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ABSTRACT

A set tiles the integers if and only if the integers can betemitas a disjoint union of translates of
that set. Counterexamples based on finite Abelian groups 8tai Fuglede conjecture is false in
high dimensions. A solution for the Fuglede conjecturg ior all the group< y would provide a
solution for the Fuglede conjecture i Focusing on tiles in dimension one, we will concentrate
on the analysis of tiles in the finite groups,. Based on the Coven- Meyerowitz conjecture, it has
been proved that if any spectral setdrsatisfies the the Coven-Meyerowitz properties, then every
spectral set iR is a tile. We will present some of the main results relateahteger tiles and give

a self-contained description of the theory with detailealybs.
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CHAPTER 1: INTRODUCTION

In 1974 [5], Bent Fuglede was working on a problem posed byaGegemming from quantum
mechanics: given a domain in R", under what conditions are thecemmutingself-adjoint ex-
tensions of the differential operatopséa%,j = 1,...,n, on the Hilbert spacé&?(2)? Fuglede
found a solution to this problem and proved that such conmgutixtension exist if and only if
there exists a discrete subgebf R" with the property that the set of corresponding exponestial
{e?™* e . X € A} forms an orthogonal basis fd@”(2). Such sets, that have a orthogonal basis of

exponentials, are now callesgpectral sets

Definition For\inR", denotery(z) = ¢*™**, 1 € R". Let() be a bounded Lebesgue measurable
set, of non-zero measure. The $eis called aspectral seif there exists a set in R" with the
property that

{ex: A €A}

forms an orthogonal basis fd@r (Q2). In this case\ is called aspectrundfor €.

In the same paper, in an effort to give a geometric descripifcthe spectral condition, Fuglede

proposed the following conjecture, which is now known asgiéde’s conjecture”:

Conjecture 1.0.1[5] Let €2 be a bounded measurable susbeRbdf of non-zero measure. Théh

is a spectral set if and only { tiles R" by translation.

Definition We denote by A|, the Lebesgue measure of a subdeaif R". Let () be a Lebesgue
measurable subset Bf*. We say thaf tiles R" by translationsf there exists a se€f in R" such
that (2 + t);c7 is a partition ofR™ up to measure zero, i.8(2+¢) N (2 +¢')| = 0forall t # ¢’
in 7 and|R™ \ User (2 +¢)| = 0.



Recently, Terrence Tao [13] gave a counterexample to dispitte conjecture od > 5. It was
eventually shown that the conjecture is false in both dioestond > 3 [7, 4, 10, 8]. All these
counterexamples are based on the study of the Fuglede turgjean finite Abelian groups and
also on the integer lattice. At this moment, the Fugledeexdnye is still open in both directions

in dimension one and two.

The Fuglede conjecture can be easily formulated in the largetext of locally compact Abelian

groups.

Definition Let G be a locally compact Abelian group andits dual group. Left) be a subset of
G of finite, non-zero Haar measure. A set” G is called aspectrumof Q2 C G if the characters
{A}.ea form an orthonormal basis ih?(Q2). Q is called aspectral sebf G. Q is called a tile if

there exists diling set7 in G such that? & 7 = G (i.e. every element itz can be uniquely

written as sum of elements i and7, up to Haar measure zero ).

Conjecture 1.0.2 [The Fuglede conjecture fafr] Let G be a locally compact Abelian group. A

measurable subsét of G is spectral if and only if it is a tile.

The groups that reveceived most of the attentionRy& andZ, and their multidimensional

variants.

Following the work of Tao, Kolountzakis, Matolcsi et. al.ufkay and Lai [3] proved that a
solution for the Fuglede conjecture Ior all the group<Z 5 would provide a solution for the
Fuglede conjecture iR. In other words, if one proves the Fuglede conjecture fothaigroups
Zy that this implies the Fuglede conjecture fer This remains true also for one side of the
equivalence, so if one proves that every tile is spectrallitha groupsZ 5 then all the tiles are

spectral inR.



In this thesis we will focus on tiles in dimension one. It kmoy8, 2, 11] that every finite tile of
Z must have a periodic tiling set. This means that the studiying$ of the set of integers can be
immediately reduced to the study of tiling sets for the figiteupsZ . Thus, we will concentrate

on the analysis of tiles in the finite groiyy.

At this moment, probably the most promising approach forahalysis of tiles irZ y is through
the work of Coven and Meyerowitz [1]. They introduced twoeddgpic properties for finite sets

A C Z* U {0}. Definethe mask polynomialssociated tal,

A(z) = Z x.

a€A

Recall that the cyclotomic polynomidl,(x) is the minimal polynomial for the primitive’” root

of unity.

Definition Let A be a finite subset & U {0} and let
Sa={p”:pisaprimea > 1 an integer an@®,(z) dividesA(z)}.
We say thatA (or A(x)) satisfies the Coven-Meyerowitz property (CM-property)ifr) satisfies

(T1). #A = A(1) = [Les, @s(1).
(T2). If s1,---, s, € Sa, thend,, .. (x) dividesA(x).
Coven and Meyerowitz showed that all tiles Brmust satisfy (T1) and they satisfy (T2) if the

number of elements in the tiles contains at most 2 prime fact®hey proposed the following

conjecture:



Conjecture 1.0.3 The Coven-Meyerowitz conjecture Every finite til& satisfies the CM-property.

Moreover, the work of Coven and Meyerowitz [1], in conjuctiwith the work of Laba [9], tells

us that:

Theorem 1.0.4 (i)[1] If A C Z* U {0} satisfies the CM-property, thehis a tile of integers.

(iN[9] If A c Zz* U {0} satisfies the CM-property, thetis a spectral set of integers.

Using these results, Dutkay and Lai [3] proved that if the €weWeyerowitz conjecture is true,
then any tile is spectral iR and, if any spectral set i@ satisfies the CM-property, then every

spectral setifR is a tile.

The main results that we will describe in this thesis appe#né work of Coven and Meyerowitz
(cite their paper) and on Terrence Tao’s blog. We will préseself-contained description of the

theory with detailed proofs.



CHAPTER 2: PRELIMINARIES

2.1 Congruence Modulon

Definition If two numbers) andc have the property that their differenke c is integrally divisible
by a numbern, (i.e., (b — ¢)/m is an integer) theh andc are said to bec¢ongruent modulo n
The numbern is called the modulus, and the stateméris’congruent t@ (modulom)” is written
mathematically aé = ¢ (modm). If b — cis not integrally divisible byn, then it is said that?'is
not congruent te (modulom),” which is writtenb # ¢ (modm). The number: in the congruence
b = ¢ (modm) is called theresidueof b (modm). Theresidue classesf a functionf(z) modm
are all possible values of the residfier) (modm). For example, the residue classes:6{mod

6) are0, 1, 3, 4, since

0% = 0(mod6)
1? = 1(mod6)
2% = 4(mod6)
3? = 3(modo6)
4? = 4(mod6)
52 = 1(mod6)

are all the possible residues.

Definition The greatest common divisor, denoigetl of two numbersM and N is the largest
numberD such thatD|N and D|M. There is an efficient algorithm to compuie It can be

verified thatD is equal to the product aP? over all primesP that divide both) and N i times

5



(i.e. P'|N, P'|M but it's not the case thaP"!|N and P**!|M). Two integersm andn are
relatively primeif they share no common positive factors (divisors) excewhich is(m,n) = 1.

We say that\/ and N are co-prime ifycd(N, M) = 1. For example, ifP, @, R are distinct primes,
N = PQ?*R and M = Q*R thengcd(N, M) = Q?R. A set of integers is said to hgairwise

co-primeif a andb are co-prime for every paii, b) of different integers in it.

e If P and( are co-prime and botR|N andQ|N, thenPQ|N.

e If P|AB then eitherP|A or P|B.

Let Z denote the integers and letbe a fixed positive integer. We define a relation Drby

i = j(modn) if and only if n dividesi — j. A divides B, denotedA|B if there’s aK such that
KA = B. Here both the symbat and the (modh) are used to denote the relation. This is an
equivalence relation on the integers. Thus we obtain a alattoice for the equivalence class
representative. The factor set would 8], [1], [2], ..., [» — 2], [n — 1]} and by abuse of notation

we write this af0,1,2,....,n — 2,n — 1}.

Theorem 2.1.1letn be a positive integer. For alt, b,c € Z

1. a = a (modn)
2. a =b(modn) = b= a (modn)

3. a = b (modn) andb = ¢ (modn) = a = ¢ (modn).

Proof 1. a —a = 0andn|0, henceu = a (modn).

2. a = b (modn) means that — b = nk for somek € Z. Thereforep — a = —nk = n(—k);

henceb = a (modn).



3. If a = b (modn) andb = ¢ (modn), then

a—0b=nk

b—c=nk

Adding these two equations yields

a—c=n(k+k)

and saz = ¢ (modn).H

Theorem 2.1.21f a = b (modn) andc = d (modn), then

1. a+c=b+d(modn)

2. ac = bd (modn)

Proof 1. By the definition of congruence, there are integeasdt such that: — b = sn and

¢ — d = tn. Therefore adding + d to both sides of this equation, we get

at+c=b+d+n(s+1)

Hencea + ¢ = b + d (modn).



