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Abstract Background: HCC is one of the leading causes of world wide cancer mortality due to

late diagnosis. Chronic hepatitis C virus is one of the main risk factors for the development of

Hepatocellular carcinoma (HCC), which is a multi-step process involving different genetic altera-

tions that lead to malignant transformation of hepatocytes. Genetic and molecular abnormalities

associated with viral infection or due to inflammatory conditions represent an early step in hepato-

carcinogenesis. HCC is a hypervascular solid cancer. Tumor growth depends on angiogenesis, and

the ‘‘angiogenic switch’’ of preexisting vessels is required to allow tumor progression, growth, and

propagation to supply nutrients and oxygen. Inducible nitric oxide synthase (iNOS) also plays an

important role in angiogenesis, regulating several biological processes crucial for tumor growth.

Objectives: Evaluation of serum nitric oxide before and after local radiofrequency thermal ablation

for hepatocellular carcinoma.

Subjects: Twenty patients with proven hepatocellular carcinoma and 15 healthy patients as

controls were enrolled in the study.
C, hepatocellular carcinoma;
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Methods: History taking, clinical examination, laboratory testing (AlT, AST, Bil cGT, ALP, Albu-

min, AFP, NO), ultrasound and Spiral CT. Evaluation was done initially and repeated after 2 weeks

of tumor ablation by local radiofrequency thermal ablation.

Results: Median of Serum Nitric oxide was statistically significantly higher among HCC patients

before radiofrequency thermal ablation (1200 lmol/l) compared to controls (22 lmol/l)where

p< 0.001, also the median of NO was statistically significantly declined after radiofrequency

thermal ablation compared to before (160, 1200 lmol/l) respectively where p< 0.001.

Conclusion: The data suggest that there is an elevation in serum nitric oxide in HCC patients and

that is locally produced from the tumor and hence its level significantly drops after local radiofre-

quency thermal ablation.

ª 2012 Alexandria University Faculty of Medicine. Production and hosting by Elsevier B.V. All rights

reserved.
1. Introduction

Primary liver cancer PLC is the fifth most common cancer
worldwide with approximately 600,000 deaths annually. Hepa-
tocellular carcinoma (HCC) accounts for approximately 85–

90% of all PLC, out of which 80% of HCC cases occur in
either sub-Saharan Africa or in eastern Asia.1,2 Risk factors
that lead to the multistep development of HCC are well known
and it is established that approximately 80% of HCC cases de-

velop in individuals suffering from chronic hepatitis B or C vir-
al infection HBV or HCV, cirrhosis, and also those with a high
exposure to aflatoxin-B1 as well as those with a high intake of

alcohol.3–5

In a setting of chronic inflammation, cytokines and reactive
oxygen and nitrogen species produced by inflammatory cells

have been shown to mediate liver damage and induce the li-
ver’s regenerative response. This predisposes the proliferating
cells to a variety of genetic changes at the genomic and tran-

scriptional levels.6–10

The main sources of reactive species in cells are mitochon-
dria, cytochrome P450 and peroxisome. Under physiological
conditions, there is a constant endogenous production of reac-

tive oxygen ROS and nitrogen species and RNS that interact
as ‘‘signaling’’ molecules for metabolism, cell cycle and inter-
cellular transduction pathways.11

To control the balance between the production and removal
of ROS, as hydroxyl and superoxide radicals, and RNS, as ni-
tric oxide, peroxynitrite and S-nitrosothiols, there are a series of

protective molecules and systems globally defined as ‘‘antioxi-
dant defences’’. Oxidative stress occurs when the generation
of free radicals and active intermediates exceeds the system’s

ability to neutralize and eliminate them. In these conditions,
ROS and RNS affect the intracellular and intercellular homeo-
stasis, leading to DNA and protein oxidation, cell membrane
damage, gene mutation, gene damage implicated in cell growth,

cell cycle, apoptosis, disruption of DNA repair pathways as
well as possible cell death. These changes render the cells more
susceptible to spontaneous or mutagen induced alterations.12

