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ABSTRACT

Early identification and detection of abnormal time series patterns is vital for a number of manu-

facturing. Slide shifts and alterations of time series patterns might be indicative of some anomaly

in the production process, such as machinery malfunction. Usually due to the continuous flow

of data monitoring of manufacturing processes requires automated Control Chart Pattern Recog-

nition (CCPR) algorithms. The majority of CCPR literature consists of supervised classification

algorithms. Less studies consider unsupervised versions of the problem. Despite the profound ad-

vantage of unsupervised methodology for less manual data labeling their use is limited due to the

fact that their performance is not robust enough for practical purposes. In this study we propose the

use of a consensus clustering framework. Computational results show robust behavior compared

to individual clustering algorithms.
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CHAPTER 1: INTRODUCTION

In today’s world different techniques of Data Mining are used widely for different types of prob-

lems. Data Mining is an interdisciplinary subfield of computer science which discovers patterns

and extracts information from large datasets.

Data Mining is strongly connected with statistics and science of numbers. Many techniques used

in Data Mining are statistical techniques.

Machine learning is a very related field with data mining which is a branch of artificial intelligence

and deals with construction of machines that can learn from data. In 1959 Arthur Samuel defined

machine learning as ”Field of study that gives computers the ability to learn without being explic-

itly programmed”.

There are several techniques of Machine Learning used in problems and they can be divided into

two main categories: Supervised Learning and Unsupervised Learning.

In supervised learning there is a prior information about data which are presented as labels. In

supervised learning we have two sets of Train Set and Test Set. In train set each pair contains

the input and desired output. With the help of train set, algorithm will construct the function and

can predict or label new data. There are several supervised methods such as Artificial Neural Net-

works, Support Vector Machines and Regression Analysis.An example of supervised learning is

prediction of house prices for the next 5 year. By getting data from the previous years prices we

can find a function that fits best the data with the least error and make predictions for future years

with a certain amount of error.

On the other side, unsupervised learning is the task of classification without any prior information
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or labeled data. The task in unsupervised learning is to find the hidden structurer in unlabeled data.

Unsupervised learning and Clustering are the terms used interchangeably. In clustering we are

trying to find the hidden structure in data and group the data based on their similarities. Because

there is no label or prior information of the data, there is no reward or penalty involved, clustering

is used only when there is no prior information about the data. An example of clustering is in

marketing, in this case, we face a large data set of customers and we are interested to find their

common behavior or interest for marketing strategies.

Different clustering algorithms such as K-Means, Fuzzy clustering, Spectral Clustering and Hier-

archical Clustering are proposed which we will go over them in details in chapter 2.

Clustering has big usages in image segmentation, biology, business and marketing, socio eco-

nomics and so many other fields when there is a need to group and make use of unlabeled data.

In this study we are going to purpose a new method of Unsupervised Learning (Clustering) for

unlabeled data.

First we will give a description of clustering and some of its applications. Then for our method, we

will describe a clustering method called Consensus Clustering and apply that to our application.

At the end, based on the evaluation methods used in literature, we will evaluate the quality of our

proposed method and give the results and conclusions.

In the rest of the chapter, first we will talk about the task of clustering in details, next we will go

through consensus clustering and some ensemble methods and then we will study Control Chart

Pattern Recognitions (CCPR).

In chapter 2 we will talk about our proposed method which is an unsupervised framework for clas-

sifying binary class data. In the same chapter we will also talk about some evaluation methods for

our proposed method to measure the quality of the clusterings.
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Finally, in chapter 3 and 4 we will give the findings, performance of the proposed method and

conclusions.

Clustering

Clustering is the task of grouping data into groups so that similar data are in the same group. The

objective is to maximize the within the group similarity and minimize the between the group sim-

ilarity.

Clustering is very useful in data mining, document retrieval, image segmentation and pattern clas-

sification. In the literature there are lots of attention paid to clustering and its applications.

Figure1.1 is an example of clustering, in figure1.1.a original data points are shown and figure1.1.b

is an example of a clustering of these points. As shown in the figure, the effort is to group similar

and closer data together. There are different methods of clustering based on the data type and each

will give a different result.

Only when there is a little prior information about the data or the decision maker must take as few

assumption about the data as possible we use clustering.

A full review of clustering is given by Jain et al. (1999). In their paper, they have defined five

different steps for clustering as follows:

1. Pattern representation

2. Definition of a pattern proximity measure appropriate to the data domain

3. Clustering
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(a) (b)

Figure 1.1: An example of clustering

4. Data abstraction (if needed)

5. Assessment of output (if needed)

The first step is to identify the number of clusters or groups and scale of features available for

clustering algorithm. Usually, data are consist of different number of features, for example a

manufacturing data might contain features about dimensions, weights and materials used. Number

of features or number of clusters might not be identifiable or controllable by the user but there

are methods to fit the best number of clusters. Liu et al. (2010) did an study on internal clustering

measures, there are different methods studied and they can be used together to find the best number

of clusters, but we will not go through them in this study since our problem is a binary classification

problem.

In the second step we define similarity measures for the clustering, there are different similarity

measures existing for different types of problems such as euclidean distance. It is very important
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to use the proper similarity measure since not using a good fit will result in bad clusterings.

In the clustering step we can use different clustering algorithms for grouping different types of

data. In general there are two types of hard clusterings and soft clusterings. Hard clusterings group

data into defined groups and data can belong to only one specific group, in soft clusterings each

data point belongs to a group with a degree of membership and might belong to some other group

with another degree of membership.

In data abstraction step we are trying to find simple representation of the data.

In the last step, we are interested to validate and measure the goodness of clusterings. First it is

important to test the data itself and see if it is clusterable. This task is called Cluster Tendency.

Dubes (1987) did a Monte Carlo study on the relative effectiveness of two internal indices in

estimating the true number of clusters. There are methods proposed in literature which we will not

go through here. Cluster Validation is also when we assess the quality or goodness of clustering.

Clustering Validation measures are subjective to the matter, based on different problems and data

there are different clustering validation measures. In chapters 3 and 4 we will talk about some of

these methods that we used for our proposed algorithm.

Clustering algorithms can be divided into four types:

1. Hierarchical Clusterings

2. Centroid-Based Clusterings

3. Distribution-Based Clusterings

4. Density-Based Clusterings
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Hierarchical based clusterings build the clusters based on a hierarchy. First each data will be in

its own cluster and in each step based on a distance measure, clusters will be merged until the

algorithm reaches a single cluster. Based on the desired number of clusters, the algorithm can be

stopped or cut at any step.

In centroid-based clusterings such as k-means, first some initial centers will be defined and the data

will be clustered based on their distances from the centers (a function similar to Voronoi Diagram).

These algorithms are usually iterative, in each iteration the centers are updated until the algorithm

reaches the optimal solution where the distances are minimized. These algorithms might not give

the optimal solution.

