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ABSTRACT 

Over the past two decades, the Define-Measure-Analyze-Improve-Control (DMAIC) 

framework of the Six Sigma methodology and a host of statistical tools have been brought to 

bear on process improvement efforts in today’s businesses. However, a major challenge of 

implementing the Six Sigma methodology is maintaining the process improvements and 

providing real-time performance feedback and control after solutions are implemented, 

especially in the presence of multiple process performance objectives. The consideration of a 

multiplicity of objectives in business and process improvement is commonplace and, quite 

frankly, necessary. However, balancing the collection of objectives is challenging as the 

objectives are inextricably linked, and, oftentimes, in conflict. 

Previous studies have reported varied success in enhancing the Six Sigma methodology 

by integrating optimization methods in order to reduce variability. These studies focus these 

enhancements primarily within the Improve phase of the Six Sigma methodology, optimizing a 

single objective. The current research and practice of using the Six Sigma methodology and 

optimization methods do little to address the real-time feedback and control for online process 

control in the case of multiple objectives. 

This research proposes an innovative integrated Six Sigma multiobjective optimization 

(SSMO) approach for online process control. It integrates the Six Sigma DMAIC framework 

with a nature-inspired optimization procedure that iteratively perturbs a set of decision variables 

providing feedback to the online process, eventually converging to a set of tradeoff process 

configurations that improves and maintains process stability. For proof of concept, the approach 

is applied to a general business process model – a well-known inventory management model – 

that is formally defined and specifies various process costs as objective functions. The proposed 
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SSMO approach and the business process model are programmed and incorporated into a 

software platform. Computational experiments are performed using both three sigma (3σ)-based 

and six sigma (6σ)-based process control, and the results reveal that the proposed SSMO 

approach performs far better than the traditional approaches in improving the stability of the 

process. This research investigation shows that the benefits of enhancing the Six Sigma method 

for multiobjective optimization and for online process control are immense. 
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CHAPTER 1: 

INTRODUCTION 

 

1.1 The Six Sigma Methodology 

In industrial manufacturing and service environments, it is important to reduce the 

variation of processes in order to improve the overall quality within an organization. The 

traditional evaluation of quality level is usually performed based on measuring customers’ needs. 

This evaluation generally transforms customers’ needs into target values that are compared to the 

average performance measures of the process (or product). As the deviation between average 

measures and target values decreases, the quality level of the process (or product) increases. 

Customers desire consistent, reliable, and predictable processes and products that deliver best-in-

class levels of quality. This is what the Six Sigma methodology strives to achieve (Kapur & 

Feng, 2005). 

Over the years, many service and manufacturing organizations have implemented the Six 

Sigma methodology improving the average yield in these organizations after its implementation 

(Kumar et al., 2008). For instance, in the 1990s, General Electric (GE) adopts Six Sigma in 

almost every division of the company, implementing approximately 6,000 process improvement 

projects. From the implementation of the process improvement project results in the first few 

years at the company under the Six Sigma methodology, GE announces that the savings from 

implementing Six Sigma projects reaches about US$150 million. By the end of 1999, GE reports 

US$3 billion in savings attributed to the Six Sigma improvement projects, (Pyzdek et al., 2009; 

Snee & Hoerl, 2003). Table 1.1 is a partial listing of the industrial organizations, projects, 

performance metrics and benefits/savings realized when implementing Six Sigma process 

improvement projects. 
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Table 1.1: Reported benefits/savings from implementing the Six Sigma methodology at 

industrial organizations (summarized from from Kwak & Anbari (2006)). 

Company / Project  Performance Measure Benefits/Savings 

Raytheon / aircraft integration 
systems 

Depot maintenance 
inspection time 

Reduction in maintenance inspection 
time by 88% (in days) 

General Electric / Railcar leasing 

business 

Turnaround time at repair 

shops  

Turnaround time reduced by 62% 

Allied Signal (Honeywell) / 
Laminates plant in South 

Carolina 

Capacity, cycle time, 
inventory, and on-time 

delivery 

Increase in capacity by 50%, 
reduction in cycle time by 50%, and 

on-time delivery up 100% 

Allied Signal (Honeywell) / 
Bendix IQ brake pads  

Concept-to-Shipment 
cycle time 

Shipment cycle time reduction of 10 
months 

Hughes Aircraft’s Missiles 

Systems Group / Wave soldering 

operations  

Quality and productivity  Quality up 1000% and productivity up 

500% 

Dow Chemical / Rail delivery 

project 

Financial Savings of $2.45 million 

DuPont / Yerkes plant in New 

York 

Financial Savings by approximately US$25 

million  

 

Since its inception, the Six Sigma methodology has been adopted in both manufacturing 

and service settings. It has been proven that it is an effective methodology for improving quality, 

productivity, cost, customer satisfaction, sales, and profitability (Deshmukh & Chavan, 2012; 

Zhu & Hassan, 2012). Such development is reflected in the rising trends in published studies as 

shown in Figure 1.1. Many studies address the fundamentals of Six Sigma and its applications 

from different perspectives such as in semiconductor manufacturing (e.g., Su & Chou, 2008), 

automotive parts manufacturing (e.g., Krishna et al., 2008), aluminum recycling (e.g., Das & 

Hughes, 2006), aerospace industry (e.g., Maleyeff & Krayenvenger, 2004), military (e.g., 

Stefanko, 2009), chemical industry (e.g., Motwani et al., 2004), banking industry (e.g., 

Immaneni et al., 2007), software industry (e.g., Antony & Fergusson, 2004), general service 

industry (e.g., Antony, 2006; Ehrlich, 2002; El-Haik & Roy, 2005; George, 2003), supply chain 

management (e.g., Knowles et al., 2005), healthcare industry (e.g., Taner et al., 2007), education 

(e.g., Weinstein et al., 2008), and Six Sigma deployment (e.g., Adams et al. 2003). 
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Figure 1.1: Six Sigma publications distribution over time based on sector type (1992-2008) 

(Aboelmaged, 2010). 

 

1.2 The Six Sigma Methodological Frameworks 

In implementing the Six Sigma improvement methodology, two frameworks are 

commonly used: Define-Measure-Analyze-Improve-Control (or, DMAIC) and Define-Measure-

Analyze-Design-Verify (or, DMADV). DMAIC focuses on improving existing processes, 

products, and/or services to meet customer needs, and DMADV focuses on designing new 

processes, products, and/or services to meet customer needs. 

In recent years, many academicians and practitioners believe that it is possible to enhance 

Six Sigma by integrating it with other improvement approaches in order to achieve higher degree 

of quality (Nonthaleerak & Hendry, 2006; Thirunavukkarasu et al., 2008). For example, 

Rodriguez (2008) integrates the Six Sigma methodology with the Balanced Scorecard planning 

and management tool to improve business performance and customer satisfaction. Ehie & Sheu 

(2005) integrate the Theory of Constraints with the DMAIC framework. Amer et al. (2008) 

integrate DMADV with the fuzzy logic modeling to optimize order fulfillment within a supply 

chain. Miller & Ferrin (2005) integrate Six Sigma with simulation modeling to provide decision-
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makers with the amount of improvement that might be possible to achieve the desired quality 

level and evaluate possible scenarios for improvement. 

Brady (2005) and Brady & Allen (2006) point out that enhancing the Six Sigma 

methodology occurs within the following three levels of decision-making: 

1. Micro Level – Involves the use of individual statistical methods that have been pre-defined 

and pre-selected; 

2. Meso Level – Supervisor level of decision-making about method selection and timing; and 

3. Macro Level – Deals with the overall quality programs. 

Table 1.2 summarizes some of the proposed areas of future research that relate to the Six 

Sigma methodology and Six Sigma practice as it relates to the three levels of decision-making. 

According to Allen (2006), research on new statistical micro-level methods for general uses can 

be highly valuable to Six Sigma practitioners. Furthermore, advances in computing technology 

and optimization techniques provide unprecedented opportunities for the development of 

enhanced Six Sigma-based improvement methods. 

Table 1.2: Overview of future research in Six Sigma (Allen, 2006). 

Proposed Area Decision-Making Level Possible Outcomes 

Apply quantitative techniques to 

analyze overall quality performance 
and management practices 

Macro Enhanced overall quality level 

adoption and management 
strategies  

Improved design of project 

strategies 

Meso Improved training plans and 

resources 

Apply quantitative  techniques Micro User-friendly software offering 
additional method options 

 

1.3 The Consideration of Multiple Objectives in the Six Sigma Methodology 

A firm’s ability to make the most appropriate critical decisions can translate into a great 

competitive advantage. Often, these critical decisions involve multiple and conflicting objectives 

that must be addressed simultaneously. Multiobjective optimization solution approaches aim at 
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finding “satisfying” solutions when the problem involves more than one objective (Coello 

Coello, 2006; Deb, 2001). Therefore, the integration of optimization procedures and the Six 

Sigma methodology could aid in capturing and reducing such variations in the presence of 

multiple objectives. 

As pointed out by Brady & Allen (2006), McManus (2006), Rybarczyk (2005) and 

Tjahjono et al. (2010), new gaps in Six Sigma research exist. There is, in fact, a need for robust 

techniques that allow Six Sigma researchers and practitioners to apply the methodology to 

problems with multiple objectives which can provide multiple compromised solutions that helps 

to improve process control efficiency. 

 

1.4 Objectives of this Research Investigation 

To date, few researchers address integrating multiobjective optimization techniques with 

the Six Sigma methodology, such as using multiobjective optimization for robust Design for Six 

Sigma (DFSS) in manufacturing (e.g., Baril et al., 2010; Shimoyama et al., 2008), or using 

multiobjective stochastic modeling to improve existing service processes (e.g., Franca et al., 

2010). However, the literature does not provide a holistic framework for implementing the 

integration of the Six Sigma methodology and multiobjective optimization techniques. 

This research aims to explore and develop the statistical and optimization strategies in 

order to improve the Six Sigma methodology. More specifically, the integration of 

multiobjective optimization within the Improve and Control phases of the DMAIC framework is 

explored with the following primary objectives of this investigation. 
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Objective 1: Rationalize that the Six Sigma quality approach and the multiobjective optimization 

strategies can be effectively integrated for online process control to enhance decision-making at 

the micro level. 

 

Objective 2: Build a holistic framework that allows for the robustness of online process 

performance optimization using an integration of the multiobjective optimization and three-

sigma (3) quality evaluation, and 

 

Objective 3: Enhance framework to allow online process performance optimization using an 

integration of the multiobjective optimization and the Six Sigma methodology. 

 

This investigation should contribute quite significantly to the body of knowledge and 

advance the state-of-the-art in design optimization and the Six Sigma methodology. This 

research potentially improves the process performance, and in turn, improves process control, 

and decision-making. 

 

1.5 Organization of the Remainder of this Document 

The remainder of this document is organized as follows. In Chapter 2, an overview of the 

Six Sigma methodology is presented, explaining the general methodology and current 

enhancements to the Six Sigma methodology including to its DMAIC framework. Chapter 3 

provides an overview of statistical process control (SPC) as it applies to Six Sigma and the 

DMAIC framework, and Chapter 4 presents a brief overview of multiobjective optimization.  

