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ABSTRACT

Analysis and predictive modeling of massive datasets is an extremely significant problem that

arises in many practical applications. The task of predictive modeling becomes even more chal-

lenging when data are imperfect or uncertain. The real data are frequently affected by outliers,

uncertain labels, and uneven distribution of classes (imbalanced data). Such uncertainties create

bias and make predictive modeling an even more difficult task. In the present work, we introduce

a cost-sensitive learning method (CSL) to deal with the classification of imperfect data. Typically,

most traditional approaches for classification demonstrate poor performance in an environment

with imperfect data. We propose the use of CSL with Support Vector Machine, which is a well-

known data mining algorithm. The results reveal that the proposed algorithm produces more ac-

curate classifiers and is more robust with respect to imperfect data. Furthermore, we explore the

best performance measures to tackle imperfect data along with addressing real problems in quality

control and business analytics.
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CHAPTER 1: INTRODUCTION

Data mining (DM) has emerged as one of the most important research areas in recent decades.

DM aims to extract useful knowledge from data and identify significant patterns. Today, the size of

the data in different domains is continuously growing due to advanced computational technology

and the reduced cost of storage. The real data are frequently affected by outliers, uncertain labels,

and uneven distribution of classes (imbalanced data). We call this type of data imperfect data. This

work will help to address the unavoidable difficulty of data uncertainty that occurs in many real-

world problems. In particular, we study the cost-sensitive learning-based adaption of the Support

Vector Machine to deal with the imperfect data. As it will be discussed later, the Support Vector

Machine is an excellent learning algorithm for binary data classification and regression.

A Brief Overview

In this section, we review the historical background and methodological aspects of DM and, in

particular, classification or supervised learning. DM, as an interdisciplinary field, is the intersec-

tion of artificial intelligence, machine learning, and statistics. In addition, the progress in this field

has created a strong connection with mathematical optimization. Mathematical optimization pro-

vides a powerful and effective tool for data mining. Mangasarian’s team developed a large margin

classifier through a linear programming formulation in the 1960s (Fung & Mangasarian, 2001).

Charnes et al. (1985) proposed Data Envelopment Analysis through a fractional programming for-

mulation. Between the 1980s and the 1990s, Glover developed various linear programming models

which solve discriminant problems with a small sample size dataset (Freed & Glover, 1986). Sub-

sequently, the researcher and his collaborators further expanded this research initiative into classi-

fication problems through multiple criteria linear programming and quadratic programming. The

Support Vector Machine method initiated by Vapnik (2000) is based on a quadratic programming
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formulation. Clustering algorithms are formulated as a concave minimization problem. However,

most DM techniques are combinatorial in nature and can be formulated as discrete optimization

problems, which lead to NP-hard optimization problems (Xanthopoulos et al., 2013). To date, re-

search on adoption of optimization techniques to tackle data mining problems has been extremely

popular.

The data is defined as a set of samples/instances/observations and their features/attributes,

where a feature/attribute is described as a characteristic of a sample. Generally, DM can be di-

vided into certain categories according to the analysis of the knowledge discovery process, which

is listed below:

• Data preprocessing and preparation methods

• Data visualization

• Machine learning (Supervised learning, semi supervised learning, and unsupervised learn-

ing)

We intend to briefly explain these categories. Data preprocessing or preparation is necessary in

all knowledge discovery tasks. Data preprocessing mainly includes outlier detection, data normal-

ization, data cleaning, sampling, and feature selection and extraction algorithms. Appropriate data

preprocessing significantly improves the performance of learning algorithms. The original data

set is divided into training and test data subsets (sometimes validation data might be used). The

learning model is performed using the training data and then evaluated with the test data. Stan-

dard random sampling method repetitively performs learning through using different training/test

data sets. The average performance of all learned models is reported. This procedure is known as

cross-validation. There are a number of cross validation techniques. In k-Fold cross validation, the

dataset is divided into k folds in which training is performed on k−1 folds and testing is performed

on one fold. In the cross validation process, each subset is only used once for testing. While k is

2



equal to the number of samples in the dataset, the leave-one-out approach can be used which is a

special type of k-Fold cross validation.

Outlier detection is an important problem for mining purposes. An outlier is a data point that

is significantly different from the remaining data points (Hawkins, 1980). Generally, either the

class or attributes of the data can be affected by outliers or noise. In this work, we mainly focus

on class noise, which has significantly detrimental impacts on the classifier. Class noise refers to

data points that are identified by an incorrect class label. Class noise can occur for various reasons,

such as subjectivity, human error in entering data, instrument imperfections (Liu et al., 2013),

and lack of sufficient information used to label each data point (Brodley & Friedl, 2011). Outlier

detection algorithms usually use some evaluation measures in order to report the outlierness of an

observation, e.g. the sparsity of the region around data points, distance based on nearest neighbor,

or the fitness of primary data distribution (Aggarwal, 2013). An accurate data model may result in

better performance measures for data mining algorithms.

Feature selection techniques have been drawing increasing attention in data mining. Feature

selection provides the most relevant subset of features. Recently, a wide variety of feature selection

methods have been proposed, such as filter methods, wrapper methods, and embedded methods

(Wang et al., 2013). Moreover, feature selection has been widely used in biomedical research

(Balabin & Smirnov, 2011; Warren Liao, 2011; Peng et al., 2010). For better understanding of

feature selection methods, we refer the reader to Omar et al. (2013) and Bolón-Canedo et al.

(2013).

Feature extraction generates small number of features from the original set of features. By

applying feature selection and extraction techniques on a large feature set, subsets of lower di-

mensionality are obtained, which significantly reduces of the original number of features. This

procedure is called dimensionality reduction and leads into the improvement of performance mea-

sures and processing time. There are several methods of feature extraction reported in the literature

for character recognition (Due Trier et al., 1996). For further study, we refer interested readers to
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Pradeep et al. (2011).

Data visualization is useful for analysis of the high-dimensional data in a low-dimensional

space. For this purpose, dimensionality reduction techniques have been widely implemented.

Multidimensional scaling (MDS) (Cox & Cox, 2010) and principal component analysis (PCA)

(Jolliffe, 1986) are conventional linear methods for dimensionality reduction. Manifold learning

(Tenenbaum et al., 2000; Roweis & Saul, 2000) and self–organizing maps (SOMs) (Jphonen &

Maps, 1995) is a non–linear dimensionality reduction methods. Recently, several dimensionality

reduction methods have been developed in data mining community (Tenenbaum et al., 2000; Saul

& Roweis, 2003; Belkin & Niyogi, 2003; Moody & Healy, 2014). Network representation can

facilitate understanding of the dynamics that govern a system.

Machine learning is the core of data mining which concerns the construction of algorithms that

can be learned from data. For example, a machine learning algorithm is trained on email messages

to detect spam and non-spam messages.

Unsupervised learning, sometimes known as clustering, extracts hidden structure in unlabeled

data. Clustering methods aim to detect homogeneous groups or clusters using unlabeled data in the

training set. This makes a distinction between unsupervised learning from supervised learning. For

example, an unsupervised learning algorithm can be applied to classify medical images (Srivastava

et al., 2013).

Supervised learning, sometimes known as classification, is significantly crucial for automated

data driven knowledge discovery. In a supervised learning model, each training data is a pair

includes an input value and a targeted output value. The main objective is to separate a set of data

into classes or sub-categories and then to predict the class of a new observation. The mathematical

function, implemented by a classification algorithm is known as a classifier.

Semi supervised learning lies at the intersection of supervised and unsupervised learning tech-

niques.The main idea in semi supervised learning is to exploit unlabeled data during a supervised
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learning procedure. We note that acquisition of unlabeled data is relatively inexpensive compared

to acquisition of a fully labeled training set. For a complete overview of semi supervised tech-

niques, we refer the reader to Zhu (2006), Hady & Schwenker (2013), and Richarz et al. (2014).

There are several commercial problem solving environments like SAS (http://www.sas.com/),

SPSS (http://www.spss.com/), and Statistica (http://www.statsoft.com/). Some of data mining tech-

niques can be easily implemented in some popular technical computing programming languages

such as Matlab and Mathematica. Moreover, many open source environment can be found on-

line like Weka (http://www.cs.waikato.ac.nz/ml/weka/), R (http://www.r-project.org/), and Python

(http://www.python.org/).

A Brief History of Imbalanced Classification

Today, imbalanced classification has been drawing increasing attention in the data mining com-

munity. Imbalanced classification occurs in problems where the class size of given examples is not

equal (Japkowicz, 2000). For example, in a cancer diagnostic problem, the main objective is to

identify individuals stricken with cancer, and such events are relatively rare compared to normal

cases. In network intrusion detection, cyber attacks on the system are very rare. In general, im-

balanced classification problems can be found in many areas, including security surveillance (Wu

et al., 2003), disease diagnosis (Huang & Du, 2005), bioinformatics (Al-Shahib et al., 2005), ge-

omatics (Kubat et al., 1998), telecommunications (Fawcett & Provost, 1997; Tang et al., 2006),

risk management (Ezawa et al., 1996; Groth & Muntermann, 2011), manufacturing (Adam et al.,

2011), quality estimation (Lee et al., 2005; Suresh et al., 2009), tornado detection (Trafalis et al.,

2013), and power systems (Hu et al., 2008). There are several review papers dedicated to classi-

fication of imbalanced datasets (Japkowicz, 2000; Japkowicz & Stephen, 2002; Guo et al., 2008;

He & Garcia, 2009; Su et al., 2009; Sun et al., 2009; Chawla, 2010). In the literature, imbalanced

classification problems can also be known as skewed class distribution problems or as small/ rare
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class learning problems (Sun et al., 2009; Weiss, 2004). In the case of binary classification, the

number of examples in one class may greatly outnumber the other class. The class with fewer

examples is the so-called minority class and the class with more examples is defined as the major-

ity class. In many application areas (e.g. fraud detection, computer intrusion detection, oil spill

detection, defect product detection), the detection of the minority class is more critical than the

majority class. Napierala & Stefanowski (2012) show that the distribution of data is much more

influential in constructing classifiers than the size of data. They analyze the influence of different

types of datasets on six various classifiers and compare the sensitivity of each classification method

based on different performance measures. A preferred classification algorithm is one that yields

a greater identification rate on the rare event (e.g. disease type). These classification algorithms

are evaluated through performance measures. However, certain performance measures are more

appropriate than others when the classification problem is imbalanced. For example, classification

accuracy, which is the percent of the correctly classified training samples over the total number

of training samples, has been found to be a weak performance measure (Chawla, 2010; He &

Garcia, 2009). This is because the error of the minority class is not well reflected in the overall

accuracy. Usage of inappropriate measures might yield the wrong understanding of the classifier

performance. Even the scheme of class imbalance into the classification problem initiated serious

challenges that needed to be studied. Moreover, class noise and outliers make the problem of im-

balanced classification more difficult. In the next section, we will explain the necessary concepts

to understand the imbalanced classification in the presence of class noise.

Imbalanced Classification with Class Noise

The classification of imbalanced data can be even more difficult in the presence of class noise

and outliers. Class noise or outliers refer to data points that are identified by incorrect class labels.

Clearly, uncertainty associated with class noise is inherent in these real-life problems, thus noisy

data management is extremely necessary. Imbalanced classification with class noise is common in
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various domains. Some examples are as follow:

• Defect Detection: In manufacturing, a non-defected product might be labeled as a defected

one. For example, data collected by hardware technologies (e.g. sensors) might be influ-

enced by the environmental variables or temporal malfunctioning (Zhong et al., 2005) and

this might affect the labeling of the data. The misdetection of defect-prone products can

dramatically lower customer satisfaction, jeopardize the reputation of manufacturing com-

panies, and finally result in a huge loss of money.

• Fraud Detection: A fraud transaction recorded as a non-fraud transaction is another ex-

ample of class noise. In some cases, an authorized transaction may appear an unauthorized

transaction, such as buying something from geographically unknown locations.

• RFID Network Systems: One of the main drawbacks of the RFID technology is that it

sometimes produces unreliable data streams corrupted by outliers (Jeffery et al., 2006; Nie

et al., 2009). Recently, RFID network systems have been extensively used in many applica-

tions such as security and access control, transportation, supply chain tracking, and health-

care (Ma, 2012). It is reported that the misreading rate can be up to 30–40% (Jeffery et al.,

2006).

• Medical Diagnosis: The clinical data are collected in different formats, such as MRI scans

and ECG time-series. In general, abnormal patterns in such data indicate disease symptoms.

Misdiagnosis or error in labeling patients frequently takes place and negatively affects med-

ical decision making (Pechenizkiy et al., 2006). A wrong prediction of the nonexistence

of cancer or cancer existence may lead to the patient risk, unnecessary anxiety and extra

medical tests.

• Earth Science: A considerable amount of data on the topic of climate change, weather

patterns, or land cover patterns is accumulated using a range of technological tools like
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satellites or remote sensing. Abnormal patterns in such data are useful to detect hidden

human or environmental trends which may be the reason for such anomalies.

• Spam Filtering: While it may be tolerable to misclassify a few spam emails (thereby allow-

ing them into the inbox), it is much more undesirable to incorrectly label a legitimate email

as a junk mail (Tang et al., 2006).

Other applications can be found in marketing and customer behavior modeling (Casillas &

Martı́nez-López, 2009). There are several techniques to tackle these problems. We will discuss the

conventional outlier detection techniques and embedded algorithms in the next section.

Embedded Outlier Detection and Classification vs. Conventional Outlier Detection

Most conventional outlier detection techniques first detect outliers and then tend to remove

them from the original data set. Thus, the remaining data is used for training. However, there is

no work in the literature that detects outliers and classifies the data set in an embedded formula-

tion. Even the characteristic of unbalancedness makes the classification problem a more challeng-

ing task. Cost-sensitive learning is the main algorithmic approach for imbalanced classification

problems. However, cost-sensitive based approaches are highly sensitive to training datasets with

outliers (Chawala et al., 2002; Batuwita & Palade, 2010; Wang et al., 2012). Therefore, our main

research focus is on how to improve a cost-sensitive learning algorithm to deal with imbalanced

data and outliers simultaneously. Cost-sensitive learning assigns different weights to each data

point based on its importance to the model and solves the weighted classification problem. The

SVM adaptation to the cost-sensitive learning framework is termed WSVM (also known as Fuzzy

SVM in some works) and was originally proposed by Lin & Wang (2002) and further applied and

studied in subsequent works (Fan & Ramamohanarao, 2005; Bao et al., 2005; Huang & Du, 2005;

Hwang et al., 2011; Zhang et al., 2012). WSVM’s advantage is that the cost coefficient is directly

factored into the SVM problem, providing an exact optimal solution.
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SVM classifier misclassifies a subset of data points in the minority class (See Figure 1.1 in

the left). The WSVM classifier detects all the data points in the minority class; however, it might

misclassify a few data points of the majority class (See Figure 1.1 ). We note that the correct

classification of the minority class examples is often more important. WSVM results in poor

classification performance in the presence of outliers. Figure 1.2 shows that the decision boundary

of WSVM is shifted toward outliers and tends to misclassify the data points in the majority class.

Since the minority class data points are associated with higher weights, then the outliers receive

high weights and contribute strongly in training. To solve this problem, it is necessary to propose

a method that decreases the effects of outliers on the classification of imbalanced datasets.