Distribution models are most close to statistical models, they use statistical distributions for clus-

tering.

Density-based clustering work with assigning points to clusters as dense areas and the rest of the

points will be considered as noise.

Clustering is necessary when data is unlabeled regardless of whether the data is binary, categorical,

numerical, interval, ordinal, relational, textual, spatial, temporal, spatio-temporal, image, multi-

media, or mixtures of the above data types (Warren Liao, 2005). There are different choices of

clustering algorithms depending on the type of data and application as mentioned above.

Data are called static if all their feature values do not change negligibly over time. So many cluster-

ing analyses has been performed on these types of data. Aside from the above given classification,

Han et al. (2006) classified clustering methods for handling static data into five major categories:

1. Partitioning Methods

2. Hierarchical Methods
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3. density-Based Methods

4. Grid-Based Methods

5. Model-Based Methods

Each of these types of algorithms were used for different applications. Gustafson and Kessel

(1978) proposed a fuzzy clustering algorithm using a fuzzy covariance matrix. Fuzzy sets were

used in clustering first by Bellman et al. (1966), fuzzy clustering is also used for several medical

diagnosis (Adey, 1972) and in cardiovascular research (Kalmanson and Stegall, 1975).

Another method of clustering is spectral clustering which uses the concept of spectrum and eigen-

vectors. Verma and Meila (2003) gave a comparison between spectral clustering algorithms and

some of their applications. Shi and Malik proposed a spectral clustering algorithm for image seg-

mentation (Shi and Malik, 2000), Jordan and Weiss also proposed another algorithm (Y et al.,

2001) which we will use later on.

Another method of clustering is Hierarchical clustering, so many works related to biological sci-

ences are done on this matter, Johnson (1967) have developed a hierarchical clustering algorithm

with a distance measure. Bandyopadhyay and Coyle (2003) also presented a hierarchical cluster-

ing algorithm for wireless sensor networks.

In another article, a scalable method for clustering of time series data is presented which uses some

global measures instead of the points themselves (Wang et al., 2004). Lin et al. (2004) presented

an iterative incremental partitioning method for clustering of time series data.

Xiong and Yeung proposed a model based approach for time series with different lengths using au-

toregressive moving average (ARMA) (Xiong and Yeung, 2004). Characteristic based clustering

is also proposed by Wang et al. (2006). in another article a hybrid time series clustering algorithm
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that uses dynamic time warping and hidden Markov model is presented (Oates et al., 1999).

Consensus Clustering

Different clusterings of same data can be obtained from different clustering algorithms or different

runs of a nondeterministic clustering algorithm. Consensus clustering combines different clus-

terings into one consensus that is the representative of those clusterings, and this emphasizes the

common organization.

For instance, k-means clustering gives different results for the same data by choosing different

initial centers and by use of consensus clustering, here we can combine the results of some weak

clusterings into a good clustering which will also be a representative of them.

Consensus clustering has a very useful roll because of the prevalence of large data sets and their

availability from different sources. In general, in consensus clustering we are trying to use vari-

ability in clustering and data, this variability might result form the clustering algorithms, the data

itself or local optimality.

Numbers of works are done on this matter, Goder and Filkov (2008) have implemented a number

of heuristics for the consensus clustering problem and compared their performance, independent

of data size, in terms of efficacy and efficiency, on both simulated and real data sets. Li et al.

(2004) shows different clustering criteria and their connection with consensus. Lancichinetti and

Fortunato (2012) showed that consensus clustering can be combined with any existing method in

a self-consistent way, enhancing considerably both the stability and the accuracy of the resulting

partitions. In another paper Li et al. (2007) showed how consensus and semi-supervised clustering

can be formulated within the framework of nonnegative matrix factorization. Weighted consensus
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clustering is proposed by Li and Ding (2008), in their approach, different weights are given to

different clustering inputs. A complete survey of ensemble algorithms is given in(Vega-Pons and

Ruiz-Shulcloper, 2011) and different methods are compared in (Ghaemi et al., 2009)

Consensus clustering can be divided into three steps as shown in figure1.2:

1. Data Gathering

2. Clustering

3. Consensus Function

In the first step we will gather the required data for our problem. Here we might have data from

different categories of individuals, different sources, different measurements or data with variety

in general. In the second step we run the clusterings on the data, in this step we might choose to

run several clustering algorithms or run the same algorithm for several times. At the last step by

defining a consensus function we will decide how to use the clustering in order to construct the

consensus clustering.

Choosing the different algorithms and data source depends on the specific problem, but later we

will show that even by using bad algorithm, consensus can still give good results.

In general, if there is no variety in clustering or data, then there is no point in using a consensus

method since they are usually more time consuming and they need more resources.

Different approaches are studied for the consensus function which combines the different clus-

terings. Some functions use the Pick-A-Cluster method which simply picks a random algorithm
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Figure 1.2: Consensus Clustering Scheme

each time. There is also the Average Linkage method, in this method each data belongs to its own

cluster and in each step two closest clusters merge together and form a single cluster until the the

average sdd between clusters is 1/2. A very common approach which we will use in here is voting.

In voting based on the number of clusterings, points are clustered to their highest vote.

In (Kuncheva et al., 2006) 24 methods for creating the consensus is studied and those methods are

evaluated on 24 data.

As shown in figure1.2, in voting, different clusterings can be obtained form different runs of a same

algorithm or from different clustering algorithms. Consensus function will combine and process

these clustering labels and create the consensus graph. In the most of the cases, several runs of a

single algorithm or a single run on several data is studied. Here we are going to combine different

clustering algorithms on a same data and construct the consensus based on the labels we get from

those clusterings.
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As an example, if we have four different clustering of a data:

γ1 = {1, 1, 0, 1, 0, 1, 1, 0, 0}

γ2 = {0, 1, 1, 1, 1, 1, 0, 0, 0}

γ3 = {1, 1, 1, 1, 1, 0, 0, 0, 0}

γ4 = {0, 1, 1, 0, 1, 1, 0, 0, 1}

(1.1)

Then based on voting, consensus clustering would be:

γ∗ = {1, 1, 1, 1, 1, 1, 0, 0, 0} (1.2)

As we can see, not all the clusterings are giving the same result, some of them might have errors

but by using consensus we were able to get a final clustering which has a common structure with

the others and has better quality.

Consensus clustering can also be formulated as an optimization problem(Grötschel and Wak-

abayashi, 1989).