Readers familiar with SPC and multiobjective optimization may proceed directly to Chapter 5, 
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without loss of continuity, where the proposed Six Sigma multiobjective optimization (SSMO) 

approach is described. 

The performance of the proposed SSMO approach is evaluated. First, Chapter 6 presents 

a computational study using the approach under a three-sigma (3) quality level. Then, in 

Chapter 7, a computational study is conducted using the proposed approach under a six sigma 

(6) quality level. This work is concluded in Chapter 8 with a summary of the accomplishments 

and directions of future research. 
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CHAPTER 2: 

REVIEW OF PREVIOUS RELATED LITERATURE 

2.1 Introduction 

The integration of Six Sigma and multiobjective optimization is the combination of two 

proven methodologies focused on improving decision-making. Very limited research exists that 

focuses on the integration of the Six Sigma methodology and optimization strategies. This 

chapter is divided into five sections. Sections 2.2 and 2.3 provide an overview of the two primary 

areas of study – Six Sigma and multiobjective optimization. Section 2.4 provides a detailed 

review of the Six Sigma methodology and multiobjective optimization Six Sigma-based 

research. Finally, Section 2.5 summarizes the chapter. 

 

2.2 Overview of Optimization Methods 

Most of existing real-world problems involve the simultaneous optimization of multiple 

objectives. In the last two decades, many researchers and practitioners are becoming more 

interest in the multiobjective field optimization due to the fact that most of decision-making 

problems involve several measures of process performance, which need to be optimized 

simultaneously. One of the most common results in optimizing multiple objectives 

simultaneously is that solutions, in general, are not uniquely determined.  This is because most 

problems that involve conflicting objectives and result in multiple compromise solutions (or, 

tradeoff), where a decision-maker can select the most desirable solution among the multiple 

solutions. 
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Over the years, researchers use several optimization techniques and methods to handle 

multiobjective optimization problems. These methods categorized based on gradient-based and 

non-gradient-based methods, as shown in Figure 2.1. 

 

Figure 2.1: Overview of common optimization methods. 

 

2.2.1 Gradient-Based Optimization Methods 

Gradient-based search methods can be divided into two different categories: Direct and 

Indirect. Direct methods determine the exact solution in a fixed number of operations, and 

indirect methods produce approximations in an undetermined number of operations (Jamil, 

2012). Several studies address integrating gradient-based techniques with the Six Sigma 

methodology, as is discussed in Section 2.4.2. However, as pointed out by Feng (2005) and Koch 

et al. (2004), the objective in Six Sigma-based optimization usually falls under multimodal 

problems, and thus the solution reached may only be a local optimum and not a global optimum. 

To find global optima, one should start gradient-based optimization iteratively from multiple 

starting points. 
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2.2.2 Non-Gradient-Based Optimization Methods 

With the advancements in computing technology over the past decade, faster and more 

enhanced non-gradient-based approaches have been developed that are capable of handling 

complex problems with much less computational expense. Thus, these types of methods are 

preferred in the cases where decisions are time-sensitive. Figure 2.1 further classifies non-

gradient-based methods. 

In solving multiobjective optimization problems, many of previous work convert the set 

of multiple objectives into a single objective leading to a single solution. This technique and 

other techniques that use single weighted objective function lack of optimizing multiple 

objectives simultaneously (Deb, 2001). Therefore, researchers and practitioners are motivated to 

search for alternative techniques that optimize multiple objectives simultaneously and provide a 

set of multiple compromised (i.e., Pareto optimal) solutions instead of a single solution. Thus, 

the development of multiobjective optimization solution procedures using Pareto-based methods 

is preferred. Further information about Pareto-based methods can be found in Chapter 4. 

 

2.3 Overview of the Six Sigma Methodology and Its Frameworks 

Six Sigma is a focused method developed based on common proven quality concepts and 

principles such as the 14 management principles of Deming, Juran, Crosby, and others. Six 

Sigma also incorporates the use of statistical tools (Pyzdek et al., 2009). In the pursuit of 

improved quality, two structured frameworks (shown in Figure 2.2) are used for implementing 

the Six Sigma methodology: (1) Define-Measure-Analyze-Improve-Control (DMAIC) and 

Define-Measure-Analyze-Design-Verify (DMADV) (Al-Aomar, 2006). While DMADV focuses 

on designing new processes, products, and services to meet customer needs at the 6 level, 
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DMAIC focuses on improving existing processes, products and services (Ferrin & Muthler, 

2002). 

.  

Figure 2.2: The Six Sigma DMAIC and DMADV frameworks. 

 



12 

2.3.1 Six Sigma Measurement of Process Performance 

The Six Sigma process performance can be measured by the two measures: (1) Defect 

Rate and (2) Sigma Quality Level. 

 

2.3.1.1 Defect Rate 

A defect is defined as a nonconformance to customer requirements while delivering a 

service or product to customers (Crosby, 1995). A defect rate p is the ratio of the number of 

defective items that are out of specification to the total inspected items. The number of defective 

items out of one million processed or inspected items is called the parts per million (PPM) defect 

rate. In some cases, as in service settings, where PPM cannot be used, another performance 

measure called defects per million opportunities (DPMO) is often used to evaluate process 

performance. DPMO is the number of defective items that do not meet the required specification 

out of one million possible opportunities. 

A process is considered meeting a 6 quality level when its performance achieves 3.4 

DPMO under the assumption that the process performance values are normally-distributed. To 

calculate DPMO, the total number of defects is divided by the total number of opportunities for a 

defect. Then, that quotient is multiplied by 10
6
. In other words, 

      
 

   
     (2.1) 

where D is number of defects identified in a collected sample of process performance 

observations, U is the number of units in the sample and O is the number of opportunities for 

error per unit. 
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2.3.1.2 Sigma Quality Level 

Sigma  is used to represent variability, and a sigma quality level is associated with 

process variation and specification limits. Specification limits are the design tolerances or 

performance ranges that customers demand of the products they consume or of the services they 

are rendered. The sigma quality level for a production or service process is the distance from a 

process mean to the closer specification limit and is computed as 

  
 

    
 (2.2) 

where  is the sigma level of quality, Sp is the sample standard deviation of the process and  is 

the desired allowable process tolerance. 

In practice, it is desired to maintain the mean performance of the process at a target 

value; however, the process mean varies and drifts over the long-term for various reasons. This 

means that the process mean shifts from the target value periodically, which causes a change in 

the defect rate p. A process maintains Six Sigma quality level when the process mean aligns with 

a target value, and the distance from the process mean to each specification limit is 6 (Davis et 

al., 1993; Zeng, 2009). Table 2.1 summarizes how the defect rate changes when the sigma 

quality level changes with respect to a shift in the process mean (Breyfogle, 2003). 
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Table 2.1: Defect rates at various sigma quality levels (Breyfogle, 2003). 

Sigma Quality 

Level 

DPMO 

(Process Mean Aligned with Target Value) 

DPMO 

(Process Mean with 1.5 Shift) 

1  317,311 697,672 

2  45,500 308,770 

3  2,700 66,811 

4  63.4 6,210 

5  0.57 233 

6  0.002 3.4 

 

The Six Sigma methodology allows for a maximum shift of the process mean that are 

±1.5 from the mean. Table 2.2 provides a brief description of the most common methods used 

in detecting shifts in mean, along with their strengths and weaknesses (Alexandrov et al., 2012; 

Cai et al., 2012; Chen, 2011; Fryer & Nicholson, 1999; Rodionov, 2005). 
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Table 2.2: Common methods for detecting shifts in the process mean (summarized from 

Alexandrov et al., 2012; Cai et al., 2012; Chen, 2011; Fryer & Nicholson, 1999; Rodionov, 

2005). 

 

Method Characteristics Advantages Disadvantages 

t-test Based on determining the 
probability of change point 

appearance that exceeds a given 

threshold. 

Strong technique 
that assumes 

normality and equal 

variances 

Lack of accuracy for data that 
do not follow normal 

distribution  

Mann-

Kendall 

  

Non-parametric test that ranks 

the data to obtain change point 

occurrence. 

Easy to use Not efficient with data that 

exhibits trend patterns 

Signal-to 
Noise Ratio 

Uses signal-to-noise ratio which 
compares a single value with 

input data in order to determine 

the confidence level of mean 
shift occurrence 

Fairly easy to use Similar to Mann-Kendall 
method, this method lacks 

accuracy in the case of trends, 

and it is not efficient for a single 
change point scenario 

Bootstrap  Based on testing homogeneity in 

the mean value of the input data 

to calculate the confidence level 
of mean shift occurrence 

Works with any 

frequency 

distribution with no 
assumption 

acquired  

Require large amount of data to 

increase test sensitivity 

Regression  Uses forecasts future values 

based on previously observed 
values to use it for detecting 

shifts. 

Strong for detecting 

multiple change 
points.  

Require small amount of data to 

increase test sensitivity 

 

2.4 Integration of the Six Sigma Methodology with Other Methods 

Several existing studies focus on extending the Six Sigma methodology by integrating the 

methodology with other methodologies and philosophies including computer simulation, the 

Theory of Constraints, data envelopment analysis and multiobjective optimization. 

 

2.4.1 Six Sigma and Simulation 

Hahn et al. (2000) argue that simulation is becoming a mainstay decision analysis process 

due to its ability to evaluate candidate decisions for difficult business questions.  They point out 

that simulation can be used within the Six Sigma methodology to evaluate improvement 
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alternatives. Other researchers discuss the integration of Six Sigma and computer simulation in 

order to improve the a better solutions, such as improving patient experience at hospitals (e.g., 

Miller & Ferrin 2005), reducing the processing time of the lodge at the Center of Capital One 

Financial Service Corporation (Seifert 2005), addressing the effects of variation and assessing 

interaction effects between various subsystems for improving the operational and design issues 

in a server manufacturing environment (e.g., Ramakrishnan et al., 2008), improving customer 

satisfaction by reducing waiting time at a communications company. (e.g., Goldman et al., 

2003), increasing the probability and reducing process and product development cycle time (e.g., 

Luce et al., 2005), reducing the waiting time at an emergency department (Mandahawi et al., 

2010), designing assembly lines in manufacturing facilities (e.g., Tjahjono et al., 2009). Other 

researchers explore the fundamental relationships between Six Sigma and simulation (e.g., El-

Haik & Al-Aomar, 2006; Ferrin & Muthler, 2002). They summarize the impact of using 

simulation within the different phases of the DMAIC framework. Although simulation has been 

successfully integrated with both the Six Sigma DMAIC and DMADV frameworks, using 

simulation alone lacks optimizing ability, and thus, should be combined with other analysis 

techniques to become more effective for process design and control. 

