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ABSTRACT

Collateralization in over-the-counter (OTC) derivatives markets has grown rapidly over

the past decade, and even faster in the past few years, due to the impact of the recent

financial crisis and the particularly important attention to the counterparty credit risk

in derivatives contracts. The addition of collateralization to such contracts significantly

reduces the counterparty credit risk and allows to offset liabilities in case of default.

We study the problem of valuation of OTC derivatives with payoff in a single currency

and with single underlying asset for the cases of zero, partial, and perfect collateralization.

We assume the derivative is traded between two default-free counterparties and analyze

the impact of collateralization on the fair present value of the derivative. We establish a

uniform generalized derivative pricing framework for the three cases of collateralization

and show how different approaches to pricing turn out to be consistent. We then generalize

the results to include multi-asset and cross-currency arguments, where the underlying

and the derivative are in some domestic currency, but the collateral is posted in a foreign

currency. We show that the results for the single currency, multi-asset case are consistent

with those obtained for the single currency, single asset case.
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CHAPTER 1

INTRODUCTION

1.1 Financial Markets and Products

Financial markets exist because they enable an efficient allocation of resources across time

and across different states of nature. Take, for example, the case of a young individual

who just entered the job market with a high salary. If there are financial markets available,

the earned income could be invested in financial instruments, such as stocks and bonds,

to finance the cost of home ownership, more education, or retirement. The salary may

be high in the present but this may not always be the case. This implicit uncertainty

makes necessary to prepare for unfortunate states of nature by trying to move resources

from the present time to unknown times. If there were no financial markets available,

all this individual could do is consume since there would not be mechanisms in place to

transfer money from one state of nature, where income is readily available, to another

state of nature, where the individual may have more limited income or no income at

all. Now, consider the situation of a farmer who produces oranges in Florida. With

financial markets, the farmer could use a derivative contract to hedge orange prices. A

forward contract, a futures contract, or a weather derivative would be very appropriate

to prepare for potential losses caused by unexpected and damaging seasonal effects. If

there are no financial markets available, the farmer is just subject to whatever happens

at any particular time, with no mechanisms in place to prevent or offset losses. Financial

markets, then, have three main important roles that makes them essential to our society.

First, they aggregate information from multiple sources, organize it, and make it available

to all participants and interacting agents in the market. Markets also aggregate liquidity,

1



preventing fragmentation in order to make supply and demand work together. Finally,

markets promote efficiency and fairness to all participants, particularly when there is

transparency in prices, eliminating insider information practices that prevent markets

from being well-functioning. In all cases, financial functions and implicit risks due to

uncertainty define risk-sharing as one of the most important functions of financial markets.

Financial products are created (engineered) in financial markets to satisfy particular needs.

For example, our aforementioned farmer may use derivatives to hedge risk. On the other

hand, the same products could also be used for speculation (which would be the case of

collateralized debt obligations). Products also allow to raise capital (venture capitalists)

to fund risky projects or organizations and expect return back from them. They can also

be used to fund liabilities, such as buying a house or paying for education (for example

through the use of annuities). Financial products are typically traded in markets so

that their price gets discovered by looking up and processing information that is readily

available to all agents in a fair market. In our work, we assume that the market has the

structure of a perfectly competitive market in which there are large numbers of buyers and

sellers, sellers can easily enter into or exit from the market, and buyers and sellers are well-

informed. We also assume that the market is arbitrage-free, a situation in which all relevant

assets are priced in such an appropriate way that it is not possible for any individual gains

to outpace market gains without taking on additional risk. This is commonly known as

the no-arbitrage condition. Almost every product in the financial market is priced using the

no-arbitrage condition with respect to some underlying primary asset like a stock, a bond,

or a commodity of some kind. The situation is also known as the no-free lunch argument:

every nonzero, nonnegative payoff comes with a cost.
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1.2 Financial Economics and Financial Engineering

Financial economics is concerned with setting interest rates and pricing bonds, equities,

and other primary financial assets1 by using fundamental equilibrium arguments. Fi-

nancial engineering relies on financial economics by usually assuming that interest rates

and prices of equities are given and uses that information to price derivatives based on

no-arbitrage arguments with respect to some underlying primary asset like a stock or a

bond. Financial engineering is comprised by three major areas: security pricing, portfolio

selection, and risk management. Security pricing deals with pricing derivatives securities,

such as forwards, swaps, futures, options, collateralized debt obligations (CDOs), and col-

lateralized mortgage obligations (CMOs). All these products are developed by financial

engineers and it becomes necessary to assign a price to them. The work presented in this

thesis falls precisely under this category. In portfolio selection, the goal is to choose a port-

folio composition and a trading strategy to maximize the expected utility with respect to

consumption and final wealth. The other major area, particularly after the recent financial

crisis, is risk management, which aims to understand the risks inherent in a portfolio and

determine the probability of large losses.

1.3 Derivatives Markets and Security Design

The use of derivatives in financial markets has become increasingly important over the last

four decades, even though these products have practically been around in some form for

hundreds of years. Many different types of derivatives are traded regularly by financial

institutions and fund managers in the over-the-counter (OTC) markets, as well as on

1Primary assets refer to those from which other assets are constructed
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many exchanges throughout the world. Derivatives are frequently added to bond issues,

used for executive and employee compensation plans, and embedded in many important

capital investment opportunities. This is why it is crucial to understand how derivatives

work, how they can be used, and how they can be priced fairly.

In general terms, a derivative can be defined as a financial instrument whose value de-

pends on the price of other, more basic, underlying variables, such as the prices of assets

(commodities) that can be traded, or even the amount of rain falling at a certain region in

some particular season. In a general context, a financial instrument can simply be thought

of as a contract or agreement between two parties. A stock option, for example, is a type

of derivative whose value is determined by the price of a stock. In this case, we refer

to the stock as the underlying asset of the derivative. For the case of the amount of rain

or any other uncertain condition, a derivative can be thought of as a bet on the price of

a commodity dependent on a future outcome of the underlying (weather, in this case),

which can be used to provide some kind of insurance and hedge the parties involved

against potentially unfavorable outcomes. This contract is called a weather derivative.

Note that investors could also use this kind of contract simply to speculate on the price

of the commodity, but in this case the contract would not be insurance. Hence, the risk-

reducing nature of a derivative does not depend on the derivative contract itself but on

how the contract is used and who is using it.

There are three distinct perspectives on derivatives that define how we think about them

and how we use them for a specific purpose [13]. The end-user perspective considers

corporations, investment managers, and investors as end-users. These users enter into

derivative contracts with specific goals in mind, such as to manage risk, speculate (as a

way of investing), reduce financial transaction costs, or circumvent regulatory restrictions,

and are more concerned about how a derivative can help them to achieve the goals. The
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market-maker perspective considers traders or intermediaries as market-makers who are

interested in buying or selling derivatives to customers for a profit. In order to make

money, market-makers charge a spread: they buy at a low price from customers who

wish to sell and sell at a higher price from customers who wish to buy. Market-makers

typically hedge the risk of supply and demand and thus they are mainly concerned

about the mathematical details of derivatives pricing (valuation) and hedging. The work

presented in this thesis falls under the market-maker perspective. Finally, the economic

observer perspective gathers information and analyzes the general use of derivatives, the

activities of the market-makers, the organization of markets, and the different elements

that hold everything together.

This work deals precisely with one of the major concepts in financial engineering and

derivatives: it is possible to construct a given financial product from other products and create

a given derivative payoff in multiple ways. This is why the general problem of valuation of

derivatives is so important and also central in understanding how market-making works.

The market-maker sells a derivative contract to an end-user. With the proper pricing, this

creates an offsetting position that pays the market-maker if it becomes necessary to pay

the customer. This suggests that it is possible to customize the contract to make it more

appropriate for particular situations. The idea of customization is based on the idea that

a given contract can be replicated, which is why we will use the concept of a replicating

portfolio as an important tool for derivative pricing in this thesis work.

Finally, it is worth emphasizing the two different kinds of derivative trading markets:

exchange-traded markets and over-the-counter markets (OTC markets). A derivatives ex-

change is a market where individuals trade standardized contracts that have been defined

by the exchange. Some traditional derivatives exchanges are The Chicago Board of Trade

(CBOT), The Chicago Mercantile Exchange (CME), and the Chicago Board Options Ex-
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change (CBOE). Many other exchanges all over the world now trade futures and options,

with foreign currencies, stocks, and stock indices as underlying assets. The OTC market

is an important alternative to exchanges that has become increasingly popular and larger

than the exchange-traded market. Essentially, trades are carried out over the phone and

are generally between two financial institutions or between a financial institution and one

of its clients (such as a fund manager or corporate treasurer) as part of a telephone- and

computer- linked network of dealers. A major and characteristic advantage of the OTC

market is that the terms of a contract may differ from those specified by an exchange.

Market participants have the freedom to negotiate any deal that benefits the parties in-

volved. A resulting disadvantage is that there may be some credit risk in a trade (i.e., a

small risk that the contract will not be honored). This key element became increasingly

important, particularly after the recent financial crisis, bringing about the idea and need

to incorporate the figure of collateralization to OTC derivatives, which completes the

framework of this thesis work. We often refer to OTC derivatives with collateralization

simply as collateralized OTC derivatives.

1.4 Collateralization

In lending agreements, collateral is a deposit of specific property (an asset) as recourse

to the lender to secure repayment in case the borrower defaults on the initial loan. Col-

lateralization provides lenders a sufficient reassurance against default risk. If a borrower

defaults on a loan, then the borrower must forfeit the collateral asset and the lender takes

possession of the asset. For example, in typical mortgage loan transactions, the real estate

being acquired by means of a loan serves as collateral. Businesses can also use collat-

eralization for debt offerings through the use of bonds. In this case, such bonds would
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clearly specify the asset being used as collateral for the repayment of the bond offering in

case of default. In banking, lending with collateralization often refers to secured lending,

asset-based lending, or lending secured by an asset. This type of lending usually presents

unilateral obligations secured by property as collateral. Over the past few years, the use

of more complex collateralization agreements to secure trade transactions has increased

rapidly, particularly in response to the recent financial crisis. In this type of agreement,

also known as capital market collateralization, the obligations are often bilateral and se-

cured by more liquid assets such as cash or securities with corresponding interest rates.

Cash is the most popular choice for collateral due to the ease of valuation, transfer, and

hold.

To understand how bilateral agreements work, suppose two parties enter into a swap,

which is one type of OTC derivative that transforms one kind of cash flow into another.

