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ABSTRACT 

This dissertation focuses on developing analytical models for automated storage and 

retrieval system with multiple in-the-aisle pick positions (MIAPP-AS/RS). Specifically, our first 

contribution develops an expected travel time model for different pick positions and different 

physical configurations for a random storage policy.  This contribution has been accepted for 

publication in IIE Transactions (Ramtin & Pazour, 2014) and was the featured article in the IE 

Magazine (Askin & Nussbaum, 2014). The second contribution addresses an important design 

question associated with MIAPP-AS/RS, which is the assignment of items to pick positions in an 

MIAPP-AS/RS.  This contribution has been accepted for publication in IIE Transactions 

(Ramtin & Pazour, 2015). Finally, the third contribution is to develop travel time models and to 

determine the optimal SKUs to storage locations assignment under different storage assignment 

polies such as dedicated and class-based storage policies for MIAPP-AS/RS. 

An MIAPP-AS/RS is a case-level order-fulfillment technology that enables order picking 

via multiple pick positions (outputs) located in the aisle. We develop expected travel time 

models for different operating policies and different physical configurations. These models can 

be used to analyze MIAPP-AS/RS throughput performance during peak and non-peak hours. 

Moreover, closed-form approximations are derived for the case of an infinite number of pick 

positions, which enable us to derive the optimal shape configuration that minimizes expected 

travel times.  We compare our expected travel time models with a simulation model of a discrete 

rack, and the results validate that our models provide good estimates. Finally, we conduct a 

numerical experiment to illustrate the trade-offs between performance of operating policies and 
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design configurations. We find that MIAPP-AS/RS with a dual picking floor and input point is a 

robust configuration because a single command operating policy has comparable throughput 

performance to a dual command operating policy. 

As a second contribution, we study the impact of selecting different pick position 

assignments on system throughput, as well as system design trade-offs that occur when MIAPP-

AS/RS is running under different operating policies and different demand profiles. We study the 

impact of product to pick position assignments on the expected throughput for different 

operating policies, demand profiles, and shape factors. We develop efficient algorithms of 

complexity  (    ( )) that provide the assignment that minimizes the expected travel time. 

Also, for different operating policies, shape configurations, and demand curves, we explore the 

structure of the optimal assignment of products to pick positions and quantify the difference 

between using a simple, practical assignment policy versus the optimal assignment. Finally, we 

derive closed-form analytical travel time models by approximating the optimal assignment’s 

expected travel time using continuous demand curves and assuming an infinite number of pick 

positions in the aisle. We illustrate that these continuous models work well in estimating the 

travel time of a discrete rack and use them to find optimal design configurations. 

As the third and final contribution, we study the impact of dedicated and class-based 

storage policy on the performance of MIAPP-AS/RS. We develop mathematical optimization 

models to minimize the travel time of the crane by changing the assignment of the SKUs to pick 

positions and storage locations simultaneously. We develop a more tractable solution approach 

by applying a Benders decomposition approach, as well as an accelerated procedure for the 
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Benders algorithm.  We observe high degeneracy for the optimal solution when we use 

chebyshev metric to calculate the distances. As the result of this degeneracy, we realize that the 

assignment of SKUs to pick positions does not impact the optimal solution. We also develop 

closed-form travel time models for MIAPP-AS/RS under a class-based storage policy. 
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CHAPTER ONE: INTRODUCTION 

A supply chain includes all of the parties that are involved directly or indirectly to fulfill 

customer requests. A supply chain does not only include manufacturer and suppliers, but also 

includes transporters, warehouses, distribution centers, retailers, and customers (Chopra & 

Meindl, 2007). Distribution centers play a critical role in supporting a company’s supply chain 

success. The mission of a distribution center is to effectively ship products in the requested 

configuration to the downstream member in the supply chain. Logistics is the indispensable part 

of any supply chain that manages the flow of materials between the point of origin and the point 

of end-users. A part of logistics management focuses on activities within facilities and is known 

as facility logistics. Facility logistics concentrates on facility design, material handling, 

transportation (Noori et al., 2013, 2014; Kucukvar et al., 2014), and inventory management 

within manufacturing, distribution, and service facilities. Material handling is the “art and 

science of moving, storing, protecting, and controlling material". Material handling includes a 

large variety of manual, semi-automated and automated equipment. The most labor-intensive 

activity regarding material handling within a distribution center facility is order picking. Order 

picking is the process of retrieving products from the storage locations to fulfill a specific 

customer order. Order picking can occur at different levels, which include at the pallet, case, and 

piece level. In this dissertation, we concentrate on a special type of case-level order fulfillment 

technology that we call “automated storage and retrieval system with multiple in-the-aisle pick 

positions” or “MIAPP-AS/RS”. MIAPP-AS/RS is a semi-automated order fulfillment technology 

http://www.mhi.org/glossary?q=%22manual+handling%22&pb=1&fq=&sort=score+desc
http://www.mhi.org/glossary?q=automation&pb=1&fq=&sort=score+desc


2 

 

where the pallet-level put-away and retrieval activities are automated by cranes, but the case-

level order picking process is done by human order pickers walking and picking along the aisles. 

The global demand for frozen food has grown during the past decade. According to the 

“Global Frozen Food” report published by Datamonitor (2011) the demand rate for frozen food 

continues to grow. The global frozen foods market was estimated to be BUSD 165.4 in 2009 and 

is expected to grow by 21 percent to BUSD 199.5 by 2014. For decades, the majority of deep-

freeze distribution centers have been operated manually. Due to the increasing customer demand 

for frozen products and a highly competitive market, the organizations in deep-freeze supply 

chain are looking to improve the lead time, order accuracy, and product quality. One of the 

solutions to decrease the manual operations is turning to “high-bay” deep-freeze distribution 

centers that are equipped with automated material handling systems such as a MIAPP-AS/RS. 

Due to the harsh working conditions and increased safety issues, personnel turnover in 

deep freeze distribution centers is higher than ambient distribution centers.  Also, the majority of 

cold temperature loss occurs through the roof of a deep freeze distribution center; consequently, 

effective utilization of vertical space is important (and MIAPP-AS/RSs have been designed as 

high as 165 feet) (Swisslog Co., 2012). In addition, the MIAPP-AS/RS require less space, which 

result in further space utilization gains. Therefore, MIAPP-AS/RSs are used to reduce the 

number of operators who are required to work in the harsh environments, as well as to reduce the 

amount of space that is required to be temperature controlled (which is both financially and 

environmentally expensive). Additional benefits include the ability to monitor and control 

temperature zones and automate the tracking of products.  

 



3 

 

1-1- Material Handling 

The Material Handling Institute of America (MHIA) defines material handling as “the 

movement, protection, storage and control of materials and products throughout manufacturing, 

warehousing, distribution, consumption and disposal. As a process, material handling 

incorporates a wide range of manual, semi-automated and automated equipment and systems that 

support logistics and make the supply chain work”. 

Material handling system design is one of the most critical components in any 

distribution center design. These systems and processes can help extensively to increase the 

customer service level, reduce inventory levels and order-fulfillment time, and decrease the 

overall costs in manufacturing and distribution of the products. There is not a single way to 

ensure that the material handling equipment and processes (including manual, semi-automated 

and automated) in a distribution center work together as a unified whole. According to the 

MHIA, in order to reach the material handling goals 10 principles should be considered to 

properly design a system: 1) Planning, 2) Standardization, 3) Work, 4) Ergonomics, 5) Unit load, 

6) Space utilization, 7) System, 8) Environment, 9) Automation, 10) Life cycle cost. Based on 

these general principles, Tompkins et al. (2010) provide the following six-step material handling 

design process. This process results in the “material handling system equation” (see Figure 1-1), 

which is the framework that generate solutions for material handling problems. The material 

handling design process steps are: 

1. Define the objectives, goals, and scope. 

http://www.mhi.org/glossary?q=%22manual+handling%22&pb=1&fq=&sort=score+desc
http://www.mhi.org/glossary?q=automation&pb=1&fq=&sort=score+desc
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2. Investigate all of the requirements for moving, storing, securing, and controlling the 

materials. 

3. Create different design alternatives for the requirement of the material handling system. 

4. Evaluate the design alternatives. 

5. Choose the preferred design alternative. 

6. Implement the preferred design. 

As shown in Figure 1-2, to complete the material handling system equation, several 

questions should be answered. These questions (which are listed in Table 1-1) include: What, 

where?, when?,  how?, who ,  which?. What identify the type of material to be moved. Where 

and when define the requirements of place and time. How and who define the methods. The 

process of answering all of these questions will aid in identifying a recommended material 

handling system. 

 

Figure 1-1 : Material handling system equation (Tompkins et al., 2010) 

 



5 

 

Table 1-1 : Material handling system equation questions (Tompkins et al., 2010) 

What Question 

 What are the types of materials 

 What are the materials characteristics? 

 What are the materials amounts to be moved and stored 

Where Question 

 Where is the material coming from? 

 Where is the material going? 

 Where is the material stored? 

 Where material handling process can be improved? 

 Where automation can be used? 

When Question 

 When is material required? 

 When can automation be applied? 

 When can material handling performance audit be applied?  

How Question 

 How is material moved or stored? 

 How much inventory of material should be held? 

 How should the material be tracked? 

 How should the problem be analyzed? 

Who Question 

 Who have the skills to do material handling tasks? 

 Who have the skills to do material handling services? 

 Who have the skills to design material handling system? 

Which Question 

 Which material handling operations are required? 

 Which type of material handling tools and equipment are needed? 

 Which material handling system is cost efficient? 

 Which alternative should be selected? 

 

1-2- Warehouse and distribution center operations 

Materials can be handled at different levels. A stock keeping unit (SKU) is defined as the 

smallest physical unit of a product that the organization can track. Generally, upstream levels of 

the supply chain do not carry the small scale of units, and successively when the products flow to 

downstream levels, they are broken down into smaller units. Figure 1-2 shows how product unit 

scale can change throughout the supply chain (Bartholdi & Hackman, 2011). In this document 

the terms SKU, product, and item are used interchangeably. Typically, retrieval of the products 
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may occur at different levels than the product is received. These levels include pallet, case, or 

piece-level. If both storage and retrieval of the load are done as one unit, it is denoted as a unit 

load. On the other side, if the items are stored at one level  but retrieved in quantities less than 

unit-load, this retrieval process is  generally known as an order picking system (Tompkins et al., 

2010). 

 

Figure 1-2 : Structure of the stock keeping units (NAVSUP Pub. 529) 

 

The terms warehouse and distribution center are often used interchangeably. Although 

these two concepts share many functions in practice, they have some fundamental differences.  

Specifically, a warehouse receives and fulfills orders at the same product level (i.e., warehouses 

handle unit loads), whereas distribution centers receive and store products at one level and fulfill 

customer orders at a less-than-unit load (i.e., distribution centers conduct order picking).  

Fulfilling customers’ orders requires numerous steps that include coordinating 

information, labor, material handling equipment, and infrastructure. Hence, designing an 

effective distribution center requires addressing many key strategic, tactical, and operational 

questions that impact the company’s ability to achieve its mission. The other role of distribution 
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center is to process orders. The orders should be process fast, effectively, and precisely; 

otherwise, then a company’s supply chain planning will suffer. Information technology has a 

significant role in making distribution center operate more effective, but the best information 

system will be of little use if the physical systems necessary to get the products out the door are 

constrained, misapplied, or outdated. There are several metrics to evaluate the performance of 

distribution centers. These metrics measure the efficiency and effectiveness of labor, equipment, 

space, financial performance, safety, and sustainability. The common metrics can be categorized 

as order accuracy metrics, order fill rate, on-time delivery measures, throughput, etc. In practice, 

an organization takes a collection of these metrics into account to obtain a better understanding 

of the system.  

The criteria to categorize distribution centers is primarily based on the customers who are 

served. According to Bartholdi & Hackman (2011), important distinctions of distribution centers 

are as follows. 

1. A “retail distribution center” which typically provides products to a retail store. Wal-

Mart, Publix, and Target are some of the well-known examples. In this type of 

distribution centers, the primary customer is retail stores. A distribution center generally 

supplies several retail stores, and the orders include thousands of items. However, 

planning ahead is possible as typically the orders are known in advance. 

2. A “service parts distribution center” which generally hold the spare parts of tools or 

equipment (e.g. airplanes and automobiles). Managing these distribution centers is very 

challenging because they hold a large number of items with small demands. The variance 

of the demand, as well as the lead times to replenish is generally large and so high level 
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of safety stock should be kept. These facts lead to requirement of relatively larger space 

and consequently more costly order-fulfillment process. Another challenge for these 

distribution centers is that the demand pattern for service parts are generally unusual as 

they follow different life cycle patterns. The failure rates for early-, mid-, end-of- life 

vary product to product. Therefore, it brings hard challenges for demand prediction as 

well as distribution center design. 

3. A “catalog fulfillment or e-commerce distribution center” which handles phone, fax, and 

internet orders placed by the customers. Orders are comprised of a relatively small 

number of items, but many of these orders are placed during a certain time. Generally, the 

response time is the most important factor among distribution centers activities. 

4. A “3PL distribution center” is used for other companies outsourcing warehouse 

operations. A 3PL distribution center generally supplies more than one company and thus  

can gain   economies of scale  that a single small company cannot gain by its own. 

5. A “perishable products distribution center”, generally keeps very short shelf life 

products such as food, flowers, and vaccines that need a temperature-controlled 

environment. Space efficiency is one of the most challenging parts in these distribution 

centers as the refrigeration is a very costly process. Other challenges within this type of 

distribution center may include the handling and shipping of the products that should 

generally follow the FIFO (First-In-First-Out) or FEFO (First-Expired-First-Out) basis. 

Distribution centers can bring different opportunities including order picking, 

productivity, and value-added services. Any of these opportunities or combination of them can 

be found in distribution centers (Tompkins et al., 2010). Figure 1-3 shows the schematic view of 
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the opportunities provided by distribution centers. All of these opportunities allow distribution 

centers to process and ship orders more effectively. 

 

 

Figure 1-3 : Opportunities provided by distribution centers (Tompkins et al., 2010) 

 

Distribution centers typically are designed to include the following main functional 

activities: receiving, Put-away (or the term storage may use interchangeably), replenishing, 

picking orders, sort, cross-docking, and shipping (which are displayed in Figure 1-4). Receiving 

activities are comprised of receipt of all incoming materials, making sure the quality and quantity 

are as ordered, as well as repackaging packages to smaller cases and at the end, preparing 

materials (such as relabeling them to be identifiable for the organization) to transfer to the next 

stage. Put-away includes the collection of material handling and placement activities to place 

items in storage locations where the items wait for a demand request. Order picking is the action 

of selecting the right amount of items from storage locations to fulfill customer orders. Sortation 
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occurs after the batches of items are picked and the items are sorted and accumulated into 

individual orders. Shipping includes the activities such as finalized the orders for completeness, 

packing final orders into proper containers, preparing shipping documents, determining shipping 

charges, and loading trucks. Replenishment is the process of movement of SKUs from upstream 

storage locations (such as reserve storage area) to downstream locations (forward picking area).  

Cross-docking includes the act of transferring the upstream items from the receiving dock to 

shipping dock directly. 

   

 

Figure 1-4 : Typical warehouse functions and flows (modified after Tompkins et al. (2010)) 

 

Gu et al., (2007) identify the problems that can occur, as well as the decision to be made 

for each of these warehouse functions in Table 1-2. At the viewpoint of warehouse functions, the 

focus of this dissertation is on storage and order picking problems. For the storage activity, we 
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study the storage location assignment, and for the order picking function, we look into the 

sequencing problem. 

Table 1-2 : Description of the warehouse operation problems (Gu et al., 2007) 

 

1-3- Order Picking 

de Koster et al. (2007) define order picking as “the process of clustering and scheduling 

the customer orders, assigning stock locations to order lines, releasing orders to the floor, picking 

the articles from storage locations and shipment of the packed articles”. 

Order picking is the highest-priority activity in distribution centers for productivity 

improvement (Tompkins et al., 2010). There are two major reasons for this concern. First, the 

order picking process is the most costly activity in the typical distribution center. According to 

the study of Drury (1988), it is revealed that 55% of all operating costs are associated to order 

picking in a typical distribution center (see Figure 1-5). Second, as the advent of new operating 

systems and customers’ needs, smaller orders are required to be delivered more frequently and 
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more accurately. Therefore, more SKUs are flowing into order picking systems, which makes the 

process increasingly difficult to manage. Also, quality control and customer service mean 

distribution center managers are also focusing on order picking from other points of view such as 

minimizing  product damage, reducing fulfillment times, and improving picking accuracy 

(Tompkins et al., 2010). Therefore, maximizing the service level subject to resource constraints 

such as labor, capital, and equipment is a common objective for order picking systems 

(Goetschalckx & Ashayeri, 1989).  

 

Figure 1-5 : Typical distribution of warehouse operating expenses (Tompkins et al., 2010) 

 

There are several types of order-picking system exist in warehouses. Often, a warehouse 

uses multiple order picking systems at the time. Van den Berg (1999) classifies order-picking 

systems into three groups:  

1- Picker-to-product systems 

2- Product-to-picker systems 

3- Picker-less systems 
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In a picker-to-product system, human order-pickers may walk or ride in vehicles to reach 

the pick positions and pick the items. This picking process can be categorized into two types. 

First, low-level picking occurs when the order pickers travel along the aisle and pick the items 

from storage racks or bins. Second, high-level picking occurs when the order picker travels to the 

picking spots by riding on board of lifting cranes. This type of the high-level picking is also 

known as man-on-board order picking system. When the order is sufficiently large, each order 

can be picked in its own single tour individually (Single or discrete order-picking). However, 

when the number of the orders increases and the orders become relatively smaller, there is an 

opportunity to reduce the travel time by grouping the multiple orders simultaneously in one tour, 

which is denoted as batch picking. In batch picking, sortation  is required. If the orders are sorted 

during the order-picking process, it is known as sort-while-pick. Otherwise, if the sortation 

process is done afterwards, it is called pick-and-sort (van den Berg, 1999).  

In a product-to-picker system, the products are brought to the picker by employing 

material handling technologies.  Automated storage and retrieval systems (AS/RS) and the 

carousel are two well-known examples of product-to-picker technologies. AS/RS consists of 

high-rise storage racks and the fully automated cranes for handling the loads put-away and 

retrieval. A carousel consists of storage racks that rotate horizontally or vertically around a 

closed loop to bring the requested items to order pickers. Finally, picker-less systems use robot-

technology or automatic dispensers such as A-frame systems (van den Berg, 1999; Pazour and 

Meller, 2011) to fulfill customer orders. 
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According to Tompkins et al. (2010), certain principles exist that are applicable to most 

order picking processes regardless of material, customer, and warehouse specifications. We 

mention some of these order picking principles based on relevance to the objectives of our study. 

1. Use Pareto’s law. Pareto’s law is applicable for many cases in business and 

manufacturing environments. In particular, in warehouses, it is typical to observe a large 

portion of inventory to be attributed to a small number of SKUs. This idea can be 

extended to other aspects in warehouses such as demand, throughput, space utilization, 

and so on. 

2. Provide an effective stock location system. Every warehouse should have a consistent 

stock locating system. The effective system helps as an input to an efficient routing 

system and prevents tedious non-value-added search for items. 

3. Eliminate or combine order picking tasks. Order picking may include activities such that 

traveling, extracting items, reaching to pick locations, documenting transactions, sorting, 

searching for pick locations. These activities comprise the order pickers’ time. Several 

opportunities exist to eliminate or combine these elements to reduce the overall picking 

time. Some of these methods are provided in Table 1-3. 

4. Allocate the most demanded items to the most accessible storage locations in the 

warehouse. As another intuition from Pareto’s law, assigning fast-moving items to more 

accessible locations can reduce the picking times. This rule can be applied for manual 

and automated order picking. One of the common mistakes that is made in practice is 

overlooking the size of the product. Therefore, the amount of space required by the items 

should be considered in any ranking system that identifies the popularity of the items. A 
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simple ranking system can be the ration of picking frequency per unit to the shipping 

cube per unit. The items with the highest rank should be assigned to the most accessible 

locations. 

Table 1-3 : Order picking work elements and means for elimination (Tompkins et al., 2010), 

 

5. Balance picking activities across picking locations to reduce congestions. When the most 

demanded items are assigned to the most accessible locations that are located in a 

relatively small area, the congestion of order pickers may occur. Therefore, for any 

design of picking area, ensure that sufficient space exists to avoid congestion. 

6. Consider the correlation between item requests to assign similar items to the nearby 

locations. Besides popularity of the items, correlation of order request can be used for 

assigning items to locations. It is likely that some of the items are requested together. 

Assigning correlated items to nearby locations can reduce the travel time. For example, 
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Frazelle (1989) presents a computerized procedure to consider the popularity and the 

correlation of the demand of items at the same time. 

1-4- Automated Storage/Retrieval System (AS/RS) 

An automated storage and retrieval system (AS/RS) is defined by MHIA as “a 

combination of equipment and controls that handle, store and retrieve materials as needed with 

precision, accuracy and speed under a defined degree of automation. An AS/RS is used for raw 

material, work-in-process, and finished goods. A significant increase in the number of AS/RS 

used in the distribution environments have been seen in United States, and the installations of 

such systems have become commonplace in all major industries”. AS/RSs have had a great 

impact on manufacturing (especially pull-based systems), warehousing, and different service 

facilities such as hospitals and libraries (Tompkins et al., 2010). Zollinger (1999) list the major 

benefits of using AS/RS as follows. 

 improve efficiency of operators and storage capacity 

 reduce the WIP inventory 

 improve the quality and just-in-time performance 

 provide make-to-order capability as well as make-to-inventory production 

 control the inventory in real-time manner and prompt reporting functionality 

 higher inventory security 

 less product damage 
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The major disadvantages associated to AS/RS, which must be considered before 

justifying acquisition of such a system, are: 

 low flexibility in layout 

 high initial capital cost 

 fixed storage capacity 

 lack of visibility 

The system design process of implementing an AS/RS should include the following 

considerations: 

 definition of current and future loads to be handled 

 number of the loads to be stored in the system 

 material flow description (including average and peak rates) 

 description of operations 

 architectural/engineering considerations 

A typical AS/RS includes one or more aisles (each aisle has storage racks on either side), 

a crane, and an input/output (I/O) queue. The crane can generally access the storage racks on 

both sides of the aisle. A typical AS/RS storage operation includes the crane picking up a load at 

the I/O point, moving the load to an empty storage location, depositing the load in the empty 

storage location, and traveling empty to the I/O point. A similar process can occur for retrieving 

a load from the AS/RS system.  Because such operations are performed by conducting either one 

storage or one retrieval, they are known as single command (SC) operations. A more efficient 
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operation that involves performing both a storage and a retrieval is called a dual command (DC) 

operation. A DC operation consists of the crane picking up the load at the I/O point, travelling to 

the empty storage location, depositing the load, moving empty to the location of desired 

retrieval, picking up the load, moving back to the I/O point, and finally depositing the load. 

If each aisle has its own crane, the system is known as aisle-captive. For some systems, 

the activity level per aisle may vary during the year due to the seasonal demand. If the activity 

level of one aisle is low enough that it does not justify dedicating a crane to that aisle, the 

number of crane can be less than the number of aisles. In this case the system is designed such 

that the crane(s) can move from one aisle to another. 

 

Figure 1-6 : Different AS/RS options (Roodbergen & Vis, 2009) 

 

In AS/RS, horizontal and vertical crane travel occurs simultaneously. Therefore, the time 

required for the crane to reach any point within the rack is equal to the maximum of the 

horizontal and vertical travel time. This movement is known as a chebyshev distant metric. The 
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horizontal and vertical speeds of a typical crane are up to 600 and 150 feet per minute, 

respectively (Tompkins et al., 2010).  

When the loads have relatively low variety of loads in the system, throughput 

requirement of each item become relatively high, thereby the number of loads to be stored is 

high. In this case, storing items in a rack may occur double deep to increase the space utilization. 

This rack configuration is often referred to double-deep racks (Tompkins et al., 2010). 

Roodbergen & Vis (2009) provide an extensive review of 30 years of literature on AS/RS 

problems. As illustrated in Figure 1-6, they categorize the AS/RSs based on crane and rack 

configurations as well as type of handling. Also, they categorize the AS/RS design decision 

problems into: 1) system configuration, 2) storage assignment, 3) batching, 4) sequencing, and 5) 

dwell-point problems (see Table 1-4). In this dissertation, we only study system configuration, 

storage assignment, and sequencing aspects of AS/RS problems.  

Table 1-4 : Classification of AS/RS design decision problems (Roodbergen & Vis, 2009) 
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1-5- Automated Storage/Retrieval System with multiple in-the-aisle pick positions 

Automated storage and retrieval system (AS/RS) with multiple in-the-aisle pick positions 

(MIAPP-AS/RS) is one type of case-level order-fulfillment technology. As illustrated in Figure 

1-7, a MIAPP-AS/RS has two types of aisles. Half of the aisles are dedicated to the movement of 

human order pickers (denoted as picking aisles) and the other half are dedicated to the movement 

of storage/retrieval (S/R) machines (denoted as crane aisles). Human order pickers transverse the 

picking aisles to create mixed or rainbow pallets for customers by picking cases from pallets 

located on the ground level. The MIAPP-AS/RS supports the case-level order-fulfillment process 

by performing all pallet storage and replenishment activities. The storage operations performed 

by the MIAPP-AS/RS originate from end-of-the-aisle input points where a unit-load (typically a 

pallet) is taken from an input point and stored in a storage position in the rack. A replenishment 

request is sent from a pick position when the amount of items in the pick position reaches a 

certain pre-determined level. To replenish pick positions a pallet is retrieved from the storage 

area and placed into its pick position located in the aisle. 

Case-level order-fulfillment with MIAPP-AS/RSs is a semi-automated process because 

the storage and replenishment of pallets to pick positions is automated using Cranes. However, 

because building a pallet is difficult to automate due to the varying sizes and weights of cases, 

the case-fulfillment process is conducted by human order pickers.   
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Figure 1-7 : Schematic view of a typical MIAPP-AS/RS 

 

Case-level order-fulfillment is common for company-owned distribution centers that 

supply individual retail stores with a variety of products. The primary reasons for implementing 

an MIAPP-AS/RS are to increase space utilization and to eliminate the need for human operators 

to perform replenishment and storage operations. These factors lead MIAPP-AS/RSs to be 

common in temperature-controlled distribution centers especially ones that handle frozen items.  

In the cold supply chain, specific temperature standards are enforced to ensure food quality is 

maintained:  “Chill” (2 to 4 Celsius) is used for fruit and vegetables, “Frozen” (-16 to -20 

Celsius) is used for meat, and “Deep Freeze” (-28 to -30 Celsius) is used for seafood and ice-

cream (Rodrigue et al., 2009).  Due to the harsh working conditions and increased safety issues, 

personnel turnover in deep freeze distribution centers is higher than ambient distribution centers.  