 

2.4.2 Six Sigma and the Theory of Constraints 

Theory of Constraints (TOC) is introduced by Eliyahu M. Goldratt during the 1980s 

(Goldratt et al., 1992). For the purpose of continuous improvement, TOC uses a systematic 

approach which consists of four steps: 

1. Identify a system’s constraints (i.e., bottleneck and non-bottlenecks). 

2. Develop a plan to effectively utilize the system’s bottleneck. 
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3. Subordinate non-bottlenecks that support the bottleneck utilization plan. 

4. After resolving a constraint, go back to Step 1. 

Similar to the Six Sigma methodology, TOC has been successfully implemented in many 

settings. Sierra & Malone (2003) integrate the Six Sigma methodology with TOC and propose a 

new technique in handling management constraints. Furthermore, Ehie & Sheu (2005) propose a 

framework that combines TOC and the Six Sigma methodology to improve its gear cutting 

operation at an axle manufacturing company. The framework identifies the system constraints 

and throughput using TOC and then develops an improvement plan under the Six Sigma 

methodology.  After implementing the proposed framework, the company reduces the inventory 

level of blades and the estimated total savings by $200,000 per year. 

Although the integration of Six Sigma and TOC can provide managers with a continuous 

improvement platform, the integrated frameworks proposed by Sierra & Malone (2003) and Ehie 

& Sheu (2005) have limitations in handling multiple objectives. Moreover, the proposed 

frameworks do not evaluate other possible optimization scenarios which would provide decision-

makers with additional information regarding their robustness. 

 

2.4.3 Six Sigma and Data Envelopment Analysis 

Data envelopment analysis (DEA) is introduced by Charnes (1978) to measure the scale 

efficiencies of various public sector firms. It is a linear programming technique and considered 

to be an effective method for measuring the relative performance of organizational units when 

the presence of multiple inputs and outputs makes comparisons difficult (Charnes, 1978; Kumar 

et al., 2007). Feng & Antony (2010) develop an integrated DEA and Six Sigma model and 

evaluate it through a case study for assessing and improving health service efficiency. The 
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authors implement DEA within the Six Sigma framework in such a way that DEA is used in each 

phase of the DMAIC framework. The Six Sigma project is carried out in the Department of 

Gynecological Oncology at the University of Texas M.D. Anderson Cancer Center. In the case 

study, physicians’ performance is evaluated by calculating the average efficiency score using the 

standard deviation of all physicians. Some of the benefits highlighted in the study are the 

reduction of the percentage of clinical time for inefficient physicians by 22.3% and the decrease 

in the associated cost by $1,708. This case study realizes most of the gain using DEA within the 

Six Sigma methodology. However, the study does not perform multivariate analysis of the DEA 

scores. 

Several researchers integrate Six Sigma with other statistical applications and tools such 

as Pareto analysis (e.g., Thomas & Barton, 2006), histograms (e.g., Miles, 2006), run charts (e.g., 

Snee, 2004), control charts (Banuelas et al., 2005), hypothesis testing (Henderson & Evans, 

2000), failure mode and effects analysis (FMEA) (e.g., Su & Chou, 2008), the gamma 

distribution (e.g., Hsu et al., 2008), cause-and-effect matrices (e.g., Sokovic et al., 2005), 

regression analysis (e.g., Kumar et al., 2008), capability analysis (e.g., Maleyeff & Kaminsky, 

2002), sampling plans (e.g., Basu, 2004), designs of experiment (e.g., Li et al., 2006; Raisinghani 

et al., 2005), statistical process control (e.g., Schroeder et al., 2008), TRIZ (e.g., Smith & 

Phadke, 2005), t-test, chi-squared test, TOC and TRIZ combined (e.g., Shankar, 2010), scatter 

plots (e.g., Henderson & Evans, 2000), Quality Function Deployment (e.g. Sharma, 2003), 

artificial intelligence, fuzzy logic, and artificial neural networks (e.g., Patterson et al., 2005). 

However, few researchers discuss integrating Six Sigma with multiobjective optimization 

methods in order to improve the outcome of the process improvement and design in a way that 
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provides flexibility to decision-makers for choosing the best options from a set of alternatives for 

multiple process performance objectives. 

 

2.4.4 Six Sigma and Multiobjective Optimization 

Recent research considers the idea of combining the Six Sigma methodology and 

multiobjective optimization as a method to improve the outcome of the Improve and Design 

phases. Chen et al. (2008) propose an approach to address the multiobjective optimization 

problem by using Taguchi methods (Taguchi, 1995) within the Six Sigma methodology, 

specifically, within the Improve phase of the DMAIC framework in order to optimize the 

roundness of holes made by an aging plasma cutting machine. The researchers point out that 

using the traditional design of experiments techniques, such as 2
k
 factorial design, may increase 

the time and costs of a quality improvement process compared to the Taguchi methods. 

Similarly, several existing works address the application of Response Surface Method 

(RSM) within the Six Sigma frameworks such as optimizing radial forging operation variables 

(e.g., Sahoo et al., 2008), reducing the cost of prototype and physical tests for a vehicle design 

process (e.g., Gu & Yang, 2006), minimizing the mass while observing deformation for a 

structural element (e.g., Roos et al., 2006), optimizing the performance of the inter-metal 

dielectric process (e.g., Su et al., 2009), optimizing a vehicle structural design for side impact 

crashworthiness (e.g., Koch et al., 2004; Vlahinos & Kelkar, 2002), improving the design of 

powertrain mounting systems (e.g., Wu & Shangguan, 2010), improving the qualified rate of 

coloring inspection about the Bevel gear in a centrifugal ventilator (e.g., Cao & Xie, 2011), and 

optimizing the design of cantilever and deep draw forming of a cylindrical cup (e.g., Jun & Juan, 

2006). However, Koch (2002) points out that RSM approaches have difficulty in handling 
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continuous uncertainty profiles, like a normal distribution, and the tradeoff between multiple 

process design objectives. In regards to these difficulties, multiobjective optimization 

evolutionary algorithms (MOEAs) have advantages over RSM. Moreover, there is no plan for 

controlling the proposed improvement after implementation. Shimoyama et al. (2008) argue that 

integrating MOEA procedures with the Six Sigma methodology aids not only in achieving 

process improvement but also increases the method’s robustness (i.e., performance sensitivity 

against errors and uncertainties). Therefore, MOEAs have attracted considerable attention for 

more practical process designs and improvements. 

Within the subject of integrating the Six Sigma methodology with multiobjective 

optimization, a few researchers use the approach that converts the multiobjective optimization 

problem to a single-objective problem. Six Sigma case studies in which this approach is used 

include optimizing the design of liquid packaging pump in order to design a pump that provide a 

flow rate between specification limits so that minimal defects are produced for the least cost per 

part (e.g., Luce et al., 2005), improving passenger safety and reducing vehicle cost (e.g., Sun et 

al., 2011), developing a multiobjective model for project portfolio selection to implement Lean 

and Six Sigma concepts (e.g., Hu et al., 2008), optimizing the airfoil design for a Mars aircraft 

(Shimoyama et al., 2007), optimizing a welded beam design in order to find an optimal set of 

dimensions that can carry a certain load with minimum total fabricating cost (Shimoyama et al., 

2005; Shimoyama et al., 2008), improving decision settings for a set of manufacturing operations 

in order to improve the quality of products and reduce the associated cost (e.g., Azzabi et al., 

2009), improving the process of penicillin production (Dassau & Lewin, 2006), minimizing the 

material flow intra- and interloops and minimization of the maximum amount of intercell flow, 

considering the limitation of tandem automated guided vehicle work loading (e.g., Shirazi et al., 
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2010), minimizing the total cost involved in supply chain processes to ensure high delivery 

probability within customer-specified delivery windows (e.g., Antony et al., 2006), optimizing 

the process parameters of the deep drawing operations (e.g., Anand & Shukla, 2007), optimizing 

the design of a sliding rack to achieve the maximum performance with minimum weight (e.g., 

Cong et al., 2010), and finding solutions that are reasonably good in terms of optimality and 

robustness against small perturbations in values (e.g., Ono et al., 2009). 

Although converting a multiobjective problem into a single-objective problem is 

considered to be a common approach to solving multiobjective optimization problems, the desire 

as highlighted in the literature on Six Sigma-based multiobjective optimization, is the need to 

optimize all objectives simultaneously in order to provide a set of multiple (i.e., Pareto optimal) 

solutions to reveal the tradeoff relationship among the multiple objectives. For example, Baril et 

al. (2010) use a DFSS interactive multiobjective optimization algorithm to generate a set of 

Pareto optima that maintain a probability of constraint satisfaction. The proposed methodology is 

applied to vehicle crash worthiness design optimization for side impact. Similarly, Nishida et al. 

(2008) utilizes particle swarm optimization with a multiobjective genetic algorithm to extract the 

significant Six Sigma-based design information within acceptable computational costs. 

There are many existing studies using multiobjective optimization techniques to improve 

process control such as optimizing exponentially-weighted moving average (EWMA) parameters 

to improve detecting process mean shifts and to reduce process control cost (e.g., Aparisi et al., 

2010; Epprecht et al., 2010), determining the best sample size for control charts using genetic 

algorithms (e.g., Kaya, 2009), enhancing testing power of    and R control charts by using 

genetic algorithms to minimize the Type I error (e.g., Bakir & Altunkaynak, 2004), determining 

the economic design of the    control charts with a realistic monitoring error model embedded 
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(e.g., Shiau et al., 2006), designing a multivariate control scheme consisting of two or three    

charts using genetic algorithms to optimize the charts parameters (e.g., Aparisi et al., 2010), 

optimizing the performance of attribute control charts using genetic algorithms (Perez et al., 

2010). However, these studies do not consider the Six Sigma DMAIC and DMADV frameworks, 

nor is the Six Sigma quality level performance measure considered during the optimization 

process. 

 

2.5 Summary 

Although several researchers have integrated statistical techniques to improve the quality 

of the solutions generated using the Six Sigma methodology, there is limited work that addresses 

the use of multiobjective optimization techniques for process improvement and under the 6 

quality level expectation. Further, it can be concluded that the Six Sigma practitioners have yet 

to take full advantage of multiobjective optimization techniques in the Improve and Control 

Phases of DMAIC in order to design a robust and economic monitoring process that maintains 

variability at a 6 level of quality. 

In Chapter 3, an overview of statistical process control (SPC) as it applies to Six Sigma 

and the DMAIC framework is presented, followed by a brief overview of multiobjective 

optimization given in Chapter 4.  Readers familiar with SPC and multiobjective optimization 

may proceed directly to Chapter 5 without loss of continuity, where the proposed Six Sigma 

multiobjective optimization (SSMO) approach is described. 
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CHAPTER 3: 

OVERVIEW OF STATISTICAL PROCESS CONTROL 

3.1 Introduction 

Under the analytical decision-making concept, statistical process control (SPC) allows a 

decision-maker to monitor process variation and to evaluate the performance of a process. The 

critical decision in process control is deciding whether the variation appears in the process is 

natural or, requires correction to the process (Thor et al., 2007).  The use of SPC to quantify and 

reduce variation is key to its implementation within the Six Sigma methodology (Breyfogle, 

2003; Neave, 1990). 