As interest rates change over time, one party will have a mark-to-market (MTM) profit on

the deal, while the other party will have a loss. If the party losing money were to be

in default, the party with MTM profit would have to replace the deal at current market

prices and the profit would be lost. Hence, a positive MTM value on the swap is a credit

exposure on the other party. For this reason, banks often state credit risk on a swap as the

MTM value plus some additional value to offset the potential future credit exposure. This

makes collateralization a very important risk management tool to mitigate counterparty

credit risk in derivatives contracts. Here, mark to market refers to a measure of the fair

value of accounts that can change over time, such as assets or liabilities, under the notion

of market fairness to all participants, as mentioned previously in Section 1.1.

Collateral management is the term used to describe the process of reducing counterparty

credit exposures in derivatives contracts. It is normally used with OTC derivatives,

such as swaps and options. When two parties agree to enter into an agreement with
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collateralization, they negotiate and execute a collateral support document that contains

the specific terms and conditions for the collateralization. The trades subject to collateral

are regularly marked-to-market and their net valuation is part of the agreement. The

party with negative MTM on the trade portfolio must post collateral to the party with

positive MTM, which, in turn, must pay the counterparty the margin at the collateral

rate. As prices move and new deals are added, the valuation of the trade portfolio will

change. Depending on what is agreed, the valuation is repeated at frequent intervals,

typically daily, weekly or monthly. However, the collateral settled in a daily basis is the

most common practice. This makes, in many cases, the collateral rate to be the overnight

index rate of the collateral currency in accordance to the specific terms of the agreement.

The collateral position is then adjusted to reflect the new valuation of the portfolio. The

process is repeated and the posted collateral changes with the value of the trades. The

process continues unless one of the parties defaults. In agreements with collateralization,

the trades can be terminated in case of default and the collateral can be used as repayment

of the contract. If the collateral is sufficient, the MTM profit is protected and the credit

risk is mitigated. Note that this process requires careful analysis of the trades involved

in order to determine their accurate value. Collateral management can be thought of as a

process that exchanges credit risk for operational risk.

1.5 Security Pricing with Collateralization

Collateralization in OTC derivatives markets has grown rapidly over the past decade,

and even faster in the past few years, due to the impact of the recent financial crisis

and the particularly important attention to the counterparty credit risk. According to

the International Swaps and Derivatives Association (ISDA) Margin Survey [19], about
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70% of the trade volumes for OTC derivatives were collateralized at the end of 2009, as

opposed to barely 30% in 2003. Coverage has also gone up to 78% and 84% for all the OTC

and fixed income derivatives, respectively [3], and now more than 80% of the collateral

posted is cash (about 50% in USD). Agreements in trading among dealers to collateralize

mutual exposures (and hence reduce credit risk) are based on the Credit Support Annex

(CSA) to the ISDA master agreement, which gives a detailed specification of all the terms

of the transactions. The CSA is essentially a legal document regulating credit support for

derivative transactions. Collateralized trades are often referred to as CSA trades.

Collateralization significantly reduces the counterparty credit risk (i.e., the party with

negative present value of the derivative). As collateral is used to offset liabilities in case

of default, it could be thought of as an essentially risk-free investment, so the interested

rate on the posted collateral is usually set to be a proxy of a risk-free rate. Purchased

assets are often posted as collateral against the funds used to buy them, such as in the

repurchase agreement market (simply known as the repo market 2) for shares used in

delta hedging. In this case, the goal is to reduce (hedge) the risk associated with price

movements in the underlying asset by offsetting long and short positions [1]. Since this

thesis work focuses mainly on the area of security pricing with collateralization, we do not

consider credit risk factors in the valuation of derivatives. We only consider the difference

in pricing between non-collateralized and collateralized derivatives, derived from the

cost associated with the collateralization. Moreover, since daily portfolio reconciliation

has rapidly become the market standard, we also assume that the collateral account is

adjusted continuously, which turns out to be a good approximation. It is finally worth

noting that due to the nature of the derivatives we consider in the OTC market, the specific

2 ‘repo’is the name given to a form of short-term borrowing for dealers in government securities. The
dealer sells the securities to investors on an overnight basis and buys them back the following day. This
practice is a repo for the the party selling the security, which is also agreeing to repurchase it at a later time.
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terms of collateralization may vary from case to case. We only seek to cover a number of

general scenarios for varying dynamics (processes) of the underlying and collateral but

the results can be extended to different cases. Other extensions also allow for partial or

perfect collateralization, and the formulas presented in this work consider both features

in the general setting under the scenarios covered.

1.6 Mechanisms of Unsecured and Secured Trades with External Funding

To better understand the general effects of collateralization and its increasing importance

in the OTC derivatives market, let us now briefly illustrate the mechanisms of unsecured

and secured trades (contracts) with external funding, following the description presented

in [3]. The first situation is depicted in Figure 1.1.

Figure 1.1: Unsecured contract with external funding

Consider two parties, L (for lender) and B (for borrower), that enter into a derivative contract.

L has a positive present value (PV) in the contract with B (which is assumed to have high

credit quality). By a positive PV we mean a receipt of cash by L at a future time from the

contract. From the perspective of L, the situation is equivalent to providing a loan to the

counterparty B with the principal value equal to its PV. Since L has to wait for the payment
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from B until the maturity of the contract, L has to finance its loan to B and hence the pricing

of the contract should reflect the funding cost to L. If L has and maintains LIBOR3 credit

quality, the funding cost is given by the LIBOR of its funding currency since it makes the

PV of ‘funding’ zero. This is the main reason why LIBOR is widely used as a proxy of the

discounting rate in the OTC derivative pricing.

The above situation changes considerably when collateral is added to the contract, As

mentioned previously, we now assume that the trade has been made with a CSA, requiring

cash collateral with zero minimum transfer amount. The situation with collateralization

is depicted in Figure 1.2.

Figure 1.2: Collateralized (secured) contract with external funding

In this case, L does not require external funding since B is posting an amount of cash

(collateral) equal to the PV of the contract. However, L has to pay the counterparty B

the margin at the collateral rate rc(t) (return rate of the collateral) applied to the posted

collateral amount (or outstanding collateral). This makes the funding cost of the contract

equal to the collateral rate. According to [19], the most popular collateral in the current

financial market is the cash of the developed countries and the typical choice of collateral

3London Inter-Bank Offered Rate
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rate is the overnight rate (ONR) of the corresponding currency.

As mentioned in [9], the impact of collateralization to the valuation of OTC derivatives is

particular higher when the borrowing rate of the derivative desk (here denoted in general

by L) is significantly higher than the collateral rate designated in the corresponding CSA.

The conventional LIBOR-OIS4 spread is usually regarded as an indicator of such a gap.

The models for discounting projected cash flows of the derivative with the collateral rate

(often referred to as collateral rate discounting) implies several main assumptions [1, 2, 9]:

1. Full collateralization: the posted collateral amount equals the PV (or MTM) of the

derivative;

2. Symmetric (or bilateral) collateralization: each counterparty posts collateral when the

MTM of the derivative is negative from its own perspective and receives the same

collateral rate;

3. Continuous adjustment: the collateral is adjusted immediately the MTM changes;

4. Domestic collateralization: the collateral and the derivative payoff are in the same

currency;

5. Cash-equivalent collateral: the posted collateral must be essentially risk-free and have

the highest quality.

6. No counterparty credit risk: the counterparties are both assumed to be default-free

4Overnight Index Swap
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In this thesis work, as in [9], a collateralized derivative that satisfies all the above as-

sumptions is referred to as a perfectly collateralized derivative, whereas a fully collateralized

derivative refers to perfect collateralization with collateral currency different from the pay-

off currency (assumption 4 is relaxed). Similarly, a partially collateralized derivative refers

to perfect collateralization with both assumptions 1 and 4 relaxed. In the development

of the model for single currency, we will often relax the terminology a little bit more and

will simply consider partial collateralization as that occurring when only assumption 1 is

relaxed.

1.7 Brief Discussion on Some Related Works

The theoretical foundation of valuation of OTC derivatives for single currency and single

asset, under the aforementioned assumptions, has been laid out in the works of Piterbarg

[1], Fujii [2], and Castagna [6]. Each of these authors introduce different approaches

in a general setting to develop valuation models under specific considerations for the

underlying and collateral processes.

Piterbarg [1] uses replicating portfolio and self-financing arguments to derive the gen-

eral derivative pricing formula, which after some manipulation allows to obtain specific

expressions for the cases of zero and perfect collateralization. Piterbarg does not state

any particular process for the collateral account but his analysis includes a comprehen-

sive replicating portfolio with underlying stock and a cash amount split among different

detailed accounts. Piterbarg’s work only focuses on single currency and does not include

partial collateralization arguments.

Fujii [2] introduces a stochastic process for the collateral account with an appropriate
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self-financing strategy and a reinvestment argument that makes the process dependent

on the dynamics of the derivative. In order to solve an implicit dependence problem of the

collateral and the value of the derivative in his argument, Fujii considers a simple trading

strategy for the collateral and the number of positions of the derivative that allows him

to obtain the formula for a perfectly collateralized derivative in single currency. Fujii also

suggests a different valuation approach for single currency and presents an equivalent

formula for the cross-currency scenario, but omits important details in his analysis.

Castagna [6] introduces the concept of Liquidity Value Adjustment (LVA) and uses it to make

a distinction between a collateralized derivative and one without collateral. Castagna

follows the steps of Piterbarg by using the concept of a self-financing replicating portfolio

with a modified version of the underlying asset and collateral processes. His work

is mainly focused on the development of a general derivative valuation model with

an extension to partial collateralization. Even though Castagna achieves the desired

results, his work seems to have some inconsistencies in the derivation that are not clearly

explained, particularly regarding an apparent conflict in his proposed collateral process

and the partial collateralization constraint.

1.8 Our Contribution

We first study the problem of valuation of OTC derivatives with single underlying asset

and derivative payoff in single currency for the cases of zero, partial, and perfect collat-

eralization. We assume the derivative is traded between two default-free counterparties

and analyze the impact of collateralization on the fair present value of the derivative. We

follow the different ideas presented in [1], [2], and [6], present a complete mathematical

derivation of the results, and seek to establish a uniform derivative pricing framework for
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the three cases of collateralization. To achieve the goal, we present different approaches

to pricing under specified conditions and show that the results are uniformly consistent

despite the differences in the strategies.

In particular, we show how the general results presented in [1] can be extended to allow for

partial collateralization and that these results are consistent with those presented in [2] and

[6]. As described in [9], we first show how a portfolio including an underlying asset for the

derivative and cash positions with various funding sources and corresponding short rates

is constructed to replicate the value of the derivative. For the mathematical derivation, we

use an approach based on a generalized Black-Scholes-Merton framework with collateral

under CSA to obtain a fundamental PDE based on a self-financing condition. Applying

the Feynman-Kac formula to the PDE yields the desired pricing solution for perfect col-

lateralization. Finally, we use the partial collateralization argument to extend this result

and obtain a generalized pricing formula that covers all states of collateralization. We

also introduce at this point the concept of LVA and show how the value of a collateralized

derivative is, in fact, equal to the value of the derivative without collateralization plus

some adjustment value, known as LVA.