2. Using the fact that-bc + bc = 0 we have

ac—bd = ac+0—0bd (2.1)
= ac+ (—bc+bec) — bd
= cla—0b)+b(c—d)
= c(sn)+b(tn)

= n(cs+ bt)

and son|(ac — bd). Henceac = bd (modn). B

Definition Leta andn be integers witlw > 0. Thecongruence classf a modulon, denotedal,,

is the set of all integers that are congruent to a moduiice.,

la]l, = {z € Z|a — z = kn for somek € Z} (2.2)

A ring is a setR equipped with binary operations addition and multiplicatsatisfying the fol-

lowing eight axioms, called the ring axioms:

R is an Abelian group under addition, meaning:

1. (a+b)+c=a+ (b+c)foralla,b, cin R (+ is associative).
2. Thereis an element O iR such that: + 0 = a and0 + a = a (0 is the additive identity).

3. For eachu in R there exists in R such that + (a) = (a) + a = 0 (a is the additive inverse

of a).
4. a+b=">b+ aforallaandbin R (+is commutative).

8



R is a monoid under multiplication, meaning:

5 (axb)xc=ax(bxc)foralla,b, cin R (x isassociative).

6. Thereis anelement1iRsuchthat x 1 = a andl xa = a (1 is the multiplicative identity).

Multiplication distributes over addition:

7.ax (b+¢)=(axb)+ (axc)foralla,b,cin R (left distributivity).

8. (b+c¢)xa=(bxa)+ (cxa)foralla,b,cin R (right distributivity).

Theorem 2.1.3Zy = Z/NZ, the integers modul®/ whereN > 2and N € Z, with the operation

of addition and multiplication forms a ring.

A groupis an ordered paifG, *) wherex is a binary operation:

x:GxG—=>G

(a,b) > axb

that satisfies:

1. (Associativity)a * (b* c) = (a * b) x cforall a,b,c € G

2. (ldentity) There exists an element G suchthatx1 =1*xa=aforalla € G



3. (Inverses) For each € G, there exista ! € Gsuchthat ™' xa =e¢=axa .

We denoter* = a * - - - x a (k times). Asubgroupis a subsef/ of a groupG that is a group under

the multiplication inG (we'll write H < G).

The group isAbelian(also known agommutativeif a x b = b xa for all a,b € G. The size of a
groupG, denotedG|, is the number of elements in it. ARbelian groups a nonempty setl with

a binary operation- defined onA such that the following conditions hold:

1. (Associativity) for alla, b, c € A, we haven + (b+¢) = (a +b) + ¢;
2. (Commutativity) for alla,b € A, we haver + b = b + q;

3. (Existence of an additive identity) there exists an elaime= A such thab + a = « for all

a € A;

4. (Existence of additive inverses ) for eaclke A there exists an elementa € A such that

—a+a=0.

Theorem 2.1.41f m € Zy is prime withNV, then there exists, [ € Z such thatnk + NI = 1.

Proof LetG = {km + IN. k,l € Z}, thenG is a subgroup oZ. We need to prové& = dZ for
deZ.

Defined := min{g € G,g > 0}, thend € G andnd € g € G forn € Z. ThereforedZ C G. Let
g=kd+Ilwith0 <l <d-1,thenl =g — kd € G. Asd is the positive minimum iz, we get
that! = 0 andg = kd. HenceG C dZ andG = dZ. Letm = dk; and N = dk,, asm is prime
with N sod = +1. Asd is positive by definition sal = 1 andG = Z. Sincel € Z, we have
le Gandkm +IN =11

10



Theorem 2.1.5Let Z) be the set of elements ifiy that have a multiplication inverse. Then

Zy ={m € Zy : mis prime with N andZ} is a group with the operation of multiplication.

Proof First we will proveZy, = {m € Zy : mis prime with Ny. To show this we first will
show if there exists & € Z}, then{m € Zy : misprime withN}. Letm € Z}, thenm is
invertible, there exist a € Z such thaing = 1 mod /v, which means there existgac Z such that
mq—1 = EN. If dl/m andd|N, thend|(mq) andd|(kN). Therefored|(mq) andd|(mq—1) andd|1
which meangl = £1 and there is no other common divisor betweeandN, sogcd(m, N) = 1.
As Z7; is the set of elements By, som € Z3, C Z. Next we will show ifm € Zy andm is
prime with V, thenm € Z%,. Asm is prime with N, then by Theorem 2.1.4, there existy € Z
such thatmp + N¢g = 1. Hencemp = 1 mod N andm is invertible. Asm € Zy andm has a

multiplication inverse, we get € Z7.

Second we will showZ 7, is a group with the operation of multiplication. &S, have multiplication
inverse, leta € Z%, thena™ € Z§ anda x ™! = 1. If a,b € Z}, thena™!,b7! € Z% and

a x be Zy. ThereforeZy, is a group with the operation of multiplicatidi.

If there is an isomorphisnf : G — H, G and H are isomorphic, and we write¢' = H. Given
two groups(G, x) and (H, ®), a group isomorphism fromG, ) to (H,®) is a bijective group
homomorphism fronG to H. Spelled out, this means that a group isomorphism is a higect

function f : G — H such that for alk andv in G it holds thatf (u x v) = f(u) © f(v).

Theorem 2.1.6 Let N = p}'p5* ... pis wherep,, ..., ps are distinct prime numbersand, . .., r; >

0. Then the map

UiZy = ZyxZyaX-xZys, W(n) = (n mod pi',n mod py,...,n mod p;), forn e Zy

11



is a group isomorphism.

Proof Suppose: andn’ € Zy, thenn = n’ mod N andn’ = n mod N, soV is well defined and
is obvious a group morphism. We will prove is one-to-one, or equivalently, that is has a trivial
kernel(¥(z) = 0). Asn € Z o, if ¥(n) = 0thenn =0 mod p;* foralli € {1,...,s}, so

n = k;p;" and is divisible by alp}*. Since these primes are distinct it follows thas divisible by

their product which isV. Thereforef is one-to-ondll

Proposition 2.1.7 Let N = p;...p, be a square-free numbey;, ..., p, are primes. LetP =

{p1,...,ps}- Then

1. Any subgroup of],. Z, is of the form[[ ., Z,, whereP" is a subset of.

2. For any subgroug? of Z, there exists a subgroufi* such thatd ¢ H+ = Zy.

Proof Let H be a subgroup of[,.»Z,. Suppose: = (ai,...,as) is a non-zero element iff.
We can assume, to simplify notation, that~ 0. Thenpsps ... ps-a = (paps ... ps-a1, paps - . - Ps-
a2, ...,P2P3 ... Ps-Qs). ASINZ,, SOPaps ... s+ A2, ..., P2Ps3 ... Ps- as = 0...0. Since the primes
p; are distinct, the element := p, . ..p; - a; of Z,, cannot be zero, the order of beingp,. Thus
H contains the elemerib;, 0. .., 0) and this generates the entire subgr@ypx {0} x --- x {0}.
Thus if H contains an elemertt., . . ., as) with a; # 0 then the subgroug,, is contained inA.

This implies the first conclusion.

From the first part we see that any subgratipf Hpep Z, has a complement subgroup" =
[I,cp\prZp- By Theorem 2.1.6, the groupy andZ, x Z,r» x --- x Z,« are isomorphic.

Thereforapzl XZyra X - XL yrs has a completement subgroup and the second statementSdlow

12



Theorem 2.1.8 (Chinese remainder theorem) LEtand @) be two prime numbers (actually can
be also just co-prime) and |V = P(Q. Consider the following function fro@y to Zp x Zg:

f(X) = (X (mod P),X (mod Q)). We claim the following properties of this function:

1. f(-) preserves additionf (X + X') = f(X)+ f(X’). (In the right hand sid¢ (X ) + f(X")
means that we add the first element of both pairs rRoahd the second element mad

This follows from the fact that the modulo operation has phaperty.

2. f(-) preserves multiplicationy (X - X’) = f(X) - f(X'). Again, this follows from the fact

that the modulo operation has this property.

3. f(+) is one-to-one. Indeed, if there exist # X’ with f(X) = f(X’) thenf(X — X') =
(0,0). Which means thaP| X — X’ andQ|X — X’ which impliesPQ = N|X — X’ which

can’t happen for a number betweérand N — 1.
4. f(-)is onto. This follows from the fact thi | = |Zp| - |Zg|-

5. Note that the above properties also imply tlfias an isomorphism frordy, to Z}, x Zg,.

2.2 Fourier Transform

Definition Let f : Zx — C, the Fourier transform of is defined as the functioﬁ: Zy — C

Fik) = = 3 s, (ke zy)

TLEZN

(Note that the definition does not depend on the choice ofépeesentatives, n of elements in

Z n) The matrix of the Fourier transform is

<e27ri kW" ) )
]C,TLEZN

13
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Theorem 2.2.1 The Fourier transform is unitary.

Proof We are going to prove the matrix of the Fourier transform isaum. Clearly\/—lﬁ (62’”'%”)
kneZn
is a matrix withk is the row and: is the column. We are going to prove the rows are orthogonal.

Takek # k' inZy. Then

N
, N-1 R | 2i(k—k')
27 (k—k")-n . 27.(.Z~1€—1€, n . . e - 1 . ]_ - ]_ o
€ N - € N - omi k=K T k=K T opik=k = 0.
neZn — e2mTN - ] e?m N ] em N

Hence they are orthogonal and the matrix of the Fourier toamsis unitarylll

Theorem 2.2.2 (Fourier inversion formula) Leff : Zy — C and Ietf be its Fourier transform.

