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ABSTRACT

A set tiles the integers if and only if the integers can be written as a disjoint union of translates of

that set. Counterexamples based on finite Abelian groups show that Fuglede conjecture is false in

high dimensions. A solution for the Fuglede conjecture inZ or all the groupsZN would provide a

solution for the Fuglede conjecture inR. Focusing on tiles in dimension one, we will concentrate

on the analysis of tiles in the finite groupsZN . Based on the Coven- Meyerowitz conjecture, it has

been proved that if any spectral set inZ satisfies the the Coven-Meyerowitz properties, then every

spectral set inR is a tile. We will present some of the main results related to integer tiles and give

a self-contained description of the theory with detailed proofs.
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CHAPTER 1: INTRODUCTION

In 1974 [5], Bent Fuglede was working on a problem posed by Segal, stemming from quantum

mechanics: given a domainΩ in Rn, under what conditions are therecommutingself-adjoint ex-

tensions of the differential operators−i ∂
∂xj

, j = 1, . . . , n, on the Hilbert spaceL2(Ω)? Fuglede

found a solution to this problem and proved that such commuting extension exist if and only if

there exists a discrete subsetΛ of Rn with the property that the set of corresponding exponentials

{e2πiλ·x : λ ∈ Λ} forms an orthogonal basis forL2(Ω). Such sets, that have a orthogonal basis of

exponentials, are now calledspectral sets.

Definition Forλ in Rn, denoteeλ(x) = e2πiλ·x, x ∈ Rn. LetΩ be a bounded Lebesgue measurable

set, of non-zero measure. The setΩ is called aspectral setif there exists a setΛ in Rn with the

property that

{eλ : λ ∈ Λ}

forms an orthogonal basis forL2(Ω). In this caseΛ is called aspectrumfor Ω.

In the same paper, in an effort to give a geometric description of the spectral condition, Fuglede

proposed the following conjecture, which is now known as “Fuglede’s conjecture”:

Conjecture 1.0.1 [5] Let Ω be a bounded measurable susbet ofRn, of non-zero measure. ThenΩ

is a spectral set if and only ifΩ tiles Rn by translation.

Definition We denote by|A|, the Lebesgue measure of a subsetA of Rn. Let Ω be a Lebesgue

measurable subset ofRn. We say thatΩ tiles Rn by translationsif there exists a setT in Rn such

that(Ω + t)t∈T is a partition ofRn up to measure zero, i.e.,|(Ω + t) ∩ (Ω + t′)| = 0 for all t 6= t′

in T and|Rn \ ∪t∈T (Ω + t)| = 0.
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Recently, Terrence Tao [13] gave a counterexample to disprove the conjecture ond ≥ 5. It was

eventually shown that the conjecture is false in both directions ond ≥ 3 [7, 4, 10, 8]. All these

counterexamples are based on the study of the Fuglede conjecture on finite Abelian groups and

also on the integer lattice. At this moment, the Fuglede conjecture is still open in both directions

in dimension one and two.

The Fuglede conjecture can be easily formulated in the larger context of locally compact Abelian

groups.

Definition Let G be a locally compact Abelian group and̂G its dual group. LetΩ be a subset of

G of finite, non-zero Haar measure. A setΛ ⊂ Ĝ is called aspectrumof Ω ⊂ G if the characters

{λ}λ∈Λ form an orthonormal basis inL2(Ω). Ω is called aspectral setof G. Ω is called a tile if

there exists atiling set T in G such thatΩ ⊕ T = G (i.e. every element inG can be uniquely

written as sum of elements inT andT , up to Haar measure zero ).

Conjecture 1.0.2 [The Fuglede conjecture forG] Let G be a locally compact Abelian group. A

measurable subsetΩ ofG is spectral if and only if it is a tile.

The groups that reveceived most of the attention areR, Z and ZN and their multidimensional

variants.

Following the work of Tao, Kolountzakis, Matolcsi et. al., Dutkay and Lai [3] proved that a

solution for the Fuglede conjecture inZ or all the groupsZN would provide a solution for the

Fuglede conjecture inR. In other words, if one proves the Fuglede conjecture for allthe groups

ZN that this implies the Fuglede conjecture forR. This remains true also for one side of the

equivalence, so if one proves that every tile is spectral in all the groupsZN then all the tiles are

spectral inR.
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In this thesis we will focus on tiles in dimension one. It known [6, 2, 11] that every finite tile of

Z must have a periodic tiling set. This means that the study of tilings of the set of integers can be

immediately reduced to the study of tiling sets for the finitegroupsZN . Thus, we will concentrate

on the analysis of tiles in the finite groupZN .

At this moment, probably the most promising approach for theanalysis of tiles inZN is through

the work of Coven and Meyerowitz [1]. They introduced two algebraic properties for finite sets

A ⊂ Z+ ∪ {0}. Definethe mask polynomialassociated toA,

A(x) :=
∑

a∈A
xa.

Recall that the cyclotomic polynomialΦs(x) is the minimal polynomial for the primitivesth root

of unity.

Definition Let A be a finite subset ofZ+ ∪ {0} and let

SA = {pα : p is a prime, α ≥ 1 an integer andΦs(x) dividesA(x)}.

We say thatA (orA(x)) satisfies the Coven-Meyerowitz property (CM-property) ifA(x) satisfies

(T1). #A = A(1) =
∏

s∈SA
Φs(1).

(T2). If s1, · · · , sn ∈ SA, thenΦs1···sn(x) dividesA(x).

Coven and Meyerowitz showed that all tiles onZ must satisfy (T1) and they satisfy (T2) if the

number of elements in the tiles contains at most 2 prime factors. They proposed the following

conjecture:
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Conjecture 1.0.3 The Coven-Meyerowitz conjecture Every finite tile inZ satisfies the CM-property.

Moreover, the work of Coven and Meyerowitz [1], in conjunction with the work of Łaba [9], tells

us that:

Theorem 1.0.4 (i)[1] If A ⊂ Z+ ∪ {0} satisfies the CM-property, thenA is a tile of integers.

(ii)[9] If A ⊂ Z+ ∪ {0} satisfies the CM-property, thenA is a spectral set of integers.

Using these results, Dutkay and Lai [3] proved that if the Coven-Meyerowitz conjecture is true,

then any tile is spectral inR and, if any spectral set inZ satisfies the CM-property, then every

spectral set inR is a tile.

The main results that we will describe in this thesis appear in the work of Coven and Meyerowitz

(cite their paper) and on Terrence Tao’s blog. We will present a self-contained description of the

theory with detailed proofs.

4



CHAPTER 2: PRELIMINARIES

2.1 Congruence Modulon

Definition If two numbersb andc have the property that their differenceb−c is integrally divisible

by a numberm, (i.e., (b − c)/m is an integer) thenb andc are said to be ”congruent modulo m”.

The numberm is called the modulus, and the statement ”b is congruent toc (modulom)” is written

mathematically asb ≡ c (modm). If b− c is not integrally divisible bym, then it is said that ”b is

not congruent toc (modulom),” which is writtenb 6≡ c (modm). The numberc in the congruence

b ≡ c (modm) is called theresidueof b (modm). Theresidue classesof a functionf(x) modm

are all possible values of the residuef(x) (modm). For example, the residue classes ofx2 (mod

6) are0, 1, 3, 4, since

02 = 0(mod6)

12 = 1(mod6)

22 = 4(mod6)

32 = 3(mod6)

42 = 4(mod6)

52 = 1(mod6)

are all the possible residues.

Definition The greatest common divisor, denotedgcd, of two numbersM andN is the largest

numberD such thatD|N andD|M . There is an efficient algorithm to computeD. It can be

verified thatD is equal to the product ofP i over all primesP that divide bothM andN i times
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(i.e. P i|N , P i|M but it’s not the case thatP i+1|N andP i+1|M). Two integersm andn are

relatively primeif they share no common positive factors (divisors) except 1,which is(m,n) = 1.

We say thatM andN are co-prime ifgcd(N,M) = 1. For example, ifP,Q,R are distinct primes,

N = PQ2R andM = Q2R thengcd(N,M) = Q2R. A set of integers is said to bepairwise

co-primeif a andb are co-prime for every pair(a, b) of different integers in it.

• If P andQ are co-prime and bothP |N andQ|N , thenPQ|N .

• If P |AB then eitherP |A or P |B.

Let Z denote the integers and letn be a fixed positive integer. We define a relation onZ by

i ≡ j(modn) if and only if n dividesi − j. A dividesB, denotedA|B if there’s aK such that

KA = B. Here both the symbol≡ and the (modn) are used to denote the relation. This is an

equivalence relation on the integers. Thus we obtain a natural choice for the equivalence class

representative. The factor set would be{[0], [1], [2], ..., [n− 2], [n − 1]} and by abuse of notation

we write this as{0, 1, 2, ..., n− 2, n− 1}.

Theorem 2.1.1 let n be a positive integer. For alla, b, c ∈ Z

1. a ≡ a (modn)

2. a ≡ b (modn) ⇒ b ≡ a (modn)

3. a ≡ b (modn) andb ≡ c (modn) ⇒ a ≡ c (modn).

Proof 1. a− a = 0 andn|0, hencea ≡ a (modn).

2. a ≡ b (modn) means thata− b = nk for somek ∈ Z. Therefore,b − a = −nk = n(−k);

henceb ≡ a (modn).
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3. If a ≡ b (modn) andb ≡ c (modn), then

a− b = nk

b− c = nk′

Adding these two equations yields

a− c = n(k + k′)

and soa ≡ c (modn).�

Theorem 2.1.2 If a ≡ b (modn) andc ≡ d (modn), then

1. a+ c ≡ b+ d (modn)

2. ac ≡ bd (modn)

Proof 1. By the definition of congruence, there are integerss andt such thata − b = sn and

c− d = tn. Therefore addingb+ d to both sides of this equation, we get

a+ c = b+ d+ n(s+ t)

Hence,a+ c ≡ b+ d (modn).
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2. Using the fact that−bc + bc = 0 we have

ac− bd = ac+ 0− bd (2.1)

= ac+ (−bc + bc)− bd

= c(a− b) + b(c− d)

= c(sn) + b(tn)

= n(cs+ bt)

and son|(ac− bd). Henceac ≡ bd (modn). �

Definition Let a andn be integers withn > 0. Thecongruence classof a modulon, denoted[a]n

is the set of all integers that are congruent to a modulon; i.e.,

[a]n = {z ∈ Z|a− z = kn for somek ∈ Z} (2.2)

A ring is a setR equipped with binary operations addition and multiplication satisfying the fol-

lowing eight axioms, called the ring axioms:

R is an Abelian group under addition, meaning:

1. (a+ b) + c = a+ (b+ c) for all a, b, c in R (+ is associative).

2. There is an element 0 inR such thata+ 0 = a and0 + a = a (0 is the additive identity).

3. For eacha in R there existsa in R such thata+ (a) = (a) + a = 0 (a is the additive inverse

of a).

4. a+ b = b+ a for all a andb in R (+ is commutative).
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R is a monoid under multiplication, meaning:

5. (a× b)× c = a× (b× c) for all a, b, c in R (× is associative).