In the second part of the single currency, single asset analysis, and based on [2], we

derive a derivative pricing formula for perfect collateralization by using Q-martingale

arguments. We define some stochastic process and show that such a process is a Q-

martingale. Then, we show that the price process of a collateralized derivative can be

expressed as a function of a certain martingale process, which after some manipulation

leads to the perfectly collateralized derivative pricing formula.

The second major part of our work focuses on establishing a generalized pricing frame-

work to include cross-currency and multi-asset arguments. Up to this point, both the
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derivative and the posted collateral were in the same currency. Now, in the the cross-

currency, single asset analysis, the underlying asset and the derivative are in some do-

mestic currency, but the collateral is posted in a foreign currency. We refer to this as

full collateralization which is, in fact, the case of perfect collateralization with collateral

posted in different currency. Finally, we include some general analysis for the case of

single currency for a derivative that has multiple underlying assets, and show that the

results are consistent with those obtained for the single asset.
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CHAPTER 2

FUNDAMENTAL MATHEMATICAL CONCEPTS

In order to develop a unified valuation framework, it is essential to present the fundamen-

tal mathematical concepts, definitions, and theorems that will be used throughout this

thesis work. Not only this adds consistency to the work, given the diversity in notation

and presentation of the concepts used as reference, but also allows to better understand

and frame the derived results under a common set of support tools with specified as-

sumptions, considerations, and even limitations. The general purpose is for this thesis

work to be as self-contained as possible.

2.1 General Probability Theory

Definition 2.1.1 (σ-algebra). Let Ω be a nonempty set. In particular, let Ω = {ω1, ω2, . . . , ωn}

be the set of all possible outcomes (basic events) of a random experiment. We call Ω the sample

space of the experiment. Let F ⊂ 2Ω be a collection of subsets of Ω. We say that F is a σ-algebra

provided that:

1. Ω ∈ F ,

2. if A is a set such that A ∈ F , then Ac ∈ F , and

3. if A1,A2, . . . is a sequence of sets such that An ∈ F for all n ≥ 1, then
∞⋃

n=1
An ∈ F

This concept is essential for our purposes because if we have a σ-algebra of sets, then all

the operations we might want to do to the sets will give us other sets in the σ-algebra.
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Definition 2.1.2 (Borel σ-algebra). If Ω = R, the Borel σ-algebra on Ω, denoted by B1 =

B(R) , σ(A), is the smallest σ-algebra on Ω containing the set A of all open subsets (intervals

(a,b)), or equivalently all closed subsets, in R.

Definition 2.1.3 (Measurable Space). If F is a σ-algebra of subsets of Ω, then (Ω,F ) is called

a measurable space and any set A ∈ F is called an event on Ω.

Definition 2.1.4 (Probability Measure). Let Ω be a nonempty set, and let F be a σ-algebra of

subsets of Ω. A probability measure P is a function that assigns a number in [0, 1] to every set

A ∈ F . We call this number the probability of A and write P(A). We require:

1. P(Ω) = 1, and

2. Whenever A1,A2, . . . is a sequence of disjoint sets in F , then P




∞⋃

n=1
An



=
∞∑

n=1
P(An).

Definition 2.1.5 (Probability Space). The triple (Ω,F ,P) is called a probability space.

Definition 2.1.6 (Random Variable). Let (Ω,F ,P) be a probability space. A random variable

is a real-valued function X defined on Ω (i.e., X : Ω → R) with the property that for every Borel

subset B of R, the subset of Ω given by {X ∈ B} = {ω ∈ Ω | X(ω) ∈ B} is in the σ-algebra F .

A random variable X is essentially a numerical quantity whose value is determined by the

random experiment of choosing any ω ∈ Ω. The index t ∈ [0,∞) of the random variables

Xt , X(t) admits a convenient interpretation as time. In order to simplify notation, we may

use Xt or X(t) indistinctively to denote that the variable X is a function of the parameter t.

This convention applies to any other variable that is dependent on any other parameter

we may use throughout this work.
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2.2 Information and Stochastic Processes

Definition 2.2.1 (Fitration). A filtration {Fn} is a sequence of σ-algebras F0,F1, . . . ,Fn with the

property that F0 ⊂ F1 ⊂ ∙ ∙ ∙ ⊂ Fn ⊂ F .

The property says that each σ-algebra in the nondecreasing sequence contains all the

sets contained by the previous σ-algebra. For our purposes, we use Ft to denote the

information available at time t. Then, the set {Ft}t≥0 is called an information filtration. So,

E [• | Ft] denotes an expected value that is conditional on the information available up to

time t. We usually write E [• | Ft] as Et [•].

Definition 2.2.2 (Stochastic Process). A sequence of random variables X1,X2, . . . ,Xn is called

a stochastic process.

For our purposes, a stochastic process is a mathematical model for the occurrence of a

random phenomenon at each moment (time t) after a given initial time. The random

nature is captured by the measurable space (Ω,F ) on which probability measures can be

placed. Thus, a stochastic process is a collection of random variables X = {Xt | 0 ≤ t < ∞}

on (Ω,F ) which take values in (Rn,B(Rn)). For a fixed sample point ω ∈ Ω, the function

t 7→ Xt(ω), t ≥ 0, is the sample path (trajectory) of the process X associated with ω. The

temporal feature of a stochastic process suggests a flow of time in which, at every moment

t ≥ 0, we can talk about a past, present, and future and can ask how much an observer of the

process knows about it at present, as compared to how much he knew at some point in

the past or will know at some point in the future. This allows to keep track of information

and provides the mathematical model for a random experiment whose outcome can be

observed continuously in time. For example, we think of Xt as the price of some asset at
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time t and Ft as the information obtained by watching all the prices in the market up to

time t [16].

Definition 2.2.3 (Adapted Stochastic Process). Let Ω be a nonempty sample space equipped

with a filtration {Ft}, 0 ≤ t ≤ T. Let Xt be a collection of random variables indexed by t ∈ [0,T].

We say Xt is an adapted stochastic process, or that Xt is adapted to the filtration {Ft} if, for each

time t, the random variable Xt is Ft-measurable.

Asset prices, portfolio processes (i.e., positions), and wealth processes (i.e., values of

portfolio processes) will all be adapted to a filtration that we regard as a model of the

flow of public information. Intuitively, this definition says that the information available

at time t > 0 is sufficient to evaluate the stochastic process Xt at that time. If we know the

information in Ft, then we know the value of Xt. Consequently, if we are at some time t0,

then for some other time t > t0 the value of the process Xt0 is known but the value of the

process Xt is unknown. For our purposes, it is worth noting that the no-arbitrage theory

of derivative security pricing is based on contingency plans. In order to price a derivative

security, we determine the initial wealth we would need to set up a hedge of a short

position in the derivative security. The hedge must specify what position we will take in

the underlying security at each future time contingent on how the uncertainty between the

present time and that future time is resolved [16]. We must also mention that, in practice,

we do not observe stock prices following continuous-variable, continuous-time processes.

Stock prices are restricted to discrete values (e.g., multiples of a cent) and changes can

be observed only when the exchange is open. Nevertheless, the continuous-variable,

continuous-time process proves to be a useful model for many purposes [12].

Definition 2.2.4 (P-Martingale). Let (Ω,F ,P) be a probability space, let T be a fixed positive

number, and let Ft, 0 ≤ t ≤ T, be a filtration of sub-σ-algebras of F . An adapted stochastic
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process Xt is a martingale with respect to the information filtration Ft and probability measure P

if EP [|Xt|] < ∞ (integrability condition) and EP [Xt | Fs] = Xs for all 0 ≤ s ≤ t ≤ T.

Intuitively, a martingale is a stochastic process that, on average, has no tendency to rise or

fall. Martingales and measures are critical elements to a risk-neutral valuation framework.

As we will see, a martingale is also defined as a zero-drift stochastic process. A measure

is the unit in which we value security prices [12].

2.3 Wiener Processes and Brownian Motion

Here we follow [12] to discuss particular types of stochastic processes and their importance

in the realm of derivative pricing.

Definition 2.3.1 (Markov Process and The Markov Property). A Markov process is a

particular type of stochastic process where only the PV of a variable is relevant for predicting the

future. That is, the past history of the variable and the way that the present has emerged from the

past are irrelevant.

Stock prices are usually assumed to follow a Markov process. Since predictions for the

future are uncertain, they must be expressed in terms of probability distributions. The

Markov property implies that the probability distribution of the price at any particular

future time does not depend on the particular path followed by the price in the past.

The Markov property of stock prices is consistent with the weak form of market efficiency.

This states that the present price of a stock carries all the information contained in a record

of past prices. If this were not true, then financial analysts could make above-average
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returns by interpreting charts of the past history of stock prices, and there is no sufficient

evidence that this is actually possible. Finally, it is worth noting that it is competition in the

marketplace what tends to ensure that weak-form market efficiency holds.

Definition 2.3.2 (Wiener Process). Let W be a variable that follows a Markov stochastic process.

Let W0 be its current value and let φ(m, v) represent the change in value during some time unit

v, where φ denotes a probability distribution that is normally distributed with mean change per

unit time, m, called drift rate, and variance per unit time, v, called variance rate. A Markov

stochastic process with φ(m, v) = φ(0, 1) is called a Wiener process. A drift rate of zero means

that the expected value of W at any future time is equal to its current value. The variance rate of 1

means that the variance of the change in W in a time interval of length T equals T. A variable W

follows a Wiener process if it has the two following properties:

1. ΔW = ε
√
Δt (change ΔW during a small period of time Δt, where ε ∼ φ(0, 1))

2. For any two different short intervals of time, Δt, the values of ΔW are independent

By Property 1, ΔW ∼ N(0,Δt). By Property 2, the variable W follows a Markov process.

We use dW to consider the change in the value of the variable W during a relatively long

period of time T. Hence, dW, with the above properties for ΔW in the limit as ΔW → 0, is

a Wiener process.

Definition 2.3.3 (Generalized Wiener Process). A generalized Wiener process for a variable

X(a, b) (i.e., with parameters a,b), can be defined in terms of dW as:

dX = a dt + b dW (2.1)
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The a dt term implies that W has an expected drift rate of a . The b dW term implies that W

has a variance rate of b2 and it can be regarded as adding noise or variability to the path

followed by W. The amount of variability is b times a Wiener process. Thus, by the same

properties of Definition 2.3.2, it follows that dW ∼ N(at, b2t) in any time inteval [0, t].