For n different clustering labels Pk for k = 1, 2, ..., n we define r(k)ij = 1 if samples si and sj

belong to the same cluster in clustering Pk and 0 if they don’t. Then the decision variable rij is

defined the same, the objective function is as follows:

k∑
i=1

d(P, Pi) =
k∑

i=1

∑
i,j

(r
(k)
ij − rij)2 (1.3)

d is the distance function between two clusterings. Since r(k)ij and rij ∈ 0, 1 then the function will

be linearized:
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∑
k

∑
i,j

r
(k)
ij +

∑
k

∑
i,j

(1− 2.r
(k)
ij )rij (1.4)

It can be observed that the objective is 0-1 linear and can be written as:

c+
∑
i,j

cijrij (1.5)

where:

c =
∑
k

∑
i,j

r
(k)
ij , cij =

∑
k

(1− 2.r
(k)
ij ) (1.6)

At the end the optimization function can be formulated as:

min
∑
ij

Cijrij (1.7a)

s.t. rii = 1, i = 1, ..., n (1.7b)

rij = rji, i, j = 1, ..., n (1.7c)

rij + rjk − rik ≤ 1, i, j, k = 1, ..., n (1.7d)

rij ∈ {0, 1}, i, j = 1, ..., n (1.7e)
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Since rij = rji these variables can be replaced by xij and rii can be dropped since it is a fix

variable.We define weights wij = cij + cji. The problem can be formulated as below:

min
∑

1≤i<j≤n

wij.xij (1.8a)

s.t. xij + xjk − xik ≤ 1, 1 ≤ i < j < k ≤ n (1.8b)

xij − xjk + xik ≤ 1, 1 ≤ i < j < k ≤ n (1.8c)

− xij + xjk + xik ≤ 1, 1 ≤ i < j < k ≤ n (1.8d)

xij ∈ {0, 1}, 1 ≤ i < j ≤ n (1.8e)

In (Grötschel and Wakabayashi, 1989) it is proven that the polyhedron of this problem is the same

as the one in Clique Partition problem . This problem is NP-complete and it is limited to solve data

samples no more than 300 (Sukegawa et al., 2012). So we will use another method for representing

the consensus clustering which is graph illustration (Lancichinetti and Fortunato, 2012).

A simple way to show how the consensus clustering works is graph visualization. Assume that

we have 7 data points which are presented by nodes on the graph in figure1.3 and we have four

different clusterings of these data points. Each clustering is shown in a circle in figure1.3, if there

is an edge between two nodes it means that they are in the same cluster. There are different ways

to construct the consensus, here we construct the consensus by giving weights to each of the edges

in the consensus graph. The weights can be defined as number of times two nodes on each edge

end points appeared in the same cluster divided by the number of total clusterings available. If the

weight is higher then it is more likely that the two points are in the same cluster so the edge would

be thicker. At the end the consensus graph will be constructed as shown in the figure. Through

this process we can construct the adjacency matrix of the graph which will create our consensus

matrix. For the illustrated graph the matrix is as follows:
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1 2 3 4 5 6 7

1 1/4 2/4 4/4 1/4 0 0 0

2 2/4 1/4 2/4 3/4 1/4 0 0

3 4/4 2/4 1/4 1/4 0 0 0

4 1/4 3/4 1/4 1/4 1/4 0 0

5 0 1/4 0 1/4 1/4 3/4 3/4

6 0 0 0 0 3/4 1/4 4/4

7 0 0 0 0 3/4 4/4 1/4


Each element aij in consensus matrix is showing the weight between node i and node j which

is the number of times these two points showed up in the same cluster out of 4. So the highest

weight is 4/4 which has the thickest edge and assures us that these two points are in the same

cluster and the lowest weight is 0 which assures us that these two points are not in the same cluster.

As we can see, by using each of the clusterings alone we will not give any good answers, but when

we use consensus clustering, it gives us very useful informations about the data even though some

clusterings used in the function have very bad quality.

Our contribution in this thesis is to give a consensus clustering method for time series data based

on the definitions we gave above and evaluate the results using clustering evaluation methods. We

will use five clustering algorithms for our consensus and we will show how significantly the results

can be improved with the help of consensus.

In the following section we will discuss about our methodology and we will describe the clustering

algorithms we will use for the consensus clustering.
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Figure 1.3: consensus clustering graph illustration, (I), (II), (III), (IV ) are four different cluster-
ings and (V ) is the consensus created based on them.
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CHAPTER 2: METHODOLOGY

As discussed in section 2 of the previous chapter, for constructing our consensus matrix we will

use five different clustering algorithms including: Hierarchical, K-means, Fuzzy and two spectral

clustering algorithms. Each of these algorithms give different clusters. Some of these algorithms

give the same results after several runs but some of them don’t, like k-means. In this methodology

we will not deal with several runs of a same algorithm on the same data, but we will run these

five algorithms on the same data once and by using the concept of consensus we will improve the

results significantly. This approach will help us to eliminate weak clusterings and outliers and will

reveal the structure of the data better than individual algorithms.

Assume that a time series is represented by D = d1, d2, ..., dn and each di is a vector of w number

of variables(window length). Each clustering algorithm gives labels 1 or 2 to each di since we

only need two clusters(normal or abnormal). Figure2.1 is a representation of a time series. Each

di presents a raw in the time series and they each have a certain pattern. Number of columns is the

same as window length or number of features. Our problem is a binary classification problem in

which we are interested in two classes of balanced or imbalanced. The clusters are not balanced,

which means one class might be bigger or smaller than the other class and they are not the same

size.

After getting the results of different clusterings we will construct the consensus matrix. Consen-

sus matrix A is a n × n matrix, and each element has a value between 0 to 1. For each aij , the

value shows how many times out of 5, di was in the same cluster as dj .

For decision making and evaluation purposes through voting, we decide if two data are in the same

cluster or not. If the value of aij is greater than 0.4, which means two points appeared in the same
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Figure 2.1: Time Series Representation

cluster more than two times, then di and dj are in the same cluster, and if the value is smaller or

equal than 0.4 then di and dj are not in the same cluster. In the following sections we will give a

brief description of the clustering algorithms we used and then we will evaluate the results.

Clustering Algorithms

K-Means

K-means is a partitioning method first proposed by MacQueen et al. (1967). Given a set of n un-

labeled data, a partitioning method creates K partitions of data, where each partition represents a
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cluster containing at least one object and K ≤ n. In K-means, partitions are crisp meaning that

each object belongs to exactly one cluster, and each cluster is represented by the mean value of the

objects in the cluster.

The goal of k-means is to minimize the objective function which is the total distance between all

objects from their respective cluster centers. K-means is an iterative algorithm starts by arbitrar-

ily choosing initial centers for clusters and then assigning objects to the closest cluster centers and

updating the clusters. This process continues until the value of the objective function is minimized.

Let the set of data points be represented asD = {d1, d2, d3, ..., dn}where each di = {di1, di2, di3, ..., diw}

is a vector with w features. Then k-means partitions D into K partitions P1, P2, P3, ..., Pk where

the within-cluster sum of squares is minimized:

min
k∑

i=1

∑
dj∈Pj

uki‖dj − µj‖2 (2.1)

µj =Mean of points in Pj and uki ∈ {0, 1}∀k, i and
∑K

k=1 uki = 1

In above formula we use euclidean distance for similarity measures but other distance measures

can be used in k-means. The algorithm starts by choosing initial centers and assigning points to the

closest center. Then the algorithm will revise the center and update the clusters so that the value

of the objective function will be minimized, this process will be repeated until the value can’t be

reduced more than a ε.