Dissertation Goal and Structure

Although outliers are rare events, their detection is extremely important compared to other

events. The main objective of this research is to explore the techniques to tackle highly imbalanced

noisy data and provide an efficient cost-sensitive learning (CSL) method as a solution. One of the

contributions of this work is to develop an effective embedded formulation of CSL in order to

simultaneously deal with imbalanced data and outliers through setting the following goals:

1. To find the applications of imbalanced and noisy classification in the real world

2. To propose an efficient CSL algorithm in binary and multi-class imbalanced environments

3. To improve model selection in the CSL algorithm for imbalanced data

4. To provide a guideline to help the decision makers to efficiently classify uncertain or imper-

fect data

Particularly, when the outliers belong to the minority class, traditional classification techniques

might result in poor classification performances. On the other hand, another concern regarding the
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(a) Linear SVM (b) Linear WSVM

(c) Non-linear SVM (d) Non-linear WSVM

Figure 1.1: Imbalanced data classification without outliers using linear (a-b) and RBF (c-d) kernel
functions. The black and gray points show the majority and minority class data points respectively.

use of data mining algorithms (e.g. SVM) is that all the parameters of the algorithm need to be

tuned during the training process. Frequently, users must carry out an exhaustive search to find the

best value for the parameters and this might even gets worse if the parameters increase. Therefore,

an effective and adjusted method is needed for parameter selection. In this work, we propose an

embedded model that at the same time can automatically perform model section, outlier detection,

and classification. Then, we evaluate the proposed model on the simulated and benchmark datasets.

Furthermore, as a real case, we develop an effective and useful CSL algorithm in quality con-

trol. Quality control is one of the most important topics in the field of industrial engineering. The
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(a) Linear SVM and WSVM (b) Non-linear SVM and WSVM

Figure 1.2: Imbalanced data classification with outliers using linear (a) and RBF (b) kernel func-
tions.

manual inspection and evaluation of quality control data is a tedious task that requires the undi-

vided attention of specialized personnel. Over the last two decades, control chart pattern recog-

nition (CCPR) problems have received a lot of attention (Hachicha & Ghorbel, 2012). Current

state-of-the-art control monitoring methodology includes K charts, which are based on Support

Vector Machine (SVM). Although K charts have some profound benefits, their performance de-

teriorates when the learning examples for the normal class greatly outnumber the ones for the

abnormal class. Since imbalanced problems represent the vast majority of the real life control pat-

tern classification problems, the original SVM formulation needs to be tailored in order to address

this deficiency. This is another contribution of this work. To the best of the authors’ knowledge,

there is not a CCPR algorithm that takes into consideration the imbalanced nature of the abnormal

pattern detection problems. Furthermore, there have not been sufficient computational studies that

evaluate the applicability of generic SVM in highly imbalanced environments. For instance, in the

quality field, the traditional control charts assign equal importance to all data points, which is not

necessarily optimal and might give poor classification performance.
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The rest of this work is organized as follows: In section 2, we give an overview of the main

algorithmic approaches, the state-of-the-art performance evaluation measures for imbalanced clas-

sification and outlier detection, and several applications in quality control and business analytics.

In section 3, we introduce the primal and dual formulations for the Support Vector Machine (SVM),

the Weighted Support Vector Machine (WSVM), and the Weighted Relaxed Support Vector Ma-

chine (WRSVM) along with their theoretical properties. We also describe an adjusted method

for parameter selection based on nested uniform designs. In Section 4, we provide a comparative

study of SVM and WSVM using both simulated and real data from quality control in a highly

imbalanced environment. Then, we present the comparative computational results for WRSVM

against SVM, WSVM and other related classification methods for different types of imbalanced

problems and noise levels. We finally conclude our work and provide directions for future research

in Section 5.
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CHAPTER 2: LITERATURE REVIEW

This section provides an overview of imbalanced classification and outlier detection tech-

niques. We first explain the state-of-art algorithms to solve imbalanced classification problems

and proper evaluation measures. We discuss outlier detection techniques in a more detail. Finally,

we present common techniques for imbalanced classification for two main application fields: qual-

ity control and business analytics.

Imbalanced Classification Techniques

Several classification techniques have been proposed and applied in the literature for imbal-

anced classification problems. These techniques can be classified in two major categories: re-

sampling and cost-sensitive learning. However, there are ensemble algorithms which builds an

ingratiation of classifiers. Typically, these algorithms are ensemble of cost-sensitive learning or

resampling algorithms. The objective of using ensemble learning is to improve the classification

performance.

Resampling

Resampling techniques are among the most popular preprocessing methods. Under this frame-

work data points are added (oversampling) or removed (undersampling) to create a balanced

problem. The Synthetic Minority Oversampling Technique (SMOTE) belongs to this category

(Chawala et al., 2002). However, resampling methods become inefficient for highly imbalanced

problems with limited minority class examples and when data distribution are unknown (Elazmeh

et al., 2006). In fact, oversampling often suffers from induced bias or overfitting, whereas through

undersampling it is possible to lose valuable information by removing data (Nitesh et al., 2002;
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Estabrooks et al., 2004; Akbani et al., 2004; Chawla et al., 2005; Tang et al., 2009; Liu et al.,

2009).

Cost-Sensitive Learning

Cost-sensitive learning algorithms assign weights to data examples based on their importance.

They are equivalent to resampling technique and combine both undersampling and oversampling.

Many popular classification algorithms can be adapted under this framework. The SVM adapta-

tion is termed weighted support vector machine (also termed Fuzzy SVM) which was originally

proposed by Lin & Wang (2002) and further applied and studied in subsequent works (Zhang et al.,

2011; An & Liang, 2013; Ke et al., 2013). Their advantage is that the cost coefficient is directly

factored into the SVM problem providing an exact optimal solution. Assume that a dataset is rep-

resented by a set of data point J = {(xi, yi)}li=1 where (xi, yi) ∈ Rn+1, l and n are the number

of samples and features, respectively, and each xi is a sample with n features and a class label

yi ∈ {+1,−1}. The costs for two classes (minority and majority) are represented with C+ and

C−. The weighted SVM classifies the data points by identifying a separating hyperplane whose

distance is maximum with respect to the data points of each class. The separation hyperplane

defined by the parameters w and b can be obtained by solving the following convex optimization

problem.

min
1

2
‖w‖2 + C+

n+∑
{i|yi=+1}

ξi + C−
n−∑

{j|yj=−1}

ξj (2.1a)

s.t. yi(wTφ(xi) + b) ≥ 1− ξi i = 1, . . . , l (2.1b)

ξi ≥ 0 i = 1, . . . , l (2.1c)

where φ is the kernel function φ : Rn → Rm where m 
 n, i.e. each training sample xi is mapped

into a higher dimensional space by the function φ. The slack variables ξi ∈ {1, . . . , l} are added to

the objective function whose goal is to allow but penalize misclassified points.
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In (Zhao et al., 2007), a cost/benefit sensitive algorithm is presented to classify rare events in

online data (called Statistical Online Cost-Sensitive Classification) and the results of the model

demonstrate that this method performs better than any other cost-insensitive online algorithms.

The SVM adaptation to the cost-sensitive learning framework is termed WSVM (also found as

Fuzzy SVM in some studies) which was originally proposed by and further applied and studied in

subsequent works (Fan & Ramamohanarao, 2005; Bao et al., 2005; Huang & Du, 2005; Hwang

et al., 2011; Zhang et al., 2012). Their advantage is that the cost coefficient is directly factored into

the SVM problem providing an exact optimal solution.

However, it is often difficult to determine costs in reality and might need more knowledge

and domain experts’ involvement (Han et al., 2009). It is suggested to differ the cost ratio until

an acceptable objective function value is found (Weiss, 2004). Some researchers have used the

heuristic algorithms to set the parameters. In Sun et al. (2006), Genetic Algorithms are used

to search the optimal misclassification cost for each class in a multiclass classification problem.

However, this problem is more discussed in section 3.

Cost-sensitive algorithms outperforms traditional data mining algorithms. However, various

standard classification algorithms have been developed, but they often result in poor performance

in detection of minority class. For instance, experiments on training imbalanced classification data

sets in (Anand et al., 1993) using the neural network showed that the error for samples in the major

class was decreased quickly, and the error for smaller class increased significantly. The experi-

ments also demonstrated that the rate of the error decreasing for the smaller class is too low by

using ANN and takes too much iteration to obtain an acceptable solution. For detailed explanation

of the performance of ANN with imbalanced classification problems, we refer the reader to (Car-

vajal et al., 2004; Japkowicz & Stephen, 2002). Not only does the ANN result in misclassification

of imbalanced data, but also it has been demonstrated that the traditional SVM and decision tree

classification suffer from this deficiency for imbalanced data (Japkowicz & Stephen, 2002).
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Another methods implemented as cost-sensitive learning to overcome the imbalanced data is

introduced by other researchers (Wu & Chang, 2005; Imam et al., 2006). Imam et al. (2006)

proposed a so-called z-svm which implements a weighted strategy for the positive support class

with the objective of maximizing G-mean to adjust the hyperplane and reduce skew towards the

minority class. The advantage of this work is that the model avoids pre-selection of parameters

and auto-adjust the decision hyperplane. Wu & Chang (2005) developed a cost-sensitive algorithm

with adjusting the class boundary and the kernel matrix on the basis of the data distribution.

Ensemble Learning

Ensemble learning is a well-established method that combines the outputs of multiple base

learners. The intuition behind the algorithms is that they modify the generalization ability of indi-

vidual classifiers by assembling many sub-classifiers (Bishop & Nasrabadi, 2006). Averaging the

outputs of base models reduces the bias among classification models. Several ensemble methods

has been proposed such as Bagging (Breiman, 2001), Boosting (Freund & Schapire, 1995), and

Stacking (Wolpert, 1992).

Bagging algorithms, first proposed by Breiman (Breiman, 2001), constructs an ensemble of

multiple base classifiers by random uniformly sampling from the original training data set. For ex-

ample, the random forest algorithm uses random decision trees with bagging which results in high

classification performance. However, most techniques modify the bagging method by combining it

with resampling techniques. Since the original data is imbalanced, the bagging will not change the

class distribution considerably in the training sample (Błaszczyński et al., 2013). Exactly Balanced

Bagging (EBBag) is the simplest version of bagging method which implements undersampling to

exactly balance the cardinality of the minority and the majority class in each sample (Chang et al.,

2003), thus the entire minority class is trained with randomly chosen subsets of the majority class

(Figure 2.1).

16



Figure 2.1: Bagging Algorithm

Boosting algorithms are powerful successive ensemble learning algorithms (Freund & Schapire.,

1997; Schapire & Singer, 1999). Boosting algorithms is just another classification algorithm that

can be adapted into the cost-sensitive framework. The boosting algorithms such as Ada-boost

performs learning iteratively and assigns weights to each example in a way the misclassified ex-

amples from previous learning are assigned with higher weights than the correctly classified ex-

amples (Schapire et al., 1998; Changrampadi et al., 2012). But in bagging algorithms, all training

examples are equally weighted.

Stacking algorithms is different from bagging and boosting algorithms in a way that the in-

dividual weak learners are not the same. Stacking consists of a two-level structure: base-level

classifiers and meta-level classifiers (Wolpert, 1992). The base-level classifiers are obtained with

the training datasets and produce their predictions. Then the predictions are considered as the in-

put of the meta-classifier to construct the nal decision. For Further detail about ensemble learning

techniques, we refer interested readers to the reference (Duda et al., 2001). In addition to these
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techniques, other hybrid techniques have been implemented in the literature to overcome the is-

sue of imbalanced data. Padmaja et al. (2011) develop an extreme outlier elimination with hybrid

sampling technique and k Reverse Nearest Neighbors for fraud detection. The hybrid sampling

technique propped by them consists of a combination of SMOTE and random undersampling.

Performance Measures for Imbalanced Classification

Classification performance measures can be obtained, directly or indirectly, from the confusion

matrix. For a classification problem with k classes, the confusion matrix is a square matrix C ∈

Rk×k, with each of its entries cij , denoting the percentage of the samples that belong to the class

i and classified to the class j. For the special case of binary classification (positive and negative),

the confusion matrix is as follows:

Table 2.1: Confusion matrix for binary classification

Predicted Positive Predicted Negative
Actual Positive TP (True Positive) FN (False Negative)
Actual Negative FP (False Positive) TN (True Negative)

where TP, FP, FN, TN stand for true positives, false positives, false negatives and true negatives

correspondingly. In this matrix, diagonal elements represent accurately classified examples and

the off-diagonal elements the misclassified data for each class. A typical performance measure for

classification is the so-called accuracy, which is calculated as the correctly classified samples over

the total number of training samples. However, for imbalanced classification problems this might

not be a good performance indicator, since the majority class dominates the behavior of this metric.

More specifically, naive decision rules can yield high classification accuracy. For example, the rule

“Assign all data point to the positive (majority) class” will yield 95% classification accuracy in

an imbalanced problem where 95% of the data belong to the positive class and 5% to the negative.
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Alternatively, sensitivity and specificity can be used. They are defined as

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
. (2.2)

For the previous “toy” example, the discussed naive classifier would have 95% sensitivity and

0% specificity. Still, sensitivity is manipulated by the majority (positive) class. However, the

specificity is not and therefore, it is a more appropriate measure for this purpose. The space

spanned by sensitivity and specificity is termed Receiver Operator Characteristic (ROC) space.

The ROC space provides a good visual representation of the classifier 2.2. A combined measure

frequently used for imbalanced data is the geometric mean of sensitivity and specificity (often

abbreviated G-mean) defined by

G-mean =
√
Sensitivity ∗ Specificity (2.3)

Figure 2.2: ROC curve showing four classifiers

There are other metrics used in the literature, including precision and recall or hit rate which is
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the ratio of true positive to the sum of true positive and false positive (Duman et al., 2012) and lift

which is highly related to accuracy, but it is well used in marketing practice (Ling & Li, 1998). For

a comprehensive review of classification performance measures we refer the reader to (Sokolova

& Lapalme, 2009).In this study, sensitivity, specificity and G-mean are used as performance mea-

sures.

Outlier Detection Techniques

Outliers are objects that are significantly different from the rest of the data. They are often

a good indication of abnormal behavior in the system (Hawkins, 1980; Han & Kamber, 2006).

Outlier detection has been widely used for detection of anomalies in fraud detection (Bolton &

Hand, 2002), network intrusion detection (Lane & Brodley, 1999; Gogoi et al., 2011), criminal

detection in e-commerce (Chiu & Fu, 2003), wireless sensor networks noise detection (Zhang

et al., 2010), and detection of outliers in surface acoustic wave sensor (Jha & Yadava, 2011).

Outlier detection is a quite active research area and a wide variety of methods have been de-

veloped so far (Knox & Ng, 1998; Knorr et al., 2000; Hodge & Austin, 2004; Cateni et al., 2008;

Xi, 2008; Ben-Gal, 2010; Suri et al., 2011; Niu et al., 2011; Zimek et al., 2012). Typically, two

common approaches exists to deal with outliers in the literature. The first approach is to detect

the outliers and remove them from the analysis while the second approach is to detect them and

contribute them in the learning process but with indicating how much they are important in the

study. Generally, outlier detection techniques can be classified as,

• Probabilistic and Statistical-based Models

• Distance-based Outlier Models

• Density-based Outlier Models

– LOF: Local Outlier Factor
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– LOCI: Local Correlation Integral

• Clustering-based Outlier Models

The appropriate choice for an outlier detection model is usually data set specific. Therefore,

a good understanding of the data (e.g. as data type, outlier type, and outlier degree) significantly

helps to choose the model. For example, when the distribution of data is linear, the most suitable

model for identifying outliers would be a regression-based model.

Probabilistic and statistical-based models model the data using a statistical distribution, and

then outliers are determined based on how they relate to the proposed model. (Hawkins, 1980;

Bamett & Lewis, 1994). The choice of the data distribution with which the modeling is performed

is the primary assumption. A major drawback with probabilistic models is that sometimes the par-

ticular kind of distribution which fit into the data may not be an appropriate distribution. Moreover,

over-fitting might occur when the number of model parameters increases in the statistical model.

In such cases, detecting of outliers from the normal data becomes extremely challenging. The data

points are assumed as outliers while their values are either too large or too small. It is very impor-

tant to identify the statistical tails of the underlying distribution. Typically, the normal distribution

is the easiest way for this purpose and a common rule of thumb is that those data points deviating

more than three times the standard deviation from the mean of a normal distribution are assumed

to be outliers. This rule is also known as the ”3.σ-rule”. Visual techniques such as box plots and

histograms can also help to detect these extreme values.

