections,
DNA damage together with the generation of ROS and RNS
in irradiated cells induces cell death through different mech-
anisms such as apoptosis, necrosis, autophagy and senes-
cence. The inflammatory response is in part determined by
the mechanism of cell death: while necrosis, autophagy and
senescence are associated with rapid loss of cell membrane
integrity that induces inflammation-stimulating danger sig-
nals (Lasry and Ben-Neriah 2015; Qian et al. 2017), apop-
tosis is a programmed cellular suicide that stimulates
phagocytes to produce anti-inflammatory cytokines (Rock
and Kono 2008), unless the apoptotic cell is not cleared by
the phagocytes sufficiently fast and undergoes secondary
necrosis that again induces proinflammatory responses
(Multhoff and Radons 2012).

A severe consequence of acute high dose ionizing radi-
ation in the CNS that might be used for brain tumor treat-
ment is inflammatory damage to the vasculature. The
damage of vascular tissues following irradiation dysregulates
oxygen diffusion between the tissue and blood vessels, in
part via vascular endothelial growth factor (VEGF) expres-
sion, leading to tissue hypoxia and ultimately, necrosis of
bystander non-cancerous brain tissue. Thus, VEGF expres-
sion inhibitor bevacizumab (AvastinVR , Genentech) has been
used to treat radiation-induced brain necrosis in 15 patients
(Gonzalez et al. 2007), and has efficiently decreased it in
50–60Gy gamma ray (‘gamma knife’ model) irradiated mice
(Jiang, Engelbach, et al. 2014). However, bevacizumab treat-
ment has been reported to cause side effects during pro-
longed administration, including vessel overpruning, deep
vein thrombosis and focal mineralization (Jeyaretna et al.
2011; Levin et al. 2011; Duan et al. 2017). Moreover, other
studies have demonstrated the recurrence of radiation
necrosis after stopping bevacizumab treatment and drug-
resistance for re-treatment after discontinuation (Furuse
et al. 2011; Zhuang et al. 2016).

These reasons have initiated a search for alternative
approaches to reduce brain necrosis after therapeutic irradi-
ation, including pharmaceutical blocking of cytokine and
chemokine signaling. Genetic knockout of chemokine recep-
tor CCR2 was shown to be partially efficient, since it has
prevented 10Gy gamma ray-induced cognitive impairments
and rescued synaptic plasticity, but was not sufficient to pre-
vent the overall loss of newborn neurons (Belarbi et al.
2013). Pharmaceutic targeting of cytokine/receptor HIF-1a-
CXCR4 signaling pathway using topotecan and AMD3100
(Yang et al. 2018) showed similar outcomes. This pathway
increases cell growth, invasiveness and endothelial cell
recruitment, leading to angiogenesis (Kircher et al. 2018),
and also enhances hypoxia (Yang et al. 2018), thus, blocking
it could theoretically prevent both radiation-induced brain
damage and tumor growth. Both topotecan and AMD3100
indeed significantly reduced brain necrosis and lesion vol-
umes after 50Gy irradiation (Yang et al. 2018). However,
the mechanisms behind this effect remained unknown,
because HIF-1a expression was unchanged.

Another HIF-1a activated inflammatory mediator is the
cytokine erythropoietin (EPO), which acts synergistically
with VEGF to enhance injury-induced angiogenesis (Wang
et al. 2004). Significant therapeutic advantages of EPO are
its ability to cross the brain-blood barrier in neuroprotective
amounts (Brines et al. 2000) and to increase the tightness of
the barrier and provide protection against VEGF-induced
leakiness both in vitro and in vivo (Mart�ınez-Estrada et al.
2003; €Uz€um et al. 2006). Carbamylated EPO (CEPO) was
developed by Erbayraktar et al. to limit its side effect of
thrombosis (Erbayraktar et al. 2006). CEPO-treated rats
have indeed shown a reduction in brain necrosis, and
improved forelimb reflex movements following 100Gy
gamma-irradiation modeling gamma knife-based tumor
excision. This study further contributes to the perspectives
of stimulating angiogenesis to reduce damage in irradiated
non-cancerous tissue.
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Complementary approaches have also been investigated
to preserve irradiated tissues by decreasing microvascular
permeability to pro-inflammatory immune cells that are acti-
vated elsewhere in the body and could further damage the
brain tissue. In particular, radiation is responsible for the
adhesion of leukocytes and alteration of endothelial cell tight
junctions that form the protective blood-brain barrier
(Frank and Lisanti 2008). This radiation-induced permeabil-
ity in a simulated radiotherapy setup was efficiently limited
by targeting the TNF-a signaling pathway mediated by NF-
jB that stimulates the expression of leukocyte adhesion mol-
ecules such as VCAM-1 and ICAM-1, using anti-TNF-a
(Ansari et al. 2007) or anti-ICAM-1 antibodies (Yuan et al.
2003). In addition, the beneficial effects of NF-jB inhibition
have been demonstrated by using agonists of proliferator-
activated receptors (PPARs)-alpha and –gamma (Zhao et al.
2007; Schnegg et al. 2012; Greene-Schloesser et al. 2014),
which inhibit NF-jB activity (Daynes and Jones 2002) and