Also, the majority of cold temperature loss occurs through the roof of a deep freeze distribution 

center; consequently, effective utilization of vertical space is important (and MIAPP-AS/RSs 

have been designed as high as 165 feet) (Swisslog Co., 2012). In addition, Crane aisles require 

less space than picking aisles, which result in further space utilization gains. Therefore, MIAPP-

AS/RSs are used to reduce the number of operators who are required to work in the harsh 



22 

 

environments, as well as to reduce the amount of space that is required to be temperature 

controlled (which is both financially and environmentally expensive). Additional benefits 

include the ability to monitor and control temperature zones and automate the tracking of 

products.  

The implementation of MIAPP-AS/RSs can be found in numerous grocery distribution 

centers in the United States (E.g. Publix Super Markets and Wal-Mart), and Europe (E.g. 

Walkers, Ferrero GmbH and Arla).  In these distribution centers a large volume of heavy cases is 

handled in Chill and Deep Freeze environments (Swisslog Co., 2013). The 2010 global frozen 

food market is estimated to be worth 192.2 BUSD and the global demand for frozen food is 

anticipated to grow at a rate of 4 percent annually (Datamonitor, 2011).  Therefore, the number 

of Deep Freeze distribution centers and the use of case-level order-fulfillment technology, in 

general, and MIAPP-AS/RS in particular, are on the rise. 

Because of high infrastructure investment costs and the critical importance of order 

fulfillment on cost and customer satisfaction, designing and assessing an MIAPP-AS/RS is an 

important strategic decision in warehouse design. Such systems are commonly constrained by 

Crane throughput; therefore, estimating the average travel time for different design 

configurations and operating policies is a fundamental step in designing MIAPP-AS/RSs. To 

effectively handle a wide range of item requests in the order-fulfillment process, the number of 

pick positions available is also an important design characteristic of MIAPP-AS/RSs.  The 

number of pick positions can be increased through the use of an additional elevated picking floor 

on a mezzanine that enables case-level order-fulfillment to be performed at different elevations. 
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Distribution centers may have different operating policies during peak and non-peak 

times.  For example, many distribution centers have a peak-picking time where a large majority 

of the distribution center’s orders are placed and must be picked before the last truck leaves the 

dock for shipment.  During peak times, the distribution center prioritizes fulfillment of orders 

over storage requests that can be performed during non-peak times. Also, if a distribution center 

experiences a balanced number of storage and retrieval requests throughout the day, the Crane 

can perform a dual command travel that includes both a storage and a retrieval. Consequently, 

estimating the throughput of an MIAPP-AS/RS is important for different operating strategies.   

1-6- Summary of dissertation 

This dissertation focuses on deriving analytical expressions to calculate the expected 

travel time of an MIAPP-AS/RS that applies different operating policies and has different 

physical configurations. These analytical models are used to find the expected throughput for 

optimal assignment of SKUs to pick positions located in the aisle. Moreover, closed-form 

approximations are derived for the case of an infinite number of pick positions that enable us to 

derive the optimal shape configuration that minimizes travel times. Through comparison with a 

simulation model, we illustrate that our models provide good estimates and can be used to aid in 

design and evaluation of real-world systems. 

The remainder of the dissertation is organized as follows.  In the next chapter we review 

the literature on travel time and throughput models developed for different aspects of AS/RS 

design problems such as physical design and storage assignment problems. In Chapter 3, we state 

the particular areas on which we concentrate as well as review our contributions in each area of 
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our study. In Chapter 4, we present the derivation of expected travel time models for MIAPP-

AS/RS under different operating policies and physical configurations. In Chapter 5, we provide 

the models and procedures to find the optimal SKU assignment to pick positions, as well as 

developing models to estimate the expected throughput for different SKU assignment cases. In 

Chapter 6, we study the dedicated and class-based storage policy for MIAPP-AS/RS. Finally, in 

Chapter 7, we identify the possible future research directions to continue the proposed topics in 

this dissertation.  
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CHAPTER TWO: LITERATURE REVIEW  

As the main focus of this dissertation is on the AS/RS problems, in this chapter, we focus 

on reviewing the existing literature of AS/RS problems from different perspectives. First, we 

review the physical design problems discussed in the literature, as one of the main focuses of our 

study is to determine the appropriate design for the system. Second, we concentrate on the 

various travel time models that exist in the literature from different points of view such as 

command cycles, operating characteristic, and different I/O locations. Finally, we review the 

storage assignment policy problems of AS/RS. 

2-1- Existing Physical Layout Design in an AS/RS 

According to Roodbergen & Vis (2009), as shown in Table 1-4, system configuration 

decisions of the AS/RS involve determining the number of cranes, number of aisle, size of the 

racks, and so on. However, only few papers consider AS/RS design in combination with other 

material handling systems. According to Roodbergen & Vis (2009) and Vasili et al. (2012), there 

are two general methods for AS/RS design problems: (1) analytical methods; and (2) simulation. 

2-1-1- Analytical Methods 

Among the several papers that consider designing and optimization of warehouse and 

material handling systems problem, Zollinger (1975) is an early study that consider AS/RS 

design based on cost analysis model. 
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Karasawa et al. (1980) build a deterministic mixed-integer programming (MIP) to 

minimize the cost of AS/RS problem. They consider  the number of the cranes and the size of the 

rack as the decision variables of the model. The constraints of the model include number of the 

cranes, storage volume, and throughput. 

Ashayeri et al. (1985) develop a model to minimize the total investment and warehouse 

operating costs. Their model identifies the optimal number of the cranes as well as the optimal 

dimensions of the warehouse subject to system throughput, crane speeds, and size of the 

building. 

Bozer and White (1990) introduce the first analytical stochastic analysis for a mini-load 

AS/RS that is modeled as a two-server closed queuing network. Bozer & White (1996) have 

extended Bozer & White (1990) to determine the near-optimal pickers’ number and improve the 

pickers’ utilization by considering the sequencing of container retrievals sequence for each order. 

 Lee (1997) categorizes the techniques of evaluating the performance of AS/RSs into 

static (Egbelu, 1991; Egbelu and Wu, 1993), computer simulation (Egbelu and Wu, 1993; Linn 

and Wysk, 1990; Randhawa et al., 1991; Randhawa and Shroff, 1995), and stochastic analysis. 

He presents a stochastic analysis of unit-load AS/RS for the first time using a continuous time 

Markov chain. His model is capable of using different formulas for SC and DC of various system 

configurations such as the case when the I/O point is located other than on the lower left corner 

of the rack.  

Bozer and Cho (2005) extend Lee (1997) by developing analytical closed-form stochastic 

models to determine if the system meets a desired throughput, as well as identifying the expected 
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S/R machine utilization. Their model can also apply to alternative I/O point locations or storage 

methods if E(SC)>E(TB).  

Malmborg (2001) generates the modified rule of thumb that does not require the 

proportion of SC and DC as well as total storage capacity to compare randomized versus 

dedicated storage. Also, crane utilization is considered in the cost estimation procedure. They 

propose additional performance measures to evaluate different rack configurations. 

Hwang et al. (2002) consider the combination of mini-load AS/RS with Automated 

Guide Vehicle (AGV) to design the assembly line workstation. They propose nonlinear model as 

well as heuristics to identify the optimal number of AGVs and optimal mini-load AS/RS design.  

Le-Duc et al. (2006) and de Koster et al. (2008) develop the 3D AS/RS . Their focus is 

on evaluating the performance and optimal dimension of the system. They derive a closed-form 

expression for the expected travel time model when the system operates under SC basis. Also, 

travel time approximation is developed for DC cycles. 
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2-1-2- Simulation and data mining methods 

There exist several simulation and data mining techniques in the literature such as Principal 

component analysis (PCA) (Wu et al., 2014; Yun et al., 2014), discrete-event simulation, agent-

based simulation (Beheshti & Sukthankar, 2012, 2013, 2014; Beheshti et al., 2015; Beheshti & 

Mozayani, 2014), Monte Carlo simulation (Hadian et al., 2012, 2013), and simulation-

optimization.  

Rosenblatt & Roll (1984) propose a simulation-optimization procedure to find the 

optimal solution for a particular warehouse design problem that consider there different cost 

functions (including initial investment cost, shortage cost, and storage cost). 

Randhawa et al. (1991) analyze the impact of number of the I/O points on mean and 

maximum waiting time by applying the simulation study. The simulation model investigates the 

layouts with different number of I/O points per aisle as well as the relationship between the 

source of storage and retrieval operations. They consider three performance measure (System 

throughput, mean, and maximum waiting time) as well as three different unit-load AS/RS 

performing under DC cycles. The results show that introducing two independent I/O points per 

aisle where the input pallet loads are stored based on Closest Open Location (COL) policy, and 

output pallet retrieval based on a Nearest Neighbor (NN) policy. 

Randhawa & Shroff (1995) extende the work of Randhawa et al. (1991). They perform a 

comprehensive study that evaluate the performance of six different layouts with single I/O point 

(but the location varies) performing under three different scheduling policies. Their simulation 

model considers three different performance measures including system throughput, waiting 

http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Principal_component_analysis
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times, and rejects due of I/O queues. The results show that locating the I/O point at the middle of 

the rack can obtain higher throughput. 

Rosenblatt et al. (1993) consider simulation and optimization model simultaneously to 

determine the design parameters for the system. They capture the dynamic behavior of the 

system as well as optimize the total cost of the system at the same time. In their model, they 

assume that number of the crane can be less than the number of the aisles. 

2-2- Existing AS/RS Travel time models 

2-2-1- Travel time interpretation 

As the throughput capacity is the inverse of the average travel time, estimating the 

average travel time is one of the fundamental steps in AS/RS design. AS/RS systems are often 

throughput constrained and one way to improve the system throughput is to reduce the travel 

time. Also, because the total cost of the system is highly dependent to the number of the aisles; it 

is critical to know the throughput of each aisle to determine the number of the aisles (Sarker & 

Babu, 1995). To our knowledge, the only survey papers are Sarker & Babu (1995), Roodbergen 

& Vis (2009) and Manzini (2012) are the only three papers discussing exclusively about AS/RS. 

Except (Sarker & Babu, 1995) which is totally dedicated to travel time models of AS/RS, the 

other two papers have the exclusive section about travel time models of AS/RS. 

In most AS/RS, as the crane has independent and simultaneous movements in horizontal 

and vertical directions, the maximum of the horizontal and vertical travel time Chebyshev distant 

metric) is used to calculate the actual travel time. Horizontal and vertical travel speeds are up to 
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600 and 150 feet per minute, respectively (Tompkins et al., 2010). There are two approaches to 

estimate the AS/RS travel time, discrete approach (see Egbelu (1991); Thonemann & Brandeau 

(1998); Sari et al. (2005)) or continuous approximation approach (see Table 8 in Roodbergen & 

Vis (2009)). Simulation studies have shown that there is not much significant difference between 

the two approaches (see Bozer & White (1984); Hu et al. (2005); Sari et al. (2005)). Continuous 

approximation has received much more considerations, as closed-form expressions can be 

obtained in this case.  

2-2-2- Travel time models from the prospective of crane command cycles 

An AS/RS crane can have single or multi shuttle. A single shuttle AS/RS can perform 

single SC or DC cycles. In a SC, either one storage operation or retrieval operation can be 

performed in each cycle. However, in DC cycles, both storage and retrieval operation can be 

performed in each cycle. A multi-shuttle AS/RS consists of more than one shuttle, where each 

shuttle can handle one storage and retrieval of the items in each cycle (Sarker & Babu, 1995; 

Meller & Mungwattana, 1997; Potrč et al., 2004). 

Hausman et al. (1976) perform one of the first studies of the travel time model for SC 

cycle. Graves et al. (1977), Bozer & White (1984) and Pan & Wang (1996) consider both SC and 

DC cycle with some other system configurations. Bozer & White (1984) have presented several 

closed-form expressions for different I/O point configurations by considering normalized 

rectangular rack with length of 1.0 and height of shape factor in terms of time.  
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Sarker et al. (1991) analyze the double-shuttle AS/RS by considering FC cycle under NN 

scheduling rule. They show that performing double shuttle system under NN scheduling rule 

would outperform the throughput performance of single shuttle systems. 

Foley & Frazelle (1991) consider end-of-the-aisle mini-load AS/RS with DC cycle. They 

assume the rack is square-in-time and uniformly distributed, and the pick times are distributed 

deterministically or exponentially. They derive the closed-form expression for maximum 

throughput of system. 

In order to handle above 20 tons heavy loads, Hu et al. (2005) develop a continuous 

approximation travel time model under SC for a new kind of S/R mechanism which are referred 

to split-platform AS/RS, or SP-AS/RS. In SP-AS/RS, the horizontal and vertical movements are 

performed by separate devices. 

2-2-3- Travel time models from the prospective of crane operating characteristic 

Most of studies have ignored the acceleration and deceleration of the crane, and assumed 

a constant speed for the crane. Guenov and Raeside (1989) realize by their study that an 

optimum Chebyshev travel tour may be up to 3% higher than the optimal travel times when 

model considers the acceleration/deceleration of the crane. Hwang & Lee (1990) derive the 

continuous travel time model by considering both maximum velocity and the time required to 

reach the peak velocity. They consider SC and DC cycle under randomized storage policy. 

Chang et al. (1995) extend the work of Bozer & White (1984) by considering the speed 

specifications that exist in real-world problems. Chang & Wen (1997) extend Chang et al., 1995) 

to find out the impact of rack configurations on the crane speed profile. Wen et al. (2001) is 
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another extension of Chang et al. (1995) which consider different travel speeds ,where the 

acceleration and deceleration rates are known. They concluded that their exponential travel time 

model has satisfactory performance. 

2-2-4- Travel time models from the prospective of alternative I/O point(s) position 

Bozer and White (1984) develop and analyze the expected travel time of five alternative 

I/O point configurations. They assume that the I/O point can be located at (1) the lower-left 

corner of the aisle; (2) the opposite ends of the aisle; (3) the same end of the aisle, but at different 

elevations; (4) the same elevation, but at a midpoint in the aisle; and (5) the end of the aisle, but 

elevated. All five configurations consider only one input and one output point. The MIAPP-

AS/RS has multiple in-the-aisle points that are not necessarily located at the corner of the rack; 

therefore, their models are not applicable.  

Randhawa & Shroff (1995) extende the work of Randhawa et al. (1991). They perform a 

comprehensive study that evaluate the performance of six different layouts with single I/O point 

(but the location varies) performing under three different scheduling policies. Their simulation 

model considers three different performance measures including system throughput, waiting 

times, and rejects of I/O queues. The results show that locating the I/O point at the middle of the 

rack can obtain higher throughput. 

Ashayeri et al. (2002) develop geometrical algorithm to derive the travel time and 

throughput of AS/RS under zone-based storage assignment. They consider one, double (located 

at two opposite side of floor level), and multiple I/O points.  
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Vasili et al. (2008) develop a novel configuration in split-platform AS/RS (SP-AS/RS) 

where the I/O point is located at the middle of the rack. They consider a continuous 

approximation of the rack to model the expected travel time, reduce the mean handling travel 

time in the system, and validate their model through Monte Carlo simulation. The results show 

that their proposed configuration, for some particular ranges of shape factor, improve the 

expected travel time comparing to Chen et al. (2003) and Hu et al. (2005). 

2-3- Existing AS/RS Storage Assignment Models 

A storage assignment policy determines the assignment of items to storage locations. The 

primary goal of a storage policy is to minimize the average travel time subject to satisfying 

various system constraints (Goetschalckx and Ratliff, 1990). The three most often used storage 

policies in the literature are randomized storage, dedicated storage, and class-based storage (see 

e.g., Hausman et al. (1976); Graves et al. (1977); Schwarz et al. (1978); Goetschalckx and 

Ratliff (1990); Kouvelis and Papanicolaou (1995); Van den Berg (1999); Roodbergen and Vis 

(2009)). Hausman et al. (1976) find that a significant reduction in travel time can be achieved 

using class-based turnover assignment policies rather than randomized storage policies. Both 

Rosenblatt and Eynan (1989) and Eynan and Rosenblatt (1994) consider the optimal boundaries 

for n-class storage racks. They conclude that a storage rack with a limited number of classes (less 

than 10) can improve the travel time compared to a full-turnover policy. Guenov and Raeside 

(1992) compare three different zone shapes under DC scheduling. They conclude that 

performance of the proposed shapes depends on the location of the I/O point. Goetschalckx and 

Ratliff (1990) consider dedicated storage policies and shared storage policies. They develop a 
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duration-of-stay (DOS) shared policy for unit-load system with balanced input and output. 

Kulturel et al. (1999) compare two shared storage assignment policies with respect to their 

average travel time by using computer simulation. 

2-4- Summary of Literature Review 

A great portion of AS/RS literature looks at one I/O point, which is where the crane both 

initiates an operation and terminates an operation.  In MIAPP-AS/RS, a crane can initiate and 

terminate at any of pick positions or in a storage location in the rack.  Therefore, the travel time 

models that exist in a literature are not applicable for MIAPP-AS/RS because they assume that 

the travel time of the current operation is independent of the previous operation (which is not the 

case in a MIAPP-AS/RS). Also, the literature on travel time models for AS/RS with more than 

one I/O point examines the I/O points at the end-of-the aisle. However, we study the in-the-aisle 

pick positions which have different travel distance to storage locations on the rack. Moreover, 

the literature that examines the location of I/O points beyond the end-of-aisle only considers a 

single I/O point in the middle of the rack.  To the best of our knowledge, we are aware of no 

literature that develops analytical models to analyze AS/RS design issues with multiple I/O 

points in the aisle.  
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CHAPTER THREE: PROBLEM STATEMENT 

This dissertation focuses on developing analytical models for MIAPP-AS/RS.  

Specifically, our first contribution develops an expected travel time model for different pick 

positions and different physical configurations for a random storage policy.  This contribution 

has been accepted for publication in IIE Transactions and was the featured article in the IE 

Magazine. The second contribution addresses  an important design question associated with 

MIAPP-AS/RS, which is the assignment of items to pick positions in an MIAPP-AS/RS.  This 

contribution has been accepted for publication in IIE Transactions. Finally, the third contribution 

is to develop  travel time models and to determine the optimal SKUs to storage locations 

assignment under different storage assignment polies such as dedicated and class-based storage 

policies for MIAPP-AS/RS.   

3-1- Contribution 1 

An automated storage and retrieval system with multiple in-the-aisle pick positions 

(MIAPP-AS/RS) is a case-level order-fulfillment technology that enables order picking via 

multiple pick positions (outputs) located in the aisle. We develop expected travel time models for 

different operating policies and different physical configurations.  These models can be used to 

analyze MIAPP-AS/RS throughput performance during peak and non-peak hours. Moreover, 

closed-form approximations are derived for the case of an infinite number of pick positions, 

which enable us to derive the optimal shape configuration that minimizes expected travel times.  

We compare our expected travel time models with a simulation model of a discrete rack, and the 
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results validate that our models provide good estimates. Finally, we conduct a numerical 

experiment to illustrate the trade-offs between performance of operating policies and design 

configurations. We find that MIAPP-AS/RS with a dual picking floor and input point is a robust 

configuration because a single command operating policy has comparable throughput 

performance to a dual command operating policy. 

3-2- Contribution 2 

As a second contribution, we study the impact of selecting different pick position 

assignments on system throughput, as well as system design trade-offs that occur when MIAPP-

AS/RS is running under different operating policies and different demand profiles. We study the 

impact of product to pick position assignments on the expected throughput for different 

operating policies, demand profiles, and shape factors. We develop efficient algorithms of 

complexity  (    ( )) that provide   the assignment that minimizes the expected travel time. 

Also, for different operating policies, shape configurations, and demand curves, we explore the 

structure of the optimal assignment of products to pick positions and quantify the difference 

between using a simple, practical assignment policy versus the optimal assignment. Finally, we 

derive closed-form analytical travel time models by approximating the optimal assignment’s 

expected travel time using continuous demand curves and assuming an infinite number of pick 

positions in the aisle. We illustrate that these continuous models work well in estimating the 

travel time of a discrete rack and use them to find optimal design configurations. 
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3-3- Contribution 3 

As the third and final contribution, we study the impact of dedicated and class-based 

storage policy on the performance of MIAPP-AS/RS. We develop mathematical optimization 

models to minimize the travel time of the crane by changing the assignment of the SKUs to pick 

positions and storage locations simultaneously. We develop a more tractable solution approach 

by applying a Benders decomposition approach, as well as an accelerated procedure for the 

Benders algorithm.  We observe high degeneracy for the optimal solution when we use 

chebyshev metric to calculate the distances. As the result of this degeneracy, we realize that the 

assignment of SKUs to pick positions does not impact the optimal solution. We also develop 

closed-form travel time models for MIAPP-AS/RS under a class-based storage policy. 
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CHAPTER FOUR: CONTRIBUTION 1- A PAPER ON “ANALYTICAL 
MODELS FOR AN AUTOMATED STORAGE AND RETRIEVAL SYSTEM 

WITH MULTIPLE IN-THE-AISLE PICK POSITIONS 

An automated storage and retrieval system with multiple in-the-aisle pick positions 

(MIAPP-AS/RS) is a case-level order-fulfillment technology that enables order picking via 

multiple pick positions (outputs) located in the aisle. We develop expected travel time models for 

different operating policies and different physical configurations.  These models can be used to 

analyze MIAPP-AS/RS throughput performance during peak and non-peak hours. Moreover, 

closed-form approximations are derived for the case of an infinite number of pick positions, 

which enable us to derive the optimal shape configuration that minimizes expected travel times.  

We compare our expected travel time models with a simulation model of a discrete rack, and the 

results validate that our models provide good estimates. Finally, we conduct a numerical 

experiment to illustrate the trade-offs between performance of operating policies and design 

configurations. We find that MIAPP-AS/RS with a dual picking floor and input point is a robust 

configuration because a single command operating policy has comparable throughput 

performance to a dual command operating policy.   

Keywords: AS/RS, Travel-time models, Multiple I/O points 

4-1- Introduction 

The most critical and costly task in a distribution center is order-fulfillment.  Order-fulfillment is 

the process of securing a customer order and applying resources to transfer the set of items in the 

order to the customer (Pazour and Meller, 2011). Case-level order-fulfillment occurs in 
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distribution centers that receive full pallets from upstream entities in their supply chain and fulfill 

requests for less-than-pallet quantities of a diverse set of items from their downstream customers 

(de Koster et al., 2007).  

Case-level order-fulfillment technology is implemented to reduce space and labor 

requirements. One such case-level order-fulfillment technology is the automated storage and 

retrieval system (AS/RS) with multiple in-the-aisle pick positions (MIAPP-AS/RS). As 

illustrated in Figure 4-1, a MIAPP-AS/RS has two types of aisles. Half of the aisles are dedicated 

to the movement of human order pickers (denoted as picking aisles) and the other half are 

dedicated to the movement of storage/retrieval (S/R) machines (denoted as S/R machine aisles). 

Human order pickers transverse the picking aisles to create mixed or rainbow pallets for 

customers by picking cases from pallets located on the ground level. The MIAPP-AS/RS 

supports the case-level order-fulfillment process by performing all pallet storage and 

replenishment activities. The storage operations performed by the MIAPP-AS/RS originate from 

end-of-the-aisle input points where a unit-load (typically a pallet) is taken from an input point 

and stored in a storage position in the rack. A replenishment request is sent from a pick position 

when the amount of items in the pick position reaches a certain pre-determined level. To 

replenish pick positions a pallet is retrieved from the storage area and placed into its pick 

position located in the aisle. 

Case-level order-fulfillment with MIAPP-AS/RSs is a semi-automated process because 

the storage and replenishment of pallets to pick positions is automated using S/R machines. 
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However, because building a pallet is difficult to automate due to the varying sizes and weights 

of cases, the case-fulfillment process is conducted by human order pickers.   

 

 

Figure 4-1 : Schematic view of a typical MIAPP-AS/RS 

 

Case-level order-fulfillment is common for company-owned distribution centers that 

supply individual retail stores with a variety of products. The primary reasons for implementing 

an MIAPP-AS/RS are to increase space utilization and to eliminate the need for human operators 

to perform replenishment and storage operations. These factors lead MIAPP-AS/RSs to be 

common in temperature-controlled distribution centers especially ones that handle frozen items.  

In the cold supply chain, specific temperature standards are enforced to ensure food quality is 

maintained:  “Chill” (2 to 4 Celsius) is used for fruit and vegetables, “Frozen” (-16 to -20 

Celsius) is used for meat, and “Deep Freeze” (-28 to -30 Celsius) is used for seafood and ice-

cream (Rodrigue et al., 2009).  Due to the harsh working conditions and increased safety issues, 

personnel turnover in deep freeze distribution centers is higher than ambient distribution centers.  

Also, the majority of cold temperature loss occurs through the roof of a deep freeze distribution 

center; consequently, effective utilization of vertical space is important (and MIAPP-AS/RSs 
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have been designed as high as 165 feet) (Swisslog Co., 2012). In addition, S/R machine aisles 

require less space than picking aisles, which result in further space utilization gains. Therefore, 

MIAPP-AS/RSs are used to reduce the number of operators who are required to work in the 

harsh environments, as well as to reduce the amount of space that is required to be temperature 

controlled (which is both financially and environmentally expensive). Additional benefits 

include the ability to monitor and control temperature zones and automate the tracking of 

products.  

The implementation of MIAPP-AS/RSs can be found in numerous grocery distribution 

centers in the United States (eg. Publix Super Markets and Wal-Mart), and Europe (eg. Walkers, 

Ferrero GmbH and Arla).  In these distribution centers a large volume of heavy cases is handled 

in Chill and Deep Freeze environments (Swisslog Co., 2013). The 2010 global frozen food 

market is estimated to be worth 192.2 Billion US Dollars and the global demand for frozen food 

is anticipated to grow at a rate of 4 percent annually (Datamonitor, 2011).  Therefore, the number 

of Deep Freeze distribution centers and the use of case-level order-fulfillment technology, in 

general, and MIAPP-AS/RS in particular, are on the rise. 

Because of high infrastructure investment costs and the critical importance of order 

fulfillment on cost and customer satisfaction, designing and assessing an MIAPP-AS/RS is an 

important strategic decision in warehouse design. Such systems are commonly constrained by 

S/R machine throughput; therefore, estimating the average travel time for different design 

configurations and operating policies is a fundamental step in designing MIAPP-AS/RSs. To 

effectively handle a wide range of item requests in the order-fulfillment process, the number of 
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pick positions available is also an important design characteristic of MIAPP-AS/RSs.  The 

number of pick positions can be increased through the use of an additional elevated picking floor 

on a mezzanine that enables case-level order-fulfillment to be performed at different elevations. 

Distribution centers may have different operating policies during peak and non-peak 

times.  For example, many distribution centers have a peak-picking time where a large majority 

of the distribution center’s orders are placed and must be picked before the last truck leaves the 

dock for shipment.  During peak times, the distribution center prioritizes fulfillment of orders 

over storage requests that can be performed during non-peak times. Also, if a distribution center 

experiences a balanced number of storage and retrieval requests throughout the day, the S/R 

machine can perform a dual command travel that includes both a storage and a retrieval. 