Definition 2.3.4 (Martingale). A martingale is a zero-drift stochastic process. A variable Θ

follows a Martingale if its process has the form:

dΘ = σ dW (2.2)

where dW is a Wiener process and σ is a parameter that may also be stochastic.

As implied in Definition 2.2.4, a martingale has the property that its expected value at any

future time T is equal to its value today. That is:

E[ΘT] = Θ0 (2.3)

Definition 2.3.5 (Brownian Motion). A continuous, adapted stochastic process B(μ, σ) =

{Bt,Ft | 0 ≤ t < ∞}, defined on some probability space (Ω,F ,P), is said to be a Brownian motion

with parameters μ, σ (drift rate μ and variance rate σ) if it satisfies the following properties:

1. For 0 ≤ s < t, the increment Bt − Bs is independent of Fs and is normally distributed with

mean zero and variance t − s.

2. For fixed times 0 = t0 < t1 < ∙ ∙ ∙ < tn, the increments (Bt1 − Bt0), . . . , (Btn − Btn−1) are

mutually independent with mean zero (i.e., E[Bti+1 −Bti] = E[dBt] = 0 and variance ti+1 − ti.

3. For any increment τ > 0, (Bt+τ − Bt) ∼ N(μτ, σ2τ).
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Definition 2.3.6 (Standard Brownian Motion). When μ = 0 and σ = 1, the process B(0, 1)

is called a standard Brownian motion, denoted by WSB
t . We always assume that this process

begins at zero, so that WSB
0 = 0. Clearly, we also have WSB

t ∼ N(0, t).

If Xt ∼ B(μ, σ) with X0 = x, then we can write Xt = x + μt + σWSB
t . Note that E[Xt] =

x + μt + σE[WSB
t ] = x + μt and Var(Xt) = σ2Var

(
WSB

t

)
= σ2t. Hence, Xt ∼ N(x + μt, σ2t).

The following standard results are admitted without proof. See [16].

Theorem 2.3.7. Standard Brownian motion is a Markov process.

Theorem 2.3.8. Standard Brownian motion is a martingale.

2.4 Geometric Brownian Motion and The Process for a Stock Price

Definition 2.4.1 (Geometric Brownian Motion). A continuous, adapted stochastic process

{St,Ft | 0 ≤ t < ∞} is a geometric Brownian motion with parameters μ, σ, and we write

St ∼ GBM(μ, σ), if, for all t ≥ 0,

St = S0 e(μ− 1
2σ

2)t + σWSB
t (2.4)

and it satisfies the following properties:

1. If St > 0, then St+s > 0 for any s > 0.

2. The distribution of St+s

St
only depends on s and not on St.

It can be shown that geometric Brownian motion in differential form is given by the following

stochastic differential equation:

dSt = μ St dt + σ St dWSB
t (2.5)
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The above properties suggest that geometric Brownian motion is a reasonable model for

stock prices. This is in fact the asset-pricing model used in the Black-Scholes-Merton

option pricing formula.

Definition 2.4.2 (The Process for a Stock Price). Let WSB
t (0 ≤ t ≤ T) be a standard Brownian

motion defined on a probability space (Ω,F ,P), with filtration Ft (0 ≤ t ≤ T) and parameters

μt , μ(t) and σt , σ(t) adapted to the filtration. The stock price model is defined to be:

dSt = μ St dt + σ St dWSB
t (2.6)

Let us analyze briefly the above definition. Let St be the stock price at time t. Let μt be the

expected rate of return of the stock (per unit of time) at time t, expressed in decimal form.

Define the volatility of the stock price, σt, to be some measure of how uncertain we are about

the future stock price movement. If the volatility of the stock price is always zero, we can

express the rate of change of the stock in a short interval of time Δt as:

ΔSt

Δt
= μt St ⇒ ΔSt = μt St Δt (2.7)

A reasonable assumption for the volatility σt is that the variability (uncertainty) of the

percentage return of the stock in a short period of time Δt is the same regardless of the

stock price. This suggests that the standard deviation of the change in a short period of

time Δt should be proportional to the stock price St. Hence, in the limit, the process for

a stock price can be written as dSt =
(
μt St

)
dt + (σt St) dWSB

t . By Definition 2.4.1, this is

a geometric Brownian motion in differential form which, in practice, is the most widely

used model of stock price behavior. Note that the stock price model is completely general

and subject only to the condition that the paths of the process are continuous [16].
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Definition 2.4.3 (The Change in Wealth of an Investor). Consider an investor who begins

with non-random initial wealth X0 and holds Δt , Δ(t) shares of stock at each time t (Δt can be

random but must be adapted). Suppose the stock is modelled by a geometric Brownian motion (in

differential form) given by Definition 2.4.1. Suppose also that the investor finances his investing

by borrowing or lending at interest rate r. If Xt denotes the wealth of the investor at each time t,

then

dXt = r Xt dt + (μ − r)Δt St dt + Δt St σ dWSB
t (2.8)

The three terms in this equation can be understood as follows:

• an average underlying rate of return r on the portfolio, which is the term r Xt dt,

• a risk premium μ − r for investing in the stock, which is the term (μ − r)Δt St, and

• a volatility term proportional to the size of the stock investment, which is reflected

in the term Δt St σ dWSB
t .

Remark: The process for a stock price developed in Definition 2.4.2 involves two param-

eters: μ and σ. The parameter μ is the (annualized) expected return earned by an investor

in a short period of time. Since most investors require higher expected returns to induce

them to take higher risks, it follows that the value of μ should depend on the part of the

risk that cannot be diversified away by the investor. Moreover, it should also depend on

the level of interest rates in the economy. The higher the level of interest rates, the higher

the expected return required on any given stock. The value of a derivative with a stock as

underlying asset is, in general, independent of μ. In contrast, the stock price volatility σ

plays a major role in the valuation of many derivatives. The stock price volatility is equal

to the standard deviation of the continuously compounded return provided by the stock

in 1 year. Typical values for σ for a stock are in the range of 0.15 (15%) to 0.60 (60%) [12].
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2.5 Itô Process, Itô’s Formula, and the Feynman-Kac Theorem

In this section, we cover stochastic processes that are more general than Brownian motion

and define the integrals, and their properties, used to model the value of a portfolio that

results from trading assets in continuous time.

Definition 2.5.1 (Generalized Itô Process). A generalized Itô process is a generalized Wiener

process (see Definition 2.3.3) in which the parameters a and b are functions of both the value of the

underlying variable X and time t. Hence, it can be written as:

dX = a(X, t) dt + b(X, t) dW (2.9)

Definition 2.5.2 (Itô Process). Let WSB
t (t ≥ 0) be a Brownian motion with filtration Ft, (t ≥ 0).

An Itô process is a stochastic process of the form

Xt = X0 +

∫ t

0
Θu u +

∫ t

0
Δu dWSB

u (2.10)

where X0 is non-random and Θt and Δt are adapted stochastic processes. In differential notation,

dXt = Θt dt + Δt dWSB
t (2.11)

Lemma 2.5.3 (Quadratic Variation of the Itô Process). The quadratic variation of the Itô

process, in differential form, is (dXt) (dXt) = Δ2
t dt, given the differential multiplication table

(dWSB
t ) (dWSB

t ) = dt, (dt) (dWSB
t ) = (dWSB

t ) (dt) = 0, and (dt) (dt) = 0.

Theorem 2.5.4 (Itô-Doeblin Formula for an Itô Process). Let Xt, t ≥ 0, be an Itô process, as

stated in differential form in Definition 2.5.2, with a drift rate of Θt and a variance rate of Δ2
t .
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Let F , F(t,Xt) be a function with defined and continuous partial derivatives ∂F
∂t , ∂F

∂Xt
, and ∂2F

∂Xt
2 .

Then, for every T ≥ 0,

dF =
∂F
∂t

dt +
∂F
∂Xt

dXt +
1
2
∂2F

∂Xt
2
(dXt)(dXt)

=
∂F
∂t

dt +
∂F
∂Xt

dXt +
1
2
∂2F

∂Xt
2
Δ2

t dt

=

(
∂F
∂t

+
1
2
Δ2

t
∂2F

∂Xt
2

)

dt +

(
∂F
∂Xt

)

dXt (2.12)

= L(F) dt +

(
∂F
∂Xt

)

dXt (2.13)

where

L(F) ,
∂F
∂t

+
1
2
Δ2

t
∂2F

∂Xt
2

(2.14)

is called the standard pricing operator.

Using dXt = Θt dt + Δt dWSB
t , we also have

dF =

(
∂F
∂t

+ Θt
∂F
∂Xt

+
1
2
Δ2

t
∂2F

∂Xt
2

)

dt +

(

Δt
∂F
∂Xt

)

dWSB
t (2.15)

= LΘ(F) dt +

(

Δt
∂F
∂Xt

)

dWSB
t (2.16)

which implies that F also follows an Itô process with drift rate LΘ(F) , ∂F
∂t +Θt

∂F
∂Xt

+ 1
2Δ

2
t
∂2F
∂Xt

2 and

variance rate
(
Δt
∂F
∂Xt

)2
.

The following important theorem relates stochastic differential equations and partial dif-

ferential equations. Before stating the theorem, we first define an important concept

regarding interest rates and establish an important convention for very useful notation.
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Definition 2.5.5 (Compounding and Discounting Processes). Suppose we have an adapted

interest rate process Rt , R(t). We define the following processes:

1. Compounding process:

ΦR(t)
a,b , e

∫ b

a
R(u) du (2.17)

2. Discounting process:
1

ΦR(t)
a,b

, e−
∫ b

a
R(u) du (2.18)

Theorem 2.5.6 (Feynman-Kac Formula). Let Xt, t ≥ 0, be an Itô process driven by the SDE

dXt = Θ(t,Xt) dt + Δ(t,Xt) dWSB
t with initial condition X0 = x. Let T > 0 be a fixed parameter

and let f (t, x) , f : [0,T] ×R→ R be the solution of:

∂ f

∂t
+ Θt

∂ f

∂Xt
+

1
2
Δ2

t

∂2 f

∂Xt
2
= q(t, x) f − g(t, x) (2.19)

f (T, x) = h(x) (2.20)

Then,

f (t, x) = EQ
t

[∫ T

t
e−

∫ s

t
q(Xu) du g(s,Xs) ds + e−

∫ T

t
q(Xu) du h(XT)

]

(2.21)

= EQ
t




∫ T

t

1

Φ
q(Xt)
t,s

g(s,Xs) ds +
1

Φ
q(Xt)
t,T

h(XT)


 (2.22)

Note that Equation (2.19) corresponds to the Black-Scholes-Merton differential equation

with an additional term −g(t, x). If Xt represents the process for a stock price, then

h(XT) = h(X(T)) denotes the payoff at time T of a derivative security whose underlying

asset is the geometric Brownian motion (stock price model) stated in Definition 2.4.2.
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Because the stock price is Markov and the payoff is a function of the stock price alone,

there is a function f (t, x) such that F(t) = f (t,X(t)), where F(t) , f (t, x) may represent the

value of a derivative with underlying stock at each time t.