6. There is an element 1 inR such thata×1 = a and1×a = a (1 is the multiplicative identity).

Multiplication distributes over addition:

7. a× (b+ c) = (a× b) + (a× c) for all a, b, c in R (left distributivity).

8. (b+ c)× a = (b× a) + (c× a) for all a, b, c in R (right distributivity).

Theorem 2.1.3 ZN = Z/NZ, the integers moduloN whereN ≥ 2 andN ∈ Z, with the operation

of addition and multiplication forms a ring.

A groupis an ordered pair(G, ∗) where∗ is a binary operation:

∗ : G×G → G

(a, b) → a× b

that satisfies:

1. (Associativity)a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G

2. (Identity) There exists an element1 ∈ G such thata ∗ 1 = 1 ∗ a = a for all a ∈ G

9



3. (Inverses) For eacha ∈ G, there existsa−1 ∈ G such thata−1 ∗ a = e = a ∗ a−1.

We denoteak = a ⋆ · · · ⋆ a (k times). Asubgroupis a subsetH of a groupG that is a group under

the multiplication inG (we’ll write H ≤ G).

The group isAbelian(also known ascommutative) if a ⋆ b = b ⋆ a for all a, b ∈ G. The size of a

groupG, denoted|G|, is the number of elements in it. AnAbelian groupis a nonempty setA with

a binary operation+ defined onA such that the following conditions hold:

1. (Associativity) for alla, b, c ∈ A, we havea + (b+ c) = (a + b) + c;

2. (Commutativity) for alla, b ∈ A, we havea + b = b+ a;

3. (Existence of an additive identity) there exists an element 0 ∈ A such that0 + a = a for all

a ∈ A;

4. (Existence of additive inverses ) for eacha ∈ A there exists an element−a ∈ A such that

−a + a = 0.

Theorem 2.1.4 If m ∈ ZN is prime withN , then there existsk, l ∈ Z such thatmk +Nl = 1.

Proof Let G = {km + lN. k, l ∈ Z}, thenG is a subgroup ofZ. We need to proveG = dZ for

d ∈ Z.

Defined := min{g ∈ G, g > 0}, thend ∈ G andnd ∈ g ∈ G for n ∈ Z. ThereforedZ ⊂ G. Let

g = kd + l with 0 < l ≤ d − 1, thenl = g − kd ∈ G. As d is the positive minimum inG, we get

that l = 0 andg = kd. HenceG ⊂ dZ andG = dZ. Let m = dk1 andN = dk2, asm is prime

with N sod = ±1. As d is positive by definition sod = 1 andG = Z. Since1 ∈ Z, we have

1 ∈ G andkm+ lN = 1.�
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Theorem 2.1.5 Let Z∗
N be the set of elements inZN that have a multiplication inverse. Then

Z∗
N = {m ∈ ZN : m is prime with N} andZ∗

N is a group with the operation of multiplication.

Proof First we will proveZ∗
N = {m ∈ ZN : m is prime with N}. To show this we first will

show if there exists am ∈ Z∗
N , then{m ∈ ZN : m is prime withN}. Let m ∈ Z∗

N , thenm is

invertible, there exist aq ∈ Z such thatmq ≡ 1 modN , which means there exists ak ∈ Z such that

mq−1 = kN . If d|m andd|N , thend|(mq) andd|(kN). Therefored|(mq) andd|(mq−1) andd|1

which meansd = ±1 and there is no other common divisor betweenm andN , sogcd(m,N) = 1.

As Z∗
N is the set of elements inZN , som ∈ Z∗

N ⊆ Z. Next we will show ifm ∈ ZN andm is

prime withN , thenm ∈ Z∗
N . Asm is prime withN , then by Theorem 2.1.4, there existp, q ∈ Z

such thatmp + Nq = 1. Hencemp ≡ 1 modN andm is invertible. Asm ∈ ZN andm has a

multiplication inverse, we getm ∈ Z∗
N .

Second we will showZ∗
N is a group with the operation of multiplication. AsZ∗

N have multiplication

inverse, leta ∈ Z∗
N , thena−1 ∈ Z∗

N anda × a−1 = 1. If a, b ∈ Z∗
N , thena−1, b−1 ∈ Z∗

N and

a× b ∈ Z∗
N . ThereforeZ∗

N is a group with the operation of multiplication.�

If there is an isomorphismf : G → H, G andH are isomorphic, and we writeG ∼= H. Given

two groups(G, ∗) and (H,⊙), a group isomorphism from(G, ∗) to (H,⊙) is a bijective group

homomorphism fromG to H. Spelled out, this means that a group isomorphism is a bijective

functionf : G → H such that for allu andv in G it holds thatf(u ∗ v) = f(u)⊙ f(v).

Theorem 2.1.6 LetN = pr11 pr22 . . . prss wherep1, . . . , ps are distinct prime numbers andr1, . . . , rs >

0. Then the map

Ψ : ZN → Zp
r1
1
×Zp

r2
2
×· · ·×Zprss , Ψ(n) = (n mod pr11 , n mod pr22 , . . . , n mod prss ), for n ∈ ZN
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is a group isomorphism.

Proof Supposen andn′ ∈ ZN , thenn ≡ n′ modN andn′ ≡ n modN , soΨ is well defined and

is obvious a group morphism. We will proveΨ is one-to-one, or equivalently, that is has a trivial

kernel(Ψ(x) = 0). As n ∈ Zp
r1
1 ...prss

, if Ψ(n) = 0 thenn ≡ 0 mod prii for all i ∈ {1, . . . , s}, so

n = kip
ri
i and is divisible by allprii . Since these primes are distinct it follows thatn is divisible by

their product which isN . Thereforef is one-to-one.�

Proposition 2.1.7 Let N = p1 . . . ps be a square-free number,p1, . . . , ps are primes. LetP =

{p1, . . . , ps}. Then

1. Any subgroup of
∏

p∈P Zp is of the form
∏

p∈P ′ Zp, whereP ′ is a subset ofP .

2. For any subgroupH of ZN , there exists a subgroupH⊥ such thatH ⊕H⊥ = ZN .

Proof Let H be a subgroup of
∏

p∈P Zp. Supposea = (a1, . . . , as) is a non-zero element inH.

We can assume, to simplify notation, thata1 6= 0. Thenp2p3 . . . ps ·a = (p2p3 . . . ps ·a1, p2p3 . . . ps ·

a2, . . . , p2p3 . . . ps · as). As in Zp, sop2p3 . . . ps · a2, . . . , p2p3 . . . ps · as = 0 . . . 0. Since the primes

pi are distinct, the elementb1 := p2 . . . ps · a1 of Zp1 cannot be zero, the order ofa1 beingp1. Thus

H contains the element(b1, 0 . . . , 0) and this generates the entire subgroupZp1 ×{0}× · · ·× {0}.

Thus ifH contains an element(a1, . . . , as) with ai 6= 0 then the subgroupZpi is contained inH.

This implies the first conclusion.

From the first part we see that any subgroupH of
∏

p∈P Zp has a complement subgroupH⊥ =
∏

p∈P\P ′ Zp. By Theorem 2.1.6, the groupZN and Zp
r1
1

× Zp
r2
2

× · · · × Zprss are isomorphic.

ThereforeZp
r1
1
×Zp

r2
2
×· · ·×Zprss has a completement subgroup and the second statement follows.�
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Theorem 2.1.8 (Chinese remainder theorem) LetP andQ be two prime numbers (actually can

be also just co-prime) and letN = PQ. Consider the following function fromZN to ZP × ZQ:

f(X) = 〈X (mod P ), X (mod Q)〉. We claim the following properties of this function:

1. f(·) preserves addition:f(X+X ′) = f(X)+f(X ′). (In the right hand sidef(X)+f(X ′)

means that we add the first element of both pairs modP and the second element modQ.

This follows from the fact that the modulo operation has thisproperty.

2. f(·) preserves multiplication:f(X ·X ′) = f(X) · f(X ′). Again, this follows from the fact

that the modulo operation has this property.

3. f(·) is one-to-one. Indeed, if there existX 6= X ′ with f(X) = f(X ′) thenf(X − X ′) =

〈0, 0〉. Which means thatP |X −X ′ andQ|X −X ′ which impliesPQ = N |X −X ′ which

can’t happen for a number between1 andN − 1.

4. f(·) is onto. This follows from the fact that|ZN | = |ZP | · |ZQ|.

5. Note that the above properties also imply thatf is an isomorphism fromZ∗
N to Z∗

P × Z∗
Q.

2.2 Fourier Transform

Definition Let f : ZN → C, the Fourier transform off is defined as the function̂f : ZN → C

f̂(k) =
1√
N

∑

n∈ZN

f(n)e2πi
k·n
N , (k ∈ ZN).

(Note that the definition does not depend on the choice of the representativesk, n of elements in

ZN ) The matrix of the Fourier transform is

1√
N

(
e2πi

kn
N

)
k,n∈ZN

.
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Theorem 2.2.1 The Fourier transform is unitary.

Proof We are going to prove the matrix of the Fourier transform is unitary. Clearly 1√
N

(
e2πi

kn
N

)
k,n∈ZN

is a matrix withk is the row andn is the column. We are going to prove the rows are orthogonal.

Takek 6= k′ in ZN . Then

∑

n∈ZN

e2πi
(k−k′)·n

N =

N−1∑

n=0

(
e2πi

k−k′

N

)n

=

(
e2πi

k−k′

N

)N

− 1

e2πi
k−k′

N − 1
=

e2πi(k−k′) − 1

e2πi
k−k′

N − 1
=

1− 1

e2πi
k−k′

N − 1
= 0.

Hence they are orthogonal and the matrix of the Fourier transform is unitary.�

Theorem 2.2.2 (Fourier inversion formula) Letf : ZN → C and letf̂ be its Fourier transform.

Then

f(n) =
1√
N

∑

k∈ZN

f̂(k)e−2πi kn
N , (n ∈ ZN).

Proof Since the Fourier transform is unitary, its inverse is its transpose conjugate.�

Definition Let f : ZN → C, thenf(n) ∗ g(n) = 1
N

∑
k∈ZN

f(n− k)g(k).

Theorem 2.2.3 f̂ ∗ g(n) = 1√
N
f̂(n)ĝ(n)

Proof As Fourier transforms states thatf̂(k) = 1√
N

∑
n∈ZN

f(n)e2πi
k·n
N , (k ∈ ZN ). Then by the

definition off ∗ g, we have

f̂ ∗ g(n) = 1√
N

∑

k∈ZN

f ∗ g(k)e2πi k·nN =
1√
N

∑

k∈ZN

1

N

∑

m∈ZN

f(k −m)g(m)e2πi
((k−m)+m)n

N

14



Let k −m = l, then

f̂ ∗ g(n) = 1√
N

∑

l∈ZN

f(l)e2πi
ln
N

1√
N

· 1√
N

∑

m∈ZN

g(m)e2πi
mn
N =

1√
N
f̂(n)ĝ(n)

.�

2.2.1 Characters

Definition Let (G,+) be a finite Abelian group. A character onG is a functionϕ : G → T, where

T = {z ∈ C : |z| = 1}, such thatϕ(x + y) = ϕ(x)ϕ(y) for all x, y ∈ G. Clearly, if ϕ is a

character, thenϕ(0) = 1. The set of characters is denotedĜ.