Density-based models identify the data points in low dense regions as outliers. Breunig et al.

(2000) determined an outlier score to any data point, so-called as Local Outlier Factor (LOF). The

LOF score is calculated based on the distance of each point from its local neighborhood. Aggarwal

(2010) has proposed a general density-based approach for handling uncertain data and outliers. The

Local Outlier Factor (LOF) is a measure of the outlierness of a data point. The LOF method was

initially proposed in (Breunig et al., 2000) as a density-based method because of its ability to adjust
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for the variations in the diverse densities. Other visual technique to evaluate outliers is the LOCI

method which is a local density-based method for outlier analysis (Papadimitriou et al., 2003).

Distance-based models are very popular among outlier detection techniques for a wide variety

of data domains, and identify outlier scores based on nearest neighbor distances. These methods

assume that the k-nearest neighbor distances of outlier data points are much larger than normal

data points (Aggarwal, 2013).

Clustering-based models identify very small subsets as clustered outliers. In this approach,

ouliers are those clusters which include extremely less data points than other clusters. Clustering-

based algorithms are unsupervised learning algorithms. Additionally, clustering-based methods

have this advantages that after learning the clusters, new data points can be put into the system

and tested for outliers. Van Cutsem & Gath (1993) proposed a fuzzy clustering model for outlier

detection. Jiang et al. (2001) presented a two-phase method such that in the first phase a modified

k-means algorithm and in the second phase an Outlier-Finding Process is implemented. Outliers

were selected as very small clusters through using minimum spanning trees. Loureiro et al. (2004)

proposed an outlier detection technique based on hierarchical clustering. The presence of outliers

was identified by the size of the resulting clusters. A similar approach is described in (Almeida

et al., 2007). Acuna & Rodriguez (2004) implemented the Partitioning Around Medoids algorithm

followed by the technique. If the separation between clusters is large enough, then the objects in

that cluster are detected as outliers. The desired number of clusters should be determined by the

decision maker. Yoon et al. (2007) presented a k-means clustering algorithm to detect outliers.

The disadvantage of k-means methods is their sensitivity to outliers, and because of this reason,

sometimes they may not provide accurate results.

Active learning is an iterative procedure aims to label some of the examples in each iteration.

A number of important examples are identified in each iteration, in a way that addition of labels

helps further classification. The labels for these examples are provided by human experts. These

additional data with labels are then used in learning the classifier. The first iteration uses an unsu-
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pervised learning approach due to unlabeled data. This approach is carried out iteratively until the

addition of further examples no longer improves the classification performance. This method can

be helpful in situations in which a small number of labeled data points are available to begin with.

There are other supervised learning techniques for outlier detection. For example, Ghazikhani

et al. (2012) used Support Vector Data Description (SVDD) for outlier detection. Schubert et al.

(2014) have addressed unsupervised outlier detection techniques for spatial, video, and network

datasets Ben-Gal (2010) categorized the outlier detection techniques from a different point of view:

parametric and nonparametric techniques. Unlike parametric techniques, non-parametric methods

rely on the concept of distance in order to estimate the separation between two data points.

For a more detailed review about outlier detection techniques, we refer the reader to (Hodge &

Austin, 2004; Agyemang et al., 2006; Gogoi et al., 2011).

Outlier Detection Evaluation Measures

In general, most outlier detection algorithms are evaluated on the basis of several measures

of the outlierness of a data point, such as the sparsity of the region around data points, distance

badsed on nearest neighbor, or the fitness of primary data distribution (Aggarwal, 2013).

Typical performance measures to compare and evaluate outlier detection techniques are the

detection rate, precision, recall, the ROC curves, the area under the ROC curves (AUC) (Provost

& Fawcett, 2001). These metrics are calculated on the basis of the confusion matrix (Table 2.1).

Classification with Imbalanced Data in the Presence of Outliers

Classification of imbalanced data in the presence of outliers is a very challenging task. Since

most traditional classification techniques are highly sensitive to outliers (See Figure 2.3) (Zhao
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et al., 2012; Batuwita & Palade, 2010). Not only cost-sensitive learning techniques but also pre-

processing and ensemble learning techniques suffer from sensitivity toward outliers or noise (Wang

et al., 2012; Chawala et al., 2002). There are several studies to deal with imbalanced classifica-

tion and outlier detection in a separate way. In most cases, the outliers are detected and removed

through using outlier detection/elimination techniques and then the remaining imbalanced data are

employed in the learning process. For example, Batuwita & Palade (2010) have identified outliers

by fuzzy membership values and then incorporated them in learning of imbalanced data with the

use of a fuzzy support vector machine (FSVM) method. Furthermore, there are several studies

which used the combination of two or more methods to deal with imbalanced and noisy data clas-

sification (Zhao et al., 2012). For example, Zhao et al. (2012) used the combination of FSVM with

the kernel modification method on the basis of Riemannian metric.

(a) No outliers (b) Outliers

Figure 2.3: Imbalanced data classification in the presence of outliers. It can be observed that the
classifier is greatly influenced by the outliers and the decision boundary is shifted to the right.

Control Chart Pattern Recognition

Over the years, several abnormal patterns have been reported in real industrial problems, each

of them reflecting a different underlying fault mechanism. In an early publication of Western

Electric Company (1958), 15 normal and abnormal patterns are identified, one normal, seven basic
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abnormal and seven composite abnormal. Examples of basic patterns, namely 1) normal (N), 2)

up trend (Ut) 3) down trend (Dt), 4) up shift (Us), 5) down shift (Ds), 6) cyclic (C), 7) systematic

(S), 8) stratification (F) patterns are illustrated in Figure 2.4 (a)–(g), whereas their mathematical

model description can be found in the Appendix. The composite abnormal patterns are formed

from linear combination of basic ones and they are more rare in practical applications.

Up trend and down trend patterns are associated with tool wear and malfunction in the crank

case manufacturing operations (El-Midany et al., 2010). The Shift patterns may occur due to vari-

ations of material, machine or operator i.e. defect detection in a musical signal obtained from a

broken disc or instrument (Davy et al., 2006; El-Midany et al., 2010). The power supply voltage

variability is often indicated by cyclic patterns (Kawamura et al., 1988). Cyclic patterns also arise

in manufacturing processes, such as frozen orange juice packing (Hwarng, 1995). Jang et al. (2003)

describe anomalies in automotive body assembly process as up/down trends, cyclic, and system-

atic patterns. Jin & Shi (2001) detect stamping tonnage abnormal signals by detecting up/down

trend patterns. Cook & Chiu (1998) and Chinnam (2002) identify that the abnormal control chart

patterns of paper making and viscosity data are up/down trend whereas, Zorriassatine et al. (2005)

uses up trend patterns with a fault state in an end-milling process. Since each pattern uniquely

characterizes a certain type of malfunction, with respect to a specific application, methods for ef-

ficient identification of abnormal patterns are necessary in order to improve fault diagnosis/repair

decision making.

Early CCPR studies propose basic statistical heuristics for mean and variance shift detection

(Swift, 1987). Knowledge based expert systems and artificial neural networks for CCPR were

also employed in the seminal works of Hwarng & Hubele (1992); Hwarng (1995); Hwarng &

Hubele (1993a) and Hwarng & Hubele (1993b). Other CCPR algorithms include principal com-

ponent analysis (PCA) (Aparisi, 1996), time series modeling (Alwan & Roberts, 1988), regression

(Mandel, 1969), and correlation analysis techniques (Al-Ghanim & Kamat, 1995; Yang & Yang,

2005). Moreover, there are artificial intelligence-based CCPR approaches, such as the expert sys-
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tem (Alexander, 1987; Cheng & Hubele, 1992) and the artificial neural network (ANN) (Pugh,

1989; Cheng, 1997; Cheng & Cheng, 2009). Soft computing/ data mining techniques are also

used in CCPR based on the literature including clustering (Ghazanfari et al., 2008), neurofuzzy

approaches (Chang & Aw, 1996; Taylan & Darrab, 2012), fuzzy-clustering (Zarandi & Alaeddini,

2010), decision trees (Wang et al., 2008) and support vector machines (Camci et al., 2008; Kumar

et al., 2006; Sukchotrat et al., 2009).

Computational studies show that K charts perform better than T 2 charts when the data is not

normally distributed. Sun & Tsung (2003) proposed the complementary use of those two control

chart types based on the underlying data distribution assumption. Camci et al. (2008) proposed a

robust approach for K charts along with a heuristic method for tuning the kernel parameters. The

SVM based charts are based on quadratic programming and have been proved to have minimum

generalization errors. The classifier is obtained as an exact solution to the convex optimization

problem for large datasets. These characteristics makes them a popular choice over other heuristic

based classifiers. (Burges, 1998; Byvatov et al., 2003; Suykens et al., 2002). The previous works

are classified in Table 4.12.

Average Run Length (ARL) Based Measures

In addition to data mining based evaluation we employed ARL based measures. The ARL

many “faulty samples” does a process need to produce, on average, in order to make sure that

an anomaly has been detected. In the CCPR framework we use the Average Target Pattern Run

Length (ATPRL) (Hwarng & Hubele, 1991) and consists of the average number of samples needed

for discovering an abnormal pattern. Since ATPRL can only be computed for discovered abnormal

patterns one needs to take into account the rate of abnormal pattern discovery. For this, here

we use the Average Run Length Index (ARLIDX) (Hwarng & Hubele, 1991) which equals to the

fraction of ATPRL divided by the discovery rate of abnormal patterns. It is worth noting that

when classification accuracy equal 100% the two measures, ATPRL and ARLIDX, are equivalent.
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Table 2.2: Literature review on CCPR using support vector machine method: M: Multivariate, C:
Correlated, NC: Non-correlated

Author(s) Performance Validation data Data Input Benchmark
(Year) measures Assumption Representation Comparison

Chinnam Error Real data M,C Raw T 2 charts
(2002) Visu & NC

Sun & Tsung Visu Real data M Raw T 2 charts
(2003) i.i.d

Kumar et al. Visu Real data M & Raw T 2 charts
(2006) C

Zhang et al. Acc Real data M & Raw T 2 charts
(2007) Error C

Camci et al. Acc Real data M & NC Raw T 2 charts
(2008) Error MLP & SVM

Cheng et al. Acc Real data M & Feature T 2 charts
(2009) C

Sukchotrat et al. Error Simulation M & Raw T 2 charts
(2010) C

Chongfuangprinya Error Simulation M & Raw PoC,
et al. Acc C T 2 charts

(2011) ARL

Lin et al. ARL Simulation M & Raw LVQN,
(2011) BPN

The ARL based measures are important especially for applications where the production of each

sample is cost and labor intensive. Ultimately one wants to detect an anomaly with the lower

ATPRL possible.
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Imbalanced Classification in Business Analytics

The class imbalance problem has a widespread range of applications in business. The following

examples explain certain business cases that imbalanced classification problems occur1

• Fraud detection. The rate of fraud event is growing extremely along with the develop-

ment of modern technology and communication, yielding the loss of millions of dollars each

year. Finding a solution for this problem is tremendously expensive for numerous business

associations. Organizations try to identify fraud by monitoring the suspicious transactions.

Though, there are more reliable users than fraudulent examples in transaction information.

There are different types of fraud based on the financial institution’s products and technolo-

gies (Yue et al., 2007) including, transaction products: credit and debit cards and checks,

technologies: ATM and Internet, and so on. The detection of credit card fraud, telecommu-

nication or cellular fraud, online banking fraud, and insurance fraud has significant impor-

tance, since these types of fraud are more likely to happen.

– Credit card fraud detection: A range of techniques has been used to address this prob-

lem such as k reverse nearest neighbors (kRNNs) concept for eliminating extreme out-

liers and hybrid sampling technique (Padmaja et al., 2007).

– Online banking fraud detection: the majority of online banking fraud problems deal

with online banking transaction data sets with these characteristics and challenges: (1)

highly imbalanced large data set; (2) real time detection; (3) dynamic fraud behavior;

(4) weak forensic evidence; and (5) diverse customer behavior patterns. The techniques

have been used in the literature for imbalanced classification problems include: Cost-

sensitive neural network (Wei et al., 2012) and random Forests (Breiman, 2001). Wei

et al. (2012) designed cost-sensitive neural network for the online banking scenario

1Razzaghi, T., Xanthopoulos, P., and Otero, A. (2013). ”Imbalanced Classification: Methods and Applications in
Business Analytics”. In Encyclopedia of Business Analytics and Optimization (pp. Accepted). IGI Global.
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which is a modified neural network-based scoring method. A decision forest is a mod-

ified version of classic decision tree methods for imbalanced data in building a scoring

model, which consists of multiple strong decision trees.

– Insurance fraud detection: There are few papers tackling insurance fraud detection

with the techniques including, backpropagation (BP), together with naive Bayesian

(NB) and C4.5 algorithms on preprocessed data with minority oversampling (Phua

et al., 2004), hybrid undersampling approach along with kRNN and K-means algo-

rithms (Vasu & Ravi, 2011).

– Telecommunication/Cellular fraud detection (Fawcett & Provost, 1997; Walters & Wilkin-

son, 1994): In the United States, the telecommunications industry loses a huge amount

of money each year (Steward, 1997).

• Customer relationship management (CRM). Identifying probable contributors or cus-

tomers is of great importance for a company’s sales, profits, and improvement. In recent

years, academic researchers and customer data analyzers have focused on developing the re-

lated databases and data analysis techniques. Olson (2007) reviewed the applications of data

mining in CRM. However, there are few works dedicated to classification of imbalanced data

in CRM (Kim et al., 2012; Tu et al., 2011). In fact, most datasets in the real world are more

likely to be imbalanced while a binary variable is used for prediction (i.e. 1 for purchase

and 0 for no purchase); and the proportion of 1 in the datasets is too small. The techniques

commonly used include the combined approach of SVM with undersampling(Kim et al.,

2012), cost-based version of bayesian network classification (Tu et al., 2011), and Weighted

random forests (Burez & Van den Poel, 2009). One of the interesting topics in CRM is churn

prediction which has become one of the main challenges of many companies (Alberts et al.,

2006; Chandar et al., 2006).

– Churn prediction. Customer churn is the tendency of customers to terminate a service

offered by a company (e.g. bank, financial institution and so on) in a given period of
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time. A churn prediction model will help a company to identify the customers at risk.

Customer churn is a frequently rare event in service industries (Gupta et al., 2006) and

due to the imbalance in the data distribution; churn prediction is a crucial yet chal-

lenging problem to address. Different classification techniques have been applied for

the imbalanced churn prediction problem, such as weighted random forest and logistic

regression (Burez & Van den Poel, 2009), a random forests together with the sam-

pling techniques and cost-sensitive learning (Xie et al., 2009), hybrid undersampling

approach along with kRNN and K-means algorithms (Vasu & Ravi, 2011).

• Marketing. Database marketing models is one of the popular classification problems in

the business domain, which aim to classify customers into buyers and non-buyers usually

through using probabilistic models. (Duman et al., 2012; Cui et al., 2008; Duman et al.,

2012; Ling & Li, 1998). Recently database marketers have increasingly adopted new meth-

ods and models.

• Risk management.There is few works addressed imbalanced classification in risk manage-

ment. The initial work done by Ezawa et al. (1996) implemented Bayesian network model

learning for predicting uncollectibles in telecommunications risk-management using imbal-

anced datasets. A more recent work (Wei et al., 2012) have implemented an online banking

risk management system using a risk scoring method. In their system, a voting method

is combined the scores from three models of contrast pattern mining, cost-sensitive neural

network and decision forest.

• Stock market prediction. Financial time series are intrinsically noisy and non-stationary

(Bao et al., 2005). The information which is not involved in the model is considered as noise.