2.6 Some Additional Concepts of Interest in Security Pricing

2.6.1 On Interest Rates

Two important rates for derivative traders are Treasury rates and LIBOR rates. Treasury

rates are those paid by a government in its own currency. LIBOR rates are short-term

lending rates offered by banks in the interbank market. Derivative traders usually assume

that the LIBOR rate is a risk-free rate [12].

The risk-free rate affects directly the price of a derivative. As interest rates in the economy

increase, the expected return required by investors from the stock tends to increase. In

addition, the PV of any future cash flow received by the holder of the derivative decreases.

In general, the discounting rate that should be used for the expected cash flow at a future

time T must equal at least an investor’s required return on the investment. We assume the

risk-free rate r is the nominal rate and not the real (effective) rate. We also assume r > 0.

Otherwise, an investment at the risk-free rate would provide no advantages over cash.

As mentioned previously, it is also important to assume that there are some market

participants, such as large investment banks, for which the following statements are true:

1. There are no arbitrage opportunities.

2. Borrowing and lending are possible at the risk-free interest rate.
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3. There are no transactions costs.

4. Trading profits (net of trading losses) are not subject to tax rates.

2.6.2 Risk-Neutral Valuation (Risk-neutral World vs. Real World)

The risk-neutral valuation principle in derivative pricing states that we can assume the

world is risk-neutral when pricing derivatives. In a risk-neutral world, all individuals are

indifferent to risk. Investors require no compensation for risk and the expected return on

all securities is the risk-free interest rate. The principle is based on one key property of the

Black-Scholes-Merton differential equation that was stated in Theorem 2.5.6: the variables

that appear in the equation, namely the current stock price, time, stock price volatility,

and the risk-free interest rate, are all independent of the risk preferences of investors.

Hence, risk preferences cannot affect the solution to the equation. Only the value of μ,

the expected return on the stock, that appears in the equations (but not on their solution

because the term drops out at some point) depends on the risk preferences of investors.

The higher the level of risk aversion by investors, the higher μwill be for any given stock.

When μ = r, we have what is called a traditional risk-neutral world.

Any set of preferences can be used when evaluating the price of derivative. Moving

from one set of risk preferences, to another is called changing the measure. As stated in

[12], choosing a particular market price of risk is also referred to as defining the probability

measure. The real-world probability measure is known as the P-measure, the one we used in

Definition 2.1.4 or in Definition 2.2.4 when the P-martingale was defined . The risk-neutral

world probability measure is referred to as the Q-measure. The particular measure we use

will be indicated as a superscript, particularly when stating results involving expected

values.

31



2.6.3 The Greeks: Delta of a Derivative

The delta of a stock derivative is defined to be the rate of change of the derivative price

with respect to the price of the underlying asset. It is the number of units of the stock we

should hold for each derivative shorted in order to create a riskless portfolio. The term

appears in Theorem 2.5.4 as:
∂F
∂Xt
,
∂V
∂St
, Δs(t) , Δs

t (2.23)

where V , V(t) , Vt is the value of the derivative and St is the price of the underlying

asset (stock) at time t. The reason a riskless portfolio can be setup is that the stock price St

and the derivative price Vt are both affected by the same underlying source of uncertainty,

namely the stock price movements.

2.6.4 The Numeraire

Suppose f and g are the prices of traded securities dependent on a single source of

uncertainty. As previously stated, assume that the securities pay no dividends during the

period under consideration. Define φ , f
g , which can be thought of as the relative price

of f with respect to g or, most importantly, as measuring the price of the security f in

units of g rather than USD. When this is the case, the security price g is referred to as the

numeraire.

The USD money market account is a security that is worth $1 at time zero and earns the

instantaneous risk-free rate r at any given time, where r may be stochastic. If we set g

equal to the money market account, it grows at the rate r, so that dg
dt = rg⇒ dg = r g dt. Note

that the drift rate of g is stochastic but the volatility of g is zero.
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CHAPTER 3

SINGLE CURRENCY, SINGLE ASSET ANALYSIS

3.1 Pricing by Replication without Specified Collateral Process

We first review and present with detailed proof the work done in [1] for the case of perfect

collateralization, and we extend the main results to develop a more general framework to

solve the derivative pricing problem including all states of collateralization.

3.1.1 The Processes for the Underlying and the Derivative

Let V(t) , V(t, St), t ≥ 0, be the price of a collateralized derivative with underlying asset St,

at each time t. By definition 2.4.2, assume that, under a given measure, the stock follows

a process given by:

dSt = μt St dt + σt St dWSB
t (3.1)

Then, by Theorem 2.5.4, the price process of the derivative is given by:

dV(t) =

(
∂V
∂t

+
1
2
σ2

t S2
t
∂2V

∂St
2

)

dt +

(
∂V
∂St

)

dSt (3.2)

= L(V) dt + Δs
t dSt (3.3)

where L(•) is the standard pricing operator defined in the same theorem and Δs
t is the

delta of the stock derivative, as defined in Section 2.6.3.
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3.1.2 Self-financing Replicating Portfolio and Black-Scholes Equation with Collateral

To replicate the derivative, consider a self-financing replicating portfolio whose value, at

each time t, is denoted by Πt and determined by the following components:

• A cash amount, denoted by γt, split among the following accounts:

– Collateral account, denoted by Ct, corresponding to the amount of cash held

against the derivative at time t. The interest rate of the collateral account is

referred to as the collateral rate and is denoted by rc(t). Generally, this rate is

assumed to be the agreed overnight rate paid on the posted collateral among

dealers under CSA.

– Amount V(t) − Ct (rest of the cash) that needs to be borrowed/lent unsecured

from the Treasury desk, at the short rate for unsecured funding rF(t).

– Amount Δs
tSt that needs to be borrowed at the repo rate rR(t) to finance the

purchase of Δs
t units of the underlying stock. This amount is, in fact, the capital

gain on the stock position, which is secured by the purchased stock. The repo

rate is also known as the short rate on funding secured by the asset.

– Dividends paid by the stock at the rate rD.

• A holding of Δs
t units of the underlying asset.

Note that, in general, it is expected that rc(t) ≤ rR(t) ≤ rF(t). Then, the value of the

replicating portfolio is given by:

V(t) = Πt = γt + Δs
tSt (3.4)
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The growth of the total cash amount γt can be expressed as:

dγt =
[

rc(t)Ct + rF(t)(V(t) − Ct) − rR(t)Δs
tSt + rD(t)Δs

tSt
]

dt (3.5)

The self-financing condition requires:

dV(t) = dΠt = d
(
γt + Δs

tSt
)

= dγt + Δs
t dSt (3.6)

= L(V) dt + Δs
t dSt (3.7)

which implies

L(V) dt = dγt

=
[

rc(t)Ct + rF(t)(V(t) − Ct) − rR(t)Δs
tSt + rD(t)Δs

tSt
]

dt

=
[

rc(t)Ct + rF(t)(V(t) − Ct) − (rR(t) − rD(t))Δs
t St

]
dt (3.8)

and, hence,

L(V) = rc(t)Ct + rF(t)[V(t) − Ct] − [rR(t) − rD(t)]Δs
t St (3.9)

Rearranging this equation yields:

L(V) + [(rR(t) − rD(t)) St]Δ
s
t = rF(t)V(t) − [rF(t) − rc(t)] Ct (3.10)
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3.1.3 Derivative Pricing Framework with Collateralization

Theorem 3.1.1. Let V(t) , V(t, St), t ≥ 0, denote the price of a collateralized derivative with

underlying asset St, at each time t. Suppose that, under the risk-neutral world probability measure

(Q-measure), the stock follows the process given by Equation (3.1) and the collateralized derivative

follows the process given by Equation (3.2) or Equation (3.3). Suppose it is possible to construct

the self-financing replicating portfolio given by Equation (3.4) under the cash account growth and

self-financing conditions given by Equations (3.5) and (3.6). Consider the discounting process

notation stated in Definition 2.5.5 Then, under the specified conditions, we have the following

results:

(i) The unique solution V(t) to Equation (3.10) admits the following representation:

VC(t) = EQ
t




∫ T

t

1

Φ rF(t)
t,s

[(rF(s) − rc(s)) Cs] ds +
1

Φ rF(t)
t,T

V(T)


 (3.11)

in the measure Q in which the underlying stock grows at a rate μt = rs(t) , rR(t) − rD(t),

where V(T) is the payoff of the derivative at a given future time T, and with discounting

process in the short rate for unsecured funding rF(t).

(ii) The solution given by Equation (3.11) has the following equivalent form:

VC(t) = EQ
t


−

∫ T

t

1

Φ rc(t)
t,s

[rF(s) − rc(s)] [V(s) − Cs] ds +
1

Φ rc(t)
t,T

V(T)


 (3.12)

with discounting process in the collateral rate rc(t).
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(iii) The rate of growth in the value of the collateralized derivative is given by:

EQ
t

[
dVC(t)

]
= [rF(t)V(t) − sF(t)C(t)] dt (3.13)

where the rate rF(t), applied to the price of the derivative, is also referred to as the funding

spread and the rate difference sF(t) , rF(t) − rc(t), applied to the collateral, is called the

credit spread.

Proof.

(i) Consider the equation:

L(V) + [(rR(t) − rD(t)) St] Δ
s
t = rF(t)V(t) − [rF(t) − rc(t)] Ct (3.14)

Clearly, this is the generalized Black-Scholes-Merton differential equation stated

in Theorem 2.5.6 with Θt = [rR(t) − rD(t)] St, ∂V
∂St

= Δs
t , q(t, x) = rF(t), and g(t, x) =

[rF(t) − rc(t)] Ct, subject to the terminal condition V(T, x) = V(T).

Thus, by Theorem 2.5.6, the unique solution to the PDE can be written in discounting

process notation as:

VC(t) = EQ
t




∫ T

t

1

Φ rF(t)
t,s

[(rF(s) − rc(s)) Cs] ds +
1

Φ rF(t)
t,T

V(T)


 (3.15)

in the measure Q in which the underlying stock grows at a rate μt = rs(t) , rR(t)−rD(t).