Proposition 2.2.4 The set of characterŝG is a group with the operation of pointwise multiplica-

tion. Any two distinct charactersϕ, ϕ′ in Ĝ are orthogonal inL2(G), i.e.,

∑

g∈G
ϕ(g)ϕ̄′(g) = 0 (2.3)

Proof Checking that̂G is a group is trivial. To see thatϕ, ϕ′ are orthogonal, takeh ∈ G such that

ϕ(h) 6= ϕ′(h). Then

∑

g∈G
ϕ(g)ϕ̄′(g) =

∑

g∈G
ϕ(g + h)ϕ̄′(g + h) = ϕ(h)ϕ̄′(h)

∑

g∈G
ϕ(g)ϕ̄′(g).

Sinceϕ(h)ϕ̄′(h) = ϕ(h)/ϕ′(h) 6= 1, equation (2.3) follows.�

Proposition 2.2.5 The characters of the groupG = ZN1 × · · · × ZNs
are the maps of the form

ϕ(n1, . . . , ns) = e
2πi

(
k1n1
N1

+···+ ksns
Ns

)

, ((n1, . . . , ns) ∈ G),
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where(k1, . . . , ks) is a fixed element inG. Therefore, for any finite Abelian group̂G is isomorphic

toG.

Proof Let ϕ be a character. Thenϕ(1, 0, . . . , 0)N1 = ϕ(N1 · 1, 0, . . . , 0) = ϕ(0) = 1. Therefore

ϕ(1, 0, . . . , 0) is a root of orderN of unity; hence there existsk1 ∈ ZN1 such thatϕ(1, 0, . . . , 0) =

e
2πi

k1
N1 . We can do the same thing for the other components and obtaink2 ∈ ZN2 etc. The formula

for ϕ follows directly from this.

For the converse, a simple check shows that any such map is a character onG.

Since any finite Abelian group is of the formZN1 × · · · × ZNs
, the last statement is clear.�

Definition Let G be a finite Abelian group of cardinalityN . For a functionf : G → C, the

Fourier transform off is the functionf̂ : Ĝ → C

f̂(ϕ) =
1√
N

∑

g∈G
f(g)ϕ(g).

The matrix of the Fourier transform is

1√
N

(ϕ(g))ϕ∈Ĝ,g∈G .

Theorem 2.2.6 The Fourier transform is a unitary transformation.

Proof From Proposition 2.2.4 we see that the rows of the matrix of the Fourier transform are

orthogonal. From Proposition 2.2.5, we see thatĜ hasN elements. Thus the matrix is unitary.�

Remark Let N = p1 . . . ps wherepi are distinct primes and letG =
∏s

i=1 Zpi. From Proposition

2.2.5, we see that the characters ofG are of the form(n1, . . . , ns) 7→ e
2πi

(
k1n1
p1

+...ksns
ps

)

. However,

16



we can also use the isomorphism in Theorem 2.1.6 to produce characters onG and in this way,

any character onG will be of the form (n1, . . . , ns) 7→ e2πi
Ψ−1(n1,...,ns)·k

N , for somek ∈ ZN , or

(n1, . . . , ns) 7→ e2πi
Ψ−1(n1,...,ns)·Ψ

−1(k1,...,ks)
N , for some(k1, . . . , ks) ∈ G.

We can write the Fourier transform using both these forms, but note that we are making some

identificationsĜ isomorphic toG and is isomorphic toZN . The problem is that under these

identifications the order in which the characters are listedmight change and so the matrices of the

Fourier transforms might be different. They will be obtain from one another by some permutation.

Let us illustrate with one example.

Take Z6 = Z2 × Z3. The isomorphismΨ from Theorem 2.1.6 acts as follows:0 7→ (0, 0),

1 7→ (1, 1), 2 7→ (0, 2), 3 7→ (1, 0), 4 7→ (0, 1), 5 7→ (1, 2).

When we write the Fourier transform using the groupZ6, the(k, n) entry will be (omitting thee2πi

part) kn
6

. If Ψ(k) = (k1, k2), Ψ(n) = (n1, n2), and we write the Fourier transform using the group

Z2 × Z3, the corresponding entry will bek1n1

2
+ k2n2

3
. The first rows and columns represent the

indices of the entries. Figure 2.1 shows the details.

Note that the matrices can be obtained from each other by permutation of rows or columns. This

shows also that iff : Z2 × Z3 → C thenf̂ ◦ Ψ 6= f̂ ◦Ψ, where the first Fourier tranform is taken

using the groupZ2×Z3 and the second Fourier tranform is using the groupZ6. Indeed, for example

takef = χ(0,2). Thenf ◦ Ψ = χ2. For χ̂2 we use the first matrix and we havêχ2(1) = e2πi
2
6 and

for χ̂(0,2) we use the second table and we haveχ̂(0,2)(Ψ(1)) = χ̂(0,2)(1, 1) = e2πi
4
6 .
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Figure 2.1: Indices of Entries

2.3 Cyclotomic Polynomials

Definition Then-th cyclotomic polynomialis

Φn(x) =
∏

{(x− ω) : ω is a primitiven-th root of 1 inC} =
∏

1≤k≤n, k prime ton

(x− e2πi
k
n ).

By definition the cyclotomic polynomialΦn(x) is a polynomial overC but we will see that it

actually has integer coefficients. It is clear thatΦn(x) is a monic polynomial (i.e., is a polynomial

18



cnx
n+ cn−1x

n−1+ · · ·+ c2x
2+ c1x+ c0 in which the leading coefficientcn is equal to 1) of degree

ϕ(n) whereϕ is the Euler totient function that counts how many numbersk with 1 ≤ k ≤ n are

relatively prime ton.

Note the factorization

xn − 1 =
∏

{(x− ω) : ω is ann-th root of 1} =
∏

1≤k≤n, k prime ton

(x− e2πi
k
n )

=
∏

d|n

∏
{(x− ω) : ω is a primitived-th root of 1} =

∏

d|n
Φd(x).

This relation can be used to computeΦn(x) recursively, by induction.

For example whenn = 1, to make sured|n, we haved = 1,soΦ1(x) = x − 1. Whenn = 2,

thend = 1, 2, soΦ1(x)Φ2(x) = x2 − 1 soΦ2(x) = x + 1. Whenn = 3, d = 1, 3, sox3 − 1 =

Φ1(x)Φ3(x) soΦ3(x) = x2 + x + 1. Similarly whenn = 4, d = 1, 2, 4, thenΦ4(x) = x2 + 1,

Φ5(x) = x4 + x3 + x2 + x+ 1, etc.

Proposition 2.3.1 For all n, the cyclotomic polynomialΦn(x) is a monic polynomial with integer

coefficients of degreeϕ(n).

Proof We just have to show thatΦn(x) has integer coefficients. We will proceed by induction.

Whenn = 1 , we haveΦ1(x) = x − e2πi
k
1 (k is prime to 1) = x − 1. Whend < n, fix n > 1 and

let f(x) be a monic polynomial with integer coefficients with

f(x) =
∏

d|n,d<n

Φd(x).
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Then we have
∏

d|n
Φd(x) = xn − 1 = Φn(x)

∏

d|n,d<n

Φd(x) = Φn(x)f(x).

As
∏

d|nΦd(x) andf(x) are both monic polynomial with integer coefficients, to showΦn(x) is

also monic polynomial with integer coefficients, we will usethe following lemma:

Lemma 2.3.2 LetP (x) = xn+an−1x
n−1+ · · ·+a0, Q(x) = xm+ bm−1x

m−1+ · · ·+ b0. Suppose

Q(x) andP (x) ·Q(x) have integer coefficients. ThenP (x) has integer coefficients.

Proof For convenience, letan = 1, bm = 1 andak = 0 for k > n, bk = 0 for k > m. We write

the coefficients forP (x) ·Q(x) = xm+n + cm+n−1x
m+n−1 + · · ·+ c0:

cm+n−1 = anbm−1 + an−1bm,

cm+n−2 = anbm−2 + an−1bm−1 + an−2bm,

...

SupposeP (x) does not have integer coefficients. Letk be the largest index such thatak is not an

integer. In the equations above, look at the first timeak appears. letn − l = k, thencm+n−l =

anbm−l+an−1bm−l+1+ · · ·+an−lbm. As bm = 1, we havecm+k = ak+lbm−l+ak+l−1bm−l+1+ · · ·+

ak. Becausei > k for i ∈ {k + 1, . . . , k + l}, so all theai’s will be integers. Since all theci’s and

all thebi’s are integers, we haveak must be integers. ThereforeP (x) has integer coefficients.�

By Lemma 2.3.2,Φn(x) has integer coefficients and it’s a monic polynomial with integer coeffi-

cients of degreeϕ(n).�

Definition For eacha ∈ ZN , we define the equivalence class ofa, denoted by[a] to be the set
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[a] = {x ∈ S|x ≡ y modn}.

Lemma 2.3.3 The following statements are equivalent:

1. Φn(x) is irreducible.

2. Letω be a primitiven-th root of unity inC and letf be the minimal polynomial ofω over

Q, i.e., the monic polynomial overQ of lowest degree that hasω as a root. Ifp is a prime not

dividingn thenωp is a root off .

3. Letω be a primitiven-th root of unity inC and letf be a minimal polynomial ofω overQ.

If r is relatively prime ton thenωr is a root off .

Proof (1) implies (2): SinceΦn(x) =
∏
{(x − ω) : ω is a primitiven-th root of 1}, we have

Φn(ω) = 0. As f is the minimal polynomial ofω over Q, it follows that f(x) dividesΦn(x).

But sinceΦn(x) is irreducible, we getΦn(x) = f(x). If p is prime ton andω = e2πi
k
n , then

ωp = e2πi
kp
n . As bothk andp are prime ton, we havepk is prime ton andωp is a primitiven-th

root of unity. Sof(ωp) = Φn(ω
p) = 0.

(2) implies (3). Letr be relatively prime ton andr have a prime decompositionr = p1p2 . . . , pk−1

containing only primes that do not dividen. Asω is a primitiven-th root of unity inC andf is the

minimal polynomial ofω overQ, then applying (2) repeatedly, we obtain thatf(ωp1p2,...,pk−1) =

f(ωr) = 0.

