

University of Central Florida
STARS

Electronic Theses and Dissertations, 2004-2019

2012

Beyond Building A Tree: Phylogeny Of Pitvipers And Exploration Of Evolutionary Patterns

Allyson Fenwick University of Central Florida

Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

Fenwick, Allyson, "Beyond Building A Tree: Phylogeny Of Pitvipers And Exploration Of Evolutionary Patterns" (2012). *Electronic Theses and Dissertations, 2004-2019.* 2333. https://stars.library.ucf.edu/etd/2333

BEYOND BUILDING A TREE: PHYLOGENY OF PITVIPERS AND EXPLORATION OF EVOLUTIONARY PATTERNS

by

ALLYSON M. FENWICK B.S. – Michigan State University, 2003 B.A. – Michigan State University, 2003 M.S. – The University of Texas at Tyler, 2006

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology in the College of Sciences at the University of Central Florida Orlando, Florida

> Fall Term 2012

Major Professor: Christopher L. Parkinson

© 2012 Allyson M. Fenwick

ABSTRACT

As generic and higher-scale evolutionary relationships are increasingly well understood, systematists move research in two directions: 1) understanding specieslevel relationships with dense taxon sampling, and 2) evaluating evolutionary patterns using phylogeny. In this study I address both foci of systematic research using pitvipers, subfamily Crotalinae.

For direction one, I evaluate the relationships of 96% of pitvipers by combining independent sets of molecular and phenotypic data. I find the inclusion of species with low numbers of informative characters (i.e. less than 100) negatively impacts resolution of the phylogeny, and the addition of independent datasets has no effect on or a small benefit to confidence in estimated evolutionary relationships. Combined evidence is extremely useful in evaluating taxonomy; I use it with South American bothropoid pitvipers. Previous work found the genus *Bothrops* paraphyletic, but no study had included enough species to propose a taxonomic resolution. I resolve the relationships of 90% of bothropoid pitvipers, and support the paraphyly of *Bothrops* as previously defined, but find it consists of three well-supported clades distinguished by distinct habitats and geographic ranges. I propose the division of *Bothrops sensu lato* into three genera.

To address research direction two, I investigate the change in reproductive mode from egg-laying (oviparity) to livebearing (viviparity) in vipers, as well as the expansion of pitvipers through South America. I resolve the phylogeny and the divergence times for subgroups of interest then use model comparison and ancestral character state or

iii

geographic range estimation to trace the evolution of reproductive mode or geographic range across evolutionary history. For vertebrates, the predominant explanation for the evolution of reproductive mode is Dollo's Law of unidirectional evolution. This law has been challenged for a number of characters in different systems, but the phylogenetic methods that found those violations were criticized. I find support for unidirectional evolution in two analyses and rejection of it in others, and therefore do not reject Dollo's Law for the evolution of reproductive mode in vipers. In the case of geographic range, dozens of hypotheses have been proposed to explain the great biodiversity in South America, but tests of these hypotheses are lacking. I define specific time- and space-based predictions for seven hypotheses based on geological and climatic events – uplift of the Andes Mountains, saltwater inundation of inland areas, change in river flow, and Pleistocene climate changes. I find some support for half of the hypotheses, including one allopatric, one parapatric, and one based on climate change. I conclude that the evolution of South American pitvipers is extremely complex.

Through fulfillment of both systematic research directions, I generated new knowledge about pitvipers and evolutionary processes. My methods of evaluating evolutionary patterns provide frameworks for different research questions in these areas, and I suggest that other researchers apply similar techniques to evaluate other portions of the Tree of Life.

iv

To the family in my home,

the family who supported me from afar,

and those friends who became family

ACKNOWLEDGMENTS

Major achievements are never due to the efforts of one person, but are rather the product of many individuals providing assistance in different ways. When I look back at this dissertation research I recognize the crowd that helped bring this project to completion. I first want to thank my PI, Chris Parkinson, for his excellent mentorship in research, academia, and professionalism. I especially appreciate his bringing together an effective team of graduate students and good undergraduate mentees to facilitate each other's research, and for his advice on the aspects of academic careers that often go undiscussed. I thank my committee members: Eric Hoffman for introducing me to another supportive lab and to the population genetics work that I plan to incorporate into my future research program, Will Crampton for insight into South American biogeography, and John Wiens for the ideas that tie these projects together as well as discussion on combined evidence phylogenetics.

The pH lab has included great supporters and teachers throughout this journey, and they are certainly lab family. Todd Castoe, Juan Daza, and Mary Beth Manjerovic have, and continue to, share their experiences in research and life to better prepare me for my own challenges. Others have worked alongside me as we navigated labwork, analysis and interpretation: Håkon Kalkvik, Genevieve Metzger, Greg Territo, Jason Strickland, Tyler Hether, Rosanna Tursi, Sarah May, Sara Williams, Gina Ferrie, and Ryan Lamers. I especially want to thank Kelly Diamond for her commitment to the many different tasks I assigned her, and I look forward to observing her continued

vi

development as a researcher. I thank Ben Gochnour, Emily Pitcairn, Ocean Cohen, Tyler Carney, and others that have passed through this lab and contributed to this work.

The biology department at UCF is a major factor in the success of its students through its excellent teaching but especially in mentoring and valuing the contributions of graduate students. All of the members of this department have supported my development and have provided me excellent opportunities. I thank the Biology Graduate Student Association for its many efforts to develop students into professionals, especially with CBGB (thanks to Cheryl Pinzone) and social opportunities. My time in the lab meetings of Jane Waterman and Jim Roth was very helpful to my understanding of good research practices and of biology in general. Frank Logiudice was not only an excellent teaching mentor, he was also extremely supportive in many other aspects of my graduate life. Laurie VonKalm, Ross Hinkle, Graham Worthy, Dave Jenkins, Sara Elliott, Karen Reinemund, Gayle Story, and Sheri Pearson all helped with many important details. I thank Preethi Radhakrishnan, Josh Reece, and the other graduate students and postdoctoral researchers for their contributions to my development.

Ron Gutberlet was the first to bring me into his lab as a master's student, and introduced me to the amazing subfamily of pitvipers. Without him I would never have discovered my passion for phylogenetics and for understanding the evolution and diversity of amazing groups of animals.

As much of my research relied on specimens borrowed from distant locations, I am extremely grateful to the curators, collections managers, and museum staff who facilitated visits and loans. I especially thank Carl Franklin, Jon Campbell and Eric Smith

vii

(UTA), Alan Resetar, Kathleen Kelly and Maureen Kearney (FMNH), Kenney Krysko (FLMNH), Travis LaDuc and Dave Cannatella (TNHC), and Kevin DeQuieroz and Robert Wilson (USNM) for acting as advocates and consultants over the past several years. Jens Vindum and Bob Drewes (CAS), and David Kizirian and Darrel Frost (AMNH) were of great help in facilitating visits to their collections. Many people provided loans: Stephen Rogers (CM), John Simmons and Rafe Brown (KU), Jeff Siegel (LACM), Chris Austin (LSUMZ), Jose Rosado, Jonathan Losos and James Hanken (MCZ), Jimmy McGuire and Carol Spencer (MVZ), Ross MacCulloch and Bob Murphy (ROM), Angelo Soto-Ceteno and Brad Hollingsworth (SDSNH), Mariko Kageyama (UCM), Greg Schneider (UMMZ), and others.

Finally, my family provided the original and the most important support for my vocation in biology. My parents Kathy and Wayne Modra gave me the resources and, most importantly, the confidence to pursue whatever career I loved. William Fenwick, the greatest ally in this team, came to Florida and chose to be my partner forever, helping me through all of the hard work and sacrifice that a project of this magnitude requires. Together we had the newest member and excellent source of inspiration, Aidan Fenwick, who gave me motivation to complete this great undertaking.

viii

TABLE	OF	CONTENTS	
		CONTENTS	

LIST OF FIGURES xiv
LIST OF TABLES xviii
INTRODUCTION: ROLES FOR PHYLOGENETICISTS IN BIOLOGICAL RESEARCH
Species-level relationships 2
Evaluating evolutionary patterns5
Pitvipers as a model system6
Study goals7
References
CHAPTER 2: COMPREHENSIVE TAXON SAMPLING WITH COMBINED MOLECULAR AND PHENOTYPIC EVIDENCE ESTIMATES THE PHYLOGENY OF PITVIPERS (SERPENTES: CROTALINAE)
Introduction
Taxon sampling13
Combining datasets
Pitvipers as a model system17
Materials and Methods 19
Morphological Data 19
Molecular Data 20
Phylogenetic Analyses 23
Results
Discussion

Taxon sampling51	1
Combining datasets	4
Pitviper phylogenetic relationships55	5
Conclusions and future directions	3
Acknowledgments 64	4
References	5
CHAPTER 3: MORPHOLOGICAL AND MOLECULAR EVIDENCE FOR PHYLOGENY AND CLASSIFICATION OF SOUTH AMERICAN PITVIPERS, GENERA BOTHROPS, BOTHRIOPSIS, AND BOTHROCOPHIAS (SERPENTES: VIPERIDAE)75	5
Introduction	5
Materials and Methods79	Э
Morphological Data	Э
Molecular Data	3
Phylogenetic Analyses	1
Results	4
Discussion	2
Resolution of Major Lineages 102	2
Placement of Species within Lineages 105	5
Beta Taxonomy and Genetic Distance113	3
Basis for Systematic Revision 114	4
Systematic Account	8

Key to South American Bothropoid Genera	127
Acknowledgments	128
References	130
CHAPTER 4: THE SERPENT AND THE EGG: UNIDIRECTIONAL EVOLUTION OF REPRODUCTIVE MODE IN VIPERS?	137
Introduction	137
Methods	141
Phylogenetic estimation	141
Character evolution estimates	143
Results	146
Phylogeny	146
Character evolution	151
Discussion	158
Evolution of reproductive mode in vipers	158
Implications for studies of character evolution	160
Future work on reproductive mode evolution	164
Conclusions	165
Acknowledgments	167
References	167
CHAPTER 5: EVALUATING SOUTH AMERICAN DIVERSIFICATION HYPOTHESES IN PITVIPERS (SERPENTES: CROTALINAE)	173
Introduction	173

Methods	187
Input data	187
Phylogenetic estimation and divergence dating	195
Geographic range evolution	196
Results	199
Phylogeny and divergence dating	199
Ancestral area estimation	201
Discussion	208
Phylogenetic relationships	208
Diversification hypothesis tests	209
Diversification in pitvipers	211
Considerations in biogeographic hypothesis testing	212
Conclusions	214
Acknowledgments	214
References	215
CHAPTER 6: CONCLUSION	223
Evaluating evolutionary relationships and taxon names	224
Hypothesis testing using phylogenies	227
References	230
APPENDIX A: MORPHOLOGICAL CHARACTERS USED IN STUDIES	233
References for Appendix A	241

APPENDIX B: INDIVIDUALS EXAMINED FOR MORPHOLOGICAL DATA	.43
APPENDIX C: MOLECULAR DATA COLLECTED FOR PHYLOGENY OF CROTALINAE 2	73
APPENDIX D: SUPPLEMENTAL PHYLOGRAMS SUPPORTING BOTHROPOID TAXONOMY	88
APPENDIX E: SPECIMENS EXAMINED FOR BOTHROPOID TAXONOMY	.98
APPENDIX F: DATA USED IN REPRODUCTIVE MODE ANALYSIS	,06
References for reproductive mode	19

LIST OF FIGURES

Figure 5. Bayesian MCMC 50% majority rule consensus phylogram compiled from analysis of 2311bp of mitochondrial sequences, 2199bp of nuclear sequence of the Rag1 gene, and 100 morphological characters. Only species represented by DNA data are included; this is the preferred analysis for systematic interpretation. Posterior probabilities shown adjacent to nodes; probabilities of 1.0 are indicated by gray-filled circles. Nodes with less than 50% posterior probability support have been collapsed... 42

Figure 7. Histogram of data completeness for all species included in study compared to completeness for unresolved species. Minimally complete species are overrepresented among unresolved species and maximally complete species are underrepresented. 47

Figure 8. Comparison of nodal posterior probability support between Bayesian analysis of mitochondrial DNA of pitvipers and analysis of same species but additional data: (a) nuclear gene Rag1, (b) morphological characters. Values on 1:1 axis represent no change with addition of dataset, values above axis represent increased support with addition of data. Addition of data, and values below axis represent decreased support with addition of data. Addition

Figure 10. Bayesian MCMC 50% majority-rule consensus phylogram, including taxa with morphological data only (analysis 8). Phylogram derived from analysis of 2343 bp mitochondrial and 85 gap weighted or majority coded morphological characters. Posterior probabilities shown above nodes, bootstrap values from parsimony analysis of same dataset shown below nodes (analysis 7) Parsimony analysis shows minor topological differences from Bayesian analysis; refer to online figure S-3 for parsimony cladogram. Gray circles indicate posterior probabilities of 95 or greater and bootstrap values of 70 or greater. Dashes indicate support values less than 50. Letters correspond to major lineages: *Bothrocophias* clade (A), *Bothrops alternatus* clade (B), *Bothrops neuwiedi + B. jararaca* clade (C), *Bothriopsis* clade (D), and *Bothrops atrox* clade (E). ... 97

Figure 19. Biogeographic reconstruction obtained using Lagrange for evaluation of parapatric and climate-based speciation hypotheses (Hyps. 4–6, Table 16). Vertical lines

LIST OF TABLES

Table 2. Thermocycler conditions for amplification of fragments of nuclear gene Rag1.Primers cited here are listed in Table 1.21

Table 6. Numbers of individuals examined/sequenced for data used in this study.Asterisks denote species not included in phylogenetic estimation.81

Table 7. Species used, voucher data, collecting locality, and GenBank accession numbers for each taxon. Accession numbers with asterisks are sequences original to this study. Institutional abbreviations are listed in Leviton, Gibbs, Heal & Dawson (1985). Field series tags: AM = Anita Malhotra, Cadle=John Cadle, CLP = Christopher Parkinson, DPL = Dwight P. Lawson, HWG = Harry Greene, ITS = Marcio Martins Itarapina series, MM = Marcio Martins, Moody = Scott Moody, MSM = Mahmood Sasa, OP = Omar Pesantes, PT

 Robert Espinoza, Reno collection, RG = Nelson da Silva, Xingó Hydroelectric project, RH Richard Heighton, and WW = Wolfgang Wüster. 85
Table 8. Summary of phylogenetic analyses of South American pitvipers 92
Table 9. Results of AIC model selection conducted in MrModelTest 2.2 (Nylander 2004)for partitions of the dataset
Table 10. Cytochrome b distances within and among selected genera recovered with theKimura 2-parameter model with gamma-distributed rate variation. Sequences forBothrocophias, Rhinocerophis, Bothropoides, Bothriopsis, and Bothrops taken from thisstudy, all other sequences from Castoe & Parkinson (2006). Thick black line denotesSouth American bothropoid clade
Table 11. Phenotypic synapomorphies and shared natural history traits among species within major lineages of South American pitvipers. Diet data from Martins et al. (2002), habitat data from Martins et al. (2001) and Campbell & Lamar (2004), range data from Campbell & Lamar (2004)
Table 12. Habitat, distribution and proposed genera for all species of <i>Bothrops</i> (<i>sensu</i> Campbell & Lamar, 2004), including those not represented in the present analysis. Distribution and habitat data from Campbell & Lamar (2004)
Table 13. Maximum likelihood models tested. All models have some support under AIC, optimal model is in italics. Parameter values are averages taken over the sample of 600 trees including standard deviations. Eggs symbolize rates under oviparity; snakes symbolize viviparity
Table 14. BiSSE models tested. Model name includes number of parameters for that model. Model 5d has some support under AIC, optimal model is bold. Parameters not mentioned in models were allowed to vary independently of each other. Parameter values are harmonic means taken over the sample of 600 trees. Eggs symbolize rates under oviparity; snakes symbolize viviparity
Table 15. Bayesian RJ-MCMC models tested based on node constraints (above), and estimated character states across nodes involved in potential reversals using backbone node constraints (below). Character evolution model support measured as proportion of posterior probability; optimal model is bold. Parameter values are averages taken over the sample of 600 trees and including standard deviations. Eggs symbolize oviparity; snakes symbolize viviparity. Bolded values denote optimal models of character state change or optimal character states for node constraints. All analyses after the first have the root node fossilized to oviparity. Values below are posterior probabilities for the labeled character state at that node

INTRODUCTION: ROLES FOR PHYLOGENETICISTS IN BIOLOGICAL RESEARCH

Biological research has greatly benefited from phylogenetics. Phylogenies provide a general understanding of the diversification of groups over time, and therefore can be used to connect independent observations of related taxa and greatly magnify the utility of these observations. Understanding taxon relationships helps identify major evolutionary lineages and other factors important to conservation. Phylogenies of taxa can be compared to phylogenies of genes to better understand how gene families evolve across the Tree of Life. Researchers collecting observations of organismal responses to a factor of interest use phylogenetic trees to eliminate the "noise" of shared evolutionary history, allowing a better evaluation of the relationship between the factor and the response. Finally, phylogenetic trees are used to estimate characteristics of the extinct ancestors of extant taxa. Researchers collect observations of the traits of extant taxa, and then use phylogenetic trees to map the character states of ancestral taxa. Mapping the evolution of characters helps clarify general rules guiding change in these traits. In the specific case of geographic ranges, this research points to environmental or geologic factors driving diversity in various organisms within a region.

Historically, researchers who recovered phylogenies used them only to identify groups (systematics) and evaluate the biological relevance of names (taxonomy). The published trees were then used in other disciplines to test hypotheses. Systematics and taxonomy are important ways to quickly disseminate understanding of lineage

relationships to an audience much broader than those who will read the phylogenies, but as higher level relationships become well-resolved, the role of phylogeneticists must broaden. In herpetology in particular, most family and genus level relationships may soon be resolved (Wiens, 2008), therefore systematists must focus on 1) resolving species-level relationships and 2) using phylogenies to test hypotheses about evolutionary patterns and processes.

Species-level relationships

The most useful phylogenies for hypothesis testing are taxon-comprehensive. Using as many species as possible reduces the problem of species sampling bias and can enhance the estimation of character states in ancestral lineages. Greater density of taxon sampling increases accuracy of resolving phylogenies (Graybeal, 1998; Hillis, 1998; Poe and Swofford, 1999; Rannala et al., 1998; Wiens, 2003a, b; Wiens, 2005), which leads to greater accuracy in branch length estimation. As branch lengths represent the amount of evolutionary change that occurred between speciation events, they can be used to determine the dates of those speciation events. Accurate estimation of lineage divergence times is critical to character state reconstruction, biogeographic, and comparative studies (e.g. Pagel et al., 2004; Rutschmann, 2006 and references therein).

The most straightforward way to estimate relationships for all species in a group is to utilize all available forms of data for all species, following the principles of total evidence (de Queiroz, 1993; Kluge, 1989). These data most often include DNA and phenotypic characters. However, for some species DNA are not available. Specimens must be fresh, frozen, or specially preserved to yield usable DNA, and in the case of taxa

preserved in formalin such as some invertebrates, fishes, amphibians, and reptiles, rare species may have no specimens available for DNA sequencing (Hillis, 1987). Organismal collections such as natural history museums house specimen collections that date back over 100 years, and luckily these specimens yield phenotypic data that allow the inclusion of species in phylogenetic analysis even when no specially preserved individuals are available.

Although including as many species as possible has acknowledged benefits, researchers are concerned about the inclusion of species that lack genetic data because of the large amount of missing cells in the data matrix (e.g. Lemmon et al., 2009). Morphological datasets are often on the order of hundreds of characters, while most genetic datasets have several thousand characters (e.g. Wiens et al., 2005). As techniques for collecting genetic and genomic data improve, this discrepancy continues to increase. Phylogenetic placement of species with large amounts of missing data may be difficult to resolve (e.g. Anderson, 2001; Novacek, 1992; Wilkinson, 1995). Including taxa with missing data may also decrease accuracy of phylogenetic resolution overall, lessening confidence in the placement of other species. In contrast, simulations and some empirical studies suggest that large proportions of missing data may not adversely affect accuracy if the number of completely sampled characters is large enough, and may in fact rescue analyses from problems such as long-branch attraction (Wiens and Morrill, 2011 and citations therein). Therefore, including lineages with a large number of sampled morphological characters but lacking DNA data may be beneficial.

The use of morphological data alone and in combination with molecular evidence is important to the understanding of relationships among lineages as well as to the usability of phylogenies. Phenotypic characters not only increase taxon sampling, they also facilitate the placement of fossils, which tie phylogenies to absolute time (Hillis and Wiens, 2000). Branch lengths with absolute times are useful for testing biogeographic hypotheses as well as connecting other character changes to specific events (e.g. Lynch, 2009). Accuracy for the position of fossil taxa is increased by including molecular data (Wiens, 2009; Wiens et al., 2010), and incorporating fossil taxa can even change the position of living taxa (Wiens et al., 2010).

Early phylogenies were generally based on morphology, with more recent phylogenies based on molecular evidence (Wiens, 2008). The differences between these sources of evidence make incongruence between the inferred phylogenies extremely difficult to evaluate, introducing phylogenetic uncertainty to subsequent hypothesis testing. The addition of morphology to an established molecular dataset allows one to conduct both separate and combined evidence analyses. Combined evidence also provides suitable means to evaluate whether incongruence occurs due to problems within a character type or due to evolutionary processes acting on a lineage. Character problems may be resolved after analysis; evolutionary processes must be taken into account in hypothesis testing. For example, phylogenies of the palm-pitviper genus *Bothriechis* inferred based on allozyme and morphological data (Crother et al., 1992) suggested different patterns of Central American colonization than phylogenies based on mitochondrial DNA (mtDNA; Castoe et al., 2009 and references therein). Taggart et

al. (2001) compared and combined the allozyme dataset to mtDNA from Parkinson (1999) and new sampling. They concluded that it was inappropriate to combine mitochondrial and nuclear DNA evidence because introgression and/or incomplete lineage sorting may cause mtDNA phylogenies to not reflect the evolutionary history of the group. Further testing with an expanded dataset of mitochondrial haplotypes and nuclear loci by Castoe, Daza and Parkinson failed to reveal incongruence between mitochondrial and nuclear sites, or introgression or incomplete lineage sorting in mitochondrial haplotypes (unpublished; reported in Castoe et al., 2009). As the morphological data sampled by Crother et al. (1992) was limited, the expanded morphological dataset collected by this study should complete the story of congruence among datatypes for palm-pitvipers.

Evaluating evolutionary patterns

Once accurate, comprehensive species trees have been resolved, phylogeneticists should use their unique skill set to evaluate interesting evolutionary patterns. This role is becoming increasingly important as more accurate and more comprehensive phylogenies become available for a variety of organisms. Subfields of evolution such as character reconstruction and biogeography utilize data collection and analytical methods similar to those of phylogenetic reconstruction, and are good areas for expanded interest.

Phylogenies can be combined with the large amounts of natural history data about extant species accumulated in published literature to illuminate patterns of character evolution across ancestral taxa. Identifying these patterns enables inferences

of key innovations or other factors driving speciation (e.g. Lynch, 2009), and facilitates tests of long-assumed explanations of character change (e.g. Collin and Miglietta, 2008). Biogeographic work is also informed by reconstruction of ancestral ranges, but in addition a long history of study of extant species ranges has produced an array of hypotheses on how geologic and climatic change have driven speciation. These hypotheses can now be tested using time-calibrated, taxon-dense trees. In both character evolution and biogeographic studies, advances in computational methods and processing power have greatly expanded the use of phylogenetic information in estimating the evolution of geographic ranges and other characters (e.g. Pagel et al., 2004; Ree and Sanmartín, 2009). Recently adopted methods provide newly accurate estimates of confidence in the reconstruction of ancestral states and ranges, including estimates of uncertainty in relationships, branch lengths, character states, and confounding factors (e.g. Goldberg et al., 2011; Maddison et al., 2007; Pagel and Meade, 2006; Pagel et al., 2004).

Pitvipers as a model system

Pitvipers are an excellent system to meet the goals of this research program for theoretical and practical reasons. First, pitvipers can be a model system for testing evolutionary hypotheses because they contain a number of interesting natural history characters (see Campbell and Lamar, 2004; Greene, 2000). Groups have evolved to utilize various diets, modes of reproduction, and macro- and microhabitats. Pitvipers are beneficial to the study of biogeography because they range across the Americas and Southeast Asia and have greatly diversified over the past 20 million years (Castoe et al.,

2009). Second, a robust phylogeny and biologically relevant taxonomy of pitvipers is important because all species are venomous (Greene, 2000). Understanding evolutionary relationships of pitvipers is essential to antivenom production and aids in the selection of species to utilize as biological resources (Fry et al., 2003; Koh et al., 2006; Wüster, 1996; Wüster et al., 1997). Third, this group is extremely speciose, containing 213 species in at least 24 genera (www.reptile-database.org and references therein, accessed 19 May 2012). This diversity provides many species to test hypotheses in various fields. Fourth, a large set of morphological characters has been published for pitvipers (Appendix A). Many mitochondrial sequences are also available, providing a generous molecular dataset that can be expanded by including rare species and adding independent molecular datasets from nuclear genes. The combination of phenotypic and molecular data in this study results in three independent datasets for resolving species trees.

Study goals

The need for multiple approaches to understanding evolution and the suitability of pitvipers as a model system lead to my two main goals: build a robust and comprehensive phylogenetic hypothesis for pitvipers and investigate evolutionary patterns using phylogenies.

I resolve relationships of rare and newly described species based on phenotypic data, those with few known individuals and no available molecular data. I compare topologies based on morphological, molecular, and combined evidence. I provide insight into long-established questions of pitviper relationships, such as the earliest diverging

lineage among pitvipers, relationships among certain Asian groups, and the sister lineage of New World vipers. The comprehensive phylogenetic tree benefits not only my work but also those who investigate vipers in contexts such as comparative statistical analysis (Gartner, pers. comm.).

I evaluate conflicts between established taxonomy and evolutionary relationships, suggesting areas of further study or proposing taxonomic changes where accumulated evidence provides strong support for name changes. In this way I continue the long history of phylogenetics enlightening systematics and taxonomy to propose biologically relevant names.

I use subsets of the pitviper tree to evaluate interesting evolutionary patterns. Specifically, I use current methods to evaluate the prevailing hypothesis for the evolution of egg-laying and livebearing modes of reproduction in vertebrates: Dollo's Law (Dollo, 1893, 1905; Fitch, 1970; Neill, 1964; Tinkle and Gibbons, 1977). Vipers provide an excellent test of the evolution of reproductive mode because they are squamate reptiles, a group that contains the largest number of changes in reproductive mode among vertebrates (Blackburn, 1982). Current character reconstruction methods require taxon-comprehensive phylogenies, and therefore my trees provide an accurate estimation of confidence in the support for this hypothesis.

Several current methods for estimating the geographic ranges of ancestral taxa are related to those of character reconstruction and also rely on accurate, species-dense phylogenies of appropriate taxa. I consider a number of explanations for the great biodiversity in South America, defining specific predictions for locations and timing of

geographic range evolution in pitvipers. This group entered the continent in the mid-Miocene (Castoe et al., 2009), was present across the time period important to most hypotheses, and ranges from Central America to southern Argentina (Campbell and Lamar, 2004).

This work will benefit other evolutionary biologists by providing a framework for

going beyond simply building trees. The tree and taxonomic changes will benefit

countless researchers, because a key step to empirical study is understanding one's

focal taxon. The results of my hypothesis testing will contribute to the ongoing

discussion on the applicability of Dollo's Law and illuminate a set of relevant

diversification drivers in the Neotropics.

<u>References</u>

- Anderson, J.S., 2001. The phylogenetic trunk: Maximal inclusion of taxa with missing data in an analysis of the Lepospondyli (Vertebrata, Tetrapoda). Systematic Biology 50, 170-193.
- Blackburn, D.G., 1982. Evolutionary origins of viviparity in the reptilia. I. Sauria. Amphibia-Reptilia 3, 185-205.
- Campbell, J.A., Lamar, W.W., 2004. The Venomous Reptiles of the Western Hemisphere. Comstock Publishing Associates, Ithaca, NY.
- Castoe, T.A., Daza, J.M., Smith, E.N., Sasa, M.M., Kuch, U., Campbell, J.A., Chippindale, P.T., Parkinson, C.L., 2009. Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland biogeography. Journal of Biogeography 36, 88-103.
- Collin, R., Miglietta, M.P., 2008. Reversing opinions on Dollo's Law. Trends in Ecology & Evolution 23, 602-609.
- Crother, B.I., Campbell, J.A., Hillis, D.M., 1992. Phylogeny and historical biogeography of the palm-pitvipers, genus *Bothriechis*: biochemical and morphological evidence.
 In: Campbell, J.A., Edmund D. Brodie, J. (Eds.), Biology of the Pitvipers. Selva, Tyler, TX, pp. 1–20.

de Queiroz, A., 1993. For consensus (sometimes). Systematic Biology 42, 368-372.

- Dollo, L., 1893. Les lois de l'évolution. Bulletin de la Société Belge de Géologié, de Paléontologie et d'Hydrologie 7, 164–166.
- Dollo, L., 1905. Les Dinosauriens adaptés à la vie quadrupède secondaire. Bulletin de la Société Belge de Géologié, de Paléontologie et d'Hydrologie 19, 441–448.
- Fitch, H.S., 1970. Reproductive cycles in lizards and snakes. University of Kansas Museum of Natural History, Miscellaneous Publications 52, 1-247.
- Fry, B.G., Winkel, K.D., Wickramaratna, J.C., Hodgson, W.C., Wüster, W., 2003. Effectiveness of snake antivenom: Species and regional venom variation and its clinical impact. Toxin Reviews 22, 23–34.
- Goldberg, E.E., Lancaster, L.T., Ree, R.H., 2011. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Systematic Biology 60, 451-465.
- Graybeal, A., 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology 47, 9–17.
- Greene, H.W., 2000. Snakes: the evolution of mystery in nature. University of California Press.
- Hillis, D.M., 1987. Molecular versus morphological approaches to systematics. Annual Review of Ecological Systematics 18, 23–42.
- Hillis, D.M., 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. Systematic Biology 48, 3–8.
- Hillis, D.M., Wiens, J.J., 2000. Molecules versus morphology in systematics. In: Wiens, J.J. (Ed.), Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington D.C., pp. 1–19.
- Kluge, A.G., 1989. A concern for evidence and a phylogenetic hypothesis of relationships among *Epicrates* (Boidae, Serpentes). Systematic Biology 38, 7-25.
- Koh, D., Armugam, A., Jeyaseelan, K., 2006. Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences (CMLS) 63, 3030-3041.
- Lemmon, A.R., Brown, J.M., Stanger-Hall, K., Lemmon, E.M., 2009. The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Systematic Biology 58, 130-145.

- Lynch, V.J., 2009. Live-birth in vipers (Viperidae) is a key innovation and adaptation to global cooling during the Cenozoic. Evolution 63, 2457–2465.
- Maddison, W.P., Midford, P.E., Otto, S.P., 2007. Estimating a binary character's effect on speciation and extinction. Systematic Biology 56, 701-710.
- Neill, W.T., 1964. Viviparity in snakes: Some ecological and zoogeographical considerations. The American Naturalist 98, 35-55.
- Novacek, M.J., 1992. Fossils, topologies, missing data, and the higher level phylogeny of eutherian mammals. Systematic Biology 41, 58–73.
- Pagel, M., Meade, A., 2006. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. The American Naturalist 167, 808.
- Pagel, M., Meade, A., Barker, D., 2004. Bayesian estimation of ancestral character states on phylogenies. Systematic Biology 53, 673-684.
- Parkinson, C.L., 1999. Molecular systematics and biogeographical history of pitvipers as determined by mitochondrial ribosomal DNA sequences. Copeia 1999, 576–586.
- Poe, S., Swofford, D.L., 1999. Taxon sampling revisited. Nature 398, 300–301.
- Rannala, B., Huelsenbeck, J.P., Yang, Z., Nielsen, R., 1998. Taxon sampling and the accuracy of large phylogenies. Systematic Biology 47, 702–710.
- Ree, R.H., Sanmartín, I., 2009. Prospects and challenges for parametric models in historical biogeographical inference. Journal of Biogeography 36, 1211-1220.
- Rutschmann, F., 2006. Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. Diversity & Distributions 12, 35-48.
- Taggart, T.W., Crother, B.I., White, M.E., 2001. Palm-Pitviper (*Bothriechis*) phylogeny, mtDNA, and consilience. Cladistics 17, 355–370.
- Tinkle, D.W., Gibbons, J.W., 1977. The distribution and evolution of viviparity in reptiles. Miscellaneous Publications of the University of Michigan Museum of Zoology 154, 1-55.
- Wiens, J.J., 2003a. Incomplete taxa, incomplete characters, and phylogenetic accuracy: is there a missing data problem? Journal of Vertebrate Paleontology 23, 297– 310.
- Wiens, J.J., 2003b. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52, 528-538.

- Wiens, J.J., 2005. Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? Systematic Biology 54, 731–742.
- Wiens, J.J., 2008. Systematics and herpetology in the age of genomics. BioScience 58, 297-307.
- Wiens, J.J., 2009. Paleontology, genomics, and combined-data phylogenetics: Can molecular data improve phylogeny estimation for fossil taxa? Syst Biol 58, 87-99.
- Wiens, J.J., Fetzner, J.W., Parkinson, C.L., Reeder, T.W., 2005. Hylid frog phylogeny and sampling strategies for speciose clades. Systematic Biology 54, 778-807.
- Wiens, J.J., Kuczynski, C.A., Townsend, T., Reeder, T.W., Mulcahy, D.G., Sites, J.W., 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: Molecular data change the placement of fossil taxa. Systematic Biology 59, 674-688.
- Wiens, J.J., Morrill, M.C., 2011. Missing data in phylogenetic analysis: Reconciling results from simulations and empirical data. Systematic Biology 60, 719-731.
- Wilkinson, M., 1995. Coping with abundant missing entries in phylogenetic analysis using parsimony. Systematic Biology 44, 501–514.
- Wüster, W., 1996. Systematics, venom variation and toxinology: bridging gaps between evolutionary biology and biomedical science. Toxicon 34, 733.
- Wüster, W., Golay, P., Warrell, D.A., 1997. Synopisis of recent developments in venomous snake systematics. Toxicon 35, 319–340.

CHAPTER 2: COMPREHENSIVE TAXON SAMPLING WITH COMBINED MOLECULAR AND PHENOTYPIC EVIDENCE ESTIMATES THE PHYLOGENY OF PITVIPERS (SERPENTES: CROTALINAE)

Introduction

As the field of phylogenetics is benefiting from innovations in genome sequencing technology and advancements in the ability to analyze large datasets with computationally complex methods, two directions are emerging. One direction is phylogenomic, as new technology allows sampling of hundreds of thousands of characters, but financial considerations limit taxon sampling to few lineages. The other direction is expansive taxon sampling, with the goal of including all taxonomic units within the group of interest through using more cheaply available data. The second method is generally conducted using few genetic loci and may include other character types such as phenotype or behavior. This study explores the possibilities and challenges of the second method via resolving evolutionary relationships with two independent genetic datasets for the majority of the ingroup taxa, with a phenotypic dataset for all included species. We contribute an empirical example of the data matrices that will soon become common: a large number of species of varying completeness.

Taxon sampling

Taxon sampling is now not constrained by analytical limitations, but rather by limitations of specimen availability and data collection (Heath et al., 2008). A classic

example of this constraint is including fossils in phylogeny: a subset of phenotypic characters can be collected, but usable DNA can be retrieved only in rare cases (Hillis, 1987). Because molecular datasets are on the order of thousands of characters but phenotypic datasets generally consist of a few hundred characters, lineages represented by phenotypic data alone often have over 90% missing data in combined analyses (e.g. Gatesy et al., 2004; Manos et al., 2007). Therefore, one of the challenges in dense sampling is how to include lineages with large amounts of missing data. Because fossils are critical to placing evolutionary relationships in temporal context, accurate placement of fossils has been evaluated through simulation and some empirical examples (see Wiens and Morrill, 2011). These fossil studies suggest that taxa with large proportions of missing data can be accurately placed in phylogeny, and some observations suggest that they can change the estimated relationships of living taxa (Donoghue et al., 1989).

The requirement for resolution of these data-limited taxa is that they surpass a threshold number of complete characters (Wiens, 2003). However, because the focus in studies addressing the missing data problem has generally been the proportion of missing data (see review in Wiens and Morrill, 2011), few empirical studies have addressed how many complete characters are needed in absolute numbers. The likely relationship between taxon sampling and number of complete characters is complicated, and may be based on the amount of data present and phylogenetic issues specific to a given dataset, and therefore we need a variety of empirical studies to

evaluate the behavior of phylogenetic analysis under common sampling and analysis conditions.

Dense taxon sampling is beneficial because it returns results for a maximum number of lineages, which assists researchers working on various aspects of the biology of those lineages. For example, changing taxonomic classification to reflect evolutionary history requires nearly complete sampling (e.g. Fenwick et al., 2009). Similarly, dense species-level sampling is expected in comparative analysis (Harvey and Pagel, 1991), where many methods assume complete taxon sampling (e.g. Maddison et al., 2007). Fenwick et al. (2012) found different patterns of evolution of egg-laying and livebearing in vipers with denser taxon sampling compared to Lynch (2009). This is a pattern expected to repeat in various systems.

Dense taxon sampling also benefits phylogenetic estimation. Increased taxon sampling increases phylogenetic accuracy, sometimes through breaking long branches (Graybeal, 1998; e.g. Huelsenbeck, 1995; Kim, 1998; Poe and Swofford, 1999; Rannala et al., 1998). Inclusion of more taxa allows better usage of rapidly evolving characters (Hillis, 1998; Townsend and Leuenberger, 2011), and may even overcome some of the problems with single-gene phylogenies (Agnarsson and May-Collado, 2008). In dense character sampling with low taxon sampling, as seen in current phylogenomic studies, noise may swamp faint phylogenetic signal in areas of the tree that are difficult to recover (Philippe et al., 2011).
Combining datasets

The missing data problem in taxon sampling is often related to the issues of combining datasets, and this issue is of particular interest when combining molecular and phenotypic data. Molecular data are often available for thousands of characters but fewer taxa, while morphological datasets consist of up to hundreds of characters but can be complete for all taxa. Groups that are commonly preserved with formaldehyde, such as amphibians, reptiles, fishes, and some invertebrates, are notable because specimens prepared in this fashion cannot be readily used for PCR-based DNA sequencing with current technology (but see Kearney and Stuart, 2004; Kohlsdorf and Wagner, 2006), which results in thousands of specimens that cannot provide DNA but are available for phenotypic examination. Fossils provide the best known example of a need to find efficient ways of combining data, as morphology is generally the only data type available for these specimens. Recent work on the problem of placing fossils suggests that combining morphological and molecular data for fossils and extant taxa leads to more accurate placement of the fossils (Wiens, 2009; Wiens et al., 2010), and that morphological data can even change the position of extant taxa despite being a small fraction of the data matrix (Wiens et al., 2010).

Additional considerations for the use of all available sources of data in phylogeny reconstruction are more philosophical. First, the principle of total evidence suggests that a scientific hypothesis such as phylogeny should be based on all available evidence. Second, synapomorphy and homoplasy of morphological characters, those that are generally cited to define taxa, can only be determined by combined analysis (Assis and

Rieppel, 2011). The common technique of mapping morphological characters onto a molecular phylogeny in order to determine "synapomorphies" is not useful because it does not allow morphology to affect evolutionary relationships and does not result in true synapomorphies because node positions cannot be supported or refuted by the morphology. Third, as early phylogenies were generally based on morphology, with more recent phylogenies based on molecular evidence (Wiens, 2008), it is difficult to compare the hypotheses of relationship without a combined analysis. Without combined analysis, phylogenetic uncertainty is introduced to subsequent hypothesis testing.

Pitvipers as a model system

The phylogenetic considerations discussed above have been well evaluated using simulations and large-scale empirical examples (e.g. Wiens et al., 2010), but species- and genus-level datasets have yet to be fully explored. Pitvipers (subfamily Crotalinae) provide an excellent opportunity to examine taxon sampling and combined data. Crotalinae contains approximately 200 species in 27 genera (Guo et al., 2007; Malhotra and Thorpe, 2004; McDiarmid et al., 1999), providing a large taxon sample with a range of common and rare species. Evolutionary relationships of this group have been of interest for a long time, as all species are venomous and venom composition correlates with phylogenetic relationships (Fry et al., 2003; Koh et al., 2006; Wüster, 1996; Wüster et al., 1997). Due to this interest, morphological and molecular characters have been generated for a number of species, with the potential to efficiently fill in gaps. In addition, pitvipers are of interest as a model in comparative (e.g. Lynch, 2009, Fenwick

et al. in press) and biogeographic studies (Castoe et al., 2009; Crother et al., 1992; Daza et al., 2010; Werman, 2005; Wüster et al., 2002; Zamudio and Greene, 1997). Densely sampled and character-rich phylogenies would be of great utility to studies like these. For example, biogeographic hypotheses of Central American *Bothriechis* proposed by Crother et al. (1992) are quite different from those suggested by Castoe et al. (2009); combined evidence phylogeny may help to distinguish between these hypotheses.

Despite long interest in Crotalinae and the resolution of most within-genus relationships, intergeneric relationships are still largely unknown (see Castoe and Parkinson, 2006; Pyron et al., 2011). Poor resolution of these relationships may be due to the proposed quick radiation of pitvipers into contemporary genera, resulting in short phylogenetic branches that are difficult to resolve. These relationships have been mainly resolved with mitochondrial and some nuclear loci, with morphological data examined for relatively few taxa (see Gutberlet and Harvey, 2002).

In this study we combine mitochondrial, nuclear and morphological data to generate the most species-dense crotaline phylogeny to date. We evaluate the effect of including taxa with varying amounts of data complete and the results of combining different data types. We address outstanding questions in pitviper evolution and evaluate the phylogenetic positions of recently described species.

Materials and Methods

Morphological Data

We examined 205 of the 213 currently-recognized species of pitviper, or 96% (JCVI Reptile Database accessed 17 July 2012, www.reptile-database.org; Table 3). In accordance with current hypotheses of viper phylogeny (Pyron et al., 2011; Wüster et al., 2008), *Echis carinatus* was used as the far outgroup, with representatives of the major clades of true vipers as additional outgroups.

We examined scalation of 177 species, hemipenes of 127 species, and skeletal material for 114 species (Appendix B). When possible, specimens were acquired from throughout the range of each species. Character data for additional individuals were taken from published sources, allowing us to include morphological data for 204 species. Males and females were treated together. Some juveniles were coded for scale characters as scalation does not change with ontogeny (but see Shine et al., 2005; Tomović et al., 2008), but skeletal data were only collected from presumed adults.

One hundred morphological characters were included in this study (Appendix A). Most characters followed Fenwick et al. (2009), with some original to this study. Characters were coded using a combination of gap weighting for meristic characters (GW; Thiele, 1993), unscaled coding for polymorphic characters with three or fewer states (U; Campbell and Frost, 1993), and majority coding for polymorphic characters with more states (MC; Johnson et al., 1988). This combination uses the greatest amount of phylogenetic information and also captures polymorphism, but follows the requirement that characters used by MrBayes may have no more than six states. The continuous character method involves using a range of one standard deviation around the mean of the character for each species in order to capture polymorphism.

Molecular Data

Previously published sequence data for mitochondrial loci 12S and 16S rRNA, cytochrome *b* (cyt-*b*), and NADH dehydrogenase subunit 4 (ND4), were obtained from GenBank (Appendix C). In addition, new sequences were obtained for 13 species following protocols described in Castoe & Parkinson (2006); these sequences have been deposited in GenBank (highlighted sequences in Appendix C). This provided a molecular dataset with at least one gene fragment included for each of 173 taxa, or 81% of currently-recognized species.

We also sequenced the nuclear recombination activating gene 1 (Rag1) for 97 species; these sequences have also been deposited in GenBank (Appendix C). We extracted DNA using a DNeasy kit (Quiagen), following manufacturer protocols. We amplified several overlapping fragments using a number of primers, most developed by Todd Castoe to be a strong match across macrostomate snakes (Table 1), and different thermocycler conditions (Table 2). Amplification was conducted in 21µl reaction volumes, with 7.9µl water, 2.1µl of 10x reaction buffer, 3mM MgCl, 1.35mM DNTPs, 0.75mM primers, 0.2 µl Taq polymerase, and 2.5µl of DNA template. Different brands of Taq were used, with Bioline BioXL Long (Bioline) used most often. Product was sequenced on a CEQ8000 or on an ABI 3730 by the Nevada Genomics Center (Reno, NV) and the University of Arizona Genetics Core (Tucson, AZ). All sequences were edited with Sequencher 4.8 (Gene Codes).

Table 1. Primers and PCR conditions for amplification of nuclear gene Rag1. Primer names containing tc refer to primers designed by T. Castoe; numbers refer to position in reference to human RAG1, final letter denotes forward (F) or reverse (R). Primers R13 and R18 designed by Groth and Barrowclough (1999). Thermocycler conditions for PCR programs follow this table. Primers with no PCR program listed were used for sequencing only.

Primer	Sequence (5'→3')	PCR program
R13	TCT GAA TGG AAA TTC AAG CTG TT	SLK1
R18	GAT GCT GCC TCG GTC GGC CAC CTT T	SLK1
Rag1_tc0225F	GCA GCT GTA ATG TCA CAA GTG C	Rag1-59 or SLK1
Rag1_tc0290F	TGA ATA AAA ATA GCT TGG CAR GAG AG	-
Rag1_tc0745F	ATT CAC AGC TGA GCA AAA AAC TCA GG	-
Rag1_tc1000F	AGC TAT TGC CCA TCC TGC C	SLK1
Rag1_tc1370R	CCA RTT CAT CTG CTT GTC TGT GC	SLK1
Rag1_tc1430F	TCA TCC AGC TGT TTG TTT GGC	Rag1-59 or Rag1-DN
Rag1_tc1870F	GGA GAT GTC AGT GAA AAG CAT GGC	Rag1-59
Rag1_tc2000R	TTA CAA CAC AAC TCT GAA TTG GG	Rag1-59 or SLK1
Rag1_tc2700R	AAA GGT CCA TTA ATT CTC TGA GGG	Rag1-59 or Rag1-DN

Table 2. Thermocycler conditions for amplification of fragments of nuclear gene Rag1. Primers cited here are listed in Table 1.

a)			b)					
	SLK1			Rag1-5	9			
	use with primer pair R13 a	and R18,	use w	use with primer pairs 225F and 2000R,				
	225F and 1370R, 225F and	1000	F and 2000R, 14	30F and 2700R,				
	or 1000F and 2000	R		or 1870F and 2700R				
Step	Temperature	Time	Step	Temperature	Time (min:sec)			
		(min:sec)	1	95	5:00			
1	94	3:30	2	50	1:30			
2	94	0:40	3	68	2:00			
3	start at 57, -0.2 per	0:40	4	94	0:40			
	cycle		5	59	0:45			
4	68	1:10	6	72	1:30			
5	Goto 2, 35 tin	nes	7	Goto step	4, 39 times			
6	68	7:00	8	72	5:00			
7	4	forever	9	4	forever			
8	End		10	End				

c)

Rag1-DN									
use w	ith primer pair 1	430F and 2700R							
Step	Temperature	Time (min:sec)							
1	95	5:00							
2	50	1:30							
3	68	2:00							
4	94	0:40							
5	57	0:45							
6	72	1:30							
7	Goto step	o 4, 9 times							
8	94	0:40							
9	56	0:45							
10	72	1:30							
11	Goto step	o 8, 9 times							
12	94	0:40							
13	55	0:45							
14	72	1:30							
15	Goto step	12, 9 times							
16	94	0:40							
17	54	0:45							
18	72	1:30							
19	Goto step	16, 9 times							
20	72	5:00							
21	4	forever							
22	E	ind							

Ribosomal RNA sequences 12S and 16S were aligned by Muscle in MEGA v5.0 (Tamura et al., 2011). Protein-coding sequences cyt-b, ND4, and Rag1 were aligned by eye in GeneDoc v.2.7 (Nicholas and Nicholas Jr., 1997), and no insertions, deletions, or internal stop codons were observed. For all sequences, alignment positions with data for fewer than half of all species were eliminated. Gaps in the alignment were treated as missing data in analyses. The final nucleotide alignments are available by request.

Phylogenetic Analyses

We reconstructed phylogenies using Bayesian inference (BI) with MrBayes v.3.1.2 (Ronquist and Huelsenbeck, 2003). Prior work (e.g. Castoe and Parkinson, 2006) found no incongruence among mitochondrial genes, and this is expected as loci are inherited as a single linkage unit. We therefore combined all mtDNA into a single analysis. We analyzed Rag1 sequences separately, followed by combined DNA analysis and then combined morphological and molecular analysis. One set of combined evidence analyses included all taxa; others deleted taxa represented by less than 1% of the dataset to investigate the effect of including these extremely data-limited taxa. A final combined evidence analysis excluded taxa with only phenotypic data (2.2% of the matrix).

Based on the results of Castoe & Parkinson (2006), maximum partitioning of the molecular data set was done *a priori*, with all codon positions or stem and loop positions of each gene allocated independent models. Partitioning of rRNA genes was based on models of secondary structure for snake mitochondrial rRNAs (Parkinson, 1999). Each partition was independently analyzed using MrModelTest version 2.2 (Nylander, 2004) to estimate best-fit models of nucleotide evolution. The best-fit models were implemented in partitioned-model analyses of the combined datasets as described in Castoe & Parkinson (2006). The standard Mk model was used for the morphology partition. Preliminary analyses determined that there was no increase in likelihood score with the addition of the gamma-distributed rate variation parameter; therefore we

chose the simpler model. Models chosen for each partition are available from the authors.

Analysis with MrBayes used program defaults, with the exception of chain temperatures being set at half of the program's default to facilitate chain swapping. Chains were run for at least 5.0×10^6 generations, sampled every 500 generations. Tracer 1.5 (Rambaut and Drummond, 2009) was used to verify stationarity and define the burn-in period. If most parameters had not reached the recommended estimated sample size (ESS) of 200 by 5.0×10^6 generations, up to 1.0×10^7 total generations were run to assure adequate sampling. Summary statistics and consensus phylograms with nodal posterior probability support were estimated from the combination of both runs per analysis.

<u>Results</u>

The 12S alignment consisted of 422 base pairs (bp), 16S contained 505bp, cyt-*b* contained 716bp, and ND4 contained 668bp, for a total of 2311 mitochondrial characters (Table 3). Nuclear locus and independent dataset Rag1 contained 2199bp, for a total of 4510 DNA characters. The morphological dataset contained 100 characters, for a total of 4610 total characters. Both 12S and 16S had data for 75% of taxa, cyt-*b* had data for 85% of taxa, ND4 had data for 80% of taxa, and 86% of taxa had some mitochondrial data. Only 43% of species had Rag1 data, and no species had nuclear data but lacked mitochondrial characters. All 223 included species had some morphological data, and only four terminals (2%) had fewer than 46 characters, which represents 1% of the dataset. Thirty-two species (14%) had morphological data only, and therefore had

no more than 2.2% of the dataset complete. *Gloydius monticola* was represented by 368 characters of cyt-*b* and morphology, and was only 8% complete; all other species were over 10% complete.

Phylogenies recovered from individual datasets (Figures 1–3) showed varying amounts of resolution based on the number of complete or informative characters in each matrix. We defined resolution as the number of nodes supported by posterior probabilities ≥ 0.5 . Morphology had the fewest supported nodes, followed by Rag1, with mitochondrial DNA the most resolved. These trees are in general agreement, with three strongly supported incongruences between the morphological phylogeny and the DNAbased trees. First, we found strong morphological support for the inclusion of Azemiops feae with Causus (Pp=1.0), compared to a sister relationship of Azemiops to pitvipers with mtDNA (Pp=1.0) and inclusion with pitvipers with Rag1 (Pp=0.54). Second, morphology supported a sister relationship of *Parias schultzei* with *Trimeresurus* trigonocephalus (Pp=0.99), but mtDNA found these two species within their respective genera (Pp=1.0), and they did not have nuclear data. Third, morphology supported a sister relationship of Crotalus ravus to Sistrurus (Pp=0.98), but mtDNA found C. ravus sister to the *C. triseriatus* group (*Pp*=0.98). Rag1 recovered *C. ravus* in a *C. triseriatus* group clade with that species and *C. lepidus* (*Pp*=0.97).

Table 3. Number of characters used for each species in phylogenetic analysis. Mitochondrial genes are 12S, 16S, cyt-*b*, and ND4, and consist of a single linkage unit. Rag1 is a nuclear locus and evolves independently. Morph indicates morphology. Numbers under matrix names are the number of nucleotide positions in alignment. Shading in the Total column highlights species with limited data: dark grey for species with <1% of characters filled, medium grey for 1–2% of characters filled, and light grey for 2–10% of characters filled. Numbers and proportions of species with data for each dataset are summarized at end of table.