Since, usually comprehensive information from the past behavior of financial markets is

unavailable to thoroughly obtain the relation between future and past prices. For prediction

of stock prices and stock selection, the ANN method has been widely used, but there is

always a drawback with this method where the data is imbalanced and includes noise and
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outliers. In these problems, a range of specific methods for imbalanced prediction problem

is needed such as fuzzy support vector machine regression.

Some previous studies that addressed the imbalanced classification problems in business applica-

tions are classified in Table 2.3.
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Table 2.3: Imbalanced classification problems in business applications

Authors Imbalanced Business Performance
/Year Classification Domain Measure

Back propagation
Phua et al. combined with Naive Bayesian, Fraud Accuracy

(2004) C4.5, detection
& oversampling

K reverse True
Padmaja et al. nearest neighbors Fraud positive rate

(2007) & hybrid detection & true
resampling technique negative rate

Logistic regression, Fraud Estimated relative
Perols SVM, ANN, detection costs of misclassification
(2011) C4.5, & stacking (ERC)

Cost-sensitive
Wei et al. neural network, Fraud Accuracy

(2012) decision forest, & detection
contrast pattern mining

Tu et al. Cost-based CRM AUC & sensitivity
(2011) bayesian network

Kim et al. SVM with CRM Accuracy,
(2012) random undersampling sensitivity & specificity

Burez & Undersampling, Churn prediction AUC & lift
Van den Poel gradient boosting, &

(2009) weighted random forests

Xie et al. Balanced random forests, Churn prediction Lift curve &
(2009) resampling techniques, & Top-Decile lift

cost-sensitive learning

Duman et al. Logistic regression, Marketing Accuracy,
(2012) ANN, AUC &

Chi-squared automatic & precision (Hit rate)
interaction detector algorithm

Vasu & Ravi Hybrid undersampling with Insurance Sensitivity,
(2011) KRNN & K-means fraud detection & specificity,

churn prediction AUC & accuracy

Ezawa et al. (1996) Bayesian network learning Risk management ROC
(1996)

Bao et al. Fuzzy support vector Stock market Normalized mean
(2005) machines regression (FSVR) predication -squared error (NMSE)
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(a) Up trend (b) Down trend

(c) Up shift (d) Down shift

(e) Cyclic (f) Systematic
Figure 2.4: Examples of six abnormal patterns (bold) plotted versus an example of normal one
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(g) Stratification

Figure 2.5: Examples of stratification abnormal pattern (bold) plotted versus an example of normal
one

Figure 2.6: Conceptual scheme for classification of imbalanced data
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CHAPTER 3: METHODOLOGY

Support Vector Machines

Support Vector Machine (SVM) is a popular supervised learning algorithm originally pro-

posed by Vapnik (2000). It has been used in many real-world problems such as text catego-

rization (Joachims, 1998; Pilászy, 2005), image classification (Chapelle et al., 1999; Foody &

Mathur, 2004), bioinformatics (including protein classification and cancer classification) (Leslie

et al., 2002; Zavaljevski et al., 2002; Guyon et al., 2002) and hand-written character recognition

(Bahlmann et al., 2002). Originally, the SVM is designed to solve binary classification problems,

but multi-class extensions are also available.

Originally SVM has been developed to solve linearly separable problems. However, it is pos-

sible to generalize them in order to classify non-linear problems by employing the kernel trick

(Cristianini & Shawe-Taylor, 2000). The intuition behind kernel trick is that the original data

points are projected into a higher dimensional feature space in which they can be separated by a

linear classifier. The projection of a linear classifier on the feature space can be non-linear in the

original space. In order to use SVM, each data point is required to be a real value. If the attributes

are categorical, then they should be transformed into numeric values.

Assume that a dataset is represented by a set J = {(xi, yi)}li=1 where (xi, yi) ∈ Rn+1,

l and n are the number of samples and features, respectively, and each xi is a sample with n

features and a class label yi ∈ {−1, 1}. The SVM classifies the data points by identifying a

separating hyperplane whose distance is maximum with respect to the data points of each class.

The separation hyperplane defined by the parameters w and b can be obtained by solving the
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following convex optimization problem (Cortes & Vapnik, 1995):

min
1

2
‖w‖2 (3.1a)

s.t. yi(wTφ(xi) + b) ≥ 1 i = 1, . . . , l (3.1b)

where φ is the kernel function φ : Rn → Rm where m ≥ n, i.e. each training sample xi is mapped

into a higher dimensional space by the function φ. For linear SVM, we have φ(xi) = xi. Then, the

class yu of an arbitrary unknown point xu is assigned based on the following rule:

yu = sgn{wTφ(xu) + b}, (3.2)

where sgn{·} is the sign function. This formulation is known as hard margin SVM because it

requires that the two classes to be separable through a classification hyperplane. If the classification

problem is non-separable, then Problem 3.1 is infeasible. In this case, slack variables ξi, i ∈

{1, . . . , l} are added to the objective function whose goal is to allow but penalize misclassified

points. This approach is known as soft margin SVM and the corresponding quadratic programming

problem can be formulated as (Cortes & Vapnik, 1995):

min
1

2
‖w‖2 + C

l∑
i=1

ξi (3.3a)

s.t. yi(wTφ(xi) + b) ≥ 1− ξi i = 1, . . . , l (3.3b)

ξi ≥ 0 i = 1, . . . , l (3.3c)

The parameter C controls the magnitude of penalization. The soft margin formulation con-

verges to the hard margin as C → +∞. Many algorithms, such as sequential minimal optimization

(SMO), operate on the Lagrangian dual problem instead of Problem 3.3 for faster and more stable
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convergence. The Lagrangian dual of 3.3 will be:

max
l∑

i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi, xj) (3.4a)

s.t.
l∑

j=1

αiyi = 0 i = 1, . . . , l (3.4b)

0 ≤ αi ≤ C i = 1, . . . , l (3.4c)

where K(xi, xj) = φ(xi)
Tφ(xj) is the kernel function that measures the similarity between two

arbitrary points.

Weighted Support Vector Machines

In previous formulation (3.4a-3.4c), all data points are given the same importance in the train-

ing process. This might not be desirable especially in the case that one class contains outliers

or in the case that one class contains considerably less point than the other. For this reason, a

modified version of soft margin SVM has been proposed for making the training process more

flexible. Suppose we are given a set of labeled samples with corresponding weights represented by

the set J ′ = {(xi, yi, si)}li=1. Each training sample (xi, yi) ∈ Rn+1 is associated to a given label

yi ∈ {−1, 1} and the corresponding weight 0 ≤ si ≤ 1 with i = 1, . . . , l. The optimal hyperplane

is again identified from the solution of the optimization problem (Lin & Wang, 2002).

min
1

2
‖w‖2 + C

l∑
i=1

siξi (3.5a)

s.t. yi(wTφ(xi) + b) ≥ 1− ξi i = 1, . . . , l (3.5b)

ξi ≥ 0 i = 1, . . . , l (3.5c)

37



Through WSVM one can assign different weights to each data sample based on a predetermined

importance measure. This provides a more flexible scheme compared to SVM where the overall

penalization magnitude C is the only parameter. For the special case of imbalanced binary classi-

fication, Veropoulos et al. (1999) proposed the usage of different costs associated with the positive

(C+) and negative (C−) class

min
1

2
‖w‖2 + C+

n+∑
{i|yi=+1}

ξi + C−
n−∑

{j|yj=−1}

ξj (3.6a)

s.t. yi(wTφ(xi) + b) ≥ 1− ξi i = 1, . . . , l (3.6b)

ξi ≥ 0 i = 1, . . . , l (3.6c)

The problem 6 to find the optimal hyperplane is a Quadratic programming problem, which can

transformed into the Lagrangian dual with the Kuhn-Tucker conditions. The Lagrangian dual is

given by:

max
l∑

i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi, xj) (3.7a)

s.t.
l∑

j=1

αiyi = 0 i = 1, . . . , l (3.7b)

0 ≤ αi ≤ C+ if yi = +1 and i = 1, . . . , l (3.7c)

0 ≤ αi ≤ C− if yi = −1 and i = 1, . . . , l (3.7d)

The role of the weighting parameters C+ and C− is to assign different “importance” to the

misclassification of the positive and negative class. In this way the minority class becomes more

important in terms of objective function value. As it is shown in Figure 2.6, WSVM classifies

correctly minority class examples.
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Weighted Relaxed Support Vector Machines

Let xi ∈ Rn denote sample i and yi ∈ {−1, 1} its class label. Let the set of sample indices

for the positive and negative classes be I+ and I−, respectively, and let I = I+ ∪ I−. The RSVM

model is given in Formulation (3.8). The fundamental idea behind RSVM is to provide a restricted

amount nΥ of unpenalized (free) slack for samples that may hinder the classification performance,

where Υ is a parameter that determines average slack per sample. Free slack is distributed to

samples via the variables υ in Formulation (3.8), however, without differentiating between positive

and negative classes, which may become problematic with unbalanced data. Moreover, the penalty

term applies equally to positive and negative classes in RSVM regardless of relative class sizes.

min
w,b,ξ,υ

1

2
〈w ·w〉+

C

2n

∑
i∈I

ξi
2 (3.8a)

s.t. y(〈w · xi〉+ b) ≥ 1− ξi − υi, ∀i ∈ I (3.8b)∑
i∈I

υi ≤ n Υ (3.8c)

υi ≥ 0, ∀i ∈ I (3.8d)

The WRSVM model1, which is given in Formulation (3.9), combines the cost-sensitive ap-

1Şeref, O., Razzaghi, T., and Xanthopoulos, P., ”A Weighted Relaxed Support Vector Machine Method”. Submitted
to Expert Systems with Applications, 2014.
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proach of WSVM and the relaxation approach of RSVM.

min
w,b,ξ,υ

1

2
〈w ·w〉+

C

2n+

∑
i∈I+

ξi
2 +

C

2n−

∑
i∈I−

ξi
2 (3.9a)

s.t. 〈w · xi〉+ b ≥ 1− ξi − υi, ∀i ∈ I+ (3.9b)

− 〈w · xi〉 − b ≥ 1− ξi − υi, ∀i ∈ I− (3.9c)∑
i∈I+

υi ≤ n+ Υ (3.9d)

∑
i∈I−

υi ≤ n− Υ (3.9e)

υi ≥ 0, ∀i ∈ I (3.9f)

In Formulation (3.9), n+ and n− are the sizes of the majority and minority class, respectively.

Free slack for sample i is denoted with the variable υi in constraints (3.9b) for positive samples and

in (3.9c) for negative samples. Due to imbalance, we provide separate amounts of total free slack

for the positive and the negative classes in constraints (3.9d) and (3.9e), respectively, parameterized

by Υ, which is the free slack provided per sample.

The Lagrangian function for Formulation (3.9) can be written as,

L(w, b, ξ,υ,α, β+, β−,λ) = (3.10a)

1
2
〈w ·w〉+

C

2n+

∑n
i∈I+ξi

2 +
C

2n−
∑

i∈I−ξi
2

−
n∑
i=1

α+
i (〈w · xi〉+ b− 1 + ξi + υi)

−
n∑
i=1

α−i (−〈w · xi〉 − b− 1 + ξi + υi)

− β+
(
n+Υ−

∑
i∈I+υi

)
−
∑
i∈I+

λiυi

− β−
(
n−Υ−

∑
i∈I−υi

)
−
∑
i∈I−

λiυi, (3.10b)
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where α, β and λ are the Lagrangian multipliers. Since Formulation (3.9) is a convex problem,

its Wolfe dual can be obtained from the following stationary first order conditions of the primal

variables w , b, ξ, and υ.

∂L
∂w

= w −
∑n

i∈I+αixi +
∑n

i∈I−αixi = 0 (3.11a)

∂L
∂b

= −
∑

i∈I+αi +
∑

i∈I−αi = 0 (3.11b)

∂L
∂ξi

= C
n+ ξi − αi = 0,∀i ∈ I+ (3.11c)

∂L
∂ξi

= C
n− ξi − αi = 0,∀i ∈ I− (3.11d)

∂L
∂υi

= β+ − αi − λi = 0,∀i ∈ I+ (3.11e)

∂L
∂υi

= β− − αi − λi = 0,∀i ∈ I− (3.11f)

Substituting the equivalent expressions forw , b, ξ, υ from equations (3.11a) - (3.11e) back in

expression (3.10b), the Wolfe dual can be written as follows:

max
α,β+,β−

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαj〈xi · xj〉

− n+

2C

∑
i∈I+

α2
i −

n−

2C

∑
i∈I−

α2
i

− n+Υβ+ − n−Υβ− (3.12a)

s.t. −
∑
i∈I+

αi +
∑
i∈I−

αi = 0 (3.12b)

0 ≤ αi ≤ β+ ∀i ∈ I+ (3.12c)

0 ≤ αi ≤ β− ∀i ∈ I−. (3.12d)

The dot products 〈xi · xj〉 in Formulation (3.12) can be replaced by a kernel k(xi,xj) for

nonlinear classification. The optimal hyperplane w can be found using Equation (3.11a).
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Lemma 1. If ||w|| > 0 in the optimum solution of Formulation (3.9), then the “total free slack”

constraints,
∑

i∈I+ υi ≤ n+Υ and
∑

i∈I− υi ≤ n−Υ, are always binding, i.e., the total free slack

for both classes are always consumed.

Proof. The proof follows from the complementary slackness conditions that β+ > 0 and β− > 0

for any solution such that ||w|| > 0 due to Equation (3.11a) and constraints (3.12c) and (3.12d).

Thus, constraints (3.9d) and (3.9e) are binding, i.e., total free slack amounts n+Υ and n−Υ are

always consumed completely.

We now show that there are two margins parallel to the separating hyperplane, which are de-

termined by the maximum penalty for each class, ξ+max = max
i∈I+
{ξi} and ξ−max = max

i∈I−
{ξi}. Samples

behind the boundary of this margin do not require free slack, whereas samples beyond this bound-

ary claim some of the free slack reserved for their respective class.

Theorem 1. Let ξ+max = max
i∈I+
{ξi} and ξ−max = max

i∈I−
{ξi} be the maximum penalties for the positive

and negative classes, respectively, in the optimum solution to Formulation (3.9). Then,

1. υi = 0 for any sample such that ξi < ξ+max, ∀i ∈ I+ and ξi < ξ−max, ∀i ∈ I−, and

2. ξi = ξ+max for υi > 0, i ∈ I+ , and ξi = ξ−max for υi > 0, i ∈ I+,.

Proof. Without loss of generality, assume that there exist a sample i ∈ I+ such that ξi < ξ+max and

υi > 0 in the optimal solution to Formulation (3.9). Let I+max be the set of samples with penalty

ξj = ξ+max for all j ∈ I+max. Let |I+max| = k. Let the penalty difference between samples in I+max and

the next highest penalty of a sample be δ = ξ+max − ξt∗ , where t∗ = arg max{ξt : t ∈ I+ \ I+max}.

From Lemma 1, one can shift δmin = min{υi, δ} amount of the free slack from sample i over to

the samples in I+max such that the new penalty values for the samples in I+max are ξ′j = ξj − δj ,
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where δmin =
∑

j∈I+max
δj . Let ∆Z be the reduction in the total penalty. Then,

∆Z = k ξ+max
2

+ ξ2i

−
(∑

j∈I+max
(ξ+max − δj)2 + (ξi + δmin)2

)
(3.13a)

= 2δmin(ξ+max − ξi)− δ2min −
∑

j∈Amax

δ2j (3.13b)

≥ 2δmin(ξ+max − (ξi + δmin)) > 0, (3.13c)

which contradicts with the optimality of the solution. The reduction in (3.13b) is maximized when

δj = δmin

k
for all j ∈ Amax with a new maximum penalty value ξ+′max = ξmax− δmin

k
. From Lemma

1, the corresponding new free slack values are υ′j = υj + δmin

k
for all j ∈ Amax. This shows

that all free slack is consumed by the samples with maximum penalty, thus proving item (2) for

the positive class case. The proof for the negative class is along the same lines as the positive

class.

