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ABSTRACT 
 

The central theme of this thesis deals with problems related to the question, “Can one 

hear the shape of a drum?” first posed formally by Mark Kac in 1966. More precisely, can one 

determine the shape of a membrane with fixed boundary from the spectrum of the associated 

differential operator? For this paper, Kac received both the Lester Ford Award and the Chauvant 

Prize of the Mathematical Association of America. This problem has received a great deal of 

attention in the past forty years and has led to similar questions in completely different contexts 

such as “Can one hear the shape of a graph associated with the Schrödinger operator?”, “Can you 

hear the shape of your throat?”, “Can you feel the shape of a manifold with Brownian motion?”, 

“Can one hear the crack in a beam?”, “Can one hear into the sun?”, etc. Each of these topics 

deals with inverse eigenvalue problems or related inverse problems. 

For inverse problems in general, the problem may or may not have a solution, the 

solution may not be unique, and the solution does not necessarily depend continuously on 

perturbation of the data. For example, in the case of the drum, it has been shown that the answer 

to Kac’s question in general is “no.” However, if we restrict the class of drums, then the answer 

can be yes. This is typical of inverse problems when a priori information and restriction of the 

class of admissible solutions and/or data are used to make the problem well-posed. This thesis 

provides an analysis of shapes for which the answer to Kac's question is positive and a variety of 

interesting questions on this problem and its variants, including cases that remain open. This 

thesis also provides a synopsis and perspectives of other types of “can one hear” problems 

mentioned above. Another part of this thesis deals with aspects of direct problems related to 

musical instruments.  
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CHAPTER 1: INTRODUCTION 

 

1.1: Direct and Inverse Problems 
 

Often it is of great interest mathematically to use the properties of the materials, along 

with the initial position and velocity of a system to determine the system’s state for times in the 

future. This is known as a direct problem. 

However, over the past century, mathematicians have become increasingly more 

interested in the inverse problem of what has been studied for so long. In other words, if we 

know the system’s state, can we determine certain properties about the system itself? This 

question has been studied in many different forms.  

Bevilacqua, Brandao, and Bassanezi [2] assert in their paper titled A Mathematical 

Approach to Plato’s Problem that one of the first inverse problems ever presented can be found 

in Plato’s Republic, specifically The Allegory of the Cave. Plato [16] constructs the situation as 

such: there are several people sitting in a cave, facing the cave’s back wall. They are not able to 

move. A fire is sparked between the people and the wall, and between the wall and the fire there 

is a procession of men and women and animals of all ages, shapes, and sizes pulling and pushing 

a variety of objects. The people sitting facing the wall of the cave are only able to watch the 

shadows projected on the wall; they were not able to see the procession itself.  The inverse 

problem is this: from the shadows on the wall, the people were to determine what kind of people, 

animals, and objects composed the parade. The three authors state “Plato explored through this 

allegory the knowing process and how to reach the truth. Despite the fact that his aim was 
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distinct he presented maybe for the first time in a well organized structure an inverse problem, 

specifically, pattern recognition.” [2] 

Inverse problems can be found in a variety of fields of study. For example, the task of the 

meteorologist is to forecast the weather – an inverse problem that many people rely on daily. 

When one visits the doctor’s office, one is hoping that the medical doctor is able to diagnose and 

provide a cure for his illness – another common inverse problem. The field of engineering thrives 

on direct problems – i.e., building bridges, tunnels, constructing roads, and assembling 

computers. An inverse problem in engineering would be to determine why a bridge happened to 

collapse or why an engine will not start. 

 

1.2: Direct Spectral Problems 
 
 A direct spectral problem is one in which the system of equations is given, and one is 

asked to find the spectrum. This problem can be given in many forms. Some examples include: 

 Computing the eigenvalues and associated eigenvectors of a real or complex     matrix 

 Computing the singular values and singular vectors of a     real or complex matrix 

 Computing the singular values and vectors of a compact linear operator acting between 

two Hilbert spaces 

 Computing the eigenvalues and eigenfunctions of a differential operator, for example, a 

second order Sturm-Liouville differential equation subject to homogeneous boundary 

conditions 

 Lastly, in quantum mechanics, the time-independent, Schrödinger equation in one space 

variable takes the form 
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      ( )      

In this example, the direct spectral problem would be to determine the energy levels,   

(that is, the sequence of eigenvalues), from the knowledge of the potential,  ( ). 

 

1.3: Inverse Spectral Problems 
 
 An inverse spectral problem is one in which all of the eigenvalues and eigenfunctions are 

known, and one is tasked with finding the corresponding     matrix, for example. In the general 

case, one is not able to complete this task. However, there are certain restrictions in which the 

problem can be solved. We know that this problem has a unique solution if and only if   has   

linearly independent eigenvectors. For instance, if the matrix is normal (in particular, if the 

matrix is real and symmetric, or if it is complex and Hermitian), then the inverse spectral 

problem can be solved. In this case, we have the factorization 

         

where   is the matrix whose columns are linearly independent eigenvectors, and   is a diagonal 

matrix whose diagonal entries are the eigenvalues associated with the eigenvectors in the order 

that the columns are listed in  . Other examples of inverse spectral problems include: 

 Finding an     matrix from a singular system of the matrix (one would need two sets 

of eigenvectors in addition to the singular values)  

 Determining the coefficients in a Sturm-Liouville differential equation from the 

knowledge of the spectrum 
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 Lastly, the quantum mechanical inverse problem associated with the one-dimensional 

Schrödinger equation deals with the reconstruction of the unknown potential,  ( ) from 

the energy levels. 

 

1.4: Direct and Inverse Problems of Musical Instruments 
 

In relation to music, it seems reasonable to presume that the shape of a drum would affect 

the sound that is produced. This would be the direct problem that one might consider. An 

example of an inverse problem in the musical realm would be one where the vibrating modes of 

a string are given, and one is tasked with finding the one-dimensional hyperbolic partial 

differential equation that produced those vibrating modes. The inverse eigenvalue problem for 

the vibrating string can be paraphrased as “can one hear the density of a string?” which leads into 

the famous question posed by Mark Kac. 