 

3.2 Statistical Process Control Tools 

SPC uses statistically-based methods to evaluate a process or its output to achieve or 

maintain a state of control.  To implement this concept in practice, it is important to know the 

statistically-based quality tools and their potential uses. A review of the open literature suggests 

that the most common SPC tools are: (1) Pareto analysis, (2) cause-and-effect (or, fishbone) 

diagrams, (3) scatter diagrams or plots, (4) check sheets, (5) control charts, (6) run charts, (7) 

normal probability plots, and (8) histograms. Although control charts are generally viewed at the 

core of the SPC tools, they are not, by themselves, sufficient for Six Sigma projects (Goh & Xie, 

2003; Pyzdek & Keller, 2003). The integration of the most common SPC tools in the five phases 

of the Six Sigma DMAIC framework is needed. 
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3.2.1 Pareto Analysis 

Pareto analysis is an SPC tools that is most commonly used in the Analyze phase of the 

DMAIC framework in order to display categories of problems graphically so they can be 

prioritized.  The approach arranges data so that the few vital factors (approximately 20%) that 

are causing most (approximately 80%) of the problems are revealed. Pareto analysis shows in 

descending order of importance, impact or contribution the categories of problems, defects or 

opportunities. 

 

3.2.2 Cause-and-Effect Analysis 

Cause-and-effect analysis is another technique that is used by Six Sigma practitioners in 

the DMAIC Analyze phase to identify, display, and organize possible sources of variation for a 

specific problem or quality characteristic. Organizing the possible causes is usually performed 

based on categories such as people involved with the process, methods of how the process is 

performed, machines or resources used in the process, measurements and data generated from 

the process, and the environment where the process held. The analysis helps to identify the 

possible sources (or root causes) of the problem in what is commonly called the Fishbone 

diagram. This diagram visually displays the relationship between sources of variation and the 

effect that is being examined by putting the major categories of causes on major branches 

connecting to the backbone, and various sub-causes are attached to the branches. Similar to the 

Analyze phase, the Control phase uses SPC tools such as control charts to monitor variations 

while the process is operating over time. 
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3.3 Control Charts 

Control charts have been successfully implemented in different settings such as 

manufacturing, service, healthcare, and many others (e.g., Di Mascio, 2002; Shang, 2011; Steiner 

& MacKay, 2005). These tools, which graphically display the variation of a process over time, 

are considered to be at the core of statistical process control and are used frequently in the 

Control phase of Six Sigma DMAIC framework. 

 

3.3.1 Control Chart Characteristics 

Statistical control charts depend on two main characteristics: (1) process variation and (2) 

control charts parameters. 

 

3.3.1.1 Process Variation 

Virtually every process has variation, and there are two types of variation that affect the 

quality characteristics of the process outcome in control charts. The first type is called special 

cause variation, also referred to as assignable cause variation. This type of variation results from 

causes that are not normally present in the process, and they can be traced, identified, and 

eliminated. The second type of variation is called common cause variation, which results from 

numerous, ever-present differences in the process. Control charts assist in identifying these two 

types of variation while monitoring process behavior. 

 

3.3.1.2 Control Chart Components 

There are different types of control charts. However, a control charts consist of the 

following six components: 
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1. Data.  The set of observations collected before plotting the control charts. 

2. Centerline (CL).  Represents the mean value of the all collected data. 

3. Plotting Areas.  The upper and lower areas of the CL where values are plotted. 

4. Vertical, or y-Axis.  Represents the magnitude of the data collected. 

5. Horizontal, or x-Axis.  Displays the chronological order in which the data are collected. 

6. Control Limits.  The Upper Control Limit (UCL) and the Lower Control limit (LCL) are 

set at a distance based on the desired number of standard deviations (e.g., 3, 4.5, 6, 

etc.) above and below the CL. 

 

3.3.2 Process Capability and Specifications Limits 

Process capability represents the ability of a process to achieve its purpose as managed by 

a decision-maker and the process functionality. In order to calculate process capability, 

specification limits need to be set first. Specification limits define the range of requirements for a 

product or service that are to be met. The value of the process capability index is calculated using 

Eq. 3.1, i.e., 

   
            

  
 (3.1) 

where Cp is the process capability index, TL is the specification tolerance, USL is the upper 

specification limit, LSL is the lower specification limit, and  is the standard deviation. This Cp 

value is the percentage of product or service meeting the specification limits. For instance, a 

process capability of 1.0 means that 99.7% of a product (or service) is within the desired 

specification limits. If a process capability is less than 1.0, then the process quality is considered 

low, and most companies aim to achieve higher process capability index values. In order to 
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understand the relationship between control limits and specification limits, the following is a 

description of the possible cases that may occur (Montgomery, 2007). 

 

Case 1: 

When the process is considered capable of meeting the specifications, the natural deviation limits 

are less than the specification limits. A process that performs at this capability level may show a 

certain level of process variation and a mean shift. 

 

Case 2: 

When the process is not capable of meeting specifications, the natural deviation limits are larger 

than the specification limits. At this point, a process produces high levels of variability and 

usually the outcomes from the process (products or services) do not meet the desired 

requirements. 

 

Case 3: 

The last case occurs when the process is centered and capable. This takes place when natural 

deviation limits and specification limits are equal. The challenge in this situation is that the  

occurrence of a mean shift or process variability results in nonconformity in the process 

outcomes. 

 

3.3.3 Types of Control Charts 

There are several types of control charts. These types depend on two important factors: 

(1) subgroups of the data and (2) the type of data. Subgroups are samples of observations from 
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the total number of observations of historical process performance data and are used when it is 

impractical or too expensive to collect data on every unit of product or transaction of service in 

the process. In constructing control charts, subgroups should be homogeneous so that special 

causes can be recognized. 

Control charts are commonly used in the Control phase of the Six Sigma methodology. 

Table 3.1 summarizes the most common charts that are used for process control based on the 

data type that is graphed – either variable data or attribute data. Among these control charts, 

Exponentially-Weighted Moving Average (EWMA) and Cumulative Sum (CUSUM) are 

currently the more popular control charts used for detecting process mean shifts, and they play a 

key role in this research investigation. 

 

Table 3.1: Common control charts. 

Chart Method of Measurement  Data Type 

   and R Based on actual observations within one subgroup Variable 

   and S Based on actual observations within one subgroup Variable 

Individual Based on actual observations for one observation  Variable 

p Based on the fraction of nonconforming observations within one 

subgroup 

Attribute 

Np Based on the number of nonconforming observations within one 

subgroup 

Attribute 

C Based on the number of nonconforming observations  within one 

subgroup 

Attribute 

u Based on the nonconformance per unit within one subgroup Attribute 

EWMA Based on the Exponentially-Weighted Moving Average within 
one subgroup 

Attribute or Variable 

CUSUM Based on the cumulative sum within one subgroup Attribute or Variable 

Real-Time Based on a sliding window within one subgroup Attribute or Variable 

 

3.3.3.1 Exponentially-Weighted Moving Average Control Chart 

Exponentially-Weighted Moving Average control charts (EWMA) is introduced by 

Roberts (1959) for monitoring a process mean. It averages the process data so it gives less 
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weight to data as they removed from the current measurement. Then, the data from the original 

observations are ordered in sequence using Eq. 3.2, i.e., 

                  (3.2) 

where zi is the estimate of the process mean,  is a weight constant assigned to the original 

observation, where 0 <  < 1, t is observation time,     is the sample mean from time period t, 

and     is the plotted test statistic. Furthermore, the control limits for EWMA control charts are 

computed as 

   
   

        
 

     
            (3.3) 

where  is the width factor that divides the charts based on the desired sigma level (e.g., 3, 

4.5, 6). 

 

3.3.3.2 Cumulative Sum (CUSUM) Control Chart 

Page (1954) develops the Cumulative sum (CUSUM) control charts to detect process 

mean shifts over a number of collected observations for both attribute data and variable data. It 

incorporates all information in the sequence of sample observation values by using cumulative 

sum function that computes the deviations of the collected observations from a target value. The 

construction of CUSUM control charts is based on the Maximum Likelihood Estimation (MLE) 

and the cumulative sum functions which are given by 
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 (3.6) 

where,       and       are the estimates of maximum and minimum mean value    over 

collected observations (  ). After estimating the maximum and minimum value of the mean, a 

target mean (  ) is computed using the cumulative sum function    (as given in Eq. 3.6) in order 

to, evaluate    of collected observations for meeting or exceeding the maximum and minimum 

estimated mean value. Similar to EWMA, CUSUM control limits are associated with width 

factor (   and the control limits derived by 

   
   

        (3.7) 

where 0 is the average of collected observations,  is the width factor that is used to divide the 

charts based on the desired sigma level, and  is the standard deviation from the collected data.  

 

3.3.4 Rules for Testing Control Charts for Process Mean Shifts 

Control charts, in general, are associated with a number of assignable causes that are 

caused by process variation. These assignable causes usually appear in the control charts in the 

form of unnatural patterns. The common challenge in recognizing unnatural patterns is that most 

of the patterns appear with similar features (Bissell, 1994). In order to recognize the type of 

control chart patterns, researchers categorize the control charts patterns into six common 

categories, as shown in Figure 3.6. They are: upward shift, downward shift, upward trend, 

downward trend, cycle and normal. 
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Figure 3.6: Control charts patterns categories. 

 

There are several techniques (or, more commonly, rules) that have been used for testing 

for mean shifts, including the Nelson Rules, Western Electric Company Rules, Juran Rules, 

Hughes Rules, Duncan Rules, Gitlow Rules, and Westgard Rules. However, Western Electric 

Company (WECO) Rules and Nelson Rules are the most common rules for testing and detecting 

process behavior and that can be implemented in most types of control charts. 

Most of the techniques that are used for testing divide control charts into ±3 zones with 

centerline in the middle as shown in Figure 3.7. Researchers state that, in order to increase test 

sensitivity, more than one technique can be used for identifying process patterns depending on 

the nature of the process and the type of control chart been used (Agarwal & Baker, 2010; Al-

Ghanim & Ludeman, 1997; Gauri & Chakraborty, 2006; Guh, 2005). 
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Figure 3.7: Control charts testing zones. 

 

3.3.4.1 Western Electric Company (WECO) Rules 

The Western Electric Company (WECO) Rules assume that the control chart is divided 

into 3 levels on both sides of the centerline, as shown in Figure 3.7. They identify unnatural 

patterns in a process when any of the following observations occur:  

 One observation found outside the 3σ limit from the centerline; 

 Two consecutive observations out of three are greater than the 2σ limit; 

 Four consecutive observations out of five are greater than the 1σ limit; and 

 Eight consecutive observations greater or less than the centerline value. 