Note that the solution is independent of the repo rate or of the interest rate at which

the underlying stock pays dividends.
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(ii) We can rearrange the right-hand side of Equation (3.14) to obtain:

rF(t)V(t) − [rF(t) − rc(t)] Ct = rF(t)V(t) − rF(t)Ct + rc(t)Ct

= rF(t)V(t) − rF(t)Ct + rc(t)Ct + rc(t)V(t) − rc(t)V(t)

= rc(t)V(t) + rF(t)[V(t) − Ct] − rc(t)[V(t) − Ct]

= rc(t)V(t) + [rF(t) − rc(t)][V(t) − Ct] (3.16)

Hence, Equation (3.14) becomes

L(V) + [(rR(t) − rD(t)) St] Δ
s
t = rc(t)V(t) − [−[rF(t) − rc(t)][V(t) − Ct]] (3.17)

Again, this is the generalized Black-Scholes-Merton differential equation stated in

Theorem 2.5.6 with Θt = [rR(t) − rD(t)] St, ∂V
∂St

= Δs
t , q(t, x) = rc(t), and g(t, x) = −[rF(t)−

rc(t)][V(t) − Ct], subject to the terminal condition V(T, x) = V(T).

Thus, by Theorem 2.5.6, the unique solution to the PDE can be written in discounting

process notation as:

VC(t) = EQ
t


−

∫ T

t

1

Φ rc(t)
t,s

[rF(s) − rc(s)] [V(s) − Cs] ds +
1

Φ rc(t)
t,T

V(T)


 (3.18)

in the same measure Q in which the underlying stock grows at a rate rR(t) − rD(t).

(iii) Combining Equations (3.1), (3.5), and (3.6) yields:

dVC(t) = dγt + Δs
t dSt

=
[

rc(t)Ct + rF(t)(V(t) − Ct) − rR(t)Δs
tSt + rD(t)Δs

tSt
]

dt+

Δs
t St

[
[rR(t) − rD(t)]dt + σt dWSB

t

]
(3.19)
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which implies

EQ
t

[
dVC(t)

]
= [rF(t)V(t) − [rF(t) − rc(t)]C(t)] dt (3.20)

Defining sF(t) , rF(t) − rc(t) yields the desired result.

�

3.1.4 Derivative Pricing Formulas for Perfect,Partial, and Zero Collateralization

Theorem 3.1.2. Consider the same conditions stated in Theorem 3.1.1. Then, we have the

following results:

(i) If the derivative is not collateralized, then its price admits the representation

VNC(t) = EQ
t




1

Φ rF(t)
t,T

V(T)


 (3.21)

and the rate of growth in the value of the non-collateralized derivative is equal to rF(t).

(ii) If the derivative is perfectly collateralized, then its price admits the representation

VC(t) = EQ
t




1

Φ rc(t)
t,T

V(T)


 (3.22)

and the rate of growth in the value of the non-collateralized derivative is equal to rc(t).

Proof. Setting Ct = 0 in Equations (3.11) and (3.13) gives Equation (3.21). Setting Ct = V(t)

in Equations (3.12) and (3.13) gives Equation (3.22)

�
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While Equations (3.11) and (3.12) give the price VC(t) of the collateralized derivative,

their practical application is limited for cases of partial collateralization. Since Ct usually

depends on VC(t), we can safely assume that Ct = λVC(t), 0 ≤ λ ≤ 1. As it turns out, this is

a reasonable assumption since in practice the posted amount of cash collateral is deduced

directly from the value of the collateralized derivative. The additional cash flows linked

to a collateral agreement depend upon the amount of collateral paid at each period. These

additional cash flows are essentially interest rate differentials generated by the difference

between unsecured funding and collateral rates applied to the posted collateral.

The following important theorem synthesizes the previous results and allows to determine

the derivative price for all states of collateralization.

Theorem 3.1.3. Consider the same conditions stated in Theorem 3.1.1. Suppose Ct = λV(t),

0 ≤ λ ≤ 1. Then, the price of a collateralized derivative, at each time t, admits the following

general stochastic representation:

V(t) = EQ
t

[
e−

∫ T

t
[ (1−λ)rF(u)+λrc(u) ] du V(T)

]
(3.23)

• If λ = 0, the derivative is not collateralized.

• If 0 < λ < 1, the derivative is partially collateralized.

• If λ = 1, the derivative is perfectly collateralized.

Proof. Consider Equation (3.10), given by

L(V) + [(rR(t) − rD(t)) St] Δ
s
t = rF(t)V(t) − [rF(t) − rc(t)] Ct (3.24)
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Suppose Ct = λV(t), 0 ≤ λ ≤ 1. We can then rearrange the right-hand side of Equation

(3.10) to obtain:

rF(t)V(t) − [rF(t) − rc(t)] Ct = rF(t)V(t) − [rF(t) − rc(t)]λV(t)

= [(1 − λ)rF(t) + λrc(t)] V(t) (3.25)

Hence, Equation (3.10) becomes

L(V) + [(rR(t) − rD(t)) St] Δ
s
t = [(1 − λ)rF(t) + λrc(t)] V(t) (3.26)

Once again, this is the generalized Black-Scholes-Merton differential equation stated in

Theorem 2.5.6 with Θt = [rR(t) − rD(t)] St, ∂V
∂St

= Δs
t , q(t, x) = (1 − λ)rF(t) + λrc(t), and

g(t, x) = 0, subject to the terminal condition V(T, x) = V(T).

Thus, by Theorem 2.5.6, the unique solution to the PDE can be written as:

V(t) = EQ
t

[
e−

∫ T

t
[ (1−λ)rF(u)+λrc(u) ] du V(T)

]
(3.27)

in the same measure Q in which the underlying stock grows at a rate rR(t) − rD(t).

If λ = 0, then Equation (3.27) becomes:

V(t) = EQ
t

[
e−

∫ T

t
rF(u) du V(T)

]
(3.28)

This is the case when Ct = 0 (zero collateralization). This equation is consistent with

Equation (3.21), which was obtained by using a different approach, as described in [1].
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If λ = 1, then Equation (3.27) becomes:

V(t) = EQ
t

[
e−

∫ T

t
rc(u) du V(T)

]
(3.29)

This is the case when Ct = V(t) (perfect collateralization). This equation is consistent with

Equation (3.22), which was obtained by using a different approach. �

Remark 3.1.4. When two dealers are trading with each other, the collateral is applied to the overall

value of the portfolio of derivatives between them, with positive exposures on some trades offsetting

negative exposures on other trades. Hence, potentially, valuation of individual trades should take

into account the collateral position on the whole portfolio. As stated in [1], in the case of the

collateral being a linear function of the exact value of the portfolio, the value of the portfolio is

just the sum of values of individual trades (with collateral attributed to trades by the same linear

function). This follows from the linearity of the pricing formula (3.11) in VC(t) and Ct.

3.1.5 The Concept of Liquidity Value Adjustment (LVA)

Consider Equation (3.11). the unique solution VC(t) to Equation (3.10):

VC(t) = EQ
t




∫ T

t

1

Φ rF(t)
t,s

[(rF(s) − rc(s)) Cs] ds +
1

Φ rF(t)
t,T

VC(T)


 (3.30)

We can write this equation as:

VC(t) = EQ
t




1

Φ rF(t)
t,T

V(T) +

∫ T

t

1

Φ rF(t)
t,s

[(rF(s) − rc(s)) Cs] ds


 (3.31)

= EQ
t




1

Φ rF(t)
t,T

V(T)


 + EQ

t




∫ T

t

1

Φ rF(t)
t,s

[(rF(s) − rc(s)) Cs] ds


 (3.32)
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Note that the first term of the left-hand side of Equation (3.32) is consistent with Equation

(3.21) which, in fact, corresponds to the value VNC(t) of a derivative contract without

collateralization. That is,

VNC(t) = EQ
t




1

Φ rF(t)
t,T

V(T)


 (3.33)

This is basically the expected return of a derivative contract without collateralization,

under the Q-measure.

The second term is known as Liquidity Value Adjustment (LVA) and is defined as:

LVAt , EQ
t




∫ T

t

1

Φ rF(t)
t,s

[(rF(s) − rc(s)) Cs] ds


 = EQ

t




∫ T

t

1

Φ rF(t)
t,s

[sF(s) Cs] ds


 (3.34)

Therefore,

VC(t) = VNC(t) + LVAt (3.35)

This is the continuous form of the idea that was introduced by Castagna in [6] in his

binomial approach to pricing OTC derivatives with collateralization, for a particular self-

financing replicating portfolio in discrete time. This equation says that the value of a

collateralized derivative is equal to the value of the derivative without collateralization

plus some adjustment value. More precisely, as it can be inferred from Equation (3.34),

the LVA can be defined as the expected discounted value of the credit spread (i.e., the

difference between the risk-free rate and the collateral rate paid on the collateral (from

the lender’s perspective (that is, the counterparty with positive PV in the contract)). As

described in [6], the LVA is essentially the gain (or loss) corresponding to the liquidation

of the PV of the derivative contract with collateralization.
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3.2 Pricing by Martingales for Continuous and Perfect Collateralization

In the previous section, we used replicating portfolio and self-financing arguments to

obtain the general derivative pricing formula with collateralization, given by Equation

(3.11), following the work done by Piterbarg in [1]. As an extension of Piterbarg’s work,

we also introduced the partial collateralization constraint to obtain another form of the

derivative pricing formula that yields different expressions for zero, partial, and perfect

collateralization, depending on the value of the partial collateralization parameter λ. The

results obtained by a different approach are consistent with Piterbarg’s work.

We now show how it is possible to obtain the derivative pricing formula (3.22) for perfect

collateralization by using a martingale approach. The main concept lies in the connection

of stock prices with the Markov process and the Markov property, and the fact that we

use stock as the underlying asset of a collateralized derivative. The idea is, then, to define

a stochastic process based on Equation (3.11) and to show that such a process is a Q-

martingale. Then, it can be shown that the price process of a collateralized derivative can

be expressed as a function of a certain martingale process, which after some manipulation

leads to the perfectly collateralized derivative pricing formula.