In 1966, Mark Kac [11] asked the question, “Can One Hear the Shape of a Drum?” – a 

famous inverse problem in mathematics. This question has sparked the interest of many 

mathematicians over the past forty-six years. Many different approaches were taken, until two 

mathematicians were able to come up with a counterexample in 1991 for a specific class of 

drums – the polygonal drum. Carolyn Gordon and David Webb [7] at Washington University 

and Scott Wolpert at the University of Maryland were able to construct a counterexample which 

determined that the answer was a firm: “No. One cannot always hear the shape of a drum.” Barry 

Cipra [4] discusses the results of these three mathematicians in an article in “What’s Happening 

in the Mathematical Sciences” published in 1993.  
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1.5: Thesis Content 
 

In Chapter 2, we consider Mark Kac’s question and different approaches that may be 

taken towards answering his question. His question can be considered for many different 

categories of the “drum.” In Chapter 3, we consider inverse problems that arise from musical 

instruments. Several instruments are discussed, as well as numerical experiments and results. 

In Chapter 4, we briefly give examples of other questions that have been considered in 

the form “Can you hear…?” Other mathematicians have written papers that follow similar 

patterns. They ask questions stemming from similar inverse problems. Gopinath and Sondhi [6] 

ask the question in 1970, “Can One Hear the Shape of Your Throat?” In 1987, Sekii and 

Shibahashi [18] ask if one can hear into the sun. In 2001, Gutkin and Smilansky [9] ask the 

question related to the Schrödinger operator on a finite metric graph “Can One Hear the Shape of 

a Graph?”  “Can One Hear the Crack in a Beam?” [13] was the question explored by Lin in 

2004, and lastly, Steven Cox, Mark Embree, and Jeffrey Hokanson [5] pose the question, “Can 

One Hear the Composition of a String?” in 2012.  

In chapter 5, we consider the direct eigenvalue problem as related to musical instruments, 

specifically the guitar string, the flute, and the clarinet. We discuss the direct problem relating to 

the drum, and finally, the case for a bell. 

 

The aims of this thesis are as follows: 

1. To provide some history behind the work done in the area of inverse eigenvalue problems 

relating to Mark Kac’s paper: “Can One Hear the Shape of a Drum?” 

2. To make connections and correlations between papers written in the area 

3. To consider the work done in the area of musical instruments 
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CHAPTER 2: CAN ONE HEAR THE SHAPE OF A DRUM? 
 

In 1966, Marc Kac gave a lecture at The Rockefeller University in New York. In this 

lecture, he proposed the famous question in spectral theory: “Can One Hear the Shape of a 

Drum?” His lecture has been the focus of many mathematicians’ attention since. For the majority 

of this chapter, we will follow the structure that M. H. Protter constructed in his paper “Can One 

Hear the Shape of a Drum – Revisited.” However, we begin by considering the case of a 

manifold. Then we will progress to the case of a circular drumhead whose boundary is fixed. 

Protter’s Problems I, II, III, and IV will be the next few sections, and the case of the polygonal 

drum (introduced by Kac and solved in part by Gordon and Webb) will be the last section. 

 

2.1: Can One Hear the Shape of a Manifold? 
 

Before considering Kac’s question, one must consider the work done in a more general 

case – that is, the case of the Riemannian manifold. A manifold is a curved surface that satisfies 

the following property: when one considers a neighborhood of a point on the surface, the 

neighborhood resembles Euclidean space. A classic example of a manifold is a donut. When one 

considers small portions of the donut, the portions resemble (not in every way) a small piece of 

the Euclidean plane. When one considers the donut as a whole, it is very different than the 

Euclidean plane.  

A Riemannian manifold is a manifold in which one can measure distances and angles. 

Gordon and Webb write the following in their paper, “You Can’t Hear the Shape of a Drum”: 

“Any Riemannian manifold has a wave equation, so it makes sense to ask: Can one hear the 

shape of a Riemannian manifold? Of course, if the answer is ‘yes,’ this is a harder problem than 
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the original one, since a drumhead is a special case of a Riemannian manifold; it may be, 

however, that the answer is ‘no,’ in which case the more general problem offers wider scope for 

seeking counterexamples.” [7] 

Two years before Kac’s paper was published, John Milnor [14] published a paper titled 

“Eigenvalues of the Laplace Operator on Certain Manifolds.” His paper considered a 

generalization of Kac’s proposed question but in the case of 16-dimensional tori. In his brief 

paper, he proved that there exist two 16-dimensional tori such that they are isospectral but not 

isometric. In other words, he proved that these specific tori have the same set of eigenvalues, but 

are not congruent in the sense of Euclidean geometry. Therefore, Kac’s question was answered 

in the negative for the more general case of the manifold before he had even formally posed the 

question.  

A year after Kac’s paper was published, Kneser [12] proved the existence of two 12-

dimensional tori which were also isospectral but not isometric. In 1980, Marie-France Vignéras 

[23] was able to provide a counterexample for compact manifolds of dimension    , meaning 

that there exists a pair of isospectral manifolds for each   such that the two manifolds are not 

isometric. She also proved that, for the case of    , tori which are isospectral must be 

isometric. Therefore by 1980, Kac’s question had been answered for tori of dimensions 2, 12, 

and 16, as well as for compact manifolds of dimension    . The case of tori in the 3rd through 

11th dimensions, 13th through 15th dimensions, and dimensions greater than or equal to 17 are 

yet to be discussed. 
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2.2: Can One Hear the Shape of a Circular Drum? 
 

In Shivakumar, Wu, and Zhang’s recent paper titled, “Shape of a Drum, a Constructive 

Approach,” they consider the question at hand for a general boundary, a circle, and an ellipse 

[19]. Due to the heavy amount of complex analysis needed for the case of an ellipse, we will 

only give their result for the case of the circle. As one may presume, the answer is proven to be 

that one can, in fact, hear the shape of a circular drum. Let us consider the proof of this 

presumption. 