 

3.3.4.2 Nelson Rules 

Nelson Rules, which are an enhancement of the WECO Rules, identify unnatural patterns in 

the process when any of the following observations occur: 

 One observation is greater than the 3σ limit; 

 Nine (or more) consecutive observations are on one side of the centerline; 

 Six (or more) consecutive observations are an increasing (or decreasing) trend; 

 Fourteen (or more) consecutive observations are in a cycle pattern; 

 Two (or three) consecutive observations are greater than the 2σ limit; 
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 Four (or five) consecutive observations are greater than the 1σ limit; and 

 Fifteen consecutive observations are within the 1σ  limit. 
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CHAPTER 4: 

OVERVIEW OF MULTIOBJECTIVE OPTIMIZATION 

4.1 Introduction 

Most real-world problems involve addressing multiple, often conflicting, objectives. In 

this case, a single unique solution is not possible to satisfy the set of objectives simultaneously; 

therefore, there is a need for methods that are capable of handling multiple objectives and 

provide solutions that satisfy all objectives simultaneously (Zitzler, 1999). 

The general multiobjective problem consists of vector x of n decision variables (i.e., xi 

where i = 1, …, n) and m objectives, where m > 1. The multiobjective optimization problem can 

be generally expressed as 

                             (4.1) 

where a solution x is a n-dimensional vector of the decision variables that can be continuous or 

discrete, or both.  Eq. 4.1 is subject to w inequality constraints 

                                                                     
 
                                                               (4.2) 

and k equality constraints 

                                                                                                                               (4.3) 

As previously discussed, there are several techniques for solving multiobjective 

problems; however, the traditional techniques convert the multiple objective problem into a 

single objective problem using a vector of user-defined weights (Coello, 1999; Jones et al., 

2002). As a result, researchers and practitioners search for alternative techniques that able to 

optimize multiple objective problems simultaneously and provide a set of Pareto optimal (i.e., 

compromise, or tradeoff) solutions instead of a single solution (Horn et al., 1994). Therefore, 

applying Pareto-based methods are preferable in multiobjective optimization. 
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4.2 Multiobjective Optimization via Evolutionary Algorithms (EAs) 

Evolutionary algorithms (EAs) are popular methods for generating the set of Pareto 

optima for multiobjective optimization problems. The concept of EAs is derived from the 

Darwinian evolution theory and uses principles of biological evolution (Fogel, 1997; Zitzler et 

al., 2000). Several EAs for multiobjective optimization have been proposed such as Vector 

Evaluated Genetic Algorithm (VEGA), Multiobjective Genetic Algorithm (MOGA), Non-

dominated Sorting Genetic Algorithm (NSGA) and Niched Pareto Genetic Algorithm (NPGA). 

These algorithms and many others have been widely used and successfully implemented on 

multiobjective optimization problems. The elitist Non-dominated Sorting Genetic Algorithm II 

(NSGA II) is one of the more common EAs (Deb et al., 2002). It, too, is considered in this 

research investigation. 

  

4.3 Non-dominated Sorting Genetic Algorithm II (NSGA II) 

NSGA II is introduced by Srinivas & Deb (1994) to promote a faster and enhanced 

optimization algorithm. Thus, this method is convenient for solving multiobjective problems 

where time to solve a problem is limited, such as in online process control problems. 

The logic of NSGA II follows a repeated cycle, as shown in Figure 4.1. First, the 

population M is initialized, either randomly or heuristically. Then, evaluation of the solutions in 

the population is performed. Next, the selection and reproduction of the best set of solutions 

from the population are performed. Finally, genetic manipulation of the best set of solutions is 

performed in order to generate the next population. 
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Figure 4.1: A flowchart of the NSGA II working procedure (Deb & Agrawal, 1994). 

 

NSGA II differs from other methods in the solution evaluation procedure used which is 

based on ranking/fitness assignment. This procedure is performed in two steps: (1) 

nondominated ranking and (2) crowding distance assignment as shown in Figure 4.2 (a) and (b), 

respectively. In the first step, each solution is labeled with a dominance status (or, rank). Then, 

all the individuals that share the same rank value align together to form a layer called a front. 

The second step takes place to ensure a better spread of the individuals across the front. The 
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second step determines the average side distance of the cuboid for every s
th

 solution. Then, the 

average distance values of all individuals are used to sort the solutions along a front in a 

descending order. This process repeated and applied on all other individuals until every solution 

is assigned to a specific front. 

 

Figure 4.2: Ranking/fitness assignment of NSGA II. 

 

Subsequently, the selection and reproduction step is performed based on the values of the 

solutions using binary tournament selection method that reproduce the population. The objective 

of this step is to discard poor performing solutions and select the better solutions in order to 

create the mating pool. A crossover operator and a mutation operator are used to generate new 

solutions. 

There are problem-dependent parameter values that must be determined. The first 

parameter is the crossover probability Pc which is the frequency of exchanging information 

between selected solution pairs. The value of Pc depends on the type of problem; however, it is 

recommended that Pc values between 0.80 and 1.0 help to intensify the search of the search 

space (De Jong, 1975). 
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The second parameter is the mutation operator Pm which is the frequency of introducing diversity 

to the population. Similar to the first parameter, Pm value depends on the type of problem; 

however, usually it is recommended that the Pm value falls between 0.005 and 0.20 in order to 

prevent the search from being trapped at a local optimum (Srinivas & Patnaik, 1994). Finally, 

there are two more important parameters: population size M and number of generations G (Deb 

et al., 2002; Veldhuizen & Lamont, 2000). 
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CHAPTER 5: 

A SIX SIGMA MULTIOBJECTIVE OPTIMIZATION (SSMO) APPROACH FOR ONLINE 

PROCESS CONTROL 

5.1 Introduction 

In this chapter, the methodology for this research investigation is presented. A model is 

developed to enhance the DMAIC Six Sigma framework during the Improve and Control phases. 

The overall goal is to provide online process control and feedback during the Improve and 

Control phases when multiple objectives are present. 

Recall that the specific objectives of this research are to: (1) demonstrate the 

effectiveness of integrating the Six Sigma quality approach with multiobjective optimization 

strategies, (2) build a holistic framework for online process control optimization and decision-

making using an integration of a multiobjective optimization procedure and the three-sigma 

quality evaluation; and (3) enhance framework to allow online process performance optimization 

using an integration of the multiobjective optimization and the Six Sigma methodology. 

 

5.2 Overview of the Proposed SSMO Approach 

Figure 5.1 is a general flow chart of the proposed Six Sigma multiobjective optimization 

(SSMO) approach. The logic of the proposed SSMO approach begins after a number of 

preceding steps, which provide input to the proposed approach. The preceding steps start with 

the Define phase of the Six Sigma DMAIC methodology, in which the CTQs from the customers 

are defined. The next step, the Measure phase, includes the evaluation of the process in order to 

evaluate its current performance. The last step prior to the proposed SSMO approach is the 

Analyze phase, where root cause analyses are performed and a process performance 

improvement plan is identified. The process performance objectives and process control 
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variables and variable values defined in the preceding steps are used as input to the proposed 

SSMO approach for online process monitoring and control. 

D M A I C

 Control 

Process in 

control?
Run control

Yes

Pareto Optimal Front

Implement/

update 

solution

OptimizeNo

O

 

Figure 5.1: The general flowchart of the proposed SSMO approach for online process control for 

the DMAIC framework. 

 

Once the online monitoring starts, the proposed approach detects any unwanted process 

behavior in real-time, such as unnatural patterns and shifts in mean process behavior. If an 

unwanted event is detected, a process optimization routine is triggered that attempts to balance 

the set of process performance objectives simultaneously providing the process decision-maker 

with a set of compromise (or, tradeoff) solutions, i.e., a set of Pareto optimal solutions that 

characterizes the Pareto optimal frontier for the set of m objectives. These solutions include new 

values for the process control variables and are employed in the Improve phase. After the 

Improve phase is updated with the new process control variable values, the online monitoring 

starts again until unwanted process behavior occurs again. Figure 5.2 shows the proposed SSMO 

approach for online process control in more detail. 
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Figure 5.2: The detailed flowchart of the proposed SSMO approach for online process control for 

the DMAIC framework. 

 

5.2.1 Inputs to the Proposed Framework 

As shown in Figure 5.2, the input settings for the proposed approach are based on the 

initial implementation of Define, Measure, Analyze, and Improve phases of the Six Sigma 

DMAIC framework. 

 

5.2.1.1 Problem Formulation 

The project goals and customers’ needs are formulated into an optimization problem with 

multiple objectives (e.g., minimize total waiting time and minimize total cost). The problem 

formulation identifies all possible constraints and process decision variables associated with the 

objectives. 
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5.2.1.2 Unwanted Process Behavior and Mean Shift Threshold 

Statistical control charts are popular tools of SPC and are used frequently in the Control 

phase of the DMAIC methodology, as discussed in Chapter 3, and control charts are used in the 

Control phase of the proposed SSMO approach. Unwanted process behavior refers to the type of 

unnatural patterns that appear in control charts caused by unnatural variations from observed 

data of process. Threshold refers to the value of the mean shift that invokes the process 

optimization procedure. 

The unwanted process behavior threshold needs to be established for the proposed 

approach. The purpose of this step is to define the control chart so that it detects unnatural 

patterns based on the objective function values, such as upward or downward shifts, upward or 

downward trends, and a cyclical pattern. As discussed in Chapter 3, there are several techniques 

for detecting unnatural patterns in control charts such as Nelson Rules, Western Electric 

Company (WECO) Rules, Juran Rules, Hughes Rules, Duncan Rules, Gitlow Rules, and 

Westgard Rules. Several existing studies (e.g., Al-Ghanim & Ludeman, 1997; Guh et al., 1999) 

show that the use of more than one technique increases the sensitivity to detect and identify 

unnatural patterns in control charts. This study uses a hybrid method based on two common 

techniques – the Nelson Rules and the WECO Rules (Cheng & Hubele, 1996; Gauri & 

Chakraborty, 2009; Heuzeroth et al., 2003). The online optimization of the objective functions 

occurs after at least one of the defined conditions used by the hybrid method is met. 

The threshold for the mean shift is used to trigger the online optimization of the objective 

functions. It is important that the process mean is kept at or near the target value to maintain the 

desired quality level and to reduce variation (Duffuaa & Ben-Daya, 1995; Linderman et al., 

2003). Since the mean performance value of the process varies or drifts over time, a test for a 
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shift in the mean value is continuously computed, monitored and compared to the Centerline 

(CL), Upper Control Limit (UCL) and Lower Control Limit (LCL) control chart parameters. 