Consequently, estimating the throughput of an MIAPP-AS/RS is important for different 

operating strategies.   

The objective of our research is to understand design decisions and trade-offs that occur 

in selecting operating policies when implementing an MIAPP-AS/RS.  While much research has 

been conducted on the traditional end-of-aisle AS/RSs, these models are not applicable to in-the-

aisle AS/RSs. The difference lies in the location and number of output points, as well as the 

retrieval operations.  Traditional end-of-aisle AS/RSs have a single input/output (I/O) point for 

each aisle where a S/R machine picks up items to be stored and brings items that are retrieved to 

order pickers or conveyors.  Consequently, travel time models derived for traditional AS/RSs 

with a single I/O point result in all of the S/R machine trips starting and terminating at a single 

point and each travel time is independent of the previous trip. Whereas, with MIAPP-AS/RSs, 
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retrievals occur to multiple pick positions (outputs) in the aisle.  The S/R machine will start a 

storage from an input point and terminate a retrieval at one of the in-the-aisle pick positions.  

Therefore, the travel time depends on where the S/R machine terminated which requires 

considering the previous trip.    

Our contribution includes deriving analytical expressions to calculate the expected travel 

time of an MIAPP-AS/RS that applies different operating policies and has different physical 

configurations.  Moreover, closed-form approximations are derived for the case of an infinite 

number of pick positions that enable us to derive the optimal shape configuration that minimizes 

travel times. Through comparison with a simulation model, we illustrate that our models provide 

good estimates and can be used to aid in design and evaluation of real-world systems. Through a 

numerical experiment, we assess throughput performance of MIAPP-AS/RSs during peak and 

non-peak times for different design configurations. We find that operating policies have different 

performance impacts depending on the design configuration. 

The remainder of this article is organized as follows. In Section 4-2 we briefly review 

relevant literature in the area of AS/RSs with an emphasis on AS/RSs with more than one I/O 

point. Section 4-3 provides the description, structure and operations related to an MIAPP-AS/RS, 

as well as the main assumptions of our models. In Section 4-4 the analytical travel time models 

for the MIAPP-AS/RS are introduced under the presence of different operating policies and 

design configurations. Section 4-5 is dedicated to the validation of our analytical models via 

simulation analysis, as well as numerical experiments to analyze MIAPP-AS/RS system 

performance that provide design insights into different operating policies and physical design 
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configurations. Finally, in Section 4-6, we review our contributions and provide future research 

directions. 

4-2- Literature review 

During the past 30 years AS/RSs have received remarkable attention in the literature. A 

wide range of issues relating to AS/RSs have been studied.  This is illustrated in the following 

review papers dedicated exclusively to AS/RSs: Roodbergen and Vis (2009), Sarker and Babu 

(1995) and Vasili et al. (2012). AS/RSs have also been addressed in several warehouse design 

and control review papers such as de Koster et al. (2007) and Gu et al. (2007). 

Two approaches to estimate the AS/RS travel time exist: (1) a discrete approach (see 

Egbelu (1991), Thonemann and Brandeau (1998) and Sari et al. (2005)) or (2) a continuous 

approximation approach (see Roodbergen and Vis (2009, Table 8)). Simulation studies have 

shown that the difference between the two approaches is not significant (see Bozer and White 

(1984), Hu et al. (2005) and Sari et al. (2005)). Consequently, as closed-form expressions can be 

obtained, continuous approximation models have received considerably higher attention. We also 

use the continuous approximation approach in this paper. 

AS/RS travel time models have been investigated from different operational perspectives.  

Detailed information can be found in the survey papers of Sarker and Babu (1995) and Vasili et 

al. (2012).    Derivations for several expected travel time models of single command (SC), dual 

command (DC), and travel between (TB) for different AS/RS configurations exist (Bozer and 
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White, 1984; Chang et al., 1995; Foley and Frazelle, 1991; Graves et al., 1977; Hu et al., 2005; 

Kouvelis and Papanicolaou, 1995; Sarker and Babu, 1995).  

Researchers have also studied the impact of different AS/RS storage assignment policies. 

A storage assignment policy determines the assignment of items to storage locations. The 

primary goal of a storage policy is to minimize the average travel time subject to satisfying 

various system constraints (Goetschalckx and Ratliff 1990). The five most often used storage 

policies in the literature are randomized storage; closest-open-location storage assignment; class-

based storage; full-turnover-based storage and dedicated storage (see e.g., Hausman et al. (1976); 

Graves et al. (1977); Schwarz et al. (1978); Goetschalckx and Ratliff (1990); Kouvelis and 

Papanicolaou (1995); Van den Berg (1999); Roodbergen and Vis (2009)). Hausman et al. (1976) 

find that a significant reduction in travel time can be achieved using class-based turnover 

assignment policies rather than closest-open-location policies. Both Rosenblatt and Eynan (1989) 

and Eynan and Rosenblatt (1994) consider the optimal boundaries for n-class storage racks. They 

conclude that a storage rack with a small number of classes (less than 10) can improve the travel 

time compared to a full-turnover policy. Guenov and Raeside (1992) compare three different 

zone shapes under DC scheduling. They conclude that performance of the proposed shapes 

depends on the location of the I/O point. Goetschalckx and Ratliff (1990) consider dedicated 

storage policies and shared storage policies. They develop a duration-of-stay (DOS) shared 

policy for unit-load system with balanced input and output. Kulturel et al. (1999) compare two 

shared storage assignment policies with respect to their average travel time by using computer 

simulation. 
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Numerous studies have addressed other operational and control issues such as batching 

(Elsayed, 1981; Hwang et al., 1988; Egbelu, 1991), dwell point strategies (Bozer and White, 

1984; Egbelu, 1991; Peters et al., 1996; van den Berg, 2002), dual-shuttle or multi-shuttle 

(Keserla and Peters, 1994; Sarker et al., 1994; Meller and Mungwattana, 1997), and sequencing 

(Schwarz et al., 1978; Han et al., 1987; Eynan and Rosenblatt, 1993). 

Lee (1997) categorizes the techniques of evaluating the performance of AS/RSs into 

static (Egbelu, 1991; Egbelu and Wu, 1993), computer simulation (Egbelu and Wu, 1993; Linn 

and Wysk, 1990; Randhawa et al., 1991; Randhawa and Shroff, 1995), and stochastic analysis. 

Bozer and White (1990) introduce the first analytical stochastic analysis for a mini-load AS/RS 

that is modeled as a two-server closed queuing network. Lee (1997) presents a stochastic 

analysis of unit-load AS/RS for the first time using a continuous time Markov chain. His model 

is capable of using different formulas for SC and DC of various system configurations such as 

the case when the I/O point is located other than on the lower left corner of the rack. Bozer and 

Cho (2005) extend Lee (1997) by developing analytical closed-form stochastic models to 

determine if the system meets a desired throughput, as well as identifying the expected S/R 

machine utilization. Their model can also apply to alternative I/O point locations or storage 

methods if E(SC)>E(TB).  

In addition to operational and control issues, many studies have focused on the physical 

design and the system configuration of AS/RSs such as the shape of the storage rack, the number 

of the cranes and aisles, as well as the number and location of the I/O points (see Vasili et al. 

(2012) and references within). The mentioned studies helped extensively to design and operate 
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AS/RSs. However, there are only a few analytical and simulation studies addressing system 

configuration with either more than one I/O point or with I/O points not located at the end-of-the 

aisle. 

Bozer and White (1984) develop and analyze the expected travel time of five alternative 

I/O point configurations. They assume that the I/O point can be located at (1) the lower-left 

corner of the aisle; (2) the opposite ends of the aisle; (3) the same end of the aisle, but at different 

elevations; (4) the same elevation, but at a midpoint in the aisle; and (5) the end of the aisle, but 

elevated. All five configurations consider only one input and one output point. The MIAPP-

AS/RS has multiple in-the-aisle points that are not necessarily located at the corner of the rack; 

therefore, their models are not applicable. Randhawa et al. (1991) develop a simulation study to 

identify the impact of the number of I/O points located at the end-of-the-aisle for three different 

unit-load AS/RSs with DC cycles. The AS/RS layouts vary in the number of end-of-aisle I/O 

points per aisle and the relationship between the storage and retrieval sources. System 

throughput, mean waiting time and maximum waiting time are considered as criteria for system 

evaluation. They find that the efficiency of the AS/RS can be improved by the introduction of 

two end-of-aisle I/O points per aisle. Randhawa and Shroff (1995) extend the work of Randhawa 

et al. (1991) by using simulation to analyze six different layouts with a single I/O point (with 

varying location) using three different scheduling policies. The results are compared considering 

the system throughput, storage and retrieval waiting times, and rejects due to the rack or I/O 

queues being fully utilized. The authors conclude that higher throughput can be obtained by 

locating the I/O point at middle of the aisle instead of at the end of the aisle.  Both of the studies 

use a simulation approach. Also, Randhawa et al. (1991) consider end-of-aisle I/O points only, 



48 

 

and Randhawa and Shroff (1995) evaluate a single I/O point in the middle of the aisle.  Vasili et 

al. (2008) propose a new configuration for the I/O point in a split-platform AS/RS to reduce 

average handling time. They develop a continuous travel time model for this new configuration 

of locating an I/O point at the center of the rack. The travel time model was validated by using 

Monte Carlo simulation.  They assume a single I/O point in the center of the rack and only 

consider SC cycles. 

In summary, the literature on travel time models for AS/RS with more than one I/O point 

examines the I/O points at the end-of-the aisle.  The literature that examines the location of I/O 

points beyond the end-of-aisle only considers a single I/O point in the middle of the rack.  To the 

best of our knowledge, we are aware of no literature that develops analytical models to analyze 

AS/RS design issues with multiple I/O points in the aisle. 

4-3- Problem definition and assumptions 

As illustrated in Figure 4-1 an MIAPP-AS/RS has two types of aisles that we previously 

defined as picking aisles and S/R machine aisles. The picking aisles are wider than S/R machine 

aisles to provide space for the pickers to move and conduct case picking. The picking aisle 

consists of pick positions at both sides of the aisle. The S/R machine aisle consists of an input 

point, a S/R machine, and storage racks on both sides of the aisle. If there is only one picking 

floor on the ground, we denote this as a single picking floor configuration. We also study the 

case where there is a mezzanine located vertically above the ground floor for each picking aisle 

and the S/R machine services both the ground and mezzanine floors pick positions.  We denote 

this as a dual picking floor configuration. A dual picking floor configuration provides additional 
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pick positions in each aisle for case picking. Both picking floors (ground and mezzanine) are 

assumed to have the same number of pick positions.  

In previous studies on single I/O point AS/RS, all of the S/R machine trips start and 

terminate at the I/O point; therefore, travel time models are considered cycles, particularly SC 

and DC cycles. However, in MIAPP-AS/RS, pick-up and drop-off (P/D) points are not the same; 

consequently, instead of the term cycle we use the term travel. A travel consists of a number of 

components (denoted as trips). As a dwell point strategy, we assume a stay strategy where the 

S/R machine stays where it is after the completion of each storage or retrieval and waits for the 

next operation request.  Therefore, the S/R machine can be idle either at a location within the 

rack after completion of a storage or at one of the pick positions after completion of a retrieval. 

In other words, where the S/R machine will start a trip depends on the previous trip.  Throughout 

the paper, when we mention that a dwell point is within the rack we are referring to storage 

locations (excluding pick positions) within the rack.  

A travel can be a SC storage travel, a SC retrieval travel, or a DC travel.  To perform a 

SC storage travel the S/R machine moves empty from the dwell point to a requested input point, 

picks up the load from the input point, travels to the storage location, and deposits the load. To 

perform a SC retrieval travel the S/R machine moves empty from the dwell point to the storage 

location, picks up the item, travels to the requested pick position, and deposits the item. A DC 

travel can be performed if both a storage and a retrieval request are available at the same time. 

To perform a DC travel the S/R machine returns empty from the dwell point to the requested 

input point, picks up the load, travels to the storage location, deposits the load, travels empty to 
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the location of the load to be retrieved (called the travel between trip), picks up the load, travels 

to the requested pick position, and deposits the load. 

We study a system where the S/R machine can operate under either SC (storage or 

retrieval) or DC travels. As the dwell point varies, one travel (SC storage, SC retrieval, and DC 

travel) can consist of different trips. For example, if the dwell point is at one of the pick positions 

a SC retrieval consists of two trips: one trip is from the pick position to the storage location of 

item to be retrieved and the other trip is from the storage location to the requested pick position. 

However, if the dwell point is at a point within the rack a SC retrieval travel will consist of one 

travel between trip and one trip from the storage location to the requested pick position. Figure 

4-2 illustrates all six possible cases for a SC storage, SC retrieval, and DC travel under a single 

picking floor configuration ((a) SC storage travel when the dwell point is within the rack, (b) SC 

retrieval travel when the dwell point is within the rack, and (c) DC travel when the dwell point is 

within the rack. (d) SC storage travel when the dwell point is at a pick position, (e) SC retrieval 

travel when the dwell point is at a pick position, and (f) DC travel when the dwell point is at a 

pick position.).  Similarly, for a dual picking configuration travels are also based on the dwell 

point of the previous travel. For a dual picking configuration there are 24 possible travel cases as 

there are 2 input points and 2 levels of pick positions (  2 6 cases).  In the next section we will 

develop models that incorporate all of these cases as a way of calculating the expected travel 

time for SC and DC travels. 
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Figure 4-2 : All possible cases of travels under a single picking floor configuration.  

 

During the peak hours the priority is to fulfill customer orders and the AS/RS prefers to 

perform only SC retrievals.  We denote an AS/RS that performs only SC retrievals as a 

Consecutive Retrievals operating policy. To balance the system the AS/RS will perform only SC 

storages during non-peak hours (denoted as a Consecutive Storages operating policy).  During 

the periods that the system is more balanced (i.e. the number of storage and retrieval requests, as 

well as their priority are fairly equal), we prefer to have the AS/RS perform DC travels to 

decrease empty travels. However, there may not be storage and retrieval requests available at the 

same time, which results in SC travels to be performed. Consequently, it is common for an 

AS/RS to perform a mixture of SC and DC travels (denoted as a Mixed operating policy).  We 

consider both balanced and unbalanced periods in our analysis by developing travel time models 

for a Consecutive Retrievals, Consecutive Storages and different Mixed operating policies in 

Section 4-4. We also explore trade-offs associated with these policies for different design 

configurations in more detail in Section 4-5.  

We assume that storage locations are continuously and uniformly distributed over the 

rack (Bozer and Cho, 2005; Bozer and White, 1984; Graves et al., 1977; Hu et al., 2005; Han et 
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al., 1987).  We analyze MIAPP-AS/RSs where each aisle has a dedicated S/R machine (also 

known as aisle-captive S/R machines). Therefore, we can analyze each aisle independently.  

Furthermore, the S/R machine can move in the horizontal and vertical directions simultaneously. 

Hence, the Chebyshev metric is used to calculate the travel time between two points within the 

rack, i.e., the travel time between two points within the rack is equal to the maximum time 

required for horizontal and vertical travel. Based on the approach used in Bozer and White 

(1984) the rack can be normalized as follows.  

Let:  : length of rack,  : height of the rack,   : horizontal speed of the S/R machine,   : vertical speed of the S/R machine,   : time required to travel a distance of   horizontally, and   : time required to travel a distance of   vertically. 

By definition,       ⁄ and       ⁄ . Let      {     }  an      {   ⁄     ⁄ }, 
which refer to the scaling factor and the shape factor, respectively. By definition,      .  

Assuming that  h    , the rack can be normalized as a rectangle with length of     and height of  .  The rack is called square-in-time if    ; otherwise, it is called rectangular-in-time. 

The overall review of the assumptions of this paper is as follows. 

1. The S/R machine carries unit-loads under either SC (storage/retrieval) or DC travels. 
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2. Demand and requested pick position locations for each item type are known and 

independent. 

3. A randomized storage assignment is used, i.e., any point within the rack is equal likely to 

be selected for a storage. 

4. Only the travel time model of the S/R machine is considered. Interactions with human 

order pickers and the buffers capacity, as well as the P/D times to handle the loads are 

ignored. 

5. The S/R machine follows the Chebyshev metric and moves at a constant horizontal and 

vertical speed, i.e., acceleration and deceleration are ignored. 

6. A stay dwell point strategy is used.  In a stay strategy the S/R machine stays where it is 

after the completion of each storage or retrieval and waits for the next operation request.    

7. For a single picking floor configuration the input point is located at the lower-left corner 

and the pick positions are located on the bottom line of a normalized rack. For a dual 

picking floor configuration the mezzanine is considered as a line located   time units 

above the bottom of the normalized rack. The mezzanine floor input point and pick 

positions are located on the mezzanine line directly above the input point and pick 

positions on the bottom line. The height of the pick positions and mezzanine structure are 

ignored. 

4-4- Travel time models for MIAPP-AS/RS 

First, we present the trips and subsequent notation required to develop our models. Next, 

travel time models are developed for a single pick position located in the aisle.  These models are 
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extended to travel time models with multiple pick positions in the aisle for a Consecutive 

Retrievals and a Mixed operating policy. Two alternative configurations, a single picking floor 

and a dual picking floor, are considered for each operating policy. Finally, we develop extreme 

travel time models that are based on an infinite number of pick positions. 

Travels (SC or DC) consist of components that we denote as trips. Figure 4-3 illustrates 

trips used to develop the travel time models in this paper. All of these trips are considered under 

the normalized rack with the shape factor of   .  

 

 

Figure 4-3 : Visual illustrations of the trips 

 

Let:    : Travel time between the ground floor pick position   and the ground floor input point,    : Travel time between the mezzanine floor pick position   and the mezzanine floor input 

point,    : Travel time between the ground floor pick position   and the mezzanine floor input point, 
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   : Travel time between the mezzanine floor pick position   and the ground floor input point,  (  ) : Expected travel time between any two randomly selected points,   ( ) : Expected travel time between the ground floor input point and any randomly selected 

point,   ( ) : Expected travel time between the mezzanine floor input point and any randomly selected 

point,   (    ) : Expected travel time between the ground floor pick position   and any randomly 

selected point that is located vertically between the ground floor and a maximum distance  ,   (    ) : Expected travel time between the mezzanine floor pick position   and any randomly 

selected point that is located vertically between the ground floor and a maximum distance  . 

The trips   ( )   ( ), , and  (  ) are developed in the literature (Bozer and White, 

1984) and are provided as equations (1), (2), and (3), respectively. The trips   ,   ,   , and    

are defined directly  for a given input point, output point, and rack dimension.  In Section 4-4-1 

we derive    (    ) and   (    ).  In Section 4-4-2 we combine these trip components to 

develop travel time models for the above mentioned operating policies and configurations.   ( )     ⁄    ⁄                                   (1) 

  ( )     ⁄    ⁄    ⁄  (   )                                (2) 

 (  )    ⁄     ⁄      ⁄                                  (3) 
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4-4-1- Travel time model for a single in-the-aisle pick position 

In this section, first, the travel time model for a single in-the-aisle pick position located 

on the ground floor is developed. The result is then extended to determine the travel time model 

for a single in-the-aisle pick position located on the mezzanine floor. 

4-4-1-1- on the ground floor 

To develop a travel time model for a single in-the-aisle pick position, select a point with 

the distance of   from the left corner of the normalized rack as a pick position and set the point 

as the origin of the coordinate system, say (   ).  As illustrated in Figure 4-4 the rack can be 

divided into two rectangular regions from the point of origin, namely, region I and region II. Any 

randomly selected point within the rack can be represented as the coordinate of (     ) in time if 

the point belongs to region I, (     )or in time if the point belongs to region II, where        (the positive value of    is considered as    represents time),         ,       , 

and       . We define       and        as the travel time of the S/R machine from the origin 

to the point located within region I or region II, respectively. By definition of the Chebyshev 

metric,           {     } and           {     }.  
The expected travel time is calculated for each of the two regions separately. Then, the 

results obtained from the two regions are combined based on the probability of being in the two 

regions. The expected travel time from region I is as follows.  
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Figure 4-4 : Typical normalized rack in terms of time 

 

Let  (  ) denote the probability that the travel time to (     ) is less than or equal to   . 

The    and    coordinates are assumed to be independent. Therefore,  (  )    (         )    (     )     (     ) 
Two cases can occur in region I, specifically, the   value is either greater or smaller than  . The value of    is between   and    if     ; otherwise  , is between    and  . The storage 

points are randomly and uniformly distributed, therefore, for the case of     , we have 

  (     )  {   ⁄                                             

  (     )     ⁄                        

Hence, 

 (  )  {     ⁄                        ⁄                             

By definition, the probability density function,  (  ), is 
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 (  )    (  )    {      ⁄                          ⁄                                   

Le   (  )t  denote the expected travel time between the origin and any point located in 

region I. By definition of the expected value    (  ) for the case of      is obtained as 

follows. 

   (  )  ∫     (  )    
  ∫       ⁄     

  ∫    ⁄ 
         ⁄    ⁄                

The derivation of    (  ) for the case of     is similar (see Appendix A). Therefore, 

the expected travel time between the origin and any point within region I can be calculated by 

equation (4).  

   (  )  {  
      ⁄        ⁄                  ⁄    ⁄                                            (4) 

The derivation for region II is similar to region I (see Appendix B for the derivation). Let    (  ) denote the expected travel time between the origin and any point located in region II.    (  ) is presented in equation (5).  

   (  )  {  
  (   )   ⁄    ⁄                                 (   )      (   )⁄  (   )  ⁄                     (   )                          (5) 
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As any point within the rack is equal likely to be selected, any point can be situated in 

region I or region II with the probability of    and (   ), respectively. The expected travel 

time between a single pick position on the ground floor and any point within the rack,   (   )  
is obtained as follows.   (   )      (  )  (   )   (  )                               (6) 

The expected travel time for each region,    (  ) and    (  ), can be calculated for a 

given value of   and   through equations (4) and (5), respectively. Finally, using equation 

(6),   (   ) can be calculated. 

4-4-1-2- on the mezzanine floor 

A mezzanine is located   time units above the ground floor (where    ). As illustrated 

in Figure 4-3, the mezzanine divides the rack into two regions (the region above the mezzanine 

and below the mezzanine).  Equation (6) is valid for a single pick position located on the ground 

floor. Expected travel time between a single pick position located on the mezzanine floor and 

any point above the mezzanine and below the mezzanine can be calculated by substituting   and (   ), respectively, for   in equation (6). Due to a randomized storage policy the probabilities 

that the point is above the mezzanine or below the mezzanine are 
   and 

(   ) , respectively. 

Therefore, the expected travel time between a single pick position on the mezzanine floor and 

any point within the rack,   (   ) can be calculated as the following. 

  (   )    ⁄   (   )  (   )  ⁄   (     )                                       (7) 
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4-4-2- Travel time model for multiple in-the-aisle pick positions 

In this section we extend the results of the previous section to include multiple in-the-

aisle pick positions. Let   denote the number of the pick positions in each floor,   denote the 

corresponding index of each ground pick position, and   denote the corresponding index of each 

mezzanine pick position, where       and          .  

4-4-2-1- Consecutive Retrievals operating policy 

The Consecutive Retrievals operating policy is primarily used during peak hours to 

maximize the number of retrievals. Thus, it is assumed that only SC retrieval travels are 

performed consecutively. As a result all of the trips initiate or terminate at in-the-aisle pick 

positions (see Figure 4-5 and Figure 4-6).  

4-4-2-1-1- Travel time model for a single picking floor configuration 

Let     be the percentage of items requested at pick position   (where ∑          ). 

Therefore, the ratio of operations terminating to pick position   is equal to    . The travel time 

between pick position   to any point within the rack,   (    ), can be calculated by equation (6). 

As the demand of each pick position is independent the expected travel time of a one-way trip 

(see solid lines in Figure 5-5) from any point within the rack to any pick position,   ( ), is 

equal to:   ( )  ∑           (    )                                  (8) 
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Figure 4-5 : Example of a Consecutive Retrieval operating policy for a single picking floor 

configuration with three SC retrieval travels 

 

The probability for a trip to originate from a pick position is equal to the probability that 

a trip terminates to that pick position.  This occurs because each trip will originate from the pick 

position that the previous trip terminated. Therefore, the expected travel time for a trip (see dash 

lines in Figure 4-5) from any pick position to any point within the rack is also equal to   ( ). 
As a result the expected travel time for a Consecutive Retrieval operating policy is equal to     ( ). 
4-4-2-1-2- Travel time model for a dual picking floor configuration 

In this section we consider an alternative design where there are two picking floors. One 

picking floor is on the ground level and the second picking floor is on the mezzanine level. There 

are   pick positions on each floor, which results in    total pick positions. Note that for a dual 

picking floor configuration ∑         ∑             .  

As illustrated in Figure 4-6, SC retrievals are performed to pick positions located on both 

picking floors. The expected travel time of trips from any point within the rack to a pick position 
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located on the ground floor and mezzanine floor,   (    ) and   (    ), can be calculated by 

equation (6) and (7), respectively. Similar to the previous section the expected travel time from 

any point within the rack to any pick position with a dual picking floor,   ( ), can be 

calculated as:   ( )  ∑           (    )  ∑              (    )                                 (9) 

The expected travel time for a Consecutive Retrieval operating policy with a dual picking 

floor is equal to     ( ) because the probability of terminating and originating at one pick 

position is the same. 

 

Figure 4-6 : Example of a Consecutive Retrieval operating policy for a dual picking floor 

configuration 

4-4-2-2- Mixed operating policy 

For a Mixed operating policy SC storage, SC retrieval, and DC travels can occur during 

the same period of time. Let   be the total number of operations and   be the percent of storages 

performed using SC travels. For system stability we assume half of the operations are storages 

and the other half of the operations are retrievals. Therefore, the number of SC storage travels is 

equal to    , which is also the number of SC retrieval travels. For each DC travel, two operations 
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(one storage and one retrieval) are performed, and (   )    is the number of DC travels.  The 

total number of travels performed is equal to (    ) .  

Based on the provided number of travels, 
     is the probability that a SC storage (or SC 

retrieval) travel occurs, and 
       is the probability that a DC travel occurs. In this section, first, 

we develop the expected travel time ‘per travel’ for a Mixed operation policy. In many cases, the 

expected travel time ‘per operation’ is required to be calculated and can be obtained by 

multiplying the expected travel time ‘per travel’ by (    ).  

To illustrate the difference between ‘per operation’ and ‘per travel,’ we present the 

following example.  Suppose there are 100 operations, 50 operations are storages and 50 

operations are retrievals. If      , 20 storages and 20 retrievals will be performed under SC 

travels and 30 storages and 30 retrievals are performed together using DC travels (for a total of 

30 DC travels). Consequently, a total of 70 travels (SC or DC) will be performed to accomplish 

100 operations. Therefore, 
                  , which is the ratio of travels operated using SC 

storage (or SC retrieval) and 
                      , which is equal to the ratio of travels operated 

using DC. Additionally, the ratios of operations performed under SC storage (or SC retrieval) 

and DC are 
               and                   , respectively. 