Therefore, free radical production and oxidative injury,
constitute the first step of a cascade of epigenetic aberrant
DNA methylation, genomic point mutations and post-geno-

mic protein oxidation and cytokine synthesis, events that lead
to HCC.13–15

Reactive species also play an important role in fibrogenesis
throughout the increasing of the platelet derived growth factor

or the secretion of profibrotic cytokines, such as TGF-b. Thus,
oxidative stress plays an evident role in the progression of liver

fibrosis and cirrhosis.15,16

NO, a small potent lipophilic gas with divergent biological
activities, seems to play an important role in modulating tissue
injury and carcinogenesis. Three distinct forms of nitric oxide

synthase (NOS) catalyze the formation of NO. Endothelial
NOS and neuronal NOS are constitutively expressed in differ-
ent tissues, whereas inducible nitric oxide synthase (iNOS) is

related to a high-output pathway for NO production which
contributes to tumor cell angiogenesis as well as the invasion
and metastases of HCC.17,18

Neoplastic tissue requires a supply of oxygen and nutrients
to continue its growth and meet its metabolic demands. Thus,
it is necessary for a tumor to orchestrate the formation of a
functioning system of blood vessels, which allows the delivery

of metabolites including growth factors and cells as immuno-
logical cells and other cellular precursors to the tumor
environment.

Newly formed vessels have abnormal architecture and tend
to facilitate the spread of tumor cells. If disseminated tumor cells
become located in other tissues, the whole process of tumorigen-

esis may reoccur with the generation of secondary tumors.19,20

The formation of new functional blood vessels occurs in
several phases including endothelial cell budding which is facil-

itated by vasodilatation, loosening of interendothelial contacts
and leakage from pre-existing vessels. These phenomena allow
extravasation of plasma proteins that together with the extra-
cellular matrix components facilitate the laying down of a pro-

visional scaffold for migrating endothelial cells.21,22

HCV infection causes elevated iNOS transcription which
might be responsible for carcinogenesis in the cirrhotic liver

and these effects depend on NO concentrations.23

Inflammation induces the expression of iNOS, which results
in an increased production of nitric oxide and nitrosoglutathi-

one (GSNO), which is degraded by a reductase, GSNOR.
GSNO is in equilibrium with nitrosylated proteins, among
them the DNA repair enzyme AGT, which is then degraded

by the proteasome. Nitroso compounds lead to the formation
of O6-alkylguanines, which, if not repaired by AGT, will cause
mutagenesis and favor the tumorigenic processes and hepato-
cellular carcinoma24 (fig. 1).

Radio frequency ablation (RFA) therapy is one of the best
curative treatment options for malignant liver tumors, and can
be an alternative to resection. RFA can be performed safely

using percutaneous, laparoscopic or open surgical techniques
as RFA has markedly changed the treatment strategy for small



Figure 1 Inflammation induces the expression of iNOS.
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HCCs. Currently, RFA has gained popularity based on the

ease of use, safety, reasonable cost and applicability. Localized
application of thermal energy induces tumor cell destruction.
When tumor cells are heated above 50 �C, intracellular pro-

teins are denatured and cell membranes are destroyed through
the dissolution and melting of lipid bilayers.25

RFA is a localized thermal treatment technique designed to

produce tumor destruction by heating tumor tissue to temper-
atures that exceed 60 �C. The alternating current of RF waves
passing down from the uninsulated electrode tip into the sur-
rounding tissues generates changes in the direction of ions

and creates ionic agitation and frictional heating, this tissue
heating then drives extracellular and intracellular water out
of the tissue resulting in tissue destruction by coagulative

necrosis.26,27
2. Aim of work

Evaluation of the serum level of nitric oxide (NO) in patients
with HCC; before and 2 weeks after local radiofrequency ther-
mal ablation is done proving that HCC is the main source of

NO in the case of HCC complicating cirrhosis.
3. Subjects and methods

The present study included 20 patients diagnosed as HCC on
top of liver cirrhosis who were presented to the Hepatobiliary
Unit, Alexandria Main University Hospital, and 15 matched

normal subjects as a control to obtain the normal range of bio-
chemical parameters. Written consent was taken from all par-
ticipants included in the study before starting the research.