improve cognitive performance in irradiated rats. However,
these cognitive benefits were obtained together with a side
effect of decreased locomotor behavior, while the PPAR-
alpha treatment did not provide protection against the radi-
ation-induced reduction in neurogenesis and increase in
microglial activation. Nevertheless, PPAR-agonists remain
promising radioprotective agents especially as they have
demonstrated antitumor properties in addition to their neu-
roprotection (Tachibana et al. 2008).

Alternative approaches to limit radiation-induced neuro-
inflammation by reducing cell proliferation and migration
are to utilize antagonists to cyclooxygenases (COX) or glyco-
gen synthase kinases (Jope et al. 2007; Nuvoli and Galati
2013). COX-2 inhibition indeed reduced inflammation and
increased survival in 15Gy-irradiated rat glioma model
(Desmarais et al. 2015).

In radiotherapy, the effectiveness of anti-inflammatory
neuroprotective countermeasures is in general limited,

Figure 4. Flowchart of the main discussed processes of radiation-induced cell cycle modifications, and associated countermeasures. AMPK: AMP-activated protein
kinase, JNK: Jun N-terminal kinase, BAX: Bcl-2-associated X protein, BAD: Bcl-2-associated death promoter protein, TSC2: tuberous sclerosis complex-2, mTOR: mam-
malian target of rapamycin, ASM: acid sphingomyelinase, PI3K: phosphatidylinositol-3 kinase, Akt: serine/threonine-specific protein kinase, PKC: Protein kinase C,
IGF-1: insulin-like growth factor-1, MAPK: mitogen-activated protein kinase, ERK: extracellular signal-regulated kinase, EGCG: epigallocathechin-3-gallate, FGF: fibro-
blast growth factor, PDGF: platelet-derived growth factor. Numbers refer to the following studies: 25. (Pena et al. 2000), 26. (El-Missiry et al. 2018), 27. (Andratschke
et al. 2004), 28. (Nieder et al. 2006), 29. (Nieder, Andratschke, et al. 2005), 30. (Nieder, Price, et al. 2005) Supplementary Table 3 provides additional information
regarding the model, irradiation, administration conditions and main results for each of the discussed countermeasures.
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because brain tumors are often treated by promoting sys-
temic inflammation for example, by inhibiting Transforming
Growth Factor-b (TGF-b) signaling (Hardee et al. 2012)
(Tran et al. 2007). Targeting multiple detrimental mecha-
nisms that are induced by ionizing radiation may provide a
more successful therapeutic solution. Such a target that
modulates both radiation-induced inflammatory responses
and oxidative stress is the renin-angiotensin system (RAS),
where the angiotensin-converting enzyme (ACE) produces
multiple angiotensin peptides with oxidative and pro-inflam-
matory characteristics (Hanna et al. 2002; Suzuki et al. 2003;
Robbins et al. 2010; Satou et al. 2018). The first ACE-inhibi-
tor for targeting radiotherapy-induced brain damage
(Ramipril) was proposed in 2004 (Kim et al. 2004), when it
prevented optic nerve damage induced by 30Gy gamma-
irradiation in rats. In 2012, Ramipril was also shown to

improve cognitive performances in irradiated rats (novel
object recognition task), together with significant decrease in
radiation-induced microglial activation and increased neuro-
genesis, when continuously administrated for the time of the
experiment starting 3 days prior to irradiation (Lee
et al. 2012).