Then
1 (1) p—2mite
f(n) = o > flk)e N, (n€Zy).

keZn

Proof Since the Fourier transform is unitary, its inverse is isspose conjugailk.
Definition Let f: Zy — C, thenf(n) * g(n) = % > ,cz, f(n —k)g(k).
Theorem 2.2.3 f % g(n) = —= f(n)g(n)

Proof As Fourier transforms states thtk) = =D ez f(n)e*™'5 . (k € Zy). Then by the

definition of f x g, we have

m(”) = ﬁ Z f* g(k‘)e%ikTﬂ = \/Lﬁ % flk— m)g(m)e%iw

keZn



Letk — m =, then

2.2.1 Characters

Definition Let (G, +) be a finite Abelian group. A character 6his a functiony : G — T, where
T ={z € C: |z| = 1}, such thatp(z + y) = ¢(z)p(y) for all z,y € G. Clearly, if p is a

character, thep(0) = 1. The set of characters is denot@d

Proposition 2.2.4 The set of character§ is a group with the operation of pointwise multiplica-

tion. Any two distinct characters, ¢’ in G are orthogonal inL*(G), i.e.,

> elg)@(g) =0 (2.3)

geG

Proof Checking that is a group is trivial. To see that, ¢’ are orthogonal, take € G such that

¢(h) # ¢'(h). Then

D 0(@)@(9) = wlg+h)@(g+h) =)@ (1) > e(g)? (9)-

geG geqG geG

Sincep(h)g'(h) = w(h)/¢'(h) # 1, equation (2.3) followdl

Proposition 2.2.5 The characters of the group = Zy, x --- x Zy, are the maps of the form

king

- ksns
o, ng) = FCRS ) () ny) € G),

15



where(ky, ..., k,) is a fixed element ity. Therefore, for any finite Abelian grouﬁbis isomorphic

toG.

Proof Let ¢ be a character. Thep(1,0,...,0)" = (N - 1,0,...,0) = ¢(0) = 1. Therefore

©(1,0,...,0) is aroot of orderV of unity; hence there exists € Zy, such thaty(1,0,...,0) =

.k
2™~ . We can do the same thing for the other components and obtairy v, etc. The formula

for o follows directly from this.
For the converse, a simple check shows that any such map &actér or.

Since any finite Abelian group is of the forf, x --- x Zy,, the last statement is clellir.

Definition Let G be a finite Abelian group of cardinalitl]. For a functionf : G — C, the

Fourier transform off is the functionf: G—C

The matrix of the Fourier transform is

— (29 e

Theorem 2.2.6 The Fourier transform is a unitary transformation.

Proof From Proposition 2.2.4 we see that the rows of the matrix efRburier transform are

orthogonal. From Proposition 2.2.5, we see tHdtasN elements. Thus the matrix is unitelly.

Remark Let N = p,...p, wherep; are distinct primes and |t = [[°_, Z,,. From Proposition

k1ng +... ksns

2.2.5, we see that the charactersioére of the form(n,, ..., n,) — ) However,

16



we can also use the isomorphism in Theorem 2.1.6 to produmecters oG and in this way,

AIIfl(nl AAAAA n
N

any character od will be of the form (n,,...,n,) — e*™ S)'k, for somek € Zy, or

(N1, ..., m) > €™ N kS),forsome(kl,...,ks) €eq.

We can write the Fourier transform using both these forms nbte that we are making some
identificationsG isomorphic toG and is isomorphic t& . The problem is that under these
identifications the order in which the characters are ligtgght change and so the matrices of the
Fourier transforms might be different. They will be obtaiorh one another by some permutation.

Let us illustrate with one example.

TakeZg = Z, x Z3. The isomorphisml from Theorem 2.1.6 acts as follows: — (0,0),

1 (1,1),2+ (0,2),3 — (1,0),4 — (0,1),5 — (1,2).

When we write the Fourier transform using the gra@igpthe(k, n) entry will be (omitting the=>"
part) & If W(k) = (ki, k2), ¥(n) = (n1,n2), and we write the Fourier transform using the group
Z, x Z3, the corresponding entry will b@% + ’”—;‘2 The first rows and columns represent the

indices of the entries. Figure 2.1 shows the details.

Note that the matrices can be obtained from each other byutetion of rows or columns. This

shows also that if : Z, x Z3 — C thenfo U £ f/o\\Il where the first Fourier tranform is taken
using the groufZ ; x Z3 and the second Fourier tranform is using the grdgpindeed, for example

take f = x(0.2). Thenf o ¥ = x,. For Y, we use the first matrix and we haye(1) = 2§ and

for X(0.2) we use the second table and we hgyug,) (U(1)) = (0.2 (1, 1) = ¢*™s.
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01 2 3 4 5 (0,0) (1,1) (02) (1,00 (0,1) (1,2)
0o 0 0 0 0 0 (0,0) 0 0 0 0 0 0
11005 3 35 § 8 CRVN N N T T
210 § 50 % 3§ ©2| 0o § F 0 g 3
3/0 20 2 0 2 (1L.0)| © 3 0 3 0 3
410 § § 0 § % onjp o F § 0 F 3
510 5 5 5 & 3 w0 3§ F 5 § 3

Figure 2.1: Indices of Entries

2.3 Cyclotomic Polynomials

Definition Then-th cyclotomic polynomiails

©,(z) = [[{(z — w) : wis a primitiven-th root of 1inC} = 1T (z — 2™n),
1<k<n,k prime ton

By definition the cyclotomic polynomiab,,(x) is a polynomial overC but we will see that it

actually has integer coefficients. It is clear thgtx) is @ monic polynomial (i.e., is a polynomial
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Cn™ 12" - - e + 12 + ¢ in Which the leading coefficient, is equal to 1) of degree
»(n) whereyp is the Euler totient function that counts how many numbevgth 1 < k£ < n are

relatively prime ton.

Note the factorization

at—1= H {(x — w) : wis ann-th root of 1} = H (z — €2™n)
1<k<n,k pPrime ton

=[I1I{(z-w):wisaprimitived-th root of 1} = [ ®a(x).
d| din

This relation can be used to computg(x) recursively, by induction.

For example whem = 1, to make surel|n, we haved = 1,s0®,(z) = =z — 1. Whenn = 2,
thend = 1,2, s0®,(z)Py(7) = 2> — 1 50Py(z) = 2 + 1. Whenn = 3,d = 1,3,s02> — 1 =
Dy (x)P3(x) SOP3(x) = z* + z + 1. Similarly whenn = 4, d = 1,2,4, then®y(z) = 2 + 1,

O5(z) =a* + 2 + 22 + 2 + 1, etc.

Proposition 2.3.1 For all n, the cyclotomic polynomiab,, () is a monic polynomial with integer

coefficients of degreg(n).

Proof We just have to show thak, (z) has integer coefficients. We will proceed by induction.
Whenn = 1, we haved, (z) = = — 21 (k is prime to J = = — 1. Whend < n, fix n > 1 and

let f(x) be a monic polynomial with integer coefficients with

f@)= ] @ala).

dln,d<n
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Then we have

[[2a@)=2"—1=2,(2) [] Qulz)=Tun(z)f(x).
dln

d|n,d<n
As [ ], ®a(z) and f(z) are both monic polynomial with integer coefficients, to shéw(z) is

also monic polynomial with integer coefficients, we will ube following lemma:

Lemma2.3.2LetP(z) = 2" +a, 12"+ +ag, Q(z) = 2™ + b, 1™+ - -+ by. Suppose

Q(x) and P(z) - Q(x) have integer coefficients. Thét{z) has integer coefficients.

Proof For convenience, let, = 1, b,, = 1 anda, = 0 for k > n, by, = 0 for & > m. We write

the coefficients fo?(z) - Q(z) = 2™ + ¢y 1 2™ L+ -+ 4 ¢t
Cm+4n—1 = anbm—l + an—lbmu

Cm4n—2 = anbm72 + anflbmfl + an72bm7

SupposeP(z) does not have integer coefficients. lkebe the largest index such that is not an
integer. In the equations above, look at the first tupeappears. let — [ = k, thenc,,,,,_; =
b1+ an 1011+ -+ an_iby. ASh,, = 1, we haver,, = ar by +ak 1o+ -+
ay. Because > kfori € {k+1,...,k+ [}, so all thea;’s will be integers. Since all the’s and

all thed;’s are integers, we have, must be integers. Therefor&(x) has integer coefficien®.

By Lemma 2.3.2®,,(x) has integer coefficients and it's a monic polynomial witleger coeffi-

cients of degree(n).l

Definition For eacha € Zy, we define the equivalence classwfdenoted by« to be the set
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la]| = {z € S|z = y modn}.
Lemma 2.3.3 The following statements are equivalent:

1. ¢,(x) isirreducible.

2. Letw be a primitiven-th root of unity inC and let f be the minimal polynomial @§ over
Q, i.e., the monic polynomial ové€} of lowest degree that hasas a root. Ifp is a prime not

dividingn thenw? is a root of f.

3. Letw be a primitiven-th root of unity inC and let f be a minimal polynomial af overQ.

If  is relatively prime ta: thenw” is a root of f.

Proof (1) implies (2): Sinced,(z) = [[{(x — w) : wis a primitiven-th root of 1}, we have
®,(w) = 0. As f is the minimal polynomial ofv over Q, it follows that f(z) divides ®,,(x).
But since®,,(z) is irreducible, we get,(z) = f(z). If pis prime ton andw = ¢*"ix, then
wP = 275 As bothk andp are prime ton, we havepk is prime ton andw? is a primitiven-th

root of unity. Sof (w?) = &, (w?) = 0.