Using the trips we introduced at the beginning of Section 4-4, as well as the developed 

models from Section 4-4-1 and 4-4-2-1, we develop the Mixed policy travel time models for both 

single and dual picking floor configurations.  
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4-4-2-2-1- for a single picking floor configuration 

For a single picking floor configuration a travel will originate from the point within the 

rack if the previous travel was a SC storage.  Otherwise, if the previous travel was either a SC 

retrieval or DC the next travel will originate from one of the in-the-aisle pick positions. 

Therefore, the probability that a travel starts at a point within the rack is 
     and the probability 

that a travel starts at the pick position   is    (     ). 
If a travel starts at some point within the rack the expected travel time to perform a SC 

storage is equal to    ( ), a SC retrieval is equal to  (  )    ( ), and a DC is equal to    ( )   (  )    ( ). If a travel starts at pick position   the expected travel time to 

perform a SC storage is equal to      ( ), a SC retrieval is equal to    (    ), and a DC is 

equal to      ( )   (  )    ( ). Let    ( ) denote the expected travel time ‘per travel’ 

for a Mixed operating policy with a single picking floor configuration. According to the provided 

probability of each travel during a Mixed policy,    ( ) can be calculated as follows (the first 

term represents the travel that starts from any point within the rack and the second term the travel 

that starts from the pick position  ). 
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   ( )  (     )  
{  
      (   ( ))      ( (  )    ( ))        (   ( )   (  )    ( ))}  

  

 ∑   (     )  
{  
      (     ( ))      (   (    ))        (     ( )   (  )    ( ))}  

   
    

 

Let   ( )  ∑            denote the expected return time from a ground floor pick 

position to a ground floor input point.    ( ) can be simplified as follows. 

    ( )  (     ) {(     )  ( )  (     ) (  )  (     )  ( )}  (     ) {(     )  ( )  
(      ) (  )    ( )  (     )  ( )}                                           (10a) 

   ( ) denotes the expected travel time ‘per operation’ for a Mixed operating policy with 

a single picking floor configuration and is calculated by multiplying equation (10a) by (    ). 

We present the simplified version in equation (10b).   ( )  (        )  ( )  (      ) (  )  (        )  ( )  (      )  ( )               (10b) 
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4-4-2-2-2- for a dual picking floor configuration 

Similar to the previous section the probability that a travel starts at a point within the rack 

is 
    , at the pick position   (on the ground floor) is    (     ), and at the pick position   (on the 

mezzanine floor) is    (     ). For a dual picking floor configuration we assume that   percent of 

storage operations are performed from the ground floor input point and (   ) percent from the 

mezzanine floor input point. Therefore,     represents a system where a single input point is 

located on the ground floor and     represents a system where a single input point is located 

on the mezzanine floor. To perform a storage, if the S/R machine is at some point within the 

rack,   percent of time the crane returns to the ground input point and (   ) percent of the 

time the S/R machine returns to the mezzanine input point. Similarly, if the S/R machine is at 

pick position   (on ground floor),   percent of time the S/R machine returns    time units to the 

ground input point and (   ) percent of the time the S/R machine returns    time units to the 

mezzanine input point. Finally, if the S/R machine is at pick position   (on the mezzanine floor),   percent of time the crane returns    time units to the ground input point and (   ) percent of 

the time the crane returns    time units to the mezzanine input point to perform a storage. By 

definition of the Chebyshev metric    and    are calculated as: 

   {                                                                     (11) 

   {                                                                  (12) 
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Let    ( ) denote the expected travel time ‘per travel’ for a Mixed operating policy with 

a dual picking floor configuration. Similar to Section 4-4-2-2-1,    ( ) is obtained as follows 

(the first term represents when the travel starts from any point within the rack, the second term 

when the travel starts from the pick position  , and the third term when the travel starts from the 

pick position  ).    ( )  
(     )  {  

      [ (   ( ))  (   )(   ( ))]      ( (  )    ( ))        [ (   ( )   (  )    ( ))  (   )(   ( )   (  )    ( ))]}  
   

∑    (     )      

{  
      [ (     ( ))  (   )(     ( ))]      (   (    ))        [ (     ( )   (  )    ( ))  (   )(     ( )   (  )    ( ))]}  

   
∑    (     )         

{  
      [ (     ( ))  (   ) (     ( ))]      (   (    ))        [ (     ( )   (  )    ( ))  (   ) (     ( )   (  )    ( ))]}  

  
  

 

We define  ( )  ∑              ,   (  )  ∑           , and   (  )  ∑               

as well as   ( ), which was defined in pervious section, to simplify the result. Hence, 
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   ( )  (     ) {(     ) [   ( )  (   )  ( )]  (     ) (  )  (     )  ( )}  
(     ) {(     ) [   ( )  (   )  ( )]  (      ) (  )    ( )  (     ) [ (  ( )  
  (  ))  (   )(  ( )    (  ))]}        (13a) 

In equation (13b)   ( )denotes the expected travel time ‘per operation’ for a Mixed 

operating policy with a dual picking floor configuration, which is obtained by multiplying 

equation (13a) by (    ). 

     ( )  (        ) [   ( )  (   )  ( )]  (      ) (  )  (        )  ( )  (      ) [ (  ( )    (  ))  (   )(  ( )    (  ))]                                                                                 (13b) 

4-4-3- Travel time model for the case of an infinite number of pick positions 

Components of the models derived in Section 4-4-2 require calculation for every pick 

position. This can be a tedious task as MIAPP-AS/RSs are typically designed with many pick 

positions per aisle. In this section we develop closed-form travel time models that do not require 

calculations for each pick position by assuming that an infinite number of pick positions exist in 

the aisle. We denote these travel time models as extreme models. In Section 4-5 we will show 

that the travel time models of Section 4-4-2 (hereafter, called base models) can be replaced by 

their extreme models, as their travel time estimations deviate by only small amounts.   

Of the components used in the base models,   ( ),   ( ), and  (  ) are independent 

of the number and location of the pick positions; whereas  ( ),   ( )  ( ), ,   ( )  (  ), , 
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and   (  ), as well as the demand of each pick position are dependent on the value of  . By 

deriving the extreme value of these dependent components, all base models in Section 4-4-2 can 

be calculated in the case of an infinite number of pick positions. We assume that demand is 

equally likely for each pick position (i.e. for the single picking floor configuration,       ⁄   

and for the dual picking floor configuration,            ⁄ ). Extreme values of   ( ),   ( ) ,   ( ),   ( ),   (  ),   (  ),   ( ), and   ( ) are denoted as    ( ),    ( ),    ( ),    ( ),    (  ),    (  ),    ( ), and    ( ), respectively. 

4-4-3-1- Calculation of the extreme value of the Consecutive Retrievals policy (   ( ) and    ( )) 
To find the extreme value of   ( ), let       ⁄  in equation (8); therefore, the extreme 

value of   ( ) is equal to     ( )        ∑     (    )     ∫   (   )                               (14a) 

The derivation of   (   ) requires using equations (4) and (5). The right hand side of 

equation (4) depends on the value of   and  . Equation (5) depends on the value of   and (   ). Therefore, the integral in (14a) separates into three integrals. See Appendix C for the 

complete derivation of    ( ).  We present the result in equation (14b).    ( )    ⁄     ⁄      ⁄                   (14b) 

The extreme value of   ( ) is associated with a dual picking floor configuration. 

Therefore, let            ⁄  in equation (9), and we have  
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   ( )        ∑      (    )     ∑    (    (    )  (   )   (      ))        
  [∫   (   )      (  ∫   (   )      (   ) ∫   (     )     )]                                       (15a) 

Equation (14b) is valid for      ; thus, it can be extended to calculate ∫   (   )      and ∫   (     )      in equation (15a) by substituting   and (   ) for   in 

equation (14b), respectively. Therefore,    ( ) is derived as    ( )     (   )          (   )                                                                                       (15b) 

4-4-3-2- Calculation of    ( ),    ( ),    (  ), and    (  ) 

First, we calculate    ( ) for a single picking floor configuration. As we assume that       ⁄   for the single picking floor configuration, the extreme value of   ( ) is equal 

to      ∑          ∫          ⁄ . However, for the dual picking floor configuration, 

           ⁄ . Therefore,       ∑             ∫          ⁄ . 

   ( )  {  ⁄                                        ⁄                                                            (16) 

  ( ),   (  ), and   (  ) are required only for a dual picking floor configuration. 

Therefore, to calculate the extreme values, we let            ⁄ . 

   ( )        ∑                ∫          ⁄                                                  (17) 

   (  )        ∑             ∫        ∫            ⁄     ⁄                   (18) 
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   (  )        ∑                ∫        ∫            ⁄     ⁄                   (19) 

4-4-3-3- Calculation of extreme value of the Mixed policy(   ( ) and    ( )) 
By substituting the extreme value of the components of   ( ) into equation (10b) and 

using equation (14b) and (16), th   ( )e  in terms of ‘per operation’ is obtained as:    ( )  (        )  ( )  (      ) (  )  (        )   ( )  (      )                  (20) 

Similarly, to calculate    ( ) all of the components of   ( ) in equation (13b) can be 

substituted by their corresponding extreme values using equations (14b), (15b), (16), (17), (18), 

and (19).  We obtain     ( ) in the term of ‘per operation’ as 

   ( )  (        ) [   ( )  (   )  ( )]  (      )  (  )  (        )    ( )  (      ) (  ⁄  
   ⁄ )                                                                                                            (21) 

4-4-3-4- Optimal Shape Factors 

We can use the extreme models to determine the optimal value of the shape factor, , that 

minimizes the expected travel time for different configurations and operating policies. Note that 

all base and extreme travel time models are for the normalized rack. Denormalized travel times 

can be obtained by multiplying the normalized travel times by the scaling factor,  .  To make 

equal comparisons, we assume a constant storage area, which we denote as   (in squared time 

units).      ; therefore,   is obtained as √  ⁄ . We find the optimal value of a Consecutive 
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Retrievals policy with a single picking floor by first denormalizing the time units by multiplying 

equation (14b) by √  ⁄ , then taking the derivative with respect to  , setting the resulting equal 

to zero, and solving for  .  The optimal   value for    ( ) is derived as 0.6825. Similarly, for 

the Consecutive Retrievals policy with a dual picking floor, the optimal   value is equal to 

0.8965 for     ( ) when     ⁄  and      . For either configuration using the Mixed policy 

(   ( ) and    ( )), the optimal   value is 1.0.  

4-5- Model validation and numerical discussion 

In this section, first, the travel time models developed in Section 4-4 are evaluated for 

their accuracy. Next, insights and trade-offs between different operating policies under the single 

and dual picking floor configurations are provided. 

4-5-1- Validation of the base and extreme models 

In this section the results of the base models presented in Section 4-4-2, as well as their 

extreme models presented in Section 4-4-3 are compared to results obtained from a discrete-

event simulation that enforces a discrete rack. We present the results in this section as 

denormalized expected travel times ‘per operation’. We coded and ran our models and 

simulation in MATLAB 2010. 

An opening in a rack can be either a pick position or a storage location. The number of 

pick positions is assumed to be equal to the number of columns for a single picking floor 

configuration and twice the number of columns for a dual picking floor configuration.  Openings 

are assumed to be 4 feet by 4 feet in width and height. We calculate the travel distance between 
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openings using a centroid method. The horizontal and vertical speeds of the S/R machine are 

equal to 400 and 160 feet per minute, respectively. We consider six different ratios of the number 

of columns to the number of levels.  The ratios are selected such that the number of storage 

locations remains approximately constant. We ran 5 replications of a sequence of 100,000 

operations to simulate each ratio configuration. We test our models assuming that item demand 

is equally likely for each pick position. To compare the results of our models and those obtained 

from the simulation, the ‘% deviation’ is used and shown in equation (22).                                                                                       (22) 

We compare the expected travel time from our base and extreme models from Section 4-

4 to the average travel time from the simulation.  We report our results for a single and dual 

picking floor configuration in Table 4-1 and Table 4-2, respectively. For the simulation results 

we report the average and variance of the travel time per operation for each ratio configuration. 

In Table 4-1, a rack with a single picking floor and approximately 950 storage openings is 

considered. The results of our base models, as well as their extreme values are compared to the 

simulation results for both a Consecutive Retrievals and a Mixed policy. For a Consecutive 

Retrievals policy, the denormalized base and extreme model results are calculated as      ( ) and       ( ) using equations (8) and (14b), respectively. For a Mixed policy, the 

denormalized base and extreme model results are equal to     ( ) and      ( ) using 

equations (10b) and (20), respectively. Table 4-2 presents results for a dual picking floor with 

approximately 900 storage openings. The denormalized base/extreme results for a Consecutive 

Retrievals policy are calculated as      ( ) and       ( ) using equations (9) and (15b), 
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respectively. For a Mixed policy, they are calculated as     ( ) and      ( ) using 

equations (13b) and (21), respectively. 

Table 4-1 : The denormalized results of the discrete rack simulation versus the base and extreme 

travel time models for a single picking floor configuration 

Rows   20 18 16 14 12 10 

Columns 
 

50 56 63 73 86 105 

No. of storage opening 950 952 945 949 946 945   (minutes) 0.5 0.56 0.63 0.73 0.86 1.05     1.000 0.804 0.635 0.479 0.349 0.238 

Consecutive Retrieval operating policy 

      Simulation average travel time  0.578 0.562 0.559 0.582 0.635 0.735 

Simulation variance of travel time  0.048 0.038 0.037 0.047 0.071 0.117 

Base model travel time 0.583 0.566 0.562 0.585 0.637 0.737 

(% deviation) 0.852 0.756 0.691 0.583 0.356 0.279 

Extreme model travel time 0.583 0.566 0.562 0.585 0.637 0.737 

(% deviation) 0.855 0.759 0.694 0.586 0.358 0.281 

Mixed operating policy (     )             

Simulation average travel time 0.569 0.581 0.607 0.664 0.752 0.896 

Simulation variance of travel time 0.223 0.235 0.263 0.327 0.436 0.638 

Base model travel time 0.574 0.585 0.611 0.667 0.754 0.897 

(% deviation) 0.938 0.728 0.657 0.430 0.280 0.106 

Extreme model travel time 0.574 0.585 0.611 0.667 0.754 0.897 

(% deviation) 0.939 0.729 0.658 0.430 0.281 0.106 

 

From Table 4-1, the maximum ‘% deviation’ of the simulation results compared to the 

base model for a Consecutive Retrievals and Mixed policy is equal to 0.852% and 0.938%, 

respectively. These results indicate our base models provide an extremely accurate representation 

of a discrete rack. All deviations are positive in value showing that our models overestimate the 

real discrete rack (albeit the deviation is less than 1%). The reason is that our continuous models 

ignore the discreteness of the pallet locations in the rack. The maximum ‘% deviation’ between 

the simulation results and the extreme model results for a Consecutive Retrievals and a Mixed 

policy are 0.855% and 0.939% respectively.  
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Table 4-2 : The denormalized results of the discrete rack simulation versus the base and extreme 

travel time models for a dual picking floor configuration when     ⁄  and      . 

Rows   20 18 16 14 12 10 

Columns 
 

50 56 64 75 90 112 

No. of storage opening 900 896 896 900 900 896   (minutes) 0.5 0.56 0.64 0.75 0.9 1.12     1.000 0.804 0.625 0.467 0.333 0.223 

Consecutive Retrieval operating policy 

      Simulation average travel time 0.491 0.493 0.513 0.558 0.637 0.767 

Simulation variance of travel time 0.036 0.035 0.041 0.056 0.086 0.142 

Base model travel time 0.495 0.497 0.516 0.561 0.639 0.769 

(% deviation) 0.712 0.707 0.621 0.531 0.272 0.248 

Extreme model travel time 0.495 0.497 0.516 0.561 0.639 0.769 

(% deviation) 0.716 0.712 0.625 0.534 0.274 0.249 

Mixed operating policy (     )             

Simulation average travel time 0.534 0.554 0.595 0.666 0.776 0.947 

Simulation variance of travel time 0.201 0.220 0.261 0.339 0.475 0.724 

Base model travel time 0.537 0.557 0.597 0.668 0.777 0.949 

(% deviation) 0.592 0.442 0.431 0.282 0.135 0.140 

Extreme model travel time 0.537 0.557 0.597 0.668 0.777 0.949 

(% deviation) 0.593 0.444 0.432 0.283 0.136 0.141 

 

It is worth mentioning that this small deviation is obtained for the MIAPP-AS/RS with 

more than 50 pick positions.  However, our testing indicates that our extreme models provide 

errors that are low even when the number of pick positions is less than 50. Because the number 

of aisles determines the number of cranes required, most MIAPP-AS/RS are designed in practice 

with more than 50 pick positions per aisle (Swisslog Co., 2013) and the extreme models can be 

used as a substitute for the base models to estimate the travel time. Similarly, from Table 4-2, we 

can also see that our models provide an extremely accurate representation of a discrete rack for 

the dual picking floor configuration. Due to differences in storage locations we observe variance 

in the individual per operation travel times.  However, we also observe that for each ratio 
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configuration the variance of the 5 replications’ travel time is extremely small (i.e., the 

maximum variance was 0.000003).   

We use the extreme models to provide further design insights of MIAPP-AS/RS in the 

following section. 

4-5-2- Analysis of operating policies  

In this section, we introduce three new policies that utilize the travel time models 

developed in Section 4-4. The first two policies are extreme cases of the Mixed policy and the 

last policy is a combination of the Consecutive Retrievals and the Consecutive Storages policies.  

We note that the expected travel times for a mixed policy with other values of   will fall 

between the DC and Random Sequence of SC Storages and Retrievals policies. 

1. DC Policy, which is a policy where all travels are DC. The expected travel time for this 

policy is calculated using the model for the Mixed policy with    .   

2. Random Sequence of SC Storages and Retrievals Policy, which is a policy where all travels 

are SC and the same number of SC storages and SC retrievals are sequenced randomly (e.g. 

SRRSSRSRRS). The expected travel time for this policy is calculated using the Mixed policy 

model with    .  

3. Consecutive Retrievals then Storages Policy, which is a policy where all travels are SC; 

however, the SC retrievals are all completed consecutively followed by all of the SC storages 

(e.g. RRRRRSSSSS). The expected travel time for this policy is calculated as the average of 

the Consecutive Retrievals policy followed by the Consecutive Storages policy. 

In this section we provide denormalized expected travel times for these different policies 

under a single and dual picking floor configuration. We analyze performance using metrics based 
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on travel times ‘per retrieval’ and ‘per operation’. Denormalized expected travel times ‘per 

operation’ for the Consecutive Retrievals then Storages policy under a single and dual picking 

floor are calculated as   [   ( )    ( )] and   [   ( )  (   ( )  (   )  ( ))], 
respectively, using equations (1), (2), (14b) and (15b). Also, denormalized expected travel times 

‘per operation’ for the Mixed policies under the single and dual picking floor configuration are 

equal to      ( ) and      ( ), respectively, using equations (20) and (21).  

Denormalized expected travel times ‘per retrieval’ for a Consecutive Retrievals policy under the 

single and dual picking floor configuration are equal to       ( ) and       ( ) using 

equations (14b) and (15b), respectively. As only half of the operations performed using a Mixed 

policy are retrievals, denormalized expected travel times ‘per retrieval’ for these policies are 

calculated as       ( ) and       ( ) under the single and dual picking floor using 

equations (20) and (21), respectively. The numerical results in this section are created using the 

same ratio configurations as Table 4-1 and 4-2 in Section 4-5-1.  We use our models to provide 

insights into the design of an MIAPP-AS/RS from four different perspectives. 

First, we explore the impact of design criteria associated with the dual picking floor 

configuration on the expected travel times.  Specifically, we evaluate the percent of storage 

operations being performed from the ground input floor versus the mezzanine input floor and the 

location of the mezzanine floor. As retrievals are independent of the input point, the   value does 

not influence the Consecutive Retrievals policy. For the Consecutive Retrievals then Storages 

policy and the mixed policies increasing   will increase the expected travel time because   ( )    ( ) for any    . Therefore, to minimize the expected travel times for any policy 

set    , which represents a design where all storage operations originate from the mezzanine 
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floor input point.  Such a design may require additional material handling equipment to transfer 

the incoming unit loads to the elevated input point; therefore, in subsequent analysis we explore 

the cases when   is equal to 0.0, 0.5, or 1.0.   

To analyze the location of the mezzanine floor, we find the optimal   value that 

minimizes the expected travel time for any given policy numerically. We coded the numerical 

search using MATLAB 2010’s fminbnd function and our results are valid for the performance 

metrics based on ‘per retrieval’ and ‘per operation’. In Table 4-3 we report the expected value of 

the best   for the different policies and   values found over all   values given in Table 4-2. The 

maximum variance for a given policy and   value is 0.0001; therefore, the values for the 

mezzanine level given in Table 4-3 are good approximations regardless of the value of   .  From 

Table 4-3, we observe that the mezzanine should be located such that         . The 

reasoning for this result is that three travels influence the value of  : (1) the travel between the 

mezzanine floor input point and a storage location in the rack, (2) the travel between a storage 

location and a pick position on the mezzanine floor, and (3) the travel from a pick position on the 

ground floor back to the mezzanine input point to begin a storage (or from a pick position on the 

mezzanine level to the ground floor input point). The expected travel between the mezzanine 

floor input point to a storage location in the rack or from a storage location to a pick position on 

the mezzanine floor is minimized when        (see equations (2) and (15b)).  The expected 

travel from a pick position on the mezzanine floor to the ground floor input point (or from a pick 

position on the ground floor to the mezzanine input point) is minimized when     (see 

equations (11) and (12)).   
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Table 4-3 : Expected value of the best   found numerically for different operating policies with a 

given   

      

Policy 
 

0.000 0.500 1.000 

DC 
 

0.394   0.365   0.314   

Random Sequence of SC S/R 
 

0.459   0.445   0.418   

Consecutive R then S   0.500   0.500   0.500   

 

Second, we analyze the shape factor of a rack. Tables 4-4 and 4-5 present denormalized 

expected travel times based on ‘per retrieval’ and ‘per operation’, respectively.  From Table 4-4 

we observe that the shape factor that minimizes travel time for a Consecutive Retrievals policy 

with a single picking floor for our given ratio of columns to rows is           This is close to 

the unrestricted value found in Section 4-4-3-4 when         . This observation illustrates 

that our derived unrestricted optimal shape factor may not necessarily be achieved when the 

design specification requires a fixed column and row dimension. The same observation can be 

seen in Table 4-4 for a Consecutive Retrievals policy with a dual picking floor with     ⁄  and      .  From Table 4-5 the shape factor that minimizes the travel time per operation for a 

Consecutive Retrievals then Storage Policy with a single picking floor for our given ratio of 

columns to rows is        .  This is between the optimal shape factor of     for a 

Consecutive Storage policy (Bozer and White, 1984) and the optimal shape factor of          

for a Consecutive Retrievals policy derived in Section 4-4-3-4. For a Mixed policy with either 

picking floor configuration, the optimal   value per retrieval (see Table 4-4) and per operation 

(see Table 4-5) is equal to 1.0, which is consistent with the results obtained analytically in 

Section 4-4-3-4. Therefore, depending on a distribution center operations requirement, systems 

may be designed differently. If the focus is on retrievals during a peak period, the MIAPP-
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AS/RS should be designed with a smaller shape factor than if the focus is on the overall number 

of operations performed. 

Table 4-4 : Denormalized expected ‘per retrieval’ travel time comparison of different operating 

policies 

Single picking floor configuration               

  
  

Policy 
 

1.000 0.804 0.635 0.479 0.349 0.238 

Consecutive R 
 

0.583 0.566 0.562 0.585 0.637 0.737 

DC 
 

1.108 1.141 1.201 1.319 1.499 1.788 

Random Sequence of SC S/R 
 

1.179 1.194 1.239 1.345 1.515 1.798 

Dual picking floor configuration (    ⁄           )         

  
  

Policy 
 

1.000 0.804 0.625 0.467 0.333 0.223 

Consecutive R 
 

0.495 0.497 0.516 0.561 0.638 0.769 

DC 
 

1.064 1.106 1.190 1.332 1.551 1.896 

Random Sequence of SC S/R   1.082 1.119 1.199 1.339 1.555 1.898 

 

Third, we use our model to provide insights into operating policies during peak hours. 

We are interested in maximizing the number of retrieval operations (rather than the number of 

total operations) during peak hours; thus, a Consecutive Retrievals policy is used. Table 4-4 

illustrates the retrieval performance of the three strategies under a single and dual picking floor 

configuration. As expected the Consecutive Retrievals policy has higher ‘per retrieval’ 

throughput than a DC or Random Sequence of SC Storages and Retrievals policy in both 

configurations. As an example under a single picking floor configuration with    , a 

Consecutive Retrievals policy has 47.4% less expected travel time than a DC policy to operate 

one retrieval. For a dual picking floor configuration with         ⁄ , and      , the 

reduction is 53.5%.  However, a company that conducts only retrievals during peak picking will 

be required to conduct only storages during non-peak picking. Next, we explore this trade-off in 

overall throughput efficiencies. 
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Fourth, we use our models to provide insights when the goal is to maximize the overall 

number of operations performed.  If a Consecutive Retrievals policy is required during peak-

picking; then during non-peak hours, the same number of storages will be performed by the 

Consecutive Storages policy (i.e., the Consecutive Retrievals then Storages policy). Table 4-5 

presents the expected ‘per operation’ travel time for both single and dual picking floor 

configurations. For a dual picking floor configuration, we analyze the best   values as presented 

in Table 4-3.  