Species	12S	16S	cyt-b	ND4	Total mtDNA	Rag1	total DNA	morph	total
	422	505	716	668	2311	2199	4510	100	4610
Agkistrodon bilineatus	406	491	714	665	2276	2191	4467	95	4562
Agkistrodon contortrix	407	491	716	668	2282	2199	4481	100	4581
Agkistrodon piscivorus	403	491	716	665	2275	2191	4466	100	4566
Agkistrodon taylori	403	492	716	668	2279	2199	4478	99	4577
Atheris ceratophora	402	490	716	668	2276	-	2276	91	2367
Atheris nitschei	402	491	715	668	2276	1186	3462	98	3560
Atheris squamigera	377	479	694	349	1899	850	2749	98	2847
Atropoides indomitus	390	-	711	667	1768	-	1768	68	1836
Atropoides mexicanus	409	491	716	665	2281	1819	4100	100	4200
Atropoides nummifer	405	489	711	667	2272	1627	3899	100	3999
Atropoides occiduus	405	492	711	667	2275	1032	3307	68	3375
Atropoides olmec	-	491	716	668	1875	1265	3140	68	3208
Atropoides picadoi	405	490	716	668	2279	2199	4478	98	4576
Azemiops feae	404	487	716	668	2275	2009	4284	86	4370
Bitis arietans	404	490	716	668	2278	2199	4477	100	4577
Bitis nasicornis	402	489	664	668	2223	2180	4403	95	4498
Bitis peringueyi	402	489	715	668	2274	873	3147	68	3215
Bothriechis aurifer	403	491	710	668	2272	2199	4471	100	4571
Bothriechis bicolor	403	491	716	668	2278	2199	4477	95	4572
Bothriechis lateralis	403	490	715	668	2276	1929	4205	100	4305
Bothriechis marchi	403	491	716	668	2278	2199	4477	100	4577
Bothriechis nigroviridis	402	490	713	668	2273	2199	4472	99	4571
Bothriechis rowleyi	403	491	716	668	2278	1690	3968	91	4059
Bothriechis schlegelii	404	476	716	668	2264	2199	4463	96	4559
Bothriechis supraciliaris	405	490	716	668	2279	2199	4478	68	4546
Bothriechis thalassinus	403	491	716	667	2277	2193	4470	64	4534
Bothriopsis bilineata	409	462	641	408	1920	2199	4119	95	4214
Bothriopsis chloromelas	409	491	714	662	2276	-	2276	61	2337

Species	12S	16S	cyt-b	ND4	Total mtDNA	Rag1	total DNA	morph	total
Bothriopsis medusa	-	-	-	-	0	-	0	61	61
Bothriopsis oligolepis	-	-	635	641	1276	-	1276	56	1332
Bothriopsis pulchra	409	-	716	662	1787	-	1787	87	1874
Bothriopsis taeniata	409	490	716	668	2283	1013	3296	99	3395
Bothrocophias campbelli	_	-	631	663	1294	-	1294	60	1354
Bothrocophias colombianus	_	-	_	-	0	-	0	61	61
Bothrocophias hyoprora	409	490	716	668	2283	873	3156	94	3250
Bothrocophias microphthalmus	409	491	714	663	2277	2199	4476	90	4566
Bothrocophias myersi	_	-	_	-	0	-	0	95	95
Bothropoides alcatraz	_	_	573	-	573	_	573	41	614
Bothropoides diporus	408	489	716	668	2281	1430	3711	67	3778
Bothropoides erythromelas	408	489	716	668	2281	778	3059	61	3120
Bothropoides insularis	409	490	716	668	2283	_	2283	62	2345
Bothropoides jararaca	409	465	602	236	1712	2191	3903	91	3994
Bothropoides lutzi	_	_	_	-	0	_	0	44	44
Bothropoides marmoratus	_	_	_	_	0	_	0	64	64
Bothropoides mattogrossensis	_	_	_	_	0	_	0	92	92
Bothropoides neuwiedi	_	_	639	668	1307	_	1307	96	1403
Bothropoides pauloensis	368	489	692	659	2208	2073	4281	62	4343
Bothropoides pubescens	272	411	122	437	1242	1240	2482	68	2550
Bothrops andianus	377	439	705	587	2108	_	2108	65	2173
Bothrops asper	409	490	715	668	2282	2166	4448	94	4542
Bothrops atrox	409	491	716	663	2279	1186	3465	94	3559
Bothrops barnetti	409	457	604	659	2129	_	2129	60	2189
Bothrops brazili	393	463	711	659	2226	2198	4424	94	4518
Bothrops caribbaeus	_	_	642	662	1304	_	1304	89	1393
Bothrops jararacussu	409	489	716	668	2282	2193	4475	89	4564
Bothrops lanceolatus	_	_	642	662	1304	_	1304	67	1371
Bothrops leucurus	325	484	712	659	2180	1186	3366	62	3428
Bothrops lojanus	_	_	_	_	0	_	0	56	56
Bothrops marajoensis	_	_	642	665	1307	_	1307	8	1315
Bothrops moojeni	407	490	640	535	2072	2199	4271	92	4363
Bothrops osbornei	_	_	642	668	1310	_	1310	56	1366
Bothrops pictus	_	456	631	659	1746	_	1746	65	1811

Species	12S	16S	cyt-b	ND4	Total mtDNA	Rag1	total DNA	morph	total
Bothrops punctatus	-	-	642	668	1310	-	1310	89	1399
Bothrops roedingeri	_	-	-	650	650	-	650	8	658
Bothrops sanctaecrucis	-	-	-	-	0	-	0	56	56
Bothrops venezuelensis	-	-	-	-	0	-	0	67	67
Calloselasma rhodostoma	402	491	716	668	2277	1059	3336	98	3434
Causus defilippi	402	480	716	668	2266	1943	4209	67	4276
Causus resimus	402	486	716	668	2272	2199	4471	97	4568
Causus rhombeatus	402	484	716	653	2255	1723	3978	100	4078
Cerastes cerastes	378	402	660	623	2063	832	2895	98	2993
Cerastes gasperettii	350	382	597	-	1329	_	1329	61	1390
Cerrophidion godmani	405	491	711	667	2274	805	3079	92	3171
Cerrophidion petlalcalensis	405	492	708	667	2272	1179	3451	59	3510
Cerrophidion sasai	405	491	716	668	2280	2181	4461	59	4520
Cerrophidion tzotzilorum	367	489	711	667	2234	1178	3412	93	3505
Cerrophidion wilsoni	_	_	708	667	1375	_	1375	91	1466
Crotalus adamanteus	404	490	716	668	2278	807	3085	100	3185
Crotalus aquilus	405	479	544	602	2030	_	2030	98	2128
, Crotalus atrox	405	491	716	667	2279	1610	3889	100	3989
Crotalus basiliscus	405	477	563	632	2077	_	2077	100	2177
Crotalus catalinensis	405	477	563	_	1445	_	1445	71	1516
Crotalus cerastes	405	478	565	_	1448	_	1448	100	1548
Crotalus cerberus	_	_	600	629	1229	_	1229	62	1291
Crotalus culminatus	_	_	618	607	1225	_	1225	66	1291
Crotalus durissus	405	478	563	506	1952	1298	3250	100	3350
Crotalus envo	405	479	559	_	1443	_	1443	100	1543
Crotalus ericsmithi	_	_	_	_	0	_	0	68	68
Crotalus horridus	405	478	564	623	2070	2199	4269	100	4369
Crotalus intermedius	367	457	673	655	2152	2025	4177	73	4250
Crotalus lannomi	_	_	_	_	0	_	0	51	51
Crotalus lepidus	378	478	563	668	2087	2199	4286	98	4384
Crotalus mitchellii	404	478	564	_	1446	_	1446	100	1546
Crotalus molossus	405	491	716	668	2280	1237	3517	100	3617
Crotalus oreaanus	405	477	563	629	2074	_	2074	99	2173
Crotalus polystictus	405	476	563	_	1444	_	1444	98	1542

Species	12S	16S	cyt-b	ND4	Total mtDNA	Rag1	total DNA	morph	total
Crotalus pricei	405	479	563	-	1447	-	1447	98	1545
Crotalus pusillus	378	479	504	602	1963	-	1963	98	2061
Crotalus ravus	405	489	716	668	2278	897	3175	98	3273
Crotalus ruber	405	478	563	668	2114	-	2114	100	2214
Crotalus scutulatus	405	478	563	629	2075	-	2075	100	2175
Crotalus simus	375	371	660	624	2030	1446	3476	92	3568
Crotalus stejnegeri	-	-	-	-	0	-	0	99	99
Crotalus tancitarensis	-	-	-	-	0	-	0	61	61
Crotalus tigris	405	491	716	666	2278	2115	4393	84	4477
Crotalus totonacus	_	-	618	632	1250	-	1250	68	1318
Crotalus transversus	405	-	274	-	679	-	679	61	740
Crotalus triseriatus	410	479	563	602	2054	873	2927	100	3027
Crotalus tzabcan	-	-	618	632	1250	-	1250	61	1311
Crotalus viridis	401	-	600	629	1630	-	1630	100	1730
Crotalus willardi	405	476	557	638	2076	1817	3893	100	3993
Cryptelytrops albolabris	398	492	638	661	2189	1743	3932	100	4032
Cryptelytrops andersoni	388	446	635	618	2087	_	2087	49	2136
Cryptelytrops cantori	387	464	645	653	2149	870	3019	63	3082
Cryptelytrops cardamomensis	-	-	-	_	0	_	0	55	55
Cryptelytrops erythrurus	372	443	699	616	2130	1226	3356	94	3450
Cryptelytrops fasciatus	383	477	647	641	2148	_	2148	27	2175
Cryptelytrops honsonensis	_	-	_	-	0	-	0	35	35
Cryptelytrops insularis	382	456	685	621	2144	_	2144	81	2225
Cryptelytrops kanburiensis	385	481	587	600	2053	-	2053	63	2116
Cryptelytrops labialis	_	-	_	-	0	-	0	49	49
Cryptelytrops macrops	405	476	646	624	2151	2185	4336	81	4417
Cryptelytrops pupureomaculatus	397	483	707	652	2239	2198	4437	98	4535
Cryptelytrops rubeus	_	_	_	_	0	_	0	71	71
Cryptelytrops septentrionalis	384	476	643	524	2027	_	2027	63	2090
Cryptelytrops venustus	405	475	643	634	2157	_	2157	79	2236
Daboia russelii	-	382	597	-	979	_	979	100	1079
Daboia siamensis	398	490	636	667	2191	2114	4305	68	4373
Deinagkistrodon acutus	393	490	710	668	2261	2161	4422	100	4522
Echis carinatus	372	401	660	620	2053	836	2889	68	2957

Species	12S	16S	cyt-b	ND4	Total mtDNA	Rag1	total DNA	morph	total
Echis pyramidum	372	401	660	620	2053	803	2856	68	2924
Garthius chaseni	380	489	640	657	2166	-	2166	61	2227
Gloydius blomhoffii	387	486	716	653	2242	2191	4433	100	4533
Gloydius brevicaudus	397	429	632	640	2098	-	2098	100	2198
Gloydius halys	403	489	716	668	2276	-	2276	98	2374
Gloydius himalayanus	-	-	-	-	0	-	0	66	66
Gloydius intermedius	391	478	701	634	2204	-	2204	98	2302
Gloydius monticola	-	-	309	-	309	-	309	59	368
Gloydius saxatilis	394	464	711	656	2225	2189	4414	93	4507
Gloydius shedaoensis	403	489	708	668	2268	2191	4459	48	4507
Gloydius strauchi	404	490	716	668	2278	2199	4477	74	4551
Gloydius tsushimaensis	394	488	703	662	2247	947	3194	54	3248
Gloydius ussuriensis	404	490	716	668	2278	2096	4374	68	4442
Himalayophis tibetanus	364	482	613	645	2104	_	2104	81	2185
Hypnale hypnale	403	490	716	668	2277	772	3049	71	3120
Hypnale nepa	_	-	_	-	0	_	0	71	71
Hypnale zara	_	_	_	_	0	_	0	71	71
Lachesis acrochorda	407	491	582	658	2138	2191	4329	91	4420
Lachesis melanocephala	-	_	276	252	528	_	528	63	591
Lachesis muta	402	489	716	668	2275	2199	4474	98	4572
Lachesis stenophrys	403	490	716	668	2277	2124	4401	98	4499
Macrovipera lebetina	356	401	597	575	1929	_	1929	68	1997
Mixcoatlus barbouri	385	488	713	653	2239	_	2239	71	2310
Mixcoatlus browni	409	491	660	667	2227	_	2227	70	2297
Mixcoatlus melanurus	405	490	713	668	2276	2199	4475	100	4575
Ophryacus undulatus	346	491	713	668	2218	2199	4417	100	4517
Ovophis monticola	405	461	716	668	2250	2129	4379	98	4477
Ovophis okinavensis	404	490	716	668	2278	2199	4477	100	4577
, Parias flavomaculatus	405	477	643	645	2170	_	2170	96	2266
Parias hageni	397	485	619	620	2121	_	2121	81	2202
Parias malcolmi	397	480	318	637	1832	_	1832	61	1893
Parias schultzei	405	477	647	629	2158	_	2158	66	2224
Parias sumatranus	380	461	709	592	2142	_	2142	95	2237
Peltopelor macrolepis	_	_	_	_	0	_	0	77	77

Species	12S	16S	cyt-b	ND4	Total mtDNA	Rag1	total DNA	morph	total
Popeia barati	358	459	542	607	1966	-	1966	39	2005
Popeia buniana	376	405	610	610	2001	_	2001	47	2048
Popeia fucata	405	477	609	633	2124	-	2124	61	2185
Popeia nebularis	257	481	570	409	1717	-	1717	66	1783
Popeia popeiorum	395	486	632	662	2175	-	2175	84	2259
Popeia sabahi	385	466	316	666	1833	-	1833	92	1925
Popeia toba	-	-	-	-	0	-	0	59	59
Porthidium arcosae	405	492	716	666	2279	2199	4478	61	4539
Porthidium dunni	405	492	714	668	2279	-	2279	59	2338
Porthidium hespere	_	-	716	665	1381	-	1381	61	1442
Porthidium lansbergii	377	402	618	668	2065	-	2065	61	2126
Porthidium nasutum	405	489	711	668	2273	2199	4472	100	4572
Porthidium ophryomegas	405	490	716	668	2279	1690	3969	99	4068
Porthidium porrasi	405	491	711	667	2274	_	2274	61	2335
Porthidium volcanicum	_	_	_	-	0	_	0	61	61
Porthidium yucatanicum	384	370	711	667	2132	1186	3318	95	3413
Protobothrops cornutus	394	487	635	647	2163	_	2163	50	2213
Protobothrops elegans	405	491	716	668	2280	_	2280	96	2376
Protobothrops flavoviridis	405	491	715	668	2279	_	2279	100	2379
Protobothrops jerdonii	404	492	716	668	2280	_	2280	95	2375
Protobothrops kaulbacki	409	479	702	575	2165	_	2165	61	2226
Protobothrops mangshanensis	385	491	638	659	2173	_	2173	47	2220
Protobothrops maolanensis	_	_	_	_	0	_	0	49	49
Protobothrops mucrosquamatus	397	464	640	657	2158	1985	4143	98	4241
Protobothrops sieversorum	384	491	639	661	2175	_	2175	61	2236
Protobothrops tokarensis	405	491	716	668	2280	2199	4479	76	4555
Protobothrops trungkhanhensis	_	_	_	_	0	_	0	40	40
Protobothrops xianachengensis	408	480	715	605	2208	_	2208	41	2249
Rhinocerophis alternatus	407	491	716	668	2282	2026	4308	95	4403
, Rhinocerophis ammodytoides	409	491	716	659	2275	2188	4463	73	4536
Rhinocerophis cotiara	408	491	716	592	2207	1177	3384	83	3467
Rhinocerophis fonsecai	_	_	642	668	1310	_	1310	56	1366
Rhinocerophis itapetiningae	386	490	708	459	2043	748	2791	80	2871
Rhinocerophis ionathani	_	_	_	_	0	_	0	84	84

Species	12S	16S	cyt-b	ND4	Total mtDNA	Rag1	total DNA	morph	total
Sinovipera sichuanensis	408	479	624	648	2159	-	2159	54	2213
Sistrurus catenatus	405	490	716	667	2278	2166	4444	100	4544
Sistrurus miliarius	403	489	716	668	2276	851	3127	100	3227
Trimeresurus andalasensis	-	-	-	-	0	-	0	45	45
Trimeresurus borneensis	398	482	647	657	2184	-	2184	93	2277
Trimeresurus brongersmai	-	-	-	-	0	-	0	66	66
Trimeresurus gracilis	404	491	706	667	2268	2199	4467	91	4558
Trimeresurus gramineus	404	461	647	555	2067	-	2067	63	2130
Trimeresurus malabaricus	401	475	638	512	2026	-	2026	77	2103
Trimeresurus puniceus	404	459	632	522	2017	-	2017	84	2101
Trimeresurus strigatus	-	-	-	-	0	-	0	68	68
Trimeresurus trigonocephalus	375	485	639	629	2128	-	2128	98	2226
Trimeresurus wiroti	-	-	522	-	522	-	522	66	588
Tropidolaemus huttoni	-	-	-	-	0	-	0	47	47
Tropidolaemus laticinctus	-	-	-	-	0	-	0	57	57
Tropidolaemus philippensis	-	-	-	-	0	-	0	61	61
Tropidolaemus subannulatus	404	489	716	668	2277	2186	4463	96	4559
Tropidolaemus wagleri	396	486	708	660	2250	-	2250	93	2343
Vipera ammodytes	372	401	660	623	2056	-	2056	63	2119
Viridovipera gumprechti	399	487	698	662	2246	-	2246	81	2327
Viridovipera medoensis	375	445	646	652	2118	-	2118	68	2186
Viridovipera stejnegeri	391	485	588	662	2126	-	2126	98	2224
Viridovipera truongsonensis	389	466	703	626	2184	-	2184	39	2223
Viridovipera vogeli	393	489	641	661	2184	-	2184	83	2267
Viridovipera yunnanensis	399	480	699	546	2124	-	2124	83	2207
total individuals with data	168	167	190	179	191	97	191	223	223
proportion of individuals with data	0.75	0.75	0.85	0.80	0.86	0.43	0.86	1.00	1.00

Figure 1. Bayesian MCMC 50% majority rule consensus phylogram compiled from analysis of 2311bp of mitochondrial sequences. Posterior probabilities shown adjacent to nodes; probabilities of 1.0 are indicated by gray-filled circles.

Figure 1 continued

Figure 2. Bayesian MCMC 50% majority rule consensus phylogram compiled from analysis of 2199bp of nuclear sequence of the Rag1 gene. Posterior probabilities shown adjacent to nodes; probabilities of 1.0 are indicated by gray-filled circles. Nodes with less than 50% posterior probability support have been collapsed.

Figure 3. Bayesian MCMC 50% majority rule consensus phylogram compiled from analysis of 100 morphological characters. Posterior probabilities shown adjacent to nodes; probabilities of 1.0 are indicated by gray-filled circles. Nodes with less than 50% posterior probability support have been collapsed.

Figure 3 continued

Combined analysis of the two DNA datasets resulted in phylogeny similar to the mtDNA tree (Figure 4). We found one strongly supported incongruence: combined analysis resolved a clade of Bothriechis bicolor and B. rowleyi (Pp=1.0), with B. aurifer sister (*Pp*=0.99), but mitochondrial DNA resolved *B. rowleyi* and *B. aurifer* together (Pp=0.98), with B. bicolor sister (Pp=0.84). Overall we found slightly more resolution in combined DNA analysis than mtDNA. For example, we found low support for a clade of Sinovipera and Viridovipera (Pp=0.75) which was lacking in the single-gene analyses. We also found low support for a sister relationship between *Lachesis* and a stronglysupported clade of *Ophryacus* and *Mixcoatlus* (*Pp*=0.75), and moderate support for a sister relationship between this clade and one of North American genera (Agkistrodon, Crotalus and Sistrurus, Pp=0.90); both sister relationships were not found in single-gene analyses. In fact, in Rag1 analysis Lachesis was sister to most Porthidium, Atropoides, and *Cerrophidion* species with lower support than in combined DNA analysis (Pp=0.63). Combined DNA supported the inclusion of Atropoides picadoi with its congeners (Pp=0.96), in contrast to low mtDNA support for the species being sister to Cerrophidion and Porthidium (Pp=0.58) and lack of resolution in Rag1 analysis.

The addition of morphology led to reduced resolution compared to DNA-based analyses. We found one strongly-supported conflict with combined DNA in the analysis with Rag1 and morphology (not shown): *Bothriechis aurifer* was sister to *B. lateralis* (Pp=1.0) in agreement with morphology (Pp=1.0); Rag1 found low support for a clade of *B. aurifer* and *B. marchi* (Pp=0.52). We found no strongly-supported conflicts in the analysis with mtDNA and morphology (not shown).

Figure 4. Bayesian MCMC 50% majority rule consensus phylogram compiled from analysis of 2311bp of mitochondrial sequences and 2199bp of nuclear sequence of the Rag1 gene. Posterior probabilities shown adjacent to nodes; probabilities of 1.0 are indicated by gray-filled circles. Nodes with less than 50% posterior probability support have been collapsed.

Figure 4 continued

Combining mtDNA, Rag1, and morphological datasets but excluding species with morphological data only led to a phylogeny that had similar resolution to that based on only mtDNA and Rag1 (Figure 5). This is our preferred analysis for resolution of genera and of species that are at least partially complete for the DNA matrix. We find strong support (*Pp*=1.0) for monophyly of all genera except *Viridovipera* (*Pp*=0.75), *Crvptelytrops* (*Pp*=0.74), *Crotalus* (*Pp*=0.92), and *Bothrocophias* (*Pp*=0.99).

Inclusion of species represented by morphological data only led to decreased resolution compared to molecular analyses, but we again found no strongly supported incongruence among the analyses (Figure 6). We found strong support for eight genera and moderate support for one, with low support for *Hypnale* (*Pp*=0.52), *Tropidolaemus* (*Pp*=0.50), *Protobothrops* (*Pp*=0.54), *Bothriechis* (*Pp*=0.66), *Porthidium* (*Pp*=0.69), eight species of *Cryptelytrops* (*Pp*=0.50), eight species of *Bothropoides* (*Pp*=0.52), and thirteen species of *Bothrops* (*Pp*=0.63). We also found low support for two clades of *Trimeresurus* excluding *T. strigatus* and *T. brongersmai* (*Pp*=0.70 and 0.52) and two clades of *Rhinocerophis* excluding *R. alternatus* (*Pp*=0.60 and 0.62). Monophyly of *Crotalus* was not supported but most species groups had some support. Finally, we found strong support for *Ovophis okinavensis* + *Trimeresurus gracilis* (*Pp*=1.0) and *Crotalus enyo* + *C. willardi* (*Pp*=0.99), with low support for *Bothrops pictus* + *B. roedingeri* (*Pp*=0.82) and three species of *Bothrops plas* plus *Bothrops andianus* and *B. lojanus* (*Pp*=0.62).

Figure 5. Bayesian MCMC 50% majority rule consensus phylogram compiled from analysis of 2311bp of mitochondrial sequences, 2199bp of nuclear sequence of the Rag1 gene, and 100 morphological characters. Only species represented by DNA data are included; this is the preferred analysis for systematic interpretation. Posterior probabilities shown adjacent to nodes; probabilities of 1.0 are indicated by gray-filled circles. Nodes with less than 50% posterior probability support have been collapsed.

Figure 5 continued.

Figure 6. Bayesian MCMC 50% majority rule consensus phylogram compiled from analysis of 2311bp of mitochondrial sequences, 2199bp of nuclear sequence of the Rag1 gene, and 100 morphological characters. All available species are represented, including species complete for morphological characters only. Posterior probabilities shown adjacent to nodes; probabilities of 1.0 are indicated by gray-filled circles. Nodes with less than 50% posterior probability support have been collapsed.

Figure 6 continued

We investigated how the completeness of a species affected its placement in the tree based on combined mtDNA, Rag1, and morphology and using all taxa. The morphological matrix represented 2.2% of the dataset, and the 32 species that were represented by morphology only made up 14% of taxa. These morphology-only species were disproportionately represented among the unresolved terminals, making up 56% of these branches (Figure 7). Considering this group of species alone, 14 were unresolved (44%) and four were in groups inconsistent with their taxonomy (12%). However, 14 species were in groups consistent with their taxonomy (44%). The pattern held when considering the four species with 1% or less of the data matrix complete: one species was unresolved, one was in an unexpected group based on taxonomy, but two were in groups consistent with their taxa except those with less than 1% of the data matrix represented failed to converge after 1x10⁷ generations (phylogram not shown).

As expected from the morphological data-only results, species with 10% or less matrix completeness were overrepresented in the unresolved taxa (Figure 7). Although unresolved taxa made up 11% of the tree, 42% of the minimally-complete species were unresolved. Species with 90% or more matrix completeness were underrepresented, with only 3% of the maximally complete species being unresolved. Species of intermediate completeness among unresolved species were generally found in proportion to their presence in the dataset overall.

Figure 7. Histogram of data completeness for all species included in study compared to completeness for unresolved species. Minimally complete species are overrepresented among unresolved species and maximally complete species are underrepresented.

We also discovered that the inclusion of highly incomplete taxa had a negative effect on support of genus-level clades (Table 4). On average, genera with more than one species included in the analysis had posterior probability support of 0.92, but only had support of 0.52 with the inclusion of the complete morphological dataset. In every case, the addition of highly incomplete species decreased support for monophyly of the genus, and in half of the cases genera were not recovered as monophyletic in combined DNA and morphological analysis. Of the nine genera in which all species had DNA data, the addition of morphology maintained support in six cases, increased support in one case and decreased it in a second. In only one case did the addition of morphology result in a genus not being recovered in the majority-rule phylogram. Table 4. Relationship of data matrix completeness to support for generic-level clades. Minimum completeness is measured as the minimum proportion of the DNA matrix (4510 characters) complete for any species in the group with DNA data, or the minimum proportion of the total matrix (4610 characters) complete for any species in the group. For groups including species with morphological data only, analysis of those species results in a decrease in support for that group. For groups where all species have DNA data, only two groups have decreased support with the addition of morphology, two have increased support, and the rest are unchanged.

		Minimum DNA	Combined	Minimum overall
Genus	DNA support	completeness	support	completeness
Groups including	g species with morp	hological data only		
Bothriopsis	1.00	0.283	0.96*	0.013
Bothrocophias	0.74	0.287	0.23*	0.013
Bothropoides	1.00	0.127	-	0.010
Bothrops	1.00	0.144	0.63	0.012
Crotalus	0.67	0.150	-	0.011
Cryptelytrops	0.57	0.449	-	0.008
Gloydius	1.00	0.068	0.94	0.014
Hypnale	n/a, single ind.	0.676	0.52	0.015
Popeia	1.00	0.381	-	0.013
Porthidium	1.00	0.306	0.69	0.013
Protobothrops	1.00	0.480	0.40	0.009
Rhinocerophis	1.00	0.290	-	0.018
Trimeresurus	1.00	0.116	-	0.010
Tropidolaemus	1.00	0.499	-	0.010
Groups where a	ll species have DNA	data		
Agkistrodon	1.00	0.990	1.00	0.990
Atropoides	0.96	0.392	0.99	0.398
Bothriechis	1.00	0.880	0.66	0.880
Cerrophidion	1.00	0.305	1.00	0.318
Lachesis	1.00	0.117	1.00	0.128
Mixcoatlus	1.00	0.494	1.00	0.498
Parias	1.00	0.406	-	0.411
Sistrurus	1.00	0.693	1.00	0.700
Viridovipera	0.35	0.470	1.00	0.474
Average	0.92	0.391	0.52	0.216

* indicates genera include species of questionable taxonomic assignment

- indicates clades do not exist in majority rule phylogram

We compared analyses with the same number of species but different datasets. In 55 of 80 nodes (68%) for nuclear gene Rag1 and 105 of 146 nodes (72%) for morphology, relationships were strongly supported by mtDNA (Pp=1.0) and the addition of a dataset did not change the values (Figure 8). Two other nodes had strong support with no change after addition of morphology (Pp=0.99, 0.96). We classify strong support as posterior probabilities 0.95–1, moderate support 0.90–0.94 and low support \leq 0.89. Overall, the addition of Rag1 increased support for 17 nodes, and decreased support for only eight nodes. We found six increases from low to high values (*Pp*=0.54 to 1, 0.56 to 0.96, 0.74 to 1, 0.79 to 0.98, 0.81 to 1, and 0.84 to 0.99), two increases from low to moderate values (*Pp*=0.28 to 0.93 and 0.55 to 0.94), and two increases from moderate to high values (*Pp*=0.94 to 97 and 0.94 to 1). In four cases support increased but values stayed low, and in three cases support was high and increased. One node was strongly supported by mtDNA and decreased with the addition of Rag1 (*Pp*=1 to 0.58), and two others decreased from strong to moderate support (*Pp*=0.95 to 0.91 and 0.98 to 0.91). In two cases values decreased but remained high, and in three others values were low and decreased.

Figure 8. Comparison of nodal posterior probability support between Bayesian analysis of mitochondrial DNA of pitvipers and analysis of same species but additional data: (a) nuclear gene Rag1, (b) morphological characters. Values on 1:1 axis represent no change with addition of dataset, values above axis represent increased support with addition of data, and values below axis represent decreased support with addition of data. Addition of nuclear data results in a net increase of node support, but morphology yields no net benefit to nodal support.

Overall, the addition of morphology resulted in increased support for 20 nodes and decreased support for 21 nodes. We found three increases from low to high values (Pp=0.50 to 0.96, 0.62 to 0.99, 0.77 to 1.0), six increases from low to moderate values (Pp=0.35 to 0.91, 0.58 to 0.91, 0.59 to 0.93, 0.61 to 0.93, 0.72 to 0.92, 0.80 to 0.93), and two increases from moderate to high values (Pp=0.90 to 1.0 and 0.92 to 0.97). Four nodes increased but remained poorly supported, and five nodes had strong support and increased. In no cases did support decrease from high to low values, but we found four decreases from strong to moderate support (Pp=1.0 to 0.93, 0.98 to 0.94, 0.97 to 0.94,0.97 to 0.93), and two decreases from moderate to low support (Pp=0.94 to 0.69 and0.94 to 0.79). Seven nodes decreased but retained strong support, and six nodes had low support and decreased.

Discussion

Taxon sampling

In contrast to the many studies finding increased accuracy with increased taxon sampling (Graybeal, 1998; e.g. Huelsenbeck, 1995; Kim, 1998; Poe and Swofford, 1999; Rannala et al., 1998), we find lowered resolution of our phylogeny with maximum taxon sampling. This is likely an issue of inclusion of taxa with minimal data, below the theoretical threshold cited by Wiens (2003) for accurate placement in phylogeny. Wiens and Morrill (2011) reviewed multiple empirical examples which found incomplete taxa consistently placed into expected genus- or higher-level taxa, often with strong support.
Huelsenbeck (1991) recovered relationships for eight taxa based on 100 simulated characters, and found taxa with only 25 characters were problematic in parsimony analysis. Wiens and Reeder (1995) found supporting evidence with a similarly small dataset. Wiens and Morrill (2011) review a number of examples that support the assertion that large amounts of missing data are mainly problematic when the overall number of characters is small. They also find, in an analysis of eight empirical datasets, that only two showed a significant positive relationship between completeness and branch support, suggesting that missing data are not necessarily a problem.

In our empirical example of far more taxa and more characters, we focus on species with 46 or fewer complete characters (1% of the dataset), 100 or fewer (2.2%), and 461 or fewer (10%). We find that inclusion of highly incomplete species had a detrimental effect on genus-level support in all cases (Table 4). This was not due to the inclusion of morphology, because the analysis including only species with greater than 2.2% of the dataset complete resolved strong support for all except three genera, and moderate support for one of these groups. Analysis including species with greater than 1% of the dataset represented failed to converge after twice the number of generations sampled in most analyses, suggesting that some taxa still included were problematic to analysis.

Dragoo and Honeycutt (1997) suggested that the effect of missing data on species placement may relate more to the relationships of taxa involved and phylogenetic signal in the dataset than to the amount of missing data, and our results reflect this assertion. Clades supported by many characters from certain datasets may

be able to withstand the addition of taxa with large amounts of missing data while maintaining their phylogenetic positions (Dragoo and Honeycutt, 1997). In our work, we find that addition of highly incomplete taxa was detrimental in all cases even though most genera had full posterior probability support from DNA evidence (Table 4). This suggests the negative effects of the incomplete taxa overwhelmed any effects of relationships.

Interestingly, we do not find patterns that allow one to distinguish which highly incomplete taxa will be problematic in analysis. Slightly less than half of species with morphological data only were placed in the correct genera, and this pattern held for species represented by less than 1% of the entire dataset, or 46 characters. This suggests that these taxa should not be excluded prior to analysis.

Missing data may be more problematic when a taxon has no close relatives (Dragoo and Honeycutt, 1997). This is a particular issue for one monotypic genus in this study: *Peltopelor*. The phylogenetic placement of *Peltopelor macrolepis* has been of recent interest, with Malhotra and Thorpe (2004) suggesting it is closely related to *Popeia* based on hemipenial morphology, and Guo et al. (Guo et al., 2010) suggesting it is related to *Trimeresurus* or *Cryptelytrops* based on skull morphology. This is the first study to include *Peltopelor macrolepis* in phylogenetic analysis, and we find it unresolved in combined morphology and DNA analysis. Based on morphology alone, we find low support for its inclusion in a group with several genera of Asian pitvipers (*Pp*=0.50). As an example of a way to treat limited-data species, we conducted one analysis based on combined evidence using all taxa represented by DNA data plus *P*.

macrolepis (phylogram not shown), and recovered it within *Cryptelytrops* with low support (*Pp*=0.43), sister to *C. macrops* and *C. venustus* with low support (*Pp*=0.62). This suggests that inclusion of limited-data species one at a time may not always be informative.

Combining datasets

As more loci and other characters sets are used in phylogenetics, the issue of combinability is increasingly important. The simplest strategy for resolving conflict among datasets is to follow Kluge's (1989) call to use total evidence in combined analysis. Some suggest this is the best method even when a problematic data partition is successfully identified (Baker and DeSalle, 1997), and this is the method we follow in this study. Using observations of incongruence among single-locus phylogenies, we find little conflict among our datasets, and we do not observe loss of resolution in conjunction with combining these datasets. This suggests that in future when genomic methods are available for large numbers of pitvipers, the information will be able to be analyzed with little conflict. It also supports the combinability of morphological with molecular data in phylogenetic analysis, in contrast to the practice in Asian pitviper studies of estimating evolutionary relationships with DNA data and using morphology only in multivariate statistical analysis to define distinct morphotypes (e.g. Malhotra et al., 2011a).

With the potential problems of adding taxa based on a limited number of phenotypic characters (e.g. Lemmon et al., 2009), it may be tempting to infer the phylogenetic positions of these taxa from analyses of morphology only. This approach

has been refuted by simulation and empirical studies (Wiens and Reeder, 1995; Wiens, 2009; Wiens et al., 2010) that found molecular data mainly benefited the accuracy of placing fossil taxa in phylogeny. Our results did not find major changes in placement of taxa with DNA data with the addition of morphological data and species lacking DNA, but the differences in resolution and support between the tree based on morphology (Figure 3) and that based on three independent datasets (Figure 6) support the inclusion of molecular data with phenotypic characters when available.

Wiens et al. (2005) found that adding an incomplete set of nuclear data to a mitochondrial dataset seemed to improve the results. In our study, we added the nuclear gene Rag1, which was sequenced for 43% of species, and was on average 79% complete for those terminals. In agreement with Wiens et al. (2005), we find a small beneficial effect of adding our incomplete nuclear gene to the dataset, with an increase in mean posterior probability from 0.928 to 0.955. We find increases in support for twice the number of nodes that had decreases in support, with eight nodes increasing to strong confidence in relationships but only three nodes losing strong support. We find some increase in variability of support values with the addition of morphological data, but no net positive or negative effect.

Pitviper phylogenetic relationships

Newly described species

Two genera and many species have been described since the publication of the most recent pitviper phylogenies (Castoe and Parkinson, 2006; Pyron et al., 2011).

Several of these descriptions were not accompanied by DNA sequences and most have not been included in phylogenetic analysis. Below we discuss the placement of newly recognized species included in large-scale phylogeny for the first time. We focus on combined evidence analysis excluding taxa with morphology only because the analysis with maximal taxa lacked resolution, but we discuss results of other analyses when alternate relationships are supported.

For genera and species in which mitochondrial data have been analyzed, our combined mtDNA, nuclear and morphological analysis generally supports prior results. We find *Sinovipera* sister to a clade of *Viridovipera* and *Cryptelytrops* (Guo and Wang, 2011), and we support the monophyly of *Mixcoatlus* (Jadin et al., 2011). We find *Atropoides indomitus* sister to *A. occiduus* (Smith and Ferrari-Castro, 2008). We find *Popeia buniana* related to *P. fucata*, *P. sabahi*, and *P. barati* (Grismer et al., 2006; Sanders et al., 2006), although this does not support subsuming all of these species under the name *P. sabahi* as suggested by Sanders et al. (2006).

In two cases, our combined evidence results do not agree with prior work. Jadin et al. (2012) elevated two lineages formerly described as *Cerrophidion godmani* to species status: *C. sasai* and *C. wilsoni*. They found *C. godmani s.s.* sister to *C. petlalcalensis* and *C. tzotzilorum*, with a clade of *C. sasai* and *C. wilsoni* sister to that group. We find the same relationships in combined DNA analysis, but find strong support for a clade of *C. godmani, C. wilsoni* and *C. sasai* in combined DNA and morphological analysis. Second, *Protobothrops maolanensis* was described on the basis of morphology (Yang et al., 2011), and its phylogenetic position was recently evaluated

on the basis of mtDNA (Liu et al., 2012). Although their molecular data were unavailable for this study, we evaluate the phylogenetic position of this species on the basis of morphology, the first time its phenotype was included in phylogenetic analysis. Liu et al. (2012) found strong support for the inclusion of *P. maolanensis* in a clade with *P. mucrosquamatus* and *P. elegans*. In combined analysis with all available taxa we find *P. maolanensis* sister to *P. flavoviridis* and *P. tokarensis* with low support (*Pp*=0.70), with this clade sister to *P. mucrosquamatus* and *P. elegans* with low support (*Pp*=0.66). This relationship may change with the combination of molecular and morphological data.

Our phylogenetic results for species described on the basis of phenotype alone agree less with prior work than the results described above. We find no supported phylogenetic position for *Bothropoides marmoratus* (Silva and Rodrigues, 2008). We find strong support for a sister relationship between newly described longtail rattlesnake *Crotalus ericsmithi* and equally rare *C. lannomi*, but no support for a clade including the third species of longtailed rattlesnake, *C. stejnegeri*, a relationship expected by Campbell and Flores-Villela (2008). In combined evidence analysis these relationships break down, but in analysis of rattlesnakes alone (Fenwick, Diamond, LaDuc, and Parkinson, unpub. data), a clade of all three longtailed species has low support (*Pp*=0.87).

The last few years were especially fruitful for species descriptions of Asian pitvipers. We find low combined evidence support for a sister relationship between *Tropidolaemus laticinctus* and *T. subannulatus* as expected by Kuch et al. (2007), but find *T. laticinctus* sister to *T. subannulatus, T. philippensis,* and *T. wagleri* based on morphology alone. We find *P. trungkhanhensis* sister to *P. mangshanensis* with low

support (Pp=0.80), in disagreement with Orlov et al. (2009) and Yang et al. (2011). We find Trimeresurus andalasensis part of a T. puniceus group, sister to that species, T. borneensis, and T. wiroti, in partial agreement with describers David et al. (2006). Popeia toba was described for a group from northern Sumatra closely related to P. sabahi (David et al., 2009), and Cryptelytrops honsonensis was described from southern Vietnam phenotypically similar to C. venustus (Grismer et al., 2008). In combined analysis we found low support for a clade of these new species and Parias lineages (Pp=0.52), in disagreement with both describers. In morphological analysis we found low support for their inclusion in a clade of a number of Asian pitvipers (Pp=0.50). Malhotra et al. (2011b) described Cryptelytrops cardamomensis and C. rubeus, mentioning they were morphologically similar to C. macrops. Based on phylogenetic analysis of morphology we find strong support for a sister relationship between the two newly described species (*Pp*=0.98), but strangely find *P. popeiorum* sister to this clade with strong support (0.98) and only find low support for Cryptelytrops macrops and C. erythrurus sister to these species (Pp=0.41). Combined molecular and morphological analysis did not resolve the phylogenetic positions of these species.

A few species have been described very recently, and we could not collect data in time to include them in the current analysis: *Bothrops ayerbi* (Folleco-Fernández, 2010; in Spanish), *Gloydius lianjilii* (Jiang and Zhao, 2009; in Chinese), and *Popeia phuketensis* (Sumontha et al., 2011). We look forward to evaluating their evolutionary relationships in the future.

Ongoing issues in pitviper phylogeny

One of the longstanding questions in pitviper phylogeny is which groups diverged first in the evolution of pitvipers. Based on combined DNA data we find strong support for a basal clade of pitvipers (Pp=1.0) containing a subclade of *Calloselasma* and *Hypnale* (Pp=1.0) and another subclade of *Garthius, Deinagkistrodon,* and *Tropidolaemus* (Pp=0.99). This clade is supported in both full-dataset and taxon-limited analyses, and when data-limited taxa are excluded it is sister to a clade of all other pitvipers. This topology is in agreement with Castoe and Parkinson (2006) and Pyron et al. (2011).

A second question has been the sister group to the clade of New World pitvipers. Malhotra et al. (2010) supported *Gloydius* as the sister group, but with sparse sampling of New World species and had strong support with only one of their methods of coding introns. Based on combined evidence with some taxa excluded we find low support for *Gloydius* as the sister group (*Pp*=0.77). Based on DNA evidence we find low support (*Pp*=0.80) for a clade of *Gloydius* and *Trimeresurus gracilis* + *Ovophis okinavensis* or for *Ovophis monticola* to be sister to New World pitvipers. We find moderate support (*Pp*=0.94) for either of these clades or *Protobothrops* to be sister to the American radiation. These constitute all of the previously proposed sister groups for American vipers (Malhotra et al., 2010). We expect additional sampling of nuclear loci will be the most effective way to resolve this relationship.

The species *Trimeresurus gracilis* and *Ovophis okinavensis* are in need of taxonomic revision, as their phylogenetic positions sister to each other and separate

from their currently-assigned genera are well understood based on mtDNA data (e.g. Malhotra and Thorpe, 2004). Malhotra and Thorpe (2004) suggested these species could be included with *Gloydius*, but investigation was ongoing. We find strong support for the clade of *T. gracilis* and *O. okinavensis* in all analyses, but only found the sister relationship to *Gloydius* in mtDNA (*Pp*=1.0), combined mtDNA and nuclear (*Pp*=1.0), and combined mtDNA and morphological analyses (*Pp*=0.67). Rag1 alone did not recover support for a sister group to this clade, and Rag1 with morphology found it in a group of several Asian genera. Morphological and combined morphological and DNA data with all taxa recovered the group sister to *Ovophis monticola* with low support (*Pp*=0.74 and 0.59, respectively). Combined morphological and DNA data with some taxa excluded resolved this clade in a group with *Protobothrops* and the genera of the *Trimeresurus* group elevated by Malhotra and Thorpe (2004). This clade may deserve its own genus-level designation and we encourage continued investigation into these relationships.

The assignment of *Atropoides picadoi* to its current genus has been problematic, as mitochondrial data placed it sister to *Porthidium* and *Cerrophidion* (Castoe and Parkinson, 2006) or included it in *Atropoides* with low support (Castoe et al., 2009; Castoe et al., 2005). Our mtDNA results find low support for the pattern of Castoe and Parkinson (*Pp*=0.58). The most recent morphological analysis recovered *A. picadoi* sister to the other *Atropoides* species with strong support (Jadin et al., 2010). We contribute nuclear data and combined evidence analysis to this case, and although we find only low Rag1 support for a clade of *Atropoides* including *A. picadoi* along with *Cerrophidion* species (*Pp*=0.52), we find combined mitochondrial, nuclear and morphological data

strongly support the inclusion of *A. picadoi* in its current genus with all taxa or with some excluded (*Pp*=0.97 and 1.0, respectively). This supports the importance of combined evidence analysis compared to combining tree topologies.

New observations

We find that *Cryptelytrops* consists of two supported clades that are not always recovered as monophyletic. For example, based on mtDNA, combined DNA, and taxon-limited combined DNA with morphology we find strong support for a clade of *C. macrops, C. venustus* and *C. kanburiensis* (Pp=1.0), and equally strong support for a clade of *C. fasciatus, C. insularis, C. septentrionalis, C. albolabris, C. andersoni, C. cantori, C. erythrurus,* and *C. purpureomaculatus*. We find only weak support for the sister relationship of these two clades (Pp=0.51, 0.57 and 0.74, respectively). Combined mtDNA, nuclear and morphological data with all taxa find weak support for the latter clade (Pp=0.50), weaker support for the former clade including new species *C. cardamomensis* and *C. rubeus* (Pp=0.30), and no support for a relationship between these clades.

Bothrops pictus and B. roedingeri were placed incertae sedis by Fenwick et al. (2009) when they proposed a new generic arrangement for bothropoid pitvipers. The former species was the only one that could be included in phylogeny, and was found sister to all bothropoid genera except *Bothrocophias* based on combined mtDNA and morphological evidence. With the addition of a mitochondrial gene for *B. roedingeri*, we recover a strongly supported clade of *B. pictus* and *B. roedingeri* in taxon-limited combined DNA and morphology analysis (*Pp*=1.0). We expect that with further

investigation these two species will constitute another major lineage of South American pitvipers that deserves genus-level recognition.

Fenwick et al. (2009) recovered *Bothrops andianus* in *Bothrops* based on morphological data, but Carrasco et al. (2012) recovered it in *Bothrocophias* based on a different analysis of morphology. This was one of the arguments against accepting the taxonomy of Fenwick et al. We have included mtDNA data for this species for the first time, and support the results of Carrasco et al. However, we do not support their recommendation to lump South American bothropoids into two genera, and will discuss our relevant results and arguments in a forthcoming paper (Fenwick and Parkinson in prep.)

Finally, this is the first study to include morphology in a large-scale phylogenetic context for Asian pitvipers. We find low resolution of relationships in taxon-dense sampling and combined evidence analysis, but taxon-limited sampling strongly supports the monophyly of almost all genera recognized by Malhotra and Thorpe (2004). The only genera that lack posterior probabilities of 1.0 are *Viridovipera* (*Pp*=0.75) and *Cryptelytrops* (*Pp*=0.74). The lack of support for *Cryptelytrops* was discussed above and may be due to the combination of two distinct lineages in one genus. The lack of support for *Viridovipera* may have to do with its close relationship to *Sinovipera* and a lack of data to fully resolve the relationships among species within these two genera and *Cryptelytrops*. Detailed analysis of this clade is certainly warranted, but our results support the taxonomic conclusions of Malhotra and Thorpe.

Conclusions and future directions

In ten years we predict that phylogenetic analyses will be able to include whole genomes for many taxa, but the taxon-dense methods described here will still be necessary. In the case of rare species of traditionally formalin-preserved groups, genomic data will likely be unavailable. Most fossil taxa will also lack genetic data and therefore will be complete for an increasingly small fraction of the data matrix. Fortunately, in our study of approximately 200 species, we find that species with over 100 characters are generally placed in expected phylogenetic positions.

Overall, we find that including a number of species with minimal data in analysis can be detrimental to phylogenetic resolution, but that the effects of these data-limited species cannot be predicted *a priori*. In the cases where understanding the relationships of these data-limited species is key, resolving their placement by including a single datalimited taxon with the more complete dataset may be beneficial but will not necessarily resolve the position of that taxon with confidence. Other *a posteriori* methods, such as the rogue taxa methods often used in supertree analysis, may also be helpful in this case. More investigation of common threshold values for empirical datasets would be welcome, but our results placing a number of data-limited taxa in expected positions argue against eliminating terminals before analysis.

The effect of missing data on estimates of divergence times is an area that needs to be fully investigated, although current evidence suggests that divergence date reconstructions are not misled by missing data (Wiens and Morrill, 2011). In this study we chose to eliminate alignment positions with high proportions of missing data, but

future work could investigate the effect of including those characters in analysis.

Pitvipers are a useful model for biogeographic analysis (i.e. Castoe et al., 2009; Daza et al., 2010, Fenwick, Parkinson, Wuster, and Venegas, unpub. data) and a highly accurate estimate of their phylogeny and divergence dates will benefit a number of downstream users.

Outside of the issue of placing data-limited species, we find combining datasets to be beneficial to analysis. The congruence of trees based on the nuclear locus and on phenotypic data with the well-studied mitochondrial phylogeny suggests that relationships that are currently understood represent species tress and not only gene trees. We generally support recent taxonomic changes based on mtDNA data. We particularly highlight the inclusion of phenotypic data for Asian pitvipers in phylogenetic analysis for the first time. Phenotype is of ongoing importance in understanding many Asian groups, but has generally been used only in the context of clustering or ordination analysis to distinguish distinct populations and define species. We use independent datasets to support recent taxonomic changes in Asian snakes, and suggest future research include phenotype in phylogenetic analysis.

<u>Acknowledgments</u>

We sincerely thank the museums that provided specimens for morphological analysis: Academy of Natural Sciences of Philadelphia, American Museum of Natural History, California Academy of Science, Carnegie Museum of Natural History, Field Museum, Florida Museum of Natural History, Los Angeles County Natural History Museum, Louisiana State University Museum of Zoology, Museum of Comparative

Zoology at Harvard University, Museum of Natural History at the University of Colorado, Museum of Vertebrate Zoology at the University of California at Berkeley, Museum of Zoology at the University of Michigan, Royal Ontario Museum, San Diego Natural History Museum, Smithsonian Institution National Museum of Natural History, Texas Cooperative Wildlife Collections at Texas A&M University, Texas Natural History Collection at the University of Texas, University of Central Florida, University of Kansas, University of Texas at Arlington, University of Texas at Tyler, and the Yale Peabody Museum.

Several researchers provided tissues under their care and obtained during sponsored research, including J. Campbell (University of Texas at Arlington, DEB-9705277, DEB-0102383, and DEB-0613802), E. Smith (University of Texas at Arlington, DEB-0416160 and Inst. Bioclon), L. Vitt (University of Oklahoma, obtained through NSF grant DEB-9200779 and DEB-9505518), M. Martins (Universidad de São Paulo), and R. Murphy (Royal Ontario Museum). We also received tissues from S. Carreira, R. Gutberlet, F. Kraus, W. Lamar, S. Moody, M. Sasa, W. Van Devender, P. Venegas, and W. Wüster. The California Academy of Sciences, Louisiana State University, Smithsonian University, University of Texas at Austin, and University of Texas at Arlington frozen tissue collections, as well as the Central Florida Zoo, generously provided samples.

We thank K. Diamond for assistance in photographing specimens and collecting data on rattlesnakes, and J. Wiens for assistance with methodology. For help and time in the field we thank B. Bock, C. Brasileiro, H. Greene, N. Hülle, J. Junior, O. A. V. Marques, C. Monteiro, G. Nilson, C. C. Nogueira, V. Páez, M. Saldarriaga, M. Sasa, R. J. Sawaya, F.

Spina, A. M. Tozetti, R. W. Van Devender, and K. Zamudio. We also thank the many people that, over the years, have contributed insight and suggestions that have added to this study, including J. Campbell, T. Castoe, W. Crampton, J. Daza, G. Ferrie, J. Hickson, E. Hoffman, H. Kalkvik, J. Reece, E. Smith, J. Strickland, G. Territo, and W. Wüster.

Funding for this project was provided by a UCF start-up package, a UCF new faculty research award, and an NSF Research grant (DEB–0416000) to CLP, as well as collections visit grants from the American Museum of Natural History, Field Museum of Natural History, and the Charles Stearns Memorial Grant-In-Aid for Herpetological Research from the California Academy of Sciences to AMF. Sequencing through the Nevada Genomics Center was supported by an INBRE grant (2 P20 RR016463).

<u>References</u>

- Agnarsson, I., May-Collado, L.J., 2008. The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of Cytochrome b to provide reliable species-level phylogenies. Molecular Phylogenetics and Evolution 48, 964-985.
- Assis, L.C.S., Rieppel, O., 2011. Are monophyly and synapomorphy the same or different? Revisiting the role of morphology in phylogenetics. Cladistics 27, 94-102.
- Baker, R.H., DeSalle, R., 1997. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Systematic Biology 46, 654-673.
- Campbell, J.A., Flores-Villela, O., 2008. A new long-tailed rattlesnake (Viperidae) from Guerrero, Mexico. Herpetologica 64, 246–257.
- Campbell, J.A., Frost, D.R., 1993. Anguid lizards of the genus *Abronia* : revisionary notes, descriptions of four new species, a phylogenetic analysis, and key. Bulletin of the American Museum of Natural History 216, 1–121.

- Carrasco, P.A., Mattoni, C.I., Leynaud, G.C., Scrocchi, G.J., 2012. Morphology, phylogeny and taxonomy of South American bothropoid pitvipers (Serpentes, Viperidae). Zoologica Scripta, no-no.
- Castoe, T.A., Daza, J.M., Smith, E.N., Sasa, M.M., Kuch, U., Campbell, J.A., Chippindale, P.T., Parkinson, C.L., 2009. Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland biogeography. Journal of Biogeography 36, 88-103.
- Castoe, T.A., Parkinson, C.L., 2006. Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Molecular Phylogenetics and Evolution 39, 91–110.
- Castoe, T.A., Sasa, M., Parkinson, C.L., 2005. Modeling nucleotide evolution at the mesoscale: the phylogeny of the Neotropical pitvipers of the *Porthidium* group (Viperidae: Crotalinae). Molecular Phylogenetics and Evolution 37, 881–898.
- Crother, B.I., Campbell, J.A., Hillis, D.M., 1992. Phylogeny and historical biogeography of the palm-pitvipers, genus *Bothriechis*: biochemical and morphological evidence. In: Campbell, J.A., Edmund D. Brodie, J. (Eds.), Biology of the Pitvipers. Selva, Tyler, TX, pp. 1–20.
- David, P., Petri, M., Vogel, G., Doria, G., 2009. A new species of pitviper of the genus *Trimeresurus (Popeia)* from northern Sumatra (Reptilia, Squamata, Viperidae). Estratto dagli Annali del Museo Civico di Storia Naturale "G. Doria" C-17, 323-346.
- David, P., Vogel, G., Vijayakumar, S.P., Vidal, N., 2006. A revision of the *Trimeresurus puniceus*-complex (Serpentes: Viperidae: Crotalinae) based on morphological and molecular data. Zootaxa 1293, 1-78.
- Daza, J.M., Castoe, T.A., Parkinson, C.L., 2010. Using regional comparative phylogeographic data from snake lineages to infer historical processes in Middle America. Ecography 33, 343–354.
- Donoghue, M.J., Doyle, J.A., Gauthier, J., Kluge, A.G., Rowe, T., 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics 20, 431–460.
- Dowling, H.G., 1951. A proposed standard system of counting ventrals in snakes. British Journal of Herpetology 1, 97–99.
- Dowling, H.G., Savage, J.M., 1960. A guide to the snake hemipenis: a survey of basic structure and systematic characteristics. Zoologica 45, 17–31.

- Dragoo, J.W., Honeycutt, R.L., 1997. Systematics of mustelid-like carnivores. Journal of Mammalogy 78, 426-443.
- Fenwick, A.M., Greene, H.W., Parkinson, C.L., 2012. The serpent and the egg: unidirectional evolution of reproductive mode in vipers? Journal of Zoological Systematics and Evolutionary Research 50, 59-66.
- Fenwick, A.M., Ronald L. Gutberlet, J., Evans, J.A., Parkinson, C.L., 2009. Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera *Bothrops, Bothriopsis*, and *Bothrocophias* (Serpentes: Viperidae). Zoological Journal of the Linnean Society 156, 617-640.
- Folleco-Fernández, A.J., 2010. Taxonomía del complejo Bothrops asper (Serpentes: Viperidae) en el sudoeste de Colombia. Revalidación de la especie Bothrops rhombeatus (García 1896) y descripción de una nueva especie. Revista Novedades Colombianas On Line 10, 1–34.
- Fry, B.G., Winkel, K.D., Wickramaratna, J.C., Hodgson, W.C., Wüster, W., 2003. Effectiveness of snake antivenom: Species and regional venom variation and its clinical impact. Toxin Reviews 22, 23–34.
- Gatesy, J., Baker, R.H., Hayashi, C., 2004. Inconsistencies in arguments for the supertree approach: Supermatrices versus supertrees of Crocodylia. Systematic Biology 53, 342–355.
- Graybeal, A., 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology 47, 9–17.
- Grismer, L.L., Grismer, J.L., McGuire, J.A., 2006. A new species of pitviper of the genus *Popeia* (Squamata: Viperidae) from Pulau Tioman, Pahang, West Malaysia. Zootaxa 1305, 1-19.
- Grismer, L.L., Tri, N.V., Grismer, J.L., 2008. A new species of insular pitviper of the genus *Cryptelytrops* (Squamata: Viperidae) from southern Vietnam. Zootaxa 1715, 57-68.
- Groth, J.G., Barrowclough, G.F., 1999. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Molecular Phylogenetics and Evolution 12, 115–123.
- Guo, P., Jadin, R.C., Malhotra, A., Li, C., 2010. An investigation of the cranial evolution of Asian pitvipers (Serpentes: Crotalinae), with comments on the phylogenetic position of *Peltopelor macrolepis*. Acta Zoologica 91, 402-407.
- Guo, P., Malhotra, A., Li, P.P., Pook, C.E., Creer, S., 2007. New evidence on the phylogenetic position of the poorly known Asian pitviper *Protobothrops*

kaulbacki (Serpentes: Viperidae: Crotalinae) with a redescription of the species and a revision of the genus *Protobothrops*. Herpetological Journal 17, 237-246.

- Guo, P., Wang, Y., 2011. A new genus and species of cryptic Asian green pitviper (Serpentes: Viperidae: Crotalinae) from southwest China. Zootaxa 2918, 1–14.
- Gutberlet, R.L., Jr., Harvey, M.B., 2002. Phylogenetic relationships of New World pitvipers as inferred from anatomical evidence. In: Schuett, G.W., Höggren, M., Douglas, M.E., Greene, H.W. (Eds.), Biology of the Vipers. Eagle Mountain Publishing, Eagle Mountain, Utah, pp. 51–68.
- Harvey, M.B., Aparicio, J.E., Gonzales, L.A., 2005. Revision of the venomous snakes of Bolivia. II: the pitvipers (Serpentes: Viperidae). Annals of Carnegie Museum 74, 1–37.
- Harvey, P.H., Pagel, M.D., 1991. The comparative method in evolutionary biology Oxford University Press, New York, New York.
- Heath, T.A., Hedtke, S.M., Hillis, D.M., 2008. Taxon sampling and the accuracy of phylogenetic analyses. Journal of Systematics and Evolution 46, 239-257.
- Hillis, D.M., 1987. Molecular versus morphological approaches to systematics. Annual Review of Ecological Systematics 18, 23–42.
- Hillis, D.M., 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. Systematic Biology 48, 3–8.
- Hoffstetter, R., Gasc, J.P., 1969. Vertebrae and ribs of modern reptiles. In: Gans, C., Bellairs, A.d.A., Parsons, T.S. (Eds.), Biology of the Reptilia. Academic Press, New York, pp. 201–310.
- Huelsenbeck, J., 1991. When are fossils better than extant taxa in phylogenetic analysis? Systematic Zoology 40, 458–469.
- Huelsenbeck, J.P., 1995. The performance of phylogenetic methods in simulation. Systematic Biology 44, 17–48.
- Jadin, R.C., Gutberlet Jr, R.L., Smith, E.N., 2010. Phylogeny, evolutionary morphology, and hemipenis descriptions of the Middle American jumping pitvipers (Serpentes: Crotalinae: Atropoides). Journal of Zoological Systematics and Evolutionary Research 48, 360-365.
- Jadin, R.C., Smith, E.N., Campbell, J.A., 2011. Unravelling a tangle of Mexican serpents: a systematic revision of highland pitvipers. Zoological Journal of the Linnean Society 163, 943-958.