(2) implies (3). Letr be relatively prime ta: andr have a prime decomposition= pips ..., pr_1
containing only primes that do not divide Asw is a primitiven-th root of unity inC and f is the

minimal polynomial ofw over Q, then applying (2) repeatedly, we obtain thfgt?1r2-Pr-1) =

Jwr) =0,

(3) implies (1): Sinceb, (w) = 0 it follows that f(z) divides®, (). As f(w") = f(e2™%) = 0,
so f(x) is divisible byz — 2™ for all » prime ton. So f(z) is divisible by®,,(z). Therefore
O, (z) = f(z). If f(x) = ,(x) = g(x)h(x) for some polynomialg, h of degree at least 1, then
one of them, say hasw as a root, which contradicts the minimality 6f Therefored, (x) is

irreduciblel
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Theorem 2.3.4 (Fermat’s Little Theorem) Ip is a prime number, then for any integerthe num-
ber a? — a is an integer multiple op. In the notation of modular arithmetic, this is expressed as
a? = a (mod p). For example, iti = 2 andp = 7, 27 = 128, and128 — 2 = 7 x 18 is an integer
multiple of 7. Ifa is not divisible byp, Theorem 2.3.4 is equivalent to the statement &at — 1

is an integer multiple of: a?~! = 1 (mod p). For example, itz = 2 andp = 7, 2° = 64, and

64—-—1=63="7x9.

Lemma 2.3.5 (Gauss’ lemma) A polynomial(z) is called primitive if the greatest common divi-

sor of its coefficients is 1.

1. The product of primitive polynomials is primitive.

2. LetP(x) be a polynomial oveZ. ThenP(z) is irreducible overZ iff P(x) is irreducible

overQ.

Proof (1) Let f(z) = ana™ + -+ - + ap andg(x) = b, 2™ + - - - + by be primitive polynomials and
let P(x) = f(z)g(x) = chpmax™™ + -+ - + co. We are going to show? () is primitive. Letp be a
prime number, thep cannot divide all the coefficients gf(z). Letr be the largest number that

does not divide:,.. Similarly, lets be the largest number such thatoes not dividé,. We have

Cris = E Clibj.

i+j=r+s

In this sum, we have the termb, which is not divisible by and for all the other terms eithér> r
or j > s soa,b; is divisible byp. Thereforec,, ; is not divisible byp and, sincep is an arbitrary
prime, it follows that the greatest common divisor of thefioients of P(x) is 1. ThereforeP(x)

is primitive.
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(2) We will prove by contradiction. First we will show iP(x) is irreducible oveiZ, then it is
irreducible over)). Suppose’(z) is reducible over), P(x) = f(z)g(x) = $5/19:. We can write

P(z) =ePi(z), f(z) = § fi(x), g(x) = G91(x) with P, f1, g1 primitive ande € Z, a,b,c,d € Z.

ThenP(x) = ePy(x) = 75 fig1, by (1) we havef,(z)g:(x) is primitive overZ. To showP(z) is

reducible oveZ, we need to show: = e by the following lemma:

Lemma 2.3.6 If LP(z) = 1Q(x) with P(z) andQ(z) primitive overZ, thenL = L or

.

I orlt
k n

Bl

Proof Let P(z) = p,a™ + --- + po and Q(z) = ¢,2™ + --- + q. We havei—’;.pi = g, for
i € {0,...,n}. Since the greatest common divisor of {his is 1, there exist numbers,, ..., m,
such thatngpg + - - - + m,p, = 1. Multiplying the previous equations by, and adding we obtain

]l.—ﬁ = qomo + - - - + g.m,, € Z. By sSymmetry we have alsﬁf e’Z. Therefore]l.—ﬁ e{l,—-1}.1

As e € Z and can be written id, so P(z) = eP;(z) = efig: of —e fig; Which impliesP(z) is
reducible oveZ. By contradiction,P(x) is irreducible oveQ if P(x) is irreducible oveZ. Next
we will show if P(x) is irreducible over, then itis irreducible oveZ. SupposeP(zx) is reducible
overZ, letp(x) = f(z)g(x) wheref, g € Z, thenp(z) = f(z)g(x) wheref, g € Q because every
integer can be written ify wherea, b € Z. By contradiction,P(x) is irreducible oveZ if P(x) is

irreducible oveQ.H

Theorem 2.3.7 ®,,(x) is irreducible overQ. It is the minimal polynomial of every primitiveth

root of unity.

Proof Supposeb, () is reducible thatd,,(x) = f(x)g(z) with f,g € Z[z] and f is irreducible.
Letw be aroot off in C, thusw is a root of®,, so it is a primitiven-th root of unity andf is the
minimal polynomial ofw overQ. Letp be a prime not dividing,, if we can showw? is a root of f

wherep is a prime not dividing:, by Lemma 2.3.3¢,,(x) is irreducible oveZ.
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To showw? is a root of f, we will do by contradiction. Supposé is not a root off. Then, asv
is a root of®,, andp is a prime,we have? is a root of®,,. Thereforev” must be a root of, or,
equivalentlyw is a root ofg(z?). Then®,, dividesg(z?). Sincef is the minimal polynomial of
®,,, it follows that f dividesg(z?). If we reduce all the polynomials modulg then we getf ()

dividesg(z?). Next lemma will show thag(z?) = (g(x))P.

Lemma 2.3.8In Z, we have(x + y)? = z? + y?. This implies thag(z?) = (g(x))*.

Proof (z+y)? = 2P +Ca?~'y+- - -+CP " xy?~' +yP.The binomial coefficients are far< k < p:

p p—k)! pp-1)...(p—k+1)
L k! 1-2...k i

Sincep is a prime and none of the terms in the denominétor. . k) dividesp except 1, however
the numeratofp(p — 1)...(p — k + 1)) dividesp. So the binomial coefficients are divisible by
p. Therefore inZ, the only terms that remain in the binomial formula afe+ y?. Let §(z) =

ap + a1x + - - - + a,x", then
g(x)? = (ap + a1z + - - + apz™)? = af + ala? + - - - + aba™
By Theorem 2.3.4¢” = a modp, we have
g@)P =ab+afaP + -+ dba™ = ag + aa” + -+ + a2 = g(aP)
. Thereforeg(z)? = g(z7).1
Returning to the proof of the theorem we obtain thiadivides (§(x))? which implies f(z) and
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§(z) have a common factof, with deg(f,) > 1 overZ,. As @, (x) dividesz™ — 1 so
a" = 1= f(x)g(x) = fi - k(z) (2.4)

By derivation,

nz" ™t =2f,  k(z) + f12 K (2) = f1(2k(x) + fr - K (2)) (2.5)

Thereforef, |(z” — 1) and f;|(nz""1). Thenf;|(n(z" — 1)) and f;|(nz"'z), subtract each other
we getf;|n. This showsf; is a constant polynomial, which contradicts tHay(f;) > 1. Hence
wP is aroot off, Lemma 2.3.3 implie®,,(x) is the minimal polynomial o, (w) = 0 and®,,(x)

is irreducible oveZ. By Lemma 2.3.5 (2) we get that,(x) is irreducible over).l

Proposition 2.3.9 Let p be a prime.

1. A polynomialP(z) € Z[z] is divisible by®(z) if and only if P(w) = 0 for a primitive s-th
root of unityw.

2. 14+ax+- a7l = [Tis1 45 Pe().

(a3

3. P,(z)=1+a+ - +aPtandPpas1(z) = Dp(a?”).

4.
0 ifs=1
(1) =14 ¢ if sisapower of aprime
1 otherwise.
S.
D,5(x) if p is a factor ofs

Oy (2P) =
Oy (z)P,s(x) if pis not a factors.
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6. If s andt are relatively prime, the®,(z*) =[] |, ®.s(2).

7«|t rs

7. If A(x) is an integer polynomial and(z) = A(z”), then
{t : ®,(x) dividesA(x)} = {s": ®,(x) dividesA(x)} U {ps : ®,(z) dividesA(z)}

wheres’ = ps or s according top is or is not a factor of.

Proof (1) First let’s show ifP(w) = 0 for a primitive s-th root of unityw, thenP(z) is divisible
by ®,(x). Let P(z) = Q(x)Ps(z) + R(x) whereQ(z) and R(x) have integer coefficients with
deg(R) < deg(®y). As P(w) = 0, it follows Q(w)®,(w) + R(w) = 0. As &4(w) = 0, it follows
R(w) = 0, so by minimal polynomialR(z) = 0 and P(z) = Q(x)®(z), which indicatesP(z)
is divisible by ®,(x). Next we will show if P(x) is divisible by ®,(z), then P(w) = 0 for a
primitive s-th root of unityw. SinceP(z) is divisible by®,(z), we haveP(x) = Q(z)®,(z) and
P(w) = Q(w)Ps(w). As P4 (w) = 0, it follows P(w) = 0.

(2) As we know[ ], @;(z) = 2° =1 = (v — )(1 +z +---+2°" ") and®, () = = — 1, then

[y, 20(2) -~
Ht>1,t|sq)t(x): gl(;) =(14+xz+--+=x 1)

(3) As[1,, ®a(z) = 2 — 1 wherep is a prime, the[ [, ®a(z) = P1(z)Py(x). As Pi(z) =

r—1s50®,(z) = 2= = 142+ -+ 2" To prove®,.n(z) = &,(2F") we have

Oy () [I1 ®pe(z) = [Tgjpess @s(z) = -1 = (z— 1)@+ ...+ 2 + 1) where

O(z) =2 — 1,801+ x4+ 2?7 = [[1H Opu(z) = Bp(2) D2 () . .. Bpa () Dpasi () SO

a+171 a+171

1_|_x_|_..._|_xp _1_|_x_|_..._|_xp
Dp(2)Pp2 (1) ... Ppa(x) 14 a4+ P!