From Table 4-5 we observe that the minimum expected travel time per operation occurs 

by performing a DC policy when     for the single picking floor and when    ,    , and          for the dual picking floor configuration. A DC policy has a lower expected travel 

time than a Random Sequence of SC Storages and Retrievals or a Consecutive Retrievals then 

Storages policy because DC travels reduce the amount of empty travel required.  Also, a DC 

policy is more robust to changes in   than the SC-based policies. For example from Table 4-5, a 

DC policy that changes   from zero to 0.5 and 1 will increase the expected travel time 2.85% and 

5.55%, respectively. However, for a Random Sequence of SC Storages and Retrievals policy the 

increases are 4.49% and 8.93%, and for a Consecutive Retrievals then Storages policy the 

increases are 6.03% and 12.06%.  To make these comparisons, we calculate the policy 

performance differences using the policy’s best   value. 
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Table 4-5 : Denormalized expected ‘per operation’ travel time comparison of different operating 
policies 

Single picking floor configuration 

 
              

      
  

    
Policy 

 
1.000 0.804 0.635 0.479 0.349 0.238 

    
DC 

 
0.554 0.570 0.600 0.659 0.749 0.894 

    
Random Sequence of SC S/R 

 
0.590 0.597 0.619 0.672 0.758 0.899 

        Consecutive R then S 
 

0.625 0.623 0.639 0.685 0.766 0.904 

Dual picking floor configuration               

      
    

 
  

 
Policy 

 
1.000 0.804 0.625 0.467 0.333 0.223 

0.000 

 
0.394   

 
DC* 

 
0.513 0.539 0.585 0.660 0.772 0.946 

  
Random Sequence of SC S/R 

 
0.518 0.543 0.588 0.662 0.773 0.947 

 
  Consecutive R then S   0.523 0.547 0.591 0.664 0.774 0.947 

 
0.459   

 
DC 

 
0.514 0.540 0.586 0.660 0.772 0.946 

  
Random Sequence of SC S/R* 

 
0.517 0.542 0.587 0.662 0.773 0.946 

 
  Consecutive R then S   0.519 0.544 0.589 0.663 0.774 0.947 

 
0.500   

 
DC 

 
0.516 0.542 0.587 0.661 0.773 0.946 

  
Random Sequence of SC S/R 

 
0.517 0.543 0.588 0.662 0.773 0.946 

    Consecutive R then S*   0.518 0.544 0.589 0.662 0.773 0.947 

0.500 

 
0.365   

 
DC* 

 
0.528 0.550 0.593 0.665 0.775 0.947 

  
Random Sequence of SC S/R 

 
0.541 0.560 0.600 0.670 0.778 0.949 

 
  Consecutive R then S   0.555 0.570 0.607 0.675 0.781 0.951 

 
0.445   

 
DC 

 
0.529 0.551 0.593 0.665 0.775 0.948 

  
Random Sequence of SC S/R* 

 
0.540 0.559 0.599 0.669 0.777 0.949 

 
  Consecutive R then S   0.550 0.567 0.605 0.673 0.780 0.950 

 
0.500   

 
DC 

 
0.532 0.553 0.595 0.666 0.776 0.948 

  
Random Sequence of SC S/R 

 
0.541 0.560 0.599 0.669 0.778 0.949 

    Consecutive R then S*   0.549 0.566 0.604 0.673 0.780 0.950 

1.000 

 
0.314   

 
DC* 

 
0.541 0.560 0.600 0.669 0.778 0.949 

  
Random Sequence of SC S/R 

 
0.564 0.577 0.612 0.677 0.783 0.952 

 
  Consecutive R then S   0.587 0.594 0.623 0.685 0.787 0.955 

 
0.418   

 
DC 

 
0.544 0.561 0.601 0.670 0.778 0.949 

  
Random Sequence of SC S/R* 

 
0.563 0.576 0.611 0.677 0.782 0.952 

 
  Consecutive R then S   0.582 0.590 0.620 0.683 0.786 0.954 

 
0.500   

 
DC 

 
0.548 0.564 0.603 0.671 0.779 0.950 

  
Random Sequence of SC S/R 

 
0.564 0.577 0.611 0.677 0.782 0.952 

    Consecutive R then S*   0.581 0.589 0.620 0.683 0.786 0.954 

Each value of   is optimal for the given   and (*) policy 
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In addition, Table 4-5 illustrates that the Random Sequence of SC Storages and 

Retrievals policy has lower expected travel times than the Consecutive Retrievals then Storages 

policy (even though both are conducting only SC travels). This occurs because there is a lower 

amount of empty travel required when storages and retrievals arrive in a random manner (versus 

the Consecutive Retrievals then Storages policy). This observation is valid for both picking floor 

configurations. However, using a Consecutive Retrieval then Storages policy with an MIAPP-

AS/RS with a dual picking floor configuration that utilizes the mezzanine input point has only a 

small impact on throughput performance (even when compared to a DC policy).  This result is 

not common for traditional end-of-aisle AS/RSs and is also not the case for MIAPP-AS/RS with 

a single picking floor or a dual picking floor when    .  For example under the single picking 

floor when    , a DC policy has 11.34% less travel time, and a Random Sequence of SC 

Storages and Retrievals Policy has 5.60% less travel time than a Consecutive Retrievals then 

Storages policy.  For a dual picking floor configuration, when     and    , these 

differences are less than 7.79% for a DC policy and less than 3.90% for a Random Sequence of 

SC Storages and Retrievals Policy.  Contrastingly, under the dual picking floor configuration 

when     and    , these differences are less than 1.96% for a DC policy and 0.98% for a 

Random Sequence of SC Storages and Retrievals Policy. When     and      , these 

differences are 4.97% for a DC policy and 2.49% for a Random Sequence of SC Storages and 

Retrievals Policy.  To make these comparisons, we calculated the policy performance difference 

over all   values in Table 4-5 and took the maximum difference.    

A reason for the difference in performance of SC-based policies versus DC-based 

policies is due to the return trip to the input points to service a storage request.  In a DC policy, 
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the trip back to the input point always occurs from a pick position. However, in the SC-based 

policies, the trip back to an input point occurs half of the time from a pick position and the other 

half of the time from a storage location in the rack. The expected travel time from any point in 

the rack to an input point is less when the input point is at the mezzanine floor rather than the 

ground floor. Consequently, the throughput performance of SC-based and DC-based operating 

policies are closer to each other in a MIAPP-AS/RS with a dual picking floor configuration that 

utilizes the mezzanine input point than in a single picking floor configuration or a dual picking 

floor configuration that does not use the mezzanine input point.  Consequently, a MIAPP-AS/RS 

with a dual picking floor configuration that utilizes the mezzanine input point is a more robust 

configuration than a single picking floor configuration.    

In summary, when the concern is about number of retrievals (such as what occurs during 

peak hours), a Consecutive Retrievals policy performs better than a Mixed policy. However, 

such a policy sacrifices overall throughput performance by not being able to utilize the 

efficiencies of DC travels. When the overall number of operations is important, a DC policy 

performs best as it has the opportunity to reduce the amount of empty travel by doing DC travels. 

An important insight from our analysis is the impact of operating policies for the different 

configurations. For a dual picking floor MIAPP-AS/RS that utilizes the mezzanine input point, if 

the distribution center operations are such that DC travels are not achievable (either due to peak-

hour picking requirements or the arrival patterns of inbound or outbound trucks); using a SC-

based operating policy does not considerably impact throughput performance. Consequently, by 

performing only SC retrievals and then only SC storages does not lose much efficiency with a 

dual picking floor configuration that utilizes the mezzanine input point. 
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4-6- Conclusion 

In this paper, we modeled and analyzed the MIAPP-AS/RS, which is a material handling 

technology that facilitates semi-automated case-level order picking by automating the storage 

and replenishment of pallets to multiple in-the-aisle pick positions. We focused on evaluating the 

expected throughput performance of such systems for a randomized storage policy by developing 

analytical travel time models. We developed models for different operating policies that can 

occur during peak and non-peak picking hours, as well as for two design configurations (i.e. the 

MIAPP-AS/RS with a single picking level and the MIAPP-AS/RS with dual picking levels).We 

derived base travel time models for   pick positions on each floor, as well as extreme travel time 

models, which produce closed-form solutions by assuming there are an infinite number of pick 

positions and the requested demand for each pick position is equal likely. Optimal shape factor 

for different operating policies were calculated using the extreme travel time models. 

A simulation study was conducted for various shape factors showing that the base and 

extreme models can approximate the discrete rack with less than 1% deviation. Through 

numerical experiments we provided design insights for MIAPP-AS/RSs. We found that 

operating policies have different impacts depending on the design configuration. To minimize 

the expected travel times for any policy we found that the mezzanine should be located such that           and all storage operations should originate from the mezzanine floor input point 

(i.e.,    ).  If the focus is on retrievals during a peak period, the MIAPP-AS/RS should be 

designed with a smaller shape factor than if the focus is on the overall number of operations 

performed. Finally, we found that a dual picking floor MIAPP-AS/RS that utilizes the mezzanine 

input point can use a SC-based operating policy without much loss of efficiency when compared 
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to a DC policy. This is not the case with a single picking floor MIAPP-AS/RS or for traditional 

end-of-aisle AS/RSs.  Therefore, if a distribution center operates in an environment that has peak 

picking times where only SC retrievals are performed, a dual picking floor configuration is a 

more robust configuration.   

This article is the first study that analyzes AS/RS with multiple in-the-aisle outputs. 

Therefore, our study could help extensively to design and quantify the performance of systems 

with in-the-aisle outputs or pick positions. Our study could be extended to consider the following 

future research directions. The development of analytical models for MIAPP-AS/RS that 

considers different storage policies, different dwell point strategies, and different sequencing 

rules would be interesting to understand how policies impact throughput and storage space 

performance. Also, the development of a systematic model that considers the interaction of 

human order pickers and the MIAPP-AS/RS would be interesting from an inventory buffer 

capacity, as well as a staff resource and scheduling perspective. 

Appendix A: The derivation of    (  )for the case of     

  (     )     ⁄                    

  (     )  {   ⁄                                            

 (  )    (     )     (     )  {      ⁄                      ⁄                         
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 (  )    (  )    {     ⁄                     ⁄                          

   (  )  ∫     (  )    
      ⁄    ⁄                  

Appendix B: The derivation of    (  )for the cases of (   )    and(   )    

Let  (  ) be the probability that the travel time between the origin and (     ) in region 

II is less than or equal to   . As the    and   coordinates are assumed to be independent,  (  ) 
is equal to  (  )    (         )    (     )   (     ) 
Based on randomized storage, when (   )   , 

  (     )  {  (   )⁄                             (   )                                          (   )       

  (     )     ⁄                     

Hence, 

 (  )  {   (   ) ⁄                                (   )   ⁄                                             (   )       

 (  )    (  )    {   (   ) ⁄                  (   )  ⁄                                  (   )       



88 

 

   (  ) denotes the expected travel time between the origin and any point located in 

region II. By definition,    (  ) is obtained as follows. 

   (  )  ∫     (  )    
  (   )   ⁄    ⁄              (   )     

Similarly, when (   )   ,   (     )    (   )⁄                  (   ) 
  (     )  {    ⁄                                                        (   ) 
Hence, 

 (  )  { 
    (   ) ⁄                     (   )⁄                                  (   ) 

 (  )    (  )    {    (   ) ⁄                    (   )⁄                                      (   ) 
   (  )  ∫     (  )      

     (   )⁄  (   )  ⁄                 (   ) 
Appendix C. Calculation of    ( ) 

According to equation (14a),    ( )  ∫   (   )     . By substituting the right hand 

side of equation (6) for   (   ), we have 
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   ( )  ∫ [    (  )  (   )   (  )]                                                                      (C.1) 

To calculate    (  ) and    (  ), equations (4) and (5) should be used respectively based 

on the value of   and  . According to the right hand side of equations (4) and (5), m depends on   and (   ). Therefore, to break the integral on the right hand side of equation (C.1) we need 

to consider two cases,       ⁄ and   ⁄     .  

When       ⁄ , 

   ( )  ∫ { (    ⁄    ⁄ )  (   ) [   (   )⁄  (   )  ⁄ ]}         
∫ { (    ⁄    ⁄ )  (   ) [   (   )⁄  (   )  ⁄ ]}           ∫ { (    ⁄        
  ⁄ )  (   ) [(   )   ⁄    ⁄ ]}       ⁄     ⁄      ⁄                            (C.2) 

When   ⁄     , 

   ( )  ∫ { (    ⁄    ⁄ )  (   ) [   (   )⁄  (   )  ⁄ ]}           
∫ { (    ⁄    ⁄ )  (   ) [(   )   ⁄    ⁄ ]}           ∫ { (    ⁄    ⁄ )      
(   ) [(   )   ⁄    ⁄ ]}       ⁄     ⁄      ⁄                                              (C.3) 

Based on (C.2) and (C.3), for      , we have    ( )    ⁄     ⁄      ⁄                                                                                            (C.4) 
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CHAPTER FIVE: CONTRIBUTION 2- A PAPER ON “PRODUCT 

ALLOCATION PROBLEM FOR AN AS/RS WITH MULTIPLE IN-THE-

AISLE PICK POSITIONS” 

An automated storage/retrieval system (AS/RS) with multiple in-the-aisle pick positions 

(MIAPP-AS/RS) is a semi-automated case-level order fulfillment technology that is widely used 

in distribution centers. We study the impact of product to pick position assignments on the 

expected throughput for different operating policies, demand profiles, and shape factors. We 

develop efficient algorithms of complexity O(nlog(n)) that provide   the assignment that 

minimizes the expected travel time. Also, for different operating policies, shape configurations, 

and demand curves, we explore the structure of the optimal assignment of products to pick 

positions and quantify the difference between using a simple, practical assignment policy versus 

the optimal assignment. Finally, we derive closed-form analytical travel time models by 

approximating the optimal assignment’s expected travel time using continuous demand curves 

and assuming an infinite number of pick positions in the aisle. We illustrate that these continuous 

models work well in estimating the travel time of a discrete rack and use them to find optimal 

design configurations. 

Keywords: Automated Storage/Retrieval System, Case-level Order Picking, Closed-form 

Travel-time, Multiple input/output (I/O) points 
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5-1- Introduction 

According to the U.S. Roadmap for Material Handling & Logistics, currently 350,000 

distribution centers operate in the Unites States.  A distribution center’s most important, as well 

as most costly and labor-intensive operation is to fulfill customer order requests. Thus, careful 

design and control of order-fulfillment operations can result in considerable improvements in 

distribution center performance.  In this work, we are interested in case-level order-fulfillment 

when non-identical demand is experienced for different products (i.e., item demand varies 

among the set of items managed).  A typical phenomenon exists where a small percentage of 

stock-keeping-units (SKUs) will make up a large percentage of the total demand. This demand 

skewness is captured in a well-known method called ABC analysis, which ranks the SKUs based 

on their contribution to total demand.  The “A” class represents the fast-moving SKUs, the “B” 

class represents the medium-moving SKUs, and the “C” class represents the slow-moving SKUs. 

An automated storage/retrieval system (AS/RS) with multiple in-the-aisle pick positions 

(MIAPP-AS/RS) is an example of a case-level order-fulfillment technology that is frequently 

used in distribution centers (See Fig. 5-1).  These systems are common in temperature-controlled 

distribution centers because of their ability to increase the space utilization and energy 

efficiency, and to reduce the number of employees that have to work in the harsh environment.  
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Figure 5-1 : Typical MIAPP-AS/RS 

 

The MIAPP-AS/RS consists of crane aisles and picking aisles. The crane aisles are 

dedicated to the movement of the cranes, and the picking aisles to the travel of the order pickers. 

Distribution centers that utilize MIAPP-AS/RS receive full pallets from an upstream member of 

their supply chain and are tasked with supplying a variety of products fulfilled at the case-level 

to a downstream member of their supply chain.  In these systems, each opening can store one 

pallet (in single-deep systems) or two pallets (in double-deep systems).  As shown in Fig. 5-1, 

the openings in the first row of the rack are for pick positions and the other openings in the rack 

are for storage locations.  Pallets are put-away and stored in full-pallet quantities in the storage 

openings. When all of the cases of a particular SKU are picked from a pick position, the crane 

replenishes another full-pallet of that SKU to the pick position.  Generally, for the convenience 

of the picking process, each pick position in the aisle is dedicated to a particular type of SKU. 

Therefore, an MIAPP-AS/RS is a semi-automated order-fulfillment strategy because the full-

pallet put-away-to-storage and replenishment-to-picking position movements are completed with 
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cranes. On the other hand, the picking of cases from pick positions in the aisle is done via 

manual order pickers.  

In this research, we are interested in the assignment of the SKUs to pick positions for 

MIAPP-AS/RS. We call this problem as the SKU Assignment Problem (SAP). Two key research 

questions regarding the SAP include:  

1. How should SKUs be assigned to pick positions such that the maximum expected crane 

throughput occurs?  

2. What is the impact of different SKU to pick position assignments on throughput performance 

under different operating policies, demand curves, and system configurations?   

The goal of our study is to understand the impact of different SKU assignments on the 

MIAPP-AS/RS throughput, as well as system design trade-offs that occur when MIAPP-AS/RS 

are operating using different policies and demand profiles. To do so, we begin by reviewing the 

relevant AS/RS and SKU assignment problem literature in Section 5-2.  We describe the 

MIAPP-AS/RS physical configuration, demand curve models, operating policies, and key 

assumptions in Section 5-3.  Next, in Section 5-4, we develop mathematical optimization models 

to find the optimal assignment minimizing the expected travel time, and provide an optimal 

assignment algorithm of complexity  (    ( )). We also provide structural properties of the 

optimal assignment of SKUs to pick positions in MIAPP-AS/RS’s for different operating 

policies, demand profiles, and shape factors. We quantify the performance difference between 

optimal assignments and a common assignment used in practice that assigns the most demanded 

SKUs to the pick positions that are closest to the input point.  In Section 5-5, we derive and 
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validate analytical closed-form models to approximate the expected travel time for different 

assignments; also, we use these models to obtain the optimal shape factors for different policies. 

These closed-form analytical travel time models are derived by using continuous demand curves 

and assuming an infinite number of pick positions in the aisle to approximate the optimal 

assignment’s expected travel time. In Section 5-6, we illustrate that these models work well in 

estimating the travel time of a discrete rack and use them to derive optimal design configurations 

and provide managerial insights.  We also provide numerical results and managerial insights by 

exploring the trade-offs that occur while implementing different assignments. Finally, in Section 

5-7, we review our main contributions, provide insights from our study, and direction for future 

research.   

5-2- Literature Review 

During the past three decades AS/RS have received notable attention from different 

perspectives that can be categorized into: system configuration, travel time estimation, storage 

assignment, dwell-point, and batching/sequencing (Roodbergen & Vis, 2009). In addition, some 

AS/RS research has been addressed in warehouse design papers; interested readers may refer to 

reviews papers such as de Koster et al. (2007) and Gu et al., (2007). In fact, AS/RS literature is 

the exclusive focus in the following review papers: Sarker & Babu (1995), Roodbergen & Vis 

(2009), Vasili et al. (2012), and Gagliardi et al. (2012). Among these review papers, Sarker and 

Babu (1995) focus specifically on travel time models. According to the AS/RS review papers, 

AS/RS with multiple I/O points is a subject that deserves further study. 
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Similar topics to the SAP include the storage location assignment problem (SLAP) and 

the product allocation problem (PAP), which have been widely studied in traditional order-

picking and warehouse management literature. The SLAP represents a notable portion of the 

AS/RS literature. A storage assignment policy identifies how items are assigned to storage 

locations. Three main storage assignment policies have received the most attention in the 

literature:  randomized storage, turnover-based storage, and class-based storage. Generally, 

randomized storage has the best space-utilization; turnover-based storage has the shortest 

expected travel time; and class-based storage is a compromise between these two policies (Pohl 

et al., 2011). The turnover-based and class-based storage policies incorporate that different 

SKUs have different demand profiles when determining the assignment of SKUs to storage 

locations.  For the special cases of 2 or 3 classes in class-based storage, explicit travel time 

analytical expressions have been developed by Hausman et al. (1976), Kouvelis & Papanicolaou 

(1995) and Eynan & Rosenblatt (1994). Rosenblatt & Eynan (1989) and Eynan & Rosenblatt 

(1994) provide a procedure to obtain optimal boundaries for n-classes under a specific layout. 

Van den Berg (1996) develops a dynamic programming algorithm that optimally assigns 

products and locations into a certain number of classes. He considers travel time minimization 

under single command cycles. Goetschalckx & Ratliff (1990) consider a duration-of-stay shared 

policy for unit-load AS/RS and show the optimality of this policy under an assumption of 

perfectly balanced I/O flows. All of the above studies focus on the assignment of the SKUs to 

storage locations in traditional AS/RS that have a single I/O point, and thus no SKU to pick 

positions assignment problem exists. In contrast, we focus on the assignment of the non-identical 

demanded SKUs to multiple in-the-aisle pick positions. 
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Also, the PAP has been widely studied in traditional order-picking systems literature 

where a manual order picker traverses aisles to pick a set of items (Francis et al., 1992; de Koster 

et al., 2007). The PAP determines which SKUs should be assigned to which picking locations to 

minimize a given performance measure, such as travel time. For example, Francis et al. (1992) 

analyze various assignment models in a traditional manual picking warehouse subject to different 

space and throughput constraints. Jarvis & McDowell (1991) consider the PAP in different types 

of order picking warehouses. They present a stochastic model to obtain the optimal results. 

Petersen & Aase (2004) build a simulation model to evaluate the picking, storage, and routing 

effect on order picking travel time. They show that order batching of products results in the 

highest savings, particularly when the order sizes are smaller. Heragu et al. (2005) develop a 

mathematical model and a heuristic procedure that simultaneously determines the allocation of 

the products, as well as the size of the functional areas. Pazour & Meller (2011) analyze the SKU 

assignment and allocation problem in an A-frame dispenser system, which is a fully automated 

order picking technology. Guerriero et al. (2013) develop a nonlinear integer mathematical 

model to minimize the handling cost considering compatibility constraints among classes. They 

use an Iterated Local Search based algorithm to solve large scale instances. Our work is similar 

to this area of research, in that we are also interested in assigning SKUs to pick position 

locations. However, the focus of our study is on the assignment of SKUs to pick positions in a 

MIAPP-AS/RS, which have different travel time dynamics than manual order picking 

operations, including the need to consider simultaneous vertical and horizontal travel movements 

and retrieving, as well as storage operations. 
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Only a few studies exist that study an AS/RS with either multiple I/O points or non-end-

of-aisle I/O points. Bozer & White (1984) derive and analyze the expected travel time for 

different alternative I/O point locations; however, all of the alternatives considered a single input 

and single output point. Randhawa et al. (1991) and their extended study by Randhawa & Shroff 

(1995) focus on simulation analysis to identify the impact of changing the location and the 

number of I/O points on travel time. They consider different layouts and performance measures 

to evaluate their simulation studies. Vasili et al. (2008) develop a continuous travel time model 

for the split-platform AS/RS, where an I/O point is located at the center of the rack. Ramtin & 

Pazour (2014) are the first to study the AS/RS with multiple in-the-aisle pick position, and 

develop expected travel time models for different operating policies and physical configurations. 

For their closed-form travel time models and numerical analysis, they assume that the demand of 

SKUs is identical and thus do not consider the assignment of SKUs to pick positions. To our 

knowledge, no study exists that addresses the assignment of SKUs to multiple pick positions in 

an AS/RS.   

5-3- Problem Definition and Assumptions 

In this section, we provide a description of the environment that we model.  To do so, we 

describe the MIAPP-AS/RS’s physical configuration, demand models, crane travels and 

operational policies, as well as the key modeling assumptions. 
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Physical configuration 

We assume the system has a single picking level and each crane aisle has its own crane 

that is working independently from other cranes, as illustrated in Fig. 5-1 Each rack has one 

input point located at the lower-left corner and the pick positions are located on the bottom line 

of the rack. We develop our models considering a single rack.   

Most of the existing AS/RS travel time model studies have used continuous 

approximation of the rack to derive expected value models for different configurations (Graves 

et al., 1977; Bozer & White, 1984; Foley & Frazelle, 1991; Chang et al., 1995; Kouvelis & 

Papanicolaou, 1995; Sarker & Babu, 1995; Hu et al., 2005). We also use continuous 

approximation of the rack for the travel time models in Section 5-4 and 5-5. The storage 

locations are assumed to be continuously and uniformly distributed over the rack. We follow the 

Bozer & White (1984) methodology used to ‘normalize’ the rack as follows. Let: 

  : time required to travel horizontally from the input point to the most distant point,   : time required to travel vertically from the input point to the most distant point,  : scaling factor, where      {     } 
 : shape factor, where      {   ⁄     ⁄ } 

By assuming       , the rack can be normalized as a rectangle with length of     and 

height of  , where      .    

Demand curve representation  
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We denote   and   as the sets of all pick positions and SKUs to be assigned to those pick 

positions, respectively, such that   {       } and   {       }. Let     and     be the 

index of pick positions and SKUs, respectively. Let     denote the probability that pick position   is visited such that ∑            Let     denote the probability that a storage/retrieval request 

is for SKU   among a total of   SKUs, where ∑          . 

We use the continuous demand model in Hausman et al. (1976) to represent the ABC 

analysis that ranks the items in monotonically decreasing order based on their contribution to 

total demand. In this demand model,   is the percentage of inventoried SKUs,   [   ],   

represents the skewness of the demand curve, and       is the demand of the 100x percentage 

SKU.  We consider 20/20, 20/40, 20/60, 20/80, and 20/90 demand curves, which correspond to    ,         ,         ,         ,         , respectively. For example, a 20/60 

curve represents the case that 20% of inventoried SKUs contribute 80% of the total demand. 

SKUs with identical demand can be represented by 20/20 curves. To calculate    , the 

continuous demand curve model can be discretized by the approach used in Pohl et al. (2011) as 

shown in equation (1). 

    ∫           ⁄  ∫         (   )  ⁄                                                                            (1) 

Crane travels and operational policies structure 

In a MIAPP-AS/RS, the crane can carry a single unit-load and travel between the input 

point, storage locations, and pick positions. In a single command (SC) storage operation, full-

pallets of different SKUs originate from an input point and are transferred to a storage location in 
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the rack by the crane.  A SC retrieval operation is performed by the crane when it moves a SKU 

stored in a rack location to a pick position located in the aisle. A dual command (DC) operation 

involves the crane conducting a storage operation followed by a retrieval operation. All of the 

travels performed by a MIAPP-AS/RS can be broken into four elements denoted as trips (see 

Fig. 5-2). All of the trips and travels notation, as well as their expressions are as follows (for 

detailed derivation of equation (2) and (3) please refer to Bozer &White (1984), and for 

equations (4) to (7) refer to Ramtin & Pazour (2014)): 

 

 

Figure 5-2 : Trips in MIAPP-AS/RS 

    : Travel time between pick position   and the input point (Hereafter, we refer to    as the 

location of pick position  ),  ( ) : Expected travel time between the input point and any randomly selected point in the rack, 

where  ( )     ⁄    ⁄                                                             (2) 

 (  ) : Expected travel time between any two randomly selected points in the rack, where 
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 (  )    ⁄     ⁄      ⁄                                    (3) 

 (   ) : Expected travel time between pick position   and any randomly selected point in the 

rack, where  (   )     [   (    )]     (    )  (    )[   (      )]     (      )                                                                             (4) 

We consider operating policies for the MIAPP-AS/RS that are common for peak and 

non-peak hours. The first operating policy is a Consecutive Retrievals (CR) policy, where the 

AS/RS performs only SC retrievals. This policy is used during the peak hours when the priority 

is to fullfil the customer orders. In the case of a CR policy, the crane travels between storage 

locations and pick positions only. Thus all trips are  (   ) trips, and  the overall expected travel 

time can be calculated as     ( ) using equation (5). If a CR policy is used during peak 

hours, then the AS/RS will need to perform consecutive storages (CS) during the non-peak hours. 

We call this policy as CR then CS policy, and  the overall expected travel time for this policy can 

be calculated as   ( ( )   ( )), which is the average of the CR and CS policies. Another 

policy we consider during non-peak hours is a Mixed policy. In a Mixed policy, the crane 

performs both SC (storage/retrieval) and DC. In this policy the proportion of the number of SC 

to DC operations is defined with the parameter  . Let   denote the percentage of storage (or 

retrieval) operations that are performed under SC basis.  For this policy the combination of all  ( ),  (  ),  (   ), and    trips may occur, and the overall expected travel time can be 

obtained as    ( ), where  ( ) is defined in equation (7).  
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 ( ): Expected one-way travel time between any pick position and any randomly selected point 

in the rack, where  ( )  ∑          (   )                                                                                                           (5)  ( ): Expected one-way travel time between any pick position and input point, where  ( )  ∑                                                                                                                                (6) 

 ( ): Expected ‘per operation’ travel time for the Mixed policy, where 

 ( )  (        ) ( )  (      ) (  )  (        ) ( )  (      ) ( )                      (7) 

 

Finally, a review of the assumptions of this work follows. 