Furthermore, the Six Sigma methodology allows the mean to shift ±1.5 about the mean if a 

process operates under a 4.5 sigma level (Linderman et al., 2003). There are several statistical 

methods used to detect shifts in a mean as discussed in Chapter 3. Based on the previous studies 

by Guh et al. (1999) and Jing Yang (2009), the threshold of a mean shift can be identified when 

one of the following conditions exists for any process performance value (or, set of performance 

values): 

1. The value of the mean shift exceeds half of the specification limits (i.e., greater than or 

equal to either the UCL minus the CL, or the CL minus the LCL), 

2. The percentage of shift in the mean value equals or exceeds 50% of process CL, and 

3. The probability of occurrence of a mean shift equals or exceeds 50% of process CL. 

This research investigation uses the Bootstrap method, which does not require 

fundamental assumptions about the distribution of the data – frequency or type (Alexandrov et 

al., 2012; Rodionov, 2005); however, any method from Table 2.2 can be used in the proposed 

model to detect mean shifts. The Bootstrap method uses the percentage of shift in mean value to 

identify threshold of mean shifts, and the theoretical formulation of the Bootstrap is 

    =    
 

 
  (5.1) 

     
      

      
  (5.2) 

                for          (5.3) 

where     represents the percentage of mean shifts occurrence in the observed objective 

function values,   is the number of bootstrap samples performed,   is the number of bootstraps 
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for which      
         where,      

  is the difference of the reorder order for the observed 

objective function values,       is the difference of the original order for the observed objective 

function values,      is the maximum value calculated from    where,   is the cumulative sums 

of the straps,      is the minimum value calculated from   , and    is the average of the observed 

objective function values. 

 

5.2.1.3 Optimization Algorithm and Parameters 

The optimization algorithm and parameters are used to optimize the objective functions 

when an unnatural condition is detected or a shift in the mean process objective function value 

occurs. EAs are used in the proposed SSMO approach. Furthermore, as discussed in Chapter 4, 

there are several advantages of using MOEAs over classical optimization approaches for solving 

multiobjective optimization problems such as the popularity of these methods and limited 

assumptions are needed on the objective functions (Lukasiewycz et al., 2008). Specifically, the 

elitist Non-dominated Sorting Genetic Algorithm II (NSGA II) is used. 

 

5.2.2 Online Control Monitoring and Feedback 

After implementing the improvement plan in the Improve phase, it is critical to keep 

process in control (Agarwal & Baker, 2010). Online process control aims to maintain 

improvement by generating control charts of the set of objective function values in real-time. 

Currently, most statistical process control (SPC) tools use observed data to monitor a process and 

identifies changes in process performance without prescribing control actions (Reneau, 2000; 

Sun & Matsui, 2008) . Therefore, this step is designed not only to monitor processes under a Six 

Sigma improvement plan, but it also combines feedback control using SPC tools, i.e., control 
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charts. By providing simultaneous online control for each objective function values, a Six Sigma 

improvement plan becomes available that can treat multiobjective problems in an automated, 

predictable, and repeatable approach. When online control charts detect unwanted process 

behaviors and mean shifts appear in the objective function values, the Optimize returns the 

process to an in-control state. Furthermore, the online process control provides to decision-

makers a Six Sigma-based process control chart that shows when the process reaches a Six 

Sigma level of quality. In this research investigation, an attempt is made to develop a Six Sigma 

(6)-based control chart to monitor process, including multiobjective problems. 

 

5.2.3 Automated Optimization of Process Control Settings 

The process optimization procedure is invoked when an unnatural condition is detected or 

a shift in the mean process objective function value occurs. The objective of the Optimize 

process is to aid decision-maker in selecting the new values of decision variables that return the 

objective functions in-control. When there are several possibly contradicting objectives that need 

to be optimized simultaneously, a single optimal solution may not applicable for decision-maker 

to satisfy the tradeoff between objectives but rather a whole set of possible solutions is needed 

for equivalent (Zitzler, 1999) . This will provide decision-maker with a range of solutions that 

each one of them represent a good solution for implementation. 

Although there are several ways to approach a multiobjective optimization problem, most 

work focuses on the approximation of the Pareto set. A number of heuristic search procedures 

such as genetic algorithms, tabu search procedures, ant colony optimization heuristics, etc., could 

be used to generate the Pareto set (Abraham & Jain, 2005). As the working procedure of these 

algorithms is characterized by a population of solution candidates and the reproduction process, 
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the combination of existing solutions enables the generation of new solutions. This procedure 

enables finding several members of the Pareto optimal set in a single run instead of performing a 

series of separate runs. Therefore, whenever the control charts detect an unnatural condition or a 

shift in a mean process objective function value, any of the EAs used to generate a set of Pareto 

optimal in order to select and implement the new decision variable values that return the process 

to an in-control state. As discussed earlier, although any heuristic search procedure can be used 

in the proposed Optimize phase, a multiobjective GA is selected as an example due to the 

popularity and wide use. 

 

5.3 Summary 

The objective of this research investigation is to present a framework that has the ability 

to provide an online feedback control in the Improve phase for multiple objectives when a 

process is out of control and generate set of decision variable values that assist the process 

decision-maker to sustain improvement after Six Sigma implementation. It uses control charts to 

monitor process performance via the real-time computation of a set of process performance 

objectives. Then, the proposed framework uses a search heuristic approach to generate a set of 

compromise solutions, i.e., Pareto optimal solutions. In the beginning of the proposed 

methodology, a set of input settings are required and are defined with the Define-Measure-

Analyze-Improve phases of DMAIC methodology. Also, the threshold for out-control-events is 

pre-specified before the online process monitoring under the proposed framework commences. 
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CHAPTER 6: 

MULTIOBJECTIVE OPTIMIZATION FOR ONLINE PROCESS CONTROL – 3-BASED 

QUALITY LEVEL 

6.1 Introduction 

This chapter demonstrates the proposed online process control approach using a case 

study, which is a well-known and well-studied inventory management problem. The objective 

function formulation, initial conditions, and parameters for the Improve phase are chosen from 

literature, whereas the objective functions, initial conditions, and parameters for the Improve 

phase are determined using previous studies. 

In this chapter, 3-based control charts are used for online process control and tests based 

on a study by Guh (2005), which uses a hybrid method that integrates both the Nelson Rules and 

the Western Electric Rules to detect out-of-control events and patterns in 3-based control 

charts. Furthermore, the Cumulative Sum function in the proposed approach utilizes a Bootstrap 

method to detect shifts in the mean process control objective values. Finally, the multiobjective 

evolutionary algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA II), is used to 

optimize the process control variables. It is important to note that the impetus and eventual 

success of this research investigation is not necessarily predicated upon using these specific 

heuristic search procedures. 

 

6.2 Case Study Description 

It is important to achieve satisfactory levels of customer service while keeping inventory 

costs within reasonable bounds. There is a need to provide decision-makers an inventory 

management process with a mechanism for correcting the differences between demand and on-

hand and/or received replenishment inventory. Two inventory-related general objective functions 
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are defined based on the literature. These are: (1) minimizing average holding cost and (2) 

minimizing unit ordering cost (Jacobs et al., 2011; Teng, 2002). The decision variable is the 

order quantity Q. 

There are several well-known and perhaps unrealistic assumptions for this particular 

inventory model, such as: 

 Only one product type is involved; 

 Demand D is constant; The purchase price of a unit of the product that makes up the 

order quantity Q is fixed, i.e., there are no quantity discounts or price breaks for bulk 

purchases; 

 Each order of quantity Q is received in a single delivery and inventory replenishment is 

made instantaneously; 

 Inventory replenishment lead time (delivery or manufacturing) is fixed; 

 Continuous review of inventory is conducted; and 

 No inventory shortages are allowed. 

However, for this case study, the assumptions are sufficient as the tradeoff relationship between 

inventory average holding costs and ordering costs per unit is most important and relevant here. 

It is important to note that the assumption of a constant demand D is relaxed such that each 

realization of demand D is follows a random probability distribution. 

A large Q reduces inventory ordering frequency but requires holding a large amount of 

inventory in order to meet demand D. This large amount of on-hand inventory increases 

inventory average holding costs. On the other hand, a small Q reduces the average amount of 

inventory but increases ordering frequency and, as a result, the ordering cost per unit. Therefore, 
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modeling the tradeoff relationship between average holding cost and unit ordering cost makes 

this problem a useful case study when attempting to effectively balance more than one objective. 

The two objective functions considered for this investigation are treated as equally 

important during the online control and optimization process, and they are:  

1. Minimize average holding cost. Average holding cost (H) is one of the important components 

of inventory management process, and it refers to the cost of storing a commodity over a 

period of time. According to several research studies (e.g., Stevenson & Hojati (2002)), the 

theoretical definition of the average holding cost is: 

    

 

 
  

(6.1) 

where    is the unit holding cost  

2. Minimize ordering cost per unit. Unit ordering cost (O) refers to the cost of ordering a single 

unit when on-hand inventory is not meeting demand. 

  
  

 
 

(6.2) 

where    is the fixed ordering cost for a single order quantity Q. 

Both costs functions are considered conflicting objective functions, and a function of Q, the 

decision variable in this case. 

 

6.3 Computational Experiment 

For this research investigation, the initial ranges of values for the decision variable Q are 

identified from empirical results published in the existing inventory literature. The ranges and 

values of the decision variable Q, demand D, which follows a uniform distribution, and the 

relevant costs are listed in Tables 6.1, 6.2, and 6.3 respectively. Specifically, these ranges are 
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approximated based on experimental results based on the studies by Donaldson (1977) and 

Jacobs et al. (2011). 

 

Table 6.1: Range of possible decision variable values. 

Parameter Lower Bound Upper Bound 

Order Quantity Q (units) 5 130 

 

Table 6.2: Range of input variable values. 

Parameter Lower Bound Upper Bound 

Random Demand Quantity D (units) 

(uniformly-distributed) 
0 150 

 

Table 6.3: Cost values for inventory cost problem (in dollars). 

Parameter Value 

Unit Holding Cost ch $15 

Fixed Ordering cost per Single Order    $220 

 

6.3.1 Online Control Settings for the Case Study  

As discussed in  CHAPTER 3, there are two types of variation that affect the quality of 

process control charts. The first type is special cause variation, also called assignable cause 

variation. The second type of variation is common cause variation, which results from numerous, 

ever-present differences in the process. Control charts help in identifying these two types of 

variation while monitoring process behavior. Two types of control charts are used to detect 

online process variation and mean shifts – an EWMA control chart and a CUSUM control chart. 

This case study assumes a 3-level of quality. Based on the information found in previous case 

study by Jacobs et al. (2011), Table 6.4 and Table 6.5 list these parameters for an EWMA control 

chart and a CUSUM control chart, respectively based on 109 daily observations i objective 
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functions unit ordering cost and average holding cost. Negative values of the lower control limits 

are round to 0 since that is the minimum cost value for both objective functions. 

Table 6.4: Initial EWMA 3 control chart parameter values. 

For daily observation i = 1 

Control Chart Parameter Average Holding Cost (H) Unit Ordering Cost (O) 

Centerline (CL) $224.00 $4.17 

Upper Control Limit (UCL) $288.92 $9.23 

Lower Control Limit (LCL) $160.39 -$0.48 

For daily observation i = 109 

Control Chart Parameter Average Holding Cost (H) Unit Ordering Cost (O) 

Centerline (CL) $224.00 $4.17 

Upper Control Limit (UCL) $318.69 $11.48 

Lower Control Limit (LCL) $130.62 -$2.73 

 

Table 6.5: Initial CUSUM 3 control chart parameter values. 