D at1 (l‘) =

p

1 P 2% L. (r=1p*\ (1 Pl o o o a
G +1+;f. .+32;Sa1rx+ T ) g gl = Op(2")
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(4) Whens = 1, &;(z) = 2 —1and®,(1) = 1 —1 = 0. Whens is a power of a prime
¢, ®,(1) = 1+ 1+ ---4+ 17" = g and according to (3)P,+(1) = d,(19 ") = &, (1) = q.
Whens is otherwise, or has at least two primes in its decompositi@nproceed by induction on

the length of the prime decomposition. From (2), letting= 1 we haves = [],.,,, ®:(1) =

()= prime powets (1) ]l-a product of at least two prim,asq’t(l)-

Suppose all the otheis have a shorter prime decomposition that1) = 1, then

1T ®,(1) = 1.

+= a product of at least two primgs

Let s have a prime decomposition that= pi' ...pl", SO

n Tj n Tj

I e=T11%«0=TITI#=11 ==

t= prime poweys j=11=1 j=11=1
Therefore the product igb,(1) = s andd,(1) = 1.

(5) As w is the root ofd,(z), thenw!/? = 62’”'% is the root of®,(x?) wherek is relatively

2mi ke

prime tos ande™™'»: is the root of®,,(z) wherek is relatively prime tops. If p is a factor of

2m

s, thenk is relatively prime tops which indicatesv!/? = e i is the root of®,(x). Therefore

O, (2P) = Dps().

If p is not a factor ofs, then we have two cases: eithiers prime tops or k is a multiple ofp,
k = pr with r prime tos. If k is prime tops, we have the above result &g(z?) = ©,,(x); If kis
a multiple ofp, thenk is prime tos which implieSeQT”f is the root ofd,(x) andr prime tos which
indicates(e?™%)? is the root of®,(x?). Henced,(2?) = ®,(x) and®,(2?) has the same roots as

O (2)Dps ().
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(6) Lett = p;...pmpmse1 Where some of the primes can be repeated. We have from (8g tsin

ands are relatively prime:

D (a') = Dy(aPr-Pmet) = O ((aPrPm)Pmet) = Dy (P Pm) By, s (P PM)

- H CI)TS(x) H @TPmHS(x): H qus(fE):H(I),«S(I‘)

rp1...om rp1...om rp1...Pm+1 rlt

(7) First we will show if®,(x) divides A(z), thent = s or ps and ®,(z) divides A(x?). Let
w = e/t thenw? = €27 = ¢2™{ is a primitive s-th root of unity for somes. From (5), if
p is a factor ofs and ®,(2?) = @,,(x), then®,,(w) = 0 and sinced,(w) = 0 it follows that
t =ps =¢,s0t € {s,ps} = {ps}. If pis not a factor ofs thend,(w) = 0 or ¢,,(w) = 0
sot €= {s',ps}t{s,ps}. As ®,(x)|A(z), we haved(w;,) = 0 and A(w?) = 0 wherew! = vt
Henced, (z)|A(z).

Next we will show if ®,(x) divides A(z) then ®,(z) divides A(z) for s = ¢ or ps = t. Let
w = e*™/% ands be such tha®,(z)|A(z), thenA(w) = A(e?™/*) = 0. ThereforeA(e?™/7%) = 0
implies A(e2™P/P) = 0. If p is a factor ofs, we haved,,(e2™/7*)| A(e2™/P*) andps = {t :
®,(z)|A(z)}. Henced,(z)|A(z). If pis not a factor ofs, thene? /s is a primitive s-th root of
1. As® (x)|A(z) andd,(w) = 0, we haved,(w?) = 0 and A(wP) = A(e>™?/*) = 0. Therefore
A(e?™/%) = 0 and®,(z)|A(z) which impliess = t : {t : ®,(z)|A(x)}. Hence the statement

follows.
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CHAPTER 3: TILING RESULT

3.1 Basic Properties

Definition Let G = (G, +) be a finite additive group, Alling pair is a pair of non-empty subsets
A, B such that every element 6f can be written in exactly one way as a sum of an element of
of A and an element df of B, in which case we can writ€' = A ® B. The setsd, B are then

calledtiles, with B be acomplementary tiléo A and vice versa.

Let A@ B = Zy be atiling pair for a cyclic groug y of cyclic order. Observe that the relationship

1 ifzeA
A® B = Zy can be rewritten as, * 15 = 1 wherel,(z) = Then it is obvious

0 ifzgA
for the cardinality identity

[AllBl = N (3.1)

In particular,| A| and|B| are divisors ofV, and thus are products of disjoint sets of prime factors

of V.

For A and B sets or multi-sets of integers, we denote the multi{set b : « € A,b € B} by
A+ B. We write A ® B when every element can be expressed uniquelyb. For k an integer,
we writek A for {ka : a € A}, we call{k} @ A as atranslateof A, and wherk is a factor of every

a € A, wewriteA/k for {a/k :a € A}.

Proposition 3.1.1 SupposeV be a positive integer and, B are multi-sets of nonnegative inte-

gers. LetA(x) = > ., 2%, we have# A = A(1). The following statements are equivalent:

1. A® (B®&NZ) =2
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2. A @ B is a complete set of representativesZgf; in other wordsA & B = Zy, where

addition is understood modulty.
3. A@)B(x) =14z + -+ 2V mod (2 —1).

4. A(1)B(1) = N and for every factot > 1 of N, the cyclotomic polynomiab,(x) divides
A(x) or B(z).

Proof (1) implies (2) istrivial. AsA® (B&NZ) = (A@B)®NZ = Z,soA® B is the complete

set of all the elements modulty which meansid & B is a complete set of representativeZaf.

(2) implies (3). For every: € {0,..., N — 1} there exists a unique, € A, by € B andm,;, € Z
such thate = ay + b, + Nmy. Sincer = 1 mod (zV — 1), by inductionz™ — 1 = (2 —

1) (zm=ON 4 pm=2N ... 1 1), s02™ =1 mod (zV — 1) we have

2
L

E = E x“k+bk+Nmk mod (zV —1) =Y aF.

acA,beB

i}
o

ThereforeA(z)B(z) = Yor, «* mod (2N — 1).

(3) implies (4). From (3) we havé(z) B(z) = p(z)(z™ —1)+(1+z+- - -+2V ') for some integer
polynomialp(z). ThenA(1)B(1) = p(1) (1Y =1)+(1+1+---+1V" ) =141+ - 41V 1 = N,
For every factot > 1 of NV, the cyclotomic polynomiab;(z) dividesl + = + - - - + 2V ~L. Since

®,(x) is irreducible it must divide eithed(x) or B(z).

(4) implies (3). The hypothesis implies thd{x)B(z) is divisible by the product of alb,(z)
with ¢t > 1 factor of N. So it is divisible byl + z + --- + z¥~1. We have alsoi(z)B(z) =
p(x)(z™ — 1) + q(x) for some integer polynomiajgr), ¢(z) with deg(q) < N. Sinceq(x) has to
be divisible byl +z+- - -+ 2"V lit follows thatq(x) = ¢(1+ 2+ - - +2¥~1) wherec is constant.
SinceA(1)B(1) = ¢(1) = N, we haveN = ¢(1) = ¢(1 + 1+ --- + 1¥~1) = ¢N, which implies
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c=1landg(x) =1+z+---+2V 1 Henced(z)B(z) — (1+z+-- -+ 2V 1) = p(x) (=" - 1)
andA(z)B(z) =1+ +---+2¥1 mod (2 —1).

(3) implies (2). We have

l+az+---42V"'=A(x)B(x) = Z 20Tt = Z ot med N mod (2N — 1),
a€AbEB a€AbEB

This impliesthatd B =Zy .1

Remark For a subset of , the Fourier transform of the characteristic functiondat related to

the polynomialA(x) that corresponds td by the formula

Ta(k) = \/LNA(W%), (k€ Zy). (3.2)

SoT4(k) = 0if and only if A(e2™~) = 0. If ¢2™~ is a primitives-th root of unity, which means
that% = é with [ ands co-prime, therfA(k) = 0 if and only if the cyclotomic polynomiab,(z)

dividesA(x).

For A, B, which A & B = Zy, there is a physical space separation property
(A—A)n(B—-DB)={0} (3.3)

If two non-empty subsetd, B of Zy obey both 3.1 and 3.3, then they must be a tiling pair, since

the sums inA + B are disjoint and have the same cardinalityas

Now we use Fourier analysis to get more structural inforamatAs1 4+1 5 = 1, we havel , * 15 =
1 1 1 2mikn «/_Nﬁ n=0
Lwherel(n) = =>4, 1(k)e™ N =

0 otherwise

Thereforel , « 1z = L1415 =
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. VN  n=0
I(n) =

0 otherwise

Hencel(k)1p(k) = N1x. Note that wherk = 0 ,this case of identity is (3.1). The remaining

cases of this identity can be reformulated equivalently @squency space separation property

supp(14) N supp(1p) = {0} (3.4)

where suppl,) := {k € Zy : 14(k) # 0} is the support ofi ;. Conversely, ifA, B obey both
(3.4) and (3.1), then the above argument showsAhatB = Z .

Proposition 3.1.2 The following statements are equivalent

1. A¢ B =2Zy.
2. 1A*1le(in ZN)
3. |A[-|B| = N and(A— A) N (B — B) = {0}.

4. |A| - |B| = N and the supports of the Fourier transforms satisfies thefahg relation

supp 14 Nsupp 15 = {0}.

Proof (2) is just a reformulation of (1).