1. Each normalized rack has one input point located at the lower-left corner and the pick 

positions are located on the bottom line of a normalized rack. 

2. Demand for each item type (and thus each pick position location) is known and 

independent.  

3. For assigning SKUs to storage locations, a randomized storage assignment is used, i.e., 

any point within the rack is equally likely to be selected as a storage location. However, 

assigning SKUs to pick positions is a decision discussed in Section 5-4. 

4. Each pick position is dedicated to particular type of SKU. 

5. We consider a single-deep rack, where each opening can contain a single pallet.    

6. The storage and retrieval rate is assumed to be equal in steady state, and operation 

requests are processed on a first-come-first-serve basis.  
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7. Only the travel time model of the crane is considered. Human order pickers travel time 

and the pick/deposit times to handle the loads are ignored. 

8. The crane carries unit-loads under either single command (SC) (storage/retrieval) or dual 

command (DC) travels. 

9. The crane travel time follows the Chebyshev metric and moves at a constant horizontal 

and vertical speed, i.e., acceleration and deceleration are ignored.  

10. A stay dwell point strategy is considered, i.e., after completing any storage or retrieval 

operation, the crane stays where it is, and waits for the next operation request. 

5-4- SKU Assignment Problem (SAP) 

In this section, we analyze the SAP for the MIAPP-AS/RS, which determines the 

assignment of SKUs to pick positions to minimize the expected travel time of the crane. When 

SKUs’ demands are identical, changing the assignment of SKUs to pick positions does not 

impact the expected travel time for any policy (see equations (5) and (7)). However, in the case 

of non-identical demand, as the expected travel time to each pick position is different (see 

equation (4)), assigning higher demanded SKUs to pick positions with less expected travel time 

will result in less overall expected travel time.  

5-4-1- Optimal Assignment Problem 

Our objective is to minimize the expected travel time for different operating policies by 

changing the assignment of SKUs to pick positions. Referring to equation (5) and (7), the 

expected travel time models for CR and Mixed policy are linear functions of SKUs’ demands and 

the locations of the pick positions.  Therefore, we formulate our problems as a Linear 
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Assignment Problem (LAP) for each policy. Let     be the binary variable where 1 denotes that 

the pick position   is assigned to SKU  , and is 0 otherwise. We formulate the assignment 

problem for the CR policy and denote it as Model 1.  The objective function is to minimize the 

expected travel time for a CR policy, which is expressed in equation (8). Equation (9) provides 

the constraints that each SKU must be assigned to one pick position, and equation (10) provides 

the constraints that each pick position must be assigned to one SKU.  

Model 1 (for a CR Policy) 

    ∑ ∑          (   )                                                                                                          (8)                                           

∑                                                                                                                                    (9) 

∑                                                                                                                                   (10) 

     {   }                                                                                                                   (11) 

Model 2 is the SAP for the Mixed policy. In this case, the assignment problem depends 

only on the elements of the Mixed policy expected travel time in equation (7) that are a function 

of    (the location of the pick positions). Consequently,  ( ) and  (  ) are not impacted. 

Therefore, the objective function of the assignment problem for the Mixed policy is formulated 

as equation (12) subject to constraints (9), (10), and (11).  

Model 2 (for a Mixed Policy) 

    ∑ ∑    (         (   )         )                                                                                (12) 
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Because of the structure of Model 1 and 2, we are able to provide an algorithm for the 

optimal solution that is computationally tractable.  

In order to simplify Model 1 and 2, we define     (   ) and             (   )         . Therefore, the objective functions of Model 1 and 2 become     ∑ ∑                   and     ∑ ∑                  , respectively. 

Proposition 1a. The optimal solution to Model 1 is obtained by the assignment 

permutation that has the pick positions sorted in ascending order based on their    values and the 

SKUs sorted in descending order based on their     values. 

Proof.    is independent of a SKU’s demand. Hence, the cost of assigning SKU   to pick 

position   is obtained by multiplying two independent parameters (   and    ). Therefore, by 

introducing permutation functions   and  , Model 1 can be represented as its combinatorial 

formulation,          ∑   (  )     (  )     . Let   be the set of all permutations on        
and       . According to the rearrangement inequality, the minimum value to this model is 

obtained by the optimal permutations (    and   ) such that     ( )      ( )        ( ) and      ( )       ( )         ( ) (For an extended proof, please refer to Hardy et al. (1988)). 

Therefore, the optimal assignment for Model 1 can be obtained by bijective mapping of 

permutation     and    , which is represented as equation (13). 

     {               (  )          (  )                                                                                                                      (13) 
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Proposition 1b. The optimal solution to Model 2 is obtained by the assignment permutation that 

has the pick positions sorted in ascending order based on their    values and the SKUs sorted in 

descending order based on their     values. 

Proof. Following directly from Proposition 1a’s proof. Let   be the set of all permutations on        and       . The combinatorial formulation of Model 2 becomes as          ∑   (  )     (  )     . The minimum value to this model is obtained by the 

permutations (    and   ) such that      ( )       ( )         ( ) and      ( )       ( )         ( ). Therefore, the optimal assignment for Model 2 can be obtained by bijective 

mapping of permutation     and    , which is represented as equation (14). 

     {               (  )          (  )                                                                                                                      (14) 

Corollary 1. The minimum expected travel time ‘per operation’ with respect to the optimal 

assignment of SKUs to pick positions is equal to equations (15) and (16) for a CR and a Mixed 

policy, respectively. 

  ( )=∑  (    (  ))      (  )                                                                                              (15) 

  ( )           ( )        (  )  ∑     (  )     (         (    (  ))          (  ))         (16) 

According to Proposition 1a and 1b, the optimal algorithm for the SKU assignment 

problems is of complexity  (    ( )), as it sorts two sets of cardinality n. The optimal 

assignment can be obtained using the following procedure: 
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STEP 1: Calculate    and    for     , as well as     for     . 

STEP 2: Find permutations    and    by sorting    and    in monotonically increasing order, 

respectively. Find permutation    by sorting     in monotonically decreasing order. 

STEP 3: Provide the optimal assignment for Model 1 and 2 by equations (13) and (14), 

respectively. 

Example: Consider a square-in-time system (   ) where 40% of storages are 

performed by SC in a Mixed policy (     ). Consider there are 5 pick positions (   ) whose 

distance from the input point are 0.1, 0.3, 0.5, 0.7, 0.9; and 5 different SKUs which follows the 

20-60 demand curve (        ). Therefore, based on the definitions,    {                        },    {                        }, and by using equation (1),     {                        }. We obtain    {         },    {         }, and    {         } by sorting   ,   , and     as defined. According to Proposition 1a and 1b, the optimal 

assignment of SKUs to pick positions for a CR and a Mixed policy is obtained by bijective 

mapping    and   , respectively, on     Based on equations (13) and (14), the optimal 

assignment for CR policy has                       and for the Mixed policy has                      . Also, according to equations (15) and (16),   ( )         and   ( )        , respectively. 

Proposition 2. When all of the storage and retrieval operations are performed by DC 

(                       ), the assignment of SKUs ordered based on monotonically 
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decreasing demand to pick positions ordered from nearest to farthest from the input point is 

optimal.  

Proof.  Appendix A. 

For the sake of convenience, we call ‘the assignment of SKUs ordered based on 

monotonically decreasing demand to pick positions ordered from nearest to farthest from the 

input point’ as the monotonically decreasing demand (MDD) assignment and is shown in Fig. 5-

4(c). The insight behind Proposition 2, as well as the other assignment characteristics will be 

discussed in Section 5-4-2. 

According to the definition of the MDD assignment, the most demanded SKU is assigned 

to the pick position closest to the input point, and the next demanded SKU to the next pick 

position closest to input point, and so forth. The expected travel time for CR and Mixed policy 

under MDD assignment can be calculated by substituting any monotonically decreasing demand 

for     into equation (5) and (7), respectively. 

5-4-2- Structure of the optimal assignment  

In this section, we explore the structure of the optimal assignment of SKUs to pick 

positions introduced in Section 5-4-1. Recall that the set of    is used to find the optimal 

assignment for a CR policy and the set of    for a Mixed policy. If we denote   as the location of 

a pick position from the input point (     ) these sets can be defined as functions of  , 

such that    (  ) and            (  )        . To observe the behavior of the expected 
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travel time, Fig. 5-3 plots   and   as a function of the location of pick positions from the input 

point for different values of   and  .  

 

Figure 5-3 : Pick positions’ expected travel time for different policies 

 

Let    denote the location of a pick position to which the expected travel time is 

minimum for each   and   function. Function   has         for any shape factor (Proof is 

provided in the supplement A). The intuitive reason for this result is that a CR policy performs 

only SC retrievals; thus, the crane never travels to the input point. For a randomized storage 

policy, storage location decisions are made independent of pick positions. Therefore, the pick 

position located in the middle of the rack has the shortest expected travel time to conduct 

retrievals. Comparing Fig. 5-3(a) with 5-3(b), another observation for function   is that the 

difference between the largest and smallest pick position location’s expected travel times 

increases by decreasing the   value.  The optimal assignment of the SKUs to the pick positions 

for a CR policy are illustrated in Fig. 4(a), where the most demanded SKU is assigned to the pick 

position in the middle of the rack.  
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In contrast, a Mixed policy performs both SC and DC operations. Therefore, to perform a 

storage operation after a retrieval operation, the crane is required to travel from a pick position to 

the input point. Consequently,    shifts to the left and will be located between the input point 

location and the middle of the rack (        ). For this case, we show the optimal 

assignment of SKUs in Fig. 5-4(b) (e.g. when       and       ). When the function   is 

monotonically increasing, then    is equal to zero and the MDD assignment is optimal for the 

Mixed policy. We illustrate such a case (e.g. when       and    ) in Fig 5-4(c). The MDD 

assignment is optimal for several combination of   and  ; however, in Proposition 2, we prove 

this is always true for     regardless of the shape factor. This occurs because when all of the 

operations are performed by DC (   ), the crane has to travel back from a pick position to the 

input point at the end of each cycle. However, as   increases, the number of these returns to the 

input point decreases because the chance of consecutive SC storages or consecutive SC retrievals 

is higher with higher   values. As an example for the case of            and       , as 

shown in Fig. 5-3(b),    shifts to the right (from the location of the input point to a point 

towards the middle of the rack).  
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Figure 5-4 : Typical optimal SKU assignment for different policies (X-axis represents the 

location of the pick positions and Y-axis represent the SKUs’ demand) 

 

5-5- Extreme travel time models for non-identical demand curves 

In Section 5-4-1, we derived the expected travel time for discrete pick position locations 

for CR and Mixed policies under the optimal and MDD assignment (which we denote as base 

models). In this section, we derive closed-form travel time models for the CR and Mixed policies 

(which we denote as extreme models).  We derive extreme models by assuming 1) there are an 

infinite number of pick positions in the aisle, and 2) demand curves are continuous.  The 

motivation for deriving extreme models is twofold.  First, the closed-form solutions provide a 

computational efficient way to evaluate the expected travel time in an MIAPP-AS/RS with non-

identical demand.  Second, we use the models to derive optimal design parameters of an MIAPP-

AS/RS with non-identical demand.   
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In the previous section, we showed that        is optimal for the CR policy regardless 

of the shape factor. Therefore, to approximate the optimal assignment for the CR policy shown in 

Fig. 5-4(a), we introduce a new continuous demand curve defined in equation (17) and denoted 

as     (   ). Let   and   denote the location of the pick position and demand curve skewness 

factor, respectively. As illustrated in Fig. 5-5(a), this curve assigns the highest demanded SKUs 

to locations in the middle of the rack. We use this curve to represent the optimal assignment for 

the CR policy. 

    (   )  { (    )                     ⁄    (    )                 ⁄                                                                                                            (17) 

This demand curve is obtained by truncating and shifting the demand curve expressed in 

Hausman et al. (1976). Therefore, to represent the different demand curves (e.g. 20/20, 20/40, 

20/60, 20/80, and 20/90), the same   values provided in Section 5-3 can be used.     (   ) is a 

valid probability distribution function (PDF) for       and       (Proof is provided in 

the supplement B). 

We use the continuous monotonically decreasing demand curve defined in equation (18) 

to represent the MDD assignment. As illustrated in Fig. 5-5(b), this curve is the continuous 

representation of the MDD assignment shown in Fig. 5-4(c). This curve will be used for 

representing the MDD assignment and we derive extreme models for both CR and Mixed policies 

with an MDD assignment.   

    (   )                                                                                                                        (18) 
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Figure 5-5 : Continuous demand curves for different policies (based on 20/40 curve) 

 

In Section 5-5-1 and 5-5-2, we will develop extreme travel time models for CR policy 

under optimal and MDD curves mentioned above. For the Mixed policy,    varies based on the 

value of   and     In section 5-4-2, we showed that for several combination of   and   where     , and the MDD assignment for a Mixed policy is the optimal assignment. Also, later in 

Section 5-6, we will show that for several cases where      (i.e., applying the MDD 

assignment is not optimal), we do not lose much efficiency compared to the optimal assignment 

due to the small % differences (see Section 5-6 - See Table 5-7). Therefore, in Section 5-5-3, we 

will only develop extreme travel time model for Mixed policy under MDD curve. 

5-5-1- Extreme travel time models for CR policy under optimal assignment 

We denote the extreme value of  ( ) under the optimal assignment as      ( ), which 

is calculated as in equation (19a). This extreme value is based on letting   go to infinity in 

equation (5), as well as using equation (17), which is an optimal assignment. Each of the 

integrals at the right hand side of the equation (19a) separate into two integrals as the value of 



114 

 

 (  ) changes for different   and   based on equation (4). The final closed-form result is 

given in (19b). See Appendix B for the complete derivation of       ( ) for the CR policy.  

     ( )        ∑          (   )  ∫     (   )   (  )                                             (19a) 

     ( )  
{ 
    (    )   (    )  (        )   (   )(    (   )   (   )    (   )(   ))   (   )(   )(   )              ⁄     (     ) (        )  (  (     ) )   (   )(    (   )   (   )    (   )(   ))   (   )(   )(   )        ⁄      (19b) 

5-5-2- Extreme travel time models for CR policy under MDD assignment 

Let      ( ) denote the extreme value of  ( ) under the MDD assignment. Following 

the same approach as in the previous section, by using the MDD assignment curve (given in 

equation (18)),      ( ) can be calculated as equation (20a), which results in the closed-form 

expression given in equation (20b). Appendix C shows the complete derivation of      ( ). 
     ( )        ∑          (   )  ∫     (   ) (  )                                              (20a) 

      ( )  
   (   )   [  (   )          (   )(   )   (   (   )   (   ))   ( (  (   ) )  (    (   )))]  (   )(   )(   )       (20b) 

Note that       ( ) derived as equation (19b) varies from      ( ) in equation (20b) 

and are not replaceable because       ( ) is derived based on the continuous demand curve used 

for approximating optimal assignment for CR policy (equation (17)) and       ( ) is derived 

based on the MDD assignment continuous demand curve (equation (18)). 
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5-5-3- Extreme travel time models for Mixed policy under MDD assignment 

To derive the extreme travel time model for the Mixed policy under an MDD assignment, 

note that  ( ) and  ( ) are the only components of  ( ) impacted by varying the location of 

the pick positions and their assigned SKU’s demand (See equation (7)). Therefore, the extreme 

value of  ( ) under an MDD assignment can be obtained by replacing  ( ) and  ( ) with 

their extreme values. Let      ( ),      ( ), and       ( ) denote the extreme values of  ( ),  ( ), and  ( ), respectively. The extreme values are derived using the continuous 

demand curve for the MDD assignment given in equation (18).      ( ) is derived in the 

previous section as equation (20b), and       ( ) is derived as equation (21). Finally, by 

substituting       ( ) and       ( ) for  ( ) and  ( ), respectively, into equation (7), the 

extreme value of  ( ) under an MDD assignment is obtained as equation (22). 

     ( )        ∑           ∫                 ⁄                                                 (21) 

     ( )  (        ) ( )  (      ) (  )  (        )       ( )  (      ) (     )                   (22) 

5-5-4- Validation of the extreme travel time models 

In this section the results of the extreme models developed in Section 5-5-1 to 5-5-3 are 

compared to results from a discrete-event simulation.  The purpose is to understand the impact of 

the extreme models’ assumptions (i.e., a continuous rack, an infinite number of pick positions, 

and continuous demand curves) on the expected travel time. We use MATLAB 2013a to code 

and run the simulation. 
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In the discrete-event simulation, we assume that the number of pick positions, as well as 

the number of SKUs are equal to the number of the columns. The openings in the first row of the 

rack are for pick positions and the other openings in the rack are for storage locations. We 

calculate the distance between any two openings’ centroids using the chebyshev distance metric. 

We consider six different configurations as shown in Table 5-1. To make an equal comparison, 

we set the number of storage locations in each configuration to be approximately equal to 950. 

To simulate the expected travel time, we ran 5 replications of a sequence of 100,000 storage and 

retrieval operations for each 6 configurations, 5 demand curves, and 2 operating policies. In the 

simulation, we model discrete pick positions and SKU demand.  The demand for each SKU is 

obtained by equation (1). To simulate the CR policy under optimal assignment, the optimal 

assignment of a discrete number of SKUs to pick positions is obtained using Proposition 1a, for 

each shape configuration. Also, we apply a MDD assignment to simulate the CR and Mixed 

policy under MDD assignment. These results are used as inputs to the simulation model. To 

compare the accuracy of the results obtained from the continuous extreme models versus the 

simulation, we calculate the ‘% deviation’ as shown in equation (23). 

                                                                                                               (23) 

 

Table 5-1: Structure of shape configurations 

Rows 
 

20 18 16 14 12 10 

Columns 
 

50 56 63 73 86 105 

Openings 
 

950 952 945 949 946 945   (minutes) 
 

0.5 0.56 0.63 0.73 0.86 1.05   
 

1.000 0.804 0.635 0.479 0.349 0.238 
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We report the results obtained for the CR policy under an optimal assignment, the CR 

policy under an MDD assignment and the Mixed policy under the MDD assignment in Table 5-2, 

Table 5-3 and Table 5-4, respectively. For the simulation results, we report the average and 

variance of the travel time ‘per operation’ for each configuration (as ‘Sim. Mean’ and ‘Sim. 

variance’ in Tables 5-2 to 5-4). The denormalized expected travel time for the extreme models 

are calculated as          ( ) using equations (19b) for the CR policy under an optimal 

assignment; as            ( ) using equation (20b) for the CR policy under an MDD 

assignment, and as         ( ) using equation (22) for the Mixed policy under the MDD 

assignment.   

 

Table 5-2 : Simulation vs. extreme travel time results for a CR Policy under an optimal 

assignment 

    1.000 0.804 0.635 0.479 0.349 0.238 

20-20 

Optimal 0.583 0.566 0.562 0.585 0.637 0.737 

MDD 0.583 0.566 0.562 0.585 0.637 0.737 

% diff. 0.000 0.000 0.000 0.000 0.000 0.000 

20-40 

Optimal 0.569 0.547 0.536 0.549 0.591 0.680 

MDD 0.596 0.583 0.586 0.616 0.677 0.789 

% diff. 4.657 6.727 9.317 12.180 14.472 16.040 

20-60 

Optimal 0.559 0.532 0.516 0.522 0.557 0.636 

MDD 0.614 0.608 0.619 0.660 0.734 0.862 

% diff. 9.856 14.358 20.079 26.573 31.894 35.639 

20-80 

Optimal 0.550 0.519 0.498 0.498 0.527 0.598 

MDD 0.636 0.639 0.660 0.715 0.804 0.954 

% diff. 15.674 23.009 32.471 43.484 52.708 59.375 

20-90 

Optimal 0.546 0.514 0.490 0.487 0.513 0.581 

MDD 0.648 0.656 0.683 0.745 0.844 1.005 

% diff. 18.825 27.738 39.320 52.969 64.520 72.979 
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Table 5-3 : Simulation vs. extreme travel time results for a CR Policy under an optimal 

assignment 

  b  1.000 0.804 0.635 0.479 0.349 0.238 

20-20 

Sim. mean 0.579 0.562 0.559 0.582 0.634 0.735 

Sim. variance 0.048 0.039 0.037 0.047 0.071 0.117 

Extreme model 0.583 0.566 0.562 0.585 0.637 0.737 

%dev. 0.824 0.797 0.691 0.486 0.486 0.273 

20-40 

Sim. mean 0.591 0.579 0.582 0.613 0.675 0.786 

Sim. variance 0.048 0.041 0.043 0.058 0.089 0.146 

Extreme model 0.596 0.584 0.586 0.616 0.677 0.789 

%dev. 0.843 0.728 0.732 0.593 0.370 0.352 

20-60 

Sim. mean 0.609 0.604 0.616 0.658 0.732 0.860 

Sim. variance 0.048 0.046 0.054 0.077 0.120 0.198 

Extreme model 0.615 0.609 0.620 0.662 0.735 0.864 

%dev. 0.886 0.807 0.712 0.596 0.441 0.359 

20-80 

Sim. mean 0.631 0.635 0.657 0.712 0.802 0.952 

Sim. variance 0.050 0.053 0.068 0.102 0.160 0.263 

Extreme model 0.638 0.642 0.663 0.718 0.808 0.957 

%dev. 1.071 0.998 0.916 0.854 0.660 0.541 

20-90 

Sim. mean 0.644 0.652 0.680 0.743 0.842 1.004 

Sim. variance 0.051 0.057 0.076 0.116 0.182 0.298 

Extreme model 0.652 0.660 0.688 0.751 0.849 1.011 

%dev. 1.254 1.173 1.120 0.993 0.879 0.715 

Table 5-4 : Simulation vs. extreme travel time for the Mixed Policy (  =0.4) under an MDD 

assignment 

  b  1.000 0.804 0.635 0.479 0.349 0.238 

20-20 

Sim. Mean 0.569 0.581 0.608 0.664 0.753 0.895 

Sim. Variance 0.223 0.235 0.263 0.328 0.438 0.639 

Extreme model 0.574 0.585 0.611 0.667 0.754 0.897 

%dev. 0.904 0.697 0.595 0.439 0.207 0.152 

20-40 

Sim. Mean 0.549 0.559 0.584 0.638 0.722 0.861 

Sim. Variance 0.211 0.221 0.249 0.308 0.411 0.602 

Extreme model 0.554 0.564 0.588 0.641 0.725 0.862 

%dev. 0.875 0.730 0.590 0.474 0.365 0.129 

20-60 

Sim. Mean 0.533 0.543 0.568 0.621 0.704 0.838 

Sim. Variance 0.202 0.212 0.239 0.297 0.397 0.582 

Extreme model 0.538 0.547 0.571 0.624 0.706 0.840 

%dev. 0.948 0.803 0.609 0.472 0.304 0.204 

20-80 

Sim. Mean 0.520 0.530 0.555 0.608 0.691 0.825 

Sim. Variance 0.194 0.205 0.232 0.290 0.390 0.573 

Extreme model 0.524 0.534 0.558 0.611 0.693 0.826 

%dev. 0.887 0.795 0.636 0.500 0.298 0.127 

20-90 

Sim. Mean 0.513 0.524 0.549 0.603 0.685 0.818 

Sim. Variance 0.191 0.202 0.229 0.288 0.387 0.571 

Extreme model 0.518 0.528 0.553 0.606 0.688 0.820 

%dev. 0.940 0.820 0.699 0.519 0.336 0.232 
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From Tables 5-2, 5-3, and 4, the ‘% deviation’ measures between the simulation results 

and extreme models are less than 1.3% in all cases. Therefore, the extreme models can be used to 

represent a discrete rack with a finite number of pick positions without substantial loss of 

accuracy. We also calculate the % differences between the extreme and discrete models for both 

the CR and Mixed policies. The differences are extremely small and less than 0.1% in all cases; 

therefore, the continuous approximations of the number of the pick positions and demand 

profiles do not have much impact on the expected travel times compared to the case of a discrete 

number of pick positions and discrete demand profiles. Based on the mentioned facts, for the CR 

policy, the extreme models expressed in equation (19b) and (20b), can be substituted for the 

discrete models to estimate the expected travel time with an optimal and MDD assignment, 

respectively. Also, for the Mixed policy, the extreme model developed as equation (22) can be 

used to estimate the expected travel time of MDD assignment.  

5-5-5- Optimal Shape factors 

We use the extreme models developed in the Section 5-5-1 to 5-5-3 to derive the optimal 

shape factor that minimizes the expected travel time for different combinations of operating and 

assignment policies. We consider three operating policies: CR (with optimal and MDD 

assignment), CR then CS (with optimal and MDD assignment), and Mixed (with MDD 

assignment). The expected travel time for these policies can be calculated as          ( ),          ( ),   (      ( )   ( )),   (      ( )   ( )), and         ( ), 

respectively. Note that the optimal assignment for CR then CS policy is the same as optimal 

assignment for CR policy because the performance of a CS policy is not impacted by the SKU 

assignment. To find the optimal shape factor for each policy, we consider a system that has 
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constant area space (denoted as  ) and the equality constraint of      . By substituting   as √  ⁄  in the extreme travel time models, we can find the optimal shape factor, denoted as   , 
which achieves the minimum expected travel time for the range of   (     ). Because of the 

complexity of the extreme models, we use the ‘fminbnd’ function of MATLAB 2013a, which 

applies numerical search methods to find the minimum of a function for a given range of a 

variable. The results of    for different policies and demand curves are shown in Table 5-5. For 

the CR policy and the CR then CS policy using an optimal assignment, increasing the skewness 

of the demand curve results in decreasing the optimal shape factor. However, for these policies 

with an MDD assignment, the optimal shape factor increases when the skewness of the demand 

curve increases. For the same demand skewness the corresponding optimal shape factor for CR 

then CS policy is greater than a CR policy. This occurs because when we are only performing 

storages (a CS policy), the optimal shape factor is equal to 1.0 (Bozer and White (1984)); 

therefore, for a CR then CS policy   is between the optimal shape of a CR policy and 1.0. Also, 

we observe that      for a Mixed policy under a MDD assignment for any demand curve 

skewness.  