Control Chart Parameter Average Holding Cost (H) Unit Ordering Cost (O) 

Centerline (CL) $224.00 $4.17 

Upper Control Limit (UCL) $570.88 $30.33 

Lower Control Limit (LCL) -$121.00 -$22.00 

 

Additionally, in implementing the Control phase of the Six Sigma DMAIC framework, change 

point tests determine whether a change in the mean or standard deviation has taken place. For 

EWMA control charts, control limits are calculated for each point, which detects shifts that may 

occur over time. On the other hand, CUSUM control charts detect change points based on a 

cumulative sum function, such as through the Bootstrap method. The Bootstrap method is widely 

used to detect shifts that occur over time and, since no assumptions are required about the 

frequency distribution of the objective functions. Therefore, in this investigation, the Bootstrap 

method is selected to detect shifts in the mean values over time for both the average holding cost 

H and the unit ordering cost O. 
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6.3.2 Optimize Settings for the Case Study 

For proof-of-concept, NSGA II is used to optimize the multiple objectives by varying the 

process control variable Q. The optimization parameter settings of NSGA II have been selected 

based on a previous studies by Belgasmi et al. (2008) and Chiong et al. (2011), who attempt to 

optimize a similarly-formulated inventory management process. The set of parameter values for 

this computational study are summarized in Table 6.6. 

 

Table 6.6: Optimization parameters range and values for inventory cost problem. 

Optimization Parameters Values 

Population Size (M) 100 

Generations (G) 100 

Crossover Probability (Pc) 85% 

Mutation Probability (Pm) 5% 

 

6.3.3 3 Online Process Control 

The objective of this research is enhancing process control decision-making through the 

use of online process monitoring and multiobjective optimization. In this section, it is first 

assumed that no optimization is used to control the process. Then, implementation of the 

proposed SSMO online process control approach with optimization is presented. 

 

6.3.3.1 Online Process Control with No Optimization  

Figure 6.1 and Figure 6.2 show EWMA online process monitoring and CUSUM online 

process monitoring, respectively, after 109 daily observations for the two objectives – average 

holding cost and ordering cost per unit. It can be seen that the first 40 observations show both 

inventory management objective functions are in control and no shifts in mean occur. Then, it 

can be seen that, after 43 observations, out-of-control observations are detected when the unit 
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ordering cost exceeds the UCL. However, under the no-optimization assumption, the Q values 

are not updated when out-of-control or mean shift events are detected. 

 

Figure 6.1: Results of EWMA 3-based online control chart observations for inventory cost 

problem without using optimization. 
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Figure 6.2: Results of CUSUM 3-based online control chart observations for inventory cost 

problem without using optimization. 

 

Additionally, other results can be found in the observations between 33 and 48, in Figure 

6.2 where, a shift in the mean value occurs due to an increasing trend in the ordering cost per 

unit. Furthermore, Figure 6.3 shows a graphical representation of the Bootstrap CUSUM 

function when a shift in the mean value occurs due to an increasing trend in average holding cost 

between 33 and 48 observation. Where, the cumulative sum straps for the original order of the 

unit ordering cost objective function values    drawn in black and compared with the other 

cumulative sum straps after data reordered. It shows that, at a 92% confidence level, there is a 

shift in the mean value for the unit ordering cost objective. 
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Figure 6.3: Graphical representation of bootstrap method results based on a 3 implementation. 

 

Finally, it can be seen from the results that the Control phase of the proposed approach 

monitors and detects online mean shifts and out-of-control events that occur as seen in the 

multiple objective function values. Furthermore, the proposed approach generates a graph of the 

Bootstrap CUSUM function and confidence level of shifts in the mean values. Thus, the 

implementation of the proposed approach could aid a decision-maker to simultaneously detect 

out-of-control events and mean shifts while the process is monitoring multiple objective 

functions in real-time. 
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6.3.3.2 Online Process Control with Optimization  

This section shows the implementation of the proposed SSMO approach with optimization. 

The implementation at this section uses the same input settings discussed earlier. As shown in 

Figure 6.4 and Figure 6.5, respectively, an overall representation of online process control using 

EWMA and CUSUM control charts for the daily observations when optimization is implemented 

in order to update the order quantity Q when out-of-control and mean shift events are detected. 

 

Figure 6.4: Results of EWMA 3-based control chart online observations for inventory cost 

problem using optimization.  
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Figure 6.5: Results of CUSUM 3-based control chart online observations for inventory cost 

problem using optimization. 

 

After an outlier event is detected when the unit ordering cost value exceeds the UCL, the 

optimization routine is invoked to generate a set of Pareto optima (i.e., tradeoff solutions). At 

this point, the Pareto optimal frontier is provided to decision-maker so that the decision-maker 

can update the value of Q, as shown in Figure 6.6. Although the decision-maker can select any 

point from the Pareto front, this research investigation assumes that the order quantity Q value is 

selected based on the minimum total cost of the two objective functions. For instance, the result 

in Figure 6.6 shows that the minimum average total cost found to be $187 at Q = 23 units 

compared to other solutions, such as $300 at Q = 47 units and $193 at Q = 15 units. The reason 

for using the minimum difference between the two objective functions is to achieve the highest 

cost reduction for both objective functions. An investigation to identify the best approach to 

select the tradeoff solution to update the decision variables is left for future study. 
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Figure 6.6: Optimization Results of 3-based implementation on inventory cost problem. 

 

Then, after selecting the new decision variable value, the Improve phase of the SSMO 

optimization framework updates the value of Q to the selected value. Then, online process 

monitoring commences again until a shift in the mean value or out-of-control event is detected at 

which time simultaneous optimization of the set of the objectives occurs. This cycle continues 

until the last observation of both objective functions. 

 

6.3.4 Discussion of Results 

Table 6.7 summarizes the results from a process monitoring no-optimization scenario and 

from the proposed SSMO approach. A comparison of the overall performance for EWMA- and 

CUSUM-based control charts results in the case of no optimization. A DPMO counter is used as 

a process performance measure in order to provide a real-time feedback for the process. A defect 

is defined as any detection of unnatural patterns, mean shift, and out-of-control events that 
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appear in the unit ordering cost trends and/or average holding cost trends while the process is 

running. Eq. 2.1 is used to calculate the DPMO at the online observations, where O = 3, which is 

the number of opportunities of detecting a defect. In particular, O is the three categories of 

defects, which are unnatural patterns, mean shift, and out-of-control events. U is the number of 

observed units for both objective functions. The results show that EWMA-based control chart is 

more stable in monitoring the objective functions by almost 12,000 DPMO less than the 

CUSUM-based control chart. This difference is due to the exponentially-weighted function that 

underlies the EWMA control chart in that it exponentially smooths the variability of the observed 

values. 

 

Table 6.7: Summary of results of the 3 quality level implementation for the inventory cost 

problem. 

 

EWMA 3 

with No 

Optimization 

CUSUM 3 

with No 

Optimization 

EWMA 3 

with Optimization 

CUSUM 3 

with Optimization 

DPMO 6,116 18,348 6,116 9,174 

Order Quantity, 
Q 

50 units  Varies: 50 at initial 
run, 23 at day 43, 

and 71 at day 85 

Varies: 50 initial 
run, 23 at day 27, 

60 at day 63, and 

71 at day 90 

Average holding 
cost 

$249 $208 

Unit Ordering 

Cost  
$28 $26 

 

Next, the overall performance for EWMA control charts and CUSUM control charts 

when optimization results are implemented is compared. The results show an overall reduction in 

both control charts. CUSUM shows significant improvement after implementing optimization by 

reducing the DPMO from approximately 18,000 to approximately 9,000. On the other hand, 
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EWMA generates the same DPMO level compared to the case when optimization is not 

implemented. 

 

6.4 Summary 

In this chapter, the proposed integration of multiobjective optimization and the DMAIC 

framework is used with 3-based control charts. The integration provides real-time feedback 

from the Control phase to the Improve phase of the Six Sigma DMAIC framework. This 

feedback reduces the average total cost of the inventory problem as well as reduces the DPMO of 

the online process control. The next two chapters expand the proposed SSMO methodology 

implementation and experimental design investigation. Chapter 7 starts with performing online 

process monitoring and control based on the Six Sigma methodology, which has not been 

conducted in the current research literature. Chapter 8 includes an expanded experimental study 

to compare the results of 3-based online process monitoring and control and 6-based online 

process monitoring and control. 
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CHAPTER 7: 

MULTIOBJECTIVE OPTIMIZATION FOR ONLINE PROCESS CONTROL – 6-BASED 

QUALITY LEVEL 

7.1 Introduction 

In this chapter, the proposed model is modified to allow online process control to monitor 

and optimize the process based on 6 quality evaluation. 

 

7.2 Online Control Settings for the Case Study  

The control settings of the control charts used in Chapter 6 are modified so that they are 

based on a 6 quality level. The selection of the control settings are based on existing studies by 

Azzabi et al. (2009) and Radhakrishnan & Balamurugan (2010). In constructing the control 

charts, the determination of the distance between control limits is based on a width factor w. The 

width factor of the CUSUM control charts and the EWMA control charts is computed from a 

normal Z-value, which measures the distance in standard deviations from the mean. 

Traditional process control charts used in the Six Sigma methodology are based on a 

quality level of 3, which yields 93.32% conformance. However, in order to modify the quality 

level of the control charts, the Z-value must be modified accordingly. Table 7.1, which is derived 

from the Normal distribution table, shows the values of different quality levels and the yield 

associated with each one. Thus, the calculation of w for the control charts is modified based on 

the Z-value for a 6 level (i.e.,     
 

    
) instead of a 3 level (i.e.,     

 

     
). Based on the 

modified width factor w, Table 7.2 and Table 7.3 list the parameters for the EWMA control chart 

and the CUSUM control chart, respectively. 
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Table 7.1: List of quality levels and corresponded Z values (Breyfogle, 2003). 

Quality Level Yield Z-value 

3 93.32% 1.833 

4 99.38% 2.737 

6 99.999997% 4.671 

 

Table 7.2: Initial EWMA 6-based control parameters values. 

For daily observation i = 1 

Control Chart Parameter Average Holding Cost (H) Unit Ordering Cost (O) 

Centerline (CL) $224.00 $4.17 

Upper Control Limit (UCL) $258.43 $7.50 

Lower Control Limit (LCL) $190.89 $1.25 

For daily observation i = 109 

Control Chart Parameter Average Holding Cost (H) Unit Ordering Cost (O) 

Centerline (CL) $224.00 $4.17 

Upper Control Limit (UCL) $274.07 $8.95 

Lower Control Limit (LCL) $175.25 -$0.20 

 

Table 7.3: Initial CUSUM 6-based control parameters values. 

Control Chart Parameter Average holding cost (H) Unit ordering cost (O) 

Centerline (CL) 224.00 4.17 

Upper Control Limit (UCL) 392.06 16.81 

Lower Control Limit (LCL) 58.00 -8.00 

 

7.3 6 Online Process Control 

This section summarizes the implementation of the enhanced proposed approach applied 

to the inventory management problem under the 6 process monitoring and control. 