Finally, neuroinflammation caused by therapeutic gamma
radiation or simulated space high-LET radiation can be lim-
ited by targeting microglia using a small molecule inhibitor.
Temporary microglial depletion with reconstitution has been
shown to limit neuronal and synaptic damage as well as
cognitive outcomes in adult mice irradiated with 9Gy
gamma rays (Acharya et al. 2016) as well as with
0.15� 1Gy 4He ions (Krukowski et al. 2018).

Both neuronal DNA damage (Tikka et al. 2001) and neu-
roinflammation, specifically, microglial activation, can be

Figure 5. Flowchart of the main discussed processes of radiation-induced inflammatory responses, and associated countermeasures. EPO: erythropoietin, HIF-1a:
hypoxia-inducible factor a, VEGF: vascular endothelial growth factor, CXCR4: CXC motif chemokine receptor 4, CCR2: CC motif chemokine receptor 2, ACE: angioten-
sin-converting enzyme, Ang II: angiotensin II, TNF-a: tumor necrosis factor a, VCAM-1: vascular cell adhesion protein 1, ICAM-1: intercellular adhesion molecule 1,
GSK-3: glycogen synthase kinase 3, DAMPs: danger-associated molecular patterns, TLRs: toll-like receptors, NF-jB: nuclear factor NF-jB, AP-1: activator protein 1,
PPAR: proliferator-activated receptor, COX-2: cyclooxygenase-2, iNOS: inducible nitric oxide synthase, NLRP3: NLR Family Pyrin Domain Containing 3, IL-1: interleu-
kin-1, IFN-c: interferon-c, TGF-b: transforming growth factor b. Numbers refer to the following studies: 31. (Jiang, Perez-Torres, et al. 2014), 32. (Gonzalez et al.
2007), 33. (Jiang, Engelbach, et al. 2014), 34. (Belarbi et al. 2013), 35. (Yang et al. 2018), 36. (Erbayraktar et al. 2006), 37. (Ansari et al. 2007), 38. (Yuan et al. 2003),
39. (Zhao et al. 2007), 40. (Schnegg et al. 2012), 41. (Greene-Schloesser et al. 2014), 42. (Desmarais et al. 2015), 43. (Kim et al. 2004), 44. (Lee et al. 2012)
Supplementary Table 4 provides additional information regarding the model, irradiation, administration conditions and main results for each of the discussed
countermeasures.
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effectively suppressed using antibiotics: minocycline
(Hanlon, Raghupathi, and Huh 2017), doxycycline (Santa-
Cec�ılia et al. 2016) and ceftriaxone (Lujia et al. 2014). These
antibiotics present documented safety for human applica-
tions and ability to penetrate the blood-brain barrier.
However, they also have multiple off-target effects on the
rest of the body and its microbiome, which limit their use-
fulness as countermeasures, especially for chronic adminis-
tration. Thus, selective targeting of microglia is a more
promising approach to reduce CNS damage after irradiation.

Healthy microglia and monocyte populations are stimu-
lated by colony-stimulating factor 1 (CSF-1) (De et al. 2014)
and therefore can be inhibited using PLX3397, a small mol-
ecule inhibitor of the CSF1 receptor. PLX3397 has recently
been demonstrated to prevent radiation-induced memory
deficits by reducing microglia activation and monocyte accu-
mulation in mouse models following therapeutic-relevant
fractionated whole-brain irradiation (Feng et al. 2016, 2018).
Importantly, PLX3397 administration started as late as one
week after radiation exposure showed effective results, fur-
ther increasing the therapeutic value of PLX3397, which is
currently in clinical trials. Another inhibitor of the same
CSF-1 pathway of microglial activation, a small molecule
PLX5622, has also been demonstrated to protect against
CNS irradiation by reducing synapse loss and preserving
dendritic spines, as well as reducing memory impairments
(Krukowski, Feng, Paladini, Chou, Sacramento, Grue,
Riparip, Jones, Campbell-Beachler, and Nelson 2018; Feng
et al. 2016; Acharya et al. 2016).