All patients included in the study were subjected to the

following:

- Full history taking, clinical examination to assess liver, spleen,

ascites, lower limb edema together with complete liver profile
ALT,28 AST,29 serum bilirubin,30 cGt,31 ALP,32 serum
albumin,33 prothrombin activity,34 serumalpha fetoprotein,35

HBsAg,36 HCVAb37 and Child-Pugh score.38

- Examination of the liver using B-mode standard ultraso-
nography scanning to assess liver condition as regards:

cirrhosis and presence of focal lesion(s). Also, the number;
site as well as size of the lesion(s).39 The information
obtained was confirmed by performing triphasic CT of
the abdomen.40
- Different types of RF electrodes are currently available, the
one used in the present study belongs to the RITA medical
system. The needle electrode of RITA consists of a 14-

gauge insulated outer needle that houses nine retractable
curved electrodes of various lengths. When the electrode
is extended, the device assumes the approximate configura-

tion of a Christmas tree. The alternating electric current
generator comes in a 250-W model at 460 kHz (Model
1500-X RF Generator, RITA Medical System).41

All procedures were performed percutaneously using sono-
graphic guidance. For lesions in the right lobe, an intercostal

approach was used, whereas lesions in the left lobe were trea-
ted with an epigastric approach.

Serum NO level42 was measured in HCC patients who were
candidates to RFA therapy according to BCLC staging classi-

fication, before and 2 weeks after complete ablation.
Statistical analyses were performed using SPSS version 13

for windows program. Chicago, SPSS incorporation 2000.43

4. Results

Table 1 showed the clinical data of patients and radiological

characteristics before RF. Liver was shrunken in 6 (30%)
and enlarged in 14 (70%) patients. Six (30%) patients had asci-
tes and five (25%) had jaundice, none of the patients had

encephalopathy. The tumor size ranged from 2 to 4.5 cm with
a median value of 3 cm. Table 2 shows: the median values of
the laboratory results of the present patients for GPT, GOT,

cGT, Bilirubin total, direct, albumin and alkaline phosphatase
before RF were significantly higher 47U/L,65U/L,40U/
L,1.6 mg/dl,1.2 mg/dl, 3.30 g/dl,88U/L than after RF which
were 27.5U/L,35U/L,15U/L,1.1 mg/dl,0.15 mg/dl, 5.15 g/

dl,35.5U/L respectively, where p< 0.001.
Table 3 & Fig. 2; shows a significant difference between NO

in cases gp before RF which showed a median value of

1200 lmol/l than the control gp median value 22 lmol/l where
p< 0.001, also there was a significant difference between NO
after RF which had a median value of 160 lmol/l than that of

the control median value 22 lmol/l where p < 0.001.
AFP median value before RF was significantly higher

95 ng/l than after RF which was 10 ng/l where p < 0.001, this
was evident in Fig. 3.

Table 4; Spearman’s correlation showed no significant cor-
relation between NO and AFP before and after RF where
p= 0.053 and p = 0.449, respectively. Table 5 shows that no



Table 2 Laboratory data of patients before and after RF.

Before (RF) After (RF) p value

GPT (U/L)

Range 15.0–91.0 15.0–52.0 <0.001*

Mean ± SD 46.25 ± 17.94 28.10 ± 9.98

Median (IQR) 47.0 (26.75) 27.50 (14.25)

GOT (U/L)

Range 27.0–88.0 25.0–78.0 <0.001*

Mean ± SD 65.35 ± 15.38 39.45 ± 14.07

Median (IQR) 65.0 (20.0) 35.0 (17.25)

c GT (U/L)

Range 14.0–153.0 10.0–124.0 <0.001*

Mean ± SD 64.50 ± 48.53 24.50 ± 24.52

Median (IQR) 40.0 (87.25) 15.0 (12.0)

Bil (total) (mg/dl)

Range 1.20–4.10 0.50–2.0 <0.001*

Mean ± SD 1.93 ± 0.79 1.12 ± 0.43

Median (IQR) 1.60 (0.93) 1.10 (0.18)

Bil (Direct) (mg/dl)

Range 0.60–2.90 0.10–1.70 <0.001*

Mean ± SD 1.28 ± 0.55 0.44 ± 0.52

Median (IQR) 1.20 (0.85) 0.15 (0.45)

CBC: white count

Range 2100.0–4800.0 3000.0–5250.0 0.012*

Mean ± SD 3110.0 ± 698.80 352250 ± 642.46

Median (IQR) 3000.0 (600.0) 3500.0 (550.0)