- Jadin, R.C., Townsend, J.H., Castoe, T.A., Campbell, J.A., in press. Cryptic diversity in disjunct populations of Middle American Montane Pitvipers: a systematic reassessment of *Cerrophidion godmani*. Zoologica Scripta.
- Jiang, F., Zhao, E.-M., 2009. *Gloydius lijianlii*, a new species from the northern coastal islands along Shandong peninsula (Reptilia, Squamata, Viperidae). Acta Zootaxonomica Sinica 34, 642-646.
- Johnson, N.K., Zink, R.M., Marten, J.A., 1988. Genetic evidence for relationships in the avian family Vireonidae. The Condor 90, 428–445.
- Kearney, M., Stuart, B.L., 2004. Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proceedings of the Royal Society of London. Series B: Biological Sciences 271, 1677–1683.
- Kim, J., 1998. Large-scale phylogenies and measuring the performance of phylogenetic estimators. Systematic Biology 47, 43–60.
- Klauber, L.M., 1972. Rattlesnakes: their habits, life histories, and influences on mankind. University of California Press, Berkeley and Los Angeles, U.S.A.
- Kluge, A.G., 1989. A concern for evidence and a phylogenetic hypothesis of relationships among *Epicrates* (Boidae, Serpentes). Systematic Biology 38, 7-25.
- Koh, D., Armugam, A., Jeyaseelan, K., 2006. Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences (CMLS) 63, 3030-3041.
- Kohlsdorf, T. Wagner, G.P., 2006. Evidence for the reversibility of digit loss: A phylogenetic study of limb evolution in Bachia (Gymnophthalmidae: Squamata). Evolution 60, 1896–1912.
- Kuch, U., Gumprecht, A., Melaun, C., 2007. A new species of Temple Pitviper (*Tropidolaemus* Wagler, 1830) from Sulawesi, Indonesia (Squamata: Viperidae: Crotalinae). Zootaxa 1446, 1-20.
- Lemmon, A.R., Brown, J.M., Stanger-Hall, K., Lemmon, E.M., 2009. The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Systematic Biology 58, 130-145.
- Liu, Q., Myers, E.A., Zhong, G.H., Hu, J., Zhao, H., Guo, P., 2012. Molecular evidence on the systematic position of the lance-headed pitviper *Protobothrops maolanensis* Yang et al., 2011. Zootaxa 3178, 57–62.
- Lynch, V.J., 2009. Live-birth in vipers (Viperidae) is a key innovation and adaptation to global cooling during the Cenozoic. Evolution 63, 2457–2465.

- Maddison, W.P., Midford, P.E., Otto, S.P., 2007. Estimating a binary character's effect on speciation and extinction. Systematic Biology 56, 701-710.
- Malhotra, A., Creer, S., Pook, C.E., Thorpe, R.S., 2010. Inclusion of nuclear intron sequence data helps to identify the Asian sister group of New World pitvipers. Molecular Phylogenetics and Evolution 54, 172-178.
- Malhotra, A., Dawson, K., Guo, P., Thorpe, R.S., 2011a. Phylogenetic structure and species boundaries in the mountain pitviper *Ovophis monticola* (Serpentes: Viperidae: Crotalinae) in Asia. Molecular Phylogenetics and Evolution 59, 444-457.
- Malhotra, A., Thorpe, R.S., 2004. A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pitvipers. Molecular Phylogenetics and Evolution 32, 83–100.
- Malhotra, A., Thorpe, R.S., Mrinalini, Stuart, B.L., 2011b. Two new species of pitviper of the genus *Cryptelytrops* Cope 1860 (Squamata: Viperidae: Crotalinae) from Southeast Asia. Zootaxa 2757, 1–23.
- Manos, P.S., Soltis, P.S., Soltis, D.E., Manchester, S.R., Sang-Hun, O., Bell, C.D., Dilcher, D.L., Stone, D.E., 2007. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Systematic Biology 56, 412–430.
- McDiarmid, R.W., Campbell, J.A., Touré, T.A., 1999. Snake species of the world: a taxonomic and geographic reference. Herpetologists' League, Washington, D.C.
- Nicholas, K.B., Nicholas Jr., H.B., 1997. GeneDoc: a tool for editing and annotating multiple sequence alignments.
- Nylander, J.A.A., 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden.
- Orlov, N.L., Ryabov, S.A., Tao, N.T., 2009. Two new species of genera *Protobothrops* Hoge et Romano-Hoge, 1983 and *Viridovipera* Malhotra et Thorpe, 2004 (Ophidia: Viperidae: Crotalinae) from karst region in northeastern Vietnam. Part I. Description of a new species of *Protobothrops* genus. Russian Journal of Herpetology 16, 69-82.
- Philippe, H., Brinkmann, H., Lavrov, D.V., Littlewood, D.T.J., Manuel, M., Wörheide, G., Baurain, D., 2011. Resolving difficult phylogenetic questions: Why more sequences are not enough. PLoS Biol 9, e1000602.
- Poe, S., Swofford, D.L., 1999. Taxon sampling revisited. Nature 398, 300–301.

- Pyron, R.A., Burbrink, F.T., Colli, G.R., de Oca, A.N.M., Vitt, L.J., Kuczynski, C.A., Wiens, J.J., 2011. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Molecular Phylogenetics and Evolution 58, 329–342.
- Rambaut, A., Drummond, A.J., 2009. Tracer v1.5. Available at http://beast.bio.ed.ac.uk/Tracer.
- Rannala, B., Huelsenbeck, J.P., Yang, Z., Nielsen, R., 1998. Taxon sampling and the accuracy of large phylogenies. Systematic Biology 47, 702–710.
- Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
- Sanders, K.L., Malhotra, A., Thorpe, R.S., 2006. Combining molecular, morphological and ecological data to infer species boundaries in a cryptic tropical pitviper. Biological Journal of the Linnean Society 87, 343–364.
- Shine, R., Langkilde, T., Wall, M., Mason, R.T., 2005. The fitness correlates of scalation asymmetry in garter snakes *Thamnophis sirtalis parietalis*. Functional Ecology 19, 306–314.
- Silva, V.X.d., Rodrigues, M.T., 2008. Taxonomic revision of the *Bothrops neuwiedi* complex (Serpentes, Viperidae) with description of a new species. Phyllomedusa 7, 45–90.
- Smith, E.N., Ferrari-Castro, J.A., 2008. A new species of jumping pitviper of the genus *Atropoides* (Serpentes: Viperidae: Crotalinae) from the Sierra de Botaderos and the Sierra La Muralla, Honduras. Zootaxa 1948, 57–68.
- Sumontha, M., Kunya, K., Pauwels, O.S.G., Nitikul, A., Punnadee, S., 2011. *Trimeresurus* (*Popeia*) phuketensis, a New Pitviper (Squamata: Viperidae) from Phuket Island, Southwestern Thailand. Russian Journal of Herpetology 18, 175-184.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731-2739.
- Thiele, K., 1993. The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9, 275–304.
- Tomović, L., Carretero, M.A., Ajtić, R., Crnobrnja-Isailović, J., 2008. Evidence for postnatal instability of head scalation in the meadow viper (*Vipera ursinii*) – patterns and taxonomic implications. Amphibia-Reptilia 29, 61–70.

- Townsend, J.P., Leuenberger, C., 2011. Taxon sampling and the optimal rates of evolution for phylogenetic inference. Systematic Biology 60, 358–365.
- Werman, S.D., 1992. Phylogenetic relationships of Central and South American pitvipers of the genus *Bothrops (sensu lato)*: cladistic analyses of biochemical and anatomical characters. In: Campbell, J.A., E.D. Brodie, J. (Eds.), Biology of the Pitvipers. Selva, Tyler, Texas, pp. 21–40.
- Werman, S.D., 2005. Hypotheses on the historical biogeography of bothropoid pitvipers and related genera of the Neotropics. In: Donnelly, M.A., Crother, B.I., Guyer, C., Wake, M.H., White, M.E. (Eds.), Ecology and evolution in the tropics: a herpetological perspective. The University of Chicago Press, Chicago, pp. 306– 365.
- Wiens, J.J., 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52, 528-538.
- Wiens, J.J., 2005. Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? Systematic Biology 54, 731–742.
- Wiens, J.J., 2008. Systematics and herpetology in the age of genomics. BioScience 58, 297-307.
- Wiens, J.J., 2009. Paleontology, genomics, and combined-data phylogenetics: Can molecular data improve phylogeny estimation for fossil taxa? Syst Biol 58, 87-99.
- Wiens, J.J., Kuczynski, C.A., Townsend, T., Reeder, T.W., Mulcahy, D.G., Sites, J.W., 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: Molecular data change the placement of fossil taxa. Systematic Biology 59, 674-688.
- Wiens, J.J., Morrill, M.C., 2011. Missing data in phylogenetic analysis: Reconciling results from simulations and empirical data. Systematic Biology 60, 719-731.
- Wiens, J.J., Reeder, T.W., 1995. Combining data sets with different phylogenetic histories Systematic Biology 44, 548–558.
- Wüster, W., 1996. Systematics, venom variation and toxinology: bridging gaps between evolutionary biology and biomedical science. Toxicon 34, 733.
- Wüster, W., Golay, P., Warrell, D.A., 1997. Synopisis of recent developments in venomous snake systematics. Toxicon 35, 319–340.
- Wüster, W., Peppin, L., Pook, C.E., Walker, D.E., 2008. A nesting of vipers: Phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Molecular Phylogenetics and Evolution 49, 445-459.

- Wüster, W., Salomão, M.D.G., Quijada-Mascareñas, J.A., Thorpe, R.S., BBBSP, 2002.
 Origins and evolution of the South American pitviper fauna: evidence from mitochondrial DNA sequence analysis. In: Schuett, G.W., Höggren, M., Douglas, M.E., Greene, H.W. (Eds.), Biology of the Vipers. Eagle Mountain Publishing, Eagle Mountain, Utah, pp. 111–128.
- Wüster, W., Thorpe, R.S., Puorto, G., BBBSP, 1996. Systematics of the *Bothrops atrox* complex (Reptilia: Serpentes: Viperidae) in Brazil: a multivariate analysis. Herpetologica 52, 263–271.
- Yang, J.-H., Orlov, N.L., Wang, Y.-Y., 2011. A new species of pitviper of the genus *Protobothrops* from China (Squamata: Viperidae). Zootaxa 2936, 59–68.
- Zamudio, K.R., Greene, H.W., 1997. Phylogeography of the bushmaster (*Lachesis muta*: Viperidae): implications for Neotropical biogeography, systematics, and conservation. Biological Journal of the Linnean Society 62, 421–442.

CHAPTER 3: MORPHOLOGICAL AND MOLECULAR EVIDENCE FOR PHYLOGENY AND CLASSIFICATION OF SOUTH AMERICAN PITVIPERS, GENERA BOTHROPS, BOTHRIOPSIS, AND BOTHROCOPHIAS (SERPENTES: VIPERIDAE)

Introduction

The South American pitviper clade of Bothrops, Bothriopsis, and Bothrocophias is distributed throughout South America and continental islands and includes species that range into Central America, Mexico, and the Caribbean (Campbell & Lamar, 2004). The monophyly of these bothropoids has been supported by several phylogenetic analyses (e.g., Castoe & Parkinson, 2006; Castoe, Sasa & Parkinson, 2005; Gutberlet & Campbell, 2001; Parkinson, Campbell & Chippindale, 2002). The clade contains 47 species: five toadheaded pitvipers (Bothrocophias), six forest-pitvipers (Bothriopsis), and 36 lanceheads (Bothrops) (Campbell & Lamar, 2004). Among phylogenetic hypotheses for the group, common relationships appear (Table 5 and references therein). For example, Bothrocophias is generally found to be monophyletic (Castoe & Parkinson, 2006; Gutberlet & Campbell, 2001; Gutberlet & Harvey, 2002; but see Wüster et al., 2002) and sister to Bothrops + Bothriopsis. Bothriopsis is also supported as monophyletic (Wüster et al., 1999b; Wüster et al., 2002), but *Bothrops* is paraphyletic with respect to the forest-pitvipers (Campbell & Lamar, 1992; Castoe & Parkinson, 2006; Gutberlet & Harvey, 2002; Parkinson, 1999; Parkinson et al., 2002; Salomão et al., 1997; Vidal et al., 1997; Wüster et al., 2002).

Werman (1992)	Salomão et al. (1999)	Wüster et al. (2002)	Gutberlet & Harvey (2002)	Castoe & Parkinson (2006)
		Bothrocophias hyoprora	Bothrocophias campbelli	Bothrocophias hyoprora
		B. microphthalmus	B. hyoprora	B. microphthalmus
		Bothrocophias campbelli	B. microphthalmus	
Bothrops atrox	Bothrops atrox	Bothrops atrox	Bothrops asper	Bothrops asper
B. brazili	B. brazili	B. asper	B. atrox	B. atrox
B. jararacussu	B. colombiensis	B. brazili		B. jararacussu
B. leucurus	B. isabelae	B. caribbaeus		
B. moojeni	B. jararacussu	B. colombiensis		
	B. leucurus	B. isabelae		
	B. marajoensis	B. jararacussu		
	B. moojeni	B. lanceolatus		
	Bothriopsis bilineata	B. leucurus		
	Bothriopsis taeniata	B. marajoensis		
	Bothrops caribbaeus	B. moojeni		
	B. lanceolatus	B. punctatus		
Bothriopsis taeniata		Bothriopsis bilineata	Bothriopsis bilineata	Bothriopsis bilineata
		B. pulchra		B. chloromelas
		B. taeniata		B. taeniata
Bothrops jararaca	Bothrops jararaca	Bothrops neuwiedi	B. neuwiedi	Bothrops diporus
	B. insularis	[<i>sensu</i> Silva (2004)]	B. alternatus	B. erythromelas
Bothrops neuwiedi	Bothrops	B. erythromelas		B. insularis
(sensu lato)	alternatus	B. jararaca		
	B. cotiara			
B. alternatus	B. fonsecai	B. insularis		Bothrops alternatus
B. erythromelas		Bothrops alternatus	_	B. ammodytoides
B. itapetiningae		B. cotiara		B. cotiara
		B. fonsecai		
		B. itapetiningae		

Table 5. Content of clades recovered by phylogenetic studies of *Bothrops, Bothriopsis,* and *Bothrocophias* species. Species names have been changed to reflect current classification. Lines delineate clades recovered by the studies; names in bold are group names given by the authors.

Within *Bothrops*, several species groups have been repeatedly recovered and named (Table 5): a *Bothrops alternatus* group, *B. neuwiedi* group, *B. jararaca* group, *B. atrox* group, and *Bothriopsis*. Numerous ecological and evolutionary studies (e.g., Araújo & Martins, 2006; Martins et al., 2001; Martins, Marques & Sazima, 2002) traditionally use these species groups as well, recognizing *alternatus, neuwiedi, jararaca, atrox, jararacussu* (part of the *atrox* group in Table 5), and *taeniatus* (=*Bothriopsis*) groups.

Although the clade contains 47 species, the most comprehensive studies to date included eight (morphology: Gutberlet & Harvey, 2002), eleven (morphology and allozymes: Werman, 1992), and 28 species (mitochondrial DNA: Wüster et al., 2002). While these studies have generally recovered the same clades within the South American pitviper complex, the different species included in these phylogenies may lead to confusion about the content of clades (compare Castoe & Parkinson, 2006; Salomão et al., 1999). In addition, species in certain sparsely sampled regions like the Pacific versant of the Andes have been rarely included in phylogenetic hypotheses (*Bothrops pictus* included in Wüster et al., 2002; *B. roedingeri, B. andianus, B. lojanus* not included in phylogenetic analysis), making it difficult to evaluate the classification of these species.

The knowledge that *Bothrops* is paraphyletic has led to taxonomic arguments about how to revise the content of this genus. Some suggest synonymizing *Bothriopsis* with *Bothrops* and also mention the possibility of synonymizing the small, cohesive sister-genus *Bothrocophias* with *Bothrops* (Salomão et al., 1997; Wüster et al., 2002). Others propose dividing *Bothrops* into smaller monophyletic genera (Castoe &

Parkinson, 2006; Gutberlet & Campbell, 2001; Harvey, Aparicio & Gonzales, 2005; Parkinson, 1999). There is no completely objective criterion for distinguishing between these options, but a comprehensive phylogeny provides the best information for evaluating taxonomic alternatives.

An accurate and stable taxonomy for South American pitvipers is critical, as all species are venomous and several are known to cause human fatalities (Russell, 1980; Warrell, 2004). Venom composition generally has a phylogenetic component (Wüster, 1996; Wüster, Golay & Warrell, 1997), and because most biologists primarily receive phylogenetic information through classification (Frost et al., 2006) a naming system based on a well-supported hypothesis of evolutionary relationships can benefit antivenom production and treatment of envenomation. In addition, the taxonomy will enlighten research in comparative biology, trait evolution, historical biogeography, and other fields.

We believe the current taxonomy has persisted because, as mentioned above, no phylogenetic hypothesis of South American pitvipers has yet considered a significant array of taxa. In this study, we achieve almost complete taxon sampling through the use of both morphological and molecular data. Most taxa are included on the basis of morphological characters as well as one or more gene fragments and a few are included on the basis of morphology only. In the case of South American pitvipers, as well as in many other clades, some rare taxa are available only as formalin-preserved museum specimens and acquiring samples for DNA analyses has been prohibitively difficult. Morphological characters can be observed for almost all taxa and united with available

molecular characters in a combined evidence analysis. In addition, we applied as much DNA sequence data as possible to the analysis to achieve a robust combined evidence phylogeny. Therefore the primary goal of the present work is a phylogenetic analysis of 90% of the currently recognized taxa in the genera *Bothrops, Bothriopsis* and *Bothrocophias* using a morphological and multigene mitochondrial dataset. This is the most taxon- and character-comprehensive study to date on this group of venomous snakes. The phylogeny recovered allows us to identify the major evolutionary lineages in this speciose group, and determine the species composition of each major lineage. We evaluate previous taxonomic suggestions and propose a systematic revision of the group that recognizes evolutionarily, ecologically and morphologically distinct lineages as genera.

Materials and Methods

Morphological Data

Forty-three taxa of *Bothrops* (31 species), *Bothriopsis* (seven taxa of six species), and *Bothrocophias* (five species) were examined, slightly over 90% of currently recognized species. In addition, the subspecies *Bothriopsis b. bilineata* and *B. bilineata smaragdina* were treated as separate terminal taxa. Species in the South American pitviper clade unavailable to this study were *Bothrops lutzi*, *B. muriciencis*, *B. pirajai*, and *B. roedingeri*. Species were included in phylogenetic estimation if: (1) we had sequence data for at least one individual; (2) we had data from more than one type of morphological character, or (3) we had scalation data for at least eight individuals (the

average number of individuals examined). Five species failed these criteria and were therefore excluded from all analyses: *Bothrocophias colombianus, Bothriopsis medusa, Bothriopsis oligolepis, Bothrops lojanus,* and *B. pubescens* (Table 6). In accordance with current hypotheses of crotaline phylogeny (Castoe & Parkinson, 2006), *Atropoides picadoi* and *Cerrophidion godmani* were used as near outgroups, and *Agkistrodon contortrix* was chosen as a far outgroup.

We examined scalation of 42 species, hemipenes of 21 species, and skulls or skeletons for 13 species (Table 6 and Appendix E). When possible, specimens were acquired from throughout the range of each species. Scale and hemipenial data for *Bothrops alcatraz* were taken from the description of the holotype (Marques, Martins & Sazima, 2002). Observations of color pattern were taken from color plates in Campbell & Lamar (2004). Males and females were treated together. Some juveniles were coded for scale characters as scalation does not change with ontogeny, but skeletal data were only collected from presumed adults.

Eighty-five morphological characters were included in this study (Appendix A). Sixty-seven characters were taken from Gutberlet (1998b) and Gutberlet & Harvey (2002), with additional characters from Werman (1992) and Wüster et al. (1996), and some original to this study. Ordering of characters was taken from the maximum ordering of Gutberlet & Harvey (2002) and ordering in Werman (1992), using both intermediacy and adjacency as justification for ordering.

Species	Scalation	Hemipene morphology	Osteology	12S	16S	Cyt b	ND4
Agkistrodon contortrix	10	1	3	3	3	4	4
Atropoides picadoi	4	3	2	1	1	3	5
Cerrophidion godmani	10	-	1	1	1	1	1
Bothrops alcatraz	1	1	-	-	-	5	-
Bothrops alternatus	11	4	1	4	4	6	5
Bothrops ammodytoides	9	4	-	1	1	1	1
Bothrops andianus	10	2	-	-	-	-	-
Bothrops asper	21	2	4	1	1	2	2
Bothrops atrox	23	6	6	1	1	5	4
Bothrops barnetti	10	1	-	-	-	-	-
Bothrops brazili	7	1	5	1	1	2	2
Bothrops caribbaeus	10	-	-	-	-	1	1
Bothrops cotiara	10	_	1	1	1	2	2
Bothrops diporus	10	5	-	1	1	1	1
Bothrops erythromelas	1	_	-	1	1	3	2
Bothrops fonsecai	10	-	-	-	-	1	1
Bothrops insularis	10	2	-	1	1	3	2
Bothrops isabelae	-	-	-	-	-	1	1
Bothrops itapetiningae	13	-	-	1	1	2	2
Bothrops jararaca	9	-	1	1	1	10	9
Bothrops jararacussu	10	3	2	1	1	3	2
Bothrops jonathani	1	1	-	-	-	-	-
Bothrops lanceolatus	10	-	-	-	-	1	1
Bothrops leucurus	10	2	-	1	1	1	1
Bothrops lojanus *	6	-	-	-	-	-	-
Bothrops marajoensis	-	-	-	-	-	1	1
Bothrops mattogrossensis	14	2	-	-	-	-	-
Bothrops moojeni	10	1	1	4	4	6	5
Bothrops neuwiedi	10	-	-	-	-	2	2
Bothrops osbornei	2	-	-	-	-	1	1
Bothrops pauloensis	5	-	-	1	1	1	1
Bothrops pictus	10	1	-	-	-	1	1
Bothrops pubescens *	4	-	-	-	-	-	-

Table 6. Numbers of individuals examined/sequenced for data used in this study. Asterisks denote species not included in phylogenetic estimation.

Species	Scalation	Hemipene morphology	Osteology	12S	16S	Cyt b	ND4
Bothrops punctatus	9	1	_	-	-	1	1
Bothrops sanctaecrucis	9	-	-	-	-	-	-
Bothrops venezuelensis	5	2	-	-	-	-	-
Bothrocophias campbelli	2	-	-	-	-	1	1
Bothrocophias colombianus *	2	-	-	-	-	-	-
Bothrocophias hyoprora	14	1	1	1	1	2	2
Bothrocophias microphthalmus	8	-	1	1	1	2	2
Bothrocophias myersi	12	1	1	-	-	-	-
Bothriopsis b. bilineata	7	1	-	-	1	1	-
Bothriopsis b. smaragdina	10	-	-	1	1	2	2
Bothriopsis chloromelas	3	-	-	1	1	1	1
Bothriopsis medusa *	1	-	-	-	-	-	-
Bothriopsis oligolepis *	1	-	-	-	-	-	-
Bothriopsis pulchra	8	-	1	-	-	1	1
Bothriopsis taeniata	7	1	1	1	1	2	2

For parsimony analyses characters were coded using two different methods: generalized frequency coding (GFC) as described by Smith & Gutberlet (2001) or gap weighting (Thiele, 1993) and majority coding (Johnson, Zink & Marten, 1988). Generalized frequency coding was developed to extend the frequency bins method of Wiens (1995) to apply not only to binary characters, but to multistate and meristic characters. It is thought to extract maximal phylogenetic information available in patterns of polymorphism within terminal taxa because it codes the entire frequency distribution of a character within a taxon. Under this method, we processed data through the program FastMorphology GFC (Chang & Smith, 2001) and used unequal subcharacter weighting as recommended by Smith & Gutberlet (2001). This method divides the weight of one character by the number of subcharacters used, then divides the weight of each subcharacter by the number of steps between the lowest and highest frequency bin included in it, allowing rare subcharacters greater weight than common subcharacters. Smith & Gutberlet (2001) found that unequal subcharacter weighting performed better than the alternative of equal subcharacter weighting.

Bayesian methods that are currently available provide no straightforward means to include frequency-based characters, so likelihood-based analyses were conducted using gap weighting for meristic characters (Thiele, 1993) and majority coding for binary and multistate characters (Johnson et al., 1988). Coding was done using Microsoft Excel. Gap weighting is used for meristic characters and assigns states to taxa according to their range-standardized means (Thiele, 1993). Since MrBayes allows a maximum of six ordered character states, the range of a character was divided into six bins and states 0– 5 were assigned to each taxon. Majority coding is used for binary or multistate characters and simply assigns to the terminal taxon the character state found in the majority of samples. Gap weighting and majority coding (GW/MC) methods approximate or ignore polymorphism within species; they are therefore expected to provide less phylogenetic information than frequency methods such as GFC (Smith & Gutberlet, 2001).

Molecular Data

Previously published sequence data for 12S and 16S rRNA, NADH dehydrogenase subunit 4 (ND4), and cytochrome *b* (cyt-*b*) were obtained from GenBank. In addition, new sequences were obtained for eight species as described in Castoe & Parkinson (2006). This provided a molecular dataset with at least one gene fragment included for

each of 35 taxa, or approximately 75% of currently-recognized species (Error! Reference source not found.).

All sequences were aligned by eye and using ClustalW (Thompson, Higgins & Gibson, 1994). For conservatism in determining evolutionary relationships, when more than one sequence was available for a species, aligned sequences were combined into a majority-rule consensus sequence. When two or more nucleotides were found in equal proportions, standard IUPAC codes for uncertainty were used. Alignment of protein-coding genes was straightforward with no insertions or deletions. No internal stop codons were found in either protein-coding fragment. Alignment of rRNA genes was based on models of secondary structure for snake mitochondrial rRNAs (Parkinson, 1999). Novel sequences were deposited in GenBank (Error! Reference source not found.) and the final nucleotide alignment is available by request. Gaps in the alignment were treated as missing data in analyses.

Table 7. Species used, voucher data, collecting locality, and GenBank accession numbers for each taxon. Accession numbers with asterisks are sequences original to this study. Institutional abbreviations are listed in Leviton, Gibbs, Heal & Dawson (1985). Field series tags: AM = Anita Malhotra, Cadle=John Cadle, CLP = Christopher Parkinson, DPL = Dwight P. Lawson, HWG = Harry Greene, ITS = Marcio Martins Itarapina series, MM = Marcio Martins, Moody = Scott Moody, MSM = Mahmood Sasa, OP = Omar Pesantes, PT = Robert Espinoza, Reno collection, RG = Nelson da Silva, Xingó Hydroelectric project, RH = Richard Heighton, and WW = Wolfgang Wüster.

Species	Field tag	Voucher	Locality	Source	GenBank accession numbers			
	-				12S	16S	cyt-b	ND4
Agkistrodon contortrix	Moody 338	-	USA, Ohio, Athens Co.	Parkinson 1999,	AF057229	AF057276	AY223612	AF156576
				Parkinson et al. 2002				
Agkistrodon contortrix	HWG 2218	-	USA, Texas, Terrell	Parkinson, Zamudio,	AF156587	AF156566		AF156577
			Co.	& Greene 2000				
Agkistrodon contortrix	RH 54411	-	USA, North Carolina,	Heise et al. 1995	Z46473	Z46524		
			Union Co.					
Agkistrodon contortrix	-	-	Unknown	Zamudio & Greene			U96022	U96034
				1997				
Agkistrodon contortrix	_	-	Unknown	Vidal & Lecointre			AF039268	
				1998				
Agkistrodon contortrix		ROM 2331	bought commercially	Cullings et al. 1997			U65678	
			in FL, USA					
Agkistrodon contortrix	-	UMMZ	USA, South Carolina,	Kraus, Mink, & Brown				U41868
		199957	Berkeley Co.	1996				
Atropoides picadoi	CLP 45	MZUCR	Costa Rica, Alajuella,	Parkinson 1999	AY057208	AF057255	AY223583	
		11156	Varablanca	Parkinson et al. 2002				
Atropoides picadoi	MSM	-	Costa Rica:, San José,	Castoe et al. 2005			DQ061197	DQ061222
	10350		Bajo la Hondura					
Atropoides picadoi	-	UTA R-	Costa Rica, San Jose,	Castoe et al. 2003			AY220324	AY220347
		23837	Bajo la Hondura					
Atropoides picadoi	-	UTA R-	Costa Rica, Heredia,	Castoe et al. 2003			AY220323	AY220346
		24821	Sarapiqui					
Atropoides picadoi	_	UMMZ	Costa Rica, Heredia,	Kraus et al. 1996				U41872
		177000	Cantón de Sarapicí					
Cerrophidion godmani	_	UTA R-	Guatemala, Baja	Castoe & Parkinson	DQ305419	DQ305442	AY220325	AY220348
		40008	Verapaz	2006				

Species	Field tag	Voucher	Locality	Source	GenBank accession numb		ssion numbers	5
					12S	16S	cyt-b	ND4
Bothrops alcatraz	-	CBGM	Brazil, São Paulo, Ilha	Grazziotin et al. 2006			AY865820-	
		baz001– 005	de Alcatrazes				AY865824	
Bothrops alternatus	DPL 2879	-	-	Parkinson et al. 2002	AY223660	AY223673	AY223601	AY223642
Bothrops alternatus	_	IB 55314	Brazil, Paraná, Pinhão	Wüster et al. 2002			AF292579	AF292617
Bothrops alternatus	WW 59	-	Brazil, Paraná	Malhotra & Thorpe, 2000			AF191583	
Bothrops alternatus	MM 2E5'	released after sampling	Brazil, Sao Paulo, Itarapina, Itarapina Ecological Station		EU867249*	EU867261*	EU867273*	EU867285*
Bothrops alternatus	MM FE2	released after sampling	Brazil, Sao Paulo, Itarapina, Itarapina Ecological Station		EU867250*	EU867262*	EU867274*	EU867286*
Bothrops alternatus	ITS 358	_	Brazil, Sao Paulo, Itarapina, Itarapina Ecological Station		EU867251*	EU867263*	EU867275*	EU867287*
Bothrops ammodytoides	-	MVZ 223514	Argentina, Neuguen	Parkinson et al., 2002	AY223658	AY223671	AY223595	AY223639
Bothrops asper	CLP 50	MZUCR 11152	Costa Rica	Kraus et al. 1996, Parkinson 1999, Parkinson et al. 2002	AF057218	AF057265	AY223599	U41876
Bothrops asper	_	Belize Zoo live collection	Belize, Western Highway	Wüster et al. 2002			AF292600	AF292638
Bothrops atrox	WW 743	_	_	Parkinson et al., 2002	AY223659	AY223672	AY223598	AY223641
Bothrops atrox	-	FHGO live 1424	-	Wüster unpublished 1991			AF292604	AF292642
Bothrops atrox	_	_	Brazil, Acre	Puorto et al. 2001			AF246268	AF246277
Bothrops atrox	_	_	Suriname	Puorto et al. 2001			AF246267	AF246278
Bothrops atrox	-	-	French Guiana, Petit Saut	Vidal & Lecointre 1998			AF039263	
Bothrops brazili	-	FHGO 982	Ecuador, Morona Santiago, Macuma	Wüster et al. 2002			AF292597	AF292635

Species	Field tag	Voucher	Locality	Source	GenBank accession numbers			
					12S	16S	cyt-b	ND4
Bothrops brazili	-	USNM RWM 17831	Venezuela, Amazonas		EU867252*	EU867264*	EU867276*	EU867288*
Bothrops caribbaeus	-	released after sampling	Saint Lucia	Wüster et al. 2002			AF292598	AF292636
Bothrops cotiara	WW	_	Brazil	Parkinson 1999	AF057217	AF057264	AY223597	AY223640
Bothrops cotiara	-	IB live 3829	Brazil, Santa Catarina, Herval d'Oeste	Wüster et al. 2002			AF292581	AF292619
Bothrops diporus	PT 3404	-	Argentina, La Rioja, Castro Barros	Castoe & Parkinson 2006	DQ305431	DQ305454	DQ305472	DQ305489
Bothrops erythromelas	RG 829	_	Brazil, Alagóas, Piranhas	Kraus et al. 1996, Parkinson 1999, Parkinson et al. 2002	AF057219	AF057266	AY223600	U48177
Bothrops erythromelas	-	CBGM ber001	-	Grazziotin et al. 2006			AY865653	
Bothrops erythromelas	-	IB 55541	Brazil, Bahia, Guanambi	Wüster et al. 2002			AF292588	AF292626
Bothrops fonsecai	-	IB 55543	Brazil, São Paulo, Campos do Jordão	Wüster et al. 2002			AF292580	AF292618
Bothrops insularis	WW	_	Brazil, São Paulo, Isla Queimada Grande	Parkinson 1999, Parkinson et al. 2000, Parkinson et al. 2002	AF057216	AF057263	AY223596	AF188705
Bothrops insularis	-	CBGM bis007	Brazil, São Paulo, Isla Queimada Grande	Grazziotin et al. 2006			AY865660	
Bothrops insularis	-	-	Brazil, São Paulo, Isla Queimada Grande	Wüster et al. 2002			AF292590	AF292628
Bothrops isabelae	-	-	-	Wüster unpublished 2000			AF292603	AF292641
Bothrops itapetiningae	-	IB live 4982	Brazil, Distrito Federal, Brasília	Wüster et al. 2002			AF292582	AF292620
Species	Field tag	Voucher	Locality	Source		GenBank acce	ssion numbers	5
------------------------	-----------	-------------------------------	--	----------------------------	-----------	--------------	---------------	-----------
					12S	16S	cyt-b	ND4
Bothrops itapetiningae	ITS 427	_	Brazil, Sao Paulo, Itarapina, Itarapina Ecological Station		EU867253*	EU867265*	EU867277*	EU867289*
Bothrops jararaca	_	IB 55592–	Brazil, Santa Catarina,	Wüster, Duarte, &			AY122851-	AY122858-
		55593	São Bento do Sul	Salomão 2005			AY122855	AY122862
Bothrops jararaca	-	BBBSP 926	Brazil, Paraná, Piracuara	Wüster et al. 2005			AY122857	122864
Bothrops jararaca	-	BBBSP 918	Afonso Clâudio, Espírito Santo	Wüster et al. 2005			AY122856	122863
Bothrops jararaca	-	_	Brazil, Paraná, Piracuara	Wüster et al. 2002			AF292589	AF292627
Bothrops jararaca	MM (19)6	released after sampling	Brazil, Sao Paulo, Itarapina, Itarapina Ecological Station		EU867254*	EU867266*	EU867278*	EU867290*
Bothrops jararacussu	DPL 104	-	-	Parkinson et al., 2002	AY223661	AY223674	AY223602	AY223643
Bothrops jararacussu	_	IB 55313		Wüster et al. 2002			AF292596	AF292634
Bothrops jararacussu	-	-	-	Wüster unpublished 1991			AF191585	
Bothrops lanceolatus	_	_	Martinique	Wüster et al. 2002			AF292599	AF292637
Bothrops leucurus	CLP195	-	· _		EU867255*	EU867267*	EU867279*	EU867291*
Bothrops marajoensis		-	Brazil, Pará, Ilha de Marajó	Wüster et al. 2002			AF292605	AF292643
Bothrops moojeni	-	IB 56558	Brazil, Distrito Federal, Brasilia	Wüster et al. 2002			AF292606	AF292644
Bothrops moojeni	-	IB 55098	Brazil, São Paulo	Malhotra & Thorpe 2000			AF200222	
Bothrops moojeni	ITS 406	_	Brazil, Sao Paulo, Itarapina, Itarapina Ecological Station		EU867256*	EU867268*	EU867280*	EU867292*
Bothrops moojeni	ITS 418	_	Brazil, Sao Paulo, Itarapina, Itarapina Ecological Station		EU867257*	EU867269*	EU867281*	EU867293*

Species	Field tag	Voucher	Locality	Source		GenBank acce	ssion numbers	;
	_		-		125	16S	cyt-b	ND4
Bothrops moojeni	ITS 429	-	Brazil, Sao Paulo, Itarapina, Itarapina Ecological Station		EU867258*	EU867270*	EU867282*	EU867294*
Bothrops moojeni	MM OBA	released after sampling	Brazil, Sao Paulo, Itarapina, Itarapina Ecological Station		EU867259*	EU867271*	EU867283*	EU867295*
Bothrops neuwiedi	-	IB 57513	_	Wüster unpublished 2000			AF292586	AF292624
Bothrops neuwiedi	-	IB 5555	Brazil, São Paulo, Angatuba	Wüster et al. 2002			AF292585	AF292623
Bothrops osbornei	-	FHGO live 2166	Ecuador, Pichincha, Pedro Vicente Maldonado	Wüster et al. 2002			AF292595	AF292633
Bothrops pauloensis	CLP 3	-	-		EU867260*	EU867272*	EU867284*	EU867296*
Bothrops pictus	MM OP	released after sampling	Peru, Ayacucho, Pullo	Wüster et al. 2002			AF292583	AF292621
Bothrops punctatus	-	FHGO live 2452	-	Wüster unpublished 2000			AF292594	AF292632
Bothriopsis b. bilineata	-	-	French Guiana, Petit Saut	Vidal & Lecointre 1998		AF038887	AF039269	
Bothriopsis b. smaragdina	-	-	Colombia, Amazonas, Leticia	Kraus et al. 1996, Parkinson 1999, Parkinson et al. 2002	AF057214	AF057261	AY223591	U41875
Bothriopsis b. smaragdina	-	FHGO 983	Ecuador, Morona Santiago, Macuma	Wüster et al. 2002			AF292592	AF292630
Bothriopsis chloromelas	-	LSUMZ 41037	Peru, Pasco	Castoe & Parkinson 2006	DQ305430	DQ305453	DQ305471	DQ305488
Bothriopsis pulchra	-	FHGO live 2142	Ecuador, Zamora Chinchipe, Estación Científica San Francisco	Wüster et al. 2002			AF292593	AF292631

Species	Field tag	Voucher	Locality	Source	GenBank accession numbers			
					12S	16S	cyt-b	ND4
Bothriopsis taeniata	-	-	Suriname	Parkinson 1999,	AF057215	AF057262	AY223592	AY223637
				Parkinson et al. 2002				
Bothriopsis taeniata	_	FHGO live	Ecuador, Morona	Wüster et al. 2002			AF292591	AF292629
		1407	Santiago, Macuma					
Bothrocophias	_	INHMT,	Ecuador, Chimborazo,	Wüster et al. 2002			AF292584	AF292622
campbelli		uncatalogu	Pallatanga					
		ed						
Bothrocophias hyoprora	-	-	Columbia, Amazonas,	Parkinson 1999,	AF057206	AF057253	AY223593	
			Leticia	Parkinson et al. 2002				
Bothrocophias hyoprora	-	FHGO live	Ecuador, Morona	Wüster et al. 2002			AF292576	AF292614
		2215	Santiago, Macuma					
Bothrocophias hyoprora	-	-	Columbia, Amazonas,	Kraus et al. 1996				U41886
			Leticia					
Bothrocophias	-	LSUMZ	Peru, Pasco	Parkinson et al. 2002	AY223657	AY223670	AY223594	AY223638
microphthalmus		H-9372						
Bothrocophias	-	FHGO 2566	Ecuador, Zamora	Wüster et al. 2002			AF292577	AF292615
microphthalmus			Chinchipe, Cuenca del					
			Río Jamboe					

Phylogenetic Analyses

Maximum parsimony and Metropolis-Hastings coupled Markov chain Monte

Carlo Bayesian methods were used to reconstruct phylogenies.

Table 8 shows all analyses. Morphological characters were analyzed separately using GFC and GW/MC methods in parsimony, only with the latter method in Bayesian methodologies. Each mitochondrial gene was also analyzed separately with both methods. In general we expect phylogenies from different mitochondrial genes to recover the same relationships because they are inherited as a single linkage unit. To verify this assumption we looked for strongly supported incongruence among gene trees and found none. As all genes appeared to support a single phylogeny, we combined them into a single analysis. Previous studies that included many of the sequences used in this study have also supported the combinability of these four gene fragments (e.g., Castoe & Parkinson, 2006; Castoe, Sasa, & Parkinson, 2005; Malhotra & Thorpe, 2004; Murphy et al., 2002; Parkinson, 1999; Parkinson, Campbell, & Chippindale, 2002). Mitochondrial analyses were followed by combined evidence analyses of morphological and molecular data. One set of combined evidence analyses included all taxa; a second included only those taxa with both phenotypic and sequence data.

Analysis	Figure	Optimality criterion	Description
1	S-9	Parsimony	Morphology only, GFC
2	S-8	Parsimony	Morphology only, gap weighting and majority coding
3	S-7	Bayesian	Morphology only, gap weighting and majority coding
4	S-6	Parsimony	mtDNA only
5	S-5	Bayesian	mtDNA only
6	S-4	Parsimony	All characters included, GFC
7	2/S-3	Parsimony	All characters included, gap weighting and majority coding
8	2	Bayesian	All characters included, gap weighting and majority coding
9	S-2	Parsimony	All characters included, GFC, taxa without molecular data excluded
10	1/S-1	Parsimony	All characters included, gap weighting and majority coding, taxa without molecular data excluded
11	1	Bayesian	All characters included, gap weighting and majority coding taxa without molecular data excluded

 Table 8. Summary of phylogenetic analyses of South American pitvipers

Maximum parsimony methods were conducted with the program PAUP* version 4.0b10 (Swofford, 2002). We used heuristic searching with 200 random-taxon-addition sequences and tree bisection reconnection (TBR) branch-swapping. Support for nodes was assessed with nonparametric bootstrapping (Felsenstein, 1985) with 1,000 full heuristic pseudoreplicates and two random-taxon-addition sequence replicates per pseudoreplicate.

In Bayesian analyses, the standard Mk model was used for the morphology partition. Preliminary analyses determined that there was no increase in likelihood score with the addition of the gamma-distributed rate variation parameter; therefore we chose the simpler model. Based on the results of Castoe & Parkinson (2006), maximum partitioning of the molecular data set was done *a priori*, with all codon positions or stem and loop positions of each gene allocated independent models. Each partition was independently analyzed using MrModelTest version 2.2 (Nylander, 2004) to estimate

best-fit models of nucleotide evolution. This program only considers models that are currently available in MrBayes version 3.1.2 (Ronquist & Huelsenbeck, 2003). PAUP* was used to calculate model likelihoods for use in MrModelTest. The best-fit models were implemented as partition-specific models within partitioned-model analyses of the combined dataset as described in Castoe & Parkinson (2006). The models chosen for each partition are summarized in Table 9.

Partition	AIC model
12S, stems	ΗΚΥ + ΓΙ
12S, loops	GTR + Γ
16S, stems	HKY + I
16S, loops	GTR + ΓΙ
cyt-b, position 1	ΗΚΥ + ΓΙ
cyt-b, position 2	GTR + Γ
cyt-b, position 3	ΗΚΥ + ΓΙ
ND4, position 1	GTR + ΓΙ
ND4, position 2	НКҮ + Γ
ND4, position 3	НКҮ + Г

Table 9. Results of AIC model selection conducted in MrModelTest 2.2 (Nylander 2004) for partitions of the dataset.

Bayesian phylogenetic inference was conducted using MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003). All analyses were run with vague priors. Four incrementally heated chains were used in addition to the cold chain, with the temperature set at half of the program's default to facilitate chain swapping. Each analysis had two different runs beginning with random trees. Chains were run for at least 4.0 x 10⁶ generations. All were sampled every 100 generations, with the first quarter of the runs conservatively discarded as burn-in. Tracer 1.4 (Rambaut & Drummond, 2007) was used to verify that

stationarity was reached within the burn-in period. Summary statistics and consensus phylograms with nodal posterior probability support were estimated from the combination of both runs per analysis.

We calculated genetic distance measures for cyt-*b* sequences among species groups in our dataset and among polytypic genera using sequences from Castoe & Parkinson (2006). We believe genetic distances should not be used to define taxonomic rank, but an examination of distance measures can provide a rough estimate of the amount of divergence among groups, and can allow comparisons with other groups of closely-related taxa. Cyt-*b* was chosen because its genetic distances are often reported in the literature, allowing more direct comparisons of genetic distances in these groups to those reported for other snakes (e.g., Malhotra & Thorpe, 2004; Wüster et al., 2002) We calculated genetic distance measures with the program MEGA (Kumar, Tamura & Nei, 2004), using a Kimura 2 parameter model and gamma-distributed rate variation.

<u>Results</u>

The final alignment of four concatenated gene fragments consisted of 2343 aligned positions: 424 from 12S, 511 from 16S, 716 from cyt-*b*, and 692 from ND4. This alignment contained 599 parsimony-informative characters. Generalized frequency coding (GFC) of morphological characters yielded 595 subcharacters, 404 of which were parsimony-informative. Gap weighting and majority coding (GW/MC) of 92 morphological characters yielded 72 that were parsimony-informative.

There were no strongly supported conflicts between parsimony and Bayesian phylogenies, although minor topology differences were found (e.g. compare Figure 9 to

Appendix D figures S-1 and S-2, Figure 10 to Appendix D figures S-3 and S-4).

Additionally, support values derived from these methods were in agreement in almost all cases. Analyses with different datasets were also topologically congruent, with the highest resolution and support values in phylogenies inferred from combined evidence (Figures 1, 2, Appendix D figures S-1–S-4) followed by those from molecular evidence only (Appendix D figures S-5–S-6), and the lowest resolution and support values in phylogenies from morphological evidence only (Appendix D figures S-7–S-9). Combined evidence analyses excluding taxa with morphological data only (Figure 9, also S-1–S-2) recovered five major lineages: a *Bothrocophias* clade (labeled A, posterior probability (*Pp*) = 79, bootstrap value (*Bs*) = 57-81), a *Bothrops alternatus* clade (labeled B, *Pp* = 100, *Bs* = 71–83), a *Bothrops jararaca* + *B. neuwiedi* clade (labeled C, *Pp* = 100, *Bs* = 90–95), a *Bothriopsis* clade (labeled D, *Pp*, *Bs* = 100), and a *Bothrops atrox* clade (labeled E, *Pp* = 100, *Bs* = 99–100). Alternative analyses recovered the same major lineages in almost all cases but with lower support.

Figure 9. Bayesian MCMC 50% majority-rule consensus phylogram, excluding taxa with morphological data only (analysis 11). Phylogram derived from analysis of 2343 bp mitochondrial and 85 gap weighted or majority coded morphological characters. Posterior probabilities shown above nodes, bootstrap values from parsimony analysis of same dataset shown below nodes (analysis 10). Parsimony analysis shows minor topological differences from Bayesian analysis; refer to online figure S-1 for parsimony cladogram. Gray circles indicate posterior probabilities of 95 or greater and bootstrap values of 70 or greater. Letters correspond to major lineages: *Bothrocophias* clade (A), *Bothrops alternatus* clade (B), *Bothrops neuwiedi + B. jararaca* clade (C), *Bothriopsis* clade (D), and *Bothrops atrox* clade (E).

Figure 10. Bayesian MCMC 50% majority-rule consensus phylogram, including taxa with morphological data only (analysis 8). Phylogram derived from analysis of 2343 bp mitochondrial and 85 gap weighted or majority coded morphological characters. Posterior probabilities shown above nodes, bootstrap values from parsimony analysis of same dataset shown below nodes (analysis 7) Parsimony analysis shows minor topological differences from Bayesian analysis; refer to online figure S-3 for parsimony cladogram. Gray circles indicate posterior probabilities of 95 or greater and bootstrap values of 70 or greater. Dashes indicate support values less than 50. Letters correspond to major lineages: *Bothrocophias* clade (A), *Bothrops alternatus* clade (B), *Bothrops neuwiedi + B. jararaca* clade (C), *Bothriopsis* clade (D), and *Bothrops atrox* clade (E).

Analysis 11, a Bayesian combined evidence analysis excluding taxa with morphological data only, is our preferred hypothesis for delineating species groups, as it had the highest support values overall and was based on the largest dataset while avoiding possible complications of adding taxa with 90% or more missing data to the analysis (Wiens, 2003, 2006). Analysis 8 is our preferred taxon-comprehensive hypothesis and is also a Bayesian combined evidence analysis. Like analysis 11, it has the benefits of evolutionary models for DNA data that may be more biologically realistic than parsimony and a method known to outperform other types of analysis under a range of conditions (Holder & Lewis, 2003; Huelsenbeck et al., 2002). Analysis 8 recovered the same species groups as analysis 11, although with lower support values. We attribute this to the inclusion of taxa based on morphology only (i.e., taxa with extensive missing data), and so we prefer to use this analysis for the placement of taxa in species groups defined by analysis 11.

In our preferred phylogenetic hypotheses, the *Bothrocophias* clade (labeled A) consisted of *Bothrocophias campbelli, B. hyoprora,* and *B. microphthalmus* and included *B. myersi* on the basis of morphological data (*Pp* = 73). The *Bothrops alternatus* clade (labeled B) consisted of that species, *B. ammodytoides, B. itapetiningae, B. cotiara,* and *B. fonsecai.* Analysis 8 (*Pp* = 79) also included *B. jonathani.* The *Bothrops jararaca* + *B. neuwiedi* clade (labeled C) consisted of those species, *B. diporus, B. erythromelas, B. pauloensis, B. insularis,* and *B. alcatraz.* The *Bothriopsis* clade (labeled D) consisted of *B. chloromelas, B. taeniata, B. pulchra,* and both subspecies of *B. bilineata.* Sister to the *Bothriopsis* clade was a *Bothrops atrox* clade (labeled E) consisting of that species, *B.*

leucurus, B. isabelae, B. moojeni, B. marajoensis, B. asper, B. lanceolatus, B. caribbaeus, B. punctatus, B. osbornei, B. jararacussu, and *B. brazili.* Positions of taxa included in the phylogeny on the basis of morphological characters alone were generally poorly supported.

Certain species were recovered in different positions in different analyses. *Bothrops pictus* was the only species not recovered in a species group in analysis 11; it was sister to the remainder of the *Bothrops* + *Bothriopsis* clade (*Pp* = 97). In parsimony analysis 10, however, a sister relationship of *B. pictus* to the *B. alternatus* clade was supported by a bootstrap value of 56; that relationship was not recovered in majorityrule consensus of the shortest trees. In all other cases of alternative placements the species relationships were supported with posterior probability and bootstrap values less than 65. Species with alternative placements were *Bothrops andianus*, *B. barnetti*, *B. mattogrossensis*, *B. sanctaecrucis*, and *B. venezuelensis*.

Genetic distance measures within South American species groups ranged from 6.5–11.3%, and distances between species groups within South American pitvipers ranged from 11.1–16.7% (Table 10). Overall, within-genus distance measures ranged from 8.5–21.9%.

Table 10. Cytochrome b distances within and among selected genera recovered with the Kimura 2-parameter model with gamma-distributed rate variation. Sequences for Bothrocophias, Rhinocerophis,
Bothropoides, Bothriopsis, and Bothrops taken from this study, all other sequences from Castoe & Parkinson (2006). Thick black line denotes South American bothropoid clade.

	Gioyulus	Crypterytrops	Funus	vinuoviperu	THILETESULUS	FIOLODOLIIIOPS	Aykisti ouoli	Crotuius	Sistiulus	Opinyucus	Luchesis
Gloydius	0.117										
Cryptelytrops	0.233	0.082									
Parias	0.251	0.187	0.121								
Viridovipera	0.228	0.169	0.169	0.088							
Trimeresurus	0.250	0.202	0.215	0.199	0.170						
Protobothrops	0.227	0.222	0.216	0.200	0.234	0.139					
Agkistrodon	0.223	0.210	0.216	0.208	0.229	0.202	0.065				
Crotalus	0.256	0.236	0.251	0.233	0.259	0.238	0.211	0.153			
Sistrurus	0.251	0.255	0.234	0.234	0.255	0.228	0.201	0.182	0.187		
Ophryacus	0.225	0.235	0.227	0.227	0.241	0.207	0.193	0.233	0.213	0.148	
Lachesis	0.245	0.233	0.243	0.227	0.260	0.220	0.203	0.224	0.226	0.193	0.111
Bothriechis	0.244	0.225	0.235	0.210	0.249	0.222	0.201	0.213	0.229	0.200	0.216
Cerrophidion	0.235	0.239	0.199	0.199	0.242	0.193	0.179	0.209	0.201	0.182	0.197
Porthidium	0.239	0.241	0.225	0.218	0.243	0.224	0.205	0.249	0.243	0.215	0.233
Atropoides	0.242	0.225	0.212	0.193	0.234	0.199	0.180	0.207	0.207	0.189	0.198
Bothrocophias	0.280	0.234	0.244	0.229	0.255	0.243	0.233	0.244	0.263	0.228	0.245
Rhinocerophis	0.274	0.217	0.218	0.206	0.240	0.231	0.223	0.232	0.251	0.232	0.241
Bothropoides	0.261	0.234	0.230	0.200	0.261	0.249	0.220	0.229	0.248	0.230	0.260
Bothriopsis	0.278	0.224	0.242	0.222	0.257	0.245	0.233	0.253	0.268	0.225	0.244
Bothrops	0.257	0.226	0.238	0.217	0.259	0.230	0.224	0.236	0.259	0.213	0.233

Gloydius Cryptelytrops Parias Viridovipera Trimeresurus Protobothrops Agkistrodon Crotalus Sistrurus Ophryacus Lachesis

-	Bothneems	eenopmaten	1 or timarann	racopolaco	Bothiocophias	nimoceropins	Bottinopolaco	Botimopsis	Dottinopo
Bothriechis	0.141								
Cerrophidion	0.192	0.083							
Porthidium	0.211	0.166	0.127						
Atropoides	0.181	0.121	0.166	0.095					
Bothrocophias	0.220	0.206	0.234	0.195	0.138				
Rhinocerophis	0.197	0.191	0.227	0.180	0.150	0.071			
Bothropoides	0.227	0.217	0.247	0.201	0.171	0.151	0.073		
Bothriopsis	0.217	0.203	0.241	0.190	0.132	0.131	0.144	0.067	
Bothrops	0.204	0.198	0.223	0.197	0.153	0.149	0.152	0.123	0.069

Bothriechis Cerrophidion Porthidium Atropoides Bothrocophias Rhinocerophis Bothropoides Bothriopsis Bothrops

Discussion

Resolution of Major Lineages

Numerous studies have included species of Bothrops, Bothriopsis, and Bothrocophias in phylogenetic estimates, but until this study no taxon-comprehensive combined dataset was available. We have recovered four major lineages in the Bothrops + Bothriopsis clade (labeled B–E, respectively): 1) Bothrops alternatus clade, 2) B. neuwiedi clade + B. jararaca clade, 3) Bothriopsis clade, and 4) Bothrops atrox clade. The resolution of these lineages is supported by several lines of evidence. In analysis 11, the species groups were supported with posterior probabilities of 100. In the corresponding parsimony analyses 9 and 10 these groups were supported with bootstrap values of 71– 100. More taxon-comprehensive and more data-poor analyses in this study had lower support, but the same groups were recovered in all phylogenies. The Bothrops alternatus group was supported by 27 mitochondrial and one unique morphological character, the B. neuwiedi + B. jararaca group by 38 mitochondrial and no unique morphological characters, *Bothriopsis* by 48 mitochondrial and four unique morphological characters, and *Bothrops atrox* group by 50 mitochondrial and one unique morphological character (Table 11). The results have been corroborated by morphological and molecular studies, including Castoe & Parkinson (2006), Gutberlet & Harvey (2002), Wüster et al. (2002), and Salomão et al. (1999, 1997).