(3) implies (1): SinceΦn(ω) = 0 it follows thatf(x) dividesΦn(x). As f(ωr) = f(e2πi
rk
n ) = 0,

sof(x) is divisible byx − e2πi
rk
n for all r prime ton. Sof(x) is divisible byΦn(x). Therefore

Φn(x) = f(x). If f(x) = Φn(x) = g(x)h(x) for some polynomialsg, h of degree at least 1, then

one of them, sayg hasω as a root, which contradicts the minimality off . ThereforeΦn(x) is

irreducible.�
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Theorem 2.3.4 (Fermat’s Little Theorem) Ifp is a prime number, then for any integera, the num-

ber ap − a is an integer multiple ofp. In the notation of modular arithmetic, this is expressed as

ap ≡ a (mod p). For example, ifa = 2 andp = 7, 27 = 128, and128− 2 = 7× 18 is an integer

multiple of 7. Ifa is not divisible byp, Theorem 2.3.4 is equivalent to the statement thatap−1 − 1

is an integer multiple ofp: ap−1 ≡ 1 (mod p). For example, ifa = 2 andp = 7, 26 = 64, and

64− 1 = 63 = 7× 9.

Lemma 2.3.5 (Gauss’ lemma) A polynomialP (x) is called primitive if the greatest common divi-

sor of its coefficients is 1.

1. The product of primitive polynomials is primitive.

2. LetP (x) be a polynomial overZ. ThenP (x) is irreducible overZ iff P (x) is irreducible

overQ.

Proof (1) Letf(x) = anx
n + · · ·+ a0 andg(x) = bmx

m + · · ·+ b0 be primitive polynomials and

letP (x) = f(x)g(x) = cn+mx
n+m + · · ·+ c0. We are going to showP (x) is primitive. Letp be a

prime number, thenp cannot divide all the coefficients off(x). Let r be the largest number thatp

does not dividear. Similarly, lets be the largest number such thatp does not dividebs. We have

cr+s =
∑

i+j=r+s

aibj .

In this sum, we have the termarbs which is not divisible byp and for all the other terms eitheri > r

or j > s soaibj is divisible byp. Thereforecr+s is not divisible byp and, sincep is an arbitrary

prime, it follows that the greatest common divisor of the coefficients ofP (x) is 1. ThereforeP (x)

is primitive.
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(2) We will prove by contradiction. First we will show ifP (x) is irreducible overZ, then it is

irreducible overQ. SupposeP (x) is reducible overQ, P (x) = f(x)g(x) = ac
bd
f1g1. We can write

P (x) = eP1(x) , f(x) = a
b
f1(x), g(x) = c

d
g1(x) with P1, f1, g1 primitive ande ∈ Z, a, b, c, d ∈ Z.

ThenP (x) = eP1(x) =
ac
bd
f1g1, by (1) we havef1(x)g1(x) is primitive overZ. To showP (x) is

reducible overZ, we need to showac
bd

= ±e by the following lemma:

Lemma 2.3.6 If l
n
P (x) = j

k
Q(x) withP (x) andQ(x) primitive overZ, then l

n
= j

k
or l

n
= − j

k
.

Proof Let P (x) = pnx
n + · · · + p0 andQ(x) = qnx

n + · · · + q0. We have lk
nj
pi = qi, for

i ∈ {0, . . . , n}. Since the greatest common divisor of thepi’s is 1, there exist numbersm0, . . . , mn

such thatm0p0+ · · ·+mnpn = 1. Multiplying the previous equations bymi and adding we obtain

lk
jn

= q0m0 + · · ·+ qnmn ∈ Z. By symmetry we have alsojn
lk

∈ Z. Thereforelk
jn

∈ {1,−1}.�

As e ∈ Z and can be written inj
k
, soP (x) = eP1(x) = ef1g1 or −ef1g1 which impliesP (x) is

reducible overZ. By contradiction,P (x) is irreducible overQ if P (x) is irreducible overZ. Next

we will show ifP (x) is irreducible overQ, then it is irreducible overZ. SupposeP (x) is reducible

overZ, let p(x) = f(x)g(x) wheref, g ∈ Z, thenp(x) = f(x)g(x) wheref, g ∈ Q because every

integer can be written ina
b

wherea, b ∈ Z. By contradiction,P (x) is irreducible overZ if P (x) is

irreducible overQ.�

Theorem 2.3.7Φn(x) is irreducible overQ. It is the minimal polynomial of every primitiven-th

root of unity.

Proof SupposeΦn(x) is reducible thatΦn(x) = f(x)g(x) with f, g ∈ Z[x] andf is irreducible.

Let ω be a root off in C, thusω is a root ofΦn so it is a primitiven-th root of unity andf is the

minimal polynomial ofω overQ. Let p be a prime not dividingn, if we can showωp is a root off

wherep is a prime not dividingn, by Lemma 2.3.3,Φn(x) is irreducible overZ.

23



To showωp is a root off , we will do by contradiction. Supposeωp is not a root off . Then, asω

is a root ofΦn andp is a prime,we haveωp is a root ofΦn. Thereforeωp must be a root ofg, or,

equivalentlyω is a root ofg(xp). ThenΦn dividesg(xp). Sincef is the minimal polynomial of

Φn, it follows thatf dividesg(xp). If we reduce all the polynomials modulop, then we getf̃(x)

dividesg̃(xp). Next lemma will show that̃g(xp) = (g̃(x))p.

Lemma 2.3.8 In Zp we have(x+ y)p = xp + yp. This implies that̃g(xp) = (g̃(x))p.

Proof (x+y)p = xp+C1
px

p−1y+· · ·+Cp−1
p xyp−1+yp.The binomial coefficients are for1 ≤ k ≤ p:




p

k


 =

(p− k)!

k!
=

p(p− 1) . . . (p− k + 1)

1 · 2 . . . k .

Sincep is a prime and none of the terms in the denominator(1 . . . k) dividesp except 1, however

the numerator(p(p − 1) . . . (p − k + 1)) dividesp. So the binomial coefficients are divisible by

p. Therefore inZp the only terms that remain in the binomial formula arexp + yp. Let g̃(x) =

a0 + a1x+ · · ·+ anx
n, then

g̃(x)p = (a0 + a1x+ · · ·+ anx
n)p = ap0 + ap1x

p + · · ·+ apnx
np

By Theorem 2.3.4,ap ≡ a modp, we have

g̃(x)p = ap0 + ap1x
p + · · ·+ apnx

np = a0 + a1x
p + · · ·+ anx

np = g̃(xp)

. Thereforẽg(x)p = g̃(xp).�

Returning to the proof of the theorem we obtain thatf̃ divides(g̃(x))p which impliesf̃(x) and
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g̃(x) have a common factor̃f1 with deg(f̃1) ≥ 1 overZp. AsΦn(x) dividesxn − 1 so

xn − 1 = f̃(x)g̃(x) = f̃1
2 · k̃(x) (2.4)

By derivation,

nxn−1 = 2f̃1 · k̃(x) + f̃1
2 · k̃′(x) = f̃1(2k̃(x) + f̃1 · k̃′(x)) (2.5)

Thereforef̃1|(xn − 1) andf̃1|(nxn−1). Thenf̃1|(n(xn − 1)) andf̃1|(nxn−1x), subtract each other

we getf̃1|n. This showsf̃1 is a constant polynomial, which contradicts thatdeg(f̃1) ≥ 1. Hence

ωp is a root off , Lemma 2.3.3 impliesΦn(x) is the minimal polynomial ofΦn(ω) = 0 andΦn(x)

is irreducible overZ. By Lemma 2.3.5 (2) we get thatΦn(x) is irreducible overQ.�

Proposition 2.3.9 Letp be a prime.

1. A polynomialP (x) ∈ Z[x] is divisible byΦs(x) if and only ifP (ω) = 0 for a primitives-th

root of unityω.

2. 1 + x+ · · ·+ xs−1 =
∏

t>1,t|s Φt(x).

3. Φp(x) = 1 + x+ · · ·+ xp−1 andΦpα+1(x) = Φp(x
pα).

4.

Φs(1) =





0 if s = 1

q if s is a power of a primeq

1 otherwise.

5.

Φs(x
p) =





Φps(x) if p is a factor ofs

Φs(x)Φps(x) if p is not a factors.
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6. If s andt are relatively prime, thenΦs(x
t) =

∏
r|tΦrs(x).

7. If Ā(x) is an integer polynomial andA(x) = Ā(xp), then

{t : Φt(x) dividesA(x)} = {s′ : Φs(x) dividesĀ(x)} ∪ {ps : Φs(x) dividesĀ(x)}

wheres′ = ps or s according top is or is not a factor ofs.

Proof (1) First let’s show ifP (ω) = 0 for a primitives-th root of unityω, thenP (x) is divisible

by Φs(x). Let P (x) = Q(x)Φs(x) + R(x) whereQ(x) andR(x) have integer coefficients with

deg(R) < deg(Φs). As P (ω) = 0, it follows Q(ω)Φs(ω) + R(ω) = 0. As Φs(ω) = 0, it follows

R(ω) = 0, so by minimal polynomial,R(x) = 0 andP (x) = Q(x)Φs(x), which indicatesP (x)

is divisible byΦs(x). Next we will show ifP (x) is divisible byΦs(x), thenP (ω) = 0 for a

primitive s-th root of unityω. SinceP (x) is divisible byΦs(x), we haveP (x) = Q(x)Φs(x) and

P (ω) = Q(ω)Φs(ω). AsΦs(ω) = 0, it follows P (ω) = 0.

(2) As we know
∏

t|s Φt(x) = xs − 1 = (x − 1)(1 + x + · · · + xs−1) andΦ1(x) = x − 1, then
∏

t>1,t|s Φt(x) =
∏

t|s Φt(x)

Φ1(x)
= (1 + x+ · · ·+ xs−1)

(3) As
∏

d|pΦd(x) = xp − 1 wherep is a prime, then
∏

d|pΦd(x) = Φ1(x)Φp(x). As Φ1(x) =

x − 1 so Φp(x) = xp−1
x−1

= 1 + x + · · · + xn−1. To proveΦpα+1(x) = Φp(x
pα) we have

Φ1(x)
∏α+1

1 Φpk(x) =
∏

s|pα+1 Φs(x) = xpα+1 − 1 = (x − 1)(xpα+1−1 + · · · + x + 1) where

Φ1(x) = x− 1, so1 + x+ · · ·+ xpα+1−1 =
∏α+1

1 Φpk(x) = Φp(x)Φp2(x) . . .Φpα(x)Φpα+1(x) so

Φpα+1(x) =
1 + x+ · · ·+ xpα+1−1

Φp(x)Φp2(x) . . .Φpα(x)
=

1 + x+ · · ·+ xpα+1−1

1 + x+ · · ·+ xpα−1

=
(1 + xpα + x2pα + · · ·+ x(p−1)pα)(1 + x+ · · ·+ xpα−1)

1 + x+ · · ·+ xpα−1
= 1+xpα+x2pα+· · ·+x(p−1)pα = Φp(x

pα)

26



.

(4) Whens = 1, Φ1(x) = x − 1 andΦ1(1) = 1 − 1 = 0. Whens is a power of a prime

q, Φq(1) = 1 + 1 + · · · + 1q−1 = q and according to (3),Φqs(1) = Φq(1
qs−1

) = Φq(1) = q.