Furthermore, the experiments are performed using 6-based control parameters settings that are 

discussed earlier in this chapter. 

 

7.3.1 Online Process Control with No Optimization  

Initial observations of the objective functions when online process control started can be 

found in Figure 7.1 and Figure 7.2  which show 6-based online process monitoring using 
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EWMA and CUSUM control charts respectively for 109 daily observations objective functions 

unit ordering cost and average holding cost. Initial observations show that both objective 

functions are in control and no shift in the mean performance occurs during the process run. At 

this part of the implementation, it is assumed that no changes are made by the decision-maker, 

and the Q value is not updated when out-of-control or mean shift events are detected. 

 

Figure 7.1: Results of EWMA 6-based online control chart observations for inventory cost 

problem without using optimization. 
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Figure 7.2: Results of CUSUM 6-based online control chart observations for inventory cost 

problem without using optimization. 

 

An example of detecting out-of-control observations is shown in Figure 7.2. After 34 

observations, the unit ordering cost exceeds its associated UCL in the CUSUM control chart. 

Additional results can be found in the observations between 45 and 62, where a mean shift is 

detected. It shows a shift in the mean value due to increasing trend in unit ordering cost. 

Furthermore, Figure 7.3 shows the cumulative sum straps for the original order of the unit 

ordering cost objective function values   , which are drawn in black and compared with the other 

cumulative sum straps after data reordered. It shows that, at a 98% confidence level, there is a 

shift in the mean value for the unit ordering cost. 
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Figure 7.3: Results of 6-based online detection for unnatural patterns and shift in mean value. 

 

Similar to the results from the previous chapter, the proposed model, successfully detects 

mean shift and out-of-control-events through online process control using Six Sigma-based 

control charts. Thus, the implementation of the enhanced proposed model could aid a decision-

maker to monitor process performance under the Six Sigma-based process control. In addition, it 

allows decision-makers to detect out-of-control events and mean shift in real-time for multiple 
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objective functions. Next section demonstrates implementation of the proposed model when 

optimization results are implemented to update decision variable value. 

 

7.3.2 Online Process Control with Optimization 

This section shows the implementation of the proposed model with the assumption of 

implementing the optimization results on the decision variable value. The implementation at this 

section uses the same input settings discussed earlier in this chapter. As shown in Figure 7.4 and 

Figure 7.5, an overall representation of online process control for final daily observations when 

optimization results are implemented in order to update the Q value when out-of-control and 

mean shift events are detected. 

 
Figure 7.4: Results of EWMA 6- based online control chart observations for the inventory cost 

problem using optimization. 
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Figure 7.5: Results of CUSUM 6- based online control chart observations for the inventory cost 

problem using optimization. 

 

An example of selecting a new decision variable value is examined when out-of-control 

event detected in unit ordering cost objective function. After 34 observations when the unit 

ordering cost per unit exceeds UCL, the optimization process is triggered. At this point, the 

Pareto optima front is generated and the decision-maker updates the value of Q as shown in 

Figure 7.6. Thus, the Q value is selected based on the minimum total cost of the two objective 

functions where, Q = 31 units. Then, after selecting the new decision variable value, the Improve 

phase updates the value of Q. Once the decision variable is updated, the online process control 

performs until a shift in mean value or out-of-control event is detected. This loop continues until 

the last observations occur for all objective functions. 
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Figure 7.6: Optimization Results of 6- based implementation for inventory cost problem. 

 

Additionally, after the decision variable value is updated, both objective functions 

remained in control until a mean shift is detected in the ordering cost. Based on the minimum 

total cost, a value of Q = 72 units is selected to update the decision variable in order to stabilize 

the process again. In the following section, results from both control charts are examined when 

no changes are made to update the decision variable value and when optimization is 

implemented. 

 

7.4 Discussion of Results 

In this section, the impact of the SSMO approach for Six Sigma-based online process 

control is investigated. The investigation is conducted by a comparison between EWMA- and 

CUSUM-based control charts results using DPMO as performance measure. Results are 

examined when two different types of 6-based control charts in the case of implementing and 
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neglecting optimization results. Furthermore, the influence of optimization parameters on 

convergence performance of the optimization procedure is studied in this section. 

Initial examination starts with a comparison of the overall performance for EWMA- and 

CUSUM-based control charts results in the case of no implementation of optimization. The 

DPMO counter is integrated with the proposed model to provide a real-time performance 

measure for the inventory management process. Similar to Chapter 6, a defect is defined as any 

detection of unnatural patterns, mean shift, and out-of-control events appeared in unit ordering 

cost or average holding cost objective function while the online process control is running. 

DPMO used to measure the quality level of the inventory process from online observations 

where, where O = 3 which is the number of opportunities of detecting a defect. In particular O 

are the three categories of defects which are unnatural patterns, mean shift, and out-of-control 

events. U is the number of observed units for both objective functions. The results analysis that 

EWMA shows more stability in monitoring the objective functions by almost 25,000 DPMO less 

than CUSUM-based control chart for the total observations. 

Additionally, the proposed SSMO approach is examined by comparing the overall 

performance for EWMA and CUSUM based control charts when optimization results are 

implemented. The results show overall reduction in both control charts. CUSUM shows 

significant improvement after implementing optimization by reducing the DPMO from 58,103 to 

15,290. Similarly, EWMA shows reduction in DPMO level from 24,464 to 58,103 when the 

optimization results are implemented. Table 7.4 summarizes the analysis results from the Six 

Sigma monitoring approach and proceeding without updating decision variable value. 
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Table 7.4: Results summary of 6-based implantation for inventory cost problem.   

 

EWMA 6 
with No 

Optimization 

CUSUM 6 
with No 

Optimization 

EWMA 6 
with 

Optimization 

CUSUM 6 
with 

Optimization 
DPMO 24,464 58,103 6,116 15,290 

Order Quantity, Q Fixed: 50 units  Varies: 50 at 
initial run, 31 at 

day 43, and 72 at 

day 85 

Varies: 50 at 
initial run, 34 at 

day 32, 81 at day 

61, 137 at day 76, 
and 42 at day 83. 

Average holding cost $249 $242 

Average Unit 

Ordering Cost  
$28 $26 

 

7.5 Summary 

The integration of multiobjective optimization and the Six Sigma methodology is 

successfully applied to the inventory process using 6-based control charts.  The proposed 

SSMO approach produces in real-time improved process performance during online process 

control. The results show a reduction in process variation as well as minimization of unit 

ordering cost and average holding cost. Finally, the results are examined using the Six Sigma 

methodology performance metric DPMO in order to show the effectiveness of SSMO approach. 
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CHAPTER 8: 

SUMMARY AND FUTURE RESEARCH DIRECTIONS 

8.1 Summary of Research 

This research investigation attempts to bridge the gap between multiobjective 

optimization and the Six Sigma methodology to automate feedback from the Control phase to the 

Improve phase of DMAIC framework in the case of multiobjective problem. The integration of 

multiobjective optimization with the Six Sigma methodology to improve online process control 

requires the blending of domain knowledge in the areas of statistical process control and 

multiobjective optimization. Furthermore, improving the quality level of a process when multiple 

objectives are present adds significantly more complexity to the decisions and implementation 

plans for process improvement. Motivated by the need for enhancing the Six Sigma methodology 

to improve process control when multiple objectives exist, this research investigation proposes 

and successfully constructs and demonstrates an SSMO approach which enhances the DMAIC 

framework. A popular inventory management problem is used as the test case for the proposed 

SSMO approach. 

Results from the implementation of the proposed SSMO approach show the effectiveness 

of integrating multiobjective optimization methods with the Six Sigma methodology in 

enhancing decision-making at the micro level. The integration provides automated real-time 

feedback to maintain the improvement after implementation of DMAIC framework. In 

particular, the SSMO approach maintains improvement by implementing three phases after the 

Analyze phase of DMAIC framework. The first phase of SSMO approach Improve sets the 

initial values for decision variables based on the results of the multiobjective optimization 
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results. The second phase Control uses online control charts for monitoring multiobjective 

functions values based on the desired quality evaluation level. The objective functions 

considered to meet quality evaluation level when none of the following defects found: unnatural 

patterns, out-of-control events, and mean shifts are detected by the online control charts.  Then, 

third phase Optimize starts when control charts observations at the Control phase are not meeting 

the desired quality evaluation level. This phase provides an automated feedback to the Improve 

phase in order to update decision variable values which maintain objective functions within 

quality evaluation level. The Optimize phase is performed by using NSGA II to generate a set of 

multiple compromised solutions that allow decision-maker to update the Improve phase settings.  

A case study based on a common inventory problem that contains two conflicting objective 

functions H and O associated with one decision variable Q. Furthermore, the input data for the 

inventory problem randomly-generated for 109 daily demand observations. The proposed SSMO 

approach is implemented on the inventory problem using four scenarios, where the first and 

second scenarios use 3-based quality evaluation level without using optimization and with 

using optimization respectively, and the third and fourth scenarios used 6-based quality 

evaluation level without using optimization and with using optimization, respectively. 

Furthermore, two control charts – EWMA and CUSUM – are used to monitor the set of objective 

function values. The results from implementing the SSMO approach on 109 daily demand 

observations shows a reduction in DPMO, H, and O for both the quality evaluation levels 3 and 

6. Thus, from this research investigation, the integration of multiobjective optimization with the 

Six Sigma methodology shows promise. It shows to be effective in reducing DPMO with respect 

to online process control in the presence of multiple objectives. 
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8.2 Future Research Directions 

From the results presented and the conclusion drawn from this research investigation, 

there is sufficient motivation for the following extensions of this research investigation. 

 

8.2.1 Utilize Simulation to Forecast Future Performance 

The first extension of this investigation includes integrating simulation techniques in 

order to forecast the impact of selecting all possible scenarios from the Pareto optimal frontier to 

the objective functions and process quality level. The main impact of integrating simulation 

methods with the proposed model is that it allows a decision-maker to forecast future process 

performance based on simulated events, which will reduce the risk of false decisions. 

 

8.2.2 Expand the Use of Control Charts 

The proposed SSMO approach is successfully implemented using two different control 

charts EWMA and CUSUM; however, it is not limited only to these charts. Further exploration 

for other control charts based on different sigma levels can be explored. In particular, the next 

step is to apply the framework using different control charts, and sensitivity analysis among 

control charts in terms of effectively detecting mean shift, unnatural patterns, and out-of-control 

events. 

 

8.2.3 Improving the Selection of Decision Variables 

Additionally, exploring the best technique to select a solution from the set of Pareto 

optima in order to update the decision variables should prove fruitful. Furthermore, currently 

there are several techniques such as clustering and data mining that have been developed to 
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efficiently identify the best item among a set of items. These techniques can be used to reduce 

size of the Pareto optimal set and simplify decision-making for the decision-maker. 
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