In k-means, number of clusters must be defined by user and if the initial centers are not defined

by user then they will be assigned by the algorithm. With various numbers of clusters and initial

centers, the algorithm will give different results. Also, the algorithm is sensitive to outliers and

outliers will effect the result of the clustering.

K-means has been developed in different ways for different applications. Some variations try to
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find good initial centers and some of them allow the merging and splitting of resulting clusters,

Ball and Hall used this method for ISO data (Ball and Hall, 1965). Euclidean k-medians which is

a variation of k-means is presented by Arora et al. (1998).

Hierarchical

Hierarchical clustering works by clustering data into a hierarchy tree. A hierarchical clustering

results in a dendrogram representing the clusterings and similarity levels, and by breaking the den-

drogram in different levels, we will obtain different numbers of clusterings. There are two types of

hierarchical clustering: Agglomerative (bottom up) and Divisive (top down). Agglomerative meth-

ods start by placing the objects in their own clusters and then merges clusters into larger clusters

until it reaches a single cluster or a certain termination criteria. Divisive methods work the reverse

way.

Hierarchical clustering has the problem of adjusting once a merging decision is made. Different

measures to calculate the distance between clusters results in different variations of hierarchical

clustering such as single link, complete link and minimum variance. In single link, the distance

between two clusters is defined as the distance between their two closest points, while in complete

link distance of clusters is defined as distance between their two farthest points which makes it

sensitive to outliers. Different distance measures and linkage criteria can be use for hierarchical

clustering, regarding our data, we used agglomerative because they are more popular, euclidean

distance measure and single linkage method, because we want to prevent the effects of outliers

and usually single link algorithms are more versatile than complete links (Jain et al., 1999). Ward

gave some hierarchical clustering schemes in his paper (Ward Jr, 1963). F. Corpet used hierarchical

clustering for an algorithm for the multiple alignment of sequences, either proteins or nucleic acids
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(Corpet, 1988). Bandyopadhyay and Coyle proposed a distributed, randomized hierarchical clus-

tering algorithm to organize the sensors in a wireless sensor network into clusters (Bandyopadhyay

and Coyle, 2003).

Fuzzy

In fuzzy clustering, partitions are not crisp, meaning that one object can belong to more than one

cluster to a different degree. The notation of fuzzy sets first proposed by Zadeh (1965) and the use

of fuzzy sets in clustering was first proposed in (Bellman et al., 1964). Fuzzy clustering associates

each pattern to a cluster with a membership function. Two commonly used fuzzy algorithms are the

fuzzy c-means (Bezdek, 1981) which works better than k-means but they converge to local minima

of the squared error criterion (Jain et al., 1999) and the fuzzy c-medoids algorithm (Krishnapuram

et al., 2001). These two also work well for finding spherical-shaped clusters and small to medium

data sets, but for non-spherical or complex shape data sets, algorithms such as adaptive fuzzy

clustering (Krishnapuram and Kim, 1999) works better. A very important part of fuzzy clustering

is how to define the membership function. A fuzzy clustering algorithm works generally with these

steps: First, construct M(n× k) membership matrix, n is the number of data and k is the number

of clusters. Each element mij in M shows the degree of membership of data di to cluster pj which

is between 0 and 1. Then, using M, create the fuzzy membership function and calculate its value.

Reassign data to clusters so that the value of the fuzzy function is decreased and repeat this until

the value is minimum or it can’t be changed.

Different membership functions can be defined like weighted squared error. One membership
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function can be defined as below:

n∑
i=1

k∑
j=1

mij‖di − µk‖2 (2.2)

Where µk =
∑n

i=1mikdi is the kth fuzzy cluster center. Bezdek discussed the applicability of the

fuzzy ISODATA clustering algorithms for dimensionality reduction of binary valued data sets, and

computerized medical diagnosis (Bezdek, 1976) and fuzzy clustering is also used for cardiovascu-

lar investigations (Kalmanson and Stegall, 1975).

Spectral Clustering

Spectral clustering techniques make use of eigenvalue of the similarity matrix. Spectral clustering

goes back to Donath and Hoffman (1973) when they suggested the use of eigenvectors for graph

partitions. In this paper we used two spectral clustering algorithms, one proposed by Shi and Malik

(2000) for solving the perceptual grouping problem in vision. This algorithm partitions the data

into two points based on the normalized Laplacian matrix. Assume that data is represented as

D = {d1, d2, ..., dn} and pairwise similarity is defined as sij = s(di, dj) which is measured by

a similarity function and the similarity matrix is defined as S = (sij)i,j=1,...n and we are looking

for k clusters. First the algorithm will create a similarity graph and W as the weighted adjacency

matrix, then unnormalized graph Laplacian L will be calculated. Then the first k eigenvectors

U = {u1, u2, ..., uk} will be calculated by solving the system Lu = λDu. Then we will use a

clustering algorithm like k-means to cluster U into k clusters.

The second algorithm is proposed by Ng et al. (2002) which is as follows: let the set of data be

represented asD = {d1, d2, d3, ..., dn} and K numbers of clusters and pairwise similarity is defined
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as sij = s(di, dj) which is measured by a similarity function and the similarity matrix is defined

as S = (sij)i,j=1,...n, at the beginning the algorithm works the same as Shi-Malik algorithm, when

we get matrix U we form another matrix T by normalizing the rows of U to norm 1 that is :

tij = uij/(
∑

k u
2
ik)

1/2. Then we will do the k-means clustering on T instead of U .

An important matter in using spectral clustering is to define a good similarity graph, Laplacian

matrix and number of clusters. Von Luxburg (2007) defines different graph Laplacians and spectral

clustering algorithms and his paper is a good reference for different spectral clustering algorithms.

Spectral clustering also tries to create balance clusters. In binary classification problem, the clusters

are not balanced, so in this study we will also see the effects of a bad clustering on consensus.

Evaluation Methods

We used this algorithm for time series data. In this section we are going to show how significant

the results of clustering can be improved by the use of consensus.

Different evaluation methods can be used for imbalanced data. The evaluation method we use is

based on the confusion matrix. In this data set, data is in either in Positive or Negative class and

the algorithms decide on that. So, there are four types of data, if data is positive and algorithm

identifies them as positive then it is true positive but if the algorithm identifies them as negative

then it is false negative and the same thing applies for negative class, base on this we form the

confusion matrix as shown in table2.1.

Where, TP, FN, FP, TN stands for True Positive, False Negative, False Positive and True Negative

accordingly. We would like to see higher values on the diagonal of the matrix which shows how
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Table 2.1: Confusion matrix for binary classification problem.