Whens is otherwise, or has at least two primes in its decomposition, we proceed by induction on

the length of the prime decomposition. From (2), lettingx = 1 we haves =
∏

t>1,t|sΦt(1) =

Φs(1)
∏

t= prime power,t|sΦt(1)
∏

t= a product of at least two primes,t|sΦt(1).

Suppose all the othert’s have a shorter prime decomposition thatΦt(1) = 1, then

∏

t= a product of at least two primes,t|s

Φt(1) = 1.

Let s have a prime decomposition thats = pr11 . . . prnn , so

∏

t= prime power,t|s

Φt(1) =

n∏

j=1

rj∏

l=1

Φplj
(1) =

n∏

j=1

rj∏

l=1

plj =

n∏

j=1

p
rj
j = s.

Therefore the product issΦs(1) = s andΦs(1) = 1.

(5) As ω is the root ofΦs(x), thenω1/p = e2πi
k
s
1
p

is the root ofΦs(x
p) wherek is relatively

prime tos ande2πi
k
ps is the root ofΦps(x) wherek is relatively prime tops. If p is a factor of

s, thenk is relatively prime tops which indicatesω1/p = e2πi
k
ps is the root ofΦps(x). Therefore

Φs(x
p) = Φps(x).

If p is not a factor ofs, then we have two cases: eitherk is prime tops or k is a multiple ofp,

k = pr with r prime tos. If k is prime tops, we have the above result asΦs(x
p) = Φps(x); If k is

a multiple ofp, thenk is prime tos which impliese2πi
k
s is the root ofΦs(x) andr prime tos which

indicates(e2πi
r
s )p is the root ofΦs(x

p). HenceΦs(x
p) = Φs(x) andΦs(x

p) has the same roots as

Φs(x)Φps(x).
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(6) Let t = p1 . . . pmpm+1 where some of the primes can be repeated. We have from (5), since t

ands are relatively prime:

Φs(x
t) = Φs(x

p1...pm+1) = Φs ((x
p1...pm)pm+1) = Φs(x

p1...pm)Φpm+1s(x
p1...pm)

=
∏

r|p1...pm

Φrs(x)
∏

r|p1...pm

Φrpm+1s(x) =
∏

r|p1...pm+1

Φrs(x) =
∏

r|t
Φrs(x)

.

(7) First we will show ifΦt(x) dividesA(x), then t = s or ps andΦs(x) divides Ā(xp). Let

ω = e2πi/t, thenωp = e2πi
p
t = e2πi

k
s is a primitives-th root of unity for somes. From (5), if

p is a factor ofs andΦs(x
p) = Φps(x), thenΦps(ω) = 0 and sinceΦt(ω) = 0 it follows that

t = ps = s′, so t ∈ {s′, ps} = {ps}. If p is not a factor ofs thenΦs(ω) = 0 or Φps(ω) = 0

so t ∈= {s′, ps}{s, ps}. As Φt(x)|A(x), we haveA(ωt) = 0 andĀ(ωp
t ) = 0 whereωp

t = e2πi
k
s .

HenceΦs(x)|Ā(x).

Next we will show if Φs(x) divides Ā(x) thenΦt(x) dividesA(x) for s = t or ps = t. Let

ω = e2πi/s ands be such thatΦs(x)|Ā(x), thenĀ(ω) = Ā(e2πi/s) = 0. ThereforeA(e2πi/ps) = 0

implies Ā(e2πip/ps) = 0. If p is a factor ofs, we haveΦps(e
2πi/ps)|A(e2πi/ps) and ps = {t :

Φt(x)|A(x)}. HenceΦt(x)|A(x). If p is not a factor ofs, thene2πip/s is a primitives-th root of

1. AsΦs(x)|Ā(x) andΦs(ω) = 0, we haveΦs(ω
p) = 0 andĀ(ωp) = A(e2πip/s) = 0. Therefore

A(e2πi/s) = 0 andΦs(x)|A(x) which impliess = t : {t : Φt(x)|A(x)}. Hence the statement

follows.�
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CHAPTER 3: TILING RESULT

3.1 Basic Properties

Definition Let G = (G,+) be a finite additive group, Atiling pair is a pair of non-empty subsets

A,B such that every element ofG can be written in exactly one way as a sum of an element ofa

of A and an element ofb of B, in which case we can writeG = A ⊕ B. The setsA,B are then

calledtiles, with B be acomplementary tileto A and vice versa.

LetA⊕B = ZN be a tiling pair for a cyclic groupZN of cyclic order. Observe that the relationship

A⊕ B = ZN can be rewritten as1A ∗ 1B = 1 where1A(x) =





1 if x ∈ A

0 if x /∈ A
Then it is obvious

for the cardinality identity

|A||B| = N (3.1)

In particular,|A| and|B| are divisors ofN , and thus are products of disjoint sets of prime factors

of N .

For A andB sets or multi-sets of integers, we denote the multi-set{a+ b : a ∈ A, b ∈ B} by

A + B. We writeA ⊕ B when every element can be expressed uniquelya + b. Fork an integer,

we writekA for {ka : a ∈ A}, we call{k}⊕A as atranslateof A, and whenk is a factor of every

a ∈ A, we writeA/k for {a/k : a ∈ A}.

Proposition 3.1.1 SupposeN be a positive integer andA, B are multi-sets of nonnegative inte-

gers. LetA(x) =
∑

a∈A xa, we have#A = A(1). The following statements are equivalent:

1. A⊕ (B ⊕NZ) = Z.
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2. A ⊕ B is a complete set of representatives ofZN ; in other wordsA ⊕ B = ZN , where

addition is understood moduloN .

3. A(x)B(x) ≡ 1 + x+ · · ·+ xN−1 mod (xN − 1).

4. A(1)B(1) = N and for every factort > 1 of N , the cyclotomic polynomialΦt(x) divides

A(x) or B(x).

Proof (1) implies (2) is trivial. AsA⊕(B⊕NZ) = (A⊕B)⊕NZ = Z, soA⊕B is the complete

set of all the elements moduloZN which meansA⊕B is a complete set of representatives ofZN .

(2) implies (3). For everyk ∈ {0, . . . , N − 1} there exists a uniqueak ∈ A, bk ∈ B andmk ∈ Z

such thatk = ak + bk + Nmk. SincexN ≡ 1 mod (xN − 1), by inductionxmN − 1 = (xN −

1)(x(m−1)N + x(m−2)N + · · ·+ 1), soxmN ≡ 1 mod (xN − 1) we have

A(x)B(x) =
∑

a∈A,b∈B
xa+b ≡

N−1∑

k=0

xak+bk+Nmk mod (xN − 1) =
N−1∑

k=0

xk.

ThereforeA(x)B(x) ≡
∑N−1

k=0 xk mod (xN − 1).

(3) implies (4). From (3) we haveA(x)B(x) = p(x)(xN−1)+(1+x+· · ·+xN−1) for some integer

polynomialp(x). ThenA(1)B(1) = p(1)(1N−1)+(1+1+· · ·+1N−1) = 1+1+· · ·+1N−1 = N .

For every factort > 1 of N , the cyclotomic polynomialΦt(x) divides1 + x+ · · ·+ xN−1. Since

Φt(x) is irreducible it must divide eitherA(x) orB(x).

(4) implies (3). The hypothesis implies thatA(x)B(x) is divisible by the product of allΦt(x)

with t > 1 factor ofN . So it is divisible by1 + x + · · · + xN−1. We have alsoA(x)B(x) =

p(x)(xN − 1) + q(x) for some integer polynomialsp(x), q(x) with deg(q) < N . Sinceq(x) has to

be divisible by1+x+ · · ·+xN−1 it follows thatq(x) = c(1+x+ · · ·+xN−1) wherec is constant.

SinceA(1)B(1) = q(1) = N , we haveN = q(1) = c(1 + 1 + · · ·+ 1N−1) = cN , which implies
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c = 1 andq(x) = 1+ x+ · · ·+ xN−1. HenceA(x)B(x)− (1 + x+ · · ·+ xN−1) = p(x)(xN − 1)

andA(x)B(x) ≡ 1 + x+ · · ·+ xN−1 mod (xN − 1).

(3) implies (2). We have

1 + x+ · · ·+ xN−1 ≡ A(x)B(x) =
∑

a∈A,b∈B
xa+b ≡

∑

a∈A,b∈B
xa+b mod N mod (xN − 1).

This implies thatA⊕ B = ZN .�

Remark For a subset ofZN , the Fourier transform of the characteristic function ofA is related to

the polynomialA(x) that corresponds toA by the formula

1̂A(k) =
1√
N
A(e2πi

k
N ), (k ∈ ZN). (3.2)

So 1̂A(k) = 0 if and only if A(e2πi
k
N ) = 0. If e2πi

k
N is a primitives-th root of unity, which means

that k
N

= l
s

with l ands co-prime, then̂1A(k) = 0 if and only if the cyclotomic polynomialΦs(x)

dividesA(x).

ForA,B, whichA⊕ B = ZN , there is a physical space separation property

(A− A) ∩ (B −B) = {0} (3.3)

If two non-empty subsetsA,B of ZN obey both 3.1 and 3.3, then they must be a tiling pair, since

the sums inA+B are disjoint and have the same cardinality asZN .

Now we use Fourier analysis to get more structural information. As1A∗1B = 1, we have1̂A ∗ 1B =

1̂ where1̂(n) = 1√
N

∑
k∈ZN

1(k)e2πi
kn
N =





N√
N

n = 0

0 otherwise
Therefore1̂A ∗ 1B = 1√

N
1̂A1̂B =
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1̂(n) =





√
N n = 0

0 otherwise

Hence1̂A(k)1̂B(k) = N1k=0. Note that whenk = 0 ,this case of identity is (3.1). The remaining

cases of this identity can be reformulated equivalently as afrequency space separation property

supp(1̂A) ∩ supp(1̂B) = {0} (3.4)

where supp(1̂A) := {k ∈ ZN : 1̂A(k) 6= 0} is the support of̂1A. Conversely, ifA,B obey both

(3.4) and (3.1), then the above argument shows thatA⊕B = ZN .

Proposition 3.1.2 The following statements are equivalent

1. A⊕ B = ZN .

2. 1A ∗ 1B = 1 (in ZN ).

3. |A| · |B| = N and(A− A) ∩ (B −B) = {0}.

4. |A| · |B| = N and the supports of the Fourier transforms satisfies the following relation

supp 1̂A ∩ supp 1̂B = {0}.

Proof (2) is just a reformulation of (1).

(1) implies (3). SinceA⊕B = ZN it follows that|A|·|B| = N . To show(A−A)∩(B−B) = {0},

we will do by contradiction. Suppose(A−A)∩ (B−B) = {k}, sok ∈ A−A andk ∈ B−B and

there existsa, a′ ∈ A andb, b′ ∈ B such thatk = a− a′ = b− b′. This impliesa− a′ = b− b′ then

a+b′ = a′+b soa = a′ andb = b′ with k = a−a′ = b−b′ = 0. Therefore(A−A)∩(B−B) = {0}.
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(3) implies (1). The map fromA × B to ZN defined by(a, b) = a + b can be checked to be

one-to-one from the hypothesis. Since the two sets have the same cardinalityN , it follows that this

map is also onto. This implies (1).