From Theorem 1, the samples with positive free slack have the maximum penalties of each

class. This implies functional margins of γ+r = 1− ξ+max for the positive class and γ−r = 1− ξ−max

for the negative class. Note that constraints (3.9b) and (3.9c) with penalty ξmax > 0 are binding,

and therefore, free slack for these constraints, and the corresponding samples would be equal to

υj = max{0, γr − yj(〈w · xj〉 + b)}, where γr = γ+r for i ∈ I+ and γr = γ−r for i ∈ I−.

In other words, the functional distance from a sample beyond this margin and the margin itself

is not penalized. Without loss of generality, replacing sample xj that has a positive slack with

a new sample x′j = xj − υj(w/||w||) does not change the optimal solution. This is equivalent

to pushing such samples back to the margins γ+r and γ−r for the positive and negative classes,

respectively, along the direction of the normal vector w. This result implies that some of the most

influential support vectors are relaxed due to the free slack and are pushed back to a distance from

the hyperplane, which is determined by the maximum penalty for each class.
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From constraints (3.12c) and (3.12d) and equations (3.11e) and (3.11f), we can estblish the

equivalences β+ = C
n+ ξ

+
max and β− = C

n− ξ
−
max. Note that variables β+ and β− are upperbounds

and they are penalized in the objective function by the total free slack amounts n+Υ and n−Υ,

respectively. Thus, higher amounts of free slack will impose lower values of β+ and β−, which

are direcly proportional to maximum penalties ξ+max and ξ−max. Such a change will imply that the

support vectors are receding further toward their classes with increasing total free slack amounts.

Without loss of generality, for a positive sample i such that 0 < αi < β+, constraint (3.9b) is

tight for sample i and Theorem 1 implies that υi = 0. Then, the bias b for the separating hyperplane

can be calculated as follows,

b = yi

(
1− n+

C
αi

)
−
∑
j∈I

yjαj〈xi · xj〉. (3.14)

For excessive amounts of free slack for the positive class, we may have υi > 0 for all i ∈ I+.

In this case all constraints (3.9b) are tight. Then using Lemma 1, we can calculate the bias b as

follows,

b = 1− 1

C

∑
i∈I+

αi −Υ− 1

n+

∑
i∈I+

∑
j∈I

yiyjαj〈xi · xj〉. (3.15)

Similar arguments can be used with the negative samples.

Model Selection for Support Vector Machines

The SVM, WSVM and WRSVM algorithms have certain parameters that need to be tuned

during the training phase; in particular, cost and kernel parameters for SVM and WSVM and

in addition the total free slack parameter (Υ) for WRSVM. For this, we use an adapted nested

uniform design model selection algorithm. Uniform designs (UD) algorithms have been proposed

for supervised learning model selection Huang et al. (2007) and have been identified as more
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efficient and robust compared to the uniform grid search model selection ?. The intuition behind

this approach is to search the parameter space by exploring the points that minimize a discrepancy

function between their empirical distribution and the theoretical uniform distribution. This process

can be applied iteratively in a nested manner in order to identify the close-to-optimal parameter

set. The optimal points are selected based on some classification performance measure. Here, we

use the L2-discrepancy measure. For a set of points P = {x1, . . . , xn} over a parameter space

A ⊂ Rm, where m is the number of parameters, it is defined by,

D2(A, P ) =

[∫
A
|F (x)− Fe(x)|2dx

]1/2
, (3.16)

where F (x) is the uniform cumulative density function (c.d.f) and Fe(x) is the empirical c.d.f.

This technique is a multiple stage procedure that performs a parameter space search in order to

determine the near-optimal parameter. Since the test instances are imbalanced we select the optimal

parameter set based on the highest G-mean value. Formally the model selection process can be

described as follows:

1. Choose parameter search domain and number of levels (factors) for each parameter.

2. Choose a suitable UD table ? to accommodate the number of parameters and levels. Here

the UD tables are built under the centered L2-discrepancy.

3. From the UD table, randomly determine the run order of experiments and estimate perfor-

mance measure for each one of them (here G-mean).

4. Refine the search around the point with the highest performance measure value by applying

steps 1–3.
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CHAPTER 4: RESULTS

We present our result in this section into two subsections. In the first subsection, we explain the

results of WSVM and SVM for control chart pattern recognition when data are highly imbalanced.

In the second subsection, we explain the results of WRSVM compared to the state-of-art techniques

when data is imbalanced and noisy. For this section, we show the performance of the proposed

method on benchmark datasets.

Imbalanced Support Vector Machine for Control Chart Pattern Recognition

Binary Classification

In this section, we present experimental results between SVM and the proposed WSVM 1. Ex-

periments on both SVM and WSVM were conducted with LIBSVM-3.12 and LIBSVM-weights-

3.12 (Chang & Lin, 2011). The LIBSVM was interfaced in MATLAB and the rest of the script

was developed in it as well. All experiments are performed on an Intel core i5, 2.3 GHz with 4Gb

of RAM in a 64-bit platform. For each classification problem, we generate a total of 1000 data

points and for cross validation purposes, 90% of the data was used for training and the rest 10%

was used for testing. All data are normalized prior to classification, so that they have zero mean

and unitary standard deviation (zscore() function in MATLAB was used). Data based on different

normal and abnormal patterns are generated (for the mathematical models see appendix). How-

ever, there are several kernel functions in the literature for this particular problem, we chose the

Radial Basis Function (RBF) kernel. This is because the natural distribution of the classes is either

normally distributed (for control data) and very close to normally distributed (for abnormal data).

The RBF kernel is effective in producing spherical and ellipsoidal decision areas which makes it

1Razzaghi, T. and Xanthopoulos, P. (2014), A Weighted Support Vector Machine Method for Control Chart Pattern
Recognition. Industrial and Computer Engineering, 70, pp. 134-149.
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an appropriate kernel candidate for the problem under consideration. For this kernel function, the

similarity between two data points xi and xj is given by:

K(xi, xj) = exp(−γ‖xi − xj‖2), γ ≥ 0. (4.1)

For each class, the weights are estimated as the inverse of the class size:

C+ =
C

n+
, C− =

C

n−
(4.2)

where n+ and n− are the size of normal and abnormal class, and C+ and C− are weights corre-

sponding to the normal and abnormal classes respectively. Note that for balanced problems the

weights become equal (C+ = C−) and the algorithm reduces to SVM. This weight strategy has

been employed in a number of previous studies (Liu et al., 2005; Du & Chen, 2005; Huang & Du,

2005; Hwang et al., 2011). We studied the behavior of our classifiers for different values of abnor-

mal trend pattern values as well as for different window lengths w (different number of features).

Our goal is to study and implement WSVM and SVM for CCPR and at the same time identify

the set of parameters that generate the most challenging problems and also determine what is the

minimum number of features (minimum w) for which the classifier is trusted. In some sense pa-

rameter w is related to the Average Run Length (ARL) since it shows how much data do we need

in order for the abnormal patterns to be discoverable. In particular, the following experiments are

conducted:

1. We compare WSVM against SVM for each abnormal pattern and for different window

lengths w and different pattern parameters with respect to G-mean. Through this experi-

ment, we identify the parameter values for which, a) the problems easily solvable for both

algorithms, b) the problems cannot be solved by neither algorithm and c) the rest (partially

separable problems). For this test we consider highly imbalanced problems where 97.5% of

the data belong to the normal class and only 2.5% belong to the abnormal.
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2. For selected separable (Sep), partially separable (Ps) and inseparable (Is) problems, we per-

form a statistical test the performance between SVM and WSM. We observe that although

the mechanism of generation of the various classes is different, the statistical test failed to

reject the null hypothesis except for the case of separable problems where both algorithms

perform equally well.

3. For selected instances of (Sep), (Ps) and (Is) problems, we perform detailed and G-mean

analysis for different types of imbalanced problems. We observe that WSVM performance

is highly robust for difference imbalanced instances whereas SVM highly depends on the

imbalance ratio. The results are consistent with earlier imbalanced classification literature.

4. We measure the time needed for training and testing of the proposed algorithms in order

to determine whether this scheme can be of practical usefulness. In addition to the ARL

represented by the parameterw it is important to understand whether there is a computational

bottleneck. It turns out that the proposed algorithms can handle large amounts of data in

reasonable amount of time.

5. We perform a multi-class comparison between multiclass-WSVM and multiclass-SVM with

a total of seven classes (one normal and six abnormal). Results are compared in terms of the

confusion matrix of each classifier. Computational running time for training and testing is

reported as well.

The parameter selection C and γ for SVM and WSVM was performed through a uniform

grid search over the parameter space. The two classification schemes (SVM and WSVM) were

compared in terms of their G-mean for different values of the window w and abnormal parameter

values Table B.2.

We consider a wide range of window lengths (w) and a wide range of abnormal pattern param-

eters. In general higher w yields less challenging problems however this requires more data since

w is the time window of the process. The results are shown in Figures 4.6 & 4.2. The tables with
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the all the numerical values along with the sensitivity, specificity and classification accuracy for

these experiments can be found in the supplementary material section of this paper. On the other

side higher deviation from normal data yields also to easier problems as expected. Ultimately

one would like to detect slide parameter shifts with the smallest w possible. It turns out that for

these instances WSVM provides a considerable improvement over SVM. We observe that overall

in each pattern there are some problems that both SVM and WSVM can solve (white areas), some

problems that are partially solvable (gray areas) and some problems that are inseparable (black

areas). We can see that WSVM, for most of the cases can solve better the instances where SVM

cannot solve. These are typically the ones with low w and low pattern parameter. We can also see

that for small pattern parameter changes problems remain partially solvable for both classifiers.

This means that the problem remains challenging for small parameter shifts. However such shifts

are less likely to cause a severe malfunction. Overall we see that WSVM performs the same or

better compared to SVM and further more its behavior is more robust since the performance does

not change dramatically with the changes of the parameters. In addition, we observe a symmetric

behavior of the algorithms for symmetric trend and shift patterns. In practice, the choice of w

depends on the nature of the imbalanced problem as well as the magnitude of parameter shift that

one wishes to detect.

Table 4.1: Summary of parameter range for computational experiments

Name Symbol Range

Window length w [10, 100]
Process mean (all patterns) µ 0
Standard deviation of normal process σ 1
Slope (Up/Down trend pattern) λ [0.005σ, 0.605σ]
Shift (Up/Down shift pattern) ω [0.005σ, 1.805σ]
Standard deviation (Stratification pattern) έt [0.005σ, 0.8σ]
Cyclic parameter (Cyclic pattern) α [0.005σ, 1.805σ]
Systematic parameter (Systematic pattern) k [0.005σ, 1.805σ]
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(a) Up trend/ Down trend (SVM) (b) Up trend/ Down trend (WSVM)

(c) Up shift/ Down shift (SVM) (d) Up shift/ Down shift (WSVM)

(e) Systematic (SVM) (f) Systematic (WSVM)

Figure 4.1: Geometric mean of sensitivity for different parameters window lengths and patterns
for highly imbalanced data.
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(a) Cyclic (SVM) (b) Cyclic (WSVM)

(a) Stratification (SVM) (b) Stratification(WSVM)

Figure 4.2: Boundary obtained for inseparable, partially separable, and separable classification
problems for cyclic and stratification patterns

Another necessary aspect to consider is the computational running time of the algorithm. In

a practical setting the training phase can occur off-line on the historical data and only the testing

or prediction phase will be conducted on-line to generated data. However, if computational time

allows, it would be beneficial to retrain the algorithm on-line as new data are generated real time.

We recorded the time required for training and testing as a function of the data size (Figure 4.4)

and abnormal pattern parameter (Figure 4.3 and Table 4.5). As expected the training and testing

time for a fixed data size is negligible (order ∼ 10−2 sec) compared to the order of training (∼

10 sec) and the order of testing (∼ 1 sec). It is noteworthy that these computational times are
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based on a non embedded implementation developed for research in MATLAB environment. A

potential industrial embedded implementation will propably have much lower computational times.

Therefore the times reported in Figure 4.4 & 4.3 and Table 4.5 should be seen as upper bound for

a real time implementation.

Figure 4.3: WSVM training and testing time vs. abnormal parameter for cyclic patterns. The
computation time decreases as the value of the parameter increases. This is expected since higher
parameter values make the problem less challenging (more separable).

Table 4.2: The maximum and minimum training and testing time of WSVM for different abnormal
patterns

Training time Testing time
Abnormal pattern min max min max

Uptrend 0.0007 0.0748 0.0001 0.0174
Downtrend 0.0006 0.0747 0.0001 0.0172

Upshift 0.0017 0.1594 0.0002 0.0160
Downshift 0.0016 0.1325 0.0002 0.0209
Systematic 0.0014 0.1293 0.0001 0.0234

Cyclic 0.0028 0.1323 0.0003 0.0248
Stratification 0.0059 0.0218 0.0006 0.0026

Next we select some representative problems from (Sep), (Ps) and (Is) classes and compare

them with respect to accuracy, sensitivity, specificity and G-means. Sensitivity and accuracy are

greatly driven by the majority class and specificity is mostly affected by the correct classification
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of the minority class. However, G-mean is a measure that considers both sensitivity and specificity

and can be a trusted performance metric of imbalanced classification. We can see that G-mean

consistently improves for all the problems and all the patterns under consideration (Table 4.12).

We perform a statistical test in order to measure the significance of WSVM improvement. Our

null hypothesis is that the G-mean of SVM and WSVM are equal and the alternative hypothesis

that they are not. The t-test rejects the null hypothesis in most of the instances except for the

separable cases where both SVM and WSVM perform equally well (less challenging instances).

We note that in many cases SVM achieves high sensitivity and zero specificity. This implies null

classification meaning that all the test samples are classified in the same class and is indicative of

poor performance. This has been noted in previous studies (Weiss, 2004) and it is in accordance

with previous computational results (Anand et al., 2010; Hwang et al., 2011).

Figure 4.4: WSVM training and testing time vs. training size for cyclic pattern

Next we compare the performance of SVM and WSVM for different imbalanced ratios and rep-

resentative problems of different difficulty level ((Sep),(Ps) and (Is)). Parameters for each problem

are the same as these in Table 4.12. Results are shown in Tables 4.4, 4.5 and 4.6. We consider the

size of imbalanced normal and abnormal data as (50 + r)% and (50 − r)% respectively. For all

instances, and regardless the difficulty level of the problem we can see that WSVM demonstrates
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a more robust behavior for various values of r. On the other side SVM performs well for low

r (more balanced problems and rapidly decreases as r decreases (with only exception the (Sep)

problems). When r is low then the two formulations become equivalent and thus the performance

is very similar.

Table 4.3: Sensitivity (Sen), Specificity (Spe), Accuracy (Acc), and G-means (G) of SVM and
WSVM over all six abnormal patterns for different problems with three types including separa-
ble(Se), partially separable (Ps), and inseparable(Is). We define these three types based on SVM
classification performance.