 

 

 

 

 

 

 

Figure 1: Circle of Radius   

 

Given a circular region   with radius   and boundary  , we begin with the equation 

                                          (1) 

 
The solution of (1) is given by 

      ( √     ) 

where     represents the Bessel function of the first kind and of order zero given by 

  ( √     )    ( | |)  ∑ ( 
  

 
)

 
| |  

    

 

   

  

 𝑎 

𝛤 

𝛺 
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The eigenvalues are given by the zeros generated by   (  )     or 

   
  

 
                 

We now have 

      ( | |)  ∑ ( 
  

 
)

 
   

    

 

   

 ∏(  
  

  
 )

 

   

  

When we compare the coefficients of   , we have 

    ∑
 

  
 

 

   

  

This proves that we will know the radius of our circular drumhead,  , if all of the eigenvalues 

        are known. 

 

2.3: Can One Hear the Shape of a Drum whose Boundary is Fixed? 

Now let us consider Kac’s paper—which happens to be what M. H. Protter deems as 

Problem I in his paper, “Can One Hear the Shape of a Drum? Revisited” [17]. We begin with a 

membrane, call it Ω. Let us call its boundary Γ, and let us hold the membrane fixed along Γ. Kac 

begins his paper by discussing the displacement or movement of Ω after it is set in motion. See 

Figure 2 on the following page. 
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Figure 2: Membrane with Fixed Boundary 

 

It is known that when Ω is held fixed along Γ and is then set in motion, the membrane’s 

movement must obey the wave equation:  

   

   
        

where c is a constant that depends on properties of Ω. 

Now, when Ω is held fixed by a curve Γ that is smooth enough, there is a sequence of 

numbers (eigenvalues) to each of which there exists a corresponding eigenfunction such that  

 

 
            

where    are the eigenvalues, and    are the corresponding eigenfunctions with the condition 

that      as our point given in Cartesian coordinates (   )  approaches the boundary, Γ. 

(Note: it is usual to normalize the  ’s, meaning that ∬   
 ( ⃗)  ⃗

 
  , where   ⃗      .) 

Kac’s goal is to determine whether the knowledge of all the eigenvalues    and 

eigenfunctions,   , is enough to determine the shape and the structure of Ω. We can pose the 

problem in the following way to aid our understanding. Let us consider two problems of the 

same nature: 
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         in    with     on                (2) 

 

 
         in    with     on               (3) 

Now, assume for a moment that the solutions for    (  ) are equal to the solutions for    (  ). 

Does this imply that    is equal, or congruent, to   ? 

In October 1910, H. A. Lorentz, a Dutch physicist, conjectured that “the number of 

sufficiently high overtones which lies between   and      is independent of the shape of the 

enclosure and is simply proportional to its volume.” In other words, 

 ( )  ∑       
| |

  
                (4) 

where  ( ) is the number of eigenvalues less than   and | | is the area of  . In equation (4),   

represents the equation: 

      
 ( )

 
 

| |

  
                       (5) 

Herman Weyl was able to prove Lorentz’s conjecture by using the theory of integral equations 

only two years after Hilbert predicted that the theorem would not be proved in his lifetime [11].  

In proving this conjecture, we must begin by considering a system of particles,  , 

confined to a space,  . The particles are in equilibrium with a thermostat of temperature,  . 

From classical statistical mechanics, we then know that the probability of finding the specified 

particles at  ⃗   ⃗     ⃗  is  

   [ 
 
  

 ( ⃗     ⃗ )]   ⃗    ⃗ 

∫  ∫    [ 
 
  

 ( ⃗     ⃗ )]   ⃗    ⃗  
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where   ⃗⃗⃗⃗
 ⃗   ⃗⃗⃗⃗

 ⃗     ⃗⃗⃗⃗
 ⃗ are the volume elements,  ( ⃗     ⃗ ) is the interaction potential of the 

particles, and      .   is the “gas constant” and   is the Avogadro number. From here, we 

must move to the Schrödinger equation 

  

  
     ( ⃗     ⃗ )        

where   
 

  
                             We must also note the boundary condition that, in 

essence, confines the particles to        ( ⃗     ⃗ )    when at least one  ⃗  approaches the 

boundary of  . Let the eigenvalues be such that            corresponding to the 

normalized eigenfunctions         . We then know that the probability of finding specified 

particles at  ⃗   ⃗     ⃗  within our specified volume elements is 

∑       ⁄   
 ( ⃗   ⃗     ⃗ )  ⃗      ⃗ 

 
   

∑      ⁄ 
   

   

 We must now focus our attention on the smaller class of ideal gases. This means that we 

now have that  ( ⃗     ⃗ )   . The probability of finding specified particles at  ⃗   ⃗     ⃗   

with | | being the volume of   is now 

  ⃗      ⃗ 
| | 

   

Considering only ideal gases gives us the separable Schrödinger equation 

  

  
          

Switching gears from the   -dimensional eigenvalue problem to simply the three-dimensional 

eigenvalue problem gives us 

 

 
   ( ⃗)     ( ⃗)   ⃗     
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 ( ⃗)        ⃗                       

Now we have that the formula for the probability of finding specified particles at  ⃗   ⃗     ⃗  is 

∏
∑    [ 

    

   
]  

 (  )
 
   

∑    [ 
    

   
] 

    
  ⃗ 

 

   

   

If we are to consider     or     we will have the result that 

      [  
  

   
]   

∑        
 ( ⃗)

 

   

 
 

| |
∑      

 

   

   

Considering this in two dimensions instead of three would mean that one can “hear” the area of 

  instead of the volume. Kac clarifies that this is only for  ⃗ in the interior of  . From this work, 

we come to Weyl’s result. His result is the following from equations (4) and (5) above: 

The number of eigenvalues less than  , as   tends to infinity, is approximately 

the area of   times   all divided by   . In other words,  ( )  
| |

  
 . 

All of Kac’s work is done “asymptotically.” He makes the assumption that   is 

“sufficiently regular.” He proves that  

∑      

 

   

 
| |

   
               

(note:   means “asymptotic to.”)  