Platelets (*10)3

Range 70.0– 230.0 150.0–350.0 0.001*

Mean ± SD 14.68 ± 59.76 213.65 ± 51.93

Median (IQR) 15.20 (125.0) 220.0 (925.0)

Albumin (gm/dl)

Range 1.50–5.10 2.80–5.80 <0.001*

Mean ± SD 3.25 ± 1.0 4.68 ± 0.96
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significant correlation exists between AFP and NO with tumor
size where p = 0.867 and p = 0.717 respectively. Table 6 rep-
resented the clinical classification according to Child-Pugh

score where 14 (70%) patients were of class A and 6 (30%) pa-
tients were of class B, evidently no significant correlation exists
between Child-Pugh, NO and AFP before RF.

5. Discussion

Mammalian cells have the ability to synthesize the free radical

nitric oxide (NO) which stimulated an extraordinary impetus
for scientific research in all the fields of biology and medicine.
Since its early description as an endothelial-derived relaxing

factor, NO has emerged as a fundamental signaling device reg-
ulating virtually every critical cellular function, as well as a po-
tent mediator of cellular damage in a wide range of

conditions.44

Recent evidence indicates that most of the cytotoxicity
attributed to NO is rather due to peroxynitrite, produced from
the diffusion-controlled reaction between NO and another free

radical, the superoxide anion. Peroxynitrite interacts with lip-
ids, DNA, and proteins via direct oxidative reactions or via
indirect, radical-mediated mechanisms.45

These reactions trigger cellular responses ranging from sub-
tle modulations of cell signaling to overwhelming oxidative in-
jury, committing cells to necrosis or apoptosis, representing a

crucial pathogenic mechanism in cancer.46,47

In the present study it is clearly evident that NO median le-
vel was significantly higher in the studied patient group before
and after RF than matched normal control group 1200,

160 lmol/l, 22 lmol/l, respectively where p< 0.001.(Tables 1
and 3).

Parasole et al.48 stated that AFP appeared in many parenchy-

matous liver diseases such as acute viral hepatitis and chronic
Table 1 Clinical data of patients before RF.

Clinical & radiologic parameters No. %

Liver

Shrunken 6 30.0

Enlarged 14 70.0

Spleen

Not enlarged 3 15.0

Enlarged 17 85.0

Ascites

�ve 14 70.0

+ve 6 30.0

Jaundice

�ve 15 75.0

+ve 5 25.0

Segmental

V 4 20.0

VI 4 20.0

VII 9 45.0

VIII 3 15.0

Tumor size(cm)

Range 2.0–4.50

Mean ± SD 3.05 ± 0.74

Median 3.0

Median (IQR) 3.30 (0.98) 5.15 (1.85)

ALK (U/L)

Range 60.0–335.0 19.0–162.0 <0.001*

Mean ± SD 108.20 ± 72.17 46.65 ± 30.62

Median (IQR) 88.0 (53.50) 35.50 (27.0)

Proth time (s)

Range 12.80–19.60 12.80–13.80 0.016*

Mean ± SD 15.36 ± 2.52 13.57 ± 0.23

Median (IQR) 13.80 (4.35) 13.50 (0.30)

Proth activity (%)

Range 40.0–72.0 70.0–72.0 0.003*

Mean ± SD 59.65 ± 14.75 71.30 ± 0.57

Median (IQR) 70.0 (31.25) 71.0 (1.0)

AFP (ng/ml)

Range 4.0–200.0 2.0–68.0 <0.001*

Mean ± SD 92.90 ± 57.09 20.45 ± 20.33

Median (IQR) 95.0 (99.75) 10.0 (32.50)

NO (lmol/L)

Range 660.0–1700.0 110.0–450.0 <0.001*

Mean ± SD 1180.50 ± 263.31 200.0 ± 93.41

Median (IQR) 1200.0 (375.0) 160.0 (115.0)

p: p value for Wilcoxon signed ranks test.
* Statistically significant at p 6 0.05.
hepatitis but higher levels were found most frequently in HCC.
This was in agreement with our present studywhere AFPmedian
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Figure 3 Box plot presentation for AFP before and after RF.

Table 3 Comparisons between cases and control according to the nitric oxide before and after RF.