Pattern
SVM WSVM

Parameters Type
Sen Spe Acc G Sen Spe Acc G P-value
1.00 0.00 0.93 0.00 0.64 0.54 0.63 0.57 < 10−4 (w=10, λ=0.005) Is

Ut 0.99 0.44 0.95 0.66 0.88 0.83 0.88 0.86 < 10−4 (w=15, λ=0.06) Ps
1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00 0.085 (w=15, λ=0.16) Se
1.00 0.00 0.92 0.00 0.60 0.45 0.59 0.52 < 10−4 (w=10, λ=0.005) Is

Dt 0.99 0.38 0.94 0.62 0.88 0.81 0.87 0.84 < 10−4 (w=15, λ=0.06) Ps
1.00 0.96 1.00 0.98 1.00 0.98 1.00 0.99 0.534 (w=15, λ=0.16) Se
1.00 0.00 0.93 0.00 0.61 0.51 0.60 0.54 < 10−4 (w=10, ω=0.105) Is

Us 0.99 0.40 0.94 0.63 0.90 0.77 0.89 0.83 < 10−4 (w=20, ω=0.43) Ps
1.00 0.98 1.00 0.99 1.00 0.99 1.00 1.00 0.085 (w=20, ω=1.205) Se
1.00 0.00 0.90 0.00 0.64 0.57 0.63 0.59 < 10−4 (w=10, ω=0.105) Is

Ds 0.97 0.46 0.93 0.65 0.91 0.72 0.89 0.81 < 10−4 (w=20, ω=0.43) Ps
1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 0.163 (w=20, ω=1.205) Se
1.00 0.00 0.93 0.00 0.76 0.74 0.76 0.74 < 10−4 (w=10, k=0.405) Is

S 1.00 0.21 0.94 0.46 0.85 0.70 0.84 0.77 < 10−4 (w=15, k=0.455) Ps
1.00 0.98 1.00 0.99 1.00 0.98 1.00 0.99 0.055 (w=15, k=1.405) Se
1.00 0.00 0.94 0.00 0.73 0.50 0.71 0.59 < 10−4 (w=15, α=0.23) Is

C 0.99 0.19 0.93 0.43 0.87 0.72 0.86 0.79 < 10−4 (w=20, α=0.48) Ps
1.00 0.94 0.99 0.97 1.00 0.98 1.00 0.99 0.596 (w=20, α=1.605) Se
1.00 0.00 0.92 0.00 0.63 0.77 0.64 0.69 < 10−4 (w=10, έt=0.78) Is

Str 1.00 0.11 0.93 0.33 0.89 0.96 0.89 0.92 < 10−4 (w=15, έt=0.58) Ps
0.99 0.92 0.98 0.95 0.96 1.00 0.96 0.98 0.021 (w=15, έt=0.43) Se
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Table 4.4: G-mean of SVM and WSVM of all patterns in Inseparable (Is) problems for different
imbalanced ratio. The majority class contains (50 + r)% of the data and the minority (50− r)%.

Ut Dt Us Ds S C Str
r SVM WSVM SVM WSVM SVM WSVM SVM WSVM SVM WSVM SVM WSVM SVM WSVM
5 0.42 0.54 0.43 0.52 0.48 0.54 0.49 0.59 0.72 0.74 0.58 0.62 0.70 0.67
10 0.25 0.54 0.24 0.51 0.38 0.56 0.34 0.54 0.71 0.74 0.52 0.60 0.69 0.68
15 0.07 0.53 0.05 0.52 0.12 0.55 0.07 0.55 0.68 0.74 0.47 0.61 0.66 0.67
20 0.00 0.52 0.00 0.53 0.12 0.55 0.04 0.56 0.65 0.73 0.35 0.62 0.46 0.68
25 0.00 0.53 0.00 0.53 0.00 0.56 0.00 0.55 0.59 0.73 0.17 0.62 0.12 0.67
30 0.00 0.54 0.00 0.51 0.00 0.55 0.00 0.55 0.55 0.75 0.09 0.59 0.00 0.70
35 0.00 0.51 0.00 0.53 0.00 0.57 0.00 0.56 0.37 0.72 0.03 0.62 0.00 0.69
40 0.00 0.56 0.00 0.52 0.00 0.55 0.00 0.56 0.20 0.72 0.00 0.62 0.00 0.69
45 0.00 0.57 0.00 0.52 0.00 0.57 0.00 0.59 0.00 0.74 0.00 0.69 0.00 0.69

Table 4.5: G-mean of SVM and WSVM of all patterns in Partially separable (Ps) problems for
different imbalanced ratio. The majority class contains (50 + r)% of the data and the minority
(50− r)%.

Ut Dt Us Ds S C Str
r SVM WSVM SVM WSVM SVM WSVM SVM WSVM SVM WSVM SVM WSVM SVM WSVM
5 0.84 0.84 0.85 0.84 0.82 0.82 0.81 0.83 0.80 0.81 0.76 0.76 0.92 0.92
10 0.84 0.85 0.84 0.85 0.81 0.82 0.80 0.82 0.78 0.80 0.74 0.76 0.92 0.92
15 0.83 0.85 0.83 0.84 0.80 0.83 0.79 0.83 0.78 0.80 0.72 0.75 0.92 0.92
20 0.82 0.84 0.82 0.86 0.79 0.83 0.78 0.82 0.77 0.80 0.72 0.77 0.92 0.93
25 0.81 0.85 0.82 0.85 0.76 0.84 0.74 0.83 0.73 0.79 0.68 0.77 0.90 0.92
30 0.77 0.84 0.79 0.85 0.73 0.82 0.75 0.81 0.66 0.80 0.62 0.77 0.90 0.92
35 0.76 0.84 0.77 0.85 0.70 0.81 0.72 0.82 0.62 0.78 0.61 0.77 0.86 0.92
40 0.72 0.85 0.66 0.85 0.68 0.81 0.67 0.82 0.60 0.79 0.49 0.75 0.80 0.92
45 0.66 0.86 0.62 0.84 0.63 0.83 0.65 0.81 0.46 0.77 0.43 0.79 0.33 0.92

Table 4.6: G-mean of SVM and WSVM of all patterns in Separable (Se) problems for different
imbalanced ratio. The majority class contains (50 + r)% of the data and the minority (50− r)%.

Ut Dt Us Ds S C Str
r SVM WSVM SVM WSVM SVM WSVM SVM WSVM SVM WSVM SVM WSVM SVM WSVM
5 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.98 0.98
10 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 0.99 0.98 0.98
15 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.98 0.98
20 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 1.00 0.99 0.99 0.99 0.98 0.97
25 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.98 0.98
30 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98
35 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.98
40 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.98
45 0.99 1.00 0.98 0.99 0.99 1.00 0.99 1.00 0.99 0.99 0.97 0.99 0.99 0.98

Multi-Class Classification

We extend the control chart pattern recognition from binary classification to multi-class classi-

fication and compare the results of WSVM with regular SVM for highly imbalanced datasets. In

this classification test, there are seven classes: Normal, Uptrend, Downtrend, Up shift, Down shift,

Cyclic, Systematic and Stratification patterns. Although the generic version of SVM can accom-
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modate only two classes it is possible to generalize the classifier to multi class by constructing all

the classifier pairs (one-against-one policy) and then use a majority voting scheme for assigning

a new point to its class. This method has been found to perform well however the computational

time of the model is expected to increase as the number of the classes increase. To study highly

imbalanced classification problem, we generate 1000 data which consist of 951 normal data (ap-

proximately 95% of total data), and 49 abnormal data (approximately 5% of the total data). For

each abnormal control chart pattern, 7 examples were generated. Similar to binary classification,

we consider the weight of each class as inverse of the class size (Veropoulos et al., 1999)

Ci =
C

ni
i = 1, 2, . . . ,m. (4.3)

Where ni and Ci are the class size and weight related to the class i respectively, i = 1, 2, . . . ,m

and m is the number of classes. The parameters C and γ were tuned during the training process

through the same parameter grid search as in the binary case. The parameters for abnormal patterns

are selected from Table B.2.

We evaluate the performance of WSVM versus SVM for a partially separable problem with the

following abnormal pattern characteristics: λ=0.58 (Downtrend), λ=0.93 (Uptrend), k=1.53 (Sys-

tematic), ω=0.63 (Downshift), ω=0.38 (Upshift), α=0.405 (Cyclic), and έ=0.805 (Stratification).

We show the performance for three representative window (w) parameter values (10, 50, 100). The

parameters of each problem were chosen randomly for the parameter range shown in Table B.2.

the results are the average over ten such randomly selected problems. More computational experi-

ments were conducted and can be found in the supplementary material section of the paper. Since

the problem contains more than two classes sensitivity specificity and G-mean are not defined.

For this we provide the full confusion matrix that demonstrates the exact classification accuracy

for each class sepearetly. As expected WSVM performs better in identifying the examples from

the minority classes although it sacrifices some of the normal class accuracy. For short windows,

SVM fails to detect examples from four classes and for medium window for two. In general, a
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problem becomes less challenging as w increases. This is consistent with the binary classification

examples.

Table 4.7: Classification results for multi-class SVM and WSVM for CCPR with window
length=10 and highly imbalanced data. Rows are related to predicted class labels and the columns
are related to real labels.

N Dt Ut S Ds Us C Str
N 1.00 0.00 0.00 0.05 1.00 1.00 1.00 1.00
Dt 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Ut 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

SVM
S 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00

Ds 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Us 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Str 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 0.65 0.00 0.00 0.00 0.15 0.19 0.13 0.31
Dt 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Ut 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

WSVM
S 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Ds 0.06 0.00 0.00 0.00 0.75 0.00 0.00 0.08
Us 0.10 0.00 0.00 0.00 0.00 0.77 0.00 0.00
C 0.07 0.00 0.00 0.00 0.00 0.04 0.70 0.00

Str 0.11 0.00 0.00 0.00 0.10 0.00 0.17 0.61

The rows and columns of the confusion matrix show the predicted class and the real class re-

spectively. Moreover, the diagonal elements show the accurate classification percentage. However,

the accuracy for normal class has decreased slightly for multi-class WSVM, the fact is that the clas-

sification accuracy has increased for other patterns. In other words, results show that multi-class

WSVM has higher performance than multi-class SVM for highly imbalanced data. The multi-class

SVM assigns most of data to the majority class. In this highly imbalanced classification problem,

we can observe that the behavior of multi-class SVM is very close to naive classification rules.

In addition as previous we computed the computational time for training and testing for the

multiclass problem (Figure 4.5). This experiment was conducted for three window lengths 10, 50,

100.
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Table 4.8: Classification results for multi-class SVM and WSVM for CCPR with window
length=50 and highly imbalanced data

N Dt Ut S Ds Us C Str
N 1.00 0.00 0.00 0.00 0.40 1.00 0.47 1.00
Dt 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Ut 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

SVM
S 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Ds 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00
Us 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.00

Str 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 0.98 0.00 0.00 0.00 0.20 0.37 0.27 0.37
Dt 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Ut 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

WSVM
S 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Ds 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00
Us 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.00
C 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00

Str 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.63

Table 4.9: Classification results for multi-class SVM and WSVM for CCPR with window
length=100 and highly imbalanced data

N Dt Ut S Ds Us C Str
N 1.00 0.00 0.00 0.00 0.25 0.28 0.47 1.00
Dt 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Ut 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

SVM
S 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Ds 0.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00
Us 0.00 0.00 0.00 0.00 0.00 0.72 0.00 0.00
C 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.00

Str 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 1.00 0.00 0.00 0.00 0.23 0.22 0.15 0.48
Dt 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Ut 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

WSVM
S 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Ds 0.00 0.00 0.00 0.00 0.77 0.00 0.00 0.00
Us 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.00
C 0.00 0.00 0.00 0.00 0.00 0.00 0.85 0.00

Str 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52
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Figure 4.5: WSVM training and testing time vs. training size for multi-class classification

The trends observed are similar to binary classification however the seven classes do not add an

high additional computational “overhead” compared to binary classification. Confusion matrices

for more study is written in appendix.

Last we compare the proposed algorithm for a real life application from wafer manufacturing

industry. In wafer manufacturing. Electronics manufacturing usually involve a large number of

steps (> 250) which can induce defects to the final product. quality control is performed by

recording the different frequencies that are emitted by the plasma during the process. The dataset

is composed out of 1000 training samples (of length152 each) and 6174 testing samples of the

same length (Olszewski, 2001; Keogh et al., 2011). The training samples are imbalanced (903 are

majority and 97 minority). We performed cross validation on training data and then we used the

model developed from training for testing on the larger testing dataset (Table 4).

Furthermore, we perform sensitivity analysis by evaluating prediction performance for differ-

ent values of penalty parameter C. Results are shown in Table 4:

59



Table 4.10: Training and testing performance for the wafer dataset

Sensitivity Specificity Gmean Accuracy

Training
SVM 0.9996 0.9160 0.9156 0.9913

WSVM 0.9967 0.9350 0.9319 0.9905

Testing
SVM 0.9971 0.9654 0.9811 0.9937

WSVM 0.9895 0.9895 0.9895 0.9895

Table 4.11: Testing performance for wafer dataset (With bold color is denoted the highest G-mean
score)

SVM WSVM
C Gmean Gmean
0.1 0.8756 0.9684
1 0.9790 0.9895

10 0.9811 0.9811
100 0.9811 0.9811

1000 0.9811 0.9811

Imbalanced Support Vector Machine Classification with Label Noise

In this section, we present computational results to demonstrate the performance of WRSVM

in comparison with its standard counterparts. However, we first provide a visual account of the

solution obtained from WRSVM in contrast with SVM and WSVM on a toy dataset. Figure 4.6

illustrates the results of WRSVM on a typical dataset and the control boundary in two-dimensional

cases. The black nonlinear curve shows WRSVM boundary, the black dashed and gray solid curves

shows WSVM and SVM boundaries respectively. In Figure 4.6, SVM boundary has a heavy

bias towards the majority class, causing the minority class samples to be misclassified, whereas

WRSVM is greatly influenced by the outliers and cause the majority class samples to be misclas-

sified. WRSVM establishes a balance between these two extreme behaviors by simultaneously

using relative weights for different class sizes and reducing the influence of outliers by relaxing

them using free slack. The same behavior can clearly be observed in both linear and nonlinear
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classification in Figure 4.6.

(a) Linear WRSVM vs. SVM and WSVM (b) Non-linear WRSVM vs. SVM and WSVM

Figure 4.6: Linear and non-linear WRSVM classifier vs. SVM and WSVM classifiers

Figure 4.7: The nested UD model selection with a 13-point UD at the 1st iteration, a 9-point UD at
2nd iteration and a 5-point UD at 3rd iteration

We adopt a 13- and 9-point run design for the first and second stages of the nested UD for all

three methods, which has been found to be adequate for UCI data Huang et al. (2007). We use 5

points for the third stage of the nested UD for WRSVM. In Figure 4.7 we show the 13-, 9-, 5-point

nested UD sampling pattern for the regularization parameter C, bandwidth parameter l for RBF

kernel function, and average free slack per sample Υ.
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Comparative Evaluation

Next, we apply WRSVM to University of California, Irvine (UCI) benchmark datasets 2 for

binary classification and compare the experimental results of the proposed method with both with

standard SVM and WSVM as well as other supervised learning methods that have been found to be

robust in imbalanced problems with outliers. SVM and WSVM models are solved using LIBSVM-

3.12 and LIBSVM-weights-3.12, respectively Chang & Lin (2011), and the WRSVM model is

solved using CPLEX 12.3 3, while data processing and further scripting is done in MATLAB

2009b 4. We use a typical 10-fold cross validation setup. We create outliers on the training set

by flipping the class label the farthest majority-class samples to minority class labels. All data are

normalized prior to classification, so that they have zero mean and unitary standard deviation. We

note that in each iteration of the 10-fold cross-validation, model selection based on the nested UD

is performed on the training data, and the test data is only used to calculate performance measures

such as sensitivity, specificity, G-mean and accuracy.

We use the RBF kernel, which is the most commonly used kernel on the UCI benchmark

datasets in the literature. The similarity between two samples xi and xj in RBF kernel is given by,

k(xi,xj) = exp(−l‖xi − xj‖2), l ≥ 0. (4.4)

For each class, the weights are assigned proportional to the inverse of the class size, C
2n+ and

C
2n− , where n+ and n− are the sizes of the minority and the majority classes, respectively. This

weight strategy has been used in a number of previous studies (Liu et al., 2005; Du & Chen, 2005;

Huang & Du, 2005; Hwang et al., 2011).

2A. Frank and A. Asuncion, machine learning repository [http://archive. ics. uci. edu/ml]. Irvine, CA: University
of California,” School of Information and Computer Science, vol. 213, 2010.