Table 11. Phenotypic synapomorphies and shared natural history traits among species within major lineages of South American pitvipers. Diet data from Martins et al. (2002), habitat data from Martins et al. (2001) and Campbell & Lamar (2004), range data from Campbell & Lamar (2004).

	Number of DNA				
Proposed genus	synapomorphies	Phenotypic synapomorphies	Diet	Habitat	Geographic range
Bothrocophias	12S: 4, 16S: 5, cyt- <i>b</i> : 11, ND4: 14	Keel on dorsal scales tuberculate on caudal part of body, Meckellian foramen completely or partially divided into two foramina, distinct white spots on posterior infralabials and gulars present	Diet generalists, including a high proportion of lizards (41.7% in <i>B.</i> <i>hyoprora</i>), anurans and mammals (25% each in <i>B.</i> <i>hyoprora</i>)	Terrestrial in rainforest, montane wet forest, and cloud forest	Andean South America: Ecuador, Colombia, Peru, Bolivia, western Brazil
Rhinocerophis	cyt- <i>b</i> : 10, ND4: 17	One to two palatine teeth	Diet generalists including a high proportion of mammal prey (42.8–60% in <i>B. ammodytoides</i> and <i>B. itapetiningae</i>) or mammal specialists	Terrestrial in open areas or edges of moderate to montane broadleaf and/or <i>Araucaria</i> forests, swamps, or cerrados	southern South America: southeastern Brazil, Paraguay, Uruguay, Argentina; one species found in central and southern Bolivia
Bothropoides	12S: 6, 16S: 1, cyt-b: 19, ND4: 12	No unique phenotypic synapomorphies, intermediate width of lateral margin of head of ectopterygoid shared with <i>Bothrocophias</i>	Diet generalists, some mammal specialists (<i>B. pubescens</i>), some including a high proportion of birds (<i>B. insularis</i>), or centipedes (66.7% in <i>B. alcatraz</i>) in diet; ontogenetic shift in prey types in the larger species	Terrestrial in dry to wet habitats in caatinga vegetation, cerrados, rock outcrops, grassy areas, or broadleaf forests (<i>B.</i> <i>erythromelas</i> and <i>B. neuwiedi</i> complex) or semiarboreal in Atlantic forests (<i>B. jararaca</i> complex)	eastern South America: Brazil including continental islands, Bolivia, southeastern Peru, Paraguay, Uruguay, northern to central Argentina

Proposed genus	Number of DNA synapomorphies	Phenotypic synapomorphies	Diet	Habitat	Geographic range
Bothriopsis	12S: 11, 16S: 4, cyt- <i>b</i> : 21, ND4: 12	Pleurapophyses of midcaudal vertebrae in contact distally, choanal process of palatine positioned posteriorly, prehensile tail, green ground color	Diet generalists with a high proportion of mammal (40.9– 50.0%) and anuran (35.7–40.9%) prey	Semiarboreal in lowland rainforests, Atlantic forests, wet montane forest or cloud forests	Amazonian South America: Colombia, Ecuador, Peru, Bolivia, Brazil, Venezuela, Guyana, French Guiana, Suriname
Bothrops	12S: 9, 16S: 4, cyt- <i>b</i> : 14, ND4: 23	Four palatine teeth (five in <i>B. moojeni</i> and <i>B.</i> <i>jararacussu</i> , three in <i>B.</i> <i>brazili</i> and <i>B. sanctaecrucis</i>)	Diet generalists with a high proportion of mammal (42.1– 70.1%) and anuran (12.8–33.6%) prey	Terrestrial to semiarboreal in lowland rainforests to gallery forests and swamps in cerrados to Atlantic forests	northern South America: Pacific versant of Andes and coastal lowlands in Colombia, Ecuador, and northwestern Peru, Atlantic versant of Andes in Peru and Bolivia, Venezuelan Andes, and equatorial forests east of Andes exclusive of Uruguay, southern Paraguay, and Argentina south of Misiones; Central America: southern Mexico to Panama; Lesser Antilles: St. Lucia and Martinique

We also recovered a monophyletic *Bothrocophias* lineage (labeled A in figures) with strong support in mitochondrial and combined evidence phylogenies, and with lower support in other analyses. *Bothrocophias* is supported by 34 mitochondrial and three morphological synapomorphies (Table 11). Monophyly of this genus is in agreement with the morphological dataset of Gutberlet & Harvey (2002) and the molecular dataset of Castoe & Parkinson (2006).

Placement of Species within Lineages

In most cases, species were recovered in the same clades in multiple analyses and their phylogenetic placement was supported by prior evidence (e.g., Table 5 and references therein, Campbell & Lamar, 2004; Silva, 2000, 2004). In the case of *Bothrocophias campbelli*, two prior studies recovered alternative placements of the species: Gutberlet & Harvey's (2002) morphological analysis found it within *Bothrocophias*, supporting the content of the genus as defined by Gutberlet & Campbell (2001), while Wüster et al.'s (2002) mitochondrial analysis found *B. campbelli* sister to *Bothrops + Bothriopsis*. Combined evidence analysis 11 provided strong support for the monophyly of *Bothrocophias* including *B. campbelli* (*Pp* = 96). In only two cases, *B. campbelli* did not fall within a *Bothrocophias* clade. Analysis 2 (Appendix D figure S-8) recovered it sister to the rest of the ingroup excluding *Bothrops erythromelas*, and analysis 5 (Figure S-5) recovered it sister to *Bothrops + Bothriopsis*. The majority of our results and most prior work strongly suggest that *B. campbelli* is part of the *Bothrocophias* lineage.

A few species were recovered in uncertain phylogenetic positions or were unavailable to this study, but other sources of evidence allow us to make recommendations on their group placement; further phylogenetic testing of these recommendations is warranted. First, Bothrocophias myersi was included in analysis on the basis of morphological data only; in Bayesian analysis 8 (Figure 10), the species was part of Bothrocophias, but in parsimony analyses 1, 6, and 7 and Bayesian morphological analysis 3 (Figures S-3, S-4, S-7, S-9) it was found within *Bothrops* (*Bs* < 50). Gutberlet & Campbell (2001) recovered B. myersi within Bothrocophias in their analysis and description of the species and genus. Based on this evidence and results presented here, we suggest that the current generic allocation is appropriate. Second, Bothrocophias colombianus was included in that genus by Campbell & Lamar (2004) on the basis of external morphology. Too few specimens were available to include this species in phylogenetic analysis, but scale data from two specimens (FMNH 55898 and UTA R25949) support the inclusion of *B. colombianus* in *Bothrocophias*. In addition, canthorostrals were observed on FMNH 55898, a character state previously observed only in Bothrocophias hypprora and B. microphthalmus.

Bothriopsis oligolepis and *B. medusa* could not be included in final analyses because too few specimens were available (Table 12). Preliminary analyses placed *B. oligolepis* within *Bothriopsis*, and its green coloration, prehensile tail, and arboreal lifestyle suggest that the current designation is correct. The semiarboreal lifestyle of *B. medusa* in addition to its Venezuelan distribution (Campbell & Lamar, 2004) places its affinities with either *Bothriopsis* or the *Bothrops atrox* group (Table 11). The tan to

brown, gray or olive coloration is unlike most *Bothriopsis* species, but the pattern of transverse bands on the dorsum is similar to *Bothriopsis* species and unlike the spade-shaped dorsal markings on most *B. atrox* group specimens. We suggest retaining the current designation until more data are available.

Bothrops mattogrossensis and B. pubescens were elevated from subspecies of B. neuwiedi by Silva (2000, 2004). Bothrops pubescens was not included in final analyses due to a lack of specimens, but preliminary analyses recovered it in a clade with B. neuwiedi and B. diporus. Based on this and on its membership in the B. neuwiedi complex, we suggest that it belongs to the B. neuwiedi lineage. Bothrops mattogrossensis was recovered in B. alternatus and B. jararaca + B. neuwiedi + B. alternatus clades in alternative analyses (Figure 10, also S-3–S-4, S-7–S-9), but the similar morphology that originally classified this species as B. neuwiedi suggests that it also belongs in the B. neuwiedi clade. Table 12. Habitat, distribution and proposed genera for all species of *Bothrops* (*sensu* Campbell & Lamar, 2004), including those not represented in the present analysis. Distribution and habitat data from Campbell & Lamar (2004).

Proposed genus	Species	Original Describer	Distribution	Habitat
Rhinocerophis	alternatus	Duméril, Bibron, & Duméril, 1854	southeastern Brazil, Paraguay, Uruguay, northern Argentina	Humid habitats in tropical, subtropical and temperate deciduous forests
Rhinocerophis	ammodytoides	Leybold, 1873	along eastern versant of Andes in Argentina	Temperate to subtropical savannas and steppes; arid, sandy, rocky areas
Rhinocerophis	cotiara	Gomes, 1913	southeastern Brazil and northern Argentina	Humid temperate Araucaria forest and associated savannas
Rhinocerophis	fonsecai	Hoge & Belluomini, 1959	southeastern Brazil	Mixed forest dominated by <i>Araucaria,</i> <i>Podocarpus,</i> and broad-leaved trees
Rhinocerophis	itapetiningae	Boulenger, 1907	southeastern Brazil	Open fields and bushy areas
Rhinocerophis	jonathani	Harvey, 1994	eastern slopes of Altiplano, central and southern Bolivia	Dry, rocky grassland
Bothropoides	alcatraz	Marques, Martins, & Sazima, 2002	Ilha Alcatrazes, Brazil	Low Atlantic Forest vegetation
Bothropoides	diporus	Cope, 1862	Argentina, Paraguay, southwestern Brazil	Chaco, wet palm- grasslands, semitropical deciduous forest, <i>Araucaria</i> forest, pampas
Bothropoides	erythromelas	Amaral, 1923	northeastern Brazil	Xeric and semiarid thornforest, dry tropical deciduous forest, open rocky areas
Bothropoides	insularis	Amaral, 1922	Ilha Queimada Grande, Brazil	Dry, rocky island habitat with scrubby forest, clearings and shrubs

Proposed genus	Species	Original Describer	Distribution	Habitat
Bothropoides	jararaca	Wied- Neuwied, 1824	southern Brazil, northeastern Paraguay, northern Argentina	Tropical deciduous forests and savanna, semitropical upland forests
Bothropoides	lutzi	Miranda- Ribero, 1915	northwestern Brazil	Savanna (cerrado) and thornscrub
Bothropoides	mattogrossensis	Amaral, 1925	southern Peru, Bolivia, Paraguay, northern Argentina, southern to central Brazil	Savanna (cerrado), Pantanal, Chaco, wet palm-grasslands
Bothropoides	neuwiedi	Wagler, 1824	eastern Brazil	Tropical and semitropical deciduous forest, temperate forest, Atlantic coast sand ridges
Bothropoides	pauloensis	Amaral, 1925	southern Brazil	Seasonally dry savanna (cerrado) and Atlantic forest associated with open areas
Bothropoides	pubescens	Cope, 1870	Uruguay and extreme southern Brazil	Pampas and grasslands
Bothrops	andianus	Amaral, 1923	central Andes in Peru and Bolivia	Montane and lower montane wet forests
Bothrops	asper	Garman, 1884	Atlantic versant of Mexico from Tamaulipas southward, northern Guatemala and Honduras, Atlantic lowlands of Nicaragua, Costa Rica and Panama, Pacific versant of Colombian and Ecuadorian Andes, northern Venezuela	Principally tropical rainforest and tropical evergreen forest, or edges of savannas
Bothrops	atrox	Linnaeus, 1758	tropical lowlands east of Andes, exclusive of Paraguay, Uruguay, and Argentina	Lower montane wet forest, savanna/gallery forest, tropical deciduous forest, rainforest

Proposed genus	Species	Original Describer	Distribution	Habitat
Bothrops	brazili	Hoge, 1954	east of Andes in equatorial forests of Colombia, Ecuador, Peru, Bolivia, southern and eastern Venezuela, Guyana, Suriname, French Guiana, and northwestern Brazil	Elevated Amazonia primary forest
Bothrops	caribbaeus	Garman, 1887	Saint Lucia Island, Lesser Antilles	Lowland tropical forest, including coastal plains with low humidity
Bothrops	isabelae	Sandner- Montilla, 1979		
Bothrops	jararacussu	Lacerda, 1884	Brazil, Paraguay, southern Bolivia, northeastern Argentina	Tropical rainforest, tropical semideciduous forest, broad-leave evergreen forest, paraná pine forest
Bothrops	lanceolatus	Bonnaterre, 1790	Martinique, Lesser Antilles	Humid upland regions and wetter portions of norther windward coast
Bothrops	leucurus	Wagler, 1824	eastern Brazil	Atlantic forest remnants, tropical deciduous forest
Bothrops	marajoensis	Hoge, 1966	northern Brazil	Lowland savanna
Bothrops	moojeni	Hoge, 1966	central and southeastern Brazil, eastern Paraguay, northern Argentina, eastern Bolivia	Semiarid or seasonally dry tropical savannas
Bothrops	muriciencis	Ferrarezzi & Freire, 2001	eastern Brazil	Mesic Murici Fores in Atlantic Forest
Bothrops	osbornei	Freire- Lascano, 1991	western slopes of Andes in Ecuador and extreme northwestern Peru	Subtropical moist and wet forest and montane wet fores
Bothrops	pirajai	Amaral, 1923	eastern Brazil	Atlantic lowland w forest and lower montane wet fores

Proposed genus	Species	Original Describer	Distribution	Habitat
Bothrops	punctatus	García, 1896	Pacific foothills and coastal plain in Panama, Colombia, Ecuador	Subtropical and tropical moist and wet forest and montane wet forest
Bothrops	sanctaecrucis	Hoge, 1966	Amazonian lowlands of Bolivia	Lower montane wet forest
Bothrops	venezuelensis	Sandner- Montilla, 1952	northern and central Venezuela	Lower montane wet forest and cloud forest, including temperate areas
_	barnetti	Parker, 1938	Pacific coast of Peru	Arid desert scrub
_	lojanus	Parker, 1930	southern Ecuador	Arid temperate regions, primarily montane dry forest
_	pictus	Tschudi, 1845	Peru	Arid to semiarid coastal foothills, river valleys, and lower Andean slopes; dry rocky regions
_	roedingeri	Mertens, 1942	Peru, on Pacific coastal plain and foothills	Desert, low deciduous thickets, lower montane dry forest

Bothrops sanctaecrucis was not included in prior phylogenies; it was recovered in the *B. atrox* lineage in parsimony analyses (1, 2, 6, and 7) but was found in alternative placements in Bayesian analyses. Its range in Bolivia and terrestrial lifestyle in lower montane wet forest, as well as its strong resemblance to *Bothrops moojeni* (Campbell & Lamar, 2004) make it a likely member of the *Bothrops atrox* group (see Table 11). Likewise, *Bothrops andianus* was included in analysis on the basis of morphological data only, and in analysis 8 was sister to *Bothrops + Bothriopsis* excluding *Bothrops pictus* and *B. venezuelensis* (Figure 10). *Bothrops andianus* was also recovered as sister to *Bothrocophias myersi* within the *Bothrops+Bothriopsis* clade in three parsimony analyses (1, 6, and 7, Appendix D figures S-3, S-4, S-9). Its range in Peru and Bolivia and terrestrial habitat in montane wet forests make affinities with either *Bothrocophias* or the Bothrops atrox group likely (Table 11). Bothrops andianus has a lacunolabial like the Bothrops atrox group and unlike Bothrocophias species that have the second supralabial separate from the prelacunal scale (Campbell & Lamar, 2004). In addition, *B. andianus* lacks tuberculate dorsal scales found on *Bothrocophias* individuals. We suggest a *Bothrops atrox* group placement is supported by outside evidence. Finally, *B. venezuelensis* was found in or near *Bothrops, Bothriopsis,* and *Bothrocophias* clades in alternative analyses. Its Venezuelan range places its affinities with either the *Bothrops atrox* group or with *Bothriopsis,* but its primarily terrestrial habits, brownish coloration and lack of a prehensile tail make it more similar to the *B. atrox* group than to *Bothriopsis.* This is supported by combined evidence analyses 6 and 7 (figures S-3 and S-4).

In contrast to the species above, additional evidence cannot help to place four species in recovered species groups. *Bothrops barnetti* was included in analyses on the basis of morphology only, and combined evidence analyses placed it near *B. pictus* although morphology-only analyses yielded different relationships. Similarly, evolutionary relationships of *Bothrops lojanus* are uncertain based on scale data from six specimens (Appendix E), although it was typically recovered sister to most *Bothrops + Bothriopsis* species in pilot analyses. Based on their habitats in arid regions of Peru and southern Ecuador, respectively (Campbell & Lamar, 2004), their affinities may be with the arid Peruvian species *Bothrops pictus*. All three species may be sister to *Bothrops* as currently defined. Until more comprehensive morphological or sequence data are available, *B. barnetti, B. lojanus* and *B. pictus* cannot be definitively placed in the

phylogeny. *Bothrops roedingeri* has sometimes been regarded as a synonym of *B. pictus* (see Campbell & Lamar, 2004), and due to this fact as well as its desert habitat and range near *B. pictus*, these two species would likely be congeners. Because of the uncertain position of *B. pictus*, we do not have a strong hypothesis for the phylogenetic placement of *B. roedingeri*.

Beta Taxonomy and Genetic Distance

Based on evidence for the paraphyly of *Bothrops* in this and previous studies cited above, and based on the monophyly and distinctness of species groups found in this study as well as earlier work, we suggest recognition of major lineages of *Bothrops* as distinct genera. As *Bothrops lanceolatus* is the type-species of the genus, the generic name *Bothrops* is assigned to the *B. atrox* group. The generic name *Rhinocerophis*, with type species *R. ammodytoides*, is available for the *alternatus* group. We propose the new name *Bothropoides* for the *neuwiedi-jararaca* group. As required, we define these three genera below. No taxonomic changes are necessary for *Bothriopsis* or *Bothrocophias*, as this study has found support for their monophyly.

In an overview of genetic distances among pitviper genera, cyt-*b* distances of South American pitviper species groups were similar to those in other genera, ranging from 6.7–13.8% within-group divergence and 12.3–17.1% between-group divergence (Table 10). In comparison, the clade of Central American pitviper genera *Cerrophidion, Porthidium,* and *Atropoides,* closely related to the South American clade, had withingroup distances of 8.3–12.7% and between-group distances of 12.1–23.4%. In Malhotra & Thorpe (2004), within-group distances ranged from 4.4–14.2% and between-group

distances ranged from 10.3–26.5%. In our opinion, genetic distances alone do not provide a metric for delimiting genera or species, but similarity of genetic distance measures may be taken as additional support for the distinctiveness of the South American groups.

Basis for Systematic Revision

Our taxonomy agrees with several authors who recommend dividing Bothrops into less speciose and more ecologically and phenotypically cohesive monophyletic genera (Castoe & Parkinson, 2006; Gutberlet & Campbell, 2001; Harvey et al., 2005; Parkinson, 1999). We share their motivations for these changes. First, in agreement with many other studies we find *Bothrops* paraphyletic with respect to *Bothriopsis* and recommend changing the taxonomy of *Bothrops* to recognize only monophyletic groups (Campbell & Lamar, 1992; Castoe & Parkinson, 2006; Gutberlet & Harvey, 2002; Parkinson, 1999; Parkinson et al., 2002). Second, we recovered evolutionarily distinct lineages in *Bothrops* formerly recognized as distinct species groups (see Table 5, Araújo & Martins, 2006; Martins et al., 2001, 2002), and believe that these lineages should be named (Parkinson et al., 2002). Third, we recognize the distinctiveness of Bothriopsis and consider continued recognition of that genus to be valuable (Gutberlet & Campbell, 2001). Fourth, we recognize that the major lineages not only have morphological and DNA-based synapomorphies but they have distinct ranges and habitats (Table 11), and these differences would be more clearly recognized through naming lineages as genera. Naming the major lineages as genera is in keeping with recent practice in pitviper

taxonomy of dividing speciose groups into smaller monophyletic genera (Burger, 1971; Campbell & Lamar, 1989, 1992; Malhotra & Thorpe, 2004).

Some authors have recommended synonymizing *Bothriopsis* with *Bothrops* and also mention the possibility of synonymizing the small, cohesive sister-genus *Bothrocophias* with *Bothrops* (Salomão et al., 1997; Vidal et al., 1997; Wüster et al., 2002). Part of this motivation has been to avoid the problems inherent in changing the names of medically important species. Taxonomic changes will likely result in temporary communication difficulties in the research and health care fields (Pook & McEwing, 2005; Wüster, 1996; Wüster et al., 1997; Wüster, Golay & Warrell, 1998, 1999a; Wüster & Harvey, 1996). This is a concern, but these changes will include more information on the relationships among South American pitvipers and so are likely to be important to toxinologists and clinicians dealing with venoms and envenomations. We feel that the long-term good of a stable and evolutionarily informative taxonomy will outweigh the short-term drawbacks of proposing changes to the scientific names of venomous snake species.

Another proposed reason for synonymizing *Bothriopsis* (and possibly *Bothrocophias*) with *Bothrops* is that the clade is derived from a single invasion of South America, and splitting it could obscure this biogeographic pattern (Wüster et al., 2002). This is true, but we also recognize the biogeographic pattern of South American colonization seen in the divergence of major lineages and think it would be clarified through naming them as genera. It is likely that those studying South American

biogeography using pitvipers would be familiar with their phylogeny and therefore taxonomic changes should not greatly affect biogeographic understanding.

Wüster et al. (2002) also suggest that although *Bothrops + Bothriopsis* contains greater morphological and natural history diversity than other genera, it appears no older based on cyt-*b* divergence levels. Our cyt-*b* genetic distance results suggest that although the major lineages certainly contain less genetic divergence than *Bothrops + Bothriopsis* their divergence levels are similar to those of other recognized genera.

A further motivation for synonymizing *Bothriopsis* with *Bothrops* is that since arboreal species *Bothrops punctatus* and *B. osbornei* are more closely related to the terrestrial or semiarboreal *Bothrops atrox* group than to the arboreal genus *Bothriopsis* (Table 5), there is little reason to recognize *Bothriopsis* as a separate genus (Wüster et al., 2002). Arboreality has evolved multiple times within the Crotalinae (Castoe & Parkinson, 2006; Gutberlet & Harvey, 2004; Malhotra & Thorpe, 2004), and it can be argued that continued recognition of *Bothriopsis* serves to cast taxonomic light on an additional instance of this phenomenon.

In addition to naming new genera or synonymizing *Bothriopsis* with *Bothrops*, other taxonomic options would be A) to delay taxonomic recommendations until complete data are available, B) to name the major lineages and *Bothriopsis* as subgenera of *Bothrops* under the rules of the ICZN, or C) to recognize *Bothriopsis* as a clade and name remaining clades without categorical ranks under the precepts of the PhyloCode (de Queiroz & Gauthier, 1990, 1992, 1994). First, the paraphyly of *Bothrops* with respect to *Bothriopsis* is an ongoing taxonomic problem that will be resolved with

the adoption of our proposed taxonomy. We anticipate the four species currently incertae sedis will be assigned to genera without requiring name changes to our proposed generic arrangement. Evidence strongly indicates that with additional data these genera will stand, therefore we do not consider the unassigned species a hindrance to adoption of our proposed taxonomy. Second, our concerns with naming subgenera are the same as the drawbacks of simply synonymizing *Bothriopsis* with Bothrops. Continuing to recognize the large and variable Bothrops requires disregarding a morphologically and ecologically distinct genus (Bothriopsis) as well as other evolutionarily distinct lineages. Within pitvipers subgenera are rarely recognized and so naming subgenera would not be materially different from including Bothriopsis within Bothrops. Third, as most concerns about taxonomic changes are in relation to changing species names, and as the current PhyloCode (Cantino & de Queiroz, 2007) specifies that species names are to be governed under the rank-based codes such as the ICZN, we choose to make taxonomic recommendations under the ICZN to avoid confusion about the correct names of species.

It is our responsibility as systematists to analyze and describe biodiversity and to utilize nomenclature to recognize distinct evolutionary lineages. The best way to recognize the evolutionary patterns recovered in this study is to recognize the major lineages as genera. Although future biodiversity research may result in minor changes to the content of these genera, we infer – on the basis of thorough taxon and character sampling and robust analytical methods – that the lineages themselves will continue to be supported.

Systematic Account

See McDiarmid et al. (1999) and Campbell & Lamar (2004) for synonyms. See Gutberlet & Campbell (2001) for a description of *Bothrocophias* and Campbell & Lamar (2004) for a description of *Bothriopsis* and for the inclusion of *Bothrocophias colombianus* in *Bothrocophias*, as the content of these genera has not changed.

Bothropoides gen. nov.

Type species: Bothrops neuwiedi Wagler 1824

Etymology: The generic name is derived from the Greek *bothros*, referring to the facial pit, and also referring to the currently named genus *Bothrops*. The term *oides* means "similar to" or "having the nature of", recognizing the affinity of these species to other terrestrial South American pitvipers. Names ending in this suffix are masculine.

Content: Bothropoides alcatraz, B. diporus, B. erythromelas, B. insularis, B. jararaca, B. lutzi, B. mattogrossensis, B. neuwiedi, B. pauloensis, B. pubescens

Definition: Members are of moderate length and girth, and terrestrial, lacking a prehensile tail. Dorsal color gold (*B. insularis*) to brown or black with dorsal markings spade-shaped, some lacking spots between spades (*B. alcatraz, B. insularis, B. jararaca, B. pauloensis; B. diporus*), others showing them (*B. erythromelas, B. lutzi, B. mattogrossensis, B. neuwiedi, B. pubescens*). A postorbital stripe is present (pale in most *B. insularis* specimens); dorsal head patterning is variable among species and they share no other distinctive head markings.

There are 3–5 interoculabials, 7–11 supralabials, 5–12 keeled intersupraoculars (smooth in *B. erythromelas* and one specimen each of *B. insularis* and *B. alcatraz*), 4–10

scales between the first pair of postcanthals, 21–34 interrictals, 144–206 ventrals, 21– 30 dorsal scale rows at midbody, 31–66 divided or divided and entire subcaudals. Prelacunal and second supralabial fused (in *B. jararaca, B. alcatraz* and *B. insularis*) or separate with 0–1 rows of subfoveals. Supralacunal separate from middle preocular (one *B. mattogrossensis* had scales fused). Loreal wider than high or square (one *B. neuwiedi* had loreal higher than wide), loreal pit ventral to naso-orbital line. Postnasal in contact with first supralabial in some individuals. Dorsal scales keeled with typical thin ridge.

From examination of hemipenes of *B. diporus, B. alcatraz,* and *B. insularis*: many lateral spines on hemipenes with lateral calyces distal to crotch in most members of the genus, few spines with lateral calyces reaching crotch in *B. insularis*. Mesial spines present on hemipenes except for half of the *B. insularis* specimens. Calyces spinulate except in one *B. insularis* with smooth calyces.

From examination of osteological samples of *B. neuwiedi* and *B. jararaca*: 3–5 palatine teeth, 10–16 pterygoid teeth, 11–15 dentary teeth. Maxillary fang longer than height of maxilla, medial wall of maxillary pit cavity well-developed, pit in anterolateral wall of maxillary pit cavity simple or with a small rounded projection. Foramen absent from ventral surface of lateral process of prootic. Lateral margin of head of ectopterygoid of intermediate width, ectopterygoid shaft flat and tapering to narrow and not tapering, ectopterygoid base with a long overlapping projection. Choanal process of palatine positioned medially and greatly reduced (*B. neuwiedi*) or attenuate (*B. jararaca*) in shape. Meckellian foramen single, angular and splenial partially fused.

Diagnosis: Bothropoides differ from other South American pitvipers in 38 mitochondrial characters (Table 11). External characters overlap with other South American genera, with no unique synapomorphies in scalation. Distribution in eastern South America combined with terrestrial habitat in grasslands or broadleaf forests (Bothropoides neuwiedi group) or semiarboreal habitat in Atlantic forests (B. jararaca group) distinguishes this genus from others (see Table 11). Bothropoides has fewer interrictals (21–34) than the other South American genera (24–40), and some individuals have high numbers of supralabials (7–11, also seen in *Rhinocerophis*; all other South American genera have 7–8 supralabials). Bothropoides differs from Bothrops and Bothriopsis in having most species with the prelacunal separate from the second supralabial (B. jararaca, B. alcatraz, and B. insularis have the prelacunal fused to the second supralabial). Some specimens have both divided and entire subcaudals, a state seen also in *Bothriopsis*. Bothropoides differs from Bothriopsis in the lack of a prehensile tail and lack of green coloration. It differs from *Bothrocophias* in the lack of white spots on the gular scales, and the lack of tuberculate keels on posterior dorsal scales. Bothropoides differs from some Rhinocerophis (R. alternatus, R. cotiara, R. fonsecai, R. *jonathani*) in the absence of distinctive back bars on the underside of the head.

Distribution: Eastern South America: in Brazil and associated islands, Bolivia, southeastern Peru, Paraguay, Uruguay, and northern to central Argentina (Campbell & Lamar, 2004). See Campbell & Lamar (2004) for range maps of individual species.

Remarks: We did not examine individuals of *Bothrops lutzi*, but based on prior work by Silva that elevated this species out of the *Bothrops neuwiedi* complex (Silva, 2000, 2004), we include it in the genus *Bothropoides*.

Rhinocerophis Garman, 1881

Type species: Rhinocerophis nasus (Garman, 1881), a junior synonym of *Bothrops ammodytoides* (Leybold, 1873)

Etymology: The generic name is derived from the Latin *Rhinoceros*, meaning "nose-horn", referring to the strongly upturned snout of *R. ammodytoides*, and *ophis*, meaning "snake". Names ending in this suffix are masculine.

Content: Rhinocerophis alternatus, R. ammodytoides, R. cotiara, R. fonsecai, R. itapetiningae, R. jonathani

Definition: Members are short to elongate, of moderate girth to stout, and terrestrial, lacking a prehensile tail. Dorsal color brown to black with dorsal markings either spade-shaped, generally with spots between spades (*R. alternatus, R. fonsecai*; no spots between spades in *R. jonathani*, sometimes missing in *R. cotiara*), trapezoidal with spots between trapezoids (*R. itapetiningae*), or spotted (*R. ammodytoides*). On head are spade-shaped dorsal markings and a postorbital stripe, with distinctive black bars on gulars of *R. alternatus, R. cotiara, R. fonsecai*, and *R. jonathani*.

There are 3–4 interoculabials, 7–10 supralabials, 5–16 keeled intersupraoculars, 5–12 scales between the first postcanthals, 25–40 interrictals, 145–181 ventrals, 23–35 dorsal scale rows at midbody, 25–55 divided subcaudals. Prelacunal and second supralabial separate with 0–1 subfoveal scale rows, supralacunal separate from middle

preocular (fused in *R. jonathani* and one specimen of *R. alternatus*). Loreal wider than high to higher than wide, loreal pit ventral to naso-orbital line. Postnasal not in contact with first supralabial. Dorsal scales keeled with typical thin ridge.

From examination of hemipenes of *R. alternatus*: mesial spines on hemipenes present, spinulate calyces distal to crotch, many (>12) lateral spines.

From examination of osteological samples of *R. cotiara, R. fonsecai,* and *R. itapetiningae*: 1–2 palatine teeth, 10–14 pterygoid teeth, 11–13 dentary teeth. Maxillary fang shorter than height of maxilla, medial wall of pit cavity in maxilla well developed. Lateral margin of head of ectopterygoid narrow, single pit on posterior surface of anterior end of ectopterygoid, ectopterygoid shaft narrow and not tapered, base with a long overlapping projection. Choanal process of palatine positioned anteriorly to medially, moderately high to attenuate. Supratemporal thick and rounded with a small projection. Meckellian foramen single; angular and splenial partially to completely fused.

Diagnosis: Rhinocerophis differs from other South American pitvipers in 27 mitochondrial characters and in having few (1–2) palatine teeth (versus 3–6 teeth), a morphological synapomorphy (Table 11). Distribution in southern South America combined with terrestrial habitat in open areas, grasslands, swamps, or broadleaf and *Araucaria* forests distinguishes this genus from others (see Table 11). *Rhinocerophis* individuals have the maxillary fang shorter than the height of the maxilla, and show black bars on the gular scales of some species (*R. alternatus, R. cotiara, R. fonsecai*, and *R. jonathani*). *Rhinocerophis* have fewer subcaudals (25–55) than the other genera (31–
86), and some specimens have high numbers of supralabials (7–10, also seen in *Bothropoides*; other South American genera have 7–8). *Rhinocerophis* differs from *Bothrops* and *Bothriopsis* in having the prelacunal scale separated from the second supralabial. It differs from *Bothriopsis* in the lack of green coloration and the lack of a prehensile tail. It differs from *Bothrocophias* in the lack of tuberculate keels on posterior dorsal scales. Almost all species differ from *Bothrocophias* in color pattern: while *Bothrocophias* species have spade-shaped dorsal markings lacking spots between the spades, *Rhinocerophis* species have spots between the spades (*R. alternatus, R. cotiara, R. fonsecai*), have trapezoidal markings with spots between them (*R. itapetiningae*), or have a checkered pattern (*R. ammodytoides*). Only *R. jonathani* lacks spots between spades but it can be distinguished by the presence of black bars on the gular scales, as mentioned above.

Distribution: Southern South America: in southeastern Brazil, central and southern Bolivia, Paraguay, Uruguay, and Argentina (Campbell & Lamar, 2004). See Campbell & Lamar (2004) for range maps of individual species.

Bothrops Wagler, 1824

Type species: Bothrops lanceolatus Lacépède 1789

Etymology: The generic name is derived from the Greek *bothros*, referring to the facial pit, and *ops*, meaning either "eye" or "face". It refers to the loreal pits between the nostril and eye, and names ending in this suffix are masculine.

Content: Bothrops andianus, B. asper, B. atrox, B. brazili, B. caribbaeus, B. isabelae, B. jararacussu, B. lanceolatus, B. leucurus, B. marajoensis, B. moojeni, B. muriciencis, B. osbornei, B. pirajai, B. punctatus, B. sanctaecrucis, B. venezuelensis

Definition: Members are of moderate length to elongate, are thin to moderately stout, and are terrestrial, lacking a prehensile tail. Dorsal color brown to black, with trapezoidal to spade-shaped markings on most species (*B. lanceolatus* with spots, *B. osbornei* and *B. punctatus* with vertical bands). Head pattern variable from patternless to speckled to paired spots to spade-shaped pattern, as well as a postorbital stripe in most species (faint to absent in *B. brazili* and *B. sanctaecrucis,* absent in some *B. moojeni*); no other distinctive head markings.

There are 3–4 interoculabials, 7–8 supralabials, 3–13 smooth or keeled intersupraoculars, 3–11 scales between the first pair of postcanthals, 24–36 interrictals, 153–227 ventrals, 22–33 dorsal scale rows at midbody, 38–72 divided subcaudals (one *B. atrox* and two *B. jararacussu* specimens with both divided and entire subcaudals). Prelacunal and second supralabial fused (one *B. brazili* specimen with scales divided), supralacunal separate from middle preocular (one *B. asper* and one *B. atrox* with scales fused). Sublacunal entire, loreal pit ventral to nasoorbital line (one *B. caribbaeus* and one *B. venezuelensis* with pit crossed by line). Dorsal scales keeled with typical thin ridge.

From examination of hemipenes of *B. atrox, B. asper, B. brazili, B. jararacussu, B. leucurus, B. moojeni, B. punctatus* and *B. venezuelensis*: many lateral spines, lateral

calyces distal to crotch (one quarter of *B. brazili* specimens with lateral calyces reaching crotch).

From examination of osteological samples of B. asper, B. atrox, B. brazili, B. jararacussu, B. moojeni, and B. punctatus: pleurapophyses of midcaudal vertebrae long and slender (one-quarter of *B. brazili* specimens with short and slender pleurapophyses), 3–5 palatine teeth, 12–21 pterygoid teeth, 8–18 dentary teeth. Maxillary fang longer than height of maxilla, medial wall of pit cavity in maxilla welldeveloped, pit in anterolateral wall of maxillary pit cavity simple or with a small rounded projection. Lateral margin of head of ectopterygoid intermediate to narrow, shaft of ectopterygoid flat and tapering to narrow without tapering, pits on posterior surface of anterior end of ectopterygoid single or paired, ectopterygoid base long and overlapping, base of ectopterygoid longer than base of pterygoid. Choanal process of palatine positioned medially, moderate to attenuate in shape. Medial margin of dorsal portion of prefrontal moderately to weakly concave, dorsal surface of frontals with elevated margins (one specimen of *B. asper* and one of *B. atrox* with flat dorsal surface). Supratemporal with a small projection (one *B. asper* with expanded supratemporals lacking projections); supratemporal thick and rounded. Meckellian foramen single.

Diagnosis: Bothrops differs from other South American pitvipers in 50 mitochondrial characters (Table 11). In addition, *Bothrops* species generally have four palatine teeth, a morphological synapomorphy of the genus (*B. moojeni* and *B. jararacussu* have five; *B. brazili* and *B. sanctaecrucis* have three). *Bothriopsis* and *Bothrops* are distinguished from other South American genera by having higher

numbers of ventrals (157–236 and 153–227 respectively, compared to 125–206) and having the prelacunal fused to the second supralabial (also seen in *Bothropoides jararaca, B. alcatraz, B. insularis,* and some *Bothrocophias*). *Bothrops* is distinguished from *Bothriopsis* in its brown to black coloration and lack of a prehensile tail, except for *Bothrops osbornei* and *B. punctatus* with prehensile tails. These two *Bothrops* species occur west of the Andes as opposed to *Bothriopsis* species that all range east of the Andes.

Distribution: Most species found in South America east of the Andes, exclusive of Uruguay, southern Paraguay, and central to southern Argentina (Campbell & Lamar, 2004). *Bothrops caribbaeus* and *B. lanceolatus* are found on the Caribbean islands of Saint Lucia and Martinique. *Bothrops osbornei, B. punctatus,* and *B. asper* range through Peru, Ecuador and Colombia west of the Andes, and *B. asper* ranges northward in Middle America through the countries of Panama, Costa Rica, Nicaragua, Honduras, Guatemala, Belize and Mexico. See Campbell & Lamar (2004) for range maps of individual species.

Remarks: According to Ferrarezzi & Freire (2001, in Campbell & Lamar, 2004), *Bothrops muriciencis* is most similar in overall appearance to *Bothrops pirajai*, *B. brazili*, *B. jararacussu*, and *B. sanctaecrucis*, with *B. pirajai* suggested as the closest relative. *Bothrops pirajai* is poorly known and specimens were unavailable, but it is very similar to some specimens of *B. brazili* and *B. jararacussu* (Campbell & Lamar, 2004). As the aforementioned species included in the study all are found in *Bothrops* as described in this paper, we assign *B. muriciencis* and *B. pirajai* to the genus as well.

Key to South American Bothropoid Genera

- 1. Dorsal ground color green, gray, or brown, dorsal head color black or matching dorsum, tail prehensile, prelacunal and second supralabial fused2 Dorsal ground color and dorsal head color gold or brown to black, tail not prehensile, prelacunal and second supralabial fused or separate with 0–1 rows of 2. Found east of the Andes, dorsal color usually green (lavender gray to green in B. taeniata, tan to brown, gray, or olive in B. medusa).....Bothriopsis Found west of the Andes, dorsal color brown to greenish tanBothrops 3. Keel on dorsal scales tuberculate on caudal part of body, rostral higher than broad or square, distinct white spots on posterior infralabials and gulars may be present, canthorostrals may be present, 125–169 ventral scales (one specimen with 192 scales),.....Bothrocophias Keel on dorsal scales typical thin ridge, rostral broader than high to square or higher than broad in species lacking tuberculate dorsal scales, distinct white spots and canthorostrals absent, 145–227 ventral scales4

<u>Acknowledgments</u>

We sincerely thank the museums that provided specimens for morphological analysis: Academy of Natural Sciences of Philadelphia, California Academy of Science, Carnegie Museum of Natural History, Field Museum, Florida Museum of Natural History, Los Angeles County Natural History Museum, Louisiana State University Museum of Zoology, Museum of Comparative Zoology at Harvard University, Museum of Vertebrate Zoology at the University of California at Berkeley, San Diego Natural History Museum,

Smithsonian Institution National Museum of Natural History, Texas Natural History Collection at the University of Texas, University of Kansas, University of Michigan Museum of Zoology, University of Texas at Arlington. R. Jadin is thanked for supplying morphological data on outgroup taxa as well as insight on data collection.

Several researchers provided tissues under their care and obtained during sponsored research, including J. Campbell (University of Texas at Arlington, DEB– 9705277, DEB–0102383), L. Vitt (University of Oklahoma, obtained through NSF grant DEB-9200779 and DEB-9505518), M. Martins (Universidad de São Paulo), and R. Murphy (Royal Ontario Museum). The Louisiana State University frozen tissue collection also generously provided specimens. For help and time in the field we thank B. Bock, C. Brasileiro, H. Greene, N. Hülle, J. Junior, O. A. V. Marques, C. Monteiro, G. Nilson, C. C. Nogueira, V. Páez, M. Saldarriaga, M. Sasa, R. J. Sawaya, F. Spina, A. M. Tozetti, R. W. Van Devender, and K. Zamudio. We also thank the many people that, over the years, have contributed insight and suggestions that have added to this study, including J. Campbell, T. Castoe, J. Coleman, J. Daza, H. Ferrarezzi, H. Greene, M. Harvey, H. Kalkvik, T. LaDuc, W. Lamar, M. Martins, G. Metzger, J. Reece, E. Smith, R. Sawaya, S. Werman, and J. Wiens.

Funding for this project was provided by a UCF startup package, a UCF new faculty research award and an NSF Research grant (DEB–0416000) to CLP. Sequencing through the Nevada Genomics Center was supported by an INBRE grant (2 P20 RR016463).

References

- Araújo MS, Martins M. 2006. Defensive behaviour in pit vipers of the genus Bothrops (Serpentes, Viperidae). Herpetological Journal 16: 297–303.
- Burger WL. 1971. Genera of pitvipers. Unpublished Ph.D. dissertation, University of Kansas.
- Campbell JA, Lamar WW. 1989. The venomous reptiles of Latin America. Cornell University Press: Ithaca, N.Y.
- Campbell JA, Lamar WW. 1992. Taxonomic status of miscellaneous neotropical viperids, with the description of a new genus. Occasional Papers of the Museum of Texas Tech University 153: 1–31.
- Campbell JA, Lamar WW. 2004. The Venomous Reptiles of the Western Hemisphere. Comstock Publishing Associates: Ithaca, NY.
- Cantino PD, de Queiroz K. 2007. International Code of Phylogenetic Nomenclature Version 4b.
- Castoe TA, Chippindale PT, Campbell JA, Ammerman LK, Parkinson CL. 2003. Molecular systematics of the Middle American jumping pitvipers (genus Atropoides) and phylogeography of the Atropoides nummifer complex. Herpetologica 59: 420– 431.
- Castoe TA, Parkinson CL. 2006. Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Molecular Phylogenetics and Evolution 39: 91–110.
- Castoe TA, Sasa M, Parkinson CL. 2005. Modeling nucleotide evolution at the mesoscale: the phylogeny of the Neotropical pitvipers of the Porthidium group (Viperidae: Crotalinae). Molecular Phylogenetics and Evolution 37: 881–898.
- Chang V, Smith EN. 2001. FastMorphologyGFC. 1.0 ed: http://www3.uta.edu/faculty/ensmith.
- de Queiroz K, Gauthier J. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology 39: 307–322.
- de Querioz K, Gauthier J. 1992. Phylogenetic Taxonomy. Annual Review of Ecology and Systematics 23: 449–480.
- de Querioz K, Gauthier J. 1994. Toward a phylogenetic system of biological nomenclature. Trends in Ecology and Evolution 9: 27–31.

- Dowling HG. 1951. A proposed standard system of counting ventrals in snakes. British Journal of Herpetology 1: 97–99.
- Dowling HG, Savage JM. 1960. A guide to the snake hemipenis: a survey of basic structure and systematic characteristics. Zoologica 45: 17–31.
- Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
- Ferrarezzi H, Freire EMX. 2001. New species of Bothrops Wagler, 1824, from the Atlantic forest of northeastern Brazil (Serpentes, Viperidae, Crotalinae). Boletim do Museu Nacional, Rio de Janeiro, new ser. 440: 1–10.
- Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, De Sa RO, Channing A, Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC. 2006. The amphibian tree of life. American Museum of Natural History: New York.
- Garman S. 1881. New and little-known reptiles and fishes in the museum collections. Bulletin of the Museum of Comparative Zoology 8: 85–93.
- Grazziotin FG, Monzel M, Echeverrigaray S, Bonatto SL. 2006. Phylogeography of the Bothrops jararaca complex (Serpentes: Viperidae): past fragmentation and island colonization in the Brazilian Atlantic Forest. Molecular Ecology 2006: 1–14.
- Gutberlet RL, Jr. 1998. The Phylogenetic Position of the Mexican Black-Tailed Pitviper (Squamata: Viperidae: Crotalinae). Herpetologica 54: 184–206.
- Gutberlet RL, Jr., Campbell JA. 2001. Generic recognition for a neglected lineage of South American pitvipers (Squamata: Viperidae: Crotalinae) with the description of a new species from the Colombian Chocó. American Museum Novitiates: 1– 15.
- Gutberlet RL, Jr., Harvey MB. 2002. Phylogenetic relationships of New World pitvipers as inferred from anatomical evidence. In: Schuett GW, Höggren M, Douglas ME and Greene HW, eds. Biology of the Vipers. Eagle Mountain, Utah: Eagle Mountain Publishing. 51–68.
- Gutberlet RL, Jr., Harvey MB. 2004. The evolution of New World venomous snakes. In: Campbell JA and Lamar WW, eds. The Venomous Reptiles of the Western Hemisphere. Ithaca, New York: Comstock Publishing Associates. 634–682.
- Harvey MB, Aparicio JE, Gonzales LA. 2005. Revision of the venomous snakes of Bolivia. II: the pitvipers (Serpentes: Viperidae). Annals of Carnegie Museum 74: 1–37.

- Heise PJ, Maxson LR, Dowling HG, Hedges SB. 1995. Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes. Mol Biol Evol 12: 259–265.
- Hoffstetter R, Gasc JP. 1969. Vertebrae and ribs of modern reptiles. In: Gans C, Bellairs AdA and Parsons TS, eds. Biology of the Reptilia. New York: Academic Press. 201– 310.
- Holder M, Lewis PO. 2003. Phylogeny estimation: traditional and Bayesian approaches. Nature Reviews Genetics 4: 275–284.
- Huelsenbeck JP, Larget B, Miller RE, Ronquist F. 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Systematic Biology 51: 673–688.
- Johnson NK, Zink RM, Marten JA. 1988. Genetic evidence for relationships in the avian family Vireonidae. The Condor 90: 428–445.
- Klauber LM. 1972. Rattlesnakes: their habits, life histories, and influences on mankind. University of California Press: Berkeley and Los Angeles.
- Kraus F, Mink DG, Brown WM. 1996. Crotaline intergeneric relationships based on mitochondrial DNA sequence data. Copeia 1996: 763–773.
- Kumar S, Tamura K, Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment briefings Bioinformatics 5: 150–163.
- Leviton AE, R. H. Gibbs J, Heal E, Dawson CE. 1985. Standards in herpetology and ichthyology. Part I. Standard symbolic codes for institutional resource collections in herpetology and ichthyology. Copeia 1985: 802–832.
- Leybold F. 1873. Excursión a las pampas argentinas. Hojas de mi diario. Imprenta Nacional: Santiago de Chile.
- Malhotra A, Thorpe RS. 2000. A phylogeny of the Trimeresurus group of pit vipers: new evidence from a mitochondrial gene tree. Molecular Phylogenetics and Evolution 16: 199–211.
- Malhotra A, Thorpe RS. 2004. A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pitvipers. Molecular Phylogenetics and Evolution 32: 83–100.
- Marques OAV, Martins M, Sazima I. 2002. A new insular species of pitviper from Brazil, with comments on evolutionary biology and conservation of the Bothrops jararaca group (Serpentes, Viperidae). Herpetologica 58: 303–312.

- Martins M, Araújo MS, Sawaya RJ, Nunes R. 2001. Diversity and evolution of macrohabitat use, body size and morphology in a monophyletic group of Neotropical pitvipers (Bothrops). Journal of Zoology 254: 529–538.
- Martins M, Marques OAV, Sazima I. 2002. Ecological and phylogenetic correlates of feeding habits in Neotropical pitvipers of the genus Bothrops. In: Schuett GW, Höggren M, Douglas ME and Greene HW, eds. Biology of the Vipers. Eagle Mountain, Utah: Eagle Mountain Publishing. 307–328.
- Maslin PT. 1942. Evidence for the separation of the crotalid genera Trimeresurus and Bothrops. Copeia 1942: 18–24.
- McDiarmid RW, Campbell JA, Touré TA. 1999. Snake species of the world: a taxonomic and geographic reference. Herpetologists' League: Washington, D.C.
- Murphy RW, Fu J, Lathrop A, Feltham JV, Kovac V. 2002. Phylogeny of the rattlesnakes (Crotalus and Sisturus) inferred from sequences of five mitochondrial DNA genes.
 In: Schuett GW, Höggren M, Douglas ME and Greene HW, eds. Biology of the Vipers. Eagle Mountain, Utah: Eagle Mountain Publishing. 69–92.
- Nylander JAA. 2004. MrModeltest. 2.2 ed. Sweden: Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Parkinson CL. 1999. Molecular systematics and biogeographical history of pitvipers as determined by mitochondrial ribosomal DNA sequences. Copeia 1999: 576–586.
- Parkinson CL, Campbell JA, Chippindale PT. 2002. Multigene phylogenetic analysis of pitvipers, with comments on their biogeography. In: Schuett GW, Höggren M, Douglas ME and Greene HW, eds. Biology of the Vipers. Eagle Mountain, Utah: Eagle Mountain Publishing. 93–110.
- Parkinson CL, Zamudio KR, Greene HW. 2000. Phylogeography of the pitviper clade Agkistrodon: historical ecology, species status, and conservation of cantils. Molecular Ecology 9: 411–420.
- Pook CE, McEwing R. 2005. Mitochondrial DNA sequences from dried snake venom: a DNA barcoding approach to the identification of venom samples. Toxicon 46: 711–715.
- Puorto G, Salomão MDG, Theakston RDG, Thorpe RS, Warrell DA, Wüster W. 2001. Combining mitochondrial DNA sequences and morphological data to infer species boundaries: phylogeography and lanceheaded pitvipers in the Brazilian Atlantic forest, and the status of Bothrops pradoi (Squamata: Serpentes: Viperidae). Journal of Evolutionary Biology 14: 527–538.

- Rambaut A, Drummond AJ. 2007. Tracer v1.4: Available at http://beast.bio.ed.ac.uk/Tracer.
- Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
- Russell FE. 1980. Snake Venom Poisoning. Lippincott: Philadelphia, PA.
- Salomão MdG, Wüster W, Thorpe RS, BBBSP. 1999. MtDNA phylogeny of Neotropical pitvipers of the genus Bothrops (Squamata: Serpentes: Viperidae). Kaupia 8: 127–134.
- Salomão MdG, Wüster W, Thorpe RS, Touzet J-M, BBBSP. 1997. DNA evolution of South American pitvipers of the genus Bothrops (Reptilia: Serpentes: Viperidae). In: Thorpe RS, Wüster W and Malhotra A, eds. Venomous Snakes: Ecology, Evolution, and Snakebite. Oxford, U.K.: Clarendon Press. 276.
- Silva VXd. 2000. Revisão sistemática do complexo Bothrops neuwiedi (Serpentes, Viperidae, Crotalinae), 2 vols. Unpublished Ph.D. dissertation, Universidade de São Paulo.
- Silva VXd. 2004. The Bothrops neuwiedi complex. In: Campbell J and Lamar WW, eds. The Venomous Reptiles of the Western Hemisphere. Ithaca: Cornell University Press. 410–422.
- Smith EN, Gutberlet RL, Jr. 2001. Generalized frequency coding: a method of preparing polymorphic multistate characters for phylogenetic analysis. Systematic Biology 50: 156–169.
- Swofford DL. 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*And Other Methods). Version 4.0 ed. Sunderland, MA: Sinauer Associates.
- Thiele K. 1993. The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9: 275–304.
- Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.
- Vidal N, Lecointre G. 1998. Weighting and congruence: a case study based on three mitochondrial genes in pitvipers. Molecular Phylogenetics and Evolution 9: 366– 374.
- Vidal N, Lecointre G, Vié JC, Gasc JP. 1997. Molecular systematics of pitvipers: paraphyly of the Bothrops complex. Evolution 320: 95–101.

- Warrell DA. 2004. Snakebites in Central and South America: Epidemiology, clinical features, and clinical management. In: Campbell JA and Lamar WW, eds. The Venomous Reptiles of the Western Hemisphere. Ithaca, NY: Cornell University Press. 709–761.
- Werman SD. 1992. Phylogenetic relationships of Central and South American pitvipers of the genus Bothrops (sensu lato): cladistic analyses of biochemical and anatomical characters. In: Campbell JA and E.D. Brodie J, eds. Biology of the Pitvipers. Tyler, Texas: Selva. 21–40.
- Wiens JJ. 1995. Polymorphic characters in phylogenetic systematics. Systematic Biology 47: 381–397.
- Wiens JJ. 2003. Incomplete taxa, incomplete characters, and phylogenetic accuracy: is there a missing data problem? Journal of Vertebrate Paleontology 23: 297–310.
- Wiens JJ. 2006. Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics 39: 34–42.
- Wüster W. 1996. Systematics, venom variation and toxinology: bridging gaps between evolutionary biology and biomedical science. Toxicon 34: 733.
- Wüster W, Duarte MR, Salomão MD. 2005. Morphological correlates of incipient arboreality and ornithophagy in island pitvipers, and the phylogenetic position of Bothrops insularis. Journal of Zoology 266: 1–10.
- Wüster W, Golay P, Warrell DA. 1997. Synopisis of recent developments in venomous snake systematics. Toxicon 35: 319–340.
- Wüster W, Golay P, Warrell DA. 1998. Synopsis of recent developments in venomous snake systematics, No. 2 Toxicon 36: 299–307.
- Wüster W, Golay P, Warrell DA. 1999a. Synopsis of recent developments in venomous snake systematics, No. 3. Toxicon 37: 1123–1129.
- Wüster W, Harvey AL. 1996. Reviews of venomous snake systematics in Toxicon. Toxicon 34: 397–398.
- Wüster W, Salomão MdG, Duckett GJ, Thorpe RS, BBBSP. 1999b. Mitochondrial DNA phylogeny of the Bothrops atrox species complex (Squamata: Serpentes: Viperidae). Kaupia 8: 135–144.
- Wüster W, Salomão MDG, Quijada-Mascareñas JA, Thorpe RS, BBBSP. 2002. Origins and evolution of the South American pitviper fauna: evidence from mitochondrial DNA sequence analysis. In: Schuett GW, Höggren M, Douglas ME and Greene

HW, eds. Biology of the Vipers. Eagle Mountain, Utah: Eagle Mountain Publishing. 111–128.

- Wüster W, Thorpe RS, Puorto G, BBBSP. 1996. Systematics of the Bothrops atrox complex (Reptilia: Serpentes: Viperidae) in Brazil: a multivariate analysis. Herpetologica 52: 263–271.
- Zamudio KR, Greene HW. 1997. Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for Neotropical biogeography, systematics, and conservation. Biological Journal of the Linnean Society 62: 421–442.

CHAPTER 4: THE SERPENT AND THE EGG: UNIDIRECTIONAL EVOLUTION OF REPRODUCTIVE MODE IN VIPERS?