Limiting tissue damage and increasing repair

Ionizing radiation causes damage at the tissue-to-organism
level through the accumulation of all the outcomes discussed
in the previous sections: DNA damage, oxidative stress, vas-
cular damage, cell death, hypoxia and inflammation. Tissue
damage in the CNS can manifest as impaired neurogenesis,
depleted populations or inhibited functions of specific cell
types, chronic inflammation, and progressive white matter
degeneration. Physiological impairments, such as chronic
CNS inflammation and neuronal loss, lead to cognitive defi-
cits that can last for years after irradiation in animal models
and human patients (Prasanna et al. 2014; Parihar et al.
2015; Burns et al. 2016). Tissue damage is particularly
important in CNS responses to space radiation, including
the components of galactic cosmic rays: it combines neur-
onal damage, neuroinflammation, and cognitive and behav-
ioral changes primarily associated with loss of social,
recognition and spatial memory (Cekanaviciute et al. 2018)
and remains to be solved before embarking upon long dur-
ation spaceflight and space habitation in future lunar and
Mars missions. However, the majority of countermeasures
have been investigated in radiotherapy models and remain
to be applied to simulated space radiation.

All reviewed countermeasures targeting radiation-induced
tissue damage are summarized in Supplementary Table 5.
One increasingly investigated approach irradiation is cell
transplants into mouse or rat brain after simulated

radiotherapy. Mesenchymal stem cell (MSC) transplants into
mouse brains 2 days after 15Gy X-ray exposure have been
shown to reduce inflammation, cell death and cognitive defi-
cits one month later (Liao et al. 2017). A similar study com-
bined MSC transplants with antihypertensive drug
nimodipine in mice after 15Gy of gamma radiation, with
more success than MSC transplants alone (Wang et al.
2016). In comparison, Baulch et al. (Baulch et al. 2016) con-
ducted transplant experiments with microvesicles (MVs)
derived from human neural stem cells (hNSC), rather than
with the stem cells themselves. After irradiation with 10Gy
X-ray followed by MV transplants 2 days later into the
hippocampus, MV-treated rats scored significantly higher
than untreated rats on cognitive tasks at one month post-
irradiation. Additionally, MV-treated rats were found to
have increased dendritic complexity and less activated
microglia in the hippocampus, cortex, and amygdala (Baulch
et al. 2016). More recently, the same group demonstrated
that unilateral transplantation of extracellular vesicles from
human neuronal stem cells (hNSCs) into rat hippocampi
protected the dendritic morphology in both hemispheres of
the brain, suggesting the potential of EVs for distal para-
crine signaling (Smith et al. 2020).

Another strategy for CNS tissue repair after radiotherapy
in rodents is the transplantation of oligodendrocyte precur-
sor cells (OPCs), which are important for myelination of
axons. Rats exposed to 22Gy X-ray radiation and trans-
planted with OPCs 4months later exhibited decreased
demyelination of axons and increased forelimb function
2months after transplantation compared to rats that did not
receive OPC transplants (Sun et al. 2013). Similarly, OPCs
and O4þ oligodendrocyte precursor transplantation into
rats 4 weeks after exposure to fractionated X-ray irradiation
with a total dose of 50Gy spread out over two weeks
improved learning and memory when transplanted into cor-
pus callosum, motor functions when transplanted into the
cerebellum, and remyelination regardless of location (Piao
et al. 2015).

Taken together, these transplant studies demonstrate a
potential for repopulating the brain, reducing cellular dam-
age, and mitigating cognitive decline. However, it is essential
to combine these studies with assessing the potential side
effects, such as tumorigenesis by stem cells and glial precur-
sors, and epileptogenesis due to abnormal incorporation of
new neurons. Therefore, cell-derived factors or microvesicles
might be a better solution that avoids the side effects,
although the delivery method may have to be improved to
allow them to pass through the blood-brain barrier and
remove the requirement for multiple times of
administration.