(1) implies (3). Sinced® B = Z it follows that| A|-|B| = N. Toshow(A—A)N(B—B) = {0},
we will do by contradiction. Supposel — A)N (B — B) = {k},sok € A— Aandk € B— B and
there exista, a’ € Aandb,t’ € Bsuchthatt =a—a =b—¥. Thisimpliesa —a’ = b— b then

a+b = d'+bsoa = a’ andb = b’ withk = a—a’ = b—b" = 0. Thereforg A—A)N(B—B) = {0}.
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(3) implies (1). The map fromd x B to Zy defined by(a,b) = a + b can be checked to be
one-to-one from the hypothesis. Since the two sets havathe sardinalityV, it follows that this

map is also onto. This implies (1).

(2) implies (4). As|A| - |B| = N is obvious so we only need to shewpp 14 Nsupp 15 = {0}.
We will show by contradiction. Supposepp 1,4 Nsupp 15 = {k}. By the definition ofsupp 14
we havel (k) # 0 # 1g(k). This implies1,(k)15(k) # 0. By Fourier transform and we
obtainedl 4(k)15(k) = N1, S014(k)15(k) = N1, # 0 which impliesk = 0. This gives

supp 14 Nsupp 15 = {0}.

(4) implies (2). From the hypothesis we get tﬁal(k)TB(k) = N1,—;. Taking the inverse of
the Fourier transform , we get thefN1, « 15 = 14(k)1p(k) = Nlj_ = Nﬁi Therefore

laxlg=1 (|n ZN).

Definition Let us call two elements, b of Z equivalenif one hasea = mb for somem co-prime

to NV (or equivalently, if(a, N) = (b, N)).

Lemma 3.1.3 supp(1.4) and supp(15) are unions of equivalence classes, with being the only

equivalence class in common.

Proof First we will showsupp(14) andsupp(1z) are unions of equivalence classes.stgp(1,) :=
{k € Zy : 14(k) # 0}, if we can find somen is co-prime taV such thak = mk,, wherek, € Z
and(k, N) = (k, N), then to showsupp(1,) is the union of equivalence class, we only need to
show thati 4 (k) # 0 if and only if 14(km) # 0. To showl 4 (k) # 0 if and only if 1 4(km) # 0,

we will show1 4(k) = 0 if and only if 1 4(km) = 0.

Firstwe will showif1,(k) = 0, thenl s(mk) = 0. Letw = e*™/", sincel 4 (k) = = 37,y wh =

ﬁ S ea €5 =0, we haveA(e?™x) = 0. Suppose>™~ is primitive s-th root of 1 and® =1
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wherel, s are coprime. TheA™ =  wherelm ands are coprime. Hencé,(¢*™+') = 0 and
O, (z)|A(z) imply A(e2m%) = 0, then—= > 4 2t = () implies 7= 3", 2t Hence
iA(km) = 0.

Next we will show if1,4(mk) = 0, theni (k) = 0. Letm, N be coprime, them is invertible in
Z , so there exists Ac Z such thatn! = 1 mod N. Sincel 4 (km) = 0 impliesi,(kim) = 0,

we havel 4 (k) = 0. it is the same to showupp(1p) is unions of equivalence classes.

Second we will showupp 1,4 Nsupp 15 = {0}. By Proposition 3.1.2, the statement folloflis.

Remark One can also obtain the above lemma from the theory of cy@lat@olynomials and
unique factorisation, noting that the product of the getiegegpolynomialsy ° _, 2" and)_ . 2"
form a multiple of(:N —1)/(z — 1) = [T, ®x(2), and that each cyclotomic polynomid}, is

irreducible and has zeroes corresponding to a single dguisaclass iz .

Corollary 3.1.4 (strong physical space separation) The sets— A) \ {0} and (B — B) \ {0}
lie in disjoint equivalence classes; thus any non-zeroegjance class may contain an element of

A — A oran element oB — B, but not both.

Proof We will prove this by contradiction. Suppose any non-zenaence classes may contain
an element ol — A andB — B, letx be this non-zero element, soc A — Aandx € B — B. As
we know(A — A) N (B — B) = {0}, soz € {0} which contradicts that is non-zero. Therefore

any non-zero equivalence classes may contain an elementofi or B — B, but not bothll

Theorem 3.1.5[6, 2] Every tiling of Z by translates of a finite set is periodic, i.e. Afis a finite

setandA & C' = Z, then there exists a finite sBtsuch that” = B & NZ, whereN = |A| - | B|.
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Proof Let A := {ay,as,...,a;} With a; < ay < --- < a;. Consider the characteristic function
1o (ie,lc : x — {0,1} whereC C z andl € C, 0 € x — C)of the setC. We will prove that it is

periodic.

SinceA ¢ C = Z, for eachn € Z there exists exactly onge {1,...,k} such thatr — a; € C.
This means that

le(n—a1)+---+1cg(n—ax)=1foralln e Z. (3.5)

Let 7 := a; — a;. Consider the--tuple

cn=1e(n+1),1c(n+2),....,1c(n+ 7)) € {0,1}".

We will prove that ac,, for some fixedh completely determines the functidp. We will do this by
induction: we prove that, determinesg;,.; andc,_;. For this we have to prove thag(n+7+1)

andlq(n) are completely determined lay.

Takem :=a;+n+7+1. Wehaven+7+1=m—a;, >m—ay >--->m—a, =n-+ 1.

From (3.5) we have

E

le(n+7+1)=1-» 1lc(m—ay),

j=2
but all the numbers on the right appearjn thereforel(n + 7 + 1) is completely determined by

Cn-

Now takem = ay +n. We haven + 7 =m —ay; > m —ay > --- > m — ap = n. From (3.5) we

have
k—1

le(n) =1-=Y lc(m —a;),

j=1

but all the numbers on the right appearjn thereforel - (n) is completely determined hy,.
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Sincec,, € {0, 1}" for alln, and|{0, 1}7| = 27, there existi;, ny, € Z suchthad < n =ny—n; <
27 such that,,, = ¢,,. But then, by the argument above;(n; + k) = 1¢(ne + k) forall k € Z,
which means that.(k) = 1¢(n + k) forall k € Z, sok € C'ifandonlyifk +n € C. Let
B=CnA{0,...,N —1}. We haveC' = B @& NZ and this proves the theorem.

3.2 Tijdeman’s Theorem

Lemma 3.2.1 Let A and B be finite sets of nonnegative integers with correspondirignoonials

A(z)andB(z) and letN = A(1)B(1). If

A@)B(x) =1+ +...+2"" mod (2 —1)

and p is a prime which is not a factor of A(1), then

A(@”)B(x) =14z + ...+ 21 mod (zV —1).

Proof Sincep is prime, A(2?) = (A(x))? (modp), i.e., when the coefficients are reduced modulo

p. LetGy(z) =1+ x4+ ...+ 2V"'. Then

A(a®)B(z) = (A(x))" " A(2)B(z) = (A@))" ' Gn(2),

where= means the exponents are reduced modwdnd then the coefficients are reduced modulo

p. Everyz'Gy(z) = Gn(z) mod @ — 1) fori € N, so

(ap + arx + - + ap2®)Gn(2) = (ag + a1 + - - - + ax)Gn(z) mod (2 — 1)
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then

(A(2))P~1 G () = (A(1))P~' Gy (2) mod (2 — 1).

By Theorem 2.3.4A(1))?~! = 1 (modp). ThereforeA(2?) B(z) = Gx(z). Both A(z*) B(z) and
G, (z) have nonnegative coefficients whose sum @nceA(1)B(1) = G, (1) = n. Consider the

following reductions.
(R1) A(2?)B(z) is reduced module™ — 1, yielding a polynomiat7*(x).
(R2) The coefficients of7*(x) are reduced modulp, yieldingG,,(x).

(R1) preserves the sum of the coefficients, (#2) reduces the sum by some nonnegative multiple
of p. Because the sum of the coefficients of béth(z) and G, (z) aren, that multiple is 0.

ThereforeG*(z) = G,(z).1

Theorem 3.2.2 (TijJdeman’s Theorem) Suppose thats finite,0 € ANC,andA& C = Z. If r

and#A are relatively prime, themA & C = Z.

Proof Letr have a prime decomposition such that p, ...p, wherep; fori € {1...k} does

not divide#A. By Theorem 3.1.8' = B+ NZ andA & B = Zy, then by Proposition 3.1.2 we

haveA(x)B(z) = 1+z+---+2" ' mod (" —1) and by Lemma 3.2.1 we havi(x?*) B(z)
l+z+...+2¥1 mod (2 — 1) wherep, is a prime which is not a factor g A. Apply Lemma
3.2.1 repeatedly, we havw(z?* Pk )B(x) = 1+ 2 + ... + V1 mod (« — 1) wherep; .. .py is
prime which is not a factor oft A. ThereforeA(z")B(z) = 1+ 2z + ...+ 2"! mod (z" —1). As
A(z") = (rA)(z) and by Proposition 3.1.2 we getl & B = Z . Apply Proposition 3.1.2 again
we haverA® (Be& NZ)=ZandrA¢C =721

Conjecture 3.2.3 (Tijdeman-Sands conjecture) Létp B = Zy be a tiling of a square-free cyclic

groupV,, then at least one of or B is contained in a coset of a proper subgrouZaf.
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The following Corollary is the alternative proof of 3.2.2 fine casen is co-prime with/V.

Corollary 3.2.4 (Dilation invariance) LetA & B = Zy for somelN. If m is an integer co-prime

to N, thenA & mB = Zy, wheremB := {mb : b € B} is the dilation of B by m.