Introduction

The original formulation of Dollo's Law states that an organism cannot return, even partially, to an identical condition expressed by an ancestor (Dollo 1893, 1905, see also Simpson 1953, Collin and Miglietta 2008). This pattern of unidirectional evolution has been rejected by a number of recent phylogenetic studies (e.g. Collin and Cipriani 2003, Whiting et al. 2003, Chippindale et al. 2004, Kohlsdorf and Wagner 2006, Domes et al. 2007, Wiens et al. 2007, Brandley et al. 2008, Kohlsdorf et al. 2010), but several of these have been criticized for methodological flaws (Goldberg and Igić 2008, Galis et al. 2010). Unidirectional evolution remains the assumed pattern for a number of life history characteristics, therefore we evaluate the evidence for this pattern for a key trait in vertebrate life history, reproductive mode (see also Lynch and Wagner, 2009).

In vertebrates, reproductive mode is commonly understood to mean laying eggs (oviparity) or producing free-living offspring (viviparity), and is a prominent yet perplexing variable in life history evolution. Oviparity is primitive and often exclusively characterizes entire animal lineages, whereas viviparity has arisen multiple times (Blackburn 1982). Within the two basal amniote clades, mammals and reptiles, we see a major difference in the number of reproductive mode changes. In mammals, monotremes retain oviparity and viviparity probably arose only once, in the stem

leading to marsupials and placental mammals. Among living and fossil reptiles there are no known viviparous turtles, archosaurs (including birds), or rhyncocephalians, yet livebearing has arisen almost a hundred times among living squamates (Fitch 1970, Blackburn 1985). Here we capitalize on reproductive diversity within one subclade of squamate reptiles, the vipers, to rigorously appraise the possibilities and conceptual implications of evolutionary reversals in reproductive mode.

In Viperidae, an estimated 80% of species bear live young (Appendix F), and viviparity has arisen multiple times over tens of millions of years (Wüster et al. 2008; this study). This allows preliminary evaluation of the timing of transitions. Interestingly, recent phylogenetic hypotheses (Lenk et al. 2001, Castoe and Parkinson 2006, Wüster et al. 2008, Pyron and Burbrink 2009) place oviparous taxa within groups containing viviparous taxa, suggesting potential reversals from viviparity to oviparity.

The transition from oviparity to viviparity involves multiple complex changes: endocrine modifications to postpone parturition, suppression of nesting behavior, reduction or loss of organs and pathways needed in eggshell formation, and gain of adaptations for fetal respiration and nutrition (Blackburn 1995, Lee and Doughty 1997; but see de Fraipont et al. 1999). Because of the modifications required for a transition to viviparity in animals, a reversal to oviparity is considered unlikely on theoretical grounds (Neill 1964, Fitch 1970, Tinkle and Gibbons 1977), although the literature lacks strong empirical evidence or detailed justification for unidirectional evolution of reproductive mode (Lee and Doughty 1997).

Evolutionary reversals from viviparity to oviparity in squamate reptiles have been addressed in the past, but there is little evidence to definitively support reproductive mode reversal (but see Lynch and Wagner, 2009). Benabib et al. (1997) suggested a possible reversal to oviparity with a lizard species, but the inference had little support. De Fraipont et al. (1996) inferred multiple apparent reversals from viviparity to oviparity throughout squamate evolution. Criticisms of de Fraipont et al. (1996) highlighted multiple uncertainties in the phylogenies, counting particular transitions more than once, and other errors (Blackburn 1999, Shine and Lee 1999, Surget-Groba et al. 2001). Reanalysis of the 1996 dataset by de Fraipont et al. (1999) found equivocal evidence for reversibility of viviparity. Blackburn (1999) argued that reversals to oviparity cannot be ruled out theoretically, but no convincing empirical evidence has yet been found. Lynch and Wagner (2009) subsequently found strong evidence for reversal to oviparity in a sand boa, and Lynch (2009) concluded that among vipers a model that included apparent reversals was best supported by likelihood methods, albeit at a much lower rate than transitions from oviparity to viviparity. Lynch thus provided the first strong cases against Dollo's Law for reproductive mode in snakes, but as we will show below, additional model tests refine that conclusion for vipers. In particular, we use character mapping to investigate where and when reversals may have occurred. Because transitions to ancestral states should be long separated from origins of derived states to qualify as violations of Dollo's Law (Marshall et al. 1994), their timing should be evaluated with explicit phylogenetic methodology as we do in this study.

Most studies described above were primarily based on parsimony analysis of character evolution (but see Lynch, 2009; Lynch and Wagner, 2009). Maximum likelihood and Bayesian methods are now often used because they provide probabilistic estimates of character states at a node, and they can be used to statistically treat hypotheses about character evolution (Huelsenbeck and Bollback 2001, Collin and Miglietta 2008). Additionally, reverse-jump Markov Chain Monte Carlo Bayesian methods (RJ-MCMC) include models of evolution in the analysis and provide a means to determine which models are best supported by posterior probability (Pagel et al. 2004). RJ-MCMC has been used for character state reconstruction in only a few papers (see Ekman et al. 2008, Xiang and Thomas 2008, Montgomery et al. 2010, Rasmussen and Cameron 2010), and it has not yet been applied to tests of unidirectional evolution.

The goal of the present study is to re-examine the evolution of reproductive mode in vipers, incorporating multiple analyses and methods to best assess whether this character follows Dollo's Law of unidirectional evolution. We hypothesize that, contrary to this law, reversals are possible. This possibility of reversal may be due to conservation of developmental pathways over long periods of time, making phenotypic change easily reversible (Collin and Miglietta, 2008). The selective force driving the conservation of these pathways would be constraints on pleiotropic effects of pathway members. In accordance with this hypothesis we predict that vipers have experienced at least one evolutionary reversal from viviparity to oviparity. We test our hypothesis using multiple model comparison and ancestral character state reconstruction approaches,

summarize our results identifying reversals and discuss these in the context of Dollo's Law.

Methods

Phylogenetic estimation

To avoid circularity the dataset for phylogeny reconstruction was independent of the character of interest (Lee and Doughty 1997). As several character reconstruction methods assume that the phylogeny includes all extant taxa, we included representatives of all of the approximately 270 species of Viperidae that had DNA sequences available (Appendix F). This sampling included data for over 65 percent of the approximately 70 species of true vipers (Viperinae) and almost 80 percent of the approximately 200 species of pitvipers (Crotalinae), as well as *Azemiops feae*, the single species of Azemiopinae. Recent work (FitzJohn et al. 2009) suggests that accuracy and precision of BiSSE inference is essentially unaffected for phylogenies 75–100% complete. Published sequences constituted the majority of the dataset, and we added new information for 17 species. Four of these species had no published sequence data in GenBank prior to this study.

The mitochondrial sequences used in this study consisted of rRNA genes 12S and 16S and protein coding genes cytochrome *b* (cyt-*b*) and NADH dehydrogenase subunit 4 (ND4). These genes are commonly used to infer interspecific and intergeneric relationships in snakes (e.g. Parkinson 1999, Austin 2000, Parkinson et al. 2002, Malhotra and Thorpe 2004, Castoe et al. 2007, Wüster et al. 2007, Pyron and Burbrink

2009). Sequences were aligned with the Muscle algorithm (Edgar 2004) in MEGA 5.05 (Tamura et al.) using default parameters. Internal gaps in the alignment represented by <50% of taxa were deleted; all other gaps were treated as missing data. We chose Acrochordus granulatus as the far outgroup for comparison with recent family-level phylogeny (Wiens et al., 2008); Wüster et al. 2008), with 22 other colubroid species also included as outgroups (Appendix F). We partitioned the dataset into eight segments: one for each rRNA gene (two total) and one for each codon position in protein-coding genes (six total). We calculated model likelihoods for each partition in PAUP*, and estimated best-fit models of nucleotide evolution with MrModelTest 2.2 (Nylander 2004) using the Akaike Information Criterion (AIC). We conducted partitioned-model phylogenetic inference with BEAST 1.5.3 (Drummond and Rambaut 2007) using a Yule speciation process and a relaxed uncorrelated lognormal clock. We constrained lognormal priors for the time to most recent common ancestor (tMRCA) for certain groups based on fossil data: (1) the genus Sistrurus first appears in the late Miocene (Clarendonian; Parmley and Holman, 2007) and (2) Agkistrodon contortrix first appears in the late Miocene (Late Hemphillian; Holman, 2000). The constraint for Sistrurus was set for the stem of the group, with a mean of 4.7 Ma \pm 0.4 SD and no offset. A. contortrix is the earliest-diverging member of its genus and therefore the constraint was placed at the MRCA of the genus, with a mean of 4.7 Ma \pm 0.4 SD and no offset. Based on phylogeographic information on vicariance between mainland and Baja California desert regions (Castoe et al., 2009; Castoe et al., 2007) we set a normal prior on the tMRCA of Crotalus atrox and C. ruber to be 3.29 Ma ± 0.2 SD. We ran two independent

Markov chains for 4×10^7 iterations, sampling every 1×10^5 iterations. We used Tracer 1.5 (Rambaut and Drummond 2007) to verify stationarity of the Markov chain and ensure that ESS values exceeded 200, and conservatively discarded the first 1×10^7 generations as burnin, resulting in a sample of 600 independent topologies with associated ultrameric branch length estimates. We also generated a phylogeny with oviparous and viviparous species constrained to separate clades and compared the likelihoods using Bayes Factors in Tracer 1.5 (Rambaut and Drummond 2007).

Character evolution estimates

Information on reproductive mode for each species was taken from the literature (Appendix F). Two species (*Garthius chaseni* and *Trimeresurus malabaricus*) do not have reproductive modes reported; in analyses that do not allow unknown states we treated these as having either mode, similar to species that show both reproductive modes (*Echis carinatus* and *Protobothrops jerdonii*). In addition, we treated *Atheris barbouri* as having unknown reproductive mode due to weak evidence for oviparity; Rasmussen and Howell (1998) mentioned *A. barbouri* was "apparently oviparous like the species of *Atheris*," but all other species of *Atheris* are viviparous.

Parsimony Parsimony

We compared character state changes across the sample of 600 trees under reversible, irreversible, and Dollo models using MacClade 4.08 (Maddison and Maddison 2005). We estimated character history at all nodes across all trees using the Trace Character History module in Mesquite followed by the Step Through Trees command

(Maddison et al. 2007). Character values for nodes were calculated as the number of nodes reconstructed with the character state over the total tree sample in order to incorporate node confidence into character estimates.

<u>Likelihood</u>

Models of character evolution were tested with likelihood methods using the program Multistate in the package BayesTraits (Pagel et al. 2004, available at www.evolution.rdg.ac.uk). Using our posterior sample of 600 topologies and the character states for extant taxa, we tested three competing models of character transitions: 1) a Dollo model in which the transition probability for the change from viviparity to oviparity was constrained to be 0, 2) an equal rates model that constrained changes in both directions to have equal probability, and 3) a variable rates model that estimated transition probabilities for both directions independently. For all models, outgroups were eliminated to better conform to assumptions of complete taxon sampling. Additionally, the root node representing the ancestor of viperids was constrained to oviparity based on prior work asserting that this is the ancestral state for this group (e.g. Blackburn 1985) and that constraining the root is necessary for an appropriate test of Dollo's Law (Nosil and Mooers 2005). This was done using the "fossil" command. By constraining the root node instead of allowing the root state frequency to be determined by the tip frequencies, we avoid overestimating the frequency of viviparity at the root node and provide a conservative test of unidirectional evolution

Additionally, we used an evolutionary model that allows speciation and extinction rates to vary based on different states of a given character, using the BiSSE module in Mesquite (Maddison et al. 2007). The BiSSE model has six parameters: speciation rates when lineages are in (1) state 0 and (2) state 1, extinction rates for lineages in each character state (3-4), and rates of character transitions (5) from state 0 to state 1 and (6) from state 1 to state 0. State-dependent speciation (λ) and extinction (μ) rates either were constrained to be equal or varied independently; state transitions rates were constrained to be equal, varied independently, or only allowed transitions from oviparity to viviparity (Dollo model). We constrained the root node representing the ancestor of viperids to oviparity using a revised BiSSE module designed by FitzJohn (FitzJohn and Goldberg, pers. comm.). We increased the number of optimizations for each tree from the default of 2 to 5 to increase the probability of convergence.

For all maximum likelihood analyses harmonic mean likelihoods across all 600 trees were compared using AIC, calculated as $-2 * \ln(\text{likelihood}) + 2K$, and K being the number of parameters estimated from the data. Subtracting a model of interest from the model with the minimum AIC score produces a Δ AIC score, allowing comparisons among non-nested models. Models with Δ AIC of two or less have substantial support; models with Δ AIC of ten or more are considered to have no support (Burnham and Anderson, 2002).

<u>Bayesian</u>

Our fourth model comparison used RJ-MCMC to simultaneously determine the model and parameters with the highest posterior probability given the reproductive

mode data (Pagel and Meade 2006). We again used the program Multistate in the package BayesTraits (Pagel et al. 2004, available at www.evolution.rdg.ac.uk). As the distribution of character transition rates was not known *a priori*, we tested uniform, exponential, and gamma distributions for the rate parameters. As recommended by the authors of BayesTraits (Pagel and Meade 2006), we did not specify the parameters of the chosen distribution but rather seeded them from a uniform (0–10) hyperprior distribution. We ran each Markov chain for 1.0×10^8 generations, sampling every 500 generations after a 1.0×10^7 generation burnin. We ran three chains each for the chosen distribution to ensure convergence on the same parameters, and also used this analysis to reconstruct ancestral character states at generic-level nodes. Nodal character state estimates were determined by defining a clade with the AddNode command, which estimates support over the subset of trees that contain that clade. This value was then multiplied by the posterior probability estimate for that node in the phylogeny.

<u>Results</u>

Phylogeny

The final alignment consisted of 2289 characters, of which 1233 were parsimonyinformative (12S 411, 216 informative; 16S 494, 189 informative; cyt-*b* 716, 416 informative; ND4 668, 412 informative). The consensus phylogeny was congruent with recent phylogenies (e.g. Wüster et al. 2008), and most nodes were resolved with strong support (Figure 11–Figure 12).

Figure 11. Ultrameric phylogram of viper relationships with nodes showing the evolution of reproductive mode inferred via parsimony. Brown eggs denote oviparity, green snakes denote viviparity, question marks denote equivocal character states. Percent of trees reconstructed with character state shown above nodes; phylogeny reconstruction shown below nodes. Asterisk denotes 100% or 1.0 Pp. Branch lengths scaled to millions of years

Figure 11 continued

Figure 12. Ultrameric phylogram of viper relationships with nodes showing the evolution of reproductive mode inferred via Bayesian RJMCMC. Brown eggs denote oviparity, green snakes denote viviparity, question marks denote equivocal character states. Percent of trees reconstructed with character state shown above nodes, posterior probability (Pp) for phylogeny reconstruction shown below nodes. Asterisk denotes 100% or 1.0 Pp. Branch lengths scaled to millions of years.

Figure 12 continued

A notable area of low support in this phylogeny is intergeneric relationships within Viperinae, which were also resolved with low support in previous work (e.g. Lenk et al. 2001, Wüster et al. 2008). We used the phylogeny that did not constrain oviparous and viviparous species to separate clades because it fit the data significantly better, with harmonic mean log likelihood of -105100 \pm 1.776 SE compared to -106000 \pm 4.329 for the constrained phylogeny (Δ BIC -413.9 for constrained model).

Character evolution

The reversible model of character evolution was most parsimonious, with an average of 17.16 and a range of 17–19 steps across all trees. Irreversible evolution resulted in an average of 24.45 and range of 20–27 steps; Dollo parsimony had an average of 24.94 and range of 23–27 steps. Parsimony character mapping showed similar patterns to character maps from other methods, but with higher node confidences (Figure 11,Figure 13). One well-supported reversal from viviparous ancestors to oviparous descendants was recovered: *Lachesis* was oviparous in 100% of trees, with the common ancestor of New World pitvipers viviparous in 99% of trees (Figure 11, Figure 13). Three other reversals were recovered with low support: oviparous *Parias* (100%) had three viviparous ancestors with 85% support, oviparous *Ovophis okinavensis* had a viviparous direct ancestor (94%).

Figure 13. Phylogram of viperid relationships showing the evolution of reproductive mode. Eggs denote oviparity; snakes denote viviparity, question marks denote species with unknown character states. Percentage of nodes recovered by parsimony/posterior probability for character reconstruction shown above node; posterior probability for phylogeny reconstruction shown below node.

In Multistate maximum likelihood comparison, the character evolution model that best fit the data was variable rates, with average ln(likelihood) (InL) of -49.30 ± 0.830 SD (Table 13). Higher InL scores represent more optimal models. Equal rates and Dollo models had lower likelihoods with Δ AIC values of 6.2 and 7.8 compared to the optimal model; these values suggest some support for the nonoptimal models. The preferred model estimated the rate of transitions from oviparity to viviparity at 0.03405 ± 0.00374 SD, approximately ten times higher than the rate of apparent reversals (0.003227 ± 0 SD).

Table 13. Maximum likelihood models tested. All models have some support under AIC, optimal model is in italics. Parameter values are averages taken over the sample of 600 trees including standard deviations. Eggs symbolize rates under oviparity; snakes symbolize viviparity.

		Character state transition rate (q)										
Model	Parameters	LnL)→ と ~	~ ~→	AIC	ΔΑΙϹ						
Variable rates	2: q _{ovip to vivip} ≠ q _{vivip to ovip}	-49.30 ± 0.83	0.0340 ± 0.0037	0.00323 ± 0.000	102.6	0						
Equal rates	1: q _{ovip to vivip} = q _{vivip to ovip}	-53.42 ± 0.84	0.0136 ±	± 0.0014	108.8	6.244						
Dollo	1: $q_{vivip to ovip} = 0$	-54.21 ± 1.45	0.0487 ± 0.0057	0	110.4	7.824						

BiSSE estimates found no significant effect of character state on speciation or extinction rates, with the optimal model constraining speciation and extinction rates to be equal for oviparous and viviparous lineages, and constraining reversals from viviparity to oviparity to minimum rates (Table 14). The only other model with Δ AIC support was the Dollo model allowing speciation and extinction rates to vary with character state. Models allowing reversals were significantly less likely, with Δ AIC values of 14.65 to 19.13.

Table 14. BiSSE models tested. Model name includes number of parameters for that model. Model 5d has some support under AIC, optimal model is bold. Parameters not mentioned in models were allowed to vary independently of each other. Parameter values are harmonic means taken over the sample of 600 trees. Eggs symbolize rates under oviparity; snakes symbolize viviparity.

			Speciation rate (λ)		Extinction rate (μ)		Character state t			
Model	Parameters	LnL	٥	2		2~)→ と ~	∼⊸ి	AIC	ΔAIC
6	All rates variable	646.7	0.113	0.196	2.33e-6	3.62e-7	0.0282	0.0031	-1283	19.13
5a	Speciation rates equal $(\lambda_{ovip}=\lambda_{vivip})$	647.8	0.1	193	3.874e-6	6.350e-6	6.770e-7	0.0102	-1286	16.39
5b	Extinction rates equal $(\mu_{ovip}=\mu_{vivip})$	647.8	0.093	0.193	4.92	25e-6	1.355e-6	0.0104	-1286	16.45
5c	Character state transition rates equal 64		0.113	0.197	2.635e-6 1.350e-6		0.0	-1283	18.65	
	(q _{ovip to vivip} =q _{vivip to ovip})									
5d	Dollo transition rates	654.0	0.122	0.196	1.039e-6	1.042e-6	0.0416	1.000e-7	-1298	4.000
	(q _{vivip to ovip} =0)									
4a	$\lambda_{ovip} = \lambda_{vivip}, \ \mu_{ovip} = \mu_{vivip}$	646.7	0.1	196	2.49)3e-6	0.0282	0.0031	-1285	16.65
3a	$\lambda_{ovip} = \lambda_{vivip}, \mu_{ovip} = \mu_{vivip},$ 646.7		0.197		1.159e-6		0.003		-1287	14.65
	$q_{ovip to vivip} = q_{vivip to ovip}$									
3b	$\lambda_{ovip} = \lambda_{vivip}, \mu_{ovip} = \mu_{vivip},$	654.0	0.1	L96	1.32	28e-6	0.042	1.000e-7	-1302	0
	q _{vivip to ovip} =0									

RJ-MCMC analysis with exponential and gamma-distributed hyperpriors had the highest harmonic mean likelihoods, and the exponential prior was used in further analysis to reflect the philosophical preference for explanations requiring fewer events (Occam's razor, FitzJohn et al. 2009). RJ-MCMC sampled the Dollo model most often, with that model used in 84.62% of the posterior probability sample. The next model with support was the equal rates model, found in 14.82% of the posterior probability sample. Character state transition rates were estimated from all post-burnin samples, with average $q_{ovip to vivip} = 0.0407 \pm 0.0002$ SD and $q_{10} = 0.0181 \pm 0.0002$ SD. Ancestral states reconstructed under RJ-MCMC generally had strong support for shallow, genuslevel nodes, with low support for deeper nodes (Figure 12–Figure 13). This finding led to a lack of support for apparent reversals in this analysis. Constraint of backbone nodes to oviparity or viviparity led to support for different models of character evolution: oviparity constraints supported Dollo models and viviparity constraints supported equal transition rate models. Oviparity constraints (-50.54 to -50.30) had greater log likelihoods than viviparity constraints (-53.38 to -53.24), but viviparity models had some support under AIC (Table 15). Nodal support for backbone nodes generally showed support for the character state of the additional node constraint.

Table 15. Bayesian RJ-MCMC models tested based on node constraints (above), and estimated character states across nodes involved in potential reversals using backbone node constraints (below). Character evolution model support measured as proportion of posterior probability; optimal model is bold. Parameter values are averages taken over the sample of 600 trees and including standard deviations. Eggs symbolize oviparity; snakes symbolize viviparity. Bolded values denote optimal models of character state change or optimal character states for node constraints. All analyses after the first have the root node fossilized to oviparity. Values below are posterior probabilities for the labeled character state at that node.

			Character state t	ransition rate (q)	Models of character state change						
Constrained nodes	Constraint	LnL	• ~~	~ →)	Equal rates	Higher rate of \rightarrow	Higher rate of \rightarrow	Dollo: Zero	^{Zero} ک	AIC	ΔAIC
None	-	-50.92 ± 1.60	0.0248 ± 0.015	0.0160 ± 0.011	0.1258	0.0010	0.0011	0.2807	0.5914	-	_
Root only	oviparity	-50.77 ± 2.41	0.0407 ± 0.016	0.0181 ± 0.013	0.1482	0.0028	0.0028	0.8462	0	-	-
Crotalinae	oviparity	-50.54 ± 2.43	0.0436 ± 0.014	0.0179 ± 0.013	0.0547	0.0031	0.0032	0.9390	0	103.1	0
	viviparity	-53.71 ± 1.02	0.0146 ± 0.004	0.0146 ± 0.010	0.9986	0.0007	0.0007	0	0	109.4	6.354
Trimeresurus sensu lato (s.l.) + Protobothrops/ Gloydius	oviparity	-50.37 ± 2.35	0.0450 ± 0.012	0.0186 ± 0.014	0.0068	0.0026	0.0026	0.9880	0	102.7	0
group + New World pitvipers	viviparity	-53.38 ± 1.03	0.014 ± 0.004	0.014 ± 0.010	0.9979	0.0009	0.0011	0	0	108.8	6.015
Trimeresurus s.l.	oviparity	-50.35 ± 2.33	0.0452 ± 0.012	0.0166 ± 0.013	0.0048	0.0027	0.0029	0.9897	0	102.7	0
	viviparity	-53.36 ± 1.02	0.0145 ± 0.004	0.0145 ± 0.010	0.9967	0.0018	0.0016	0	0	108.7	6.032
Trimeresurus s.l. excluding Trimeresurus sensu stricto(s.s.)	oviparity	-50.35 ± 2.33	0.0451 ± 0.012	0.0171 ± 0.013	0.0060	0.0024	0.0024	0.9892	0	102.7	0
	viviparity	-53.37 ± 1.03	0.0145 ± 0.004	0.0144 ± 0.010	0.9959	0.0021	0.0020	0	0	108.7	6.053
Protobothrops/Gloydius group + New World pitvipers	oviparity	-50.38 ± 2.35	0.0451 ± 0.012	0.0176 ± 0.014	0.0064	0.0023	0.0027	0.9886	0	102.8	0
	viviparity	-53.37 ± 1.02	0.0145 ± 0.004	0.0145 ± 0.010	0.9973	0.0014	0.0013	0	0	108.7	5.989
New World pitvipers	oviparity	-50.31 ± 2.30	0.0454 ± 0.012	0.0109 ± 0.012	0.0002	0.0002	0.0002	0.9993	0	102.6	0
	viviparity	-53.24 ± 1.18	0.0147 ± 0.005	0.0145 ± 0.010	0.9695	0.0151	0.0154	0	0	108.5	5.856

RJ-MCMC, reverse jump Markov chain Monte Carlo. AIC, Akaike information criterion. ΔAIC, change in AIC from minimum value to value of other model.

Constrained nodes →	Crot	alinae	Trimeresurus s.l. + group + Nev	Protobothrops/Gloydius v World pitvipers	throps/Gloydius pitvipers Trimeresurus s.l.		Trimeresuru Trimer	ıs s.l. excluding esurus s.s.	Protobothrops/Gloydius group + New World pitvipers		New World pityipers	
Estimated nodes \checkmark	oviparity	viviparity	oviparity	viviparity	oviparity	viviparity	oviparity	viviparity	oviparity	viviparity	oviparity	viviparity
AIC	103.1	109.4	102.7	108.8	102.7	108.7	102.7	108.7	102.8	108.7	102.6	108.5
<i>Trimeresurus s.l. + Protobothrops/</i> <i>Gloydius</i> group + New World pitvipers	94 O	99 V	-	-	-	-	_	_	-	_	-	-
Trimeresurus s.l.	95 O	95 V	99 O	95 V	-	-	-	-	-	-	-	-
Trimeresurus s.l. excluding Trimeresurus s.s.	96 O	73 V	99 O	73 V	100 O	73 V	-	_	_	_	-	-
Parias	100 O	100 O	100 O	100 O	100 O	100 O	100 O	100 O	_	-	_	-
Protobothrops/ Gloydius group + New World pitvipers	95 O	93 V	99 O	93 V	_	-	-	_	_	-	_	_
Protobothrops/ Gloydius group	99 O	80 O	100 O	80 O	-	-	-	_	100 O	80 O	-	_
Protobothrops + Ovophis	100 O	99 O	100 O	99 O	-	-	-	_	100 O	99 O	-	_
New World pitvipers	95 O	100 V	99 O	100 V	-	-	-	_	_	_	-	-
New World pitvipers excluding rattlesnakes	83 O	100 V	96 O	100 V	_	-	-	_	_	-	100 O	100 V
Agkistrodon + Bothriechis + Ophryacus + Lachesis	82 O	100 V	96 O	100 V	_	-	-	_	_	-	100 O	99 V
Ophryacus + Lachesis	91 O	66 V	99 O	66 V	-	_	-	_	_	_	100 O	65 V
Lachesis	100 O	100 O	100 O	100 O	-	_	-	-	-	-	100 O	100 O

O, oviparity. V, viviparity.

Discussion

Evolution of reproductive mode in vipers

We postulate multiple gains of viviparity in vipers (Figure 11Figure 13), but find equivocal support for reversals. Parsimony results showed apparent reversals in the ancestor of *Lachesis* with low support for reversals in the ancestors of *Parias, Ovophis okinavensis,* and *Protobothrops + Ovophis monticola* (Figure 11, Figure 13). Parsimony can take phylogenetic uncertainty into account but generally ignores uncertainty in character reconstruction; therefore we expect the support for these reversals to be overestimates. The *Lachesis* parsimony result, however, continues to provide an avenue for further study.

Maximum likelihood analyses found models allowing apparent reversals to be optimal (Table 13), but BiSSE likelihood and RJ-MCMC analysis found the Dollo model optimal; the latter did not infer strongly supported reversals from oviparity to viviparity in the phylogeny (Table 14, Figure 12Figure 13). BiSSE models found no significant effect of reproductive mode on speciation or extinction rates, supporting the validity of results from all model tests.

The model testing and character mapping results seem to be due to low support for intergeneric phylogenetic relationships and for the character reconstructions at backbone nodes. This is additionally supported by the results from RJ-MCMC analyses constraining backbone nodes to oviparity or viviparity (Table 15). Phylogenetic and character information in the backbone of the phylogeny does not appear to be strong
enough to overcome the influence of prior values on backbone nodes. An increase in phylogenetic resolution may help accept or reject unidirectional evolution for reproductive mode in vipers, but current results emphasize the importance of looking for congruence in multiple analyses in order to confidently detect violations of a wellestablished pattern.

Our parsimony and maximum likelihood results are in agreement with de Fraipont et al. (1996, 1999) in their detection of apparent reversals, and show that a focus on species- or genus-level variation in character states can provide perspective on evolutionary patterns that are not apparent from analysis of higher taxonomic levels (Shine and Lee 1999). Our inferred patterns also contribute to the findings of Lynch and Wagner (2009), who used parsimony and likelihood methods to support an apparent reversal from viviparity to oviparity in the boid *Eryx jayakari*. Their work finding an apparent reversal in a terminal taxon is enlightening, but inference of apparent reversals at deeper nodes would better suggest violations of Dollo's Law. Deeper inferred reversals are preferred because these nodes should be less affected if, through natural history research, an oviparous terminal is found to contain viviparous members. Our work points toward those possibilities, but better resolution is necessary.

Our results contrast with the viper work of Lynch (2009) in that we find the model constraining speciation, extinction and character state transition rates to be equal is not significantly different from models allowing those parameters to vary. Lynch found higher speciation rates in viviparous lineages. However our results agree with Lynch that transitions to viviparity were at least ninefold higher than transitions to

oviparity (Table 14).Our most optimal BiSSE model and the most optimal RJ-MCMC model inferred Dollo transition rates, which suggests an even more extreme difference in character state transition rates. The major difference between these studies appears to be taxon sampling, as this phylogeny contains more comprehensive sampling of pitvipers. Sampling differences can certainly contribute to differences in phylogeny estimation, and character reconstruction methods often assume complete taxon sampling. Because of the equivocal nature of the combined results from Lynch's (2009) and our study, we find no definitive support for a particular model of reproductive mode evolution in vipers.

Lee and Shine (1998) suggest that since neither viviparity nor oviparity is evolutionarily "superior", there is no compelling reason to expect evolution to act unidirectionally. They suggested the presence of five potential reversals in squamate reptiles, two of those occurring in viperid genera *Lachesis* and *Cerastes*. The apparent reversal in *Lachesis* is supported by parsimony, but apparent reversals in *Cerastes* were not found in any of our analyses, possibly due to low phylogenetic resolution among viperines. Lee and Shine's argument is supported by our viper results and should certainly be evaluated in other squamate reptiles, as well as expanded to other groups containing oviparous and viviparous lineages.

Implications for studies of character evolution

Our results support the importance of addressing current criticisms of phylogenetic tests of Dollo's Law and other patterns of character evolution (Goldberg and Igić 2008): taking phylogenetic uncertainty into account in character state reconstruction, fulfilling the assumptions of the analyses used, correctly assigning character state frequencies to the root node, and accounting for character-state-specific rates of lineage diversification. In some cases, preliminary analyses that ignored one or more of these criticisms inferred different patterns of character evolution, which would have led to very different conclusions.

The number of nodes in which character states are not strongly supported (Figure 11Figure 13) suggests the importance of using models of character evolution that take all sources of uncertainty into account in character state reconstruction. In some cases a character state was inferred with >95% confidence, but low support for the existence of the node lowered the confidence in that reconstruction.

Additionally, we ran MCMC analyses that tested the effect of stem length on character state reconstruction, and found it had minimal impact. Replacing the stem estimated by outgroup rooting with one of minimal length resulted in estimates that were well within one standard deviation of the estimate using the outgroup root (e.g. $q_{ovip to vivip} = 1.03 \pm 0.32$ with outgroup rooting, 1.09 ± 0.33 without). Character state assignment was similarly unaffected with node estimates changing no more than 4% posterior probability. In no case did the length of the stem affect conclusions. This suggests that the differences between our outgroup sampling and that of Lynch (2009) should have no impact on results.

Incomplete sampling violates the assumptions of most character reconstruction methods (e.g. Maddison et al. 2007), although most phylogenies at this scale do not include all species. Our sampling included >75% of viperids, and work by FitzJohn et al.

(2009) suggests BiSSE inference should be little affected by this amount of missing data. Work by Lynch (2009) in vipers found little effect on model estimates for phylogenies over 70% complete, and our ingroup sampling is more complete. Although character mapping may be affected by incomplete sampling, missing potential reversals, it appears that reproductive mode is generally conserved at the generic level. We sampled >95% of genera, making future work unlikely to change our conclusions.

Including outgroups in character analysis strongly violates the assumption of complete taxon sampling, and preliminary analysis including outgroups found all model tests strongly rejecting the Dollo model in favor of models including apparent reversals. In light of our results finding only marginal evidence of reversals, it seems that the inclusion of outgroups can have a strong influence and lead researchers to potentially incorrect conclusions.

One of the most strongly criticized aspects of phylogenetic tests of character evolution is incorrect assignment of character state frequencies to the root node of the phylogeny. Preliminary analyses that did not constrain the ancestor of viperids to oviparity resulted in reconstructions with higher likelihoods, but tended to reconstruct that root node as viviparous, which is incorrect based on prior work and the character states of extant taxa (Blackburn 1985). This error is predicted because the high frequency of viviparity in vipers can lead to incorrect estimation of character state frequencies at the root node (Goldberg and Igić 2008). Therefore we consider our constrained analysis (Figure 11Figure 13) to be the most biologically realistic reconstructions.

Although character-dependent variation in speciation and extinction rates may lead to false inferences of apparent reversal, in vipers we found no significant effect of character state on either speciation or extinction rates. Lynch (2009) found speciation rates to be significantly different for oviparous and viviparous vipers, which would suggest BiSSE to be the most appropriate analysis in this group. Our BiSSE results are somewhat different than those of Lynch as they support Dollo models while the prior work allows a low rate of reversals. Overall, we find no definitive evidence supporting or rejecting Dollo's Law.

In contrast to methodological criticisms of studies finding character reversals, Wiens (2011) suggested in certain cases methodological biases may favor Dollo's Law. He cites a few situations where the law may be incorrectly supported or give ambiguous results, including if species with reversals have higher diversification rates, if they go extinct and are undetected among extant taxa. The most relevant situation to this study is if a trait is regained multiple times within a clade, a clear pattern of loss and regain may be replaced by a mosaic of trait presence and absence. As multiple oviparous and viviparous groups are spread throughout the tree of vipers causing a mixture of states to be recovered in ancestral nodes, this could certainly lead to the ambiguity recovered by our analyses. We agree with Wiens that a detailed simulation study should provide insight into the difficulties in rejecting Dollo's Law when it is false as well as the difficulties in supporting it when it is correct.

Future work on reproductive mode evolution

Our study found equivocal support for unidirectional evolution of viviparity from oviparity. Some methods suggested reversals are possible, particularly in *Lachesis*. Below we discuss additional considerations for inferring reversals: timing of changes and identification of developmental pathways.

The assumption underlying unidirectional evolution is that genes in the pathway leading to the ancestral character accumulate mutations once the derived character is fixed in the population. This means that transitions from derived to ancestral states occurring shortly after the origin of the derived state may be permitted by Dollo's Law. The reversals which are most interesting are those separated from origins of a derived state by greater than ten million years (Marshall et al. 1994). A review of recent Dollo's Law studies (Wiens 2011) finds several examples of apparent reversals occurring 15–60 million years after a complex character was lost. Timing of potential character state change in Lachesis supports continued research on this group. The estimated origin of viviparity was in New World pitvipers, occurring 13.8 mya (95% CI 11.0-16.5; 20.1-29.1 per Wüster et al. 2008), with the estimated reversal in *Lachesis* occurring 3.9 mya (95% CI 2.9–5.2; 3.5–9.8 per Wüster, also see Figs. 1, S2). This suggests the potential reversal occurred 10 million years or more after the origin of viviparity in the group. Although Sanders et al. (2010) suggest Wüster's dates may be older than predicted by certain fossils, our relative results are generally congruent with Wüster et al.

The second requirement to discover true bidirectional evolution is to investigate developmental mechanisms that give rise to a complex character, to distinguish

between convergence and true reversal (Collin and Miglietta 2008). If a character state arises through different pathways in ancestral lineages compared to lineages with phylogenetic patterns of reversal, the apparent reversals are actually convergent and unidirectional evolution may still stand. Mechanistic examination suggests that oviparity in sand boas may in fact be an independent evolution of that character state and not a true reversal (Lynch and Wagner 2009). A separate consideration is that selection on pleiotropic effects of the genes underlying a character state may conserve the possibility for that state to re-evolve through one or few mutational changes. Conservation of genes with pleiotropic effects is likely the mechanism underlying the re-evolution of metamorphic development in salamanders after 20–42 million years (Chippindale et al. 2004) and the re-evolution of shell coiling in slipper limpets after more than ten million years (Collin and Cipriani 2003). We consider selection on pleiotropic effects to be a mechanism driving true reversals to ancestral states. Comparison of reproductive mechanisms in the viperid groups mentioned above is beyond the scope of our study, but our results suggest that detailed comparisons of these genera with their closest viviparous relatives should prove enlightening.

Conclusions

When challenging an accepted explanation of biological patterns, one must find strong inferences of a competing pattern and be confident in the accuracy of those inferences. For example, the growing number of reported exceptions to the pattern of Dollo's Law (reviewed in Collin and Miglietta 2008) are accompanied by a growing number of criticisms of the methods used, citing overconfidence in the results (Lee and Shine 1998, Blackburn 1999, Goldberg and Igić 2008). Our methods provide a conservative test of Dollo's Law and find equivocal support for violations of that law, illustrating the validity of current criticisms. These methods are easily replicated and should provide a strong test for any examination of patterns of character evolution.

In the case of transitions between oviparity and viviparity, the difficulty of these changes has simply been asserted and not empirically demonstrated (Lee and Doughty 1997). Costs of oviparity such as lowered ability to keep eggs at the proper temperature have been discussed often (Shine 1985, Shine and Lee 1999, Shine 2004), but the benefits of oviparity and the costs of viviparity are rarely considered (but see Lynch and Wagner 2009). Pregnant females are burdened and must thermoregulate, making them more vulnerable to predation and less able to capture prey. Viviparous females may require appropriate energy sources throughout gestation, while oviparous females are freed from reproductive constraints on energy intake after laying. These and other reasons suggest selection may favor bidirectional evolution. We suggest further study on the patterns and processes of reproductive mode changes, but place the burden of proof on adherents of the view that oviparity has not reversed within squamates.

Reproductive mode variation is a dramatic macroevolutionary pattern in amniotes, and as such reversals from viviparity to oviparity are interesting from a variety of developmental and evolutionarily ecological perspectives. Our analysis provides potentially rewarding avenues of research in this area. Detailed comparative studies of embryo-maternal relationships across potential transitions in viperid reproductive modes, as well as investigation into potential selective factors driving the retention of or

reversal to oviparity, are clearly called for. Moreover, within vipers the putative pattern of origins and reversals in reproductive mode warrant further analysis in the context of an equally complex pattern for the presence and absence of parental care in these snakes (Greene et al. 2002).

Acknowledgments

We sincerely thank W. Wüster for sharing gene alignments, A. Cortiz for

information on reproductive modes, W. Maddison for continued support with Mesquite,

E. Goldberg and R. FitzJohn for help with BiSSE, and J. Daza, T. Hether, S. Johnson, H.

Kalkvik, M. Manjerovic, G. Metzger, and two reviewers for comments on the

manuscript.

References

- Austin CC (2000) Molecular phylogeny and historical biogeography of Pacific Island boas (Candoia). Copeia, 2000:341–352.
- Benabib M, Kjer KM, Sites JW, Jr. (1997) Mitochondrial DNA sequence-based phylogeny and the evolution of viviparity in the Sceloporus scalaris group (Reptilia, Squamata). Evolution, 51:1262-1275.
- Blackburn DG (1982) Evolutionary origins of viviparity in the reptilia. I. Sauria. Amphibia-Reptilia, 3:185-205.
- Blackburn DG (1985) Evolutionary origins of viviparity in the Reptilia. II. Serpentes, Amphisbaenia, and Ichthyosauria. Amphibia-Reptilia, 6:259-291.
- Blackburn DG (1995) Saltationist and punctuated equilibrium models for the evolution of viviparity and placentation. J Theor Biol, 174:199-216.
- Blackburn DG (1999) Are viviparity and egg-guarding evolutionarily labile in squamates? Herpetologica, 55:556-573.
- Brandley MC, Huelsenbeck JP, Wiens JJ (2008) Rates and patterns in the evolution of snake-like body form in squamate reptiles: Evidence for repeated re-evolution of

lost digits and long-term persistence of intermediate body forms. Evolution, 62:2042–2064.

- Burnham, KP, Anderson DR (2002). Model selection and multimodel inference: A practical information-theoretic approach. Springer.
- Castoe TA, Parkinson CL (2006) Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Mol Phylogenet Evol, 39:91–110.
- Castoe TA, Smith EN, Brown RM, Parkinson CL (2007) Higher-level phylogeny of Asian and American coralsnakes, their placement within the Elapidae (Squamata), and the systematic affinities of the enigmatic Asian coralsnake Hemibungarus calligaster. Zool J Linn Soc, 151:809-831.
- Chippindale PT, Bonett RM, Baldwin AS, Wiens JJ (2004) Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution, 58:2809-2822.
- Collin R, Cipriani R (2003) Dollo's Law and the re-evolution of shell coiling. Proc R Soc Lond, Ser B: Biol Sci, 270:2551-2555.
- Collin R, Miglietta MP (2008) Reversing opinions on Dollo's Law. Trends Ecol Evol, 23:602-609.
- de Fraipont M, Clobert J, Barbault R (1996) The evolution of oviparity with egg guarding and viviparity in lizards and snakes: A phylogenetic analysis. Evolution, 50:391-400.
- de Fraipont M, Clobert J, Meylan S, Barbault R (1999) On the evolution of viviparity and egg-guarding in squamate reptiles: A reply to R. Shine and M. S. Y. Lee. Herpetologica, 55:550-555.
- Dollo L (1893) Les lois de l'évolution. Bulletin de la Société Belge de Géologié, de Paléontologie et d'Hydrologie, 7:164–166.
- Dollo L (1905) Les Dinosauriens adaptés à la vie quadrupède secondaire. Bulletin de la Société Belge de Géologié, de Paléontologie et d'Hydrologie, 19:441–448.
- Domes K, Norton RA, Maraun M, Scheu S (2007) Reevolution of sexuality breaks Dollo's law. P Natl Acad Sci USA, 104:7139-7144.
- Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol, 7:214.
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32:1792-1797.

- Ekman S, Andersen HL, Wedin M (2008) The limitations of ancestral state reconstruction and the evolution of the ascus in the Lecanorales (Lichenized ascomycota). Syst Biol, 57:141-156.
- Fitch HS (1970) Reproductive cycles in lizards and snakes. University of Kansas Museum of Natural History, Miscellaneous Publications, 52:1-247.
- FitzJohn RG, Maddison WP, Otto SP (2009) Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst Biol, 58:595-611.
- Galis F, Arntzen JW, Lande R (2010) Dollo's Law and the irreversibility of digit loss in Bachia. Evolution, 64:2466-2476.
- Goldberg EE, Igić B (2008) On phylogenetic tests of irreversible evolution. Evolution, 62:2727-2741.
- Greene HW, May PG, David L. Hardy S, Sciturro JM, Farrell TM (2002) Parental behavior by vipers. In: Schuett GW, Höggren M, Douglas ME, Greene HW (eds), Biology of the vipers. Eagle Mountain Publishing, Eagle Mountain, UT, pp. 179–206.
- Holman JA (2000) Fossil snakes of North America: Origin, evolution, distribution, paleoecology Indiana University Press, Bloomington, IN.
- Huelsenbeck JP, Bollback JP (2001) Empirical and hierarchical Bayesian estimation of ancestral states. Syst Biol, 50:351-366.
- Kohlsdorf T, Lynch VJ, Rodrigues MT, Brandley MC, Wagner GP (2010) Data and data interpretation in the study of limb evolution: A reply to Galis et al. On the reevolution of digits in the lizard genus Bachia. Evolution, 64:2477-2485.
- Kohlsdorf T, Wagner GP (2006) Evidence for the reversibility of digit loss: A phylogenetic study of limb evolution in Bachia (Gymnophthalmidae: Squamata). Evolution, 60:1896-1912.
- Lee MSY, Doughty P (1997) The relationship between evolutionary theory and phylogenetic analysis. Biol Rev, 72:471–495.
- Lee MSY, Shine R (1998) Reptilian viviparity and Dollo's law. Evolution, 52:1441-1450.
- Lenk P, Kalyabina S, Wink M, Joger U (2001) Evolutionary relationships among the true vipers (Reptilia: Viperidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol, 19:94-104.
- Lynch VJ (2009) Live-birth in vipers (Viperidae) is a key innovation and adaptation to global cooling during the Cenozoic. Evolution, 63:2457–2465.

- Lynch VJ, Wagner GP (2009) Did egg-laying boas break Dollo's Law? Phylogenetic evidence for reversal to oviparity in sand boas (Eryx: Boidae). Evolution, 64:207-216.
- Maddison DR, Maddison WP (2005) MacClade 4: Analysis of phylogeny and character evolution. http://macclade.org.
- Maddison WP, Midford PE, Otto SP (2007) Estimating a binary character's effect on speciation and extinction. Syst Biol, 56:701-710.
- Malhotra A, Thorpe RS (2004) A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pitvipers. Mol Phylogenet Evol, 32:83–100.
- Marshall CR, Raff EC, Raff RA (1994) Dollos law and the death and resurrection of genes. P Natl Acad Sci USA, 91:12283-12287.
- Montgomery SH, Capellini I, Barton RA, Mundy NI (2010) Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis. BMC Biol, 8:19.
- Neill WT (1964) Viviparity in snakes: Some ecological and zoogeographical considerations. Am Nat, 98:35-55.
- Nosil P, Mooers A (2005) Testing hypotheses about ecological specialization using phylogenetic trees. Evolution, 59:2256–2263.
- Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden.
- Pagel M, Meade A (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat, 167:808.
- Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol, 53:673-684.
- Parkinson CL (1999) Molecular systematics and biogeographical history of pitvipers as determined by mitochondrial ribosomal DNA sequences. Copeia, 1999:576–586.
- Parkinson CL, Campbell JA, Chippindale PT (2002) Multigene phylogenetic analysis of pitvipers, with comments on their biogeography. In: Schuett GW, Höggren M, Douglas ME, Greene HW (eds), Biology of the Vipers. Eagle Mountain Publishing, Eagle Mountain, Utah, pp. 93–110.
- Parmley D, Holman JA (2007) Earliest fossil record of a pigmy rattlesnake (Viperidae: Sistrurus Garman). J Herp, 41:141-144.

- Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol, 53:793–808.
- Pyron RA, Burbrink FT (2009) Neogene diversification and taxonomic stability in the snake tribe Lampropeltini (Serpentes: Colubridae). Mol Phylogenet Evol, 52:524-529.
- Rambaut A, Drummond AJ (2007) Tracer v1.4. Available at http://beast.bio.ed.ac.uk/Tracer.
- Rasmussen C, Cameron SA (2010) Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol J Linn Soc, 99:206-232.
- Rasmussen JB, Howell KM (1998) A review of Barbour's short-headed viper, Adenorhinos barbouri (Serpentes: Viperidae). Af J Herp, 47:69-75.
- Sanders KL, Mumpuni, Hamidy A, Head JJ, Gower DJ (2010) Phylogeny and divergence times of filesnakes (Acrochordus): Inferences from morphology, fossils and three molecular loci. Mol Phylogenet Evol, 56:857-867.
- Shine R (1985) The evolution of viviparity in reptiles: an ecological analysis. John Wiley and Sons, New York.
- Shine R (2004) Does viviparity evolve in cold climate reptiles because pregnant females maintain stable (not high) body temperatures? Evolution, 58:1809-1818.
- Shine R, Lee MSY (1999) A reanalysis of the evolution of viviparity and egg-guarding in squamate reptiles. Herpetologica, 55:538-549.
- Simpson GG (1953) The major features of evolution. Columbia University Press, New York, NY.
- Surget-Groba Y, Heulin B, Guillaume C-P, et al. (2001) Intraspecific phylogeography of Lacerta vivipara and the evolution of viviparity. Mol Phylogenet Evol, 18:449-459.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol and Evol.
- Tinkle DW, Gibbons JW (1977) The distribution and evolution of viviparity in reptiles. Miscellaneous Publications of the University of Michigan Museum of Zoology, 154:1-55.

- Whiting MF, Bradler S, Maxwell T (2003) Loss and recovery of wings in stick insects. Nature, 421:264.
- Wiens JJ (2011) Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo's Law. Evolution, 65:1283-1296.
- Wiens JJ, Kuczynski CA, Duellman WE, Reeder TW (2007) Loss and re-evolution of complex life cycles in marsupial frogs: Does ancestral trait reconstruction mislead? Evolution, 61:1886-1899.
- Wiens JJ, Kuczynski CA, Smith SA, Mulcahy DG, Sites JW, Townsend TM, Reeder TW (2008) Branch lengths, support, and congruence: Testing the phylogenomic approach with 20 nuclear loci in snakes. Systematic Biology, 57:420–431.
- Wüster W, Crookes S, Ineich I, et al. (2007) The phylogeny of cobras inferred from mitochondrial DNA sequences: Evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). Mol Phylogenet Evol, 45:437–453.
- Wüster W, Peppin L, Pook CE, Walker DE (2008) A nesting of vipers: Phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Mol Phylogenet Evol, 49:445-459.
- Xiang QY, Thomas DT (2008) Tracking character evolution and biogeographic history through time in Cornaceae - Does choice of methods matter? J Syst Evol, 46:349-374.

CHAPTER 5: EVALUATING SOUTH AMERICAN DIVERSIFICATION HYPOTHESES IN PITVIPERS (SERPENTES: CROTALINAE)

Introduction

Historical biogeographic analysis can be divided into three phases: examining geographic ranges of one or a few focal taxa, inductively proposing processes causing observed patterns, and testing those proposals for generalizability (Ball, 1975; Crisp et al., 2010). In the Neotropics, many hypotheses have been generated to explain the great number of species found there but few comprehensive tests have been conducted. Although biogeography deals with past events that are not directly observed, those events have predictable effects on the landscape and its component species that lead to testable expectations for the evolution of lineages. Hypotheses generated by past work on independent datasets can be tested in new empirical systems that can support some alternative explanations and reject others in order to identify the processes with greatest effects on biodiversity in a focal region.

Traditional biogeographic hypotheses often relied solely on area cladograms, which combine the evolutionary relationships of multiple organisms to compile relationships among geographic areas (reviewed in Donoghue and Moore, 2003). These methods rely solely on the branching patterns of phylogenetic trees, but ignore the information contained in branch lengths: relative amounts of evolution from common ancestors. More recent studies have taken advantage of analyses that connect fossil

data to these branch lengths and include estimations of divergence dates along with the relationships among taxa (e.g. Chacón et al., 2012; Ruiz et al., 2012). This allows estimates of temporal relationships as well as spatial relationships, and greatly expands the power of phylogenetics to test biogeographic predictions.

Neotropical historical biogeography has mostly focused on the late Tertiary (Neogene) and Quaternary periods, which hosted a number of geological and climatic changes that should have affected speciation (Hoorn and Wesselingh, 2010a). In the Miocene, the Andes mountains rose, which redirected watersheds to the east: water from the northern-flowing proto-Orinoco basin shifted course to flow east as the new Amazon River (Figure 14). During periods of high sea levels in the Miocene and Pliocene, inland brackish seas filled in the Amazonian tributaries (Pebas basin), lowlands east of the southern Andes (Paraná basin), and the area between the Guyana and Brazilian shields (Pirabas basin, Figure 14–Figure 15). Finally, in the Pliocene and Pleistocene, climate cycles associated with glaciation towards the poles may have changed habitats in the Amazon basin (e.g. Figure 16).

Figure 14. Paleogeographic maps of South America from Hoorn et al. (2010), representing geological barriers to pitviper expansion. Before entrance of pitvipers, the Andean range began to rise (A), with a peak of mountain building approximately 12Ma and inland seas forming (B). Uplift continued and restricted biotic dispersal (C). The Amazon River began its current flow pattern, *terre firme* rainforests expanded, and the Isthmus of Panama closed allowing the Great American Biotic Interchange (D). By the Quaternary Period geologic change had completed (E). Note that South America migrated north during the Paleogene period.

Figure 15. Map of South America modified from Rebata-H et al. (2006), showing potential barriers to organismal dispersal: areas of marine incursion, the Andes mountain range and the Amazon River. Letters represent the regions used in this study, with A also representing outgroups with ranges north of the study area. Times where dispersal is limited or closed between adjacent areas noted on lines (dispersal constraints 0.001 and 0.0001, respectively, in Lagrange).

Figure 16. Map of South America modified from Rebata-H et al. (2006) showing refugial areas predicted by Haffer (1959): A) Chocó, B) Nechí, C) Catatumbo, D) Imerí, E) Napo, F) East Peruvian, G) Madeira-Tapajós, H) Belém, and I) Guiana. After 10 Ma dispersal from mid-Andean and Pacific versant sites (A-C) to Amazonian sites (D-I) is constrained (set to 0.0001 in Lagrange).

South America is a popular site for biogeographic work, partially because the Neotropics inform hypotheses on why the tropics contain more species than temperate areas, and also because of the amazing diversity of Amazonia. For example, the Neotropics contain the world's greatest plant diversity (Myers et al., 2000). Multiple hypotheses have been put forth to explain Neotropical diversity, including long-term climatic stability (Raven and Axelrod, 1974), Pleistocene climatic instability (Haffer, 1969), and interactions among geological and climatic processes occurring across the last 25 million years (Bush, 1994). Unfortunately, many of these explanations were based on incomplete knowledge – Nelson et al. (1990) showed that proposed biodiversity hotspots in Amazonia coincided with locations of biological field stations and field expeditions, suggesting that hypotheses were based on sampling artifacts instead of biological processes. Only in the 1990s did the approximate timing of the origin of modern Amazonia and its biota begin to be known (Wesselingh et al., 2010). In recent decades progress in geological knowledge, molecular phylogeny, climate modeling, and biodiversity documentation and modeling have shed light on diversification timing in South America (Hoorn and Wesselingh, 2010b; Wesselingh et al., 2010).

Because of molecular evidence, hypotheses for tropical diversification shifted from those relying on Quaternary climate changes to those citing primarily Neogene geographical and topographical reorganization, and most recently to those focusing on both types of drivers (Table 16, Rull, 2011).

Table 16. South American diversification hypotheses (Hyp.) and predictions tested in this study. Letter codes in spatial predictions correspond to areas defined in text and Figure 15, Figure 16, and Figure 19.

Name	Description	Spatial Prediction	Temporal Prediction	
Allopatry				
1. Andean allopatry	Rising of the Andes split populations	Sister lineages east (A–B) and west (C–G) of mountain range	10 million years ago (Ma)	
2. Marine incursion	Inundation of inland seas split populations	Sister lineages across basins:	Marine highstands:	
		Pebas: slopes of Andes (B) vs. central Amazon region (C or D), or between northern and southern areas of	Pebas: 3.6–5, 8–10 and 13.8–16 Ma	
		central Amazon (C vs. D)	Pirabas: 3.6–5 and	
		Pirabas: Guyana shield (C) vs. Brazilian shield (E)	13.8–16 Ma	
		Paraná: southeastern region (F) vs. southern Andes (G)	Paraná: 8–10 Ma	
3. River barrier	Origin of Amazon River split populations	Sister lineages north (C) and south (D–E) of Amazon River	6.8 Ma or 2.4 Ma	
Parapatry and climate				
4. Andean altitude	Rising of the Andes generated new climatic niches	Sister or ancestor-descendant lineages across Andean climate zones (CAC vs. CAT vs. CAF, SAC vs. SAT)	CAC vs. CAT 12 Ma, CAT vs. CAF 10 Ma	
5. Museum	Middle altitude slopes with stable climate generated diversity during Quaternary; species preserved in lowlands	Sister or ancestor-descendant lineages across caliente and templada climate zones in Andes, Guyana and Brazilian highlands (e.g. CAC vs. CAT)	0.01–2.6 Ma	
6. Divergence-vicariance	Middle altitude slopes with changing climate generated diversity during Quaternary	Sister or ancestor-descendant lineages across all climate zones in Andes, Guyana and Brazilian highlands (e.g. CAC vs. CAT vs. CAF)	0.01–2.6 Ma	
7. Refugia	Climatically stable pockets of lowland forest isolated populations and drove divergence between refugia	Sister lineages across adjacent and nonoverlapping refugial areas (e.g. D vs. E)	0.01–2.6 Ma	

These hypotheses can be generally classified as allopatric due to geologic change, parapatric due to geologic change, or based on climate changes.