(2) implies (4). As|A| · |B| = N is obvious so we only need to showsupp 1̂A ∩ supp 1̂B = {0}.

We will show by contradiction. Supposesupp 1̂A ∩ supp 1̂B = {k}. By the definition ofsupp 1̂A

we have1̂A(k) 6= 0 6= 1̂B(k). This implies1̂A(k)1̂B(k) 6= 0. By Fourier transform and we

obtained̂1A(k)1̂B(k) = N1k=0, so 1̂A(k)1̂B(k) = N1k=0 6= 0 which impliesk = 0. This gives

supp 1̂A ∩ supp 1̂B = {0}.

(4) implies (2). From the hypothesis we get that1̂A(k)1̂B(k) = N1k=1. Taking the inverse of

the Fourier transform , we get that
√
N 1̂A ∗ 1B = 1̂A(k)1̂B(k) = N1k=0 = N 1√

N
1̂. Therefore

1A ∗ 1B = 1 (in ZN ).�

Definition Let us call two elementsa, b of ZN equivalentif one hasa = mb for somem co-prime

toN (or equivalently, if(a,N) = (b, N)).

Lemma 3.1.3 supp(1̂A) andsupp(1̂B) are unions of equivalence classes, with{0} being the only

equivalence class in common.

Proof First we will showsupp(1̂A) andsupp(1̂B) are unions of equivalence classes. Assupp(1̂A) :=

{k ∈ ZN : 1̂A(k) 6= 0}, if we can find somem is co-prime toN such thatk = mk1, wherek1 ∈ ZN

and(k,N) = (k1, N), then to showsupp(1̂A) is the union of equivalence class, we only need to

show that̂1A(k) 6= 0 if and only if 1̂A(km) 6= 0. To show1̂A(k) 6= 0 if and only if 1̂A(km) 6= 0,

we will show1̂A(k) = 0 if and only if 1̂A(km) = 0.

First we will show if1̂A(k) = 0, then1̂A(mk) = 0. Letω = e2πi/n, sincê1A(k) = 1√
N

∑
a∈A ωka =

1√
N

∑
a∈A e2πi

ka
n = 0, we haveA(e2πi

k
n ) = 0. Supposee2πi

k
n is primitives-th root of 1 andk

n
= l

s
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wherel, s are coprime. Thenkm
n

= lm
s

wherelm ands are coprime. HenceΦs(e
2πi lm

s ) = 0 and

Φs(x)|A(x) imply A(e2πi
lm
s ) = 0, then 1√

N

∑
a∈A e2πi

lma
s = 0 implies 1√

N

∑
a∈A e2πi

kma
n . Hence

1̂A(km) = 0.

Next we will show if 1̂A(mk) = 0, then1̂A(k) = 0. Letm, N be coprime, thenm is invertible in

ZN , so there exists al ∈ ZN such thatml = 1 modN . Since1̂A(km) = 0 implies 1̂A(klm) = 0,

we havê1A(k) = 0. it is the same to showsupp(1̂B) is unions of equivalence classes.

Second we will showsupp 1̂A ∩ supp 1̂B = {0}. By Proposition 3.1.2, the statement follows.�

Remark One can also obtain the above lemma from the theory of cyclotomic polynomials and

unique factorisation, noting that the product of the generating polynomials
∑

n∈A zn and
∑

n∈B zn

form a multiple of(zN − 1)/(z − 1) =
∏

k|N Φk(z), and that each cyclotomic polynomialΦk is

irreducible and has zeroes corresponding to a single equivalence class inZN .

Corollary 3.1.4 (strong physical space separation) The sets(A − A) \ {0} and (B − B) \ {0}

lie in disjoint equivalence classes; thus any non-zero equivalence class may contain an element of

A− A or an element ofB − B, but not both.

Proof We will prove this by contradiction. Suppose any non-zero equivalence classes may contain

an element ofA−A andB−B, letx be this non-zero element, sox ∈ A− A andx ∈ B −B. As

we know(A − A) ∩ (B − B) = {0}, sox ∈ {0} which contradicts thatx is non-zero. Therefore

any non-zero equivalence classes may contain an element ofA−A orB − B, but not both.�

Theorem 3.1.5 [6, 2] Every tiling ofZ by translates of a finite set is periodic, i.e., ifA is a finite

set andA⊕ C = Z, then there exists a finite setB such thatC = B ⊕NZ, whereN = |A| · |B|.
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Proof Let A := {a1, a2, . . . , ak} with a1 < a2 < · · · < ak. Consider the characteristic function

1C (i,e, lC : x → {0, 1} whereC ⊂ x and1 ∈ C, 0 ∈ x− C)of the setC. We will prove that it is

periodic.

SinceA ⊕ C = Z, for eachn ∈ Z there exists exactly onej ∈ {1, . . . , k} such thatn − aj ∈ C.

This means that

1C(n− a1) + · · ·+ 1C(n− ak) = 1 for all n ∈ Z. (3.5)

Let τ := ak − a1. Consider theτ -tuple

cn := (1C(n + 1), 1C(n+ 2), . . . , 1C(n + τ)) ∈ {0, 1}τ .

We will prove that acn for some fixedn completely determines the function1C . We will do this by

induction: we prove thatcn determinescn+1 andcn−1. For this we have to prove that1C(n+ τ +1)

and1C(n) are completely determined bycn.

Takem := a1 + n + τ + 1. We haven + τ + 1 = m − a1 > m − a2 > · · · > m − ak = n + 1.

From (3.5) we have

1C(n+ τ + 1) = 1−
k∑

j=2

1C(m− aj),

but all the numbers on the right appear incn, therefore1C(n+ τ +1) is completely determined by

cn.

Now takem = ak + n. We haven+ τ = m− a1 > m− a2 > · · · > m− ak = n. From (3.5) we

have

1C(n) = 1−
k−1∑

j=1

1C(m− aj),

but all the numbers on the right appear incn, therefore1C(n) is completely determined bycn.
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Sincecn ∈ {0, 1}τ for all n, and|{0, 1}τ | = 2τ , there existn1, n2 ∈ Z such that0 < n = n2−n1 ≤

2τ such thatcn1 = cn2 . But then, by the argument above,1C(n1 + k) = 1C(n2 + k) for all k ∈ Z,

which means that1C(k) = 1C(n + k) for all k ∈ Z, sok ∈ C if and only if k + n ∈ C. Let

B = C ∩ {0, . . . , N − 1}. We haveC = B ⊕NZ and this proves the theorem.

3.2 Tijdeman’s Theorem

Lemma 3.2.1 LetA andB be finite sets of nonnegative integers with corresponding polynomials

A(x) andB(x) and letN = A(1)B(1). If

A(x)B(x) ≡ 1 + x+ ...+ xN−1 mod (xN − 1)

and p is a prime which is not a factor of A(1), then

A(xp)B(x) ≡ 1 + x+ ...+ xN−1 mod (xN − 1).

Proof Sincep is prime,A(xp) ≡ (A(x))p (modp), i.e., when the coefficients are reduced modulo

p. LetGN (x) = 1 + x+ ...+ xN−1. Then

A(xp)B(x) ≡ (A(x))p−1A(x)B(x) = (A(x))p−1GN(x),

where≡ means the exponents are reduced modulon and then the coefficients are reduced modulo

p. EveryxiGN(x) ≡ GN(x) mod (xn − 1) for i ∈ N , so

(a0 + a1x+ · · ·+ akx
k)GN(x) ≡ (a0 + a1 + · · ·+ ak)GN(x) mod(xN − 1)
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then

(A(x))p−1Gn(x) ≡ (A(1))p−1GN(x) mod(xN − 1).

By Theorem 2.3.4,(A(1))p−1 ≡ 1 (modp). ThereforeA(xp)B(x) ≡ GN(x). BothA(xp)B(x) and

Gn(x) have nonnegative coefficients whose sum isn sinceA(1)B(1) = Gn(1) = n. Consider the

following reductions.

(R1) A(xp)B(x) is reduced moduloxn − 1, yielding a polynomialG∗(x).

(R2) The coefficients ofG∗(x) are reduced modulop, yieldingGn(x).

(R1) preserves the sum of the coefficients, but(R2) reduces the sum by some nonnegative multiple

of p. Because the sum of the coefficients of bothG∗(x) andGn(x) aren, that multiple is 0.

ThereforeG∗(x) = Gn(x).�

Theorem 3.2.2 (Tijdeman’s Theorem) Suppose thatA is finite,0 ∈ A ∩ C, andA ⊕ C = Z. If r

and#A are relatively prime, thenrA⊕ C = Z.

Proof Let r have a prime decomposition such thatr = p1 . . . pk wherepi for i ∈ {1 . . . k} does

not divide#A. By Theorem 3.1.5C = B +NZ andA⊕ B = ZN , then by Proposition 3.1.2 we

haveA(x)B(x) ≡ 1+x+ · · ·+xN−1 mod (xN −1) and by Lemma 3.2.1 we haveA(xp1)B(x) ≡

1+x+ ...+xN−1 mod (xN − 1) wherep1 is a prime which is not a factor of#A. Apply Lemma

3.2.1 repeatedly, we haveA(xp1...pk)B(x) ≡ 1 + x+ ...+ xN−1 mod (xN − 1) wherep1 . . . pk is

prime which is not a factor of#A. ThereforeA(xr)B(x) ≡ 1+ x+ ...+ xn−1 mod (xn − 1). As

A(xr) = (rA)(x) and by Proposition 3.1.2 we getrA ⊕ B = ZN . Apply Proposition 3.1.2 again

we haverA⊕ (B ⊕NZ) = Z andrA⊕ C = Z.�

Conjecture 3.2.3 (Tijdeman-Sands conjecture) LetA⊕B = ZN be a tiling of a square-free cyclic

groupVp, then at least one ofA or B is contained in a coset of a proper subgroup ofZN .
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The following Corollary is the alternative proof of 3.2.2 for the casem is co-prime withN .

Corollary 3.2.4 (Dilation invariance) LetA ⊕ B = ZN for someN . If m is an integer co-prime

toN , thenA⊕mB = ZN , wheremB := {mb : b ∈ B} is the dilation ofB bym.

Proof From Lemma 3.1.3, we know thatsupp(1̂B) is a union of equivalence classes, ifm is an

integer co-prime toN thensupp(1̂B) = supp(1̂mB). As A ⊕ B = ZN , we know|A||B| = N

andsupp(1̂A) ∩ supp(1̂B) = {0}. As mB := {mb : b ∈ B}, somB is also a divisor ofN and

|A||mB| = N . Sincesupp(1̂B) = supp(1̂mB), we get thatsupp(1̂A)∩ supp(1̂B) = {0}, therefore

by Proposition 3.1.2A⊕mB = ZN .�

Lemma 3.2.5 If a finite setA tiles the integers, then there is a tiling byA whose period is a product

of powers of the prime factors of#A.