Proof From Lemma 3.1.3, we know thatpp(15) is a union of equivalence classespifis an
integer co-prime taV thensupp(1p) = supp(lnp). ASA@® B = Zy, we know|A||B| = N
andsupp(14) N supp(1p) = {0}. AsmB := {mb : b € B}, somB is also a divisor ofV and
|A||mB| = N. Sincesupp(1s) = supp(1,.p), we get thasupp(1,4) N supp(i) = {0}, therefore
by Proposition 3.1.20 & mB = Z .1

Lemma 3.2.5 If a finite setA tiles the integers, then there is a tiling Bywhose period is a product

of powers of the prime factors gfA.

Proof If A@ C = Z is atiling of periodn andr > 1 is a factor ofn relatively prime to# A, then
by Theorem 3.2.2;A® C' = Z. ThereforerA® Cy = rZ, whereCy = {c€ C : ¢c=0(mod 1)},
and hencel @ C/r = Z is a tiling of periodn/r.l

Lemma 3.2.6 Let A and B be finite,A, B # {0}, and A & B a complete set of residues modulo

(#A)(#B). Then at least one of the following is true.

1. No number oA — A is relatively prime to#B.

2. No number oB — B is relatively prime to#A.

Proof We will prove by contradiction. LelV = (#A)(#B5). By Proposition 3.1.1,

A()B(z)=1+z+ - +2"" mod (" —1)
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Supposd) < a; —ay = ¢ for a;,ay € A s relatively prime to#B and0 < b; — by = ¢” for

b1, by € B is relatively prime to#A. Lemma 3.2.1 shows that

A )B@" ) =1+ +--+2¥" mod (2™ - 1)

so by Proposition 3.1.1 agaitl; A & ¢’ B is a complete set of residues modwo But

(bl — bg)&l + ((ll — ag)bg = a161 — albg + a162 — agbg = (bl — bg)ag + ((ll — a2)61

Thus it can be expresseétla + §'b in two ways, which contradicts the tiling property that= a;.

Therefore the statement follovilk.

Lemma 3.2.7 [12] Let A & C' = Z be a tiling of periodN such thatA is finite,0 € AN C, and
N has one or two prime factors. Then there is a prime fagtof N such that eitherd C pZ or

C C pZ.

Proof letC' = B ® NZ and the prime factors a¥ bep and possibly;. Then Lemma 3.2.6 holds.

If 3.2.6(1) holds, and € AthenA C A — A C pZ U ¢Z. If neitherpZ nor ¢Z containsA, then
there exist,, a, € A such thau, € pZ \ ¢Z anda, € ¢Z \ pZ. Hencea; — a, won't be divisible
by pZ orqZ, so itis relatively prime t@# B, which contradicts Lemma 3.2.6(1) holding. Therefore

ACpZorAcCqlZ.

If 3.2.6(2) holds, the same argument shows tRatt pZ or B C ¢Z. AsC = B + NZ, so

CCpZ+pgZ=pZorC CqlZ+pqZ =qZ N

Remark TranslatingA or C' does not affect the conclusion. Thus the condition A N C'is not

needed.
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3.3 Coven Meyerowitz

Least common multipl@lso called the lowest common multiple or smallest commaitipie) of
two integers: andb, usually denoted b¥em(a, b), is the smallest positive integer that is divisible

by botha andb.

Theorem 3.3.1Let A be a finite set of nonnegative integers with corresponditguonial A(z) =
Y .ca 2% andletS, be the set of prime powesssuch that the cyclotomic polynomial (z) divides

Ax). If

(T1) A(1) = [Ises, Ps(1).
(T2) If s1, ..., sm € S4 are powers of distinct primes, thd@n, . (=) dividesA(x),

then A tiles the integers.

Proof To showA tiles the integers, we can shatvd B = Zy. To showA & B = Zy, we will
use Proposition 3.1.1 (4). Therefore we will prove theresesxa setB such thatd,(x)|B(x) or
®,(z)|A(z) and A(1)B(1) = N. Define B(z) = [[ ®s(2**)), where the product is taken over
all prime power factors of lcm(S4) which are not inS4 andt(s) is the largest factor of lcn¥{,)
relatively prime tas. Sinces = p® ¢ S, we haves = p®|lcm(S4). Since every suchis a prime
power,B(z) = 1+ 27" ' 4. .. 4 2=DP"~1 has nonnegative coefficients. By Proposition 3.1.1(4)

A, B are multi-sets nonnegative integers, we have B is a setliitheacoefficients are 0 and 1.

Lets > 1 be a factor ofA(1) B(1) and writes = s;...s,,, as a product of powers of distinct primes.
If every s; € Sy, then by(72), ®,(x) dividesA(z). If somes; ¢ Sy, sinceB(x) = [] ®,(z**)),
we haved,, (') divides B(z) for s = s, andt = t(s;). Letr = = be a factor oft(s;), as

= are all primes whild(s;) is the largest prime, then|i(s;). By proposition 2.3.9(6) we know
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O, (2") = [, rs(2) for s andt are relatively prime, thes,, ") =[] ®,,,(r) and®,, ()

2 [i(s:)

divides®,, (2**?)). Thus®,(x) divides B(x) sincers; = s;.

As A(1) = [l,cs, @s(1) @andB(1) = [Ty, ciem(sy) Ps(1), Ass = p* and®,(z) = 1 + 27! +
oo PPl 150 d (1) = p. Letlem(S4) = N have a prime decomposition thain(S,) =
pit.ople, forpd o 1 < a < 1y, if pf € Sy, it's contribution with ap; for A(1); if p; ¢ Sa, it's

contribution with ap; for B(1). ThereforeA(1)B(1) = [T, [Ty pi = [[., P = N. &

Remark The setB constructed in the proof depends only 8n= S, and not onA. Defining
Cs = B&lem(S)Z, A® Cs = Z for all A with S, = S which satisfy(7'1) and(72). Then
Cg C pZ for every primep € S, sincep is a factor ofn. and every diviso®,(z**)) of B(z) is
a polynomial inz?. For eithert(s) is a multiple ofp, or s = p**! with a > 1 and®,(2%*) =

®,(x"9)p*), so every diviso, (') of B(z) os a polynomial in?.

Lemma 3.3.2 Let A(z) and B(z) be polynomials with coefficients 0 and/¥,= A(1)B(1), and
R is the set of prime power factors of. If ;(x) dividesA(x) or B(z) for every factort > 1 of

N, then

1. A(1> = HseSA CI)SO) andB(1> = HseSB Q)S(l)_

2. S, andSp are disjoint sets whose union &

Proof Forevery factot > 10of N, ®;(z) dividesA(z) or B(z),asSa = {p® : p*|N and®,« (z)| A(z)}
and similar forSg, so if p* = t € R, then®,(z)|A(z) or ®,(z)|B(x). Hencet = p* € S, or
t € SpandR C SaU Sp with A(x) = k() [[,eg, ®:(x) or B(z) = k(z) [[,c5, P:(z). From

A(z) = k(z) [[,c5, P:(x), it follows that A(1) = k(1) ] ®,(1). But k(x) has integer co-

SESA

efficients sok(1) is an integer. Sincel(1) > 0 and[] ®,(1) > 0, we havek(l) > 1 so

SESA
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Al > 11 ®,(1) and the same foB(1) > [],cq, ®s(1). Thus

seS4 TS

N=ALB1) > [] @) [] @.(1) =[] @:(1)

SESA sESp teER

As R is the set of prime power factors of then by Proposition 2.3.9 (4)],., ®:(1) = N. Hence

N=ALB1) > [] &) [] @) = [J®:(1) =N

sES, s€Sp teR

and all the inequalities and containments above are agemialities, sq [, g, ®s(1) [[,cq, Ps(1) =
[I,cr ®:(1). Butwe knowR C Sy U Sp, fors € Sy, Sp or R, s is a prime power, s@,(1) =

®,.(1) = p > 1. We cannot have a = p* € S, N Sp because it will appear twice in the prod-
uct [T,cq, ®(1) 1 ®,(1) and only once i [,., ®;(1), so the products could not be equal.

seSp — S

ThereforeS 4 is disjoint fromSz. B

Theorem 3.3.3 Let A be a finite set of nonnegative integers with corresponditguonial A(z) =
Y .ca 2% andletS, be the set of prime powesssuch that the cyclotomic polynomial (z) divides

A(x). If Atiles the integers, then

(T1) A(1) = Ilses, Ps(1).

Proof By Proposition 3.1.1, we getl(1)B(1) = N and ®4(z)|A(x) or &4(z)|B(x), then by

Lemma 3.3.2 (1), it follows direct/|

Remark (7'1) is not sufficient forA to tile the integers.A = {0,1,2,4,5,6} does not tile the
integers because we cannot find a disjoint set contaifiijg but A(z) = ®3(z)ds(z) satisfies
(T1) becauseb;(x) = 1 + x + 2% andPg(z) = Py (z) = Po(z?) = 1 + 2, 5054 = {3, 2%}
and A(1)=6.
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Conjecture 3.3.4 (Coven-Meyerowitz conjecture, square-free case)\Ldte square-free and let
A be atile ofZy. Then there exist a subgroup of Zy such thatA consists of a single represen-

tative from each coset df.

Note that in the square-free case, every subgupf Z ; has a complementary subgroup*

(thusZy = H @ H1). In particular,/ consists of a single representative from each cosét-af

Conjecture 3.3.5 (Coven-Meyerowitz conjecture, general case)AL ek a finite subset & U{0}
and let

Sa = {p” :pisaprimea > 1 aninteger andb,(z) dividesA(x)}.