Researchers have long assumed that the rising of the Andes led to allopatric speciation between Pacific and Amazonian lowland taxa (Hyp. 1, e.g. Brumfield and Edwards, 2007; Chapman, 1917). However, the importance of this event to diversification is mostly untested. The age of Andean uplift has not been settled (Rull, 2011), but recent research suggests the Central Andes rose in the Paleogene, 65–34 million years ago (Ma, Hoorn et al., 2010). Mountain formation in the Northern Andes first peaked approximately 23 Ma, with the most intense peaks of uplift approximately 12 Ma and 4.5 Ma. The mountain range was predicted to be low in Ecuador 20 Ma, leaving a possible connection between the Pacific and Amazonian versants through which terrestrial animals could pass (Hoorn, 1993; Hulka et al., 2006). That passage is expected to have closed by 9 Ma (Hulka et al., 2006). The Eastern Cordillera, which would have closed off dispersal from Panama to the Amazonian basin, started developing between 12.9 and 11.8 Ma (Hoorn et al., 1995) and is thought to have reached 50% of its current elevation, approximately 2000m, by 10 Ma (Gregory-Wodzicki, 2000; Hartley, 2003). This hypothesis predicts that species on either side of the Andes should form separate clades as a result of genetic isolation, and speciation should occur approximately 10 Ma.

A related hypothesis is that Andean uplift led to speciation via the opening of new climatic niches (Hyp. 4, Chapman, 1917; Chapman et al., 1926). Mountain rise led to the generation of new environments with colder climates, which would have been

populated by extensions of species ranges from lower altitudes. Local adaptation to these new habitats would have led to speciation via parapatry. This hypothesis predicts that sister species should have adjacent ranges, species at higher altitudes should be younger, and speciation should occur during or soon after the time of uplift. As the Guyana and Brazilian highlands predate the predicted entrance of vipers into South America (de Almeida et al., 1981), the rising of these areas would not affect viper diversification and is therefore not considered here.

Gutberlet and Campbell (2001) attributed the evolution of toadheaded pitvipers (*Bothrocophias*) to a combination of Andean allopatry and altitudinal uplift. They expected allopatry to cause divergence of Amazonian versant species *B. hyoprora* and *B. microphthalmus* from Pacific versant species *B. myersi, B. colombianus,* and *B. campbelli*. They expected that divergence within these groups was the result of altitudinal uplift. On the Amazonian side, uplift would drive divergence of lowland *B. hyoprora* from highland *B. microphthalmus*. On the Pacific side, *B. myersi* is the lowland form and would have diverged from *B. colombianus*, found in intermediate to high elevations, via parapatry. Highland inhabitant *B. campbelli* would have diverged from the group most recently via parapatry.

Altitudinal shift is also proposed to drive speciation in forest-pitvipers (*Bothriopsis*), separating cloud forest species *B. medusa*, *B. chloromelas*, *B. oligolepis*, and *B. pulchra* from lowland forms *B. bilineata* and *B. taeniata* (Werman, 2005). The phylogenetic affinities of *Bothrops andianus* are poorly characterized (see discussion in Fenwick et al., 2009), but its divergence is also attributed to Andean uplift (Werman,

2005). Zamudio and Greene (1997) suggested Andean allopatry drove the separation of Central American bushmasters *Lachesis melanocephala* and *L. stenophrys* from South American bushmasters *L. acrochorda* and *L. muta*.

A second allopatric hypothesis was proposed by Nores (1999) for avian speciation: diversification was driven by inland seas which filled during late Tertiary and Quaternary periods of sea-level rise (Hyp. 2, Figure 15). Haq et al. (1987) proposed a period of sea level rise about 100 m above present levels occurred in the Zanclean (5– 3.6 Ma, Walker and Geissman, 2009) and a period of rise up to 150 m above present levels in the Langhian through early Serravallian (16–13.8 Ma). Incursions of saltwater into inland areas were predicted at these times between the Guiana and Brazilian Shields (Pirabas-Barreiras basin, Rossetti, 2001; Rossetti et al., 2005). Incursions were predicted to the south (Paraná basin) just after the Miocene drop in sea level at 10–8 Ma (Marshall et al., 1993).

In addition, the rising of the Eastern Cordillera of the Andes gave rise to a wetland basin to the east, Lake Pebas, which was sometimes inundated with saltwater from the Caribbean and/or Pacific (Rebata-H et al., 2006). One inundation was predicted to occur during the 16–13.8 Ma marine highstand, and an ebb to a more restricted basin occurred 10–8 Ma (Rebata-H et al., 2006). Werman (2005) suggested the divergence of Central American from South American bushmasters may have been due to isolation by the Pebas basin, an alternative to the Andean allopatry explanation favored by Zamudio and Greene (1997). The occurrence and extent of all of these inland seas is still controversial (Hoorn et al., 2010; Rull, 2011).

An additional effect of the rising of the Andes is the changing of river flow from the northern-flowing proto-Orinoco river to the northeast-flowing Amazon River, with entrenchment of the river in its current direction of flow 6.8 Ma (Figueiredo et al., 2009, 2010). Figueiredo et al. (2009, 2010) mentioned that the modern Amazon River was fully established 2.4 Ma, and this date was argued to be the correct date of river establishment by Campbell (2010). The river barrier hypothesis proposes that these changes in drainage patterns in the Miocene split populations to the north and south of the new barrier (Hyp. 3). This proposal is a modification of the original riverine barrier hypothesis proposed by Wallace to explain the distribution of monkeys in Amazonia (Wallace, 1852). Critics question whether the barrier effect of Amazonian rivers in the past was strong enough to cause speciation (Haffer, 2008). They cite the lack of spatial separation of animals in headwater regions, the transfer of land from one side of the river to the other as flow patterns change, and that the barrier effect may have been considerably weakened during dry periods of Quaternary climate cycles when rivers were contained within narrow, deep canyons (Haffer, 2008).

The refugia hypothesis, originally described by Haffer (1969), suggests that Pleistocene climate cycles iteratively separated tropical populations into separate areas of suitable habitat at the edges of the Amazon basin during glacial maxima and then connected them as forests expanded during glacial minima (Hyp. 7). He based the hypothesis on distributions of Amazonian endemic birds, and identified refugia based on range overlap in conjunction with areas of high rainfall (Bush, 1994; Haffer, 1969). This hypothesis dominated explanations of Neotropical diversity until recent decades (Hoorn

et al., 2011). Other work found support for refugia in some plants, butterflies, bees, scorpions, amphibians and lizards (reviewed in Bush, 1994), leading researchers to redraw refugial boundaries. The proliferation of proposed refugial areas (Bush, 1994), and the extension of proposed times of speciation across the Cenozoic (Haffer, 1997; Haffer, 2008) have frustrated attempts to test this hypothesis, but Pleistocene dating of speciation is still commonly assumed. Critics contend that interpretations of high endemism in certain areas are an artifact of disproportionate collecting intensity, not a result of environmental conditions driving speciation (Nelson et al., 1990). Others dismiss the assumed glacial aridity in the Neotropics (Colinvaux, 1997; Colinvaux et al., 1996; but see Simpson, 1997), and this view is presently widespread (Rull, 2011). As tested in this study, the refugia hypothesis predicts that sister species should be found in adjacent areas of endemism, and that speciation occurred in the Quaternary.

The refugia hypothesis is proposed to drive divergence between forest-pitviper species *Bothriopsis bilineata* and *B. taeniata* (Werman, 2005). Relationships within Amazonian lanceheads (*Bothrops*) and among populations within lancehead species may also be driven by isolation in refugial areas (Werman, 2005; Wüster et al., 1999). Climate change was also implicated in the evolution of southern lanceheads (*Rhinocerophis*) and Brazilian lanceheads (*Bothropoides*), although this was attributed to earlier Cenozoic cooling and drying trends and rain shadow effects of the rising Andes (Werman, 2005).

The museum hypothesis (Hyp. 5) also relies on climatic fluctuations driving speciation. In this case new species originate in climatically stable habitat pockets in highlands surrounding the Amazon during Pleistocene climate change. Those species

then expand their ranges into the Amazonian lowlands, which preserve them as a museum preserves specimens. The expectation is that the stable climate of Amazonian lowlands during climate fluctuations kept lineages from going extinct, and allowed those lineages to persist until the present. This preservation leads to the present great diversity of organisms in northern South America. The museum hypothesis does not require the major floral changes expected by the refugia hypothesis (Fjeldså et al., 1999; Haffer, 2008), and therefore avoids those criticisms of the refugia hypothesis that dismiss Amazonian aridity (Colinvaux, 1997; Colinvaux et al., 1996). This hypothesis predicts Pleistocene speciation and sister species occurring between lowlands and highland slopes.

The disturbance-vicariance hypothesis (Hyp. 6) suggests that Quaternary climate change led to species migration up and down highland slopes, a stressor that could have led to fragmentation of the geographic range and allopatric speciation of lineages (Bush, 1994; Haffer, 2008). This explanation is related to the intermediate disturbance hypothesis in ecology. Under this model the areas of greatest movement, the upland slopes, should be the areas of greatest endemic diversity. Sister species should occur across slopes with most speciation occurring in the Pleistocene. Because this hypothesis relies on existing highland areas at the time of speciation, Andean, Guyanan and Brazilian highlands could all contribute to biodiversity.

In general, molecular phylogenetic evidence does not appear to show a chronological trend for speciation of extant lineages, with timing varying among different types of organisms (Rull, 2008). Evidence suggests many extant clades

originated in the Neogene and continued to speciate through the Quaternary, with others constrained to only one of those periods (Rull, 2011).

Methods of biogeographic reconstruction that take advantage of the temporal information in branch lengths have been introduced recently (Goldberg et al., 2011; Ree and Sanmartín, 2009), and offer more rigorous tests of biogeographic hypotheses than cladistic analyses that relied only on branching patterns (e.g. Maciel et al., 2010; Nylander et al., 2008; Passoni et al., 2008). Dispersal-Extinction-Cladogenesis (DEC) methods model dispersal and local extinction along branches of a phylogeny, then estimate the ranges of descendant branches at each node (Ree et al., 2005; Ree and Smith, 2008). This method takes its origin from ancestral character state reconstruction and is therefore subject to the benefits and concerns of character estimation methods. For example, these methods assume complete taxonomic sampling, which is a concern that should be addressed in current and future work (Rull, 2011).

South American pitvipers are an ideal group for testing Neogene and Quaternary diversification hypotheses. Bothropoid vipers (genera *Bothrops, Bothriopsis, Bothropoides, Rhinocerophis,* and *Bothrocophias*) entered South America from Central America approximately 15–10 Ma (Castoe et al., 2009), and South American bushmasters (*Lachesis*) diverged 18–6 Ma (Zamudio and Greene, 1997); these groups therefore existed in the area during the time when many of the geological changes explained above occurred. In addition, the South American rattlesnake (*Crotalus durissus*) entered the continent near the time of the closure of the Isthmus of Panama at 3Ma (Wüster et al., 2005). Pitvipers greatly diversified in South America, generating

51 species in the six genera and great population-level diversity in the rattlesnake (Campbell and Lamar, 2004; Wüster et al., 2005). Bushmasters originated in Central America, with *Lachesis melanocephala* and *L. stenophrys* located there and *Lachesis acrochorda* and *L. muta* expanding into northern South America (Campbell and Lamar, 2004). A single bothropoid invasion gave rise to toadheaded pitvipers (*Bothrocophias*) in the Andes, Amazonian lanceheads (*Bothrops*) and forest-pitvipers (*Bothriopsis*) in Amazonia, Brazilian lanceheads (*Bothropoides*) on the Brazilian Shield, and southern lanceheads (*Rhinocerophis*) in the southeast (Fenwick et al., 2009). The extensive range and overlap in generic distributions provides multiple groups for testing any given hypothesis.

We reconstruct the biogeographic history of South American pitvipers using sequence data to test the specific spatial and temporal predictions of the hypotheses described above. We expect to find a select set of hypotheses that have empirical support from pitviper speciation events, which represent promising avenues for testing in other biological systems. We expect to find another set of hypotheses with low or no support from pitviper speciation, which should be viewed with caution by researchers working with other Neotropical terrestrial animals.

<u>Methods</u>

Input data

In order to infer accurate branch lengths and divergence times from Miocene to present, we used a large mitochondrial DNA dataset including 99 terminals, extensively

sampling all major New World lineages (Table 17). Outgroup species are mainly taken from Castoe & Parkinson (2006) and sources therein; ingroup species are mainly from Fenwick et al. (2009). Taxonomic references in this study follow Fenwick et al. (2009) for ingroup and Campbell and Lamar (2004) and Malhotra and Thorpe (2004) for outgroup.

We used four mitochondrial fragments common to pitviper studies: 12S and 16S ribosomal RNA genes and protein coding genes NADH dehydrogenase subunit four (ND4) and cytochrome b (cyt-*b*). We added new sequences for 33 samples following the methods of Castoe and Parkinson (2006). Alignments were done with the MUSCLE algorithm (Edgar, 2004) in MEGA 5.05 (Tamura et al., 2011) using default parameters. Internal gaps in the alignment represented by <50% of taxa were deleted; all other gaps were treated as missing data in analysis. We used separate partitions for each rRNA gene and for codon positions of protein-coding fragments. We determined partition-specific models with MrModelTest 2.2 (Nylander, 2004) using the Akaike Information Criterion (AIC).

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4
South American ingroup							
Lachesis acrochorda	CLP 319		Colombia	JN870187	JN870197	JN870197	JN870212
Lachesis melanocephala	-		Costa Rica: Peninsula de Oro			U96018	U96028
Lachesis muta	Cadle 135		Peru	AF057221	AF057268	AY223604	AY223644
Lachesis stenophrys	-		Costa Rica: Limón Prov.	AF057220	AF057267	AY223603	U41885
Bothrocophias campbelli	INHMT uncataloged		Ecuador: Chimborazo Prov.			AF292584	AF292622
Bothrocophias hyoprora	-		Colombia: Dept. Amazonas	AF057206	AF057253	AY223593	U41886
Bothrocophias microphthalmus		LSUMZ H9372	Peru: Pasco Region	AY223657	AY223670	AY223594	AY223638
Rhinocerophis alternatus	DPL 2879		-	AY223660	AY223673	AY223601	AY223642
Rhinocerophis ammodytoides		MVZ 223514	Argentina: Neuquén Prov.	AY223658	AY223671	AY223595	AY223639
Rhinocerophis cotiara	WW		Brazil	AF057217	AF057264	AY223597	AY223640
Rhinocerophis fonsecai	IB 55543		Brazil: São Paulo			AF292580	AF292618
Rhinocerophis itapetiningae	ITS 427		Brazil: São Paulo	EU867253	EU867265	EU867277	EU867289
Bothropoides alcatraz	CBGM baz001		Brazil: São Paulo: Ilha de Alcatrazes			AY865820	
Bothropoides diporus	PT 3404		Argentina: La Rioja Prov.	DQ305431	DQ305454	DQ305472	DQ305489
Bothropoides erythromelas	RG 829		Brazil: Algoas	AF057219	AF057266	AY223600	U41877
Bothropoides insularis	WW		Brazil: São Paulo: Ilha Queimada Grande	AF057216	AF057263	AY223596	AF188705, AY223641
Bothropoides jararaca	(19)6		Brazil: São Paulo	EU867254	EU867266	EU867278	EU867290
Bothropoides neuwiedi		IB 5555	Brazil: São Paulo			AF292585	AF292623
Bothropoides pauloensis	CLP 3		-	EU867260	EU867272	EU867284	EU867296

Table 17. Species used, voucher data, collecting locality, and GenBank accession numbers for each species analyzed in pitviper phylogeny. Accession numbers labeled TBD are sequences original to this study. Institutional abbreviations are listed in Leviton, Gibbs, Heal & Dawson (1985).

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4
Bothropoides pubescens	SC N132		Uruguay: Dept. Rocha	JN870180	JN870192	JN870200	TBD
Bothriopsis bilineata	S.2		Brazil: São Paulo	TBD	TBD	TBD	TBD
Bothriopsis chloromelas		LSUMZ 41037	Peru: Pasco Region	DQ305430	DQ305453	DQ305471	DQ305488
Bothriopsis oligolepis	WW 2957		Peru: Cuzco Region			TBD	TBD
Bothriopsis pulchra	JM 78		Ecuador	JN870179		TBD	TBD
Bothriopsis taeniata	-		Suriname	AF057215	AF057262	AY233592	AY223637
Bothrops andianus		CORBIDI 8355	-	TBD	TBD	TBD	TBD
Bothrops asper	CLP50	MZUCR 11152	Costa Rica: Puntarenas Prov.	AF057218	AF057265	AY223599	U41876
Bothrops atrox	WW 743		-	AY223659	AY223672	AY223598	AY223641
Bothrops barnetti	WW 2060		Peru	TBD	TBD	TBD	TBD
Bothrops brazili		RWM 17831 (from USNM)	Venezuela: Amazonas	EU867252	EU867264	EU867276	EU867288
Bothrops caribbaeus	-		Saint Lucia			AF292598	AF292636
Bothrops jararacussu	DPL 104		-	AY223661	AY223674	AY223602	AY223643
Bothrops lanceolatus	-		Martinique			AF292599	AF292637
Bothrops leucurus	CLP 195		-	EU867255	EU867267	EU867279	EU867291
Bothrops marajoensis	-		-			AF292605	AF292643
Bothrops moojeni	ITS 418		Brazil: São Paulo	EU867257	EU867269	EU867281	EU867293
Bothrops osbornei	FHGO live 2166		Ecuador: Pichincha Prov.			AF292595	AF292633
Bothrops pictus	WW 2471	CORBIDI 2066	-		TBD	TBD	TBD
Bothrops punctatus	FHGO live 2452		-			AF292594	AF292632
Bothrops roedingeri	WW 2479		-				TBD
Outgroups							
Agkistrodon bilineatus	WWL 2		Costa Rica: Guanacaste Prov.	AF156593	AF156572	AY223613	AY156585
Agkistrodon contortrix	M 338		USA: Ohio	AF057229	AF057276	AY223612	AF156576

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4
Agkistrodon piscivorous	CLP 30		USA: South Carolina	AF057231	AF057278	AY223615	AF156578
Agkistrodon taylori	CLP 140		Mexico: Tamaulipas	AF057230	AF057230	AY223614	AF156580
Atropoides indomitus	ENS 10630		Honduras: Dept. Olancho	TBD		DQ061194	DQ061219
Atropoides mexicanus	CLP 168		Costa Rica: San José Prov.	AF057207	AF057254	AY223584	U41871
Atropoides occiduus		UTA R-29680	Guatemala: Dept. Escuintla	DQ305423	DQ305446	AY220315	AY220338
Atropoides olmec	JAC 16021	UTA R-25113	Mexico: Veracruz	AY223656	AY223669	AY223585	AY223632
Atropoides picadoi	CLP 45 (12S, 16S, cyt-b)	MZUCR 11156 (12S, 16S, cyt-b), UMMZ 177000 (ND4)	Costa Rica: Alajuela Prov. (12S, 16S, cyt-b), Costa Rica: Heredia Prov. (ND4)	AF057208	AF057255	AY223593	U41872
Bothriechis aurifer	DPL 2984	UTA R-35031	Guatemala	DQ305425	DQ305448	DQ305466	DQ305483
Bothriechis bicolor	ENS 10507	UTA R-34156	Mexico: Chiapas	DQ305426	DQ305449	DQ305467	DQ305484
Bothriechis lateralis	CLP 48	MZUCR 11155	Costa Rica: San José Prov.	AF057211	AF057258	AY223588	U41873
Bothriechis marchi		UTA R-52959	Guatemala: Dept. Zacapa	DQ305428	DQ305451	DQ305469	DQ305486
Bothriechis nigroviridis	CLP 49	MZUCR 11151	Costa Rica: San José Prov.	AF057212	AF057259	AY223589	AY223635
Bothriechis rowleyi	JAC 13295	UTA R-22243	Mexico: Oaxaca	DQ305427	DQ305450	DQ305468	DQ305485
Bothriechis schlegelii	CLP 51	MZUCR 11149	Costa Rica: Cariblanco de Sarapiqui	AF0572113	AF057260	AY223590	AY223636
Bothriechis supraciliaris	-		Costa Rica: Puntarenas Prov.	DQ305429	DQ305452	DQ305470	DQ305487
Bothriechis thalassinus		UTA R-52958	Guatemala: Dept. Zacapa	DQ305424	DQ305447	DQ305465	DQ305482
Calloselasma rhodostoma		UTA R-22247	-	AF057190	AF057237	AY223562	U1878
Cerrophidion godmani	ENS 5857	UTA R-40008	Guatemala: Dept. Baja Verapaz	DQ305419	DQ305442	AY220325	AY220348
Cerrophidion petlalcalensis	ENS 10528		Mexico: Veracruz	DQ305420	DQ305443	DQ061202	DQ061227
Cerrophidion sasai	CLP 46	MZUCR 11153	Costa Rica: San José Prov.	AF057203	AF057250	AY223578	U41879
Cerrophidion tzotzilorum	ENS10529		Mexico: Chiapas	JN870182	JN870193	DQ061203	DQ061228

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4
Cerrophidion wilsoni	ENS10632		Honduras: Dept. Francisco Morazán			EU684286	EU684301
Crotalus adamanteus	CLP4		USA: Florida	AF057222	AF057269	AY223605	U41880
Crotalus aquilus		ROM 18114 (12S, 16S, cyt-b), ROM 42394 (ND4)	Mexico: Distrito Federal (12S, 16S, cyt-b), Mexico: Aguascalientes (ND4)	AF259231	AF259124	AF259161	HQ257762
Crotalus atrox	CLP 64		USA: Texas	AF0572225	AF057272	AY223608	AY223646
Crotalus basiliscus		ROM 18188 (12S, 16S, cyt-b), unknown (ND4)	Mexico: Nayarit	AF259244	AF259136	AF259174	AY704894
Crotalus catalinensis		ROM18250, BYU34641-42	Mexico: Baja California Sur: Santa Catalina Isl.	AF259259	AF259151	AF259189	
Crotalus durissus		ROM 18261	Venezuela	AF259247	AF259139	AF259177	TBD
Crotalus horridus		UTA R-14697 (12S, 16S, cyt-b), TNHC 65471 (ND4)	USA: Arkansas (12S, 16S, cyt-b), USA: Texas (ND4)	AF259252	AF259144	AF259182	JN870207
Crotalus intermedius	JAC8881	TNHC	Mexico: Oaxaca	TBD	TBD	TBD	JN870208
Crotalus lepidus		ROM 18128 (12S, 16S, cyt-b), unknown (ND4),	Mexico: Chihuahua (12S, 16S, cyt-b), USA: New Mexico (ND4)	AF259230	AF259123	AF259160	U41881
Crotalus mitchelli		ROM18178	USA: California	AF259250	AF259142	AF259180	
Crotalus molossus	CLP66		USA: Texas	AF057224	AF057271	AY223607	AY223645
Crotalus oreganus	CP 014 (ND4)	ROM 19656 (12S, 16S, cyt-b)	USA: California	AF259253	AF259145	AF259183	AF194149
Crotalus polystictus		ROM FC-263 or ROM 18139	Mexico: Distrito Federal	AF259236	AF259129	AF259166	
Crotalus pricei		ROM FC-2144 or ROM 18158	Mexico: Nuevo León	AF259237	AF259130	AF259167	

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4
Crotalus pusillus		ROM FC-271 (12S, 16S, cyt-b), ROM 47056 (ND4	Mexico: Michoacán	AF259229	AF259122	AF259159	HQ257880
Crotalus ravus		UTA-live	Mexico: Puebla	AF057226	AF057273	AY223609	AY223647
Crotalus ruber		ROM 18197-98 or ROM 18207 (12S, 16S, cyt-b), RWV 2001-08 (ND4)	USA: California	AF259261	AF259153	AF259191	DQ679838
Crotalus scutulatus		ROM 18210 or ROM 18218 (12S, 16S, cyt-b), UTEP CRH-153 (ND4)	USA: Arizona (12S, 16S, cyt-b), USA: New Mexico (ND4)	AF259254	AF259146	AF259184	AF194167
Crotalus simus	WW-1321 (12S, 16S), 1097 (cyt-b, ND4), MSM 192 (Rag1)		Costa Rica: Guanacaste Prov. (12S, 16S), Costa Rica: Puntarenas Prov. (cyt-b, ND4), Guatemala: Dept. Zacapa (Rag1)	EU624240	EU624274	EU624302	AY704885
Crotalus tigris	CLP 169		USA: Arizona	AF057223	AF057270	AY223606	AF156574
Crotalus triseriatus		ROM 18121	Mexico: Distrito Federal	AF259233	AF259126	AF259163	
Crotalus viridis	CP 048	UTEP 17625	USA: Colorado	DQ020027		AF147866	AF194157
Crotalus willardi	HWG 2575 (12S, 16S, cyt- <i>b</i>), W9306 (ND4)	TNHC (ND4)	USA: Arizona	AF259242	AF259134	AF259172	JN870209
Cryptelytrops macrops	AM B27		Thailand: Bangkok	AF517163	AF517176	AF517184	AF517219
Cryptelytrops pupureomaculatus	AM B418	CAS 212246	Myanmar: Ayeyarwade Region	AY352807	AY352746	AY352772	AY352841
Deinagkistrodon acutus	CLP 28		China	AF057188	AF057235	AY223560	U41883
Gloydius halys	-		Kazakhstan	AF057191	AF057238	AY223564	AY223621
Gloydius strauchi		ROM 20473	China: Sichuan Prov.	AF057192	AF057239	AY223563	AY223620
Himalayophis tibetanus	AM B258	ZMB 65641	Nepal: Helambu	AY352776	AY352715	AY352749	AY352810

Species	Field ID	Museum ID	Locality	125	16S	cyt-b	ND4
Mixcoatlus melanurus	RLG 1086	UTA R-34605	Mexico	AF057210	AF057257	AY223587	AY223634
Ophryacus undulatus	CLP 73		Mexico	AF057209	AF057256	AY223586	AY223633
Ovophis monticola	JBS 16330	CAS 215050	China: Yunnan Prov.	DQ305416	DQ305439	DQ305462	DQ305480
Parias flavomaculatus	AM B3		Philippines: Luzon	AY059535	AY059551	AF171916	AY059584
Popeia popeiorum	AM B34		Thailand: Phetchaburi Prov.	AY059542	AY059558	AY059572	AY059591
Porthidium arcosae	WW 750		Ecuador	AY223655	AY223668	AY223582	AY223631
Porthidium dunni	ENS 9705		Mexico: Oaxaca	AY223654	AY223667	AY223581	AY223630
Porthidium lansbergii	WW 787		Venezuela: Falcón	EU624242	EU624276	AY713375	AF393623
Porthidium nasutum	CLP 52	MZUCR 11150	Costa Rica: Limón Prov.	AF057204	AF057251	AY223579	U41887
Porthidium ophryomegas		UMMZ 210276	Costa Rica: Guanacaste Prov.	AF057205	AF057252	AY223580	U41888
Porthidium porrasi	MSM		Costa Rica: Puntarenas Prov.	DQ305421	DQ305444	DQ061214	DQ061239
Porthidium yucatanicum	JAC 24438		Mexico: Yucatán	JN870189	JN870198	DQ061215	DQ061244
Protobothrops flavoviridis		UMMZ 199973	Japan: Ryukyu Isls.: Tokunoshima Isl.	AF057200	AF057247	AY223574	U41894
Protobothrops jerdonii		CAS 215051	China: Yunnan Prov.	AY294278	AY294269	AY294274	AY294264
Sinovipera sichuanensis	GP7	YBU 030116	China: Sichuan Prov.	HQ850445	HQ850446	HQ850447	HQ850449
Sistrurus catenatus	M 502		USA: Texas	AF057227	AF057274	AY223610	AY223648
Sistrurus miliarius		UTA live	USA: Florida	AF057228	AF057275	AY223611	U41889
Trimeresurus borneensis	AM B301		Malaysia: Sabah	AY352783	AY352722	AY352754	AY352817
Trimeresurus wiroti	_		Thailand: Nakhon Si Thammarat Prov.			DQ646788	
Tropidolaemus subannulatus	CLP 141		Indonesia: Borneo: West Kalimantan Prov.	AF057198	AF057245	AY223571	AY223625
Viridovipera gumprechti	AM A164		Thailand: Loei Prov.	AF517168	AF517181	AY352766	AF157224
Phylogenetic estimation and divergence dating

We used the package BEAST v.1.6.1 (Drummond and Rambaut, 2007) to simultaneously infer the relationships and divergence times among taxa. We followed Bayesian relaxed molecular clock methods, with uncorrelated lognormal rates among branches (Drummond et al., 2006) and a Yule speciation model. We constrained lognormal priors for the time to most recent common ancestor (tMRCA) for certain groups based on fossil data: (1) the root of the tree corresponds to the first appearance of the subfamily Crotalinae, in the early Miocene (Hemingfordian; Holman, 2000), (2) the genus Sistrurus first appears in the late Miocene (Clarendonian; Parmley and Holman, 2007) and (3) Agkistrodon contortrix first appears in the late Miocene (Late Hemphillian; Holman, 2000). The first two constraints were placed at the stems of the origins of Crotalinae and Sistrurus, respectively. A. contortrix is the earliest-diverging member of its genus and therefore the constraint was placed at the MRCA of the genus. Offsets were set as the most recent ages of the strata in which the fossils were found, means were set to 5 Ma and standard deviations were set to 1 Ma. This resulted in an offset of 15.97 Ma and a prior credible interval (PCI) of 16.56–31.68 for Crotalinae, an offset of 10.3 Ma and a PCI of 10.89–26.01 for Sistrurus, and an offset of 4.9 Ma and a PCI of 5.48–20.61 for Agkistrodon. Based on phylogeographic information on vicariance between mainland and Baja California desert regions (Castoe et al., 2009; Castoe et al., 2007) we set a normal prior on the tMRCA of Crotalus atrox and C. ruber to be 3.29 Ma ± 0.2 SD.

All calibrations are independent of the geological data used to define biogeographic hypotheses (Crisp et al., 2010). We ran two independent Markov chains for 5×10^7 iterations, with chains sampled every 5000 iterations. We used Tracer 1.5 (Rambaut and Drummond 2007) to verify stationarity of the Markov chain and to determine that the posterior sample and almost all parameters had ESS>200, suggesting that the posterior distribution was adequately sampled. We discarded the first 1×10^7 generations of final runs as burnin. We combined the posterior samples from both runs using LogCombiner in BEAST, and report the results of the combined posterior sample.

Geographic range evolution

In order to estimate the geographic distributions of ancestral nodes across the sample of phylogenetic trees, we assigned each extant species to its appropriate geographic ranges based on published data collected in Campbell and Lamar (2004, data available from authors).

For the Andean allopatry, river barrier and marine incursion hypotheses, species were assigned to one or more of seven regions: A) Panama and regions north, B) Pacific versant of Andes, C) northwest region north of the Amazon, east of the Andes and west of the Guyana Shield, D) central region south of the Amazon, east of the Andes, and west of the Brazilian Shield, E) northwest region including the Brazilian Shield, F) southwest region south of the Brazilian Shield and east of the Paraguay and southern portion of the Paraná Rivers, and G) southeast region east of the Andes and west of the Paraná River (Figure 15). Maximum range size for inferred ancestors was based on the maximum range of extant species, which was four regions and resulted in 49 ranges.

The algorithm used allows dispersal constraints to be set as proportions of a maximum rate of 1.0, to incorporate the prior assumption that some areas are more difficult to reach than others. We set dispersal to adjacent regions as 1 but restricted dispersal to nonadjacent regions as 0.1*(number of regions crossed). The minimum dispersal rate was 0.01 for a step from outgroup region A to regions E, F, or G.

For the Andean parapatry and altitudinal shift hypotheses, species were assigned to the Central (CA) or Southern Andes (SA), the Guyana Highlands (G), and/or the Brazilian Shield (B). Species were also assigned to altitudinal zones: tierra caliente (0-762 m), tierra templada (763-1828 m), or tierra fría (1829-3658 m) (Salter et al., 2005). No snake ranges have been reported from higher elevations. Maximum range size was based on the maximum range of extant species, which was five regions. Ancestral ranges were constrained to span adjacent regions: 1) regions of tierra caliente, 2) from tierra caliente to tierra templada within a region, or 3) from tierra templada to tierra fría within the Central Andes. This resulted in a set of 103 ranges. Similar to allopatry, dispersal to adjacent regions was 1 but dispersal to nonadjacent regions was set as 0.1* (number of regions crossed). In addition, dispersal across tierra templada from the Central to the Southern Andes was treated as adjacent ancestral ranges could not include these two regions and no others. The minimum dispersal rate was 0.001 for a step from Central Andean tierra fría to tierra templada of another region. Based on geological data (Gregory-Wodzicki, 2000; Hartley, 2003) the Andes did not reach the elevation of tierra fría until 10 Ma and therefore dispersal to this region was set to 0 from the origin of the phylogeny until 10 Ma.

For the refugia hypothesis, species were assigned to the refuges described by Haffer (1969, Figure 16): 1) Chocó, 2) Nechí, 3) Catatumbo, 4) Imerí, 5) Napo, 6) East Peruvian, 7) Madeira-Tapajós, 8) Belém, and 9) Guiana. More recent maps denoting 40 or more refugial areas (e.g. Brown, 1987) are beyond the capabilities of our analytical methods, and therefore we focus more on timing of speciation events rather than on geographic patterns. The maximum range of extant species, seven regions, allowed a prohibitively large number of potential ancestral ranges (236 possible ranges, preliminary analysis ran over two weeks before crashing). Therefore we constrained the maximum range of ancestral species to five regions, which is representative of all but two extant species. After elimination of ranges with disjunct areas, we had 168 possible ranges. Similar to the prior analyses, a stepping stone model was applied after 2.6 Ma: dispersal to adjacent regions was 1 but dispersal to nonadjacent regions was 0.1*(number of regions crossed). Adjacent refugial areas separated by the Andes (A and E, B and E, C and D) also had dispersal restricted to 0.1. The minimum dispersal rate was 0.0001 for a step from the outgroup region to that south or east of the study area.

We used Lagrange (Ree et al., 2005; Ree and Smith, 2008) to estimate geographic range evolution based on the ultrameric phylogeny. The program uses maximum likelihood to optimize dispersal and extinction events in a set of discrete geographic regions over the duration of each internode in a phylogeny. It then estimates the areas inherited by each daughter lineage of a cladogenic event. This method is similar to likelihood ancestral character state analysis except that, instead of estimating a single character state for each node and therefore assuming that the two descendants

of a node inherit the same range, Lagrange assumes speciation occurs in a single region. One daughter lineage inherits the region where speciation occurs and the other lineage inherits the remainder or the entirety of the parental range. The result is an output of paired likelihoods for occupied regions for each branching event on the tree. Ree and Smith (2008) found that dispersal and local extinction tend to be underestimated but accurate estimations of ancestral ranges can be reconstructed if these events are rare relative to speciation. The input parameters were configured using a web-based tool available at http://www-reelab.net/lagrange. The output of the program is a number of potential ancestral ranges, each with a particular relative probability. We report all ranges with >10% probability and we assigned a particular node to a region or combination of regions if Lagrange reconstructed that region with >50% probability.

<u>Results</u>

Phylogeny and divergence dating

The final alignment consisted of 2311 characters. The consensus phylogeny was congruent with recent studies of the same taxa (e.g. Fenwick et al., 2009), and most nodes were resolved with strong support (Figure 17) The GTR+IF model was optimal for 12S, 16S, and some codon positions of cyt-b and ND4. As BEAST supports only a single model for all codon partitions of a gene, we used GTR+IF for all partitions.

Figure 17. Ultrameric phylogram of South American pitviper relationships estimated by BEAST. Posterior probabilities shown to left of nodes, with probabilities of 1.0 represented by circles. Node ages in millions of years shown to right. Gray bars on nodes represent 95% confidence intervals of node ages.

Monophyly of each genus examined by Fenwick et al. (2009) was strongly supported by posterior probabilities (Pp=1.0) except for *Bothrocophias* (Pp=0.8). In addition, the pairing of *Bothrops pictus* and *B. roedingeri* was supported by Pp=1.0. Interspecies and intergeneric relationships among ingroup taxa were generally well resolved, with the notable exception of the placement of *Bothrops pictus* + *B. roedingeri* sister to all bothropoids except *Bothrocophias* (Pp=0.59). We estimated ancestral ranges for all nodes with posterior probability >0.5.

The divergence of bothropoids from the *Porthidium* clade at 14.93 Ma (Cl_{95%} = 12.49–17.4 Ma) was similar to that estimated by Castoe et al. (2009) and Daza et al. (2010). The origin of bothropoids at 10.24 Ma (Cl_{95%} = 8.49–12.05 Ma) and the origin of *Lachesis* at 4.67 Ma (Cl_{95%} = 3.26–6.21 Ma) was younger than those dates estimated by Wüster et al. (2008) and Zamudio and Greene (1997). The overall depth of the tree was 17.17 Ma (Cl_{95%} = 15.03–19.65 Ma), corresponding to the origin of pitvipers. Origins of genera occurred through the Miocene (Cl_{95%} = 6.35–16.24 Ma) and species origins occurred from the Miocene through the Pleistocene (Cl_{95%} = 0.02–10.78Ma).

Ancestral area estimation

Ancestral range estimation recovered multiple areas for most nodes (Figure 18– Figure 20). Details are discussed below.

Allopatry hypotheses

The Andean allopatry hypothesis predicts divergence between the Pacific (regions A and B) and Amazonian (regions C–G) versants of the Andes, with speciation

occurring around 10 Ma. One node in the tree was reconstructed to have divergence across the Andes with a 95% confidence interval for divergence time that spanned the temporal prediction (highlighted in Figure 18). The ancestor of *Bothrocophias campbelli*, in region B, diverged 8.69 Ma ($CI_{95\%}$ = 10.78–6.87 Ma) from the ancestor of *Bothrops andianus* and other *Bothrocophias* species, in region D. In addition, *Lachesis acrochorda*, in region B, split from *L. muta*, in D plus other regions, approximately 0.99 Ma ($CI_{95\%}$ = 1.54–0.53 Ma). This divergence does not support the temporal prediction.

Marine incursion hypotheses predict divergence across inundated areas during the times they were filled. For the Pebas basin, this predicts divergence of areas B from C, B from D, or C from D during the Miocene marine highstand of 13.8–16 Ma, the restricted inundation of 8–10 Ma, and the Pliocene highstand of 3.6–5 Ma. The timing of the divergence of *Bothrocophias campbelli* in area B from the ancestor of *Bothrops andianus* and other *Bothrocophias* species in area D overlaps the period of restricted inundation, with a median of 8.69 Ma and Cl_{95%} of 10.78–6.87 Ma (highlighted in Figure 18). In addition, the divergence of the ancestor of *Bothrops* brazili and *B. jararacussu*, in region D plus other regions, from the ancestor of other *Bothrops* species in region B, supports the spatial prediction of this hypothesis but not the temporal prediction (divergence 6.05 Ma, Cl_{95%} = 7.24–4.94 Ma). For the Pirabas basin, this predicts divergence between areas C and E during the marine highstands mentioned above. No nodes matched this prediction. For the Paraná basin, we predicted divergence of areas F from G 8–10 Ma, and no nodes matched this prediction.

Figure 18. Biogeographic reconstruction obtained using Lagrange for evaluation of allopatric speciation hypotheses (Hyps. 1–3, Table 16). Vertical lines and boxes represent events predicted to drive speciation. Colors correspond to regions delimited by barriers, as seen in inset map: A) Central and North America, B) Pacific versant of Andes mountain range, C) central region north of Amazon River, D) central region south of Amazon River, E) eastern region, F) southern region east of Paraná Basin, G) southern region west of Paraná Basin. Colors to left of species names represent ranges of extant species. Pie graphs represent reconstructions of ancestral nodes; gray sections represent ancestral areas that span more than one region, black sections represent ancestral areas with less than 10% relative probability or those more than two log-likelihood units below the maximum for the node. Gray bars on nodes represent 95% confidence intervals of node ages. Circles on nodes represent 1.0 posterior probability support; lower support is labeled left of node. Yellow bars show median node ages to right and highlight nodes supporting hypotheses; other bars with node ages are discussed in text as groups for further study.

The river barrier hypothesis predicts divergence across the newly formed Amazon River barrier after 7 Ma or after 2.4 Ma, between area C north of the river and southern areas D–E. No nodes matched this prediction (Figure 18).

Parapatry and climate hypotheses

Most node reconstructions were complex, with multiple reconstructions for each node and with ancestral areas estimated to span multiple climate zones (Figure 19).

The Andean altitude hypothesis predicts divergence of Central Andean caliente (CAC) from templada (CAT) climate zones approximately 12 Ma, and the same for the Southern Andes (SAC from SAT). It also predicts divergence of templada from fría zones (CAT from CAF) approximately 10 Ma. One relationship supports this hypothesis (highlighted in Figure 19). The ancestor of bothropoid pitvipers originated 14.93 Ma ($CI_{95\%} = 17.4 - 12.49$ Ma), and was recovered in CAC. Its descendant lineage, the ancestor of *Bothrocophias*, was recovered in CAT and diverged 10.24 Ma ($CI_{95\%} = 12.05 - 8.49$ Ma). This expansion upslope, and particularly the divergence of *Bothrocophias*, spans the origin of the templada zone.

Figure 19. Biogeographic reconstruction obtained using Lagrange for evaluation of parapatric and climate-based speciation hypotheses (Hyps. 4–6, Table 16). Vertical lines and boxes represent events predicted to drive speciation. Colors to left of species names correspond to regions and climate zones. Pie graphs represent reconstructions of ancestral nodes; gray sections represent ancestral areas that span more than one region, black sections represent ancestral areas with less than 10% relative probability or those more than two log-likelihood units below the maximum for the node. Gray bars on nodes represent 95% confidence intervals of node ages. Circles on nodes represent 1.0 posterior probability support; lower support is labeled left of node. Yellow bars show median node ages to right and highlight nodes supporting hypotheses; other bars with node ages are discussed in text as groups for further study.

The museum hypothesis predicts divergence between caliente and templada climate zones (e.g. CAC from CAT) during the Pleistocene, 0.01-2.6 Ma. The divergencevicariance hypothesis predicts the same, but also predicts divergence between Central Andean templada and fría zones (CAT from CAF) during the Pleistocene. No nodes supported the temporal portions of these predictions (Figure 19). However, one change from an ancestral to descendant range fit the spatial predictions of the museum and divergence-vicariance hypotheses (node ages labeled in Figure 19). The ancestor of *Bothropoides fonsecai, B. itapetiningae* and *B. cotiara* originated 6.81 Ma (Cl_{95%} = 8.4 – 5.91 Ma), and was recovered in the Brazilian Shield caliente zone (BC). Its descendant lineage, the ancestor of *R. fonsecai,* was recovered in the Brazilian Shield templada zone (BT) and diverged 3.67 Ma (Cl_{95%} = 5.03 - 2.59 Ma). This divergence predates the Pleistocene.

Refugia hypothesis

The refugia hypothesis predicts sister lineages inhabiting adjacent and nonoverlapping areas during the Pleistocene, 0.01–2.6 Ma, and one node supported this prediction (highlighted in Figure 20). The ancestor of *Lachesis muta* is recovered in areas DE plus other adjacent regions, with the ancestor of *L. acrochorda* in adjacent area A. The divergence date for these species is 0.99 Ma ($Cl_{95\%} = 1.54-0.53$ Ma).

Figure 20. Biogeographic reconstruction obtained using Lagrange for evaluation of refugia hypothesis (Hyp. 7, Table 16). Gray box represents Pleistocene, when climate changes are predicted to drive speciation. Colors correspond to refugial areas defined by Haffer Figure 16and surrounding regions: OG) North and Central America, A) Chocó, B) Nechí, C) Catatumbo, D) Imerí, E) Napo, F) East Peruvian, G) Madeira-Tapajós, H) Belém, I) Guiana, SE) regions south and east of refugia. Colors to left of species names represent ranges of extant species. Pie graphs represent reconstructions of ancestral nodes; gray sections represent ancestral areas that span more than one region, black sections represent ancestral areas with less than 10% relative probability or those more than two log-likelihood units below the maximum for the node. Gray bars on nodes represent 95% confidence intervals of node ages. Circles on nodes represent 1.0 posterior probability support; lower support is labeled left of node. Yellow bars show median node ages to right and highlight nodes supporting hypotheses; other bars with node ages are discussed in text as groups for further study.

Discussion

Overall we find speciation of South American pitvipers to be complex, with no single hypothesis strongly supported. In this system we reject half of the tested hypotheses: the marine incursion hypothesis for the Pirabas and Paraná basins, the river barrier hypothesis, the museum hypothesis, and the divergence-vicariance hypothesis. We find single examples of support for the Andean allopatry hypothesis, the marine incursion hypothesis for the Pebas basin, the Andean altitude hypothesis, and the refugia hypothesis. This results in a more select group of hypotheses with support for testing in other taxa. We discuss our results in detail below and suggest future research avenues.

Phylogenetic relationships

Our evolutionary relationships agree with earlier estimates (Fenwick et al., 2009; Wüster et al., 2002). For example, we find two entrances of pitvipers into South America. The first was the ancestor of bothropoid pitvipers, entering approximately 14.93 Ma (Cl_{95%} = 17.4–12.49 Ma). The second was the ancestor of *Lachesis acrochorda* and *L. muta*, entering approximately 4.67 Ma (Cl_{95%} = 6.21–3.26 Ma). Because we were evaluating species-level relationships we did not investigate the diversification of *Crotalus durissus* in South America (discussed in Wüster et al., 2005) and did not estimate its time of diversification. Both estimated entrances predate the closure of the Isthmus of Panama (Coates and Obando, 1996). Although the Great American Biotic Interchange (Webb, 1976) was hypothesized as the impetus for dispersal and divergence events in plants (Kay et al., 2005), freshwater fish (Bermingham et al., 1997), reptiles and amphibians (Savage, 2002), and mammals (Cortes-Ortiz et al., 2003; Marshall, 1980), our results mirror the findings of a number of recent studies estimating entrances before the closure of the Isthmus (e.g. Castoe et al., 2009; Daza et al., 2010; Daza et al., 2009; Fuchs et al., 2007; Koepfli et al., 2007; Pinto-Sánchez et al., 2012; Wiens, 2007).

Diversification hypothesis tests

For the Andean allopatry hypothesis (Hyp. 1), we predicted speciation events between the Pacific and Amazonian versants of the mountain ranges approximately 10 Ma when the Central Andes reached the altitude of the current treeline. We found one divergence event across the mountain range occurring 8.69 Ma, between *Bothrocophias campbelli* and its congeners (highlighted in Figure 18). This event overlaps the time of uplift of the Northern Andes (Hoorn et al., 2010) and the earliest estimates predate the closure of passages with tropical climate between Panama and the Amazonian basin (Gregory-Wodzicki, 2000; Hartley, 2003; Hulka et al., 2006). This supports prior predictions for *Bothrocophias* suggesting Andean allopatry was responsible for the divergence of species groups (Gutberlet and Campbell, 2001). The same 8.69 Ma speciation event may also be explained by the inundation of the Pebas Basin surrounding the source of the Amazon River (Hyp. 2 in part). The basin was predicted to be partially filled 8–10 Ma (Marshall et al., 1993), which coincides with the divergence event (Figure 18). Although the effect of the rising of the Andes seems more likely to

result in lineage isolation and speciation, both hypotheses result in the same predictions in this region.

We found approximately equal evidence for effects of environmental changes on speciation (Hyps. 4–7) as those of physical barriers (Hyps. 1–3). For example, one speciation event supported the Andean altitude hypothesis (Hyp. 4). An ancestral bothropoid lineage was recovered in the caliente zone approximately 15 Ma and a direct descendant, the ancestor of *Bothrocophias*, should have inhabited the cooler templada zone approximately 10 Ma. We cannot estimate when the lineage may have reached the cooler climate region, but the branch from ancestor to descendant spans the rising of the Andes into the templada zone approximately 12 Ma, and the divergence time of the descendant overlaps this date. Andean altitudinal change was proposed as a speciation mechanism in *Bothrocophias* (Gutberlet and Campbell, 2001), but was suggested to drive speciation within species groups, not the origin of the genus.

Speciation within South American *Lachesis* species supported the refugia hypothesis (Hyp. 7; Haffer, 1969; Figure 20), which suggests that Pleistocene climate changes isolated populations in pockets of relatively wet, forested habitat. We found diversification across adjacent refugial areas (A vs. E plus other Amazonian regions) during the Pleistocene. The presence of the mountain range complicates interpretation of this divergence, but it supports refugial predictions.

Surprisingly, for most speciation events in the examined phylogeny, we do not find support from our tested hypotheses. Our results support the observations of Rull (2008) that molecular phylogenetic evidence generally does not find strong support for

speciation in particular time periods, and instead may reflect the influence of a number of factors working together to drive lineage evolution.

Diversification in pitvipers

Multiple hypotheses have been cited to explain the expansion of pitvipers across South America, and although we find support for prior proposals in support in toadheaded pitvipers, we do not find support for prior explanations in other genera. We describe our results below.

In agreement with the describers of the genus (Gutberlet and Campbell, 2001), we find that the divergence of species groups of toadheaded pitvipers (*Bothrocophias*) across the Andes may support the Andean allopatry hypothesis. Of the species group consisting of *Bothrocophias campbelli, B. colombianus,* and *B.* myersi, only the first had molecular data available to this study, but we found the divergence of *B. campbelli* to fit Andean vicariance predictions. Gutberlet and Campbell (2001) also suggested altitudinal uplift drove speciation within groups; we did not find evidence for this in the Amazonian group of *B. hyoprora* and *B. microphthalmus* but did find support for altitudinal uplift in the origin of the genus. In agreement with Carrasco et al. (2012) and in contrast to Fenwick et al. (2009), we find *Bothrops andianus* as a member of *Bothrocophias*. We will discuss the phylogenetic and taxonomic implications of this result in upcoming work. The divergence of this species was attributed to Andean uplift, but we do not find support for that explanation here.

Divergence of South American bushmasters (*Lachesis*) from their Central American congeners was attributed to Andean allopatry (Zamudio and Greene, 1997) or

the inundation of the Pebas basin (Werman, 2005). We do not find support for the temporal predictions of these hypotheses, and in fact recover an ancestral range for South American bushmasters spanning the Andes and Pebas basin. We find divergence between the two species of South American *Lachesis* to occur in the Pleistocene, which is best explained by the refugia hypothesis. To our knowledge refugial processes have not been used to explain speciation in this group.

The origin of forest-pitvipers (*Bothriopsis*) was attributed to Andean uplift (Werman, 2005), and diversification within the group was attributed to refugia (Werman, 2005). Isolation in refugia was also suggested to drive speciation in Amazonian lanceheads (*Bothrops*; Werman, 2005; Wüster et al., 1999). Although we find 4 of 5 species-level divergences in *Bothriopsis* and 10 of 11 divergences in *Bothrops* overlap the Pleistocene, we do not find any instances of speciation across adjacent refugia.

Pre-Pleistocene climate change and rain shadow effects of the rising Andes were implicated in the diversification of southern lanceheads (*Rhinocerophis*) and Brazilian lanceheads (*Bothropoides;* Werman, 2005), hypotheses which were not tested in our study. We find no support for our tested hypotheses in these genera.

Considerations in biogeographic hypothesis testing

Because we can only sample extant taxa, the number of sampled speciation events decreases with events further back in time. We therefore expect hypotheses relying on more recent events (5–7) to have more support in the phylogeny than hypotheses relying on earlier events (1–4). Diversification rate analysis should help to

highlight time periods with high rates of speciation compared to expectations, and illuminate if the time periods surrounding any of the events of interest should be further investigated.

Another consideration is how much lag time to expect between the origin of a barrier and the effects on species. If lag time is great between the generation of a barrier and its observed effect on lineage divergence, it will be difficult to attribute speciation events to their appropriate drivers. However, as our focus is on the scale of millions of years we do not expect significant lag between the time estimates of barriers and speciation events influenced by those barriers. In addition, Castoe et al. (2009) did not find lag time effects in biogeographic estimates of Central American highland pitviper diversification. They found tight correlations between the divergence times of multiple genera that were influenced by the same lowland geographic features, times that were similar to the predicted emergence of those features. If South American pitviper species were strongly influenced by particular geological events, we would expect to see the same signature in their divergences. This could be an interesting area for future biogeographic work in this and other taxonomic groups.

Perhaps the complexity of speciation and range evolution seen in South American pitvipers may not be appropriately modeled by current dispersal-extinctioncladogenesis analyses. These methods require the partitioning of geographic ranges into a set of discrete regions, and have been informative on broad scales such as continents, but may be less insightful for relatively continuous habitats where many species ranges

span more than one region. We predict future studies will be able to use more spatially explicit models, with fewer constraints on assigning taxa to specific areas.

Conclusions

We find the diversity of extant pitvipers in South America may be driven by a number of factors, but find only half of our tested hypotheses supported by pitviper speciation events. We predict that with the use of multiple empirical datasets, a select number of hypotheses will gain strong support, with some hypotheses supported by only a few examples, and others rejected. Most of these hypotheses were generated on the basis of patterns seen in one or a few taxa, and now researchers can define specific predictions and test them to understand how well these explanations generalize across the Tree of Life. For pitvipers, a combination of the mainly vicariant processes tested here, dispersal-based events, or even neutral processes may have been responsible for observed diversity. It seems unlikely that such a major geological event such as the rising of the Andes mountains would not leave a stronger signature in the phylogeny of small, terrestrial ectotherms such as pitvipers, which suggests more evaluation of Miocene diversification in this and related groups would better illuminate biological responses to geological change in South America.

<u>Acknowledgments</u>

We thank S. Carreira, J. Daza, E. Smith (DEB-0416160 and Inst. Bioclon), J. Venegas, W. Wüster, CORBIDI, the Royal Ontario Museum, and the University of Texas at Austin for tissues. We thank K. Diamond for assistance in photographing specimens, and R. Ree for the Lagrange configurator. We also thank the many people that, over the

years, have contributed insight and suggestions that have added to this study, including

J. Campbell, W. Crampton, J. Daza, G. Ferrie, J. Hickson, E. Hoffman, H. Kalkvik, J.

Strickland, and G. Territo.

Funding for this project was provided by a UCF startup package, a UCF new

faculty research award and an NSF Research grant (DEB-0416000) to CLP.

<u>References</u>

- Ball, I.R., 1975. Nature and formulation of biogeographical hypotheses. Systematic Zoology 24, 407-430.
- Bermingham, E., McCafferty, S.S., Martin, A.P., 1997. Fish biogeography and molecular clocks: Perspectives from the Panamanian Isthmus. In: Kocher, T.D., Stepien, C.A. (Eds.), Molecular Systematics of Fishes. Academic Press, New York, pp. 113–128.
- Brown, K.S., Jr., 1987. Biogeography and evolution of neotropical butterflies. In: Whitmore, T.C., Prance, G.T. (Eds.), Biogeography and Quaternary history in tropical America. Oxford Science Publications, Oxford, pp. 66–104.
- Brumfield, R.T., Edwards, S.V., 2007. Evolution into and out of the Andes: A Bayesian analysis of historical diversification in *Thamnophilus* antshrikes. Evolution 61, 346-367.
- Bush, M.B., 1994. Amazonian speciation a necessarily complex model. Journal of Biogeography 21, 5–17.
- Campbell, J.A., Lamar, W.W., 2004. The Venomous Reptiles of the Western Hemisphere. Comstock Publishing Associates, Ithaca, NY.
- Campbell, K.E., 2010. Late Miocene onset of the Amazon River and the Amazon deepsea fan: Evidence from the Foz do Amazonas Basin: COMMENT. Geology 38, e212.
- Carrasco, P.A., Mattoni, C.I., Leynaud, G.C., Scrocchi, G.J., 2012. Morphology, phylogeny and taxonomy of South American bothropoid pitvipers (Serpentes, Viperidae). Zoologica Scripta, 41, 109–124.