After working through and explaining his analysis of the asymptotic properties of the 

eigenvalues relating to this problem, he concludes his paper with the result that it is possible to 

“hear” the area of a drum—that is, one can obtain information regarding the drum’s geometry 
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from studying its normal modes of vibration. For the case of the polygonal drum (see section 

2.7), he concludes that one is able to “hear” the connectivity of a multiply connected smooth 

drum with   smooth holes. However, he was not able to give a direct answer on whether one is 

able to “hear” exactly the shape of a drum from studying the asymptotic properties of the drum’s 

eigenvalues.  

Kac’s paper was published in 1966, and is a topic of interest still to this day. In 1987, M. 

H. Protter revisited Kac’s results while describing the recent developments in the field at that 

time regarding this inverse problem. 

Protter gives two different interpretations of Mark Kac’s question. This first is this: let us 

assume that there is a drum being played in such a way that a person with perfect pitch (a person 

who can hear and identify all the normal modes of vibration) can only hear the drum – the drum 

cannot be seen. Is it possible for the person to determine exactly how the drum is shaped by 

knowing only the modes of vibration?  

He gives his second interpretation mathematically: “If two domains in R
2
 are isospectral, 

is it necessarily true that they are isometric?” As stated in a previous section, for two domains to 

be isospectral they must have the same set of eigenvalues. For two domains to be isometric they 

must be congruent in the sense of Euclidean geometry [17]. A good way to understand two 

domains being isometric is to consider two circles:  

                        

(   )  (   )     

The first circle is centered on the origin and has a radius of one. The second has a center at (2,2) 

and has a radius of one. These circles are called isometric. They have the exact same shape; the 

second circle is just translated up two units and to the right two units.  
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 Protter sets up his paper as the proposal of four separate propositions. He calls the 

propositions Problems I, II, III, and IV. 

Problem I (Kac’s Problem) is the following, which has been stated previously: given two 

isospectral domains in R
2
, can one know that they are isometric? In other words, we must start 

with the wave equation that models the vibration of a two-dimensional drum 

   

   
   (

   

   
 

   

   
)  

where    (     )  denotes the transverse displacement of a point (   )  at time  . For 

convenience, we will assume that the constant     . After separating variables such that 

   ( ) (   ), our solution,  (   ), will be a solution                  of the equation 

         

We have that the boundary of our drum is attached, therefore the solution of the above equation 

must satisfy the boundary condition 

             

We can assume that there is a countable sequence of eigenvalues              

     tending to   . This is known to be true for the domain   which is in             . 

In 1911 (as mentioned previously), Weyl approximated    as the following: 

      (
 

   
)
  ⁄

      

  denotes the volume of  , and    denotes the volume of the unit ball in   . 

We can also assume that there is a corresponding sequence of eigenfunctions 

              such that each    satisfies the boundary condition as well as the equation 
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We know that the eigenfunctions are orthogonal in   ( ), and we will normalize them 

such that ||  ||  ( )
       Now we can consider the question as stated previously: If two 

domains (        ) in R
2
 are isospectral, is it necessarily true that they are isometric? 

 

2.4: Can One Hear the Shape of a Drum whose Normal Derivative on the Boundary is Zero? 

Problem II is the same question as is asked as in Problem I, but the boundary condition is 

now 

  

  
            

where    ⁄  is the directional derivative that is normal to the boundary of   at each point. One 

can think of this problem in the following way: the drum material is no longer fastened to the rim 

but now just resting on top of the rim. Another way of considering this problem is “whether or 

not two nonisometric domains    and    can be isospectral with respect to the solutions of 

               ” [17] 

 

2.5: Can One Hear the Shape of a Stiff Plate from Its Modes of Elastic Vibrations? 
 

Next, Protter gives Problem III, where he considers the vibration of a stiff plate. The 

vibrations of a plate (which is clamped so that no lateral motion can occur at its edge and whose 

rim is fastened at the boundary) that span the domain   in    are governed by the equation 

                 

Its boundary conditions are 
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The question that arises in this problem is whether plates which have are nonisometric can be 

isospectral. 

 

2.6: Can One Hear the Shape of a Three-Dimensional Drum from Its Modes of Elastic Vibrations? 

Finally, Problem IV considers a domain   which is in   . He defines   (        ) to 

be the elastic displacement vector. The function which takes elements of   into    is given by 

the system 

     (   ) (
 

   
) (   )                                  

  must satisfy the boundary conditions 

                                

where   and   the Lamé constants, and    are the eigenvalues. 

 After defining Problems I-IV, Protter continues by studying the asymptotic properties of 

each of the four discrete sequences of eigenvalues, since all four of them tend to infinity. He also 

studies how these asymptotic properties affect the geometry of the domain. While considering 

the inequalities of the eigenvalues, some show to be universal inequalities. He also constructs the 

bounds for the first eigenvalue, or the fundamental tone in Problem I.  

In the conclusion of his paper, he discusses his findings—that is, that for Problems I and 

II there exist domains in   , with    , which are isospectral but not isometric. Unfortunately, 

the question remains unanswered for       and in all dimensions for Problems III and IV. 
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2.7: Can One Hear the Shape of a Polygonal Drum? 
 

In the last few pages of Kac’s paper [11], he considers the case of a polygonal drum. He 

simplifies this case by only considering convex drums in which every angle is obtuse. Kac is 

able to prove that the constant term is the same for all simply connected drums. That is, the 

constant is equal to 
 

 
. For multiply connected drums in which the holes are polygonal as well, the 

constant term is equal to (   )
 

 
, where   is the number of holes. This leads us to the case of a 

smooth drum with   smooth holes. One can then conclude that  

∑      

 

   

 
| |

   
 

 

 

 

√   
 (   )

 

 
   

This shows that one can, in fact, hear the connectivity of a smooth drum with   smooth holes. 