 

 

 

 

 



121 

 

Table 5-5 : Optimal Shape factor for different policies 

Policy Demand curve    
  

optimal assignment 
 

MDD assignment 

CR policy 
    

 
20-20 0.682 

 
0.682 

 
20-40 0.617 

 
0.737 

 
20-60 0.568 

 
0.814 

 
20-80 0.528 

 
0.905 

 
20-90 0.514 

 
0.953 

CR then CS policy 
    

 
20-20 0.853 

 
0.853 

 
20-40 0.823 

 
0.879 

 
20-60 0.799 

 
0.914 

 
20-80 0.777 

 
0.955 

 
20-90 0.767 

 
0.977 

Mixed policy 
    

 
20-20 N/A 

 
1.000 

 
20-40 N/A 

 
1.000 

 
20-60 N/A 

 
1.000 

 
20-80 N/A 

 
1.000 

 
20-90 N/A 

 
1.000 

 

5-6- Numerical Results and Managerial Insights 

In this section, we conduct a numerical study and provide the numerical results for the 

CR and Mixed policies under optimal and MDD assignments using the models derived in Section 

5-4 and 5-5. We also provide the percentage difference between the optimal and MDD 

assignments expected travel time to identify how much efficiency is lost by adapting the MDD 

assignment over the optimal assignment. We consider the same six different shape 

configurations and five different demand curves as in Section 5-5-4.  

In Tables 5-6 and 5-7, we calculate the expected ‘per operation’ travel times with respect 

to the optimal assignment of SKUs to pick positions versus the MDD assignment for different 

demand curves and different shape configurations. In Table 5-6, the expected ‘per operation’ 
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travel time for CR policy is calculated by the extreme models as          ( ) and          ( ) for the optimal and MDD assignments (as ‘OPT extreme’ and ‘MDD extreme’), 

respectively. In Table 5-7, the expected ‘per operation’ travel time for the Mixed policy (for      ,    , and    ) with optimal assignment is calculated by the discrete base model as     ( ) using equation (16) (as ‘OPT base’), and for the Mixed policy with the MDD 

assignment is calculated by the extreme model as          ( ) using equation (22) (as ‘MDD 

extreme’). Note that all of the extreme models are based on continuous demand curves that 

approximate the optimal and MDD assignments. In Table 5-7, we do not provide the results for    , as we proved in Proposition 2 that results for the optimal and MDD assignment are equal 

for the Mixed policy with    .  For demand profiles that have identical demand (i.e., 20/20 

curves), the assignment problem does not impact the expected travel times and thus the 

difference between the optimal and MDD assignment is zero for both CR and Mixed policies.    

Table 5-6 and 5-7 show that when an optimal assignment is adopted, increasing the 

skewness of the demand curve improves the expected travel time for any policy or configuration. 

Intuitively, when demand curve skewness increases, the pick positions with shorter expected 

travel time are visited more frequently, because the SKUs assigned to these pick positions have 

higher levels of demand. However, when the MDD assignment is applied for the CR policy, the 

expected travel degrades by increasing the demand curve skewness. The reason results from        for the CR policy (as mentioned in section 5-4-2). That is, the pick position located in 

the middle of the rack has the shortest expected travel time. Thus, the MDD assignment is far 

from optimal because it allocates the highest demanded SKUs to pick positions nearest to the 

input point (which as shown in Fig. 5-4(c)) have the highest expected travel time in a CR policy).  
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For all operating and assignment policies, the expected travel time increases as the shape 

of the rack become more rectangular (i.e.   decreases).  This occurs because the difference 

between the highest and shortest expected travel time increases by decreasing the   value (see 

Fig. 5-3(a) and Fig. 5-3(b)). For these reasons, when a distribution center adopts a MDD 

assignment instead of the optimal assignment and uses a CR policy, it loses more efficiency by 

increasing the skewness of the demand and decreasing the shape factor.   

From Table 5-7, the same observation can be observed for a Mixed policy. However, the 

% differences between the optimal and MDD assignment are much smaller compared to the CR 

policy (i.e., all are less than 8%). For the Mixed policy, we have          .  As    becomes 

closer to zero, the % difference between the optimal assignment and the MDD assignment 

becomes smaller as the pick positions with the shortest expected travel time are located closer to 

the input point where the highest demanded SKUs are assigned in a MDD assignment (See Fig. 

5-4(a) and (b)). We observe that the % difference increases by increasing  , increasing the 

skewness of the demand ( ), and decreasing the shape factor ( ). Therefore, the high % 

differences occur in extreme cases of system parameters (e.g. for highly skewed demand curves 

or relatively small shape factor configuration), and for most of the practical cases of  ,  , and  , 

the % differences are relatively small (less that 5%). In these cases, a system will not lose 

considerable throughput by implementing a MDD assignment instead of an optimal assignment 

for Mixed policies. 
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Table 5-6 : Expected travel time for CR Policy (optimal vs. MDD assignment) 

 

                1.000 0.804 0.635 0.479 0.349 0.238 

20-20 

OPT extreme 0.583 0.566 0.562 0.585 0.637 0.737 

MDD extreme 0.583 0.566 0.562 0.585 0.637 0.737 

% diff. 0.0 0.0 0.0 0.0 0.0 0.0 

20-40 

OPT extreme 0.569 0.547 0.536 0.549 0.591 0.680 

MDD extreme 0.596 0.584 0.586 0.616 0.677 0.789 

% diff. 4.7 6.8 9.4 12.2 14.5 16.1 

20-60 

OPT extreme 0.559 0.532 0.516 0.522 0.556 0.636 

MDD extreme 0.615 0.609 0.620 0.662 0.735 0.864 

% diff. 10.0 14.5 20.3 26.8 32.1 35.8 

20-80 

OPT extreme 0.550 0.519 0.498 0.498 0.527 0.598 

MDD extreme 0.638 0.642 0.663 0.718 0.808 0.957 

% diff. 16.1 23.5 33.1 44.1 53.4 60.0 

20-90 

OPT extreme 0.546 0.514 0.490 0.487 0.513 0.581 

MDD extreme 0.652 0.660 0.688 0.751 0.849 1.011 

% diff. 19.5 28.5 40.3 54.0 65.6 74.0 

 

In Fig. 5-6, we illustrate the impact of demand curve skewness on the performance of 

different policies. Both for the optimal and MDD assignments, a CR then CS policy has lower 

performance on a per operation basis than a Mixed policy for all of the demand curves. Also, for 

the mixed policy, decreasing the   value results in performance improvement because decreasing   decreases the probability of empty trips that occur from a pick position back to the input point. 

However, we observe that increasing the demand curve skewness increases the difference 

between policies’ performance. As an example, for the optimal assignment, the difference 

between a CR then CS policy and a Mixed policy with     is 18.1% for a 20-40 curve, but the 

difference is equal to 31.1% for a 20-90 curve. Moreover, the differences between policies are 

even higher for the MDD assignment, e.g., the difference between the CR then CS policy and 

Mixed policy with     is 20.7% for a 20-40 curve, but the difference is equal to 42.2% for a 

20-90 curve. 
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Table 5-7 : Expected travel time for Mixed Policy (optimal vs. MDD assignment)                       1.000 0.804 0.635 0.479 0.349 0.238 

20-20 

OPT base 0.574 0.585 0.611 0.667 0.754 0.897 

MDD extreme 0.574 0.585 0.611 0.667 0.754 0.897 

% diff. 0.0 0.0 0.0 0.0 0.0 0.0 

20-40 

OPT base 0.554 0.564 0.588 0.640 0.723 0.858 

MDD extreme 0.554 0.564 0.588 0.641 0.725 0.862 

% diff. 0.0 0.0 0.0 0.2 0.3 0.4 

20-60 

OPT base 0.538 0.547 0.571 0.621 0.700 0.831 

MDD extreme 0.538 0.547 0.571 0.624 0.706 0.840 

% diff. 0.0 0.0 0.2 0.5 0.8 1.1 

20-80 

OPT base 0.525 0.534 0.557 0.606 0.682 0.808 

MDD extreme 0.525 0.534 0.558 0.611 0.693 0.826 

% diff. 0.1 0.0 0.3 0.9 1.5 2.1 

20-90 

OPT base 0.518 0.528 0.550 0.599 0.674 0.799 

MDD extreme 0.518 0.528 0.553 0.606 0.688 0.820 

% diff. 0.0 0.0 0.4 1.2 2.0 2.7                       1.000 0.804 0.635 0.479 0.349 0.238 

20-20 

OPT base 0.583 0.592 0.616 0.670 0.756 0.898 

MDD extreme 0.583 0.592 0.616 0.670 0.756 0.898 

% diff. 0.0 0.0 0.0 0.0 0.0 0.0 

20-40 

OPT base 0.568 0.575 0.597 0.648 0.729 0.865 

MDD extreme 0.568 0.576 0.599 0.652 0.736 0.874 

% diff. 0.0 0.1 0.3 0.6 0.9 1.0 

20-60 

OPT base 0.556 0.563 0.584 0.632 0.710 0.841 

MDD extreme 0.556 0.565 0.588 0.642 0.725 0.862 

% diff. 0.1 0.3 0.8 1.5 2.1 2.5 

20-80 

OPT base 0.546 0.553 0.573 0.619 0.695 0.822 

MDD extreme 0.547 0.556 0.581 0.636 0.721 0.859 

% diff. 0.1 0.7 1.6 2.7 3.7 4.5 

20-90 

OPT base 0.542 0.548 0.568 0.614 0.688 0.813 

MDD extreme 0.543 0.553 0.579 0.634 0.720 0.859 

% diff. 0.2 0.9 2.0 3.4 4.7 5.7                       1.000 0.804 0.635 0.479 0.349 0.238 

20-20 

OPT base 0.590 0.597 0.619 0.673 0.758 0.899 

MDD extreme 0.590 0.597 0.619 0.673 0.758 0.899 

% diff. 0.0 0.0 0.0 0.0 0.0 0.0 

20-40 

OPT base 0.577 0.582 0.603 0.652 0.733 0.868 

MDD extreme 0.577 0.584 0.607 0.659 0.743 0.882 

% diff. 0.1 0.3 0.6 1.0 1.4 1.6 

20-60 

OPT base 0.567 0.572 0.591 0.638 0.716 0.846 

MDD extreme 0.569 0.577 0.600 0.654 0.739 0.878 

% diff. 0.3 0.8 1.6 2.5 3.2 3.8 

20-80 

OPT base 0.560 0.564 0.581 0.626 0.701 0.828 

MDD extreme 0.563 0.572 0.598 0.653 0.740 0.882 

% diff. 0.6 1.5 2.8 4.3 5.6 6.5 

20-90 

OPT base 0.556 0.560 0.577 0.621 0.694 0.820 

MDD extreme 0.560 0.571 0.597 0.655 0.743 0.886 

% diff. 0.7 1.9 3.5 5.4 7.0 8.1 
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Figure 5-6: Normalized travel time per operation for Mixed policy (   ) 

 

5-7- Conclusion and future research directions 

This paper investigated the effect of assigning the most-active SKUs to the best pick 

positions in an automated storage/retrieval system (AS/RS) with multiple in-the-aisle pick 

positions (MIAPP-AS/RS).  We presented mathematical models to find the optimal assignment 

of SKUs with non-identical demand to pick positions that minimizes the expected travel time for 

MIAPP-AS/RS under different operating policies. We provided an optimal SKU to pick position 

procedure of complexity  (    ( )). We also derived a continuous demand curve that can be 

used to model the optimal assignment in a CR policy. Based on the proposed continuous demand 

curves, we derived closed-form expressions for a CR and a Mixed policy that approximate the 

expected travel time by assuming there are an infinite number of pick positions, as well as 

continuous demand curves. We validated these continuous extreme models through a set of 

discrete-event simulations that enforce the discreteness of the rack and observed that all of % 

deviations were less that 1%. This showed that our continuous extreme models can approximate 

a discrete rack accurately. Also, by comparing the results obtained from the extreme models 
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versus the discrete models under the same assignment, we observed less than 0.1 % difference 

for all cases.  Using extreme models, we calculated the optimal shape configurations for each 

demand curve and operating policy. 

We analyzed structural results of the optimal assignment problem.  For a CR policy with 

an optimal assignment, we observed that regardless of the shape factor the most demanded SKU 

is assigned to the pick position located in the middle of the rack, and the next most demanded 

SKU is assigned to the next closest pick position to the middle of the rack and so on. For the 

Mixed policy the smallest expected travel time occurs at a pick position located between the 

input point and the middle of the rack. 

We explored the impact of different SKU assignments on the expected throughput rates 

that can be obtained under different system configurations, demand curves, and operating 

policies for peak and non-peak hours. We compared the results obtained from the optimal 

assignment with an easy-to-implement assignment that is often seen in practice -- the MDD 

assignment, which assigns the highest demanded SKUs to the locations closest to the input point.  

We observed that maximum % difference between the optimal and the MDD assignment for a 

Mixed policy was less that 8%, and in most practical MIAPP-AS/RS configurations less than 5%.  

As future research directions, this work can be extended by considering different storage 

policies (such as turnover-based storage and class-based storage policy), different dwell point 

strategies, and different sequencing rules. Applying these directions can help to increase 

understanding of the impact of different storage policies and demand skewness on the throughput 

and space utilization of MIAPP-AS/RS. 
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Appendix A. MDD assignment optimality condition for Mixed policy with     

According to Proposition1b, the MDD assignment is an optimal assignment for the Mixed 

policy if function   is a monotonically increasing function.     [ (  )   ] when    . 

The sufficient condition for   to be monotonically increasing is 
      , which is equivalent to 

  (  )      . According to equation (4), obtaining the values for    (   ),    (     ),    (   ), and    (     ) to calculate  (  ) requires finding the relation between   and (   ), and  . To do so, we consider two ranges of   value and calculate the  (  ) as 

equations (A.1) and (A.2). We checked that the sufficiency condition mentioned above holds for 

any relation between   and   in equations (A.1) and (A.2). 

For       ⁄ , 

 (  )  
{  
  
      ⁄     ⁄     ⁄  (   )  ⁄                                                         ⁄     ⁄  (   )  ⁄                                                              ⁄     ⁄  (   )   ⁄  (   )  ⁄                                               (A.1) 

For   ⁄     , 

 (  )  
{  
  
      ⁄     ⁄     ⁄  (   )  ⁄                                                  ⁄  (   )   ⁄    ⁄                                                            ⁄     ⁄  (   )   ⁄  (   )  ⁄                                                     (A.2) 
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Appendix B. Derivation of      ( ) for the CR policy 

We use equation (17) to substitute for     (   ), and equations (A.1) and (A.2) to 

substitute for  (  ) in equation (19a). 

For       ⁄ , 

     ( )  
∫  (    )   { (    ⁄    ⁄ )  (   ) [   (   )⁄  (   )  ⁄ ]}         
∫  (    )   { (    ⁄    ⁄ )  (   ) [   (   )⁄  (   )  ⁄ ]}           
∫  (    )   { (    ⁄    ⁄ )  (   ) [   (   )⁄  (   )  ⁄ ]}           
∫  (    )   { (    ⁄    ⁄ )  (   ) [(   )   ⁄    ⁄ ]}             

   (    )   (    )  (        )   (   )(    (   )   (   )    (   )(   ))   (   )(   )(   )   

For   ⁄     , 

     ( )  
∫  (    )   { (    ⁄    ⁄ )  (   ) [   (   )⁄  (   )  ⁄ ]}           
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∫  (    )   { (    ⁄    ⁄ )  (   ) [(   )   ⁄    ⁄ ]}             
∫  (    )   { (    ⁄    ⁄ )  (   ) [(   )   ⁄    ⁄ ]}         
∫      { (    ⁄    ⁄ )  (   ) [(   )   ⁄    ⁄ ]}            

   (     ) (        )  (  (     ) )   (   )(    (   )   (   )    (   )(   ))   (   )(   )(   )   

Appendix C. Derivation of      ( ) for the Mixed policy 

We use equation (18) to substitute for     (   ), and equations (A.1) and (A.2) to 

substitute for  (  ) in equation (20a). 

For       ⁄ , 

     ( )  ∫      { (    ⁄    ⁄ )  (   ) [   (   )⁄  (   )  ⁄ ]}         
∫      { (    ⁄    ⁄ )  (   ) [   (   )⁄  (   )  ⁄ ]}           
∫      { (    ⁄    ⁄ )  (   ) [(   )   ⁄    ⁄ ]}           
∫  {      ⁄      ⁄         ⁄      (   )  ⁄ }         ∫      { (    ⁄        
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  ⁄ )  (   ) [   (   )⁄  (   )  ⁄ ]}     ∫      { (    ⁄    ⁄ )        
(   ) [(   )   ⁄    ⁄ ]}     
   (   )   [  (   )          (   )(   )   (   (   )   (   ))   ( (  (   ) )  (    (   )))]  (   )(   )(   )   

For   ⁄     , 

     ( )  ∫      { (    ⁄    ⁄ )  (   ) [   (   )⁄  (   )  ⁄ ]}           
∫      { (    ⁄    ⁄ )  (   ) [(   )   ⁄    ⁄ ]}           
∫      { (    ⁄    ⁄ )  (   ) [(   )   ⁄    ⁄ ]}         
   (   )   [  (   )          (   )(   )   (   (   )   (   ))   ( (  (   ) )  (    (   )))]  (   )(   )(   )   

Supplement A. Optimal   for CR Policy    

 (  ) is calculated as equations (A.1) and (A.2) for two cases of   (      ⁄  and   ⁄      ). Equations (A.1) and (A.2) are continuous piecewise functions. To find the 

optimal  , we follow this procedure for each range of  . 

STEP 1) Find    for each range of   by setting 
  (  )     , then solve for   and calculate the 

value of  (   ) if the    is in the given range. 
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STEP 2) Calculate the value of  (  ) for the beginning and ending of each range of  . 

STEP 3) Compare the results from STEP 1 and 2 to find the   .  
The results of both ranges of   (      ⁄  and   ⁄      ) are shown in Table A1 

and A2, respectively. For both cases, for the first and third range of  , the calculated    is not 

in the range; therefore, we calculate the  (   ) only for the second range of  , and calculate 

the boundaries value for  (  ) for the first and third ranges. Finally, we compare the results 

obtained in the previous steps. The minimum  (  ) is equal to    ⁄    ⁄ , corresponding to 

     ⁄ .  

Table A1. Results for calculating    for       ⁄  

Interval    Boundaries value for  (  )  (   ) 
      

   √       

(not in range) 

    √     

(not in range) 

 (  )    

 (  )     ⁄ (   )  ⁄  

  

             ⁄  

 (  )     ⁄ (   )  ⁄  

 (    )     ⁄ (   )  ⁄  

 (    )    ⁄    ⁄  

        
     √     

(not in range) 

     √     

(not in range) 

 (    )     ⁄ (   )  ⁄  

 (  )    ⁄    ⁄  
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Table A2. Results for calculating    for   ⁄      

Interval    Boundaries value for  (  )  (   ) 
        

   √       

(not in range) 

    √     

(not in range) 

 (  )    

 (    )     ⁄ (   )  ⁄  

  

             ⁄  

 (    )     ⁄ (   )  ⁄  

 (  )     ⁄ (   )  ⁄  

 (    )    ⁄    ⁄  

      
     √     

(not in range) 

     √     

(not in range) 

 (  )     ⁄ (   )  ⁄  

 (  )    ⁄    ⁄  
  

 

Supplement B. Proof of     (   ) is a Valid Probability Distribution Function 

Any continuous probability distribution function (PDF),  ( ), must satisfy the two 

following conditions.  ( )         , and  ∫  ( )         (Mendenhall & Sincich, 2006). 

We show that both conditions hold for      (   ) as follows. 

1)     (   )     for        and      . 

2) ∫     (   )       ∫  (    )          ∫  (    )            ⁄    ⁄   . 
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CHAPTER SIX: CONTRIBUTION 3- “ANALYTICAL MODELS FOR 
MIAPP-AS/RS UNDER DEDICATED AND CLASS –BASED STORAGE 

POLICY” 

We study the impact of dedicated and class-based storage policies on the throughput 

performance of MIAPP-AS/RS. We develop mathematical optimization models to minimize the 

travel time of the crane by changing the assignment of the SKUs to pick positions and storage 

locations simultaneously. We develop a more tractable solution approach by applying a Benders 

decomposition approach, as well as an accelerated procedure for Benders algorithm. We observe 

high degeneracy in the optimal solution when a chebyshev metric is used to calculate the 

distances. As a result of this degeneracy, we realize that the assignment of SKUs to pick 

positions does not impact the optimal solution in a dedicated storage policy. We also developed 

closed-form travel time models for MIAPP-AS/RS under a class-based storage policy. 

6-1- Introduction 

Distribution centers and warehouses are generally operated under three storage policies: 

randomized storage, dedicated storage, and class-based storage. In randomized storage, SKUs 

are assigned to the storage locations on a random basis (e.g., SKUs are stored based on 

availability of storage location at the time of storage request). The advantage of a randomized 

storage policy is efficient space utilization. In Chapter 4 and Chapter 5, we developed several 

travel time and optimization models when the system is operated under randomized storage. In a 

dedicated storage policy, the specific storage locations are assigned to a specific SKU. If high 

demanded SKUs are dedicated to the most convenient locations, a dedicated storage policy is 
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expected to result in minimum travel time and material handling cost required for storage and 

retrieval operations (Lee & Elsayed, 2005)).  A class-based storage policy is a hybrid policy that 

shares the advantages of the two other policies. Based on some criteria (such as demand, 

correlation, size, etc), each SKU is assigned to a class, where each class occupies a given set of 

storage locations. Storage of SKUs within each class is based on a randomized storage policy 

(Larson et. al, 1997). In this chapter, we study the dedicated and class-based storage policies for 

MIAPP-AS/RS. The goal of our study is to develop models to find the assignment of SKUs to 

pick positions and storage locations that minimize the travel time of the crane under the CR 

operating policy. The remainder of this chapter is as follows. In Section 6-2, we develop the 

mathematical optimization models to find the optimal assignment of the SKUs when the system 

is operated under dedicated storage. In Section 6-3, we develop the closed-form travel time 

models to estimate expected travel time of the crane under class-based storage policy. Finally, in 

Section 6-4, we review the main contributions and the practical insights as well as the future 

research directions. 

6-2- Dedicated Storage Policy for MIAPP-AS/RS 

In this section, we consider the dedicated storage policy for MIAPP-AS/RS. In a 

dedicated storage policy each storage location in the rack is dedicated to one specific SKU. We 

are interested in the assignment of the SKUs to the storage locations, as well as the assignment of 

SKUs to pick positions. The key research goals regarding this problem are as follows. 

1- Find the optimal assignment of SKUs to storage locations that minimizes the expected travel 

time of the crane, given the assignment of SKUs to pick positions. 



136 

 

2- Simultaneously, find the optimal assignment of SKUs to storage locations, as well as to pick 

positions that minimizes the expected travel time of the crane. 

We use the following notations for this section. 

Indices and sets: 

  : SKU’s index,   {       } 
  : Pick Position’s index,   {       } 
  : Storage Location’s index,   {       } 
Parameters: 

  : Number of SKUs and Pick Positions 

  : Number of Storage Locations 

   : Normalized Demand of SKU  ,    [   ] 
   : Number of SKU  ’s copies stored in the rack 

    : Distance between Pick Position   and Storage Location   

Decision Variables: 

     {                                                                                                                                                                                                     
    {                                                                                                                          
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     {                                                                                                                                                                   
We consider that there are   SKUs and each of the   SKUs have a single, dedicated pick 

position; thus, there are also   pick positions. The normalized demand of each SKU   is denoted 

as    where     , ∑      . The pick positions are replenished from storage locations. In a 

dedicated storage policies, locations in the rack are dedicated to a specific SKU. The number of 

storage locations dedicated to a specific SKU, say SKU  ,  is equal to the number of SKU  ’s 

copies, which is denoted as   . Note that for a dedicated storage policy, the total storage locations 

that exist in the rack is equal to the sum of SKU’s copies (i.e. ∑      ). We assume that the 

number of each SKU’s copies is equal to maximum inventory of that SKU. Defining the 

inventory level of each SKU depends on the warehousing policies. In this work, we consider that 

the inventory level of each SKU follows the EOQ inventory model; therefore, the inventory of 

each SKU in the rack is proportional to the square root of each SKU’s demand (i.e.    √  ). In 

Fig. 6.1, we plot the normalized demand versus the normalized inventory level (inventory of 

each SKU divided by total inventory) for the fixed number of SKUs for a 20/80 demand curve. 

Fig. 6-1 shows that the skewness of the corresponding inventory curve is much less than the 

skewness of the demand. As an example for the 20/80 curve, 80% of the total demand is 

attributed to 20% of SKUs; however, for the inventory curve obtained by the described method, 

only 50% of the total inventory is attributed to the top 20% of SKUs. 
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Figure 6-1 : Typical 20/80 demand curve versus corresponding EOQ inventory curve 

 

Our objective in this section is to minimize the expected travel time of the crane by 

changing the assignment of SKUs to storage locations; first, by assuming that the assignment of 

the SKUs to pick position is known; second, by assuming that the assignment of the SKUs to 

pick position is changing as well. We call these problems as SKU Assignment Problems (SAP).  

6-2-1- SKU Storage Assignment Problem, when the assignment of SKUs to pick positions is 

known 

The objective of this model is to minimize the expected travel time for different operating 

policies by changing the assignment of the SKUs to storage locations. When the assignment of 

SKUs to pick positions is known, we know the picking position location where all of the copies 

of a specific SKU are retrieved to. We define the set   to identify the assignment of SKUs to 

pick positions, where    {(   )|                                    }. First, we formulate the 

assignment problem for a CR policy as Model1. We assume that all of the storage locations in 
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the rack are occupied and the crane will perform only retrieval operations. A CR policy consists 

of two types of trips. The first trip is from storage locations to the pick positions. For this trip 

type, the crane is restricted to move to only the pick position that is dedicated to the certain SKU 

stored in the storage location. The latter trip is from pick positions to storage locations. In this 

case, the crane can move to any storage locations based on the next retrieval request; therefore, 

we assume that each storage location in the rack is visited with the probability of 
    ⁄ . 

According to the mentioned properties of the crane movement in the CR policy, the model can be 

formulated as follows. We call this model as SAP1. 

SAP1: 

     ∑ ∑            ∑ ∑ ∑     ⁄               
∑               (   )                                                                                                                   
(1) 

∑                                                                                                                                          (2) 

     {   }                                                                                                                                    (3) 

Constraint (1) guarantees that the total number of storage locations assigned to each pick 

position must be equal to the maximum inventory level of the SKU assigned to that pick 

position. Equation (2) provides the constraint that each storage location must be assigned to just 

one pick position. The structure of Model1 shares the same structure as the well-known 



140 

 

Transportation Problem.  We can transform our problem into a Transportation Problem, by 

imagining that there are   pick positions that supplies    SKUs and   storage locations that each 

have demand for 1 SKU. Consequently, according to the unimodular property of the 

transportation problem, the linear programming relaxing of constraint (3) by considering      as a 

positive continuous variable will always result in      being integer (given     will always be 

integer). 