Variables Cases Control Mann–Whitney test values (P)

Nitric oxide (before)

Min.–max. 660–1700 20–25 5.014* (<0.001)

Mean ± SD 1180 ± 263.3 22.2 ± 2

Median (IQR) 1200 (375) 22 (5)

Nitric oxide (after)

Min.–max. 110–450 20–25 5.019* (<0.001)

Mean ± SD 200 ± 93.4 22.2 ± 2

Median (IQR) 160 (115) 22 (5)

Table 4 Correlation between NO and AFP before and after

radiofrequency (RF).

NO

Before RF After RF

Rho p Rho p

AFP 0.439 0.053 0.179 0.449

Rho (q): Spearman coefficient.

Table 5 Correlation between tumor size, NO and AFP before

(RF).

Tumor size

Rho p

AFP (ng/ml) before RF 0.040 0.867

NO (lmol/L) before RF 0.086 0.717

Rho (q): Spearman coefficient.
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value was significantly higher in the studied HCC patient group
before RF 95 ng/ml than the matched control group median
value 22 ng/ml where p< 0.001 and after the RF median value

which was 10 ng/ml where p< 0.001.(Table 2).
Relationship between chronic inflammation and tumori-

genesis has been long suspected. It is well known that malig-

nant tissues are infiltrated by leukocytes, which locally
secrete cytokines, chemokines, matrix-degrading enzymes,
growth factors, free radicals, and oxidants. This creates a
microenvironment that may enhance cell proliferation, sur-

vival, migration, as well as angiogenesis, thereby promoting tu-
mor development.49

A particularly important role of increased NO generation in
this microenvironment is now well recognized as an essential

step initiating neoplastic transformation.50 Importantly, not
only immune cells infiltrating the tumor, but the tumor cells
themselves, are able to produce large amounts of NO due to

induced expression of iNOS, which may prevail in rapidly
growing tumors.51 Evidence for a role of NO overproduction
as a mechanism initiating and promoting tumorigenesis is see-

n,52also Qiang et al.53 reported that the double edged sword of
NO in tumor biology clearly depends on cell type, NO concen-
tration, oxidiative stress and tumor milieu.

This was documented in our study by the significant ele-

vated median level of NO in the HCC patient group before
RF 1200 lmol/l than the control median value 22 lmol/l and
was significantly reduced after ablation of the tumor cells by

RF which was 160 lmol/l indicating that the tumor cells are
the primary site for the excess NO production.

Tumor-promoting influence of NO has been identified, it

can stimulate tumor angiogenesis, by inducing angiogenic
and lymphangiogenic factor expression, most significantly
vascular endothelial growth factor VEGF54–56 and by stimu-

lating blood vessel maturation via the recruitment of perivas-
cular cells pericytes,57,58 also NO has been associated with



Table 6 Relation between Child–Pugh score with AFP and NO before RF.

Child–Pugh score p value

Class (A) Class (B)

AFP (ng/ml) before RF

Range 4.0–170.0 5.0–200.0 0.200

Mean ± SD 82.57 ± 50.07 117.0 ± 69.77

Median (IQR) 80.0 (78.50) 135.0 (114.0)

NO (lmol/L) before RF

Range 660.0–1700.0 860.0–1500.0 0.934

Mean ± SD 1180.0 ± 280.38 1181.67 ± 243.02

Median (IQR) 1200.0 (337.50) 1220.0 (467.50)

p: p value for Mann Whitney test.
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enhanced migration and invasion of tumor cells through mech-
anisms depending on guanylyl cyclase and MAPK signal-

ing.59,60 These influences of NO depend on the duration and
level of NO exposure, the type of iNOS-expressing cells and
cellular sensitivity to nitric oxide cytotoxic activity.50

Masahide et al.61 reported that the overproduction of NO

in malignant tissues by iNOS inhibits the immune defence
mechanism and increases tumor blood, correlating with carcin-
ogenisis in cirrhotic liver but does not play a role in tumor pro-

gression in HCC. This was in accordance with our present
study were there was no significant correlation between NO
before RF and the tumor size.
6. Conclusion

Overproduction of NO may represent an essential link between

inflammation and carcinogenesis. Available evidence indicates
that NO plays a crucial role in tumorigenesis. Significant
reduction of NO level is a marker for ablation of HCC by RF.
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