The polygonal drum is the main subject of Gordon and Webb’s paper, “You Can’t Hear 

the Shape of a Drum” [7]. The two authors were aided by the work of Scott Wolpert from the 

University of Maryland. They begin their paper by explaining the steps needed to solve an 

analogue of Kac’s question for the case of a string – that is, they proved that for a single 

dimension one can, in fact, hear the shape of a string. They showed how to determine the length 

of the string from the lowest frequency of its vibrations. Their conclusion was that the length is 

given by ½ of the reciprocal of the lowest frequency. [7]  

From there they move to situations in two dimensions, or the case of the vibrating 

drumhead. It is not until the last few pages of their paper that they explain their methods for 

constructing a counterexample for a specific case of Kac’s question. They complement their 

work with a series of figures to illustrate their methods. Their work stems from Sunada’s 

Theorem [3], which is stated as follows: 
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Let   be a complete Riemannian manifold and let   be a finite group acting 

on   by isometries with at most finitely many fixed points. If    and    are 

almost conjugate subgroups of   acting freely on  , then the quotients      

and      are isospectral. 

For quite some time, it was thought that Sunada’s Theorem would not aid in the solving of Kac’s 

question. However, in 1989, the French mathematician Pierre Berard was able to provide a new 

proof of this theorem that gave the mathematical world a wider application of Sunada’s 

Theorem. Just a year later the authors and Scott Wolpert were able to provide a counterexample 

to Kac’s question for the case of polygonal drums. For the specifics in how they applied 

Sunada’s Theorem and group theory to provide this counterexample, please see their paper [7]. 

They give two Caley graphs which depict their permutations beautifully. 

Barry Cipra’s article “You Can’t Always Hear the Shape of a Drum,” discusses the 

results of Carolyn Gordon and David Webb at Washington University and Scott Wolpert at the 

University of Maryland in 1991. They finally were able to answer the question posed by Mark 

Kac—the answer being “No.” Cipra explains that the three mathematicians were able to find a 

pair of distinct shapes that, when studied mathematically as a “drum” or a “membrane,” 

resonated at the same frequencies. Cipra stated the result simply, “if your goal is to deduce the 

shape of a drum merely from the sound it makes, these two drums provide an example where that 

goal cannot be achieved: You can’t decide which drum you’re listening to, because they both 

sound the same.” [4] 

 

 



 20 

2.8: Can One Hear the Shape of an Annular Drum? 
 

In 1982, H. P. W. Gottlieb [8] considered the case of an annular drum – that is, a ring-

shaped drum, or one with a smooth boundary that would be convex if it were not for a hole in the 

middle. He proved that the area, the total perimeter, and the drum’s connectivity could all be 

determined given the set of eigenvalues. 

 

2.9: Can One Hear the Fractal Dimension of a Drum? 
 

In 2005, Walter Arrighetti and Giorgio Gerosa [1] extend Mark Kac’s proposed question 

to arbitrary, finite-dimensional domains and to fractal sets. They set out to determine if the 

fractal dimension can be deduced from its countable eigenvalues. “As the ‘self-similar’ spectrum 

of the fractal is enough to compute box-counting dimension, positive answer is given to title 

question.” [1] 
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CHAPTER 3: EIGENVALUES AND MUSICAL INSTRUMENTS: DIRECT AND INVERSE 

PROBLEMS 

 

3.1: Can One Hear the Composition of a String? 

In their article entitled, “One Can Hear the Composition of a String: Experiments with an 

Inverse Eigenvalue Problem,” Cox, Embree, and Hokanson [5] discuss an inverse eigenvalue 

problem regarding masses on a string. The mathematical question at hand stems from the title of 

their paper. In their paper they seek to determine if one can determine the masses and the 

locations of symmetrically placed beads on a string if one is given the set of eigenvalues. The 

title gives away the answer – that one can, in fact, hear the locations of the beads given the 

corresponding set of eigenvalues. 

They begin with a beaded string and explore the differential equations resulting from its 

displacement when plucked. Then they solve for the eigenvalues and eigenvectors in the 

differential equations created by the plucked string. After determining the eigenvalues, they use 

numerical algorithms due to de Boor, Golub, and Gladwell to determine the positions of the 

beads and the masses on the strings (the inverse problem). They conclude their paper with the 

result that one can determine the locations and the masses of beads placed on a string when 

given one set of eigenvalues. 
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The forward problem results from the figure found on page 158 from their paper [5]. 

After organizing the linear equations created from the first-order approximations to the equations 

given in their paper, they write the differential equation in this matrix form: 

   ( )     ( )  

where  ( ) is the state vector,   is the mass matrix, and   is the stiffness matrix. The mass and 

stiffness matrices are both symmetric and positive definite. The solutions to this differential 

equation are given by: 

 ( )  ∑   ( 

 

   

)v   

         ( )       (   )       (   )  

and where the    and    coefficients are determined by the initial pluck of the beaded string. We 

have that   ( )    which implies that        , and  ( )     implies that the    coefficients 

are the expansion coefficients of    in the eigenvector basis, i.e. the    coefficients can be found 

by solving    ∑   v 
 
   . 

The inverse problem as implied from the title is: given the set of eigenvalues, can one 

determine the location and the masses of beads placed on a string?  

When beginning to explore the inverse problem, Cox, Embree, and Hokanson first model the 

beaded string vibrations with their corresponding matrices: 

       ⁄      ⁄  [

    

     

      

      

] 

           
(

 
    

 
 
  

)

  
              √      ⁄     
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They denote the nodes and weights as follows: 

                 

                      

and they set out to determine these weights and nodes. The authors gave the following algorithm 

for recovering the Jacobi matrix   : 

1. Use the following to determine the nodes of the inner product: 

       

2. Construct the weights, with   
 (  ) given by the following: 

   
 

  
 (  ) ̂ (  )

 
 

(∏ (     )
 
   
   

) (∏ (    ̂ )
 
   )

   

3. Determine the values of    and      at the nodes; see the following: 

  (  )     

    (  )  
 ̂ (  )    (  )

∑ (    ̂ )
 
   

 
∏ (    ̂ )

 
   

∑ (    ̂ )
 
   

   

4. Compute   , using the following: 

〈   〉  ∑   (  ) (  )

 

   

 

   
〈          〉

〈         〉
 

∑         (  )
  

   

∑       (  )
  

   

   

5. For               

a. Compute     √  
  via the approach described after (6.6) on page 169 [5]: 

  
  

〈       〉      〈      〉  〈        〉

〈     〉
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b. Compute      at the nodes: 

    (  )  
(       )  (  )      (  )

  
    

c. Define 

   
〈          〉

〈         〉
   

 

Once    is defined, one is able to determine the masses and locations of the beads placed on the 

string by following the algorithm taken directly from their paper [5]. 