3ILOG CPLEX: High-performance mathematical programming solver for linear programming,
mixed integer programming, and quadratic programming,” World Wide Web, http://www-01.ibm.com/
software/commerce/optimization/cplex-optimizer/.

4http://www.mathworks.com/products/matlab/
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Table 4.12: UCI and IDA data sets used with changing positive/negative class sizes with respect to
imbalance ratio.

Dataset rimb # Pos. # Neg. Total

German

0.9 77 700 777
0.925 56 700 756
0.95 36 700 736

0.975 17 700 717

Diabetes

0.9 55 500 555
0.925 40 500 540
0.95 26 500 526

0.975 13 500 513

Thyroid

0.9 16 150 166
0.925 12 150 162
0.95 8 150 158

0.975 4 150 154

Breast

0.9 40 357 397
0.925 29 357 386
0.95 19 357 376

0.975 9 357 366

Heart

0.9 23 212 235
0.925 17 212 229
0.95 11 212 223

0.975 5 212 217

Credit

0.9 42 383 425
0.925 31 383 414
0.95 20 383 403

0.975 9 383 392

Ringnorm

0.9 26 237 263
0.925 19 237 256
0.95 15 237 252

0.975 7 237 244

Twonorm

0.9 17 155 172
0.925 12 155 167
0.95 8 155 163

0.975 3 155 158

Waveform

0.9 15 140 155
0.925 11 140 151
0.95 7 140 147

0.975 3 140 143

Banana

0.9 33 300 333
0.925 24 300 324
0.95 15 300 315

0.975 7 300 307

The proposed methodology is examined for different imbalance ratios (rimb) of majority class

to all data chosen as 90%, 92.5%, 95%, and 97.5%. Similarly different outliers to all data ratios of

0%, 1%, 2%,..., 50% are chosen. Table 4.12 details the datasets with different number of samples

in majority and minority classes for different imbalance ratios.
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The extent to which classification algorithms are affected by outliers of the minority class

highly depends on the distribution and the geometry of classes. The detailed comparison of our

proposed method against SVM and WSVM is given in Figure 4.8. The horizontal axis in each

plot shows percent of the outliers between 0% and 50%, and the vertical axis shows G-mean. The

left and right columns of the plots have 90% and 97.5% imbalance ratios, respectively. G-mean

reduces slightly with increasing percentage of outliers in each plot, where the reduction in SVM

is more pronounced than the others in all plots. In the Heart and Diabetes datasets WRSVM has a

slight advantage over WSVM, and significantly better than SVM. In the Credit dataset WRSVM is

clearly better than SVM and WSVM. It is also interesting to observe that WRSVM produces better

G-mean values for the datasets with higher imbalance, which confirms that our mathematical model

is a good fit for imbalanced datasets.

The comparative results of WRSVM in terms of G-mean values is given against FSVM Lin &

Wang (2002), WSVM, SVM, Naı̈ve Bayes (NB), C4.5 and 5NN methods for a low outlier ratio of

14% in Table 4.13 and a high outlier ratio of 30% in Table 4.14, and for imbalance ratios of 0.90,

0.925, 0.95, and 0.975 for each dataset in both tables. It is known that NB and 5NN (Anyfantis

et al., 2007), as well as C4.5 (Quinlan, 1986; Khoonsari & Motie, 2012) methods are known to be

robust to outliers in. The highest values are marked in boldface across the three methods for their

respective outlier levels.

It is clear from the accumulation of boldface results under the WRSVM in both tables that

WRSVM performs better than the other methods in general for both low and high outlier ratios.

More specifically, WRSVM produces the highest G-mean values in 22 out of 40 dataset/rimb com-

binations for low outlier ratio followed by NB with 11 out of 40. For high outlier ratios, WRSVM

produces the highest G-mean values in 22 out of 40 dataset/rimb followed by SVM and NB with 9

out of 40.
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(a) Heart (90%) (b) Heart (97.5%)

(c) Credit (90%) (d) Credit (97.5%)

(e) Diabetes (90%) (f) Diabetes (97.5%)

Figure 4.8: G-mean vs. the outlier ratio for Heart, Credit, and Diabetes data with imbalance ratios
of 90% and 97.5% for left and right columns of plots, respectively.
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Table 4.13: Comparative G-mean results for WRSVM against WSVM, FSVM, RSVM, SVM, NB,
C4.5 and 5NN on on UCI datasets for different imbalanced case with low outlier ratio (average
(standard dev.))

Dataset rimb WRSVM FSVM RSVM WSVM SVM NB C4.5 5NN

German

0.90 0.85 (0.018) 0.77 (0.022) 0.78 (0.040) 0.75 (0.012) 0.76 (0.022) 0.52 (0.009) 0.37 (0.057) 0.39 (0.010)
0.925 0.83 (0.052) 0.83 (0.032) 0.81 (0.079) 0.77 (0.037) 0.78 (0.023) 0.45 (0.006) 0.30 (0.067) 0.33 (0.015)
0.95 0.85 (0.050) 0.81 (0.050) 0.77 (0.072) 0.83 (0.082) 0.81 (0.035) 0.44 (0.014) 0.06 (0.030) 0.32 (0.017)
0.975 0.88 (0.030) 0.46 (0.127) 0.53 (0.123) 0.84 (0.074) 0.73 (0.140) 0.33 (0.032) 0.00 (0.000) 0.00 (0.000)

Diabetes

0.90 0.89 (0.042) 0.79 (0.020) 0.82 (0.042) 0.78 (0.012) 0.80 (0.018) 0.64 (0.006) 0.64 (0.039) 0.47 (0.014)
0.925 0.91 (0.022) 0.78 (0.032) 0.84 (0.061) 0.79 (0.045) 0.76 (0.028) 0.56 (0.006) 0.28 (0.077) 0.37 (0.023)
0.95 0.86 (0.061) 0.76 (0.053) 0.81 (0.051) 0.79 (0.010) 0.72 (0.066) 0.51 (0.006) 0.48 (0.065) 0.01 (0.013)
0.975 0.87 (0.034) 0.68 (0.089) 0.62 (0.079) 0.68 (0.081) 0.63 (0.0132) 0.45 (0.023) 0.31 (0.124) 0.00 (0.009)

Thyroid

0.90 0.98 (0.006) 0.97 (0.010) 0.97 (0.019) 0.96 (0.021) 0.99 (0.008) 0.86 (0.003) 0.98 (0.008) 0.85 (0.005)
0.925 0.98 (0.011) 0.99 (0.006) 0.96 (0.026) 0.98 (0.013) 0.96(0.011) 0.91(0.002) 0.98 (0.005) 0.78 (0.016)
0.95 0.98 (0.010) 0.90 (0.049) 0.94 (0.019) 0.89 (0.072) 0.96 (0.010) 0.92 (0.005) 0.95 (0.031) 0.60 (0.013)
0.975 0.93 (0.028) 0.00 (0.000) 0.81 (0.012) 0.77 (0.046) 0.78 (0.036) 0.93 (0.025) 0.60 (0.000) 0.00 (0.129)

Breast

0.90 0.95 (0.014) 0.97 (0.020) 0.95 (0.019) 0.95 (0.009) 0.97 (0.007) 0.92 (0.007) 0.96 (0.009) 0.86 (0.005)
0.925 0.93 (0.013) 0.97 (0.008) 0.93 (0.012) 0.92 (0.007) 0.96 (0.011) 0.90 (0.008) 0.94 (0.009) 0.79 (0.007)
0.95 0.92 (0.018) 0.97 (0.010) 0.89 (0.031) 0.93 (0.011) 0.96 (0.014) 0.91 (0.012) 0.94 (0.019) 0.78 (0.006)
0.975 0.95 (0.010) 0.97 (0.035) 0.91 (0.011) 0.83 (0.039) 0.94 (0.006) 0.92 (0.009) 0.96 (0.018) 0.48 (0.010)

Heart

0.90 0.91 (0.012) 0.85 (0.053) 0.80 (0.048) 0.85 (0.024) 0.79 (0.067) 0.77 (0.014) 0.88 (0.020) 0.53 (0.014)
0.925 0.92 (0.014) 0.60 (0.075) 0.80 (0.033) 0.88(0.022) 0.76 (0.092) 0.78 (0.026) 0.82 (0.031) 0.39 (0.038)
0.95 0.90 (0.007) 0.23 (0.093) 0.72 (0.113) 0.76 (0.047) 0.73 (0.100) 0.81 (0.021) 0.60 (0.089) 0.26 (0.037)
0.975 0.89 (0.003) 0.49 (0.109) 0.88 (0.013) 0.82 (0.071) 0.87 (0.043) 0.90 (0.022) 0.00 (0.000) 0.00 (0.000)

Credit

0.90 0.89 (0.010) 0.89 (0.016) 0.85 (0.016) 0.86 (0.017) 0.86 (0.021) 0.67 (0.007) 0.85 (0.015) 0.80 (0.004)
0.925 0.91 (0.008) 0.88 (0.008) 0.86 (0.024) 0.89 (0.012) 0.87 (0.020) 0.69 (0.008) 0.80 (0.019) 0.78 (0.006)
0.95 0.92 (0.015) 0.87 (0.015) 0.84 (0.047) 0.87 (0.046) 0.86 (0.025) 0.67 (0.014) 0.81 (0.019) 0.77 (0.014)
0.975 0.93 (0.020) 0.86 (0.039) 0.79 (0.043) 0.82 (0.095) 0.59 (0.181) 0.66 (0.013) 0.22 (0.157) 0.49 (0.033)

Ringnorm

0.90 0.90 (0.105) 0.99 (0.009) 0.98 (0.009) 0.97 (0.018) 0.98 (0.008) 1.00 (0.001) 0.94 (0.009) 0.00 (0.000)
0.925 0.97 (0.009) 0.95 (0.051) 0.94 (0.042) 0.96 (0.007) 0.98 (0.007) 1.00 (0.003) 0.89 (0.011) 0.00 (0.000)
0.95 0.93 (0.013) 0.82 (0.106) 0.92 (0.004) 0.88 (0.063) 0.94 (0.015) 0.99 (0.006) 0.88 (0.024) 0.00 (0.000)
0.975 0.92 (0.009) 0.52 (0.124) 0.88 (0.013) 0.78 (0.044) 0.92 (0.006) 0.97 (0.011) 0.54 (0.160) 0.00 (0.000)

Twonorm

0.90 0.95 (0.011) 0.96 (0.028) 0.94 (0.035) 0.98 (0.005) 0.97 (0.010) 0.99 (0.004) 0.92 (0.021) 0.81 (0.012)
0.925 0.92 (0.008) 0.79 (0.119) 0.92 (0.007) 0.93 (0.014) 0.94 (0.014) 0.96 (0.007) 0.88 (0.019) 0.65 (0.016)
0.95 0.94 (0.011) 0.48 (0.116) 0.94 (0.008) 0.93 (0.033) 0.95 (0.013) 0.95 (0.019) 0.87 (0.000) 0.72 (0.023)
0.975 0.82 (0.000) 0.00 (0.000) 0.81 (0.012) 0.75 (0.073) 0.70 (0.075) 0.82 (0.000) 0.31 (0.114) 0.00 (0.000)

Waveform

0.90 0.94 (0.010) 0.90 (0.014) 0.94 (0.011) 0.89 (0.019) 0.94 (0.008) 0.92 (0.010) 0.95 (0.016) 0.74 (0.007)
0.925 0.91 (0.008) 0.82 (0.044) 0.91 (0.013) 0.90 (0.005) 0.93 (0.012) 0.91 (0.029) 0.92 (0.022) 0.69 (0.030)
0.95 0.92 (0.006) 0.76 (0.081) 0.92 (0.009) 0.89 (0.062) 0.93 (0.011) 0.93 (0.015) 0.85 (0.048) 0.73 (0.022)
0.975 0.82 (0.009) 0.00 (0.000) 0.80 (0.017) 0.80 (0.034) 0.85 (0.014) 0.82 (0.000) 0.08 (0.077) 0.00 (0.000)

Banana

0.90 0.96 (0.008) 0.91 (0.010) 0.92 (0.011) 0.92 (0.010) 0.88 (0.017) 0.81 (0.006) 0.93 (0.009) 0.92 (0.006)
0.925 0.95 (0.009) 0.92 (0.018) 0.89 (0.017) 0.93 (0.017) 0.84 (0.025) 0.80 (0.004) 0.91 (0.017) 0.83 (0.007)
0.95 0.95 (0.004) 0.87 (0.026) 0.91 (0.013) 0.89 (0.032) 0.88 (0.016) 0.85 (0.003) 0.90 (0.007) 0.85 (0.004)
0.975 0.92 (0.023) 0.69 (0.058) 0.84 (0.019) 0.40 (0.126) 0.76 (0.036) 0.60 (0.113) 0.55 (0.044) 0.75 (0.005)

Outlier Detection Performance

Since WRSVM assigns free slack through Formulation 3.12 by giving priority to the points

that further most from the rest of the class. the amount of free slack received by each point can be

used as a score of “outlierness” of each point. In that respect WRSVM can be seen as an embedded

outlier detection and supervised classification scheme.

For each dataset used in this paper we estimated the percentage of induced outliers that received

free slack as well as the percentage of non outlier data points that also received free slack.
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Table 4.14: Comparative G-mean results for WRSVM against WSVM, FSVM, RSVM, SVM, NB,
C4.5 and 5NN on on UCI datasets for different imbalanced case with high outlier ratio

Dataset rimb WRSVM FSVM RSVM WSVM SVM NB C4.5 5NN

German

0.90 0.77 (0.021) 0.79 (0.026) 0.77 (0.044) 0.73 (0.013) 0.86 (0.017) 0.53 (0.006) 0.45 (0.081) 0.39 (0.007)
0.925 0.77 (0.030) 0.85 (0.025) 0.81 (0.052) 0.76 (0.056) 0.80 (0.070) 0.45 (0.007) 0.28 (0.060) 0.33 (0.016)
0.95 0.79 (0.029) 0.83 (0.046) 0.78 (0.065) 0.85 (0.098) 0.84 (0.046) 0.44 (0.011) 0.06 (0.048) 0.32 (0.015)

0.975 0.85 (0.035) 0.62 (0.098) 0.65 (0.068) 0.81 (0.097) 0.71 (0.104) 0.34 (0.030) 0.00 (0.011) 0.00 (0.000)

Diabetes

0.90 0.87 (0.040) 0.82 (0.032) 0.82 (0.040) 0.77 (0.015) 0.79 (0.021) 0.64 (0.006) 0.64 (0.025) 0.47 (0.010)
0.925 0.89 (0.050) 0.81 (0.026) 0.85 (0.039) 0.79 (0.046) 0.76 (0.060) 0.56 (0.008) 0.28 (0.134) 0.36 (0.024)
0.95 0.87 (0.042) 0.79 (0.047) 0.78 (0.063) 0.78 (0.013) 0.76 (0.045) 0.51 (0.008) 0.47 (0.074) 0.01 (0.010)

0.975 0.86 (0.026) 0.68 (0.117) 0.61 (0.143) 0.73 (0.039) 0.61 (0.082) 0.47 (0.024) 0.23 (0.083) 0.00 (0.009)

Thyroid

0.90 0.98 (0.011) 0.96 (0.014) 0.96 (0.021) 0.96 (0.013) 0.98 (0.009) 0.86 (0.003) 0.98 (0.007) 0.85 (0.004)
0.925 0.98 (0.012) 0.98 (0.014) 0.97 (0.013) 0.98 (0.018) 0.96 (0.011) 0.91 (0.004) 0.98 (0.008) 0.77 (0.020)
0.95 0.98 (0.012) 0.88 (0.047) 0.93 (0.034) 0.92 (0.028) 0.95 (0.009) 0.92 (0.005) 0.98 (0.013) 0.61 (0.013)