Proof If A⊕ C = Z is a tiling of periodn andr > 1 is a factor ofn relatively prime to#A, then

by Theorem 3.2.2,rA⊕C = Z. ThereforerA⊕C0 = rZ, whereC0 = {c ∈ C : c ≡ 0 ( mod r)},

and henceA⊕ C0/r = Z is a tiling of periodn/r.�

Lemma 3.2.6 LetA andB be finite,A,B 6= {0}, andA ⊕ B a complete set of residues modulo

(#A)(#B). Then at least one of the following is true.

1. No number ofA− A is relatively prime to#B.

2. No number ofB − B is relatively prime to#A.

Proof We will prove by contradiction. LetN = (#A)(#B). By Proposition 3.1.1,

A(x)B(x) ≡ 1 + x+ · · ·+ xN−1 mod (xN − 1)
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Suppose0 < a1 − a2 = δ′ for a1, a2 ∈ A is relatively prime to#B and0 < b1 − b2 = δ′′ for

b1, b2 ∈ B is relatively prime to#A. Lemma 3.2.1 shows that

A(xδ′′)B(xδ′) ≡ 1 + x+ · · ·+ xN−1 mod (xN − 1)

so by Proposition 3.1.1 again,δ′′A⊕ δ′B is a complete set of residues moduloN . But

(b1 − b2)a1 + (a1 − a2)b2 = a1b1 − a1b2 + a1b2 − a2b2 = (b1 − b2)a2 + (a1 − a2)b1

Thus it can be expressedδ′′a+ δ′b in two ways, which contradicts the tiling property thata1 = a2.

Therefore the statement follows.�

Lemma 3.2.7 [12] Let A ⊕ C = Z be a tiling of periodN such thatA is finite,0 ∈ A ∩ C, and

N has one or two prime factors. Then there is a prime factorp of N such that eitherA ⊂ pZ or

C ⊆ pZ.

Proof letC = B⊕NZ and the prime factors ofN bep and possiblyq. Then Lemma 3.2.6 holds.

If 3.2.6(1) holds, and0 ∈ AthenA ⊆ A − A ⊂ pZ ∪ qZ. If neitherpZ nor qZ containsA, then

there exista1, a2 ∈ A such thata1 ∈ pZ \ qZ anda2 ∈ qZ \ pZ. Hencea1 − a2 won’t be divisible

by pZ or qZ, so it is relatively prime to#B, which contradicts Lemma 3.2.6(1) holding. Therefore

A ⊂ pZ orA ⊂ qZ.

If 3.2.6(2) holds, the same argument shows thatB ⊆ pZ or B ⊆ qZ. As C = B + NZ, so

C ⊂ pZ + pqZ = pZ orC ⊂ qZ + pqZ = qZ.�

Remark TranslatingA or C does not affect the conclusion. Thus the condition0 ∈ A ∩ C is not

needed.
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3.3 Coven Meyerowitz

Least common multiple(also called the lowest common multiple or smallest common multiple) of

two integersa andb, usually denoted bylcm(a, b), is the smallest positive integer that is divisible

by botha andb.

Theorem 3.3.1 LetA be a finite set of nonnegative integers with corresponding polynomialA(x) =
∑

a∈A xa and letSA be the set of prime powerss such that the cyclotomic polynomialΦs(x) divides

A(x). If

(T1) A(1) =
∏

s∈SA
Φs(1).

(T2) If s1, ..., sm ∈ SA are powers of distinct primes, thenΦs1,...sm(x) dividesA(x),

thenA tiles the integers.

Proof To showA tiles the integers, we can showA ⊕ B = ZN . To showA ⊕ B = ZN , we will

use Proposition 3.1.1 (4). Therefore we will prove there exists a setB such thatΦt(x)|B(x) or

Φt(x)|A(x) andA(1)B(1) = N . DefineB(x) =
∏

Φs(x
t(s)), where the product is taken over

all prime power factorss of lcm(SA) which are not inSA andt(s) is the largest factor of lcm(SA)

relatively prime tos. Sinces = pα /∈ SA, we haves = pα|lcm(SA). Since every suchs is a prime

power,B(x) = 1+xpα−1+ · · ·+x(x−1)pα−1 has nonnegative coefficients. By Proposition 3.1.1(4)

A,B are multi-sets nonnegative integers, we have B is a set that all the coefficients are 0 and 1.

Let s > 1 be a factor ofA(1)B(1) and writes = s1...sm as a product of powers of distinct primes.

If every si ∈ SA, then by(T2), Φs(x) dividesA(x). If somesi /∈ SA, sinceB(x) =
∏

Φs(x
t(s)),

we haveΦsi(x
t(si)) dividesB(x) for s = si and t = t(si). Let r = s

si
be a factor oft(si), as

s
si

are all primes whilet(si) is the largest prime, thenr|t(si). By proposition 2.3.9(6) we know
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Φs(x
t) =

∏
r|tΦrs(x) for s andt are relatively prime, thenΦsix

t(si) =
∏

s
si
|t(si) Φrsi(x) andΦrsi(x)

dividesΦsi(x
t(si)). ThusΦs(x) dividesB(x) sincersi = si.

As A(1) =
∏

s∈SA
Φs(1) andB(1) =

∏
s/∈SA,s|lcm(SA)Φs(1), As s = pα andΦs(x) = 1 + xpα−1 +

· · · + x(p−1)pα−1, soΦs(1) = p. Let lcm(SA) = N have a prime decomposition thatlcm(SA) =

pr11 . . . pree , for pαi : 1 ≤ α ≤ ri, if pαi ∈ SA, it’s contribution with api for A(1); if pi /∈ SA, it’s

contribution with api for B(1). ThereforeA(1)B(1) =
∏l

i=1

∏ri
α=1 pi =

∏l
i=1 p

ri
i = N . �

Remark The setB constructed in the proof depends only onS = SA and not onA. Defining

CS = B ⊕ lcm(S)Z, A ⊕ CS = Z for all A with SA = S which satisfy(T1) and(T2). Then

CS ⊆ pZ for every primep ∈ S, sincep is a factor ofn and every divisorΦs(x
t(s)) of B(x) is

a polynomial inxp. For eithert(s) is a multiple ofp, or s = pα+1 with α > 1 andΦs(x
t(s)) =

Φp(x
t(s)pα), so every divisorΦs(x

t(s)) of B(x) os a polynomial inxp.

Lemma 3.3.2 LetA(x) andB(x) be polynomials with coefficients 0 and 1,N = A(1)B(1), and

R is the set of prime power factors ofN . If Φt(x) dividesA(x) or B(x) for every factort > 1 of

N , then

1. A(1) =
∏

s∈SA
Φs(1) andB(1) =

∏
s∈SB

Φs(1).

2. SA andSB are disjoint sets whose union isR.

Proof For every factort > 1 ofN ,Φt(x) dividesA(x) orB(x), asSA = {pα : pα|N andΦpα(x)|A(x)}

and similar forSB, so if pα = t ∈ R, thenΦt(x)|A(x) or Φt(x)|B(x). Hencet = pα ∈ SA or

t ∈ SB andR ⊆ SA ∪ SB with A(x) = k(x)
∏

t∈SA
Φt(x) or B(x) = k(x)

∏
t∈SB

Φt(x). From

A(x) = k(x)
∏

s∈SA
Φt(x), it follows thatA(1) = k(1)

∏
s∈SA

Φt(1). But k(x) has integer co-

efficients sok(1) is an integer. SinceA(1) > 0 and
∏

s∈SA
Φt(1) > 0, we havek(1) ≥ 1 so

41



A(1) ≥
∏

s∈SA
Φs(1) and the same forB(1) ≥

∏
s∈SB

Φs(1). Thus

N = A(1)B(1) ≥
∏

s∈SA

Φs(1)
∏

s∈SB

Φs(1) ≥
∏

t∈R
Φt(1)

AsR is the set of prime power factors ofn, then by Proposition 2.3.9 (4),
∏

t∈R Φt(1) = N . Hence

N = A(1)B(1) ≥
∏

s∈SA

Φs(1)
∏

s∈SB

Φs(1) ≥
∏

t∈R
Φt(1) = N

and all the inequalities and containments above are actually equalities, so
∏

s∈SA
Φs(1)

∏
s∈SB

Φs(1) =

∏
s∈R Φt(1). But we knowR ⊆ SA ∪ SB, for s ∈ SA, SB or R, s is a prime power, soΦs(1) =

Φpα(1) = p > 1. We cannot have as = pα ∈ SA ∩ SB because it will appear twice in the prod-

uct
∏

s∈SA
Φs(1)

∏
s∈SB

Φs(1) and only once in
∏

s∈R Φt(1), so the products could not be equal.

ThereforeSA is disjoint fromSB. �

Theorem 3.3.3 LetA be a finite set of nonnegative integers with corresponding polynomialA(x) =
∑

a∈A xa and letSA be the set of prime powerss such that the cyclotomic polynomialΦs(x) divides

A(x). If A tiles the integers, then

(T1) A(1) =
∏

s∈SA
Φs(1).

Proof By Proposition 3.1.1, we getA(1)B(1) = N andΦs(x)|A(x) or Φs(x)|B(x), then by

Lemma 3.3.2 (1), it follows directly.�

Remark (T1) is not sufficient forA to tile the integers.A = {0, 1, 2, 4, 5, 6} does not tile the

integers because we cannot find a disjoint set containing{3}, butA(x) = Φ3(x)Φ8(x) satisfies

(T1) becauseΦ3(x) = 1 + x + x2 andΦ8(x) = Φ2(2+1)(x) = Φ2(x
4) = 1 + x4, soSA = {3, 23}

and A(1)=6.
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Conjecture 3.3.4 (Coven-Meyerowitz conjecture, square-free case) LetN be square-free and let

A be a tile ofZN . Then there exist a subgroupH of ZN such thatA consists of a single represen-

tative from each coset ofH.

Note that in the square-free case, every subgroupH of ZN has a complementary subgroupH⊥

(thusZN = H ⊕H⊥). In particular,H consists of a single representative from each coset ofH⊥.

Conjecture 3.3.5 (Coven-Meyerowitz conjecture, general case) LetA be a finite subset ofZ+∪{0}

and let

SA = {pα : p is a prime, α ≥ 1 an integer andΦs(x) dividesA(x)}.

Then every finite tile inZ satisfies:(T1). #A = A(1) =
∏

s∈SA
Φs(1).

(T2). If s1, · · · , sn ∈ SA are powers of distinct primes, thenΦs1···sn(x) dividesA(x).

Lemma 3.3.6 SupposeA ⊕ C = Z, where A is a finite set of nonnegative integers,k > 1, and

C ⊆ kZ. For i = 0, 1, . . . k − 1, let Ai = {a ∈ A : a ≡ i mod k}, ai = min(Ai) and

Āi = {a− ai : a ∈ Ai}/k. Then

1. A(x) = xa0Ā0(x
k) + xa1Ā1(x

k) + · · ·+ xak−1Āk−1(x
k).

2. EveryĀi ⊕ C/k = Z.

3. The elements ofA are equally distributed modulok — every#Āi = (#A)/k.

4. SĀ0
= SĀ1

= · · · = SĀk−1
.