Theorem 3.2.1. Let sF(t) , rF(t) − rc(t) and consider the discounting process notation given by

Equation (2.20). Define the following stochastic process:

X(t) =
1

Φ rF(t)
0,t

V(t) +

∫ t

0

1

Φ rF(t)
0,s

sF(s)V(s) ds (3.36)

Then, the process X(t) is a Q-martingale.
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Proof. We must show that, for 0 ≤ τ ≤ t ≤ T, EQ
t [X(t) | Fτ] = X(τ). Then,

EQ
t [X(t) | Fτ]

= EQ
t




1

Φ rF(t)
0,t

V(t) +

∫ t

0

1

Φ rF(t)
0,s

sF(s)V(s) ds

∣∣∣∣∣ Fτ




= EQ
t




1

Φ rF(t)
0,t

V(t)

∣∣∣∣∣ Fτ


 + EQ

t




∫ t

0

1

Φ rF(t)
0,s

sF(s)V(s) ds

∣∣∣∣∣ Fτ




= EQ
t




1

Φ rF(t)
0,t

EQ
t




1

Φ rF(t)
t,T

V(T) +

∫ T

t

1

Φ rF(t)
t,s

sF(s)V(s) ds




∣∣∣∣∣ Fτ


 + EQ

t




∫ t

0

1

Φ rF(t)
0,s

sF(s)V(s) ds

∣∣∣∣∣ Fτ




= EQ
t




1

Φ rF(t)
0,t




1

Φ rF(t)
t,T

V(T) +

∫ T

t

1

Φ rF(t)
t,s

sF(s)V(s) ds




∣∣∣∣∣ Fτ


 + EQ

t




∫ t

0

1

Φ rF(t)
0,s

sF(s)V(s) ds

∣∣∣∣∣ Fτ




= EQ
t




1

Φ rF(t)
0,T

V(T) +

∫ T

t

1

Φ rF(t)
0,s

sF(s)V(s) ds +

∫ t

0

1

Φ rF(t)
0,s

sF(s)V(s) ds

∣∣∣∣∣ Fτ




= EQ
t




1

Φ rF(t)
0,T

V(T) +

∫ T

0

1

Φ rF(t)
0,s

sF(s)V(s) ds

∣∣∣∣∣ Fτ




= EQ
t

[
X(T)

∣∣∣∣∣ Fτ
]

(3.37)

Similarly, we also get

EQ
t [X(T) | Fτ] = EQ

t [X(τ) | Fτ] = X(τ) (3.38)

Hence,

EQ
t [X(t) | Fτ] = EQ

t [X(T) | Fτ] = EQ
t [X(τ) | Fτ] = X(τ) (3.39)

Therefore,

EQ
t [X(t) | Fτ] = X(τ) (3.40)

and it follows that the process X(t) is a Q-martingale. �
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Theorem 3.2.2. Let V(t) be the price of a collateralized derivative and let dV(t) be its price process.

Then, the price process dV(t) can be expressed with a certain martingale process M(t) as:

dV(t) = rc(t)V(t) dt + dM(t) (3.41)

Proof. Let

X(t) =
1

Φ rF(t)
0,t

V(t) +

∫ t

0

1

Φ rF(t)
0,s

sF(s)V(s) ds (3.42)

Differentiating X(t) yields:

dX(t) =
1

Φ rF(t)
0,t

(−rF(t)V(t) dt) +
1

Φ rF(t)
0,t

dV(t) +
1

Φ rF(t)
0,t

sF(t)V(t) dt

=
1

Φ rF(t)
0,t

[sF(t) − rF(t)] V(t) dt +
1

Φ rF(t)
0,t

dV(t) (3.43)

This implies:

1

Φ rF(t)
0,t

dV(t) = dX(t) −
1

Φ rF(t)
0,t

[sF(t) − rF(t)] V(t) dt

=
1

Φ rF(t)
0,t

rc(t)V(t) dt + dX(t) (3.44)

Then,

dV(t) = rc(t)V(t) dt + Φ rF(t)
0,t dX(t)

︸      ︷︷      ︸
:=dM(t)

= rc(t)V(t) dt + dM(t) (3.45)

where dM(t) is a martingale. Therefore, the price process of the collateralized derivative

V(t) can be expressed with a certain martingale process M(t). �
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We can obtain the perfectly collateralized derivative pricing formula from Equation (3.45)

as follows:

dV(s) = rc(s)V(s) ds + dM(s)

⇒ dV(s) − rc(s)V(s) ds = dM(s)

⇒
(
e−

∫ s

0
rc(u) du

)
[dV(s) − rc(s)V(s)ds] =

(
e−

∫ s

0
rc(u) du

)
dM(s)

⇒ d
(
e−

∫ s

0
rc(u) du V(s)

)
=

(
e−

∫ s

0
rc(u) du

)
dM(s)

⇒

∫ T

t
d
(
e−

∫ s

0
rc(u) du V(s)

)
=

∫ T

t

(
e−

∫ s

0
rc(u) du

)
dM(s)

⇒ e−
∫ T

0
rc(u) du V(T) − e−

∫ t

0
rc(u) du V(t) =

∫ T

t

(
e−

∫ s

0
rc(u) du

)
dM(s) (3.46)

Then, we have:

V(t) = e
∫ t

0
rc(u) du

(

e−
∫ T

0
rc(u) du V(T) −

∫ T

t
e−

∫ s

0
rc(u) du dM(s)

)

= e−
∫ T

t
rc(u) du V(T) −

∫ T

t
e−

∫ s

t
rc(u) du dM(s) (3.47)

Applying the conditional expectation to this equation yields:

EQ
t [V(t)] = EQ

t

[

e−
∫ T

t
rc(u) du V(T) −

∫ T

t
e−

∫ s

t
rc(u) du dM(s)

]

(3.48)

Therefore,

V(t) = EQ
t

[
e−

∫ T

t
rc(u) du V(T)

]
(3.49)

which is the final derivative pricing formula for perfect collateralization with expectation

corresponding to a collateral account used as the numeraire.
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CHAPTER 4

CROSS-CURRENCY, SINGLE ASSET ANALYSIS

4.1 Pricing by Replication and LVA

We now consider the case where the single underlying asset and the derivative are in

domestic currency b, but the collateral is posted in the foreign currency f. This is the

case of full collateralization which, as stated in Section 1.5, refers to the case of perfect

collateralization with collateral posted in different currency.

Let V d(t) , V d(t, St), t ≥ 0, denote the present value of a derivative in terms of domestic

currency d, with single underlying asset St, at each time t. The derivative is assumed to

have a payoff at time T, denoted by V d(T), in the same domestic currency. Suppose the

derivative is fully collateralized in a particular foreign currency f with currency exchange

rate F d,f
x (t) at time t ≥ 0, which represents the number of units in currency d per unit of

currency f. Then, the collateral amount posted by the counterparty in foreign currency f

can be expressed as:

C f
t ,

V d,f(t)

F d,f
x (t)

(4.1)

where V d,f(t) denotes the present value in domestic currency d of a fully collateralized

derivative in foreign currency f, at any time t ∈ [0,T). Note that, in general and as stated in

[9], C f
t , V d,f(t)/F d,f

x (t) if the derivative in domestic currency d is partially collateralized in

foreign currency f. Also note that C d
t ≡ V d,d(t) if the derivative is perfectly collateralized

in domestic currency, as it was the case in Chapter 3.

Now, denote by r d
F (t) and r f

F(t) the short rates for unsecured domestic and foreign currency,
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respectively. Also, denote by r f
c(t) the short rate of the collateral account in foreign currency

f. Since the underlying stock is in domestic currency, we denote by r d
D(t) the short rate

at which the stock pays dividends, and by r d
R(t) the short rate on funding secured by the

underlying asset (i.e., repo rate).

Recall from Section 3.1.5 that the value of a collateralized derivative can be expressed as:

VC = VNC + LVA (4.2)

In the absence of collateralization, VNC can be expressed in domestic currency d as:

VNC d
(t) = EQ d

t




1

Φ
r d

F (t)

t,T

V d(T)




(4.3)

under the domestic risk-neutral measure Q d corresponding to the rate r d
F (t).

Since the collateral is posted in a foreign currency, the LVA can be expressed as:

LVA f
t = EQ f

t




∫ T

t

1

Φ
r f

F(t)
t,s

s f
F(s)

V d,f(s)

F d,f
x (s)

︸ ︷︷ ︸
,C f

s

ds




(4.4)

in foreign currency, or equivalently as:

LVA d
t = F d,f

x (t) EQ f

t




∫ T

t

1

Φ
r f

F(t)
t,s

s f
F(s)

V d,f(s)

F d,f
x (s)

ds




(4.5)

in domestic currency, under the foreign risk-neutral measure Q f corresponding to the rate

r f
F(t), where s f

F(t) = r f
F(t) − r f

c(t).
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Therefore,

V d,f(t) = EQ d

t




1

Φ
r d

F (t)

t,T

V d(T)



+ F d,f

x (t) EQ f

t




∫ T

t

1

Φ
r f

F(t)
t,s

s f
F(s)

V d,f(s)

F d,f
x (s)

ds




(4.6)

Note that the expectations in Equation (4.6) are under different measures, which is not

very convenient. Aligning the measure1 to Q d yields the final cross-currency derivative

pricing formula with full collateralization in foreign currency f, given by:

V d,f(t) = EQ d

t




1

Φ
r d

F (t)

t,T

V d(T) +

∫ T

t

1

Φ
r d

F (t)
t,s

s f
F(s)V d,f(s) ds




(4.7)

where V d,f(t) = F d,f
x (t) C f

t .

4.2 Pricing by Martingales for Continuous and Full Collateralization

Equation (4.7) gives the general pricing formula but is not entirely convenient in practice

since it is recursive in the value of the derivative. The following theorem allows us to

obtain a more practical formula.

Theorem 4.2.1. Define the following stochastic process:

X(t) =
1

Φ
r d

F (t)

0,t

V d,f(t) +

∫ t

0

1

Φ
r d

F (t)

0,s

s f
F(s)V d,f(s) ds (4.8)

Then, the process X(t) is a Q d-martingale.