0.975 0.92 (0.030) 0.00 (0.000) 0.81 (0.017) 0.80 (0.024) 0.79 (0.026) 0.92 (0.033) 0.55 (0.095) 0.00 (0.000)

Breast

0.90 0.94 (0.017) 0.96 (0.012) 0.95 (0.008) 0.95 (0.010) 0.98 (0.012) 0.92 (0.005) 0.96 (0.012) 0.86 (0.004)
0.925 0.92 (0.013) 0.96 (0.006) 0.93 (0.010) 0.92 (0.010) 0.96 (0.010) 0.91 (0.007) 0.93 (0.009) 0.78 (0.007)
0.95 0.92 (0.012) 0.96 (0.011) 0.90 (0.017) 0.93 (0.011) 0.96 (0.013) 0.90 (0.007) 0.94 (0.014) 0.78 (0.010)

0.975 0.95 (0.011) 0.98 (0.011) 0.90 (0.031) 0.85 (0.050) 0.94 (0.023) 0.92 (0.013) 0.97 (0.023) 0.49 (0.009)

Heart

0.90 0.91 (0.012) 0.86 (0.036) 0.82 (0.057) 0.83 (0.018) 0.84 (0.077) 0.77 (0.016) 0.90 (0.017) 0.53 (0.014)
0.925 0.91 (0.038) 0.80 (0.094) 0.82 (0.050) 0.88 (0.016) 0.78 (0.080) 0.78 (0.023) 0.82 (0.030) 0.39 (0.023)
0.95 0.90 (0.008) 0.39 (0.126) 0.78 (0.080) 0.78 (0.045) 0.76 (0.089) 0.80 (0.020) 0.60 (0.083) 0.26 (0.047)

0.975 0.89 (0.000) 0.00 (0.000) 0.88 (0.008) 0.78 (0.092) 0.87 (0.037) 0.91 (0.023) 0.00 (0.000) 0.00 (0.000)

Credit

0.90 0.89 (0.011) 0.89 (0.012) 0.86 (0.013) 0.85 (0.017) 0.86 (0.017) 0.67 (0.004) 0.85 (0.011) 0.79 (0.007)
0.925 0.90 (0.013) 0.88 (0.015) 0.85 (0.019) 0.89 (0.008) 0.86 (0.027) 0.70 (0.007) 0.79 (0.019) 0.78 (0.005)
0.95 0.91 (0.025) 0.88 (0.009) 0.86 (0.044) 0.88 (0.045) 0.88 (0.021) 0.66 (0.008) 0.83 (0.019) 0.77 (0.016)

0.975 0.92 (0.027) 0.86 (0.058) 0.81 (0.062) 0.89 (0.067) 0.61 (0.155) 0.65 (0.023) 0.28 (0.167) 0.49 (0.030)

Ringnorm

0.90 0.96 (0.042) 0.99 (0.008) 0.97 (0.007) 0.97 (0.015) 0.99 (0.004) 1.00 (0.002) 0.93 (0.011) 0.00 (0.000)
0.925 0.97 (0.009) 0.98 (0.010) 0.96 (0.012) 0.96 (0.007) 0.98 (0.006) 1.00 (0.003) 0.90 (0.003) 0.00 (0.000)
0.95 0.93 (0.008) 0.80 (0.067) 0.92 (0.008) 0.84 (0.084) 0.94 (0.014) 0.99 (0.007) 0.86 (0.029) 0.00 (0.000)

0.975 0.92 (0.006) 0.36 (0.174) 0.90 (0.011) 0.75 (0.079) 0.92 (0.005) 0.97 (0.014) 0.54 (0.098) 0.00 (0.000)

Twonorm

0.90 0.95 (0.008) 0.95 (0.032) 0.96 (0.007) 0.96 (0.013 0.96 (0.008) 0.98 (0.006) 0.93 (0.019) 0.81 (0.008)
0.925 0.92 (0.005) 0.78 (0.080) 0.90 (0.011) 0.93 (0.012) 0.94 (0.011) 0.97 (0.008) 0.87 (0.025) 0.65 (0.025)
0.95 0.94 (0.007) 0.61 (0.163) 0.94 (0.011) 0.93 (0.032) 0.95 (0.005) 0.95 (0.008) 0.87 (0.000) 0.72 (0.024)

0.975 0.82 (0.000) 0.00 (0.000) 0.81 (0.010) 0.75 (0.070) 0.77 (0.043) 0.82 (0.000) 0.33 (0.161) 0.00 (0.000)

Waveform

0.90 0.93 (0.010) 0.90 (0.011) 0.93 (0.010) 0.88 (0.015) 0.94 (0.011) 0.92 (0.017) 0.94 (0.017) 0.75 (0.016)
0.925 0.91 (0.007) 0.85 (0.033) 0.92 (0.014) 0.90 (0.004) 0.94 (0.015) 0.92 (0.014) 0.91 (0.017) 0.68 (0.021)
0.95 0.92 (0.007) 0.77 (0.073) 0.92 (0.007) 0.90 (0.038) 0.94 (0.011) 0.93 (0.012) 0.87 (0.027) 0.73 (0.018)

0.975 0.83 (0.014) 0.00 (0.000) 0.80 (0.020) 0.81 (0.026) 0.87 (0.035) 0.82 (0.000) 0.08 (0.072) 0.00 (0.000)

Banana

0.90 0.95 (0.009) 0.92 (0.015) 0.92 (0.015) 0.93 (0.015) 0.89 (0.029) 0.80 (0.005) 0.95 (0.011) 0.92 (0.007)
0.925 0.95 (0.012) 0.94 (0.013) 0.90 (0.020) 0.92 (0.014) 0.85 (0.037) 0.80 (0.003) 0.90 (0.014) 0.83 (0.004)
0.95 0.95 (0.016) 0.92 (0.013) 0.91 (0.015) 0.89 (0.032) 0.87 (0.016) 0.85 (0.003) 0.90 (0.003) 0.85 (0.004)

0.975 0.93 (0.018) 0.71 (0.053) 0.85 (0.015) 0.43 (0.152) 0.77 (0.031) 0.75 (0.005) 0.65 (0.068) 0.55 (0.034)

Results are shown in Table 4.15. The first percentage is a measure of sensitivity whereas the

second a measure of specificity. Overall the proposed technique is able to detect the vast majority

of induced outliers while keeping the false positive percentage to relatively low levels (< 15%).

This outlier detection technique is a by product of the classification training and does not require

any further computational effort.
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Table 4.15: Amount of outlier and non outlier data that receive free slack. Ideally we want all the
outlier data points (100%) to receive free slack and on the other side no non outlier points (0%) to
receive free slack.

Dataset % of non outliers % of outliers
receiving free slack % receiving free slack

German 13.15 100
Diabetes 6.12 100
Thyroid 2.94 50
Breast 0 100
Heart 10 100
Credit 5.40 100
Ringnorm 0 100
Twonorm 6.66 100
Waveform 0 100
Banana 4.41 100
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CHAPTER 5: CONCLUSION

In this work, we presented promising cost-sensitive learning techniques to deal with imperfect

data along with the real problems in quality control and business analytics. In particular, we in-

troduced the WRSVM in which the penalization cost is weighted to deal with the imbalanced data

while a restricted amount of free slack is used to diminish the influence of outliers and misclas-

sified points. We demonstrated that the WRSVM produces considerably superior results than the

standard SVM and WSVM techniques in most datasets both with low and high outlier ratio. We

reported G-mean for selected datasets to show the effect of free slack. Computational experiments

show that the proposed approach achieve comparative or better performance than the SVM and

WSVM, as well as other robust conventional classification methods in most cases for both low and

high outlier ratios.

We particularly studied a real problem in quality control in this thesis. Detecting abnormal pat-

terns is an important task that has practical value related to diagnostic and maintenance operations.

In this work, we compared SVM against WSVM for the imbalanced CCPR problem. We tested

the two algorithms for several normal and abnormal classification problems as well as multi-class

classification in highly imbalanced environment. Comparison demonstrated that WSVM is bet-

ter in terms of specificity and G-mean, two measures that are used for imbalanced classification

problems. However, sensitivity and classification accuracy for WSVM drops, which is a compro-

mise for correctly detecting the rare abnormal patterns. Therefore, the choice of the algorithm and

the associated parameters is dominated by the proportion of available historical data, the cost of

acquisition of new data and the minimal abnormal pattern alterations that ones wishes to detect.

Smart feature selection might need to be employed in order to improve classification ac-

curacy whereas alternative imbalanced classification techniques are worthwhile to be explored.

Re-sampling methods by themselves introduce biases and might not be optimal, however, their

paired usage with cost-sensitive methods has to be examined in future research. Some research
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works have started looking at this combined preprocessing strategy for other imbalanced problems

(Anand et al., 2010; Akbani et al., 2004). Their potential usage has to be explored for CCPR as

well. The potential application of clustering as preprocessing is another interesting research di-

rection (Jo & Japkowicz, 2004). In this work, we focused our efforts in test involving fixed data

time series of various w length. In the future, we will focus on stream data mining and attempt an

on-line classifier with an incremental real time retraining. Current study results are encouraging

enough in terms of accuracy, average run length and computational time. Another important aspect

for the verification and validation of the proposed methods is the testing through real case studies

and datasets. However, the lack of real data is common in the majority of CCPR literature. As it

is pointed out in the review paper of Hachicha & Ghorbel (2012) approximately 95.59% of CCPR

literature uses simulated time series data for CCPR algorithm validation.

Finally, we believe that the future CCPR research should focus more on multi-class general-

ization. Since, in reality, one is interested to discriminate not only the normal versus abnormal

problem but have as much information as possible about the abnormality, multi-class CCPR need

to receive more attention in future works. The vast majority of previous research focuses on the

binary problem with only few exceptions (Ghanem et al., 2010; Shao, 2012). In this work, we

presented very promising multi-class results under a highly imbalanced environment, however,

additional investigation and computational testing needs to be conducted in the future.
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APPENDIX A: MATHEMATICAL MODELS OF CONTROL CHART

PATTERNS
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The western electric company (1958) first documented several typical control chart patterns.

These patterns were subsequently used in a large number of CCPR publications(Hwarng & Hubele,

1992; Cheng, 1997; Al-Ghanim, 1997; Al-Assaf, 2004; Assaleh & Al-assaf, 2005; Gauri & Chakraborty,

2008; Cheng et al., 2009; Guh, 2010; Shao, 2012). These simulated control charts (a(t)) consist

of three major components, namely a constant term µ, a random and normally distributed term εt,

and a function d(t) that models a particular abnormal pattern. This term is zero for in-control data

The mathematical model for all components considered in this study can be written as:

a(t) = µ+ εt + d(t) (A.1)

Without loss of generality, we use µ = 0 and εt ∼ N(0, 1) which is consistent with previous works

(Cheng et al., 2009; Yang, 2010; Shao, 2012). In particular the form of d(t) for each particular

pattern is as follows:

(a) Up/ Down trends

d(t) = λt (A.2)

Where λ is the trend slope in terms of σε. The parameter λ > 0 is chosen for up trends and

λ < 0 for downtrends.

(b) Up/Down shifts

d(t) = ω (A.3)

Where parameter ω denotes the shift magnitude. Similarly to the trend patterns ω > 0 for up

shift and ω < 0 for down shift.

(c) Cyclic trends

d(t) = α sin

(
2πt

Ω

)
(A.4)

Where α is the amplitude of the cyclic patterns, and Ω is the cyclic pattern period. For this
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paper, we fix Ω = 8 and treat α as parameter similar to previous works (Cheng et al., 2009;

Shao, 2012).

(d) Systematic trends

d(t) = k(−1)t (A.5)

Where k is magnitude of the systematic pattern.

(e) Stratification trends

d(t) = έt (A.6)

is another abnormal pattern related to shift in the process standard deviation (εt). Parameter έt

is a fraction of the natural process standard deviation.
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APPENDIX B: A PRACTICAL GUIDE TO WEIGHTED SUPPORT

VECTOR MACHINE TOOLBOX FOR CONTROL CHART PATTERN

RECOGNITION
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For the evaluation of WSVM algorithm, we have developed a toolbox in MATLAB, termed

WSVMToolbox. It features:

• Implementations of SVM (Vapnik, 2000) and WSVM (Veropoulos et al., 1999) techniques

for time series data

• A guide to generate simulated data for different abnormal patterns, routines to pre-process

data sets

• An experiment result format and functions for calculation of Sensitivity, Specificity, Accu-

racy, and G-mean for imbalanced classification

We note that experiments on both SVM and WSVM are conducted with LIBSVM-3.12 and

LIBSVM-weights-3.12 (Chang & Lin, 2011). The whole script is developed in MATLAB and

LIBSVM is interfaced in it. Therefore before the implementation of this toolbox, we suggest the

user to download LIBSVM from http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Proposed Procedure

The WSVMToolbox conducts the following procedure:

• Generate data in the format of time series with specific window lengths

• Perform data preprocessing

• Use the RBF kernel

K(xi, xj) = exp(−γ‖xi − xj‖2), γ ≥ 0. (B.1)

• Use model selection techniques to find the best parameter C and γ

• Implement the optimal or near optimal parameters for C and γ to train the training dataset
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• Report G-mean, Sensitivity, Specificity, and Accuracy for test dataset

We explain this procedure in a more detail in the next sections.

Data Generation

Data based on different normal and abnormal patterns are generated using GenData.m and

GenDataMulti.m functions for binary and multiclass classification. For binary classification, the

user should first select the abnormal data type and set the input parameters. We provide a table for

abnormal parameter type as following,

Table B.1: Abnomal pattern types symbols used in WSVMToolbox

Abnormal Pattern Symbol

Up trend 1
Down trend 2

Up Shift 3
Down shift 4

Cyclic 5
Systematic 6

Stratification 7

Other input parameters are imbalanced ratio(r), window length(w), parameter of abnormal

pattern (t) for binary classification. The imbalanced ratio (r) in the code is determined as,

The input parameters for muticlass classification is slightly different from binary classifica-

tion. They consist of all abnormal parameters, the size of minority(n) and majority(m) class. The

abnormal parameters are given using muticlass.mat. Furthermore, we can select window w and

abnormal parameter values from Table B.2. All input parameters should be given in Main.m file

for both binary and muticlass classification.
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Table B.2: Imbalanced ratio symbols used in WSVMToolbox

r imbalanced ratio

0 %50
5 %55

10 %60
15 %65
20 %70
25 %75
30 %80
35 %85
40 %90
45 %95

Data Preprocessing

Data preprocessing and scaling before applying any data mining algorithm is the key step.

Scaling makes all features in the same numeric ranges. We suggest normalize all data prior to

classification, so that they have zero mean and unit ary standard deviation (zscore() function in

MATLAB is used). This step can be found in the first line of wsvmmodel.m and wsvmmodel-

multi.m for binary and muticlass classification respectively.

Model Selection

The SVM and WSVM algorithms have certain parameters that need to be tuned during the

training phase: C and γ (RBF kernel). For this, we use the ”grid search” model selection using

cross-validation. We use exponentially growing sequences of C and γ to identify good parameters,

such as C ∈ {2−5, 2−4,...,215}, γ ∈ {2−15, 2−13, ..., 23}. These parameter sequence sets are also

suggested in Chang & Lin (2011).
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WSVM Training and Testing

The learning process is conducted in 10-fold cross validation loop using wsvmmodel.m (bi-

nary) and wsvmmodelmulti.m (multiclass classification). For cross validation purposes, 90% of

the data is used for training and the rest 10% is used for testing. The output for binary classifica-

tion is sensitivity, specificity, accuracy, and G-mean. For multi-class classification, the output is

the accuracy and confusion matrix table. The diagonal elements of confusion matrix table show

the accurate classification percentage.

In order to run the main.m, the user should put all files including LIBSVM and LIBSVM-

weights .mex files in the same folder as WSVMToolbox.
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