Data Identified as Positive Negative
Positive Data TP FN
Negative Data FP TN

good the algorithm can identify data correctly.

For measuring the performance of the clustering algorithm two measures of Sensitivity and Speci-

ficity are defined as below:

Sensitivity =
TP

TP + FP
Specificity =

TN

TN + FN
(2.3)

Sensitivity shows how well the algorithm performs on balance data and specificity shows how

well the algorithm performs on imbalance data. Geometric mean (G-mean) of sensitivity and

specificity is also defined as
√
Specificity × Sensitivity which is a good evaluation measure for

the performance of the algorithm both for positive and negative class.

We used the defined performance measures to evaluate our proposed method and examine if the

results will be improved.

There are other criteria for clustering such as Run Length, Time and Robustness which will be

discussed in Results section.
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Control Chart Pattern Recognition

In manufacturing, time series pattern recognition is important since slide alterations might be in-

dicative of a malfunction that requires a course of appropriate corrective actions (e.g. mainte-

nance). Manual monitoring requires is tedious and requires person ell’s undistracted attention.

For this machine learning based automated algorithms, termed Control Chart Pattern Recognition

(CCPR) algorithms, have been proposed to detect abnormal behaviors. The term was originally

coined by Shewhart (1931). In an early publication of Western Electric Company () totally 15

abnormal patterns were identified figure2.2.

(a) Up shift pattern (b) Down shift pattern

(c) Up trend pattern (d) Down trend pattern

(e) Cyclic pattern (f) Systematic pattern

Figure 2.2: Examples of six basic abnormal patterns
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During several years, different pattern recognition algorithms have been studied in literature and

a complete literature review of CCPRs is done by Hachicha and Ghorbel (2012). Several super-

vised and unsupervised methods are used to handle CCPRs including Neural Networks, Correla-

tion Analysis, Principle Component Analysis (PCA) and Time Series Modeling. Neural Networks

have been applied to detect abnormal patterns, Guh and Hsieh (1999) proposes an artificial neu-

ral network based model, which contains several back propagation networks, to both recognize

the abnormal control chart patterns and estimate the parameters of abnormal patterns. Perry et al.

(2001) used back-propagation artificial neural networks to model and identify abnormal patterns.

A hybrid approach named Hybrid Artificial Neural Network- Naive Bayes classifier is also iden-

tified by Adam et al. (2011). Also, BESDOK and ERLER (2000) identified a neural network for

speeding up the training process.

Statistical classifications are also used for CCPRs. Yang and Yang (2005) presented a control chart

pattern recognition system using a statistical correlation coefficient. Yang and Shahabi (2004) pro-

posed a similarity measure for multivariate time series datasets, Extended Frobenius Norm(Eros),

which is based on PCA.

Time series clustering is also a very common method for pattern recognition.

A time series is a sequence of data measured in specific points in time. A time series gives a very

useful information about the data and with the help of a time series, different patterns can be iden-

tified.

Little attention is paid to clustering of CCPR for imbalanced and balanced data and number of

works done on this matter are very few. The first unsupervised approach was proposed by Al-

Ghanim (1997) which proposed an unsupervised self-organizing neural paradigm. Al-Ghanim

and Kamat (1995) presented unnatural pattern recognition technique using correlation analysis on

Trend, Systematic and Cyclic patterns and presented results with evaluation methods. Wang and

25



Kuo (2007) used three different fuzzy clusterings on CCPR for six patterns and compared their

performance. In another article (Wang et al., 2009) Independent Component Analysis (ICA) and

Decision Trees is proposed to identifying different patterns. Maximum Likelihood method is pro-

posed by Naeini et al. (2011) and they used confusion matrix for evaluations. Due to a few number

of works done on this matter, there is a need for more research and study.

In this study, we used the proposed methodology which is an unsupervised consensus framework

on CCPR data.

In the next chapter, we will present our results on CCPR data based on different clustering criterion.
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CHAPTER 3: RESULTS

In this section, the result of the given algorithm for imbalance data is given based on the evaluation

methods defined in chapter 2, section 2. The algorithm is coded in MATLAB.

We used simulated CCPR data. Each data has a certain number of features. For each pattern we

have a pattern parameter which shows how intense the pattern is, so for higher pattern parameters

it is easier for clusterings to detect the pattern. We used a data generator code to generate different

patterns with different window length and pattern parameters.

For evaluation purposes we gave labels to our data so later we could compare them with the labels

we get from clusterings. Since we are using an unsupervised method, we don’t give the labels as

an input to the algorithms, but we just have them for evaluation purposes.

CCPR data play an important roll in today’s industry since the tasks on big data sets can not be

done by humans. The four mentioned patterns are the most common studied in literature. By

applying this method to CCPR data we will use the variability and uncertainty existing in today’s

problems in order to give better results and improve different tasks such as quality control, pattern

detection or error detection.

In figure3.1 the g-mean results for consensus matrix for different patterns are given. For each

pattern, g-mean is calculated for different window lengths and pattern parameters.

In the chart, the horizontal axis is the pattern parameter which shows how intense the pattern is,

so it is easier to detect patterns with high parameters. The vertical axis is the window length or

number of features.
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(a) trend pattern (b) shift pattern

(c) systematic pattern (d) cyclic pattern

Figure 3.1: consensus clustering results based on g-mean calculations

As the charts in figure3.1 are showing, as we increase the number of windows and clustering

parameter, the consensus results improve for all the patterns. As the figure is showing, Trend

pattern is easily detected by consensus. Shift pattern is a harder task for the algorithm than Trend,

but still the results are very good. Cyclic and Systematic patterns are the hardest to detect both for

the consensus and the algorithms, and as the figure is showing, there are more dark areas which

means lower g-mean. All in all, the consensus is giving a very good clustering quality since the

lowest g-mean for toughest patterns is around 70%.

For each pattern, there exist three states, these states are defined for specific window lengths and

pattern parameters for each pattern. These three states include a worst state, a critical state and a

good state. Worst state is when different clustering algorithms give weak clusterings and so the

consensus, this mainly happens in low pattern parameters and low number of window lengths.
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Critical state is were we don’t get very good or very bad clusterings from algorithms but the

result of the consensus will give us good answers, this happens when window length and pattern

parameter make the task hard for some algorithms. Good state is when we will get good results

both from the algorithms and the consensus. We would like to mention that in all three states the

consensus gives us better results than other algorithms as we will discuss later. For example, as

figure3.1 shows, a window length 15 and trend parameter 0.005 is a worst state for trend pattern

and window length 90 and trend parameter 1.055 is a good state. For different patterns these states

differ, for instance while (80,1.055) is a good state for trend, it is a critical state for cyclic pattern.

In table3.1, we gave a comparison between the consensus clustering results and k-means in three

different state of each pattern. In these points there is a major change in the consensus clustering

result and they can be good representatives for comparing the results of the consensus with each

of the algorithms.