In addition, in rodent models of radiotherapy, neuronal
tissue damage is attenuated and neurogenesis is increased by
some of the previously discussed countermeasures that
reduce oxidative stress and inflammation. For example, pre-
treatments of 2Gy gamma ray irradiated rats with antioxi-
dant SBL-1 also reduced neurodegeneration in the cortex,
amygdala and hippocampus (Bala et al. 2017). Another anti-
oxidant, baicalein, has been shown to exert similar
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protective effects in mice when administered prior to irradi-
ation with 5Gy of gamma radiation, increasing cognitive
performance, neuronal differentiation and neurogenesis (Oh
et al. 2013). Finally, a common food antioxidant and anti-
inflammatory compound resveratrol has been shown to pro-
tect mouse hippocampal slice cultures both before and after
exposure to doses up to 16Gy X-ray radiation by increasing
neurogenesis (Prager et al. 2016), though it has not been
used in vivo. Neurogenesis was also increased by oral
administration of the neuroprotective compound NSI-189
through pro-neurogenic and anti-inflammatory actions
(Allen et al. 2018).

Potential future directions for developing and
testing CNS countermeasures against ionizing
radiation

Analysis of the advantages and drawbacks of currently avail-
able countermeasures to protect CNS against ionizing radi-
ation in the context of radiotherapy and spaceflight suggests
directions for future countermeasure development. Optimal
countermeasures would combine multiple approaches with a
focus on reducing oxidative stress, limiting neuroinflamma-
tion and restoring tissue health. In addition, to be therapeut-
ically efficient the countermeasures have to be administered
peripherally, ideally without the need for repeated or
ongoing administration, and with low probability of detri-
mental side effects (such as carcinogenesis or dysregulated
immune responses in the rest of the body), potentially
achieved by high tissue and cell type specificity. While post-
irradiation delivery of treatment is essential to combat acute
high irradiation due to a nuclear event, and would be desir-
able to combat space radiation outcomes, in medical radio-
therapy preventative measures could be easily employed
as well.

Drug repurposing has recently been successfully
employed in immune context and may provide novel radi-
ation countermeasures as well. In addition to agnostic repur-
posing purely based on analysis of medical records
(Himmelstein et al. 2017), specific targets could be selected
from CNS disorders with overlapping effects, including neu-
rodegeneration due to aging, Alzheimer’s and Parkinson’s
disease, acute injury responses such as stroke and traumatic
brain injury, and neuroinflammation involving systemic
changes in the rest of the body as well as the brain such as
multiple sclerosis. The key functions affected by these disor-
ders are likely to overlap with the ones most in need of pro-
tection to improve the quality of life in both patients and
astronauts: memory and cognitive skills as well as sensori-
motor abilities. Similarly, exposure to ionizing radiation,
especially to high LET particles that are the elements of
simulated galactic cosmic rays, could be conceived as a
model of accelerated aging, neuroinflammation and neuro-
degeneration (Cekanaviciute et al. 2018), thus novel radi-
ation countermeasures may be repurposed for neurological
disorders.

Developing more effective radiation countermeasures
may be facilitated by new research techniques and model

systems. For example, personalized medicine approaches
that would take into account individual epidemiological and
genomic susceptibility to ionizing radiation would be more
likely to increase efficiency and reduce side effects, and
would be suitable for applications in radiotherapy and space
travel. They would also reveal more information about fun-
damental biological mechanisms regulating radiation
responses, which could be utilized for a more general coun-
termeasure development. On a more limited scale, incorpo-
rating demographic factors such as gender, age and
comorbidities into research had been reported in compara-
tively few papers discussed here, but would significantly
advance the applicability of the results.

Furthermore, recent technological advancements have
expanded the model systems to include personalized tissues/
organs-on-a-chip that can be utilized to test radiation coun-
termeasures in human tissues instead of animal models, and
individualized using induced pluripotent stem cell-derived
cells to evaluate the outcomes and infer potential side effects
for a particular subject. Such human CNS models include
multicellular brain organoids (Sloan et al. 2018) and high-
throughput neuron/astrocyte co-cultures (Wevers et al.
2016) as well as models of the blood-brain barrier (Wevers
et al. 2018).

Finally, the CNS is not an isolated system, but responds
to ionizing radiation exposure together with the rest of the
body, therefore, systemic countermeasures may have benefi-
cial CNS effects as well, especially by reducing inflammation
and oxidative damage. One of the most unusual approaches
to limit brain inflammation has been by using metabolites
produced by the gut microbiome, such as tryptophan deriva-
tives that have the advantage of passing through the blood-
brain barrier and are associated with few side effects.
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