1. Solve        and        for   and  . 

2.    ∑ (    ̂ )
 
    and    (      )   . 

3.  ̃    √          . 

4.         (   ̃  ̃   ) for          . 

       (   ̃ 
    (    )). 

       (   ̃ 
    (      )). 

5.    (∑     
 
   )  . 

 

In one of the latter sections of their paper, they discuss their experiments and how well 

their algorithm matches the results from their experiments. They note that their algorithm returns 

the masses and the positions of the beads (≤ 4) with an error less than 3.5%. However, they also 

discuss that they discovered some challenges when six beads are placed on the string. They 

computed a relative error of 18% of the lengths when six beads are placed on the string. 
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3.2: Eigenvalues and Musical Instruments 

In 2001, V. E. Howle and Lloyd N. Trefethen [10] published a paper titled, “Eigenvalues 

and Musical Instruments.” In their paper, they analyze the frequencies that are produced by 

musical instruments – more specifically the string of a guitar, the flute, the clarinet, a kettledrum, 

and lastly, bells. Their paper studies the basis upon which musical instruments are designed – the 

fact that physical systems oscillate at certain frequencies. Mathematicians have studied these 

frequencies, and have determined the mathematical reasons for the beautiful melodies that are 

produced by these instruments.  

The linear operator that defines the oscillations of the frequencies of linear systems like 

drums and strings can be given by 

  

  
 

 

  
   

where   is a matrix or linear operator. The solution to the system,  ( ) can be given by 

 ( )       ⁄  ( ) 

The authors explain that the imaginary parts of the eigenvalues, λ, correspond to the musical 

instrument’s frequency and the negative real parts of the eigenvalues correspond to the decay 

rate of the frequency. For notation’s sake, the (real) frequency of the oscillation is denoted    , 

and the decay rate would then be denoted –   . 

After discussing the linear systems, the authors then move on to the nonlinear systems. 

Their methodology is this: they begin with the eigenvalues of a musical instrument. They study 

the eigenvalues of the particular instrument, considering the decay rate and the frequencies 

separately. They do this for all of the instruments listed above. Other aspects of this direct 

problem will be considered in Chapter 5. 
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3.3: A Mathematical Model of a Guitar String 

In “A Mathematical Model of a Guitar String,” Rasmus Storjohann [21] studies several 

different aspects of the vibrating guitar string. He explains first the difference between potential 

energy and kinetic energy in a vibrating string. How tight the string is pulled gives rise to 

different frequencies, which then brings about the different pitches one can hear as the musician 

strums the guitar. He also explains to the reader the meaning of a harmonic, what causes the 

vibrational frequency to decay, and what happens when it does decay. 

He proposes without rigorous justification or proof the following mathematical 

expression that takes all of those processes into account:  

 (   )  (
 

 (   )
)∑

 

       (   )         (
  

 
 )    (

   

 
 ) 

   .        (6) 

Here  (   ) is the amplitude of the string at a given point   and time  . The length of the string 

is denoted  , and   is a fraction denoting the point of the string where it is plucked. Lastly,       

represents the decay rate associated with the  th term. 
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CHAPTER 4: OTHER “CAN YOU HEAR” PROBLEMS 

 

4.1: Can One Hear the Shape of a Graph? 

In their paper, “Can One Hear the Shape of a Graph?” Boris Gutkin and Uzy Smilansky 

consider Kac’s question as related to the Schrödinger operator on a finite metric graph [9]. They 

have determined that the spectrum of the Schrödinger operator will determine the connectivity 

and the bond lengths uniquely. The condition for which this uniqueness exists is that the 

connectivity is simple (“no parallel bonds between vertices and no loops connecting a vertex to 

itself”) and that the lengths are non-proportional. In other words, one can hear the shape of a 

graph. 

For boundaries in intermediate classes of smoothness the answer is not known. 

The existence of isospectral systems was investigated for Laplacians on closed 

Riemannian manifolds and for discrete Laplacians which are formed by the 

connectivity matrices of graphs. In both cases, elaborate techniques were devised 

to identify large sets of different, but isospectral, systems. However, if the 

domains are analytic surfaces of revolution, the spectrum determines the manifold 

uniquely [9]. 

 

Several authors have considered inverse problems for differential equations on metric 

graphs and have shown that their spectrum determine important geometric and topological 

characteristics of the underlying finite metric graph. These advances are beyond the scope of this 

thesis. 
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4.2: Can One Hear the Shape of His Throat? 

In 1970, B. Gopinath and M. M. Sondhi [6] had a paper published titled, “Determination 

of the Shape of the Human Vocal Tract from Acoustical Measurements.” In their paper, they 

measure the acoustics from one end of a human vocal tract.  

Mermelstein and Schroeder explained a few years prior to Gopinath and Sondhi that if 

the area of a vocal tract is of the form 

    ( )        ∑      (
   

 
)

 

   

 

where   is the length and  ( )  is the area function, then as      for all  , the  th 

eigenfrequency is given by       (  
 

 
     ), where     is the  th eigenfrequency of the 

uniform tract (           ). If one were to close the vocal tract at both ends, the 

approximation of the  th eigenfrequency is then given by       (  
 

 
   ). 

Gopinath and Sondhi expound on Mermelstein and Schroeder’s work by giving two 

noniterative methods for obtaining the area function from the acoustical data they acquire. The 

methods that they provide are useful in three aspects: they bring about a better understanding of 

the physical meaning of the problem, they clarify the mathematical characteristics of the 

problem, and they give solutions that enable one to explore the affects of inaccuracies in the data 

on the area functions. The authors conclude that when  ( ) has continuous first and second 

derivatives, its spectrum will uniquely determine  ( ).  
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4.3: Can One Hear Into the Sun? 