- Castoe, T.A., Daza, J.M., Smith, E.N., Sasa, M.M., Kuch, U., Campbell, J.A., Chippindale, P.T., Parkinson, C.L., 2009. Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland biogeography. Journal of Biogeography 36, 88-103.
- Castoe, T.A., Parkinson, C.L., 2006. Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Molecular Phylogenetics and Evolution 39, 91–110.
- Castoe, T.A., Spencer, C.L., Parkinson, C.L., 2007. Phylogeographic structure and historical demography of the western diamondback rattlesnake (*Crotalus atrox*): a perspective on North American desert biogeography. Molecular Phylogenetics and Evolution 42, 193–212.
- Chacón, J., de Assis, M.C., Meerow, A.W., Renner, S.S., 2012. From East Gondwana to Central America: historical biogeography of the Alstroemeriaceae. Journal of Biogeography 39, 1806-1818.
- Chapman, F.M., 1917. The distribution of bird-life in Colombia. Bulletin of the American Museum of Natural History 36, 1–729.
- Chapman, F.M., Cherrie, G.K., Richardson, W.B., Gill, G., O'Connell, G.M., Tate, G.H.H., Murphy, R.C., Anthony, H.E., Expedition, S.A.O., Expedition, E., 1926. The distribution of bird-life in Ecuador : a contribution to a study of the origin of Andean bird-life. Bulletin of the American Museum of Natural History 55, 1-784.
- Coates, A.G., Obando, J.A., 1996. The geologic evolution of the Central American Isthmus. In: Jackson, J.B.C., Budd, A.F., Coates, A.G. (Eds.), Evolution and environment in tropical America. University of Chicago Press, Chicago, pp. 21– 56.
- Colinvaux, P.A., 1997. An arid Amazon? Trends in Ecology & Evolution 12, 318-319.
- Colinvaux, P.A., Oliveira, P.E.D., Moreno, J.E., Miller, M.C., Bush, M.B., 1996. A long pollen record from lowland Amazonia: Forest and cooling in glacial times. Science 274, 85-88.
- Cortes-Ortiz, L., Bermingham, E., Rico, C., Rodriguez-Luna, E., Sampaio, I., Ruiz-Garcia, M., 2003. Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Molecular Phylogenetics and Evolution 26, 64-81.
- Crisp, M.D., Trewick, S.A., Cook, L.G., 2010. Hypothesis testing in biogeography. Trends in Ecology & Evolution In Press, Corrected Proof.

- Daza, J.M., Castoe, T.A., Parkinson, C.L., 2010. Using regional comparative phylogeographic data from snake lineages to infer historical processes in Middle America. Ecography 33, 343-354.
- Daza, J.M., Smith, E.N., Páez, V.P., Parkinson, C.L., 2009. Complex evolution in the Neotropics: The origin and diversification of the widespread genus Leptodeira (Serpentes: Colubridae). Molecular Phylogenetics and Evolution 53, 653-667.
- de Almeida, F.F.M., Hasui, Y., de Brito Neves, B.B., Fuck, R.A., 1981. Brazilian structural provinces: An introduction. Earth-Science Reviews 17, 1-29.
- Donoghue, M.J., Moore, B.R., 2003. Toward an integrative historical biogeography. Integrative and Comparative Biology 43, 261-270.
- Drummond, A., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
- Drummond, A.J., Ho, S.Y.W., Phillips, M.J., Rambaut, A., 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
- Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792-1797.
- Fenwick, A.M., Ronald L. Gutberlet, J., Evans, J.A., Parkinson, C.L., 2009. Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera *Bothrops, Bothriopsis*, and *Bothrocophias* (Serpentes: Viperidae). Zoological Journal of the Linnean Society 156, 617-640.
- Figueiredo, J., Hoorn, C., van der Ven, P., Soares, E., 2009. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology 37, 619-622.
- Figueiredo, J., Hoorn, C., van der Ven, P., Soares, E., 2010. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin: Reply. Geology 38, e213.
- Fjeldså, J., Lambin, E., Mertens, B., 1999. Correlation between endemism and local ecoclimatic stability documented by comparing Andean bird distributions and remotely sensed land surface data. Ecography 22, 63.
- Fuchs, J., Ohlson, J.I., Ericson, P.G.P., Pasquet, E., 2007. Synchronous intercontinental splits between assemblages of woodpeckers suggested by molecular data. Zoologica Scripta 36, 11-25.

- Goldberg, E.E., Lancaster, L.T., Ree, R.H., 2011. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Systematic Biology 60, 451-465.
- Grazziotin, F.G., Monzel, M., Echeverrigaray, S., Bonatto, S.L., 2006. Phylogeography of the *Bothrops jararaca* complex (Serpentes: Viperidae): past fragmentation and island colonization in the Brazilian Atlantic Forest. Molecular Ecology 2006, 1–14.
- Gregory-Wodzicki, K.M., 2000. Uplift history of the Central and Northern Andes: A review. Geological Society of America Bulletin 112, 1091–1105.
- Gutberlet, R.L., Jr., Campbell, J.A., 2001. Generic recognition for a neglected lineage of South American pitvipers (Squamata: Viperidae: Crotalinae) with the description of a new species from the Colombian Chocó. American Museum Novitiates, 1– 15.
- Haffer, J., 1969. Speciation in Amazonian forest birds. Science 165, 131-137.
- Haffer, J., 1997. Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation 6, 451-476.
- Haffer, J., 2008. Hypotheses to explain the origin of species in Amazonia. Brazilian Journal of Biology 68, 917–947.
- Haq, B.U., Hardenbol, J.A.N., Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–1167.
- Hartley, A.J., 2003. Andean uplift and climate change. Journal of the Geological Society 160, 7–10.
- Hoorn, C., 1993. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology 105, 267-309.
- Hoorn, C., Guerrero, J., Samiento, G.A., Lorrente, M.A., 1995. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23, 237-240.
- Hoorn, C., Wesselingh, F.P. (Eds.), 2010a. Amazonia: Landscape and species evolution: a look into the past. Wiley-Blackwell.
- Hoorn, C., Wesselingh, F.P., 2010b. Introduction: Amazonia, landscape and species evolution. Amazonia: Landscape and Species Evolution. Wiley-Blackwell Publishing Ltd., pp. 1-6.

- Hoorn, C., Wesselingh, F.P., Steege, H.T., Bermudez, M.A., Mora, A., Sevink, J.,
 SanmartÃn, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo,
 C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T.,
 Antonelli, A., 2011. Origins of biodiversity-Response. Science 331, 399-400.
- Hoorn, C., Wesselingh, F.P., ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J.,
 SanmartÃn, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo,
 C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T.,
 Antonelli, A., 2010. Amazonia through time: Andean uplift, climate change,
 landscape evolution, and biodiversity. Science 330, 927-931.
- Hulka, C., Gräfe, K.U., Sames, B., Uba, C.E., Heubeck, C., 2006. Depositional setting of the Middle to Late Miocene Yecua Formation of the Chaco Foreland Basin, southern Bolivia. Journal of South American Earth Sciences 21, 135-150.
- Kay, K.M., Reeves, P.A., Olmstead, R.G., Schemske, D.W., 2005. Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA ITS and ETS sequences. American Journal of Botany 92, 1899-1910.
- Koepfli, K.-P., Gompper, M.E., Eizirik, E., Ho, C.-C., Linden, L., Maldonado, J.E., Wayne, R.K., 2007. Phylogeny of the Procyonidae (Mammalia: Carnivora): Molecules, morphology and the Great American Interchange. Molecular Phylogenetics and Evolution 43, 1076-1095.
- Maciel, N.M., Collevatti, R.G., Colli, G.R., Schwartz, E.F., 2010. Late Miocene diversification and phylogenetic relationships of the huge toads in the *Rhinella marina* (Linnaeus, 1758) species group (Anura: Bufonidae). Molecular Phylogenetics and Evolution 57, 787-797.
- Malhotra, A., Thorpe, R.S., 2004. A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pitvipers. Molecular Phylogenetics and Evolution 32, 83–100.
- Marshall, L.G., 1980. The Great American Interchange: An invasion induced crisis for South American mammals. In: Nitecki, M.H. (Ed.), Third annual spring systematics symposium: Biotic crises in ecological and evolutionary time. Academic Press, Field Museum of Natural History, pp. 133–229.
- Marshall, L.G., Sempere, T., Gayet, M., 1993. The Petaca (Late Oligocene-Middle Miocene) and Yecua (Late Miocene) formations and their tectonic significance of the Subandean-Chaco basin, Bolivia. Documents des Laboratoires de Géologie de Lyon 125, 291-301.

- Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858.
- Nelson, B.W., Ferreira, C.A.C., da Silva, M.F., Kawasaki, M.L., 1990. Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature 345, 714-716.
- Nores, M., 1999. An alternative hypothesis for the origin of Amazonian bird diversity. Journal of Biogeography 26, 475–485.
- Nylander, J.A.A., 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden.
- Nylander, J.A.A., Olsson, U., Alström, P., Sanmartín, I., 2008. Accounting for phylogenetic uncertainty in biogeography: A Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: *Turdus*). Systematic Biology 57, 257-268.
- Passoni, J.C., Benozzati, M.L., Rodrigues, M.T., 2008. Phylogeny, species limits, and biogeography of the Brazilian lizards of the genus Eurolophosaurus (Squamata: Tropiduridae) as inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 46, 403-414.
- Pinto-Sánchez, N.R., Ibáñez, R., Madriñán, S., Sanjur, O.I., Bermingham, E., Crawford, A.J., 2012. The Great American Biotic Interchange in frogs: Multiple and early colonization of Central America by the South American genus *Pristimantis* (Anura: Craugastoridae). Molecular Phylogenetics and Evolution 62, 954-972.
- Raven, P.H., Axelrod, D.I., 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61, 539-673.
- Rebata-H, L.A., Gingras, M.K., RÄSÄNen, M.E., Barberi, M., 2006. Tidal-channel deposits on a delta plain from the Upper Miocene Nauta Formation, Marañón Foreland Sub-basin, Peru. Sedimentology 53, 971-1013.
- Ree, R.H., Moore, B.R., Webb, C.O., Donoghue, M.J., 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299-2311.
- Ree, R.H., Sanmartín, I., 2009. Prospects and challenges for parametric models in historical biogeographical inference. Journal of Biogeography 36, 1211-1220.
- Ree, R.H., Smith, S.A., 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4-14.

- Rossetti, D.d.F., 2001. Late Cenozoic sedimentary evolution in northeastern Pará, Brazil, within the context of sea level changes. Journal of South American Earth Sciences 14, 77-89.
- Rossetti, D.d.F., Toledo, P.M.d., Góes, A.M., 2005. New geological framework for Western Amazonia (Brazil) and implications for biogeography and evolution. Quaternary Research 63, 78-89.
- Ruiz, C., Jordal, B.H., Serrano, J., 2012. Diversification of subgenus *Calathus* (Coleoptera: Carabidae) in the Mediterranean region - glacial refugia and taxon pulses. Journal of Biogeography 39, 1791-1805.
- Rull, V., 2008. Speciation timing and neotropical biodiversity: the Tertiary-Quaternary debate in the light of molecular phylogenetic evidence. Molecular Ecology 2008, 1-8.
- Rull, V., 2011. Neotropical biodiversity: timing and potential drivers. Trends in Ecology & Evolution 26, 508-513.
- Salter, C., Hobbs, J., Wheeler, J., Kostbade, J.T., 2005. Essentials of World Regional Geography. Harcourt Brace, New York.
- Savage, J.M., 2002. The amphibians and reptiles of Costa Rica: A herpetofauna between two continents, between two seas. University of Chicago Press, Chicago.
- Simpson, B.B., 1997. Reply from B.B. Simpson. Trends in Ecology & Evolution 12, 319.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731-2739.
- Walker, J.D., Geissman, J.W., 2009. 2009 GSA Geologic Time Scale. GSA Today 19, 60.
- Wallace, A.R., 1852. On the monkeys of the Amazon. Proceedings of the Zoological Society of London 20, 107-110.
- Webb, S.D., 1976. Mammalian Faunal Dynamics of the Great American Interchange. Paleobiology 2, 220-234.
- Werman, S.D., 2005. Hypotheses on the historical biogeography of bothropoid pitvipers and related genera of the Neotropics. In: Donnelly, M.A., Crother, B.I., Guyer, C., Wake, M.H., White, M.E. (Eds.), Ecology and evolution in the tropics: a herpetological perspective. The University of Chicago Press, Chicago, pp. 306– 365.

- Wesselingh, F.P., Hoorn, C., Kroonenberg, S.B., Antonelli, A., Lundberg, J.G., Vonhof, H.B., Hooghiemstra, H., 2010. On the origin of Amazonian landscapes and biodiversity: A synthesis. Amazonia: Landscape and Species Evolution. Wiley-Blackwell Publishing Ltd., pp. 419-431.
- Wiens, J.J., 2007. Global patterns of diversification and species richness in amphibians. The American Naturalist 170, S86-S106.
- Wüster, W., Ferguson, J.E., Quijada-Mascareñas, J.A., Pook, C.E., Salomão, M.d.G., Thorpe, R.S., 2005. Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: *Crotalus durissus*). Molecular Ecology 14, 1095–1108.
- Wüster, W., Peppin, L., Pook, C.E., Walker, D.E., 2008. A nesting of vipers: Phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Molecular Phylogenetics and Evolution 49, 445-459.
- Wüster, W., Salomão, M.d.G., Duckett, G.J., Thorpe, R.S., BBBSP, 1999. Mitochondrial DNA phylogeny of the *Bothrops atrox* species complex (Squamata: Serpentes: Viperidae). Kaupia 8, 135–144.
- Wüster, W., Salomão, M.D.G., Quijada-Mascareñas, J.A., Thorpe, R.S., BBBSP, 2002.
 Origins and evolution of the South American pitviper fauna: evidence from mitochondrial DNA sequence analysis. In: Schuett, G.W., Höggren, M., Douglas, M.E., Greene, H.W. (Eds.), Biology of the Vipers. Eagle Mountain Publishing, Eagle Mountain, Utah, pp. 111–128.
- Zamudio, K.R., Greene, H.W., 1997. Phylogeography of the bushmaster (*Lachesis muta*: Viperidae): implications for Neotropical biogeography, systematics, and conservation. Biological Journal of the Linnean Society 62, 421–442.

CHAPTER 6: CONCLUSION

As phylogenetics, particularly in reptiles and amphibians, is quickly resolving the evolutionary relationships of genus-level and higher relationships, systematists should focus on estimating the evolution of all species within a group of interest and testing hypotheses using phylogenies (Wiens, 2008). Both of these goals require robust, taxondense hypotheses of evolutionary relationships. I resolved relationships of 96% of the 213 species of pitviper, with good resolution of relationships for the 81% of species represented by over 100 characters. For most Asian species, I included phenotypic data in phylogenetic estimation for the first time. In keeping with the traditional roles of phylogeneticists, I evaluated the relationships of South American bothropoid pitvipers and proposed new generic-level taxonomy that describes evolutionarily distinct groups. I also evaluated the phylogenetic placement of a number of newly described species. I combined newly-generated estimated phylogenies with published data to understand biological patterns of the past: 1) I used a phylogeny of vipers in combination with species-level data on egg-laying and livebearing to test the hypothesis of Dollo's Law for the evolution of reproductive mode in vipers. I found that different methods of estimating this character return different results and therefore fail to reject Dollo's Law. 2) I used a phylogeny of South American pitvipers in combination with ranges of extant species to test a number of hypotheses for diversification of South American organisms.

I found the speciation patterns of these snakes to be complex and the regions inhabited by ancestral groups difficult to predict.

Evaluating evolutionary relationships and taxon names

In evaluating the relationships among pitviper species, I utilized a data matrix that should become increasingly common in phylogenetic analysis: four mitochondrial loci for the majority of species, an additional independent genetic locus for a minority of species, and a phenotypic dataset available for practically all species. As expected, the phenotypic dataset made up about 2% of the matrix. The key challenge in this study was that snakes are morphologically conserved (Parkinson et al., 2002) and limbless, leading to a phenotypic matrix of only 100 characters. Although the inclusion of rare and recently-described species in phylogenetic estimation provided some of the first hypotheses for evolutionary relationships of these lineages, adding these highly datalimited species to the analysis reduced the resolution of the tree overall. Prior work suggests that with enough complete characters even data-limited species can be placed in expected phylogenetic positions and may even influence the estimated relationships of nearly data-complete species (Wiens, 2003; Wiens et al., 2010). Therefore, I concluded that the low number of complete characters and potential lack of variation within the phenotypic characters for most groups led to the negative effects of datalimited taxa on phylogenetic resolution. More empirical research will help evaluate the number of characters that lead to good resolution of data-limited lineages across taxonomic groups of various sizes and histories.

I found that adding independent character sets to the well-studied mitochondrial data matrix for pitvipers is beneficial for adding taxa to the analysis and does increase support, but that influence on support is slight and the independent datasets did little to change relationships. Unlike most groups of herpetofauna, intergeneric relationships of pitvipers are not settled, and the addition of a nuclear gene and phenotypic data did not fully resolve the deepest phylogenetic relationships of vipers. It appears that to resolve these deep relationships phylogenomic methods or analysis of many nuclear loci may be required (e.g. Townsend et al., 2011). However, for estimation of species-level relationships and particularly to estimate relationships for as many lineages as possible, the methods used in this study are optimal.

If the inclusion of a maximum number of species is not a goal or if the number of complete phenotypic characters is expected to be low, then the collection of phenotypic data is an extremely inefficient method of bolstering phylogenetic estimation. For this study I examined approximately 1900 individuals and scoured published accounts to include data for 850 others, but even the combination of these data did little to increase understanding of pitviper evolutionary relationships. For example, I did not resolve the sister group of New World vipers and found little support for phylogenetic positions of newly-described species based on morphological data alone. However, I found support from independent datasets for taxonomic proposals and other hypotheses of evolutionary relationship formerly based on single linkage groups (e.g. Malhotra and Thorpe, 2004).

As speciation takes place across extended time periods, the more information a researcher provides to support the divergence between two lineages, the better evidence she has for giving those lineages different names. This idea underpins the general lineage concept of species (de Queiroz, 1998). In the study reported in Chapter 3 and published in 2009, I had support from two independent datasets for the evolutionary distinctiveness of bothropoid pitviper clades, in addition to natural history information supporting their different geographic ranges and ecological requirements. My paper has been cited 41 times, which suggests the new taxonomy is being accepted. Interestingly, a recent critique by Carrasco et al. (2012) finds topological differences in their phylogeny combining mtDNA, ecology and a different set of phenotypic characters. In the interest of taxonomic stability, they suggest lumping the newly described genera and Bothriopsis together under Bothrops. This proposal limits the biological information contained in the genus named Bothrops, as it combines into one genus lineages that range across the continent of South America, from lowlands to highlands, and from the ground to the trees (reviewed in Campbell and Lamar, 2004).

On the opposite end of the spectrum are taxonomic proposals that rely on partial or incomplete data to define groups with questionable biological information and slight taxonomic stability. For example, Hoser (2009) named nine rattlesnake genera based only on a consensus phylogeny suggested by Murphy et al. (2002). The species groups elevated by Hoser were not supported by a particular dataset and therefore had no known synapomorphies. In addition to work finding the new names unavailable under the International Code of Zoological Nomenclature (Wüster and Bernils, 2011),

recent phylogenetic estimation with mitochondrial, nuclear and phenotypic evidence (this study; Fenwick, Diamond, LaDuc and Parkinson, in prep.) finds considerable species-level reassignment would be required to retain Hoser's taxonomy. Similarly, Hoser (2012) erected a new genus to comprise species left *incertae sedis* by the South American bothropoid study in this dissertation (Fenwick et al., 2009). With additional data, we find two of these species to form a distinct group, which may deserve generic recognition. However, we find two other species in divergent phylogenetic positions and do not have enough information to evaluate the relationships of the last species. We recommend rejecting Hoser's many taxonomic proposals.

As the above examples indicate, a middle road is needed between an overly conservative taxonomy that decreases the communication of biological information and a poorly-supported taxonomy that threatens to be too changeable to facilitate good scientific communication. I suggest that my proposed taxonomy for South American bothropoids follows just such a middle road and can serve as a template for new taxonomic revisions.

Hypothesis testing using phylogenies

Natural history data on many aspects of extant species' biology are available in the literature, and the evolution of various traits can be modeled to estimate changes across the history of a group and better understand how the traits evolved. From my study of the evolution of reproductive mode, I found that evaluating evolutionary patterns is like any other hypothesis testing procedure in that using different models with different assumptions is important to generating strong confidence in conclusions.

In this case the use of different models was important to understanding the lack of support for either unidirectional evolution or reversals from derived to ancestral reproductive modes.

In the specific case of Dollo's Law, multiple violations in complex characters found in different organisms (Wiens, 2011 and references therein) suggest that its process of unidirectional evolution is not more common than bidirectional evolution in the Tree of Life. The large number of changes in reproductive mode across squamates suggests that reversals may occur in this system but limitations specific to vipers kept us from finding strong support for rejecting Dollo's Law. The group contains relatively few cases of the ancestral mode of oviparity, which would allow us to detect reversals. Importantly, the deepest relationships among vipers had relatively low support, which complicated character estimation. Increased taxon sampling and filling in missing data among true vipers may help to detect reversals in that subfamily, but I expect support for bidirectional evolution of reproductive mode in squamates must come from a different taxonomic system.

In the specific case of evaluating range evolution in South American pitvipers, I found little insight into diversification patterns using dispersal-extinction-cladogenesis methods (DEC; Ree et al., 2005; Ree and Smith, 2008) to evaluate evolution across the regions defined in this study. Most studies currently using DEC methods define regions with distinct geographic barriers such as, for angiosperms, different island groups (Bendiksby et al., 2010) or continental-scale regions (Xiang and Thomas, 2008). To understand the range evolution of vipers, a focus on distinct geological barriers may

provide more insight. This focus was informative for Central American vipers, where multiple independent groups were influenced by common geographic breaks (Daza et al., 2010). Surprisingly, although the rising of the Andes Mountains should have introduced a major barrier to organismal movement in South America, we find little evidence of its effect in pitvipers.

The study of geographic range evolution is a recent modification of trait evolution methods, and therefore fewer algorithms for modeling historical ranges of lineages are available. In this case I only used one algorithm to understand the evolution of pitviper biogeography in South America. A second method has been recently introduced (Goldberg et al., 2011), and I recommend its use on this pitviper dataset. However, as its assumptions and algorithms are similar to those of Lagrange I expect the ranges predicted by the two methods will agree (Ree et al., 2005; Ree and Smith, 2008) in finding the evolution of South American pitvipers complex and poorly explained by any single diversification hypothesis.

Although future research may be necessary to clarify understanding of South American bothropoid biogeography, the framework of defining spatial and temporal predictions for biogeographic hypotheses and testing them with empirical examples is extremely useful. In the case of South American vipers, using spatial patterns of extant species could have rejected the hypothesis of Amazonian vicariance, but the combination of spatial and temporal estimation was required to evaluate the influence of allopatric factors such as Andes rise and marine incursions compared to climatic factors such as refugial processes. The set of specific predictions tested in this study can

be directly applied to other South American terrestrial animals, and the framework can be applied to systems worldwide. The addition of a temporal component to methods that formerly tested only spatial patterns (e.g. DIVA; Ronquist, 1996) greatly increases the power of biogeographic methods to assess the influence of environmental factors on speciation processes. I recommend the use of specific spatial and temporal predictions for all evaluations of biogeographic effects of distinct events expected to drive vicariant speciation.

The two hypothesis testing studies included in this dissertation represent a tiny fraction of the biological questions that could be addressed in pitvipers through the combination of phylogeny with natural history data. The number of questions that could be addressed using other branches of the Tree of Life is orders of magnitude larger. Taxon-dense, well-supported phylogenies, such as the ones generated by this work, will be used to assess the influence of evolutionary history on phenotype, development, behavior, and ecology and even to account for that evolutionary history in studies of the effects of these factors on the biology of current lineages. This pitviper phylogeny is already being used in comparative methods (Gartner, pers. comm.), and provides an excellent example of the promise of phylogeny to provide insight into the biology of past and current species.

<u>References</u>

Bendiksby, M., Schumacher, T., Gussarova, G., Nais, J., Mat-Salleh, K., Sofiyanti, N., Madulid, D., Smith, S.A., Barkman, T., 2010. Elucidating the evolutionary history of the Southeast Asian, holoparasitic, giant-flowered Rafflesiaceae: Pliocene vicariance, morphological convergence and character displacement. Molecular Phylogenetics and Evolution In Press, Uncorrected Proof.
- Campbell, J.A., Lamar, W.W., 2004. The Venomous Reptiles of the Western Hemisphere. Comstock Publishing Associates, Ithaca, NY.
- Carrasco, P.A., Mattoni, C.I., Leynaud, G.C., Scrocchi, G.J., 2012. Morphology, phylogeny and taxonomy of South American bothropoid pitvipers (Serpentes, Viperidae). Zoologica Scripta, no-no.
- Daza, J.M., Castoe, T.A., Parkinson, C.L., 2010. Using regional comparative phylogeographic data from snake lineages to infer historical processes in Middle America. Ecography 33, 343-354.
- de Queiroz, K., 1998. The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In: Howard, D.J., Berlocher, S.H. (Eds.), Endless forms: Species and speciation. Oxford University Press, Oxford, England, pp. 57–75.
- Fenwick, A.M., Ronald L. Gutberlet, J., Evans, J.A., Parkinson, C.L., 2009. Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera Bothrops, Bothriopsis, and Bothrocophias (Serpentes: Viperidae). Zoological Journal of the Linnean Society 156, 617-640.
- Goldberg, E.E., Lancaster, L.T., Ree, R.H., 2011. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Systematic Biology 60, 451-465.
- Hoser, R., 2009. A reclassification of the rattlesnakes: species formerly exclusively referred to the genera Crotalus and Sistrurus. Australasian Journal of Herpetology 6, 1-21.
- Hoser, R., 2012. A new genus of pitviper (Serpentes: Viperidae) from South America. Australasian Journal of Herpetology 11, 25-27.
- Malhotra, A., Thorpe, R.S., 2004. A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pitvipers. Molecular Phylogenetics and Evolution 32, 83–100.
- Murphy, R.W., Fu, J., Lathrop, A., Feltham, J.V., Kovac, V., 2002. Phylogeny of the rattlesnakes (Crotalus and Sisturus) inferred from sequences of five mitochondrial DNA genes. In: Schuett, G.W., Höggren, M., Douglas, M.E., Greene, H.W. (Eds.), Biology of the Vipers. Eagle Mountain Publishing, Eagle Mountain, Utah, pp. 69–92.
- Parkinson, C.L., Campbell, J.A., Chippindale, P.T., 2002. Multigene phylogenetic analysis of pitvipers, with comments on their biogeography. In: Schuett, G.W., Höggren, M., Douglas, M.E., Greene, H.W. (Eds.), Biology of the Vipers. Eagle Mountain Publishing, Eagle Mountain, Utah, pp. 93–110.

- Ree, R.H., Moore, B.R., Webb, C.O., Donoghue, M.J., 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299-2311.
- Ree, R.H., Smith, S.A., 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4-14.
- Ronquist, F., 1996. DIVA version 1.1. Computer program and manual available by anonymous FTP from Uppsala University (ftp.uu.se or ftp.systbot.uu.se).
- Townsend, T.M., Mulcahy, D.G., Noonan, B.P., Sites Jr, J.W., Kuczynski, C.A., Wiens, J.J., Reeder, T.W., 2011. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Molecular Phylogenetics and Evolution 61, 363-380.
- Wiens, J.J., 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52, 528-538.
- Wiens, J.J., 2008. Systematics and herpetology in the age of genomics. BioScience 58, 297-307.
- Wiens, J.J., 2011. Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo's Law. Evolution 65, 1283-1296.
- Wiens, J.J., Kuczynski, C.A., Townsend, T., Reeder, T.W., Mulcahy, D.G., Sites, J.W., 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: Molecular data change the placement of fossil taxa. Systematic Biology 59, 674-688.
- Wüster, W., Bernils, R.S., 2011. On the generic classification of the rattlesnakes, with special reference to the Neotropical Crotalus durissus complex (Squamata: Viperidae). Zoologia 28, 417-419.
- Xiang, Q.Y., Thomas, D.T., 2008. Tracking character evolution and biogeographic history through time in Cornaceae - Does choice of methods matter? Journal of Systematics and Evolution 46, 349-374.

APPENDIX A: MORPHOLOGICAL CHARACTERS USED IN STUDIES

Characters 1-76 were taken from Gutberlet and Harvey (2002), and follow the numbering and descriptions therein. Additional characters adapted from other papers are so indicated, along with the number used by the author. Terminology is primarily from Klauber (1972) for squamation and crania, Hofstetter and Gasc (1969) for vertebrae, and Dowling and Savage (1960) for hemipenes.

- 1. Number of interoculabials.
- 2. Number of prefoveals.
- 3. Number of suboculars.
- 4. Number of supralabials.
- 5. Number of canthals.
- 6. Number of intersupraoculars.
- 7. Number of interrictals.
- 8. Number of gulars between the chin shields and the first ventral [first ventral defined by Klauber (1972) as the first scale wider then long].
- 9. Number of ventrals. Ventrals are counted after the method of Dowling (1951), which is different from the method used by Gutberlet and Harvey.
- 10. Number of middorsal scale rows.
- 11. Loreal (modified from Gutberlet and Harvey): (0) absent, (1) entire, (2) fragmented vertically.
- 12. Rostral: (0) broader than high, (1) approximately as broad as high (within 10%) (2) higher than broad.
- 13. Upper preocular: (0) entire, (1) divided anterior to posterior.
- 14. Supraocular horn (modified from Gutberlet and Harvey): (0) absent, (1) present, composed of enlarged superciliary scales, (2) present, composed of several fused scales, (3) composed of a single scale.
- 15. Canthals: (0) flat, (1) raised into small horns.

- 16. Prelacunal and second supralabial (modified from Gutberlet and Harvey): (0) no prelacunal present, (1) fused, (2) not fused, subfoveals absent, (3) separated by one row of subfoveals, (4) separated by two rows of subfoveals. Based on morphological intermediacy, it can be argued that 0→1→2→3→4 constitutes an ordered transformation series.
- 17. Scales in parietal region (modified from Gutberlet and Harvey): (0) smooth, (1) keeled, (2) tuberculate.
- 18. Middle preocular and supralacunal (modified from Gutberlet and Harvey): (0) supralacunal absent/fused to canthals, (1) fused, (2) not fused.
- 19. Sublacunal (modified from Gutberlet and Harvey): (0) sublacunal absent/fused to canthals, (1) entire, (2) divided with anterior and posterior components.
- 20. Canthus rostralis: (0) not elevated, (1) elevated to form a distinct ridge.
- 21. Loreals (modified from Gutberlet and Harvey): (0) absent/fused to canthals, (1) not projecting laterally, (2) projecting laterally.
- 22. Subcaudals: (0) divided, (1) both divided and entire, (2) entire. Based on morphological intermediacy, it can be argued that $0 \rightarrow 1 \rightarrow 2$ constitutes an ordered transformation series.
- 23. Papilla protruding from apex of hemipenes: (0) absent, (1) present.
- 24. Basal and lateral hemipenial spines (modified from Gutberlet and Harvey): (0) many, densely distributed, (1) few, widely spaced (2) none.
- Calyces on lateral surfaces of hemipenial lobes (modified from Gutberlet and Harvey): (0) restricted to distal portion of lobe, (1) extending proximally to level of crotch, (2) not present.
- 26. Pleurapophyses of midcaudal vertebrae: (0) long and slender, (1) short and slender, (2) short and wide. Based on morphological intermediacy, it can be argued that 0→1→2 constitutes an ordered transformation series.
- 27. Haemapophyses of midcaudal vertebrae: (0) not in contact distally, (1) in contact distally.
- 28. Number of palatine teeth.
- 29. Number of pterygoid teeth.
- 30. Number of dentary teeth.

- 31. Length of maxillary fang: (0) short, maximum length only slightly greater than height on maxilla, (1) long, approximately two times longer than height of maxilla.
- 32. Medial wall of pit cavity in maxilla (modified from Gutberlet and Harvey): (0) pit cavity absent, (1) notch in wall weakly developed to almost absent, (2) wall with a well-developed notch.
- 33. Small pit in anterolateral wall of pit cavity in maxilla (modified from Gutberlet and Harvey): (0) pit cavity absent, (1) anterolateral wall simple and lacking projection, (2) anterolateral wall with a small rounded projection, (3) projection with foramen.
- 34. Anterior foramina of prootic: (0) separated by a bony partition, (1) not separated by a bony partition.
- 35. Foramen in ventral surface of lateral process of prootic: (0) absent, (1) present.
- 36. Lateral portion of head of ectopterygoid in dorsal view: (0) broad, (1) intermediate,
 (2) narrow. Based on morphological intermediacy, it can be argued that 0→1→2 represents an ordered transformation series.
- 37. Shaft of ectopterygoid: (0) flat, broad, does not taper posteriorly, (1) flat, gradually tapers posteriorly, (2) narrow, does not taper posteriorly. Based on morphological intermediacy, it can be argued that 0→1→2 represents an ordered transformation series.
- 38. Pits at point of attachment of ectopterygoid retractors on posterior surface of anterior end of ectopterygoid: (0) absent, (1) single, (2) paired.
- 39. Base of ectopterygoid at point of articulation with pterygoid: (0) with a short, welldefined, fingerlike projection that articulates with pterygoid, (1) with an elongate, less defined projection that broadly overlaps pterygoid, (2) elongate projection present but not set off from rest of bone, i.e., spatulate. Based on morphological intermediacy, it can be argued that $0\rightarrow 1\rightarrow 2$ represents an ordered transformation series.
- 40. Ectopterygoid: (0) shorter than base of pterygoid, (1) approximately equal in length to base of pterygoid (posterior to articulation with ectopterygoid, within 10%), (2) longer than base of pterygoid.
- 41. Choanal process of palatine (modified from Gutberlet and Harvey): (0) absent, (1) positioned anteriorly, (2) positioned medially, (3) positioned posteriorly. Based on morphological intermediacy, it can be argued that 0→1→2 represents an ordered transformation series.
- 42. Ventral process of basioccipital: (0) single, (1) bifurcates distally.

- 43. Lateral processes of prefrontal: (0) directed laterally, (1) directed ventrally.
- 44. Medial margin of dorsal portion of prefrontal: (0) strongly concave with posteromedial processes longer, (1) moderately concave with anterior and posertior processes of equal length, (2) weakly concave with anteromedial processes longer. Based on morphological intermediacy, it can be argued that 0→1→2 represents an ordered transformation series.
- 45. Minimum width across both frontals: (0) less than, (1) equal to, or (2) greater than width of skull at anterior end of supratemporals. Based on morphological intermediacy, it can be argued that 0→1→2 represents an ordered transformation series.
- 46. Dorsal surface of frontals: (0) predominantly flat, (1) with elevated lateral margins.
- 47. Posterolateral edges of dorsal surface of parietal: (0) slope ventrolaterally, (1) intermediate, with a small lateral shelf of bone, (2) flare laterally and slightly dorsad.
- 48. Size of postfrontal: (0) large, contributing as much or more to the dorsal margin of the orbit than the parietal does, (1) small, contributing less to the dorsal margin of the orbit than the parietal does. The homology of this bone is in question; it may in fact be the postorbital.
- 49. Supratemporal: (0) expanded posteriorly but lacking a distinct projection, (1) with small posterolateral projection, (2) with large, hook-like posterolateral projection. The homology of this bone is in question; it may in fact be the squamosal. Based on morphological intermediacy, it can be argued that 0→1→2 represents an ordered transformation series.
- 50. Supratemporal: (0) thick with a rounded dorsal surface, (1) think with a flat dorsal surface.
- 51. Meckellian foramen: (0) completely or partially divided into two foramina, (1) single foramen, not divided.
- 52. Angular and splenial: (0) separate, (1) partially fused, (2) completely fused.
- 53. Canthorostrals: (0) absent, (1) present. These are small scales between the rostral and the internasals.
- 54. Dorsal head scales: (0) smooth, (1) keeled.
- 55. Keel on dorsal scales (modified from Gutberlet and Harvey): (0) absent, (1) typical thin ridge, (2) tuberculate on dorsals on caudal part of body, (3) tuberculate on all dorsals. Based on morphological intermediacy, one may argue that 0→1→2→3 constitutes an ordered transformation series.

- 56. Keel on parasubcaudals: (0) present, (1) absent.
- 57. Suboculars: (0) excluded from anteroventral corner of orbit, (1) extend to anteroventral corner of orbit.
- 58. Sublacunal (modified from Gutberlet and Harvey): (0) absent/fused to canthals, (1) entire, (2) divided with an internal and external component.
- 59. Loreal (modified from Gutberlet and Harvey): (0) absent/fused to canthals, (1) entire, (2) divided dorsoventrally.
- 60. Loreal (modified from Gutberlet and Harvey): (0) absent/fused to canthals, (1) contacts canthals, (2) does not contact canthals.
- 61. Loreal (modified from Gutberlet and Harvey): (0) absent/fused to canthals, (1) longer than high, (2) approximately as long as high (within 10%), (3) higher than long. Based on morphological intermediacy, one may argue that 0→1→2→3 constitutes an ordered transformation series.
- 62. Number of subcaudals.
- 63. Nasal pore: (0) present, (1) absent. The nasal pore is a tiny opening on the postnasal scale inside the nostril of most snakes.
- 64. Loreal pit (modified from Gutberlet and Harvey): (0) absent, (1) crossed by nasoorbital line, (2) ventral to naso-orbital line.
- 65. Rattle: (0) absent, (1) present.
- 66. Tail: (0) not prehensile, (1) prehensile.
- 67. Distinct white spots on posterior infralabials and gulars: (0) absent, (1) present.
- 68. Orange middorsal stripe: (0) absent, (1) present.
- 69. Tail pattern: (0) not banded, (1) banded. Specimens with state 1 have distinct black and white bands on the tail, as seen in some rattlesnakes.
- 70. Dorsum with green ground color: (0) absent, (1) present.
- 71. Mesial spines on hemipenial lobes: (0) absent, (1) present.
- 72. Hemipenial lobes: (0) deeply divided, greater than two times longer than base, (1) moderately divided, approximately two times longer than base, (2) partially divided, approximately as long as base, (3) weakly divided, shorter than base. This character was collected but not analyzed due to differences in hemipenis preparation which may have affected lobe length measurements.

- Calyces on hemipenial lobes (modified from Gutberlet and Harvey): (0) spinulate, (1) smooth, (2) both spinulate and smooth calyces present (3) calyces absent). Most taxa have hemipenes with calyx ridges adorned with tiny spinules (state 0).
- 74. Size of choanal process of palatine (modified from Gutberlet and Harvey): (0) process absent, (1) greatly reduced, (2) reduced, (3) moderate, (4) attenuate. Based on morphological intermediacy, one may argue that 0→1→2→3→4 constitutes an ordered transformation series.
- 75. Postfrontal (modified from Gutberlet and Harvey): (0) curves posterolaterally, (1) angles anteriorly, (2) curves to point anteriorly. The homology of this bone is in question; it may in fact be the postorbital.
- 76. Medial process at posterior end of ectopterygoid: (0) weakly developed, (1) large and prominent.
- 77. Nasorostrals (modified from Jadin et al. (2010) no. 28): (0) absent, (1) present. Nasorostrals are small scales between the rostral and the prenasal scale.
- 78. Postnasal (modified from Werman (1992) no. 37): (0) not in contact with first supralabial, (1) in contact with first supralabial, (2) fused to prenasal, (3) fused to prenasal and first supralabial. In state 0 the postnasal is excluded from contact with the first supralabial by the prenasal, prefoveals, or both.
- 79. Number of scales contacting supraoculars (Wüster et al. (1996) no. 27).
- Number of scales contacting third supralabial anterior of rictus (Wüster et al. (1996) no. 28). This count includes the supralabials anterior and posterior to the third supralabial.
- Number of scales across head halfway between supraoculars and internasals (Wüster et al. no. 33 in part). This character is counted in a horizontal line including one canthal from each side.
- 82. Postorbital stripe: (0) absent, (1) present. (from Campbell and Lamar (2004)). The postorbital stripe is a dark stripe that runs from the posterior corner of the eye towards the back of the head.
- 83. Postorbital stripe height at rictus. This is the number of scale rows that comprise the postorbital stripe above the rictus of the mouth
- 84. Postorbital stripe ends: (0) stripe absent, (1) anterior to rictus, (2) at rictus, (3) posterior of head, (4) on neck.
- 85. Number of supralabials with postorbital stripe.

- 86. Percent of last supralabial with postorbital stripe. The state of each individual was estimated from visual inspection.
- 87. Dorsum of head with green ground color: (0) absent, (1) present.
- 88. deleted
- 89. Black bars on gulars: (0) absent, (1) present.
- 90. deleted
- 91. deleted
- 92. Percentage of dark pigment on ventrals. The state of each individual was estimated from visual inspection.
- 93. Number of postcanthals (modified from Gutberlet and Harvey no. 5). Postcanthals are the scales between the most posterior canthal scale and the supraocular.
- 94. Loreal shape (modified from Harvey (2005)): (0) absent/fused to canthals, (1) subtriangular, (2) rectangular.
- 95. Number of internasals (Harvey et al., 2005).
- 96. Apical pits on dorsal scales (0) absent, (1) present. Apical pits are small fenestrae at the tips of scales, easily seen in *Agkistrodon piscivorus*.
- 97. Parasubcaudals near tip of tail (Hoge and Romano-Hoge, 1981 [dated 1979]): (0) higher than wide, (1) square, (2) wider than high
- 98. Supratemporals (Hoge and Romano-Hoge, 1981 [dated 1979]): (0) not extending posteriorly past braincase, (1) extending posteriorly past braincase
- 99. Transition from spines to calyces on hemipenes : (0) abrupt (1) gradual (2) nonexistent.
- 100. Number of supraoculars.
- 101. Stripe on dorsal scale row 1 (Sanders et al., 2004): (0) absent (1) present.
- 102. Lateral projection on lateral head of ectopterygoid: (0) absent, (1) present.

References for Appendix A

- Campbell, J.A., Lamar, W.W., 2004. The Venomous Reptiles of the Western Hemisphere. Comstock Publishing Associates, Ithaca, NY.
- Dowling, H.G., 1951. A proposed standard system of counting ventrals in snakes. British Journal of Herpetology 1, 97–99.
- Dowling, H.G., Savage, J.M., 1960. A guide to the snake hemipenis: a survey of basic structure and systematic characteristics. Zoologica 45, 17–31.
- Gutberlet, R.L., Jr., Harvey, M.B., 2002. Phylogenetic relationships of New World pitvipers as inferred from anatomical evidence. In: Schuett, G.W., Höggren, M., Douglas, M.E., Greene, H.W. (Eds.), Biology of the Vipers. Eagle Mountain Publishing, Eagle Mountain, Utah, pp. 51–68.
- Harvey, M.B., Aparicio, J.E., Gonzales, L.A., 2005. Revision of the venomous snakes of Bolivia. II: the pitvipers (Serpentes: Viperidae). Annals of Carnegie Museum 74, 1–37.
- Hoffstetter, R., Gasc, J.P., 1969. Vertebrae and ribs of modern reptiles. In: Gans, C., Bellairs, A.d.A., Parsons, T.S. (Eds.), Biology of the Reptilia. Academic Press, New York, pp. 201–310.
- Hoge, A.R., Romano-Hoge, A., 1981 [dated 1979]. Poisonous snakes of the world. I.
 Checklist of the pit vipers (Viperoidea, Viperidae, Crotalinae). Memorias do Instituto Butanan 42-43, 179-310.
- Jadin, R.C., Gutberlet Jr, R.L., Smith, E.N., 2010. Phylogeny, evolutionary morphology, and hemipenis descriptions of the Middle American jumping pitvipers (Serpentes: Crotalinae: Atropoides). Journal of Zoological Systematics and Evolutionary Research 48, 360-365.
- Klauber, L.M., 1972. Rattlesnakes: their habits, life histories, and influences on mankind. University of California Press, Berkeley and Los Angeles, U.S.A.
- Sanders, K.L., Malhotra, A., Thorpe, R.S., 2004. Ecological diversification in a group of Indomalayan pitvipers (Trimeresurus): convergence in taxonomically important traits has implications for species identification. Journal of Evolutionary Biology 17, 721–731.
- Werman, S.D., 1992. Phylogenetic relationships of Central and South American pitvipers of the genus Bothrops (sensu lato): cladistic analyses of biochemical and anatomical characters. In: Campbell, J.A., E.D. Brodie, J. (Eds.), Biology of the Pitvipers. Selva, Tyler, Texas, pp. 21–40.

Wüster, W., Thorpe, R.S., Puorto, G., BBBSP, 1996. Systematics of the Bothrops atrox complex (Reptilia: Serpentes: Viperidae) in Brazil: a multivariate analysis. Herpetologica 52, 263–271.

APPENDIX B: INDIVIDUALS EXAMINED FOR MORPHOLOGICAL DATA

Species used, voucher data, collecting locality, and maorphological data types collected for individuals analyzed in pitviper phylogeny. Examiners are identified by name or initials: AMF = A. Fenwick, KMD = K. Diamond, LaDuc = T. LaDuc. Specimens with data collected from species accounts are identified via citations of publications containing the descriptions; for publications where data were aggregated, the number of specimens used is noted. Institutional abbreviations for vouchers are listed in Leviton, Gibbs, Heal & Dawson (1985).

Species	Voucher	Locality	Scales	Color	Bones	Heminenes	Examiner or Publication
Agkistrodon bilineatus	AMNH R-57782. R-		200100	20101	X	penes	AMF
	64811, R-67141						
Agkistrodon bilineatus	CAS uncataloged	no data, Steinhart Aquarium			х		AMF
Aakistrodon bilineatus	FMNH 19425.	Mexico: Yucatán	х	х	~		AME
5	36253						
Aakistrodon bilineatus	FMNH 236414	Honduras: Valle: San Lorenzo	х	х			AMF
5							
Agkistrodon bilineatus	FMNH 4196	Belize	х	х			AMF
Agkistrodon bilineatus	UCM 40640,	Mexico: Yucatán: Munic. Tinum	х	х			AMF
	40641, 41792						
Agkistrodon bilineatus	AMNH 125525,	Costa Rica: Guanacaste Prov.		х			Campbell and Lamar 2004
	125527						
Agkistrodon bilineatus	_	-		х			Campbell and Lamar 2004
Agkistrodon bilineatus	UAZ 41131	Mexico: Colima		х			Campbell and Lamar 2004
Aakistrodon contortrix	AMNH R-77594	USA: New York: Greene Co.			х		AMF
Aakistrodon contortrix	FLMNH 18364	USA: Connecticut: Hartford Co.			x		AME
Aakistrodon contortrix	FI MNH 37511	USA: Pennsylvania: York Co			x		AME
Aakistrodon contortrix	FMNH 178997.	USA: Kansas: Douglas Co.	х	х	~	x	AME
	178998		~	~			
Aakistrodon contortrix	UTA R-38098	USA: Arkansas: Colombia Co.			x		AME
Aakistrodon contortrix	UTA R-40961	USA: Oklahoma: LeElore Co			x		AME
Aakistrodon contortrix	UTA uncataloged	USA: Texas: Freestone Co			x		AME
Agkistrodon contortrix	UTT 102 104 113	USA: Texas: Smith Co	x	x	X		AME
Agristiouon contortinx	245 246 262 529	OSA. Texas. Smith eo.	A	~			
Agkistradan contartriv	LITT 15/	USA: Texas: Smith Co	v	v		~	AME
Agkistrodon contortrix	UTT 516	USA: Texas: Hondorson Co	A V	× v		^	
Agkistrodon contortrix		-	X	X			
Agkistrodon contortrix	011 387	-	X	X			Aivir Comphell and Lomar 2004
Agkistrodon contortrix	-	-	0 inda	х	6 inde		Cuthorlot 1008
Agkistrodon contortrix		-	o mus.		6 mas		
Agkistrodon piscivorus						x	
Agkistrodon piscivorus					x		
Agkistrodon piscivorus		USA: Georgia: SREL			x		
Agkistrodon piscivorus	AIVINH K-84486	USA: South Carolina: Jasper Co.			х		
Agkistrodon piscivorus	CLP CLP984	USA: Georgia: Thomas Co.	Х	х		х	AMF
Agkistrodon piscivorus	FLMNH 119743,	USA: South Carolina: Jasper Co.	х	х		х	AMF
	119745						
Agkistrodon piscivorus	FLMNH 74435-	USA: Texas	х	х			AMF
	74437						
Agkistrodon piscivorus	FLMNH 8950	USA: Florida: Alachua Co.			х		AMF
Agkistrodon piscivorus	UCF 2307	USA: Florida: Polk Co.	х	х			AMF
Agkistrodon piscivorus	UCF CLP271	USA: Florida: Osceola Co.	х	х		х	AMF
Agkistrodon piscivorus	UCF CLP934	USA: Florida	х	х			AMF
Agkistrodon piscivorus	UCF CLP942	USA: Georgia: SREL	х	х			AMF
Agkistrodon piscivorus	UTA R-54070	USA: Texas: Rains Co.				х	AMF
Agkistrodon piscivorus	CA 5602	-		х			Campbell and Lamar 2004
Agkistrodon piscivorus	-	-		х			Campbell and Lamar 2004
Agkistrodon taylori	AMNH R-140853	no data, rec. via NY Zool. Soc.			х		AMF
Agkistrodon taylori	CM 147767	Mexico: Tamaulipas			х		AMF
Agkistrodon taylori	CM 147769	Mexico: Tamaulipas	х	х	х		AMF
Agkistrodon taylori	FMNH 250435	Mexico, don. Lincoln Park Zoo	х	х	х		AMF
Agkistrodon taylori	FMNH 28794	Mexico: Tamaulipas	х	х			AMF
Agkistrodon taylori	USNM 209854	Mexico: Tamaulipas: Munic. Aldama	х	х		х	AMF
Agkistrodon taylori	-	-		х			Campbell and Lamar 2004
Atheris ceratophora	CAS 162615-	Tanzania: Iringa Region: Mufindi Dist.	х	х			AMF
	162618						
Atheris ceratophora	CAS 168976	Tanzania: Tanga Region: Lushoto Dist.	х	х			AMF
Atheris ceratophora	CAS 173806	Tanzania: Tanga Region: Muheza Dist.	х				AMF
Atheris ceratophora	CAS 173812	Tanzania: Iringa Region: Mufindi Dist.	х	х			AMF
Atheris ceratophora	FLMNH 66893	Tanzania: Tanga Region: Usambara Mts.	х	х			AMF
Atheris ceratophora	UCF CLP919,	no data, rec. via A. Cortiz	х	х			AMF
	CLP920						
Atheris ceratophora	UTA uncataloged	Tanzania: Usambara Mts.			х		AMF
Atheris nitschei	CAS 178224	Uganda: Rukungiri Dist.: Bwindi			х		AMF
		Impenetrable Forest Reserve					
Atheris nitschei	CAS 201653,	Uganda: Kabale Dist.: Bwindi	х	х			AMF
	201707, 201708	Impenetrable Ntl. Park					
Atheris nitschei	CAS 201654,	Uganda: Kabale Dist.: Bwindi	х	х		х	AMF
	201655, 201706	Impenetrable Ntl. Park					
Atheris nitschei	CAS 85298	Democratic Republic of Congo: Sud-Kivu	х	х		х	AMF
		Prov.: Idjwi Isl.					
Atheris nitschei	CAS 85981	Democratic Republic of Congo	x	x			AMF
Atheris nitschei	FLMNH 80361	Democratic Republic of Congo	x	x			AMF
Atheris nitschei	FMNH 8984	Uganda	~	~	x		AMF
Atheris nitschei	FMNH 8987	Uganda: Kigezi Dist			x		AMF
Atheris nitschei	UCF CI P912	no data rec via A Cortiz	v	Y	~		AMF
Atheris nitschei	UCF CI P913	no data, rec. via A. Cortiz	x x	~			AMF
Atheris sauamiaera	CAS 197898	Cameroon: Fast Region: Dia Recerve	^ V	Y			AMF
Atheris squamigera	CAS 207867	Equatorial Guinea: Rioko Isl	x x	x		¥	AMF
s.a.c.io squannyera	207869		~	~		~	
Atheris sauamiaera	FLMNH 72485	-			x		AMF
Atheris squamigera	FI MNH 8038/	Democratic Republic of Congo	v	Y	~	Y	AMF
	80678		~	~		~	

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Atheris squamigera	FLMNH 80389	Democratic Republic of Congo	х	х			AMF
Atheris squamigera	FLMNH 86506,	Kenya	х	х			AMF
	92249						
Atheris squamigera	UCF CLP914,	no data, rec. via A. Cortiz	х	х			AMF
	CLP915						
Atropoides indomitus	UTA R-52952	Honduras: Dept. Colón	х	х		х	AMF
Atropoides indomitus	-	-	2 inds				Jadin et al. 2010
Atropoides mexicanus	UTA R-12943	Costa Rica; Cartago Prov.: Turrialba				x	AMF
		Canton: Pavones Dist.					
Atropoides mexicanus	UTA R-21967, R-	Guatemala: Dept. Baja Verapaz				x	AMF
Atronoidos moviegnus		Customala, Dont. Rois Varanaz					
Atropoldes mexicanus	UTA R-24755	Costa Rica: San José Prov : Puriscal	X	X		x	
All opolices mexicallus	017 11-24047	Costa Nica. Sali Jose Frov., Fullscal				~	
Atronoides mexicanus	LITA R-38101	Guatemala: Dent Baia Veranaz			x		AME
Atropoides mexicanus	UTA R-45500	Guatemala: Dept. Huehuetenango			X	x	AME
Atropoides mexicanus	-	-		х			Campbell and Lamar 2004
Atropoides mexicanus	_	_	17				Jadin et al. 2010
			inds				
Atropoides mexicanus	UTA R35943	Guatemala: Dept. Baja Verapaz		х			Campbell and Lamar 2004
Atropoides nummifer	AMNH R-46475	-			х		AMF
Atropoides nummifer	AMNH R-46962	Honduras			х		AMF
Atropoides nummifer	FLMNH 71065,	Costa Rica			х		AMF
	71066						
Atropoides nummifer	FMNH 27125	Honduras			х		AMF
Atropoides nummifer	UTA R-16107	Guatemala: Dept. Escuintla	х	х			AMF
Atropoides nummifer	UTA R-24842	Mexico: Hidalgo: La Huasteca Region	x	х		x	AMF
Atropoides nummifer	UTA R-53745	Honduras: Dept. Copan	х	x			AMF Comphell and Lamar 2004
Atropoides nummifer	-	-	4 inde	х			Ladin et al. 2010
Atropoides nummifer	_	_	4 mus 7 inds		2 inde		Gutherlet 1998
Atropoides nummifer	- LITA R2/18/13	 Mevico: Hidalgo	7 mus.	v	5 mus.		Campbell and Lamar 2004
Atropoides natifility	UTA R-34158	Guatemala: Dent Baia Veranaz	x	×		×	
Atropoides occiduus Atropoides occiduus	UTA R-9089	Guatemala: Dept. Baja verapaz	~	~		x	AME
Atropoides occiduus	-	-		x		X	Campbell and Lamar 2004
Atropoides occiduus	_	-	5 inds	Ä			Jadin et al. 2010
Atropoides occiduus	UTA R12785	Guatemala: Dept. Escuintla	0	х			Campbell and Lamar 2004
Atropoides olmec	UTA R-25113		х	х		x	AMF
Atropoides olmec	-	-		х			Campbell and Lamar 2004
Atropoides olmec	-	-	6 inds				Jadin et al. 2010
Atropoides olmec	UTA R-6206	Mexico: Oaxaca					Jadin et al. 2010
Atropoides olmec	UTA R25113	Mexico: Veracruz		х			Campbell and Lamar 2004,
							Jadin et al. 2010
Atropoides picadoi	UCF CLP918	no data, rec. via A. Cortiz	х	х			AMF
Atropoides picadoi	UTA R-18215	Costa Rica				х	AMF
Atropoides picadoi	UTA R-24834	Costa Rica: San José: Moravia Canton				x	AMF
Atropoides picadoi	UTA R-32080	Costa Rica	х	x		x	AMF
Atropoides picadoi	-	-	4 i	2 inds			Campbell and Lamar 2004
Atropoldes picadol		- Costa Rica	4 inds				Jadin et al. 2010
Atropoides picadoi	UTA R-18215	Costa Rica: Heredia Prov		v			Jaum et al. 2010 Campbell and Lamar 2004
All opolices pictuol	EMNH 152987	Indochina	×	×			
Azemiops feae	FMNH 170643	China: Sikang Prov	x	x			AMF
Azemions feae	FMNH 218627	_	x	x			AME
, <u>Lennops</u> jede	218628		~	Ä			
Azemiops feae	UCM 57352	China: Fujian Prov.	х	х			AMF
Azemiops feae	UCM 58997, 60500	China: Anhui Prov.	х	х			AMF
Azemiops feae	USNM 84363	China: Sichuan Prov.		х	х	х	AMF
Bitis arietans	AMNH R-51878	Angola: Huíla Prov.	х	х		х	AMF
Bitis arietans	CAS 160773	Botswana: South-East Dist.	х	х			AMF
Bitis arietans	CAS 200970	South Africa: Cape Prov.			х		AMF
Bitis arietans	FLMNH 101242	Democratic Republic of Congo: Kinshasa	х	х			AMF
		Prov.					
Bitis arietans	FLMNH 119853	Mozambique	х	х			AMF
Bitis arietans	FLMNH 58049,	Tanzania	х	х		х	AMF
	119855						
Bitis arietans	FLMNH 119856	Tanzania: Arusha Dist.	х	х			AMF
Bitis arietans	FLMNH 61114	Togo			х		AMF
Bitis arietans	FLMNH 61976	Tanzania: Morogoro Region			х		AMF
Bitis arietans		logo			х		
BILIS UNPLUNS	FLIVIINE 85486, 88665	Nellyd	х	х			
Ritis ariotans	00000 FI MNIH 00050	Kenva: Rift Valley Prov · Paringo Dict	v	v			ΔMF
Bitis arietans		Fast Africa	~	~	v		
Bitis arietans	FMNH 196152	Liberia			^ V		AMF
Bitis arietans	FMNH 31316				^ ¥		AMF
Bitis nasicornis	FLMNH 119868	Ghana	x	x	^	x	AMF
Bitis nasicornis	FLMNH 21356	Kenya	x	x		~	AMF
	21357. 119869		~	~			
Bitis nasicornis	FLMNH 61287,	Тодо			х		AMF
	61484	-					
Bitis nasicornis	FLMNH 80681	Democratic Republic of Congo	x	х			AMF
Bitis nasicornis	FMNH 3996, 19457	Cameroon			х		AMF
Bitis nasicornis	UCM 17022	Democratic Republic of Congo:	х	х			AMF
		Orientale Prov.: Bas-Uele Dist.					
Bitis nasicornis	UTA uncataloged	-			х		AMF
D'11 1 1							