As you can see in the table, the results, both sensitivity and specificity and the overall g-mean

is improving dramatically over the consensus and this is because the consensus eliminates weak

clusterings and improves the results. Only in some good states we can see that k-means is giving

better g-means but they are not a considerable amount.

The robustness of the clustering algorithm plays an important roll in some problems, a desirable

clustering algorithm should cluster data the same way after several times of running. This is very

important for big data sets or when there is a need to run clustering on the data from different

categories of individuals or from different sources.A good clustering algorithm should cluster the

same type of data the same way after several runs.

For measuring this characteristic of the consensus and comparing it with other algorithms, we used

box plots as shown in figure3.2. Using box plots gives information about the degree of dispersion
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Table 3.1: comparison between k-means clustering and consensus clustering based on sensitivity,
specificity and g-mean for different patterns and parameters

K-means Consensus Parameters
Abnormal Pattern Sen Spec G Sen Spec G (Windows,Parameter)

Uptrend 100 100 100 100 100 100 (60,0.205)
52.42 92 69.44 86.1 95.91 90.88 (85,0.006)
50.52 58 54.13 80.02 78.2 79.1 (60,0.004)

Downtrend 100 100 100 100 100 100 (60,0.205)
44.21 34 38.77 85.15 87.59 86.36 (85,0.006)
53.57 54 53.78 84.13 81.87 82.99 (60,0.004)

Upshift 99.89 100 99.94 97.81 100 98.9 (60,0.805)
51.36 22 33.61 83.74 90.53 87.07 (80,0.405)
55.89 62 58.86 80.87 85.46 83.14 (40,0.205)

Downshift 99.68 100 99.84 99.44 100 99.22 (60,0.805)
44.94 62 52.78 84.9 96.97 90.73 (80,0.405)
52.31 30 39.61 82.88 88.73 85.75 (40,0.205)

Cyclic 99.15 100 99.57 96.83 99.34 98.08 (50,1.205)
57.78 98 75.25 82.75 97.22 89.7 (50,0.805)
51.89 38 44.4 83.17 79.34 81.24 (40,0.405)

Systematic 99.47 100 99.73 97.74 100 98.86 (60,0.805)
61.05 100 78.13 83.04 100 91.12 (50,0.605)
48.52 60 53.95 81.57 80.24 80.9 (20,0.205)

and skewness of the clustering results. For our problem, we run each clustering algorithm 30 times

on the same data and at the end we calculate the g-means for each run of the algorithms. Each box

plot shows the g-means of each of the algorithm for 30 times of run. As the figure figure3.2.a is

showing, Hierarchical clustering and Shi-Malik algorithms are giving the same result each time,

but with a very low g-mean.The g-means of other three clusterings is changing between 35% to

60% while consensus results is changing between 80% to 90% which is higher and more robust

than the others. Figure figure3.2.b is a less challenging problem, but as we can see, the results of

consensus is better than the other algorithms and it is more robust.
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(a) systematic parameter=0.18 and window length=20

(b) systematic parameter=1.405 and window length=50

Figure 3.2: robustness of consensus clustering in compare to other clustering algorithms for sys-
tematic pattern. (a) is a worst state for systematic parameter and (b) is a good state.

So in conclusion, consensus clustering results are more robust than the other algorithms and it

does not change very much over different times of running.

Another important factor in algorithms is the running time, in figure3.3 the running time of the

algorithm in seconds is given for different data size. As shown in the figure, running time for data

size below 1000 is almost 0 while there is a sudden increase when the data size is increased to 2000

and after that, until we reach 10000 data size which used 2 hours and 51 minutes which is a good

time for such a big data. This running time is calculated on a laptop with Intel core i7 CPU and 8
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GB of RAM. This running time is also worst case because it is calculated for systematic patterns

which are the hardest to cluster. In industry this running time can be decreased to almost zero by

the use of different computers at the same time, because we are using different clusterings, we can

run each clustering in a different computer at the same time and get the results from each of them,

in this way the running time will be decreased significantly.

Figure 3.3: Running time of consensus clustering in seconds for different data sizes.

Another measurement is the average run length (ARL) which evaluates the speed of pattern recog-

nizer. ARL is the average number of observations required before the expected pattern is detected

Hwarng and Hubele (1992). ARL is calculated from those sequences where the expected pattern is

recognized by a certain run length and we exclude the sequences where the pattern was not recog-

nized at all. So the ARL will be divided by the percentage of detected patterns in order to exclude

the undetected ones and this parameter is called average run length index (ARLIDX).

ARLIDX will give us information about how long it takes for a clustering algorithm to detect an

abnormal pattern, in this method, we will add an abnormal data to another data and run the clus-
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tering, if the data is detected as abnormal then the run length is 1, if not we will keep adding more

abnormal data until the pattern is detected.

In figure3.4 we compared ARLIDX between k-means and consensus for different patterns with

different clustering parameters but with the same window length. As the figure shows, k-means

gives a better ARLIDX than consensus in most of the cases, but the difference is not very signifi-

cant. This is for 10 window length which is very challenging for clustering algorithms, and other

algorithms will affect the results of consensus so they bring the ARLIDX higher. As shown in

table3.2, consensus performs better as in ARLIDX than most of the clusterings, and except two

cases, the detection percentage is 100%, which means all the patterns are detected.

By looking at figure3.4 and table3.2, we can see that the ARLIDX of consensus is affected by

weak clusterings but not significantly, although the detection ratio is not so much affected.

If we add table3.3 to our observations, as the window length increases and the problem becomes

less challenging, consensus outperforms k-means significantly, until in 300 window length there is

30 difference! With all of the observations, we can conclude that in challenging situations ( win-

dow length 10 and below) k-means out performs the consensus in case of ARLIDX, and consensus

outperforms the other clusterings, but after a certain window length consensus outperforms all of

the algorithms significantly.
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(a) trend pattern (b) shift pattern

(c) systematic pattern (d) cyclic pattern

Figure 3.4: Comparison of Average Run Length Index between consensus and k-means for differ-
ent patterns with window length 10.