The goal of Takashi Sekii and Hiromoto Shibahashi [18] in their paper, “Inverse 

Problems of Solar Oscillations” is to numerically deduce the sound velocity distribution of the 

interior of the sun from their gathered oscillation data. In 1984, Gough provided a method for 

providing the sound velocity distribution based on an asymptotic expression of eigenfunctions of 

p-modes. His method was validated a year later for the outer regions of the sun by Christensen-

Dalsgaard’s numerical approach using solar models. For the inner parts of the sun, Gough and 

Christensen-Dalsgaard’s solutions of the integral equation were not consistent at all. This left 

Sekii and Shibahashi searching for a more accurate method. 

In helioseismology, it is common to consider oscillating modes of vibration in terms of 

functions called spherical harmonics. P, f, and g modes are resonant modes of oscillation 

generated within the sun. The p-modes (the modes studied by Sekii and Shibahashi) are 

spherically harmonic in nature. One can characterize the p-modes in three terms: order, harmonic 

degree, and the number of planes that create vertical sections within the sun. When one considers 

a large number of modes at once, one can begin to have an understanding of the shape of the 

interior of the sun. This is the focus of Sekii and Shibahashi’s paper.  

 

4.4: Can One Hear the Crack in a Beam? 

In 2003, Hai-Ping Lin [13] published a paper titled, “Direct and Inverse Methods on Free 

Vibration Analysis of Simply Supported Beams with a Crack.” In other words, he is asking the 

question, “Can you hear the crack in a beam?”  
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Consider a beam supporting part of a parking garage. When the beam begins to develop a 

crack, the structure itself becomes compromised. The beam is not as stiff, thus it cannot support 

the mass of the cars driving overhead as it was designed. The defect in the beam can also affect 

the damping properties and mass distribution (the weight of the cars), and it can eventually cause 

detrimental issues with the structure.  

The purpose of Lin’s paper is to set up a method in which one can determine the position 

of a crack in a beam, as well as the extent of the crack, from merely measuring the natural 

frequencies of the cracked system. In order to answer this question, he takes an approach that is 

common in both optics and in acoustics. He uses an analytical transfer matrix to study the 

propagation of waves though a simply supported beam with a crack. This method helps him to 

solve both the direct and the inverse problem. He models the beam with a crack as such: he 

considers the beam to be two separate pieces and the crack to be a “rotational spring with 

sectional flexibility.” He then uses the Timoshenko Beam Theory on the two “separate” beams 

and applies the compatibility requirements of the crack. This yields the characteristic equation 

for the system explicitly, a characteristic equation which is a function of the eigenvalue (or 

natural frequency), the location of the crack, and its sectional flexibility. Lin explains that there 

are four integration constants that arise from the eigenfunctions between adjacent sub-beams. 

The relationship between these constants can be determined by considering the compatibility 

requirements of the crack. Because Lin uses the transfer matrix method, the four unknown 

constants can be determined by satisfying the four boundary conditions on the system.  

In order to determine the location of the crack, as well as the sectional flexibility of the 

beam, one must measure any two natural frequencies of the cracked system and use the 

characteristic equation compute the information. Lin uses a crack-disturbance function  (   ) to 
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model the cracked region with local flexibility. The location of the crack and the beam’s 

sectional flexibility has been determined. Therefore, the size of the crack can then be determined. 

The author not only gives his theoretical work, but he also provides experimental 

measurements. He gives the measurements of his simply supported cracked beam, and he 

explains how he measures the frequencies.  

The relationship between the position of the crack and the natural frequencies from the 

identification equation is given. 
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CHAPTER 5: DIRECT EIGENVALUE PROBLEMS OF MUSICAL INSTRUMENTS 
 

In V. E. Howle and Lloyd N. Trefethen’s paper titled “Eigenvalues and Musical 

Instruments,” they detail direct eigenvalue problems associated with five different instruments: 

the guitar (string), the flute, the clarinet, the drum, and bells [10]. The purpose of this chapter is 

to make note of the marked similarities and differences in these eigenvalue problems. We must 

first make sure that we have a proper understanding of the way that these systems behave. One of 

the defining characteristics of (most) musical instruments is that they are designed to produce 

distinguishing oscillations at varying frequencies. When considering the eigenvalue problem that 

results from the equation that describes the motion of the system, one will find notice two things. 

The first is that the imaginary parts of these eigenvalues represent the frequency of oscillation. 

So, given an eigenvalue       , one will have a solution similar to  

 ( )     (     (  )       (  ))  

The second thing you will notice is that the real part of the eigenvalue determines how quickly 

(or slowly) the instrument’s oscillation will decay.  

Howle and Trefethen have structured their paper around the graphs of these eigenvalues, 

which have been determined by experiments run in a lab. For some of the instruments tested, 

much can be said about the behavior of the eigenvalues. However, this is not the case for the 

drums and the bells. For each of these cases, the authors use “idealized” instruments for their 

experiments. The results will have slight variations when actual instruments are used. 
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5.1: The Guitar String 

 As we are now well aware, the motion of a guitar string is governed by the second order 

wave equation               
 

  
, where   represents the wave speed, T represents the 

tension, and S represents the cross-sectional area of the string. The eigenvalues of this problem 

are    
  

 
, and the corresponding eigenfunctions are   ( )     (

   

 
)  (See section 3.3 for 

details.) The authors note that for every positive frequency, there will always be a corresponding 

negative frequency of the same magnitude, thus only the upper half of the plane is needed to gain 

an understanding of what is going on in the figures. 