1A proof of this procedure can be found in [9].
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Proof. We must show that, for 0 ≤ τ ≤ t ≤ T, EQ d

t [X(t) | Fτ] = X(τ). Then,

EQ d

t [X(t) | Fτ]

= EQ d

t




1

Φ
r d

F (t)

0,t

V d,f(t) +

∫ t

0

1

Φ
r d

F (t)

0,s

s f
F(s)V d,f(s) ds

∣∣∣∣∣ Fτ




= EQ d

t




1

Φ
r d

F (t)

0,t

V d,f(t)

∣∣∣∣∣ Fτ



+ EQ d

t




∫ t

0

1

Φ
r d

F (t)

0,s

s f
F(s)V d,f(s) ds

∣∣∣∣∣ Fτ




= EQ d

t




1

Φ
r d

F (t)

0,t

EQ d

t




1

Φ
r d

F (t)

t,T

V d(T) +

∫ T

t

1

Φ
r d

F (t)
t,s

s f
F(s)V d,f(s) ds




∣∣∣∣∣ Fτ



+ EQ d

t




∫ t

0

1

Φ
r d

F (t)

0,s

s f
F(s)V d,f(s) ds

∣∣∣∣∣ Fτ




= EQ d

t




1

Φ
r d

F (t)

0,t




1

Φ
r d

F (t)

t,T

V d(T) +

∫ T

t

1

Φ
r d

F (t)
t,s

s f
F(s)V d,f(s) ds




∣∣∣∣∣ Fτ



+ EQ d

t




∫ t

0

1

Φ
r d

F (t)

0,s

s f
F(s)V d,f(s) ds

∣∣∣∣∣ Fτ




= EQ d

t




1

Φ
r d

F (t)

0,T

V d(T) +

∫ T

t

1

Φ
r d

F (t)

0,s

s f
F(s)V d,f(s) ds +

∫ t

0

1

Φ
r d

F (t)

0,s

s f
F(s)V d,f(s) ds

∣∣∣∣∣ Fτ




= EQ d

t




1

Φ
r d

F (t)

0,,

V d(T) +

∫ T

0

1

Φ
r d

F (t)

0,s

s f
F(s)V d,f(s) ds

∣∣∣∣∣ Fτ




= EQ d

t

[
X(T)

∣∣∣∣∣ Fτ
]

(4.9)

Similarly, we also get

EQ d

t [X(T) | Fτ] = EQ d

t [X(τ) | Fτ] = X(τ) (4.10)

Hence,

EQ
t [X(t) | Fτ] = EQ

t [X(T) | Fτ] = EQ
t [X(τ) | Fτ] = X(τ) (4.11)
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Therefore,

EQ
t [X(t) | Fτ] = X(τ) (4.12)

and it follows that the process X(t) is a Q d-martingale. �

Theorem 4.2.2. Let V d,f(t) be the value in domestic currency d of a derivative fully collateralized

in foreign currency f, at any time t ∈ [0,T). If dV d,f(t) is the price process of the derivative, then

dV d,f(t) can be expressed with a certain martingale process M(t) as:

dV d,f(t) =
[
r d

F (t) − s f
F(t)

]
V d,f(t) dt + dM(t) (4.13)

Proof. Let

X(t) =
1

Φ
r d

F (t)

0,t

V d,f(t) +

∫ t

0

1

Φ
r d

F (t)

0,s

s f
F(s)V d,f(s) ds (4.14)

Differentiating X(t) yields:

dX(t) =
1

Φ
r d

F (t)

0,t

(
−r d

F (t)V d,f(t) dt
)
+

1

Φ
r d

F (t)

0,t

dV d,f(t) +
1

Φ
r d

F (t)

0,t

s f
F(t)V d,f(t) dt

=
1

Φ
r d

F (t)

0,t

[
s f

F(t) − r d
F (t)

]
V d,f(t) dt +

1

Φ
r d

F (t)

0,t

dV d,f(t) (4.15)

This implies:

1

Φ
r d

F (t)

0,t

dV d,f(t) = dX(t) −
1

Φ
r d

F (t)

0,t

[
s f

F(t) − r d
F (t)

]
V d,f(t) dt

=
1

Φ
r d

F (t)

0,t

[
r d

F (t) − s f
F(t)

]
V d,f(t) dt + dX(t) (4.16)
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Then,

dV d,f(t) =
[
r d

F (t) − s f
F(t)

]
V d,f(t) dt + Φ

r d
F (t)

0,t dX(t)
︸       ︷︷       ︸

:=dM(t)

=
[
r d

F (t) − s f
F(t)

]
V d,f(t) dt + dM(t) (4.17)

where dM(t) is a martingale. Therefore, the price process of the fully collateralized deriva-

tive V d,f(t) can be expressed with a certain martingale process M(t). �

Following the same steps as in the last part of Section 3.2 yields the fully collateralized

derivative pricing formula:

V d,f(t) = EQ d

t

[
e−

∫ T

t [r d
F (u)−s f

F(u)] du V d(T)
]

(4.18)

which can also be written as:

V d,f(t) = EQ d

t

[
e−

∫ T

t
r d

F (u) du
(
e
∫ T

t
s f

F(u) du
)

V d(T)
]

(4.19)

It is worth noting that if the value of the derivative and its collateral are in the same

currency, then Equation (4.19) reduces to Equation (3.49) for perfect collateralization in

single currency.
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CHAPTER 5

SINGLE-CURRENCY, MULTI-ASSET ANALYSIS

5.1 The Processes for the Underlying Assets and the Derivative

Let V(t) , V(t,St), t ≥ 0, be the price of a collateralized derivative with a series of

underlying assets denoted by St = (S(1)
t , . . . , S

(n)
t )T ∈ Rn , at each time t. By definition 2.4.2,

assume that, under a given measure, the ith stock follows a process given by:

dS(i)
t = μ(i)

t S(i)
t dt +

n∑

j=1

σ(i, j)
t S(i)

t dWSB( j)
t , i = 1 : n (5.1)

Then, by Theorem 2.5.4, the price process of the derivative is given by:

dV(t) =



∂V
∂t

+
1
2

n∑

i=1

n∑

j=1

σ(i, j)
t S(i)

t S( j)
t

∂2V

∂S(i)
t ∂S

( j)
t




dt +

n∑

i=1



∂V

∂S(i)
t


 dS(i)

t (5.2)

= L(V) dt +
n∑

i=1

Δs(i)
t dS(i)

t (5.3)

where L(•) is the standard two-dimensional pricing operator and Δs(i)
t is the delta of the

ith stock derivative, as defined in Section 2.6.3.

5.2 Self-financing Replicating Portfolio and Black-Scholes Equation with Collateral

To replicate the derivative, consider a self-financing replicating portfolio whose value, at

each time t, is denoted by Πt and determined by the following components:
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• A cash amount, denoted by γt, split among the following accounts:

– Collateral account, denoted by Ct, corresponding to the amount of cash held

against the derivative at time t, with collateral rate denoted by rc(t).

– Amount V(t) − Ct (rest of the cash) that needs to be borrowed/lent unsecured

from the Treasury desk, at the short rate for unsecured funding rF(t).

– Amount Δs(i)
t S(i)

t that would need to be borrowed at the repo rate r(i)
R (t) to finance

the purchase of Δs(i)
t units of the ith underlying stock.

– Dividends paid by the ith stock at the rate r(i)
D .

• A holding of Δs(i)
t units of the ith underlying asset.

Then, the value of the replicating portfolio is given by:

V(t) = Πt = γt +

n∑

i=1

Δ(i)
t S(i)

t (5.4)

The growth of the total cash amount γt can be expressed as:

dγt =


 rc(t)Ct + rF(t)(V(t) − Ct) −

n∑

i=1

r(i)
R (t)Δ(i)

t S(i)
t +

n∑

i=1

r(i)
D (t)Δ(i)

t S(i)
t


 dt (5.5)

The self-financing condition requires:

dV(t) = dΠt = d


γt +

n∑

i=1

Δ(i)
t S(i)

t




= dγt +

n∑

i=1

Δ(i)
t dS(i)

t (5.6)

= L(V) dt +
n∑

i=1

Δ(i)
t S(i)

t (5.7)
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which implies

L(V) dt = dγt

=


 rc(t)Ct + rF(t)(V(t) − Ct) −

n∑

i=1

r(i)
R (t)Δ(i)

t S(i)
t +

n∑

i=1

r(i)
D (t)Δ(i)

t S(i)
t


 dt

=


 rc(t)Ct + rF(t)(V(t) − Ct) −

n∑

i=1

(r(i)
R (t) − r(i)

R (t))Δs(i)
t S(i)

t


 dt (5.8)

and, hence,

L(V) = rc(t)Ct + rF(t)[V(t) − Ct] −
n∑

i=1

[
r(i)

R (t) − r(i)
D (t)

]
Δs(i)

t S(i)
t (5.9)

Rearranging this equation yields:

L(V) +
n∑

i=1

[
r(i)

R (t) − r(i)
D (t)

]
Δs(i)

t S(i)
t = rF(t)V(t) − [rF(t) − rc(t)] Ct (5.10)

5.3 Derivative Pricing Framework with Collateralization

Theorem 5.3.1. Let V(t) , V(t,St), t ≥ 0, be the price of a collateralized derivative with a series

of underlying assets denoted by St = (S(1)
t , . . . , S

(n)
t )T ∈ Rn , at each time t. Suppose that, under

the risk-neutral world probability measure (Q-measure), the ith stock follows the process given

by Equation (5.1) and the collateralized derivative follows the process given by Equation (5.2) or

Equation (5.3). Suppose it is possible to construct the self-financing replicating portfolio given by

Equation (5.4) under the cash account growth and self-financing conditions given by Equations

(5.5) and (5.6). Consider the discounting process notation stated in Definition 2.5.5.
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Then, under the specified conditions, the unique solution V(t) to Equation (5.10) admits the

following representation:

VC(t) = EQ
t




∫ T

t

1

Φ rF(t)
t,s

[(rF(s) − rc(s)) Cs] ds +
1

Φ rF(t)
t,T

V(T)


 (5.11)

in the measure Q in which the ith underlying stock grows at a rate μ(i)(t) = r(i)
s (t) , r(i)

R (t) − r(i)
D (t),

where V(T) is the payoff of the derivative at a given future time T, and with discounting process in

the short rate for unsecured funding rF(t).

Proof. Consider the equation:

L(V) +
n∑

i=1

[
r(i)

R (t) − r(i)
D (t)

]
Δs(i)

t S(i)
t = rF(t)V(t) − [rF(t) − rc(t)] Ct (5.12)

Clearly, this is the generalized Black-Scholes-Merton differential equation stated in The-

orem 2.5.6 with Θt =
∑n

i=1

[
r(i)

R (t) − r(i)
D (t)

]
S(i)

t , ∂V
∂S(i)

t

= Δs(i)
t , q(t, x) = rF(t), and g(t, x) =

[rF(t) − rc(t)] Ct, subject to the terminal condition V(T, x) = V(T).

Thus, by Theorem 2.5.6, the unique solution to the PDE can be written as:

VC(t) = EQ
t




∫ T

t

1

Φ rF(t)
t,s

[(rF(s) − rc(s)) Cs] ds +
1

Φ rF(t)
t,T

V(T)


 (5.13)

in the measure Q in which the ith underlying stock grows at a rate μ(i)(t) = r(i)
s (t) ,

r(i)
R (t)− r(i)

D (t). Again, as it was the case in Section 3.1, note that the solution is independent

of the series of repo rates of the underlying assets or the interest rates at which each of the

underlying assets pays dividends. �
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