6-2-2- SKU Assignment Problem, when SKUs are assigned simultaneously to storage locations 

as well as pick positions 

The objective of this model is to minimize the expected travel time for different policies 

by determining the assignment of the SKUs to storage locations, as well as determining the 

assignment of SKUs to pick positions.  This problem is similar to the problem described in 

Section 6-2-1; however, the assignment of SKUs to pick positions is a decision, and it is not 

known like in Section 6-2-1. Therefore, the number of storage locations that must be assigned to 

each pick position is not known and depends on which SKU is assigned to each pick position. To 

resolve this issue, we introduce the new binary variable,    , that controls the assignment of 

SKUs to pick positions, and      controls the assignment of SKUs to storage locations. The 

formulation of the assignment problem for this section is given as follows. We call this model as 

SAP2. 
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SAP2: 

    ∑ ∑ ∑            ∑ ∑      ∑     ⁄                                                                                   (4) 

∑                                                                                                                                            (5) 

∑                                                                                                                                            (6) 

∑                                                                                                                                        (7) 

∑ ∑                                                                                                                                      (8) 

    ,       {   }                                                                                                                           (9) 

Constraint (5) ensures that each SKU type is assigned to only one pick position. 

Constraint (6) enforces that each pick position must be assigned to only one SKU type. 

Constraint (7) ensures that if a SKU is assigned to a pick position, the number of storage 

locations assigned to that pick position must be equal to the maximum inventory level of the 

assigned SKU. Constraint (8) enforces that each storage location must be assigned to just one set 

of SKU type and pick position. 

The SAP2 is a binary integer programming which cannot be solved by optimization 

solver packages (e.g. CPLEX) for real world instances due to large number of variables and 

constraints. However, SAP2 has a special structure that allows us to decompose this problem into 

more tractable instances. Specifically, SAP2 has the dual block angular structure, which means 

some variables exist in most of the constraints (complicating variables). By considering this 
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structure, we use a Benders Decomposition method, introduced by Benders (1962), to 

reformulate the problem. Particularly, for any feasible solution to constraints (5) and (6) that only 

include    , SAP2 (problem (4)-(9)) transforms to a Transportation Problem. 

6-2-2-1- Benders Decomposition Overview 

Benders Decomposition is a large scale optimization method used to reduce the size of 

the large problem to easier-to-solve problems. This method was introduced by Benders in 1962. 

In this method, the main problem is broken into a subproblem and master problem. The method 

is an iterative process that iteratively solves the subproblem and master problem. In each 

iteration, after solving the subproblem, cuts are added to the master problem using the 

subproblem extreme points and extreme rays. The master problem is solved with the new cuts, 

and the master problem optimal solution is used to reset the parameters of the subproblem. This 

process is repeated until the termination condition is met. Mostly, when the upper bound and 

lower bound is close enough (less than a desired limit), the process is terminated. 

Original Problem (OP): 

          ( ) 
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Where       ,  ( ) is a real valued function,       ,     ,     , and   is 

the               null vector (where   is the number of constraints). Let  ̅ be denoted as 

the fixed value of  . By fixing the value of vector   as  ̅, for any given  ̅ vector, the above 

problem can be decomposed to the following Benders subproblem. 

Benders Subproblem: 

       ( )       

      ̅ 

    

Let’s refer the dual of Benders subproblem as Benders dual, which is given as the 

following. 

Benders Dual Problem: 

       ( )   (   ̅)   

      

Where   is the dual variable corresponding to       ̅ constraint. By looking to the 

above problem, the space of        does not depend on the value of the  ̅ vector. Let   

denote the polyhedron defined by       constraints. Let            and            denote 

the extreme points and extreme rays of  , respectively. Using the extreme points and extreme 

rays of the dual of Benders subproblem, the Benders Master Problem is formulated as the 

following. 
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Benders Master Problem: 

        

(   )     ( )               
(   )                 

When the size of the subproblem increases, the numbers of extreme points and rays 

increase exponentially. Therefore the number of constraints increases exponentially in the master 

problem; however, only a limited number of these constraints are active at the optimal solution. 

Hence, Benders suggests to solve the restricted master problem with a small subset of the 

constraints and iteratively add new constraints in each step. As the number of extreme points and 

rays are finite, this process finds the optimal solution in a finite number of steps (or reports the 

result as infeasible). 

6-2-2-2- Magnanti-Wong acceleration method for Benders algorithm 

Magnanti & Wong (1981) identified that the efficiency of Benders algorithm is low when 

the Benders Subproblem is degenerate. A degenerate subproblem means that there does not exist 

a unique solution to the subproblem; consequently, there are several potential cuts to be added to 

the master problem in each step. Therefore, they develop the procedure to generate the strongest 

possible cut (which they call a Pareto-optimal cut). Based on their definition, cut1 dominates 

cut2 if (   )    (   )    for     , where      and      are the 

corresponding extreme points for cut1 and cut2, respectively. In order to find the Pareto-optimal 
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cut, they use the concept of a core point. Let a point      (  ) denote a core point of  , 

where    and   (  ) are the convex hull and the relative interior of set  , respectively. Let  ̅ 

be the optimal solution of the dual Benders subproblem. Using the mentioned notations, the 

Magnanti-Wong Problem (M-W problem) is formulated as following. 

M-W Problem: 

       (    )   

(   ̅)    ( ̅)               
      

Let    denote the optimal solution for this problem, and (   )    is the resulting 

Pareto-optimal cut. Finding the Pareto-optimal cut, requires solving the additional M-W 

Problem. There is a trade-off between the performance of the Pareto-optimal cut on convergence 

of the problem and total computational effort. Therefore, the M-W Problem may not be solved in 

each iteration. In many problems, finding a core point (     (  )) is reported as a very 

difficult task (Papadakos, 2008). Different methods are introduced in the literature to 

approximate the core point (Mercier et al.,2005). One of these methods includes finding an 

arbitrary subset of extreme points of the prior master problem and forming the linear convex 

combination of those extreme points to use as a core point approximation. Choosing no core 

point may affect the strength of the cut ( the cut can be not a Pareto-optimal cut). Mercier et al. 

(2005) suggest choosing the arbitrary coefficient for variable   in M-W Problem. By applying 
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this method, the space of the M-W Problem remains the same; therefore, this method still 

generates a valid Benders cut.  

Benders subproblem may have some special structures. In these cases, the Benders 

subproblem becomes a better candidate to solve instead of the Benders subproblem dual. A 

similar approach can be used for M-W Problem, meaning the dual of the M-W Problem can be 

solved instead of M-W Problem. Let   be the dual variable corresponding to first constraint of 

M-W Problem. Let  ̅ denote the optimal solution to the Benders subproblem. Using   and  ̅, the 

dual of M-W Problem is formulated as follows. 

M-W Dual Problem: 

       ( )      +  ( ̅)   

   (   ̅)       

    

6-2-2-3- Benders decomposition formulation for SAP2 

Let   be the set of all binary vectors of     that satisfy constraints (5) and (6). Let  ̅    

be any arbitrary vector of set  , where  ̅   are the components of  ̅  For any given  ̅, the main 

problem reduces to the following primal subproblem (PSP), that only includes      variables. 

Equation (11) has    constraints and equation (12) includes   constraints; in result, PSP has      constraints and     variables.  
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PSP: 

         ∑ ∑ ∑             ( ̅)                                                                                       (10) 

∑          ̅                                                                                                                           (11) 

∑ ∑                                                                                                                                   (12) 

       {   }                                                                                                                              (13) 

We observe two special structures for PSP. First, according to the structure of constraints 

(5) and (6), any given  ̅ vector can be considered as a solution of an Assignment Problem. In 

particular, any given  ̅ is an assignment of SKUs to pick positions, and set   involves all 

possible    permutations of such assignments. Therefore, for any given  ̅, one of the   or   
indices of      variable is redundant. We remove index   and substitute the new      variable for      in PSP. Second, according to constraints (5) and (6), any  ̅ vector has only   zero values 

and   one values. Therefore, the right hand sides of   constraints included in equation (11) are 

equal to zero. Also, as      is a binary variable, we can remove these   constraints from equation 

(11). Let   be the set of     pairs, where   {(   )| ̅    }. Based on these mentioned 

observations, we reformulate the PSP, and call the new model as reduced primary subproblem 

(RPSP). The reformulation (problem (14)-(17)) is given as follows. 

RPSP: 

           ∑ ∑             ( ̅)                                                                                          (14) 
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∑               (   )                                                                                                               (15) 

∑                                                                                                                                        (16) 

     {   }                                                                                                                                  (17) 

The structure of RPSP is identical to the problem we defined before for Case1. Therefore, 

the RPSP is a well-known transportation problem, and the constraint (17) can be discarded with 

no effect on integral optimality. 

Let     and    be the dual variables corresponding to constraints (15) and (16), and   (      ) be the dual vector constructed by these variables. Let   denote the set of all 

extreme points defined by the polyhedron of RPSP dual problem. Note that the RPSP is a 

transportation problem; therefore, the polyhedron space of the RPSP is always bounded. 

Consequently, the RPSP needs to only generate the optimality cuts, as the feasibility cuts are not 

required to be added to the master problem. Using the defined notion, the MIP relaxation of 

SAP2 can be reformulated as the master problem (MP)(problem (18)-(22)). 

MP: 

                                                                                                                                       (18) 

   ∑ ∑(          ⁄ ∑     )   (   )     ∑ ∑(    ⁄ ∑     )   (   )      ∑                                          

  (      )                                                                                                                          (19) 

∑                                                                                                                                         (20) 
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∑                                                                                                                                         (21) 

      {   }                                                                                                                                (22) 

Intuitively, the MP solves the SKUs-to-pick-positions assignment problem, and passes 

this assignment to the RPSP. On the other hand, given the assignment of SKUs to pick positions 

passed by the MP, the RPSP solves the SKUs to storage locations assignment problem. Then, by 

using the dual solutions to the RPSP, a new cut restricts the MP space to improve the quality of 

the MP solution space. In each iteration, the value of the MP objective function gives the lower 

bound to the problem. As in each iteration a new constraint (optimality cut) is added to the MP, 

therefore, the value of the lower bound (LB) is monotonically increasing. The value of the RPSP 

may fluctuate in each iteration as the right hand sides of the constraints are updated by the 

solution that is passed by the MP. Therefore, in each iteration, the best current value of RPSP is 

updated as the upper bound (UB) of the problem. We terminate the algorithm when the 

difference between the upper bound and the lower bound is smaller than the desired limit (i.e.        ). 

As we mentioned earlier, the RPSP is a transportation problem which is a well-known for 

its degeneracy. Therefore, implementation of M-W acceleration method can produce the stronger 

cuts for MP in our case. We expect implementation of this acceleration method results in faster 

convergence. 

In order to formulate the M-W dual problem, an auxiliary variable associated with first 

constraint of M-W problem is required. Let   be an arbitrary variable, where      . Also, let 
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vector   =(    ) define the core point of MP in each iteration.        denotes the optimal value of 

RPSP objective function. Using the defined notations, the M-W dual formulation for SAP2 

(problem (23)-(27)) is given as follows. 

M-W dual: 

    ∑ ∑ ∑                                                                                                                   (23) 

∑          ̅               (   )                                                                                           (24) 

∑                  (   )                                                                                                         (25) 

∑ ∑                                                                                                                                   (26) 

       {   }                                                                                                                              (27) 

6-2-3- Benders Algorithm Implementation and Numerical Result 

We solve the SAP2 problem by the Benders decomposition procedure. We code and run 

the Benders algorithm using ILOG CPLEX 12.6. We consider two types of distances (   ) for 

the problem instances 1) Rectilinear distances 2) Chebyshev distances. We apply two types of 

implementation of Benders algorithm. First, we use the classical Benders decomposition 

procedure, which the RPSP and MP are solved in each iteration. The steps of the classic Benders 

algorithm are as follows. 

Classic Benders Algorithm for SAP2:  

Step 1)    ,       



151 

 

Step 2) Solve the MP 

Step 3) Use  ̅   to solve RPSP 

Step 4) Calculate  ̅  ( ̅    ̅ ) using RPSP optimal solution 

Step 5) Update optimality cuts set,      ̅ 

Step 6) Update        {         },         

IF         THEN GOTO Step 2, ELSE STOP 

Second, we implement the M-W acceleration method for Benders algorithm. The 

procedure is given as following steps. 

M-W Accelerated Benders Algorithm for SAP2: 

Step 1)    ,       

Step 2) Solve the MP 

Step 3) Find the      (core point) 

Step 4) Use  ̅   to solve RPSP 

Step 5) Calculate  ̅  ( ̅    ̅ ) using RPSP optimal solution 

Step 6) Use      (Step 3) and        (Step 4) to solve M-W dual 

Step 7) Calculate  ̿  ( ̿    ̿ ) (M-W cut) using M-W dual optimal solution 
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Step 8) Update optimality cuts set,      ̅   ̿ 

Step 9) Update        {         }, and         

IF         THEN GOTO Step 2, ELSE STOP 

In order to find the core point in Step 3, we form the linear convex combination with 

identical weights of the binary solutions found in Step 2 (Solving MP). For example, 

suppose   ,  ,and    are the three binary solutions found in Step 2. The core point is calculated 

as                   . We set   equal to 0.1 for both the Classic and M-W acceleration 

method implementations of Benders algorithm. We consider the instances with two problem 

sizes; first, 20 SKU types and 5 pick positions (SAP2 problem has 525 binary variables). Second, 

60 SKU types and 10 pick positions (SAP2 problem has 6100 binary variables). In Table 6.1, we 

calculate the maximum inventory level of each SKU for demand curve based on EOQ model (as 

described in Section 6-2 introduction).  

Table 6-1 : Maximum inventory level 

Problem 

Size 

Demand 

Curve 
Max. Inventory Level 

         

20/20    (         )  
20/40    (         )  
20/60    (         )  
20/80    (          )  

          

20/20    (                   )  
20/40    (                   )  
20/60    (                     )  
20/80    (                     )  
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Fig. 6.2 shows the convergence of the classic Benders algorithm. The classic Benders 

algorithm finds the optimal solution after 70 iterations for the case of      and      (Small 

size rack). However, as we illustrate in Fig. 6.3, for the case of      and      (Medium 

size rack), the classic Benders algorithm does not converge as the gap between the UB and LB 

after 500 iteration is considerable. Therefore, we implement the M-W acceleration method for 

this case.  As we show in Fig. 6.3, the M-W acceleration method improves the convergence of 

Benders algorithm, and the optimal solution is found after 150 iterations. We still cannot solve 

large size real world problem instances by our proposed decomposition algorithm. 

 

Figure 6-2: Classic Benders algorithm convergence for     and      
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Figure 6-3 : Classic and M-W accelerated Benders algorithm convergence for      and      

We show the layout of the rack with the optimal assignment of SKUs to pick positions 

and storage locations in Fig. 6.4 and 6.5 for the small and medium size rack (Problem sizes of            and            , respectively) with rectilinear distances. We have three 

major observations from the optimal layouts. First, SKUs are assigned to the storage locations 

vertically above the pick position dedicated to the same SKU. Second, the pick position 

assignment alternates between allocating a high demanded SKU next to a pick position that is 

allocated to a low demanded SKU. For example in Fig. 6.4 and 6.5, in all layouts the pick 

positions assigned to most demanded and least demanded SKUs are located next to each other. 

As a result, the total inventory assigned to the pick positions located at the half left side of the 

rack (from the middle of the rack to left, i.e.         ) is balanced to the pick positions 

located at the half right side of the rack (from the middle of the rack to right, i.e.           ). As an example for the rack with     , the total inventory assigned to the 5 pick positions 

at the left side of the rack is around 30 (i.e. 
∑     ⁄ ). These observations can be helpful in guiding 
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the development of heuristic approaches to solve the real world size problems by considering 

which SKUs can be located next to each other in optimal solution. These valid inequalities may 

be able to decrease the solution time of the MP significantly. Finally, from the second 

observation, we are expecting that designing the class-based storage system with 2 classes will 

result in similar performance as dedicated storage. Additionally, the complexity of SAP for a 2-

class storage system is considerably lower than dedicated storage, because with a class-based 

storage policy the decision is whether a SKU belongs to class 1 or 2 (versus assigning a SKU to 

a specific storage location in a dedicated policy). 

 

Figure 6-4 : Optimal SKU assignment for      and      (for rectilinear distances) 

 



156 

 

 

Figure 6-5 : Optimal SKU assignment for      and      (for rectilinear distances) 

 

As the final observation, we observe that the optimal solution is highly degenerate. 

Several different assignments to pick positions and storage locations exist with the same optimal 

objective function value. We also implement the classic and M-W accelerated Benders algorithm 

for our problem with the chebyshev distances. We observe that the degeneracy for the 

assignment of SKUs to pick position is very high. Therefore, we generate 100 million random 

assignments of SKUs to pick positions and solve the RPSP. The results show that for all 

randomly generated assignments, RPSP gives the same optimal objective function value. We run 

the same experiment for all the small, medium, and real world size problem instances, and have 

not found a single counter example. We have explored several extreme problem instances 

(extremely skewed demand curve), and have identified a few counter-examples where solutions 

exist whose objective function values are not equal to the optimal objective function value. The 
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reasoning associated to the large number of multiple optimal solutions is that, several elements in 

the chebyshev distance matrix,    , are identical. Therefore, several different storage locations 

have the same distance to particular pick positions. As a result, although RPSP finds the different 

optimal assignment of SKUs to storage locations, the optimal objective function value remains 

the same, which means changing the assignment of SKUs to pick positions do not impact the 

optimal objective function value. 

6-3- Class-based Storage Policy for MIAPP-AS/RS 

In this section, we are interested to develop models to analyze class-based storage 

policies for MIAPP-AS/RS. In the previous section, for dedicated storage policy, the distances 

from storage locations to pick positions are fixed. However, in a class-based storage policy, the 

SKUs assigned to a particular class are randomly stored in any location within that class. 

Therefore, to have fixed distance between each class and each pick position, we consider the 

expected travel time between each class and each pick position to use for an optimization model. 

6-3-1- Expected Travel time between a storage region and a pick position 

In this section, we are interested in deriving expected travel time models between a 

storage region and an in-the-aisle pick position, and will use these travel times models as an 

input to optimization models for systems with a class-based storage policy.  In Section 4-4-1, we 

developed models to derive the expected travel time between a pick position and any random 

point within the rack. In this section, we intend to develop models that enable us to calculate the 
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expected travel time between a pick position and any random point within the given specific 

vertical region in the rack (See Fig. 6.6).  

 

Figure 6-6 : Expected travel time trip in a normalized rack for class-based storage policy 

 

To model this case, we need to consider that a crane may travel from a pick position in 

one region to a storage location in the same region or to a storage location in another region (See 

Fig. 6-6). Although we use the same approach as Section 4-4-1, we cannot use Section 4-4-1 

models directly for the current mentioned case due to the travel between regions. Let’s consider 

the following notations for our models. 

    Distance of pick position   from the lower left corner of the rack (       ) 

    Distance of vertical boundary   from the left corner of the rack (such that the region   is 

bounded by boundary line   and (   )) (        and        ) 

    : Expected Travel time between pick position   and region   
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We assume that the storage locations are continuously and uniformly distributed in each 

region (class). We consider the vertical regions in this case. Therefore, the boundaries of the 

region   can be defined with two points (     and   ) on the bottom of the rack (See Fig. 6-6). 

We consider three cases for the locations of a pick position; 1) the pick position is located within 

the boundary of a given region (           ); 2) the pick position is located at the left side 

of the region (          ), and 3) the pick position is located at the right side of the region 

(          ). 

6-3-1-1- Pick Position   is in Region   (           ) 

In this case, we can use the models in Section 4-4-1 directly as the pick position is 

located within the region. In Section 4-4-1, the normalized shape of the rack in terms of time is a 

rectangle with a width of   and height of  . In this section, the given region has the same height 

of  , but a width of (       ). Therefore, similar to Cases 1 and 2 in Section 4-4-1, the 

distance of the pick position   to the left side of the region   is equal to (       ), and to the 

right side of the region   is equal to (     ). Similar to Section 4-4-1, using equation (4) and 

(5), we calculate the expected travel time between the pick position   and any random point 

within the left part of region   and right part of region   as equation (28) and (29), respectively. 

The probability that a point is selected at the left side of region   is equal to 
              , and at the 

right side of region   is equal to 
            . Hence, the overall expected travel time between pick 

position   and any random point within region  ,     , is calculated as equation (30). 
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    (  )  {  
  (       )   ⁄        ⁄           (       )      (       )⁄  (       )  ⁄            (       )                           (28) 

    (  )  {  
  (     )   ⁄        ⁄           (     )      (     )⁄  (     )  ⁄            (     )                                      (29) 

                       (  )                  (  )                                                                                 (30) 

6-3-1-2- Pick Position   is Located at the Left Side of Region   (           ) 

For this case, we follow the same methodology we used in Section 4-4-1 to derive the 

travel times. The distance between the pick position and the boundaries are equal to (       ) 
and (     ). We follow the approach Bozer & White (1984) applied to normalized the rack 

and derive the travel time (Similar to Section 4-4-1). All of the notations and assumptions are 

similar to what we defined in Section 4-4-1. In this case, the horizontal travel time follows the 

uniform distribution between (       ) and (     ). Also, the vertical travel time follows 

the uniform distribution between   and  . Hence, we have 

          (             )           (   ) 
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We consider the three possible cases based on the relation between the distances to the 

boundaries and the shape factor,  . Recall from Section 4-4-1, the joint cumulative probability 

distribution function (CDF) of crane travel time is given as following. 

 ( )    (      )    (    )     (    ) 
For the first case, we consider that the shape factor is smaller than the distance of the pick 

position to both boundaries (i.e.                ). Based on the mentioned distribution 

of horizontal and vertical travel time, the CDFs of horizontal and vertical travel time are given as 

follows. 

for                 , we have 

  (    )  {                                                                       

  (    )                          

Hence, the joint CDF for crane travel time is 

 ( )  {                                                                       

According to the definition of probability distribution function (PDF) and the expected 

value of a random variable, the PDF and expected travel time of the crane is as follows.  

 ( )    ( )   {                                                                
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     ∫   ( )               ∫                                                                                     (31) 

For the second case we consider that the value of the shape factor is greater than the 

distance of the pick position to the closer boundary, but smaller than the distance to the farther 

boundary (i.e.                ). Following a similar procedure as the one used to 

derive the previous case, we derive the CDF, PDF, and expected value of the travel time for this 

case as follows. 

for                , we have 

  (    )  {                                                                                     

  (    )  {                                           

 ( )  { (         ) (       )                                                                     

 ( )    ( )   {           (       )                                                             

     ∫   ( )                 (       )∫      (       )                   ∫           
     (       )    (       )   (       )  (     )                                                                                                 (32) 
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For the third case, we consider that the value of the shape factor is greater than the 

distance of the pick position to both boundaries (i.e.                ). Similar to 

previous cases, the derivation are given as following. 

for                 , we have 

  (    )  {                                                                         

  (    )                       

 ( )  { (         ) (       )                                                           

 ( )    ( )   {           (       )                                                           

     ∫   ( )             (       )∫      (       )                 ∫           
 (     )   (       )(     )  (       )   (       )     (     )                                                                  (33) 

6-3-1-3- Pick Position   is Located at the Right Side of Region   (          ) 

Similar to the previous case, the horizontal travel time follows the uniform distribution 

between (     ) and (       ). Also, the vertical travel time follows the uniform 

distribution between   and  . Hence, we have           (              ) and 



164 

 

          (   ). Also, similarly, we consider the three possible cases based on the relation 

between the distances to the boundaries and the shape factor,  . Following the same approach for 

the three cases in Case 2, the derivations for expected travel time are given as follows. 

for                , 

                                                                                                                                       (34) 

for                , 

          (     )    (     )   (       )  (       )                                                                                           (35) 

for                , 

      (       )   (     )(       )   (     )   (       )     (       )                                                         (36) 

6-3-2- Expected travel time between a storage region and an input point 

In this section, we use the models we developed in the previous section to derive the 

expected travel time between an input point (which is located at the lower left corner of the rack) 

and any random point with a given region (class). Let     denote the expected travel time 

between the input point and any randomly selected point within region  . An input point can be 

considered as a pick position which is located at the lower left corner of the rack. As shown in 

Fig. 6.7, an input point is located at the left side of any possible region. Therefore, any     can be 

simply calculated by letting      in equations of Case 2. The distance between an input point 

and region k’s boundaries are equal to       and   . Similar to Case 2, there are three cases based 
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on the relation between these distances to boundaries and the value of the shape factor. We 

derive the     using the equations (31), (32), and (33) for cases of          ,          , 

and           , respectively, as follows. 

 

Figure 6-7 : Expected travel time between an Input point and given region (Class) in a 

normalized rack 

 

for           , we have 

                                                                                                                                           (37) 

for          , we have 

                        (       )                                                                                                                  (38) 

for          , we have 

                          (       )                                                                                                         (39) 
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6-4- Conclusion and future research directions 

In this chapter, we developed mathematical binary linear programming models to 

minimize the travel time by changing the assignment of SKUs to pick positions and storage 

locations under the dedicated storage policy. Because of the special structure of the problem, we 

developed a solution approach based on the Benders decomposition algorithm to break the 

original problem into the smaller tractable instances. Through this decomposition, the 

subproblem is a well-known transportation problem that iteratively finds the assignment of the 

SKUs to storage locations as well as the master problem that finds the assignment of the SKUs to 

pick positions. Due to the degeneracy of the subproblem, we applied the Magnanti-Wong 

acceleration method for Benders algorithm to speed up the convergence of the algorithm. We 

implemented both algorithms for small and medium size problem instances. We observed some 

intuitive results from the optimal solutions: 1) the layout of the optimal assignment includes 

vertical SKUs stored above their dedicated pick positions 2) the pick positions dedicated to high 

demanded SKUs are mostly assigned close to pick positions dedicated to low demanded SKUs 3) 

The optimal assignment is highly degenerate for rectilinear and chebyshev distance metrics. Also 

by applying the chebyshev metrics to realistic instances, changing the assignment of the SKUs to 

pick positions does not impact the optimal objective function value for the original problem. 

Finally, we developed the closed-form statements that can estimate the expected travel time of 

the crane under the class-based storage policy.  
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As the future research directions, we propose to develop heuristic algorithms based on the 

idea that the pick positions dedicated to high demanded SKUs are mostly assigned close to pick 

positions dedicated to low demanded SKUs.  
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CHAPTER SEVEN: FUTURE STUDY DIRECTIONS 

Contribution 1 is the first study that analyzes AS/RS with multiple in-the-aisle outputs. 

Therefore, our study could help extensively to design and quantify the performance of systems 

with in-the-aisle outputs or pick positions. In Contribution 2, we consider more realistic aspects 

of the environment of MIAPP-AS/RS by incorporating the idea of non-identical SKUs’ demand, 

which relaxed some of the assumptions in Contribution 1. This brings more practical design 

decisions such as optimal SKU assignment problem, which is discussed in Contribution 2. In 

Contribution  3, we relaxed the assumption of randomized storage and developed travel time and 

optimization models based on dedicated and class-based storage policies. Our study could be 

extended to consider the following future research directions. The development of analytical 

models for MIAPP-AS/RS that considers different dwell point strategies and different 

sequencing rules would be interesting to understand how policies impact throughput and storage 

space performance.  Also, the development of a systematic model that considers the interaction 

of human order pickers and the MIAPP-AS/RS would be interesting from an inventory buffer 

capacity, as well as a staff resource and scheduling perspective.  
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