Table 3.2: Average Run Length Index for different parameters and window lengths for various
patterns

Shi-Malik Jordan-Weiss Fuzzy Hierarchical K-Means Consensus Parameters
Abnormal Pattern ARLIDX % ARLIDX % ARLIDX % ARLIDX % ARLIDX % ARLIDX % (Windows,Parameter)

Trend 35.14 70 1.9 100 39.7 100 40 100 39.4 100 39.9 100 (60,0.205)
31.7 100 2.3 100 2.8 100 78 10 2.4 100 8.2 100 (85,0.006)
14.5 100 1.8 100 2.4 100 6 10 2.1 100 5.1 100 (60,0.004)

Shift 28.83 60 1.9 100 3.8 90 18 10 27.5 100 43 30 (60,0.805)
16.2 100 1.4 100 1.6 100 INFT 0 1.7 100 3.3 100 (80,0.405)
10.5 90 2.8 100 1.9 100 INFT 0 2.5 100 9.4 100 (40,0.205)

Cyclic 23 100 2.2 100 2.6 100 INFT 0 16.7 100 22.6 100 (50,1.205)
8.2 100 1.8 100 1.7 100 39.25 40 2.4 100 8.4 100 (50,0.805)
11 100 1.6 100 1.9 100 INFT 0 2.1 100 8.3 100 (40,0.405)

Systematic 12.3 100 2.7 100 1.1 100 34.75 40 25.7 100 27.62 80 (60,0.805)
13.4 100 1.4 100 2.2 100 INFT 0 3 100 7.9 100 (50,0.605)

11.66 30 1.6 100 2 100 INFT 0 1.8 100 3 100 (20,0.205)
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Table 3.3: ARLIDX comparison by the change of window length.

Consensus K-Means Parameters
Abnormal Pattern ARLIDX ARLIDX (Windows,Parameter)

Systematic 1.3 1.1 (25,0.805)
11.4 6.2 (50,0.805)
2.3 42.2 (100,0.805)
63.9 88.6 (200,0.805)
116.6 146.4 (300,0.805)

In the next table, we are giving another comparison between the algorithms. As you can see in

table3.4, the first two algorithms which are the spectral clusterings are giving bad ARLIDX and

their answer is changing for different runs while the others together with consensus have similar

robust answers.

The reason for this is that in spectral clustering, the algorithms try to make balanced clusters while

in our problem the clusters are imbalanced. So here we can see that even by using bad clusterings,

the results of consensus will still outperform the others and will be satisfying.

Table 3.4: Average Run Length Index for same parameters and window length for several times of
running

Parameters Shi-Malik Jordan-Weiss Fuzzy Hierarchical K-Means Consensus
(Windows,Parameters) ARLIDX ARLIDX ARLIDX ARLIDX ARLIDX ARLIDX

(0,9,20) 9 2.3 13.4 13.9 13.2 13.7
(0,9,20) 14 1.6 13.5 14.1 13.5 13.7
(0,9,20) 12.1 2.1 13.5 14.1 13.2 13.6
(0,9,20) 15.2 1.7 13.2 13.7 13.1 13.6
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CHAPTER 4: CONCLUSION

In this study, we applied an unsupervised consensus framework for CCPR data which uses five

clustering algorithms. As discussed, the consensus improves the results of the clusterings in dif-

ferent aspects such as robustness and good clusters. The use of consensus helps us to find the

similarities and eliminate weak clusterings. This is very useful when we are dealing with a large

data set and when the other clustering algorithms can’t give us good results, also if we are looking

for a good and robust clusters after several times of clustering of the same data, consensus cluster-

ing is a good option.

As was discussed, consensus clustering gives us the option to do clustering in a very fast way by

using different computers working at the same time on different algorithms and at the end one

computer can gather the results and generate the consensus.

Also we show that even if we have some bad clusterings, the consensus will still generate good

results and this is very critical in unsupervised learning since we do not have much information

about data and we do not know which algorithms are best for our problem. So by use of consensus

method we can use any kind of clustering on our data and be sure that the results of consensus will

be of a good quality independent of other clusterings.

The application of consensus clustering can be very useful in CCPR data. In real world, most of

the times there are not enough information about the data and there are lots of uncertainties on the

number of clusters or the appropriate clusterings, so different methods are used in order to generate

different results. By using consensus we can use this variability and give better and more stable

results.

There are several adjustments that can be applied to this consensus algorithm for future work, one
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of them is to give weights to each clustering algorithm based on the clustering quality related to

them, so if we know that one algorithm gives better results then we can assign more weights to it

to improve the results, in this way, clusterings that are more efficient for a certain data type have

more weights and they effect the results more than the others, but this requires a thorough study of

different clusterings and their weaknesses. Another way to apply weights is to run one algorithm

more than one time so to increase its effect.

There is also a need to study different clusterings for specific data types and examine them in order

to find appropriate algorithms to use for consensus.

37



LIST OF REFERENCES

Adam, A., Chew, L. C., Shapiai, M. I., Jau, L. W., Ibrahim, Z., and Khalid, M. (2011). A hybrid

artificial neural network-naive bayes for solving imbalanced dataset problems in semiconduc-

tor manufacturing test process. In Hybrid Intelligent Systems (HIS), 2011 11th International

Conference on, pages 133–138. IEEE.

Adey, W. (1972). Organization of brain tissue: Is the brain a noisy processor? International

Journal of Neuroscience, 3(6):271–284.

Al-Ghanim, A. (1997). An unsupervised learning neural algorithm for identifying process be-

havior on control charts and a comparison with supervised learning approaches. Computers &

industrial engineering, 32(3):627–639.

Al-Ghanim, A. M. and Kamat, S. J. (1995). Unnatural pattern recognition on control charts using

correlation analysis techniques. Computers & Industrial Engineering, 29(1):43–47.

Arora, S., Raghavan, P., and Rao, S. (1998). Approximation schemes for euclidean k-medians

and related problems. In Proceedings of the thirtieth annual ACM symposium on Theory of

computing, pages 106–113. ACM.

Ball, G. H. and Hall, D. J. (1965). Isodata, a novel method of data analysis and pattern classifica-

tion. Technical report, DTIC Document.

Bandyopadhyay, S. and Coyle, E. J. (2003). An energy efficient hierarchical clustering algorithm

for wireless sensor networks. In INFOCOM 2003. Twenty-Second Annual Joint Conference of

the IEEE Computer and Communications. IEEE Societies, volume 3, pages 1713–1723. IEEE.

Bellman, R., Kalaba, R., and Zadeh, L. (1966). Abstraction and pattern classification. Journal of

Mathematical Analysis and Applications, 13(1):1–7.

38



Bellman, R., Kalaba, R., and Zadeh, L. A. (1964). Abstraction and pattern classification. Technical

report, DTIC Document.

BESDOK, E. and ERLER, M. (2000). Control chart pattern recognition using artificial neural

networks. Turk J Elec Engin, 8(2).

Bezdek, J. C. (1976). Feature selection for binary data: Medical diagnosis with fuzzy sets. In

Proceedings of the June 7-10, 1976, national computer conference and exposition, pages 1057–

1068. ACM.

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. Kluwer Aca-

demic Publishers.

Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic acids re-

search, 16(22):10881–10890.

Donath, W. E. and Hoffman, A. J. (1973). Lower bounds for the partitioning of graphs. IBM

Journal of Research and Development, 17(5):420–425.

Dubes, R. C. (1987). How many clusters are best?-an experiment. Pattern Recognition, 20(6):645–

663.

Ghaemi, R., Sulaiman, M. N., Ibrahim, H., and Mustapha, N. (2009). A survey: clustering ensem-

bles techniques. World Academy of Science, Engineering and Technology, 50:636–645.