Then every finite tile iZ satisfies:(71). #A = A(1) =[] D (1).

SESA

(T2). If s1,---, s, € Sy are powers of distinct primes, thdn,, .., (z) dividesA(x).

Lemma 3.3.6 Supposed & C' = Z, where A is a finite set of nonnegative integdrs; 1, and
C CkzZ Fori =0,1,...k—1,letA;, = {a € A: a =i modk}, a; = min(A;) and
Ay ={a—a;:ac Aj}/k. Then

1. A(x) = 2% Ag(a®) + 2 Ay (aF) + -+ - + %1 Ay (2F).

2. EveryA; & C/k =Z.

3. The elements of are equally distributed modulb — every#A; = (#A)/k.

4. Sz, =951 =---=54,_,

5. Whenk is prime,S4 = {k}US, 4, and if everyA,; () satisfies (T2), ther (z) satisfies (T2).
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Proof 1. AsA; ={a € A:a=1i mod k}, a; = min(A;) andA; = {a — a; : a € A;}/k,
thenkA; +a; = {a:a € A} = A AsUS ) A = A, solUS ) (kA + a;) = Uy A = A
Put into polynomial we have (z) = S-F 1 o (kA) (z) = S0 % A (%) = 2% Ag(a*) +
T A (%) + - ar Ay ().

2. AsAa C = ZandC C kZ, look at the elements i@ congruent tai mod k£, we get
From (1) we havé:A; + a; = A;, therefored; & C/k = Z.

3. The translation se&t/k has some period/, so there is a sdf such thatd; & (B&NZ) = Z

and everyA; @ B is a complete set of residues modNo Thus the# A, are equal.

4. Since by Lemma 3.3.2, evefy;, is the complement of 5 in the set of prime power factors

of N.

5. Write p in place ofk. From Lemma 3.3.7 (2)5,1, = {s' : s € S4,}, wheres’ = ps or
s according ag is or is not a factor ob. pA;(x) = Y ., 2" = 3,4 (2P)* = Ai(aP).
DefinesS, s, = {p* : pis aprimea > 1 an integer an@,(z)|A(z)}, ¢t € S,, impliest = &’
for somes € Sj;,. From (4), all theS,, are the same, thefi, ; are the same. if € S 5,
thent € S,z for anyi. Hence®,(z)|(pA;)(z) = A;(zP) and @, (z)|(z% Ag(aP) + -+ +
21 Ap_1(2%)) = A(z). Thereforet € Sy andS,z, C Sa. Alsop € Sy, since if®,(w) =
0, thenw? is the primitive root of unity saw”? = 1, w%=" ™47 impliesw® % = wWP* = 1,
s0a; —i = 0 andw® = o', andA(w) = SV wiA;(1) = (#A/k) SV w' = 0, the
next-to-last equality by (3). We have thus shown thatO {p} U S, 5,. SinceA, and A tile
the integersA,(x) and A(x) satisfy (T1) andS, = {p} U S, 4,

Now assume that every; () satisfies (T2). Condition (T2) fod(z) is: if sq,...,s, € Sj, are

powers of distinct primes, thed,; ., (r) dividesA(z) and®,,, _,, (7) dividesA(z). By (T2),
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®,, ., (v) divides everyA;(z). hence by Proposition 2.3.9 (..o, andd,,, s, (v) divide all
the A;(z?), so they divided(x) as well.®

Lemma 3.3.7 Letk > 1 and letA = kA be a finite set of nonnegative integers.

1. Atiles the integers if and only il tiles the integers.
2. Ifpis prime, thenS, 5 = {p**' : p* € Sz} U {¢® € S : ¢ prime q # p}.
3. A(xz) satisfies (T1) if and only ifi(x) satisfies (T1).

4. A(z) satisfies (T2) if and only ifi(z) satisfies (T2).

Proof (1) First we will show ifA tiles the integers, then tiles the integers. Lel & C' = Z. Then
kA @ kC = kZ and henced @ ({0,1,....k -1} @ kC) = {0,1,...,k — 1} & (kA kC) =
{0,1,...,k — 1} ® kZ = Z. Next we will show if A tiles the integers, thed tiles the integers.
LetkA® D = Z. ThenkA @ Dy = kZ, whereDy = {d € D : d = 0( mod k)}, and hence
A® Dy/k =Z.

(2) From Proposition 2.3.9 (7) we have

{t: ®u(2)|A(2)} = {s": @u(2)|A(2)} U {ps : ®u(x)|A(2)} (3.6)

S, andSy; contain prime power factors withiy, = prime powers in the set of 3.6 anth = {s =

p® or ¢° for q is a primeg # p}, then we will have two cases:
Case 1 = p®. Whenp is a factor ofs, thens’ = ps = p**+1.

Case 2:s = ¢°. Whenp is not a factor ofs, thens’ = s = ¢”; whenp is a factor ofs, then

s' = ps = pg®. Aspq” is not a prime power so it's not i 5.
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(3) Supposé: is prime,, sayk = p. Since#A = #A, from (2) and Proposition 2.3.9 (4) we have

A e [ @) ] 2o J] @) J] @00 e AQ)

pr€S qPE€S 1,q#p P*€ESA qPeSa,q#p
(4) Lets’ = ps or s according a® is or is not a factor of. lets,,...,s,, be powers of distinct
primes ants = sy ...s,,. Thens,..., s, are powers of distinct primes astl= s} ...s/,. Then

A(x) satisfiegT2) < s; € Sifori € {1,...,m} < s; € Sy = 5,45. From Proposition 2.3.9 (7),
P, (z) dividesA(r) & @ (z) dividesA(z). Ass; € Sz < @, . (2)|A(z) & ®,(z)|A(x) and
s; €546 Oy (2)|A(x) & Oy(x)|A(z), SOA(x) satisfiegT2) & s; € S5 & P,(2)|A(x) &
si € Sy dyu(x)|Ar) & A(r) satisfieg72). B

Remark B is not contained ipZ when®, () dividesB(z) because i3 C pZ, thenB = pB, by
(2) we getSp = S,5 = {p**' : p* € Sp} U{¢® € Sz : ¢ # p}. Howeverd,(z)|B(x) indicates

p € Sgp anda > 1indicates + 1 > 2, thenSp contains only powers gf bigger than 2.

Theorem 3.3.8 Let A be a finite set of nonnegative integers with correspondiguomial A(x) =
> .ca 2% such that# A has at most two prime factors and I&f be the set of prime powesssuch

that the cyclotomic polynomidl(x) dividesA(z). If A tiles the integers, then

(T2) If s4,. .., s, € S4 are powers of distinct primes, th@n, . (z) dividesA(x).

Proof From Lemma 3.3.7, there is no loss of generality in assunfiatytd(A) = 1 and0 € A.

By Lemma 3.2.5 there is a tiling & C = Z whose periodV is a product of powers of the prime
factors of# A. We complete the proof by induction en If n = 1, thenA = {0} andA(z) =1
satisfies (T2) vacuously. IV > 1, then by Lemma 3.2.7 there is a prime fagtoof N such that

C C pZ. Then by Lemma 3.3.64(z) = 2% Aga? + z AjaP + - - - + %1 A, () and every
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A; ® C/p = Z is atiling of periodN/p. HenceA; tiles Z,, where N/p < N also has only
2 prime factors. By the inductive hypothesis, evelryr) satisfies (T2), so by Lemma 3.3.6 (5),
A(x) satisfies (T2

Lemma 3.3.9 Supposel is finite,0 € A, A tiles the integers with period/, and N has two prime

factors,p andg. If neither®,(z) nor ®,(x) is a divisor ofA(z), thenA C pZ or A C ¢Z.

Proof Let A @ (B @& NZ) = Z be a tiling of periodV. By Proposition 3.1.1¢,(z) and®,(x)
are divisors ofB(z) or A(x). From the remark after Lemma 3.3.7, neith&rnor ¢Z containsB.

Then the conclusion follows by Lemma 3.27.

Corollary 3.3.10 If A is a finite set of integers an@ C kZ, thenA & C' = Z if and only if
A= Uf;&({ai} @ kA;) for some complete sétiy, ay, . . ., ar_1} of residues modul, andk sets

A;, each of which satisfies nid;) = 0 and tiles the integers with translation séfk.

The decomposition is unique. We can hgve(A) = 1 although this may not be true for thé.
If the A; are equal, then the union is a direct sun= {ag, a1, ..., ax_1} © kAy. For some simple

choices of translation sét, every tile has this form.

3.4 The Square-free Case

Theorem 3.4.11f A& B = Zy and N is square free, the# satisfieg7'1) and (72).

Proof Suppose thatl & B = Zy with N square-free. Let be a prime dividing B|, then asV is
square-free spdoes not divideA|. By Theorem 3.2.2;,A® B = Zy,thenB® (rA@ NZ) = Z.
LetC =rA®&NZ CrZandB' = BNrZ,then|B'| = |B|/randB’' ={b€ B:b=0 mod r} =

a7



By. (this follows for example becausk.(z) divides B(x), so thatB has the same number of
elements in each congruence class mpdTrhen by Lemma 3.3.6 (23, ® (rA® NZ)/r = Z,
we get thatd @ B” = Zy,,, whereB” = B'/r = B, and|B"| = N/r. HenceA tiles Zyy,,
which iterates the procedure as long as we have primes iilitige et | B|, we eventually get to
the point wherjB| = 1. ThereforeA @ 0 = Z4, S0 A is a complete set of primes mod | that

Alr) =142+ + 2471 mod (2 — 1), which implies(T'1) and(72) are satisfiedl
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