There are three different factors that one must take into consideration when studying the 

energy losses in a guitar string. Damping, which (graphically speaking) shifts the eigenvalues to 

the left half of the complex plane, can occur from non-rigid end supports, air viscosity, and 

internal losses. The non-rigid end supports “couple the string to the soundboard,” thus providing 

audible sound volume. The damping caused by the end supports is important to note, but does 

not play a major role in the energy losses in the strings. Second, there exists a damping caused by 

air viscosity. When considering both the damping caused by air viscosity and the damping 

caused by internal losses (the third case), one can see that the damping caused by air viscosity 

has a greater impact on steel string than nylon strings in relation to the damping caused by 

internal losses. If you were just to study the damping caused by air viscosity in the steel and 

nylon strings, the damping is much greater for the nylon string. It depends on which perspective 

you take. 

The damping from the viscosity of the air can be modeled by the following equation, 

according to Howle and Trefethen: 
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    ( √    )

   
  

where   is the density of the string material,    is the density of the air,   is the frequency,   is 

the cross-sectional area of the string,   is the radius of the cross-section of the string (  √
 

 
 ), 

   is the kinematic viscosity of the air, and   (
 

 
)√     . Since the decay is a function of the 

frequency, we have manipulated the variables to show that  ( ) is indeed a square root function, 

as it appears from Figure 3 of Howle and Trefethen’s paper. We have 

 ( )  
 √    √   

  
 

      

   
   

We must keep in mind that all of the variables except   are constants. It is most interesting to 

note that the losses are much greater for nylon strings than for steel strings. This is due to the fact 

that nylon strings are less dense than steel strings, thus the constant multiplied by √  will be 

larger. 

Internal losses are modeled by a different function given by 

     
  

  
   

where   is the frequency as before and        is the complex Young’s modulus.  

In the last two figures of the authors’ section on guitar strings, they plot the decay rates 

from the viscosity of the air and internal losses on the same graph. One will notice that for nylon 

strings, the internal losses play a much bigger role than damping due to air viscosity. The overall 

decay rate for nylon strings is approximately proportional to the frequency. 
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For steel strings, there is only a slight difference between the plot of the damping due to 

the viscosity of the air and the internal damping. Overall, the decay rate for steel strings is 

approximately proportional to the square root of the frequency. 

 

5.2: The Flute 

 For the flute, we know that “plane pressure waves obey the same equation as transverse 

waves on a string:             where   is speed of sound in the air under normal conditions” 

[10]. It is important to note that the eigenvalues and eigenfunctions are exactly the same as those 

for an ideal string fixed at both ends (   
  

 
       ( )     (

   

 
)). Thus the eigenvalues 

for the flute behave in a very similar manner to the eigenvalues for the guitar string.  

Just like in the case of the guitar string, there are important factors in a flute that cause 

damping, or energy losses. The first factor happens when frictional and thermal energy is 

transferred to the wall of the flute. The authors call the damping that results “wall losses.” The 

losses that take place in this category have the greatest affect on the eigenvalues, and they have 

represented the decay rate as            .   is a constant that is determined based on the 

material of the walls and the surface condition,   is the angular frequency, and   is the speed of 

sound in the air. In this decay rate, one can see that   is a function of  , making this a square 

root function like in the case of the guitar string. 

An approximation to the damping rate due to sound radiation is   
 

 
(
 

 
)
 
(    ) . 

Here,   is the radius of the bore,   is the length of the flute, and   is the node number.   

represents the angular frequency, as before. One will notice that the decay rate due to sound 

radiation is proportional to the frequency. 
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5.3: The Clarinet 

Flutes and clarinets are very similar in their structure. However, there is one distinct 

difference: that is, a reed drives the oscillations in a clarinet. Another difference between a flute 

and a clarinet is that the tone holes (relative to the size of the bore) are smaller in a clarinet than a 

flute. This means that the tone holes do not actually cut off the tube when pressed by the 

musician’s fingers.  

Very similar to the flute, the clarinet experiences energy losses from wall losses and 

sound radiation. When observing the graph of the eigenvalues for the ideal clarinet, one will 

notice that the fundamental frequency is an octave lower than that of an ideal flute of the same 

length. One will also notice that the harmonics are all odd multiples of the fundamental. 

 

5.4: The Drum 

The authors give a simple definition for a drum: “an ideal circular membrane with 

clamped edges.” The equation of motion for a circular membrane is given by     
 

       

   
 

 
.  One should note that  (   ) is the displacement of the membrane from its equilibrium 

at the point (   ) on its surface, T is the tension, and   is the mass density per unit area. The 

solution of the above equation contains a Bessel function. We will derive the solution here. 

First, we must start with the partial differential equation:  

    
 

  
                   (16) 

We then assume a solution of the form:  

 (     )   ( ) ( )       

Substituting the assumed solution into our PDE (16) yields: 
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{
          (  (

  

  
   )    )                                             (  )
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The solution of (18) is of the form: 

 ( )  {
                                         
     (  )      (  )        

 

However,  ( ) in equation (17) is a Bessel-type equation. We may seek a Frobenius series 

solution for  ( ) of the form: 

 ( )  ∑    
   

 

   

   

This leads to 

 ( )  ∑
(  ) 

  (   ) 
(
  

  
)
    

 

   

    

If we let   
  

 
, then we obtain 

 ( )    ( )  

the Bessel function of the first kind of order  . Thus, 

 (   )     ( )    (  )                     
  

 
   

When studying the eigenvalues of an ideal drum, one must consider two important 

properties: the membrane moving through the air and the presence of the kettle. The purpose of 

the kettle is to tune the modes that are the least damped. 

From the graphs of the eigenvalues given, one can see that an ideal drum does not have 

any distinctive or definite pitch. This comes from the fact that the zeros of the Bessel function 

are not all harmonically related. 
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5.5: The Bell 

A bell constructed at random will almost assuredly not sound musical. After hundreds of 

years of work, many people have contributed to the adjusting of the eigenvalues so that they will 

have a musical sound. For the authors’ experiments for this musical instrument, they decided to 

use an actual A4
#
 minor-third bell. They do not go into much discussion. We will conclude with 

this quote: “For our purposes, it is enough to note the astonishingly satisfying imaginary parts of 

the first six eigenvalues in [Figure 19]. These six noted line up like a chord played on a piano, 

and with decay rates as low as about half an e-folding per second, you can almost hear this clean 

bell ring.” 
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