5. Whenk is prime,SA = {k}∪SkĀ0
and if everyĀi(x) satisfies (T2), thenA(x) satisfies (T2).
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Proof 1. AsAi = {a ∈ A : a ≡ i mod k}, ai = min(Ai) andĀi = {a − ai : a ∈ Ai}/k,

thenkĀi + ai = {a : a ∈ Ai} = Ai. As
⋃k−1

i=0 Ai = A, so
⋃k−1

i=0 (kĀi + ai) =
⋃k−1

i=0 Ai = A.

Put into polynomial we haveA(x) =
∑k−1

i=0 x
ai(kĀi)(x) =

∑k−1
i=0 x

aiĀi(x
k) = xa0Ā0(x

k)+

xa1Ā1(x
k) + · · ·+ xak−1Āk−1(x

k).

2. As A ⊕ C = Z andC ⊆ kZ, look at the elements inZ congruent toi mod k, we get

Ai⊕C = {i}⊕kZ = {ai}⊕kZ. Then(Ai−ai)⊕C = kZ and(Ai−ai)/k⊕C/k = kZ/k.

From (1) we havekĀi + ai = Ai, thereforeĀi ⊕ C/k = Z.

3. The translation setC/k has some periodN , so there is a set̄B such thatĀi⊕(B̄⊕NZ) = Z

and everyĀi ⊕ B̄ is a complete set of residues moduloN . Thus the#Āi are equal.

4. Since by Lemma 3.3.2, everySĀi
is the complement ofSB̄ in the set of prime power factors

of N .

5. Write p in place ofk. From Lemma 3.3.7 (2),SpĀi
= {s′ : s ∈ SĀi

}, wheres′ = ps or

s according asp is or is not a factor ofs. pĀi(x) =
∑

a∈Ai
xpa =

∑
a∈Ai

(xp)a = Āi(x
p).

DefineSpĀi
= {pα : p is a prime, a ≥ 1 an integer andΦs(x)|Ā(x)}, t ∈ SpĀi

impliest = s′

for somes ∈ SĀi
. From (4), all theSĀi

are the same, thenSpĀ are the same. Ift ∈ SpĀ0
,

then t ∈ SpĀ for any i. HenceΦt(x)|(pĀi)(x) = Āi(x
p) andΦt(x)|(xa0Ā0(x

p) + · · · +

xak−1Āk−1(x
k)) = A(x). Thereforet ∈ SA andSpĀ0

⊆ SA. Also p ∈ SA, since ifΦp(ω) =

0, thenωp is the primitive root of unity soωp = 1, ωai≡i mod p impliesωai−i = ωpk = 1,

so ai − i = 0 andωai = ωi, andA(ω) =
∑p−1

i=0 ω
iĀi(1) = (#A/k)

∑p−1
i=0 ω

i = 0, the

next-to-last equality by (3). We have thus shown thatSA ⊇ {p} ∪ SpĀ0
. SinceA0 andA tile

the integers,A0(x) andA(x) satisfy (T1) andSA = {p} ∪ SpĀ0
.

Now assume that everȳAi(x) satisfies (T2). Condition (T2) forA(x) is: if s1, . . . , sm ∈ SĀ0
are

powers of distinct primes, thenΦs′1...s
′
m
(x) dividesA(x) andΦps1...sm(x) dividesA(x). By (T2),
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Φs1...sm(x) divides everyĀi(x). hence by Proposition 2.3.9 (7),Φs′1...s
′
m

andΦps1...sm(x) divide all

theĀi(x
p), so they divideA(x) as well.�

Lemma 3.3.7 Letk > 1 and letA = kĀ be a finite set of nonnegative integers.

1. A tiles the integers if and only if̄A tiles the integers.

2. If p is prime, thenSpĀ = {pα+1 : pα ∈ SĀ} ∪ {qβ ∈ SĀ : q prime, q 6= p}.

3. A(x) satisfies (T1) if and only if̄A(x) satisfies (T1).

4. A(x) satisfies (T2) if and only if̄A(x) satisfies (T2).

Proof (1) First we will show ifĀ tiles the integers, thenA tiles the integers. Let̄A⊕C = Z. Then

kĀ ⊕ kC = kZ and henceA ⊕ ({0, 1, . . . , k − 1} ⊕ kC) = {0, 1, . . . , k − 1} ⊕ (kĀ ⊕ kC) =

{0, 1, . . . , k − 1} ⊕ kZ = Z. Next we will show ifA tiles the integers, then̄A tiles the integers.

Let kĀ ⊕ D = Z. ThenkĀ ⊕ D0 = kZ, whereD0 = {d ∈ D : d ≡ 0( mod k)}, and hence

Ā⊕D0/k = Z.

(2) From Proposition 2.3.9 (7) we have

{t : Φt(x)|A(x)} = {s′ : Φs(x)|Ā(x)} ∪ {ps : Φs(x)|Ā(x)} (3.6)

SA andSĀ contain prime power factors withSA = prime powers in the set of 3.6 andSĀ = {s =

pα or qβ for q is a primeq 6= p}, then we will have two cases:

Case 1:s = pα. Whenp is a factor ofs, thens′ = ps = pα+1.

Case 2:s = qβ. Whenp is not a factor ofs, thens′ = s = qβ; whenp is a factor ofs, then

s′ = ps = pqβ. As pqβ is not a prime power so it’s not inSĀ.
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(3) Supposek is prime,, sayk = p. Since#A = #Ā, from (2) and Proposition 2.3.9 (4) we have

Ā(1) ⇔
∏

pα∈SĀ

Φpα+1(1)
∏

qβ∈SĀ,q 6=p

Φqβ(1) ⇔
∏

pα∈SA

Φpα(1)
∏

qβ∈SA,q 6=p

Φqβ(1) ⇔ A(1)

(4) Let s′ = ps or s according asp is or is not a factor ofs. let s1, . . . , sm be powers of distinct

primes ands = s1 . . . sm. Thens′1, . . . , s
′
m are powers of distinct primes ands′ = s′1 . . . s

′
m. Then

Ā(x) satisfies(T2) ⇔ si ∈ SĀ for i ∈ {1, . . . , m} ⇔ s′i ∈ SA = SpĀ. From Proposition 2.3.9 (7),

Φs(x) dividesĀ(x) ⇔ Φs′(x) dividesA(x). As si ∈ SĀ ⇔ Φs1...sm(x)|Ā(x) ⇔ Φs(x)|Ā(x) and

s′i ∈ SA ⇔ Φs′1...s
′
m
(x)|A(x) ⇔ Φs′(x)|A(x), soĀ(x) satisfies(T2) ⇔ si ∈ SĀ ⇔ Φs(x)|Ā(x) ⇔

s′i ∈ SA ⇔ Φs′(x)|A(x) ⇔ A(x) satisfies(T2). �

Remark B is not contained inpZ whenΦp(x) dividesB(x) because ifB ⊂ pZ, thenB = pB̄, by

(2) we getSB = SpB̄ = {pα+1 : pα ∈ SB} ∪ {qβ ∈ SB̄ : q 6= p}. HoweverΦp(x)|B(x) indicates

p ∈ SB andα ≥ 1 indicatesα + 1 ≥ 2, thenSB contains only powers ofp bigger than 2.

Theorem 3.3.8 LetA be a finite set of nonnegative integers with corresponding polynomialA(x) =
∑

a∈A xa such that#A has at most two prime factors and letSA be the set of prime powerss such

that the cyclotomic polynomialΦs(x) dividesA(x). If A tiles the integers, then

(T2) If s1, . . . , sm ∈ SA are powers of distinct primes, thenΦs1...sm(x) dividesA(x).

Proof From Lemma 3.3.7, there is no loss of generality in assuming thatgcd(A) = 1 and0 ∈ A.

By Lemma 3.2.5 there is a tilingA⊕ C = Z whose periodN is a product of powers of the prime

factors of#A. We complete the proof by induction onn. If n = 1, thenA = {0} andA(x) ≡ 1

satisfies (T2) vacuously. IfN > 1, then by Lemma 3.2.7 there is a prime factorp of N such that

C ⊆ pZ. Then by Lemma 3.3.6,A(x) = xa0Ā0x
p + xa1Ā1x

p + · · · + xap−1Āp−1(x
p) and every
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Āi ⊕ C/p = Z is a tiling of periodN/p. HenceĀi tiles ZN/p whereN/p < N also has only

2 prime factors. By the inductive hypothesis, everyĀi(x) satisfies (T2), so by Lemma 3.3.6 (5),

A(x) satisfies (T2).�

Lemma 3.3.9 SupposeA is finite,0 ∈ A, A tiles the integers with periodN , andN has two prime

factors,p andq. If neitherΦp(x) norΦq(x) is a divisor ofA(x), thenA ⊂ pZ or A ⊂ qZ.

Proof Let A ⊕ (B ⊕ NZ) = Z be a tiling of periodN . By Proposition 3.1.1,Φp(x) andΦq(x)

are divisors ofB(x) or A(x). From the remark after Lemma 3.3.7, neitherpZ nor qZ containsB.

Then the conclusion follows by Lemma 3.2.7.�

Corollary 3.3.10 If A is a finite set of integers andC ⊆ kZ, thenA ⊕ C = Z if and only if

A =
⋃k−1

i=0 ({ai} ⊕ kĀi) for some complete set{a0, a1, . . . , ak−1} of residues modulok, andk sets

Āi, each of which satisfies min(Ai) = 0 and tiles the integers with translation setC/k.

The decomposition is unique. We can havegcd(A) = 1 although this may not be true for thēAi.

If the Āi are equal, then the union is a direct sum,A = {a0, a1, . . . , ak−1}⊕ kĀ0. For some simple

choices of translation setC, every tile has this form.

3.4 The Square-free Case

Theorem 3.4.1 If A⊕B = ZN and N is square free, thenA satisfies(T1) and(T2).

Proof Suppose thatA⊕ B = ZN with N square-free. Letr be a prime dividing|B|, then asN is

square-free sor does not divide|A|. By Theorem 3.2.2,rA⊕B = ZN , thenB⊕ (rA⊕NZ) = Z.

LetC = rA⊕NZ ⊆ rZ andB′ = B∩rZ, then|B′| = |B|/r andB′ = {b ∈ B : b ≡ 0 mod r} =
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B0. (this follows for example becauseΦr(x) dividesB(x), so thatB has the same number of

elements in each congruence class modr). Then by Lemma 3.3.6 (2),̄B0 ⊕ (rA ⊕ NZ)/r = Z,

we get thatA ⊕ B′′ = ZN/r, whereB′′ = B′/r = B̄0 and |B′′| = N/r. HenceA tiles ZN/r,

which iterates the procedure as long as we have primes in the tiling set |B|, we eventually get to

the point when|B| = 1. ThereforeA ⊕ 0 = Z |A|, soA is a complete set of primes mod|A| that

A(x) = 1 + x+ · · ·+ x|A|−1 mod (x|A| − 1), which implies(T1) and(T2) are satisfied.�
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