Goder, A. and Filkov, V. (2008). Consensus clustering algorithms: Comparison and refinement. In

ALENEX08: Procs. 10th Workshop on Algorithm Enginering and Experiments, pages 109–117.

Grötschel, M. and Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem.

Mathematical Programming, 45(1-3):59–96.

39



Guh, R.-S. and Hsieh, Y.-C. (1999). A neural network based model for abnormal pattern recogni-

tion of control charts. Computers & Industrial Engineering, 36(1):97–108.

Gustafson, D. E. and Kessel, W. C. (1978). Fuzzy clustering with a fuzzy covariance matrix. In

Decision and Control including the 17th Symposium on Adaptive Processes, 1978 IEEE Confer-

ence on, volume 17, pages 761–766. IEEE.

Hachicha, W. and Ghorbel, A. (2012). A survey of control-chart pattern-recognition literature

(1991-2010) based on a new conceptual classification scheme. Computers & Industrial Engi-

neering.

Han, J., Kamber, M., and Pei, J. (2006). Data mining: concepts and techniques. Morgan kaufmann.

Hwarng, H. B. and Hubele, N. F. (1992). Boltzmann machines that learn to recognize patterns on

control charts. Statistics and computing, 2(4):191–202.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM computing

surveys (CSUR), 31(3):264–323.

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3):241–254.

Kalmanson, D. and Stegall, H. F. (1975). Cardiovascular investigations and fuzzy sets theory. The

American Journal of Cardiology, 35(1):80–84.

Krishnapuram, R., Joshi, A., Nasraoui, O., and Yi, L. (2001). Low-complexity fuzzy relational

clustering algorithms for web mining. Fuzzy Systems, IEEE Transactions on, 9(4):595–607.

Krishnapuram, R. and Kim, J. (1999). A note on the gustafson-kessel and adaptive fuzzy clustering

algorithms. Fuzzy Systems, IEEE Transactions on, 7(4):453–461.

40



Kuncheva, L., Hadjitodorov, S., and Todorova, L. (2006). Experimental comparison of cluster

ensemble methods. In Information Fusion, 2006 9th International Conference on, pages 1–7.

IEEE.

Lancichinetti, A. and Fortunato, S. (2012). Consensus clustering in complex networks. Scientific

reports, 2.

Li, T. and Ding, C. (2008). Weighted consensus clustering. Mij, 1(2).

Li, T., Ding, C., and Jordan, M. I. (2007). Solving consensus and semi-supervised clustering

problems using nonnegative matrix factorization. In Data Mining, 2007. ICDM 2007. Seventh

IEEE International Conference on, pages 577–582. IEEE.

Li, T., Ogihara, M., and Ma, S. (2004). On combining multiple clusterings. In Proceedings of

the thirteenth ACM international conference on Information and knowledge management, pages

294–303. ACM.

Lin, J., Vlachos, M., Keogh, E., and Gunopulos, D. (2004). Iterative incremental clustering of time

series. In Advances in Database Technology-EDBT 2004, pages 106–122. Springer.

Liu, Y., Li, Z., Xiong, H., Gao, X., and Wu, J. (2010). Understanding of internal clustering

validation measures. In Data Mining (ICDM), 2010 IEEE 10th International Conference on,

pages 911–916. IEEE.

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate observa-

tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,

volume 1, page 14. California, USA.

Naeini, M. K., Owlia, M., and Fallahnezhad, M. (2011). A new statistical method for recognition of

control chart patterns. In Quality and Reliability (ICQR), 2011 IEEE International Conference

on, pages 609–612. IEEE.

41



Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral clustering: Analysis and an algorithm.

Advances in neural information processing systems, 2:849–856.

Oates, T., Firoiu, L., and Cohen, P. R. (1999). Clustering time series with hidden markov models

and dynamic time warping. In Proceedings of the IJCAI-99 workshop on neural, symbolic and

reinforcement learning methods for sequence learning, pages 17–21. Citeseer.

Perry, M. B., Spoerre, J. K., and Velasco, T. (2001). Control chart pattern recognition using

back propagation artificial neural networks. International Journal of Production Research,

39(15):3399–3418.

Shewhart, W. A. (1931). Economic control of quality of manufactured product. New York, 501.

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 22(8):888–905.

Sukegawa, N., Yamamoto, Y., and Zhang, L. (2012). Lagrangian relaxation and pegging test for

the clique partitioning problem. Advances in Data Analysis and Classification, pages 1–29.

Vega-Pons, S. and Ruiz-Shulcloper, J. (2011). A survey of clustering ensemble algorithms. Inter-

national Journal of Pattern Recognition and Artificial Intelligence, 25(03):337–372.

Verma, D. and Meila, M. (2003). A comparison of spectral clustering algorithms.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4):395–

416.

Wang, C.-H., Dong, T.-P., and Kuo, W. (2009). A hybrid approach for identification of concurrent

control chart patterns. Journal of Intelligent Manufacturing, 20(4):409–419.

Wang, C.-H. and Kuo, W. (2007). Identification of control chart patterns using wavelet filtering

and robust fuzzy clustering. Journal of Intelligent Manufacturing, 18(3):343–350.

42



Wang, X., Smith, K., and Hyndman, R. (2006). Characteristic-based clustering for time series

data. Data Mining and Knowledge Discovery, 13(3):335–364.

Wang, X., Smith, K. A., Hyndman, R., and Alahakoon, D. (2004). A scalable method for time

series clustering. Unrefereed research papers, 1.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the

American statistical association, 58(301):236–244.

Warren Liao, T. (2005). Clustering of time series dataa survey. Pattern Recognition, 38(11):1857–

1874.

Xiong, Y. and Yeung, D.-Y. (2004). Time series clustering with arma mixtures. Pattern Recogni-

tion, 37(8):1675–1689.

Y, A., Jordan, M. I., and Weiss, Ng, Y. (2001). On spectral clustering1 analysis and an algo-

rithm. Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA:

MIT Press, 14:849–856.

Yang, J.-H. and Yang, M.-S. (2005). A control chart pattern recognition system using a statistical

correlation coefficient method. Computers & Industrial Engineering, 48(2):205–221.

Yang, K. and Shahabi, C. (2004). A pca-based similarity measure for multivariate time series. In

Proceedings of the 2nd ACM international workshop on Multimedia databases, pages 65–74.

ACM.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3):338–353.

43


	An Unsupervised Consensus Control Chart Pattern Recognition Framework
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Clustering
	Consensus Clustering


	CHAPTER 2: METHODOLOGY
	Clustering Algorithms
	K-Means
	Hierarchical
	Fuzzy
	Spectral Clustering

	Evaluation Methods
	Control Chart Pattern Recognition

	CHAPTER 3: RESULTS
	CHAPTER 4: CONCLUSION
	LIST OF REFERENCES