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Bitis peringueyi	CAS 111963,	Namibia: Erongo Region: Namib Desert	х	х			AMF
, , ,	111964	6 6					
Pothriachic qurifar		Guatomala			v		0.N4E
Bothniechis aurifen		Guatemala			X		
Bothriechis aurifer	FLIVINH 87959,	Guatemala	х	х			AMF
	87962, 96309						
Bothriechis aurifer	KU 187435,	Guatemala: Dept. Baja Verapaz	х	х			AMF
	187437						
Bothriechis aurifer	KU 187436,	Guatemala: Dept. Baja Verapaz	х	х		х	AMF
-	187440						
Bothriechis gurifer	ROM 42220 42221	Guatemala: Dent, Baia Veranaz	v	Y			AME
Bothriachis aurifer	110101 42220, 42221	Guatemala: Dept. Baja Verapaz	~	× ×			
Bothniechis durijer		Guatemala. Dept. Baja Verapaz	X	X			
Bothriechis aurifer	UTA R-7046, R-	Guatemala: Dept. Baja Verapaz			х		AMF
	35031, R-37226						
Bothriechis aurifer	UTA R-7041	Guatemala: Dept. Baja Verapaz				х	AMF
Bothriechis aurifer	UTA uncataloged	-			х		AMF
Bothriechis aurifer	KU 191201	-					Campbell and Lamar 2004
Bothriechis aurifer	-	-		х			Campbell and Lamar 2004
Bothriechis aurifer	UTA R-7040	Guatemala: Dept. Baja Verapaz		х			Campbell and Lamar 2004
Bothriechis hicolor	FI MNH 64238	Guatemala	x	x			AME
Bothriechis bicolor	EMNH 20162	Guatemala	v	v			
Dothriachia bicolor	1101111 20102	Guatemala: Dent. Chimeltenense	^	^			
Bothriechis bicolor		Guatemala: Dept. Chimaltenango	Х	х			AIMF
Bothriechis bicolor	UMMZ 87707	Mexico: Chiapas: Soconusco Dist.	х	х	х		AMF
Bothriechis bicolor	UMMZ 94644	Mexico: Chiapas	х	х			AMF
Bothriechis bicolor	UTA R-39413, R-	Guatemala: Dept. San Marcos: Munic.	х	х			AMF
	39418	San Rafael Pie de la Cuesta					
Bothriechis bicolor	UTA R-39420	-	х	х			AMF
Bothriechis bicolor	UTA R-9353	_			х		AMF
Bothriechis hicolor	_	_		Y			Campbell and Lamar 2004
Bothriachis bicolor			6 inde	^	2 inde		Cuthorlot 1009
Bothniechis bicoloi		-	o mus.		z mus.		Gutberlet 1998
Bothriechis bicolor	UTA R-42278	-		х			Campbell and Lamar 2004
Bothriechis lateralis	FLMNH 39820,	Costa Rica: San José Prov.	Х	х			AMF
	70571						
Bothriechis lateralis	FLMNH 68976	-			х		AMF
Bothriechis lateralis	FLMNH 88564,	Costa Rica: Alajuela Prov.: San Carlos	х	х			AMF
	88565	Canton					
Bothriechis lateralis	ELMNH 88566	Costa Rica	v	v			AME
Bothriachis lateralis		Costa Nica Denomou Chiriquí Drou	^	^ 			
Bounneenis lateralis	01011012 101765,	Pallallia. Chinqui Prov.	X	X			AIVIF
	101/84, 14//82	_					
Bothriechis lateralis	UTA R-14537	Costa Rica: San José Prov.			х	х	AMF
Bothriechis lateralis	UTA R-2811	-			х		AMF
Bothriechis lateralis	UTA R-3660	Costa Rica: San José Prov.: Patarrá Dist.			х	х	AMF
Bothriechis lateralis	-	-		х			Campbell and Lamar 2004
Bothriechis lateralis	_	_	7 inds.		3 inds.		Gutberlet 1998
Bothriechis marchi	FI MNH 144679	Honduras: Dent Cortés	v	Y	0	×	AME
Pothriachic marchi		Honduras	~	~	v	~	
Bothniechis murchi					X		
Bothriechis marchi	FLIVINH 52554,	Honduras	Х	х			AMF
	52555						
Bothriechis marchi	FMNH 21777,	Honduras: Yoro	х	х			AMF
	21892, 34732,						
	34733, 36000,						
	37217, 38542,						
	41621						
Bothriechis marchi	EMNH 21201	Honduras: Voro			v		
bothine chis marchi	21202				^		
	31292						
Bothriechis marchi	FMNH 31304	Honduras, don. Chicago Zool. Soc.			х		AMF
Bothriechis marchi	-	-		х			Campbell and Lamar 2004
Bothriechis nigroviridis	FLMNH 103499	Costa Rica: San José Prov.: San José	х	х			AMF
Bothriechis nigroviridis	FLMNH 70573	Costa Rica	х	х			AMF
Bothriechis nigroviridis	FLMNH 80252,	Costa Rica: San José Prov.	х	х			AMF
5	87335						
Bothriechis nigroviridis	ELMNH 85313	Costa Rica	v	v		×	AME
Bothriachis nigroviridis		Costa Rica: Buntaronas Broy	~	×		~	
Bothnie chis nigrovinuis		Costa Nica. Fulltalellas Flov.	×	*			
Bothriechis nigroviridis	LACM 154554	Costa Rica: Cartago Prov.	х	х			AMF
Bothriechis nigroviridis	UMMZ 117734	Costa Rica: San José Prov.	х	х	х		AMF
Bothriechis nigroviridis	UMMZ 131330	Costa Rica: Limon Prov.: Siquirres	х	х			AMF
		Canton					
Bothriechis nigroviridis	UMMZ 138816	Costa Rica: San José Prov.			х		AMF
Bothriechis niaroviridis	UMM7 147776	Panama [.] Chiriquí Prov	x	x			AMF
Bothriechis nigroviridis	LITA R-9635	Costa Rica: San José Prov	~	~	Y		AME
Bothriachis nigroviridis					X		
Dotiniconio nigroviridio	0000-71 210				X		Comphell and Lamer 2004
	-	-	<u> </u>	х	a · ·		Campbell and Lamar 2004
Bothriechis nigroviridis	-	-	6 inds.		3 inds.		Gutberlet 1998
Bothriechis rowleyi	AMNH R-102894,	Mexico: Oaxaca	х	х			AMF
	102895						
Bothriechis rowleyi	FLMNH 52553	Mexico: Chiapas	х	х			AMF
Bothriechis rowlevi	UTA R-12565	-			х		AMF
, Bothriechis rowlevi	UTA R-7707	-	x		x		AMF
Bothriechis rowleyi	_	_	~	v	~		Campbell and Lamar 2004
Pothriachic cohlago!"		Colombia		^			
Bothriachia schiegelli			-		х		
ьотплеспіs schiegelii	FLIVINH 141057	nonduras: Dept. Gracias a Dios	х	х			
Bothriechis schlegelii	FLMNH 150141	Honduras: Dept. Cortés	х	х			AMF
Bothriechis schlegelii	FLMNH 22254	Ecuador	х	х			AMF
Bothriechis schlegelii	FLMNH 30499	Costa Rica: Heredia Prov.	х	х			AMF
Bothriechis schlegelii	FLMNH 39829	Costa Rica: Guanacaste Prov.: La Cruz	х	х			AMF
- 3 -		Canton					
Rothriechis schlegelii	EI WNH 68031	Ecuador	v	v			AMF
Pothriachia achlaralii		Costa Rica	×	× 			
bounneeniis seniegelli	LIVINE 09924	CUSID RILD	х	х			

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Bothriechis schlegelii	FLMNH 71068	Costa Rica			х		AMF
Dethairehie eeklearelii	514111 2524	Casta Disa					A. N. 4. F.
Bothriechis schiegelli	FIVINH 2524	Costa Rica			х		AIVIF
Bothriechis schlegelii	FMNH 51688	Panama: Bocas del Toro Prov.	х		х		AMF
Bothriechis schlegelii	LINAN7 177670	Costa Rica: San José Prov · Salitral Dist	v	~			ΔΜΕ
bothineenis semeyeni		costa frica. Sali Jose 1100 Saliti al Dist.	~	~			
	176988						
Bothriechis schlegelii	UMM7 177671	Costa Rica: San José Prov · Salitral Dist	x	x	x		AMF
2 eteee gee ge	470000				~		
	176989						
Bothriechis schlegelii	UMMZ 80725	Belize: Cavo Dist.	х	х			AMF
Dothriachic cohlagolii			1.4		1 inde		Cuthorlat 1008
Bothinethis schiegeni	-	-	14		4 mus.		Gulbenel 1998
			inds.				
Rothriechis schlegelii	_	Colombia: Dent, Cauca		2 inds			Campbell and Lamar 2004
				2 11103.			
Bothriechis schlegelii	-	Costa Rica: Limon Prov.		2 inds.			Campbell and Lamar 2004
Bothriechis schlegelii	UCR no number	Costa Rica: Puntarenas Prov		x			Campbell and Lamar 2004
				~			
Bothriechis schlegelii	-	Ecuador		х			Campbell and Lamar 2004
Bothriechis schlegelii	_	Ecuador: Pichincha Prov.		х			Campbell and Lamar 2004
Dethricehie echlerelii		Customeles Dent Jackel					Complete and Longer 2004
Bothnechis schiegeni	UTA R41195	Gualemaia: Depl. izabai		x			Campbell and Lamar 2004
Bothriechis schlegelii	UTA R12957	Guatemala: Dept. Izabal: Munic. Los		х			Campbell and Lamar 2004
		Amates					
							C I II II 2004
Bothriechis schlegelii	-	Peru: Tumbes Prov.		х			Campbell and Lamar 2004
Bothriechis supraciliaris	AMNH R-147743	Panama: Chiriquí Proy.	х	х			AMF
Dethuisehie europeilieurie		Costo Rico. Dunto roma Drov					
Bothriechis supraciliaris	UTA R-30289, R-	Costa Rica; Puntarenas Prov.	х	Х			AMF
	35193, R-35246						
Rothriechic cupraciliaria		Costa Rica: Duntaronas Prov	~				
sourceuns suprucillaris	01H R-22192	Custa Nica, Pullidi ellas PIOV.	х	х		х	
Bothriechis supraciliaris	UCR 14010	Costa Rica: Puntarenas Prov.: Dist. San		х			Campbell and Lamar 2004
-		Vito de Coto Brus					
Dath wig - 1:				<u>.</u>			Completelle La Consta
sothriechis supraciliaris	UCK no number	Costa Rica: Puntarenas Prov.: Dist. San		2 inds.			Campbell and Lamar 2004
		Vito de Coto Brus					
Rothriechic cupraciliania	_	Costa Rica: Duntaronas Drove Dist. Com) ind-			Campbell and Lamar 2004
soumechis supracillaris	-	Custa nica. Puntarenas Prov.: Dist. San		∠ mus.			Campuen and Lamar 2004
		Vito de Coto Brus					
Bothriechis thalassinus	FI MNH 142520	Honduras	v	Y			AME
	1 LIVIIVII 14233U		~	Χ.			
Bothriechis thalassinus	FMNH 154530	Guatemala	х	х			AMF
Bothriechis thalassinus	UTA R-38220	Guatemala: Dent Zacana	x	¥			AME
		Customala, Dept. Zacapa	^	^			
Bothriechis thalassinus	UTA K-38891, R-	Guatemala: Dept. Izabal: Munic.	х	х			AIVIF
	39251. R-42259 R-	Morales					
	46526						
	46526						
Bothriechis thalassinus	UTA R-44438	Guatemala: Dept. Zacapa	х	х		х	AMF
Pothriachic thalaccinus							Comphell and Lamar 2004
Bothnethis thalassinas	-	-		X			Campbell and Lamar 2004
Bothriechis thalassinus	UTA R-46526	-		х			Campbell and Lamar 2004
Dethaisacis biline esta							A. N. A.F.
Bothriopsis bilineata	AIVINH R-53422, R-	-			х		AMF
	140856, R-140859						
Rothriansis hilineata		Peru: Loreto Region	~	×			
	ANSI 7015	reru. Loreto Region	^	^			
Bothriopsis bilineata	FLMNH 119435	-	х	х			AMF
Bothrionsis hilineata	FI MNH 61281	Suriname			x		AMF
Sourropsis Sinneata	(1202	Samane			X		
	61283						
Bothriopsis bilineata	FLMNH 78036	Suriname	х	х		х	AMF
Bothrionsis hilineata	ELMNH 83837	Ecuador: Nano Prov	~	×			
Solimopsis bilineulu	FLIVINE 03037		~	~			AME
Bothriopsis bilineata	LACM 104360	Peru: Maynas Prov.	х	х			AMF
Bothrionsis hilineata	LACM 73359	Ecuador: Nano Prov	×	×			AMF
			Λ	~			
Bothriopsis bilineata	LACM 76790	Peru: Pasco Region	х	х			AMF
Bothriopsis bilineata	MCZ 149525	Suriname	х	х			AMF
Dathriansis hilinaata	MC7 20901	Drazili Fanírita Santa					
Bothnopsis bilineata	IVICZ 20891	Brazil: Espirito Santo	X	x			AMF
Bothriopsis bilineata	UCF CLP no	Colombia: Dept. Amazonas				х	AMF
-	numher	·					
Bothriopsis bilineata	UTA R-15645, R-	Suriname, Marowijne Dist.	х	х			AMF
	15647, R-15650						
		Curring and					
ouririopsis bilineata	UTA K-16084, R-	surmame	х	х			AIVIE
	19490						
Rothrionsis hilineata	11TA R-22281	Ecuador	v	×			ΔΜΕ
			X	X			
sothriopsis bilineata	UTA R-2468	Peru: Loreto Region	х	х			AMF
Bothriopsis bilineata	UTA R-34144	Peru	х	х			AMF
athriansis hills				~			
sochriopsis bilineata	UTA K-34145	-	х	х			AIVIE
Bothriopsis bilineata	UTA R-3588	Colombia, Dept. Vaupés	х	х			AMF
Rothriansis hilinasta	_	-	-) ind-			Campbell and Lamas 2004
	-			z mus.			
Bothriopsis chloromelas	AMNH R-104298	Peru: Huánuco Prov.	х	х			AMF
Bothriopsis chloromelas	CM R-373	Peru: Loreto Region	x	¥			AME
			^	~			
sothriopsis chloromelas	FMNH 59205	Peru: Junin Region; Chanchamayo Prov.	х	х		х	AMF
Rothriopsis chloromelas	LSUMZ 41037	Peru: Pasco Region	х	х			AMF
athriancic chlore	LICNINA 110020	Dorus Lorato Dagion					
ounnopsis unoromelas	O214141 113020	FEIU. LUIELO KEGION	х	х			
othriopsis chloromelas	-	-		х			Campbell and Lamar 2004
athriansis meduca	AMNH R-61011	Venezuela: Aragua: Munic Toyar	v	×			AME
		venezuela. Aragua. Wullic. TUVdľ	X	X			
othriopsis medusa	USNM 129585	Venezuela	х	х			AMF
othriopsis medusa	_	-		x			Campbell and Lamar 2004
		Demu Territoria D		^			
othriopsis oligolepis	FMNH 68597	Peru: Tambopata Prov.	х	х			AIVIF
Bothriopsis oliaolenis	_	_		х			Campbell and Lamar 2004
othriansis sulater	VII 1 21 2 4 7	Foundary Tungurahua		~			
sochriopsis pulchra	KU 121347,	Ecuador: Tungurahua	х	х			AIVIE
	121348						
athriansis nulchra	I SI INAT 20216	Peru: Dent Amazonas			v		ΔΝΛΕ
	LJOINIT 22210	reiu. Dept. Amazonas			х		
othriopsis pulchra	UMMZ 105894	Ecuador: Pastaza Prov.	х	х			AMF
athriansis nulchra	1111112 02000	Foundar: Zamara Chinchina Brass	v	v			ΔΝΛΕ
			х	х			
Bothriopsis pulchra	USNM 165183-	Ecuador	х	х			AMF
	165185 165188						
	100100, 100100						Consol II II
sothriopsis pulchra	-	-		х			Campbell and Lamar 2004
Bothriopsis taeniata	FLMNH 119978	Suriname: Nickerie Dist	x	x			AMF
			^	~			
30thriopsis taeniata	FLMNH 83839	Suriname	х	х			AMF
Bothriopsis taeniata	FMNH 74043	Venezuela	x	¥			AMF
	· · · · · · · · / · · · · · · · · · · ·		^	~			

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Bothriopsis taeniata	KU 128263	Brazil: Pará	х	х			AMF
Bothriopsis taeniata	UTA R-10501, R-	Suriname, Sipaliwini Dist.	х	х			AMF
Bothriopsis taeniata	UTA R-15618	Suriname, Marowiine Dist.	x	x		x	AMF
Bothriopsis taeniata	UTA R-29687	Brazil, Rondonia	x	x		~	AMF
Bothriopsis taeniata	UTA R-32087	-			х		AMF
Bothriopsis taeniata	UTA R-32088	-	х	х			AMF
Bothriopsis taeniata	UTA uncataloged	no data, don. Dallas Zoo			х		AMF
Bothriopsis taeniata	-	-		х			Campbell and Lamar 2004
Bothrocophias campbelli	AMNH R-22094	Ecuador Foundary Manahi Bray y Dishingha	x	x			AMF
Bothrocophias campbelli	USNIVI 165322,	Ecuador: Manabi Prov.: Pichincha	х	х			AMF
Bothroconhias camphelli	-			x			Campbell and Lamar 2004
Bothrocophias colombianus	AMNH R-130550	Colombia: Dept. Cauca: Munic. Tambo	х	x			AMF
Bothrocophias colombianus	FMNH 55898	Colombia	x	x			AMF
Bothrocophias colombianus	UTA R-25949	Colombia		x			AMF
Bothrocophias colombianus	-	-		х			Campbell and Lamar 2004
Bothrocophias hyoprora	AMNH R-54141	Peru			х		AMF
Bothrocophias hyoprora	KU 222208	Peru: Loreto Region	х	х			AMF
Bothrocophias hyoprora	KU 222209	Peru: Loreto Region	х	х		х	AMF
Bothrocophias hyoprora	MCZ R163236	Ecuador: Sucumbios Prov.: Cuyabeno	х	х			AMF
Pothrocophias hupprora		Canton	v	~			
<i>Βοτιποτορι</i> πας πγορισια	165299 165301	Ecuador	Χ.	~			AWF
	165302 165304-						
	165307, 165309,						
	165310						
Bothrocophias hyoprora	USNM 165298	Ecuador		х			AMF
Bothrocophias hyoprora	-	-		х			Campbell and Lamar 2004
Bothrocophias	FLMNH 38922	Peru: Loreto Region	х	х			AMF
microphthalmus							
Bothrocophias	FMNH 5580, 40242	Peru: Canta Prov.: Santa Rosa de Quives	х	х			AMF
microphthalmus		Dist.					
Bothrocophias	FMNH 63740	Peru			х		AMF
microphthalmus	KU 244 C24	Denny Cere Mantía Daniana Cere Mantía					
Bothrocophias	KU 211621	Peru: San Martin Region: San Martin	х	х			AMF
Bothrocophias	LACM 76791		v	~			ANAE
micronhthalmus	LACIVI 70791	-	x	~			AWF
Bothrocophias	LSUMZ 43286	Peru: Pasco Region	х	x			AMF
microphthalmus							
Bothrocophias	MCZ 45920	Peru: Loreto Region	х	х			AMF
microphthalmus							
Bothrocophias	USNM 165303	Ecuador	х				AMF
microphthalmus							
Bothrocophias	YPM R7812	Ecuador: Oriente Region	х	х			AMF
microphthalmus							o 1 11 11 0000
Bothrocophias	-	-		х			Campbell and Lamar 2004
Rothrocophias myersi	AMNH R-107919	Colombia: Dent Cauca	v	~			ANAE
both ocophias myersi	R-107920, R-	colombia. Dept. cauca	A	~			
	109812						
Bothrocophias myersi	FMNH 165586,	-	х	х			AMF
	165588, 165590–						
	165592, 165596						
Bothrocophias myersi	FMNH 165587,	Colombia: Dept. Valle del Cuaca	х	х			AMF
	165589, 165594,						
	165595						
Bothrocophias myersi	FMNH 165593	Colombia: Dept. Valle del Cuaca	х	х	х		AMF
Bothrocophias myersi	UTA R-21689	Colombia: Dept. Valle del Cuaca	х	x		x	AMF
Bothropoidos alcatraz	_	-		X			Campbell and Lamar 2004
Bothropoides alcatraz	– IB 62545	– Brazil: Sao Paulo: Alcatrazes Isl	x	×			Marques et al. 2002
Bothropoides dinorus	ANSP 7013	Argentina: Buenos Aires Prov.: Dent La	x	x			AMF
		Plata					
Bothropoides diporus	MCZ 47029	Paraguay: Dept. Central: Dist. Villeta	х	х			AMF
Bothropoides diporus	MVZ 127510	Argentina: Jujuy Prov.: Dept. Ledesma	х	х			AMF
Bothropoides diporus	MVZ 134155	Argentina, Chaco Prov., General	х	х			AMF
		Belgrano Dept.					
Bothropoides diporus	MVZ 134156	Argentina, Cordoba Prov.	х	x			AMF
воспгороїdes alporus	11NHL 44863,	Argentina: Catamarca Prov.	х	х		х	AIVIF
Pothropoidas diporus	44877, 44989 TNUC 16975	Argentina: La Rioia Prov : Chamical	V	v		Y	0.1E
boan opolaes alporas	46876	Dent	x	X		X	
Bothropoides dinorus	_			x			Campbell and Lamar 2004
Bothropoides diporus	-	_		~			Silva and Rodrigues 2008
Bothropoides diporus	-	_					Carrasco et al. 2010
Bothropoides diporus	IBSP 5320	Argentina: Santiago del Estero Prov.		х			Silva and Rodrigues 2008
Bothropoides erythromelas	AMNH R-131808	Brazil: Bahia	х	х			AMF
Bothropoides erythromelas	LSUMZ 24446	Brazil: Ceará: Munic. Limoeiro do Norte	х	х			AMF
Bothropoides erythromelas	-	-		х			Campbell and Lamar 2004
Bothropoides erythromelas	IB 3030, 3031	Brazil: Bahia	2 inds.	х			Amaral 1923
Bothropoides insularis	CIVI R 2862	Brazil, Sao Paulo, Ilha da Queimada Grando	х	х			AMF
Bothronoides insularis	MC7 17620 17622	Brazil São Paulo Ilha da Oucimada	v	v			ΔΝ/Ε
	17625–17627	Grande	^	~			

Species	Voucher	Locality	Scales	Color	Bones	Heminenes	Examiner or Publication
Species		Durail Ca Davida Illa da Ovaina da	Jules	COIDI	DOLLES	nempenes	
Bothropoides insularis	MCZ 17623	Brazil, São Paulo, lina da Queimada	х	х		х	AMF
		Grande					
Bothropoides insularis	MV/7 176200	Brazil São Paulo, Ilba da Queimada	v	v		v	AN4E
Both opolaes insularis	10102 170399	Biazii, Sau Faulu, iila ua Queilliaua	^	X		~	AIVIE
		Grande					
Rothronoides insularis	LIMM7 58505	Brazil São Paulo	x	x			AMF
Both operaces mountains	50506		Л	~			
	58506						
Bothropoides insularis	-	-		х			Campbell and Lamar 2004
, Bothropoides jararaca	AMNH R-27464 R-	Brazil			v		л. м. Е.
Bothiopoldes juiulucu	Alvini i (-27404, ((-	DIAZII			^		AIVII
	27465						
Bothronoides iararaca	ANSP 7030	Brazil	x	x			AMF
Dethyanaidaa igyayyaa		Down Loveto Degione Meuros Dreu					
Bothropolaes Jararaca	FLIVINH 39813	Peru: Loreto Region: Maynas Prov.	х	х			AMF
Bothropoides jararaca	FLMNH 39814	Brazil: São Paulo: Cubatão City	х	х			AMF
Bothronoides iararaca	FI MNH 39817	Brazil: Minas Gerais: Juiz de Floridaora	×	Y			ΔΜΕ
Bothiopolaes jararaea	TEIMINIT 55817	brazili. Willias Gerais. Juiz de l'Ioridaora	^	^			
		City					
Bothropoides jararaca	FLMNH 39821	Brazil: Bahia: Munic. Itapetinga	х	х			AMF
Pothropoides jararasa		Prazil: São Daulo			v		
Bothopolaes juraraca		DI dZII. SdU Pdulu			X		AIVIF
Bothropoides jararaca	KU 124651	Brazil: Santa Catarina	х	х			AMF
Bothronoides iararaca	KU 124655	Brazil [,] Paraná	×	Y			ΔΜΕ
	KU 425026		Л	~			
Bothropolaes Jararaca	KU 125036	Brazii: Sao Paulo	х	Х			AMF
Bothropoides jararaca	LACM 14601	Argentina: Misiones Prov.	х	х			AMF
Pothropoidas igraraça	LISNINA 71120	Prozil	v	v			
Bothopolaes juraraca	0310101 /1139	DIdZII	X	X			AIVIF
Bothropoides jararaca	-	-		х			Campbell and Lamar 2004
Bothronoides lutzi	_	_		x			Campbell and Lamar 2004
Pothronoida- 1		Provile Doroná, Eccando Die Ora		~			Cilva and Dadrians - 2000
Bothropolaes lutzi	IBSP 1672	Brazil: Parana: Fazenda Rio Grande		Х			Silva and Rodrigues 2008
Bothropoides lutzi	IBSP 561	-		х			Silva and Rodrigues 2008
Rothropoides marmoratus	1 ITA R-2823	Brazil Goiás Munic Dires do Pio	v	v			ΔΜΕ
	UTA 11-20232	Brazii, Golas, Mutile. Files uu Kiu	Χ.	~			
Bothropoides marmoratus	-	-		х			Campbell and Lamar 2004
Bothropoides marmoratus	IBSP 55055	Brazil: Goiás: Munic, Inameri	x	x			Silva and Rodrigues 2008
Dothropoid	ENANUL 1 40400	Polivia: Mamará Provi Dest D	~	~			
συτποροιαes	FIVINE 140199,	bolivia: Mamore Prov.: Dept. Beni	х	х			AIVIE
mattogrossensis	140200						
Bothronoides	FMNH 161559-	Bolivia	v	v			AME
bothiopoldes	1101101558-	DOIIVIA	^	^			AIVII
mattogrossensis	161560						
Bothropoides	FMNH 35743	Bolivia			х		AMF
matto					~		
mattogrossensis							
Bothropoides	KU 183007	Argentina: Salta Prov.	х	х		х	AMF
mattagrassansis		0					
muttogrossensis							
Bothropoides	KU 73475	Paraguay: Dept. Boquerón	х	х		х	AMF
mattoarossensis							
Bothropoides	MCZ 11857, 20620,	Bolivia, Dept. Santa Cruz	х	х			AMF
mattoarossensis	29229, 29231						
	L0210, 20201	Davia avera					A. N. A.F.
Bothropolaes	MCZ 182691	Paraguay	х	х			AMF
mattogrossensis							
Pathropoides	NACT 24211 24212	Daraguay	v	v			
Bothropoldes	IVICZ 54211, 54212	Palaguay	X	X			AIVIF
mattogrossensis							
Bothronoides	=	-		x			Campbell and Lamar 2004
				~			Campbell and Eanlar 2001
mattogrossensis							
Bothropoides	MZUSP 6478	Bolivia: Dept. Santa Cruz		х			Silva and Rodrigues 2008
mattoarossensis							-
Bothropoides	IBSP 3011	Brazil: Matto Grosso do Sul: Munic.		х			Silva and Rodrigues 2008
mattoarossensis		Miranda					
Dethraneides neuwiedi		Brazile Cão Doulo					A N A F
Bothropoldes neuwledi	AIVINH R-29256	Brazil: Sao Paulo			х		AIVIF
Bothropoides neuwiedi	FLMNH 45712	Argentina			х		AMF
Bothronoides neuwiedi	FMNH 171255	Brazil	¥	¥			AMF
	· ······· 1/ 1/ 1/ 1/ J/		^	^			
Bothropoides neuwiedi	KU 124658	Brazil: São Paulo	х	х			AMF
Bothropoides neuwiedi	MCZ 20923	Brazil: São Paulo	x	x			AMF
Pothropoides activity "		Prazili Daraná					
σοιπιοροίαes neuwiedi	IVICZ 20938, K-		х	х			AIVIE
	54645						
Rothronoides neuwindi	M//7 12/157	Brazil: São Paulo	v	v			ΔΜΕ
			Χ.	~			
Bothropoides neuwiedi	UTA R-35938	Brazil: Paraná: Munic. Telêmaco Borba	х	х			AMF
Bothropoides neuwiedi	UTA R-35939	Brazil: Paraná: Munic. Piraguara	х	х			AMF
Pothropoidos nouviadi	LITA D 20102	Prazili São Paulo					
bothiopolaes neuwleal	UTA K-30283		Х	х			
Bothropoides neuwiedi	UTA R-38284	Brazil: Paraná: Jaguariaíva	х	х			AMF
Bothronoides neuwiedi	MZUSP 4917	-					Silva and Rodrigues 2008
Dothropoid				-			Comphell and the 2000
воthropoides neuwiedi	-	-		х			Campbell and Lamar 2004
Bothropoides neuwiedi	ZSM 2348/0	Brazil: Bahia		х			Silva and Rodrigues 2008
Rothronoides neuwiodi	, IBSD 2016	Brazil: Goiás		v			Silva and Rodrigues 2009
	103r 3010			х			
Bothropoides neuwiedi	IBSP 3015	Brazil: Matto Grosso		х			Silva and Rodrigues 2008
Bothronoides neuwiedi	IBSM 3014	Brazil: Paraná		x			Silva and Rodrigues 2008
Pothropoides recuricul		Prozili Dio do longino		~			Cilup and Dodring - 2000
воспгороїaes neuwiedi	IR25 1800	Brazii: Kio de Janeiro		х			Silva and Kodrigues 2008
Bothropoides neuwiedi	IBSP 3012	Brazil: Bahia		х			Silva and Rodrigues 2008
Rothronoides nauloensis	FMNH 171277	Brazil	v	v			AME
			X	*			
Bothropoides pauloensis	MCZ 17729, 17731	Brazil	х	х			AMF
Bothropoides nauloensis	MCZ 20919	Brazil: São Paulo	¥	x			AMF
			^	^			
Bothropoides pauloensis	UTA R-31000	Brazil: Golás, Golânia	Х	х			AMF
Bothropoides nauloensis	_	_		x			Campbell and Lamar 2004
Dothron of dealer with				<u>^</u>			Cilup and Dedriver 2000
воtnropolaes pauloensis	-	-		х			Silva and Rodrigues 2008
Bothropoides pauloensis	IBSP 3013	Brazil: São Paulo		х			Silva and Rodrigues 2008
Pothronoidae nubere	CAS 00727	Prazil: Dio Crando do Sul: Muni- D		~ ~			
Bothropolaes pubescens	CAS 90/3/	Brazii: Rio Grande do Sul: Munic. Porto	х	х			AIVIE
		Alegre					
Rothropoides pubescens	FMNH 10245		v	v			ΔΜΕ
bounopolites pubescens	FIVINE 10245,	oruguay	Х	х			
	10503						
Rothropoides nubescens	ΙΙΤΔ R- 41141	Brazil: Rio Grande do Sul	v	v			AME
			x	~			
Bothropoides pubescens	YPM R13345	Uruguay: Dept. Cerro Largo	х	х		х	AMF
Bothropoides nubescens	_	_		x			Campbell and Lamar 2004
Pothropoidos publicados		Prazil: Pio Grando do Sul					Silva and Podrigues 2000
Боннорошеs pubescens	IVIZUSP 14/6	DI AZII. KIO GRANUE DO SUL		х			Silva and Kodrigues 2008
Bothrops andianus	FLMNH 83845	-	х	х			AMF
Bothrons andianus	EWNH 62012	Peru: Cuzco Prov	v	v			ΔΜΕ
bounops unununus	1 1011011 02343	I CIU. CULCO FIOV.	Λ.	~			

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Bothrons andianus	KU 135212	Peru: Cuzco Prov	×	v			AME
Dothrops andianus		Party Cuzeo Prov.	~	^			
Bothrops analanus	NICZ 12415	Peru: Cuzco Prov.	х	Х			AMF
Bothrops andianus	USNM 267836,	Peru: Puno Prov.	х	х		х	AMF
	267837						
Bothrops andianus	USNM 538554	Peru	х	х			AMF
Bothrons andianus		Peru: Pupo Prov	v	v			
			~	^			
Bothrops analanus	UTA R-39104	Bolivia: Dept. Santa Cruz	х	Х			AMF
Bothrops andianus	UTA R-39107	Bolivia: Dept. La Paz	х	х			AMF
Bothrops andianus	-	-		х			Campbell and Lamar 2004
Bothrons asper	FI MNH 11521	Colombia: Choco Mus, Comp, Zool			x		AMF
Pothrons asper		Costa Pica: Limón Prov			× ×		
Bothrops usper		Costa Rica. Limon Prov.			X		
Bothrops asper	FLMNH 99289	Honduras			х		AMF
Bothrops asper	FMNH 197882	Ecuador: Pichincha Prov.			х		AMF
Bothrops asper	FMNH 20641	Honduras: Dept. Atlantida			х		AMF
Bothrons asper	FMNH 31167	Panama			x		AME
		Palian			~		
Bothrops usper	FIVINE 3480	Bellze			х		AIMF
Bothrops asper	FMNH 51689	Panama: Chiriqui Prov.			х		AMF
Bothrops asper	KU 112957,	Nicaragua: Dept. Zelaya	х	х			AMF
	112958						
Bothrons asper	KU 23915 23995	Mexico: Veracruz	x	x			AME
Dothrops asper	LICNINA 220277	Costa Disa	X	X			
Bothrops asper		Costa Rica			х		AIMF
Bothrops asper	UTA R-12920, R-	Costa Rica: Limón Prov.	х	х			AMF
	12996						
Bothrops asper	UTA R-12932, R-	Costa Rica: Cartago Prov.	х	х			AMF
	12936 R-14507-R-	-					
	14510						
	14510						
Bothrops asper	UTA R-16961	-			х		AMF
Bothrops asper	UTA R-17095	Mexico: Quintana Roo				х	AMF
Bothrops asper	UTA R-17862. R-	Trinidad	х	х			AMF
	22245						
Detheres were		Casta Disa. Durata na a Dura					A. N. 4.5
Bothrops asper	UTA R-32494	Costa Rica: Puntarenas Prov.	х	х			AMF
Bothrops asper	UTA R-34157	Costa Rica	х	х			AMF
Bothrops asper	UTA R-40320, R-	Guatemala: Dept. Izabal	х	х			AMF
	40321	·					
Dathrong gener		Panamar Chiriguí Prov					
Bothrops asper	UTA R-41026	Panama: Chiriqui Prov.	x	х			AIMF
Bothrops asper	UTA R-52545	Honduras, Dept. Gracias a Dios	х	х		х	AMF
Bothrops asper	UTA R-6770	Colombia	х	х			AMF
Bothrops asper	_	_		х			Campbell and Lamar 2004
Bothrons asper	_	_	6 inds		1 inds		Gutherlet 1998
Bothrops usper	-	_	o mus.		4 mus.		
Bothrops atrox	CIM 91926	-			х		AMF
Bothrops atrox	FMNH 51658	Brazil			х		AMF
Bothrops atrox	LSUMZ 39317	Peru: Amazonas			х		AMF
Bothrons atrox	MC7 1189	Brazil: Bahia	x	x			AMF
Bothrons atrox	MC7 1211	Brazil: Dará	v	v			
			*	X			
Bothrops atrox	MCZ 45911, 54638	Peru: Dept. Junin	х	х			AMF
Bothrops atrox	SDNHM 59509,	-			х		AMF
	59589						
Bothrons atrox		Panama			v		
Bothrops atrox					^		
Bothrops atrox	UTA R-30826	venezuela: Amazonas	х	х			AMF
Bothrops atrox	UTA R-3377, R-	Colombia: Dept. Meta	х	х		х	AMF
	3378, R-3590, R-						
	3771 R-5848						
Pathrons atroy		Colombia: Dant Mata	×.	V			
востору истох	UTA K-5010, K-	Colombia. Dept. Meta	X	X			AMF
	3772, R-3852, R-						
	5219, R-5850, R-						
	5853, R-5862, R-						
	7196						
Pathrons atroy		Cuwana: Runununi Ragion	×.	V			
Bothrops atrox	UTA K-52552-K-	Guyana: Rupununi Region	х	х			AIMF
	52554						
Bothrops atrox	UTA R-9328	Colombia	х	х		х	AMF
Bothrops atrox	UTA R-9345	Colombia: Dept. Vichada	х	х			AMF
Bothrops atrox	_	-		x			Campbell and Lamar 2004
Pothrons barnatti	CAS 14570	Poru: Tumbos Prov	V	v			
	CAS 14370		^	^			
Bothrops barnetti	CAS 92343	Peru		Х			AMF
Bothrops barnetti	FMNH 9777, 9778,	Peru	х	х			AMF
	9787–9789, 11013						
Bothrops barnetti	FMNH 41603	Peru: Piura Region	х	х			AMF
Bothrons harnetti	I SUM7 20218	Peru	×	v		v	ΔΝΛΕ
Bothrops barnetti	2501012 55510		X	~		A	Comphell and Lower 2004
Bothrops burnetti	-	-		х			
Bothrops brazili	FMNH 165563	Colombia			х		AMF
Bothrops brazili	KU 222206	Peru: Dept. Loreto	х	х			AMF
Bothrops brazili	LSUMZ 26851	Peru: Dept. Loreto			х		AMF
Bothrons brazili	MV7 163340	Peru: Dent Amazonas	×	x		×	AME
Pothrons brazili	NAV/7 160040	Porty Dopt Amazonas	~	~		^	
συτητομε σταζίη	IVIVZ 103341,	reiu. Dept. Amazonas			х		
	163344, 163346						
Bothrops brazili	MVZ 163342,	Peru: Dept. Amazonas	х	х			AMF
	163343 163345						
Bothrons brazili	ΙΤΔ R_20077	Surinam: Sinaliwini Dist	v	v			AME
		Calamhia: Drat M	X	x			
Bothrops brazili	UIA K-3/64	Colombia: Dept. Vaupes	х	х		х	
Bothrops brazili	UTA R-3765	Colombia: Dept. Vaupés				х	AMF
Bothrops brazili	-	-		х			Campbell and Lamar 2004
Bothrops caribbaeus	AMNH R-90164	St. Lucia			x		AMF
Bothrons caribbaeus		St. Lucia: Windward Isle			v		ΔΜΕ
Dothrops curibbueus					~		
Bothrops caribbaeus	KU 268957	St. Lucia: Anse-la-Raye Quarter	х	х			
Bothrops caribbaeus	MCZ 70194, 70196,	St Lucia	Х	х			AMF
	70200						
Bothrops caribbaeus	UTA R-16311	-	x	х			AMF

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Bothrons caribbaeus	ΠΤΔ R-3850 R-	St Lucia	v	v v	201100	nempenee	
Bothiops cumbbaeas			^	^			AIVII
	7304, R-8351-R-						
	8353						
Bothrops caribbaeus	-	-		х			Campbell and Lamar 2004
Bothrops iararacussu	AMNH R-14530	Brazil			х		AME
Bothrons jararacussu	EMNH 171283	Brazil: São Paulo	v	v			AME
Bothi ops jului ucussu	171200		^	^			
	1/1300						
Bothrops Jararacussu	FMNH 51659,	Brazil			х		AMF
	51660						
Bothrops jararacussu	KU 124656	Brazil: Espirito Santo	х	х			AMF
Rothrons iararacussu	KU 290723	Paraguay: Dent Cazaaná	x	x			АMF
Bothrops jararacussu		Prosile Sonto Cotorino	х У	~			
Bothrops juraracussa	KU 08959	Brasil: Salita Catarina	х	х			AIVIF
Bothrops Jararacussu	LACM 146081	Argentina: Misiones Prov.: Dept. El	х	х			AMF
		Dorado					
Bothrops jararacussu	UTA R-32425	Brazil	х	х		х	AMF
Bothrops jararacussu	UTA R-37700	Brazil: São Paulo	х	x			AMF
Bothrops jararacussu		Brazil: Santa Catarina	v	× ×		V	
bothiops juraracussa	01A K-38295, K-	Diazii: Santa Catalilia	^	^		^	Alvii
	38296						
Bothrops jararacussu	_	-		х			Campbell and Lamar 2004
Bothrops lanceolatus	ANSP 7016–7018,	West Indies	х	х			AMF
	7022						
Bothrons lanceolatus	CM 5-6390	Martinique	x	x			AME
Bothrops lanceolatus		Martinique	~	~			
Bothrops lanceolatus	KU 208958		х	х			AIVIF
Bothrops lanceolatus	USNM 10116,	lobago	х	х			AMF
	10122						
Bothrops lanceolatus	USNM 11317,	Martinique	х	х			AMF
	11318						
Pothrons lancoolatus				v			Comphell and Lomar 2004
Bothrops lanceolatus	-	-		х			Campbell and Lamar 2004
Bothrops lanceolatus	-	-			2 inds.		Brattstrom 1964
Bothrops leucurus	CAS 116342	Brazil: Espírito Santo	х	х			AMF
Bothrops leucurus	CM 50981	Brazil: Espírito Santo	х	х			AMF
Bothrops leucurus	KU 124659	Brazil: Espírito Santo	х	x			AMF
Bothrons leucurus	LISNIM 165505	Brazil	v	v			
Bothiops leucurus		DIAZII	^	^			AIVII
	105500						
Bothrops leucurus	UTA R-19512, R-	Brazil: Espírito Santo	х	х			AMF
	38299						
Bothrops leucurus	UTA R-38290	Brazil, Bahia	х	х			AMF
, Bothrons leucurus	LITA R-38300 R-	Brazil: Espírito Santo	x	v		Y	ΔΝΛΕ
Both ops leacards	20201	Brazili Espirito Sulto	Х	~		X	,
	38301						
Bothrops leucurus	_	-		х			Campbell and Lamar 2004
Bothrops lojanus	KU 135213	Ecuador: Loja Prov.	х	х			AMF
Bothrops lojanus	MCZ 93587	Ecuador: Loja Prov.	х	х			AMF
Bothrops loignus	USNM 98927.	Ecuador	х	x			AMF
	98935 232519						
Dethueneleinnue	JUJJJ, 2J2J1J	Foundary Zomana, Chinahina Dray					
Bothrops iojunus	UTA R-23529	Ecuador: Zamora-Chinchipe Prov.	х	х			AIVIF
Bothrops lojanus	_	-		х			Campbell and Lamar 2004
Bothrops marajoensis	-	-		х			Campbell and Lamar 2004
Bothrops mooieni	AMNH R-62581	Brazil: Goiás			х		AMF
Bothrons monieni	FMNH 171278	Brazil [,] São Paulo	x	x	x		AME
Bothrons mogioni		Brazili São Daulo	×	~	~		
			X	~			ANT
Bothrops moojeni	KU 124657	Brazil: Parana	Х	х			AIVIF
Bothrops moojeni	UTA R-28231	Brazil: Goiás	х	х			AMF
Bothrops moojeni	UTA R-35940	Brazil: Paraná	х	х		х	AMF
Bothrops moojeni	UTA R-38297	Brazil: São Paulo: Pirassunuga	х	х			AMF
Bothrons mooieni	UTA R-38298	Brazil: São Paulo	х	x			AMF
Bothrons modiani	_	_	~	v			Campbell and Lamar 2004
Bothrops moojem	-	–		^			
Bothrops osbornei	KU 218462	Ecuador: Chimborazo Prov.: Pallatanga	х	х			AMF
		Canton					
Bothrops osbornei	USNM 310822	Ecuador	х	х			AMF
Bothrops osbornei	_	_		х			Campbell and Lamar 2004
Bothrons nictus	ANSP 11521	Peru	¥	¥			AME
	11577 1157/		~	~			
Dethuszerisi	11JZZ, 11JZ4	Demu Colores De					
BOUTTOPS PICTUS	FLIVINH 39826	Peru: Cajamarca Prov.	х	х		x	AIVIF
Bothrops pictus	FMNH 229982	Peru: Dept. Lima	х	х			AMF
Bothrops pictus	FMNH 39990	Peru: Madre de Dios Region	х	х			AMF
Bothrops pictus	FMNH 5662, 5663.	Peru	х	х			AMF
	39991						
Pothrons nistus		Boru	v	v			
Bothrong sister	0511111 43332	i ciu	X				Comphall and Lawrence 2001
Bourrops pictus	-	-		х			Campbell and Lamar 2004
Bothrops pirajai	-	-		х			Campbell and Lamar 2004
Bothrops pirajai	IB 3008	Brazil: Bahia	х	х			Amaral 1923
Bothrops punctatus	CAS 119594,	Colombia: Dept. Chocó	х	х			AMF
	119921	-					
Bothrons nunctatus	EWNH 165381	Colombia: Dent Valle del Cuaca	v	v		v	AME
Dothrong numetative		Colombia: Dept. Valle del Cuala		^		^	
bountops punctatus			X	х			
Bothrops punctatus	FMNH 55888	Colombia: Dept. Caldas	х	х	х		AMF
Bothrops punctatus	FMNH 55894	Colombia: Dept. Caldas	х	х			AMF
Bothrops punctatus	USNM 20629	Ecuador	х	х			AMF
Bothrons nunctatus	USNM 72355	Colombia	v	Y			AME
Pothrone nunstatur			^	^ 			Comphall and Lamar 2004
Bounops punctatus	-	—		х			campbell and Lamar 2004
воtnrops roedingeri	-	-		х			Campbell and Lamar 2004
Bothrops sanctaecrucis	MCZ 17699, 20619	Bolivia: Dept. Santa Cruz: Santa Cruz de	х	х			AMF
		la Sierra					
Bothrops sanctaecrucis	MCZ 20618	Bolivia: Dept. Santa Cruz	х	x			AMF
Bothrons sanctaecrucis	UMM7 680272-c	Bolivia: Dent Santa Cruz	v	v			AME
	$60027a^{-1}$		~	^			
	00020, 08031						A A 45
Bothrops sanctaecrucis	USNM 48931	Brazil	х	х			AMF

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Bothrops sanctaecrucis	_	-		х			Campbell and Lamar 2004
Bothrops venezuelensis	KU 133536	Venezuela: Dept. Chuquisaca: Sucre	х	х		х	AMF
Bothrops venezuelensis	KU 182734	Venezuela: Aragua State	х	х		х	AMF
Bothrops venezuelensis	TCWC 58959-	Venezuela: Miranda State	х	х			AMF
	58963						
Bothrons venezuelensis	USNM 129583	Venezuela: Aragua State	x	x			AME
both ops venezuelensis	259175	Venezuela. Aragua State	~	X			
Rothrons vanazualansis	233173	_		v			Campbell and Lamar 2004
Callocolarma rhodostoma		- Thailand, Cauth Thailand Dagian		*	.,		
					х		AIVIF
Calloselasma rhodostoma	CM 20456	Indonesia	х	х			AMF
Calloselasma rhodostoma	CM 53552	Thailand	х	х			AMF
Calloselasma rhodostoma	FLMNH 83783	Malaysia: Perak State: Kerian Dist.: Parit	х	х			AMF
		Buntar					
Calloselasma rhodostoma	FLMNH 83784	Thailand: Bangkok	х	х		х	AMF
Calloselasma rhodostoma	FLMNH 83785,	Thailand	х	х			AMF
	83786						
Calloselasma rhodostoma	FLMNH 83787	Thailand	х	х	х		AMF
Calloselasma rhodostoma	FMNH 11522a	Vietnam: Cochinchina Region					AMF
Calloselasma rhodostoma	FMNH 259196	Cambodia	x	x			AME
Calloselasma rhodostoma	MC7 8/911	Indonesia: West Java Prov : Java	v	v	v		AME
Calloselasma rhodostoma	MCZ 04511	Vietnam: Dac Lat Broy : Buon Ma Thuot	~ ~	× ×	~		
		The iter de Trans Dave	х	х			AIVIF
Calloselasma rhodostoma		Inaliand: Trang Prov.			х		
Calloselasma rhodostoma	UTA R-12970	-		х		х	AMF
Calloselasma rhodostoma	CA 5602	-		х			Vogel 2006
Causus defilippi	AMNH R-44312	Malawi	х	х			AMF
Causus defilippi	FLMNH 59799,	Tanzania: Morogoro Region	х	х			AMF
	59800, 59802						
Causus defilippi	FLMNH 59801.	Tanzania: Morogoro Region	х	х		х	AMF
	59803						
Causus defilippi	EL MNH 66050	Tanzania	v	v			0.ME
		Tanzania	×	X		X	
Causus resinius			х	х		X	AIVIF
Causus resimus	CAS 141432,	Kenya: Kisumu Dist.: Chemelil	х	х			AMF
	150928						
Causus resimus	CAS 141447	Kenya: Kakamega Dist.: Mumias	х	х		х	AMF
Causus resimus	CAS 148044,	Kenya: Kisumu Dist.: Chemelil	х	х		х	AMF
	152792						
Causus resimus	CAS 153440,	Somalia: Lower Juba Region				х	AMF
	153446	6					
Causus resimus	CAS 153441	Somalia: Lower Juba Region	v	x			ΔME
Causus resimus	CAS 153441	Somalia: Lower Juba Region	× ×	×		×	
		Sudan, Lonar Nile Drovy Dalaidh	^	~		^	
Causus resimus		Sudan: Opper Nile Prov.: Paloiun	X	X			AIVIF
Causus resimus	FIMINH 153081	Sudan: Upper Nile Prov.	Х	х			AMF
Causus resimus	FMNH 62183	Sudan: Eastern Equatorial State: Torit			х		AMF
Causus rhombeatus	AMNH R-2392	South Africa: Natal Region	х	х			AMF
Causus rhombeatus	AMNH R-93674	South Africa: Eastern Cape Prov.: East	х	х		х	AMF
		London					
Causus rhombeatus	FLMNH 119902	Liberia	х	х			AMF
Causus rhombeatus	FLMNH 119903	Liberia: Gbarnga Dist.: Suakoko	х	х			AMF
Causus rhombeatus	FI MNH 57049	Liberia			x		AME
Causus rhombeatus		Kenva			v		AME
Causus mombeatus		Kenya			~		
Causus mombeatus					×		
Causus mombeatus		Nairodi			х		AIVIF
Causus mombeatus	USNIVI 297462	-	х	х	х	x	AMF
Cerastes cerastes	AMNH R-38194, R-	Egypt	х	х			AMF
	66253, R-66254						
Cerastes cerastes	FLMNH 119907	Algeria	х	х		х	AMF
Cerastes cerastes	FLMNH 13986	Israel	х	х		х	AMF
Cerastes cerastes	FLMNH 61163	Algeria	х	х			AMF
Cerastes cerastes	FLMNH 61284	Algeria			x		AMF
Cerastes cerastes	FMNH 142986	Fgynt			x		AME
	1/2000 1/2001	-8/60			~		,
	142990, 142991,						
	142995, 145994,						
	143995, 153114						A. A. G.
Cerastes cerastes	FMNH 164721,	Egypt: Red Sea Gov.: Wadi Abu Shih	х	х			AMF
	164723						
Cerastes cerastes	UCF CLP917	-	х	х			AMF
Cerastes cerastes	UCM 37401, 37412	Tunisia: Gafsa Gov.	х	х			AMF
Cerastes gasperettii	CAS 84440,	Saudi Arabia	х	х			AMF
	145303, 145340,						
	145341						
Cerastes aasperettii	CAS 84481, 84490	Saudi Arabia: Fastern Prov.: Abgaig	x	х			AMF
Cerastes aasperettii	CAS 84503 84560	Saudi Arabia: Eastern Prov : Dhahran	x	x			AME
Cernstes nasnerettii	CΔς 97826	United Arah Emirates: Abu Dhahi: Poda	v	v			AMF
Cerusies guspereitin	CA3 97820	Aron	^	^			AIMI
Corrector and a think		neall					
Cerastes gasperettii	CAS 97827, 97829	United Arab Emirates: Abu Dhabi	х	х			AMF
Cerastes gasperettii	UCF CLP910,	-	х	х			AMF
	CLP911						
Cerrophidion godmani	UTA R-14535	Guatemala: Depto. Baja Verapaz			х		AMF
Cerrophidion godmani	UTA R-42266	Guatemala: Depto. Quiche				х	AMF
		-					
Cerrophidion andmani	UTA R-6642	Mexico: Oaxaca				x	AMF
	- ··· ····						
Cerronhidion and mani	_	Guatemala: Dent, Quiche	8 inde	9 inde			Jadin 2010
Cerronhidion andmani	_	Guatemala: Dept. San Marcos	10	10			ladin 2010
centration gounnam		Caatemala, Dept. San Marcos	inde	inde			
Correphidice		Maxica: Cavaca	mus.	ייי: ד			ladin 2010
cerrophiaion goannann	_	IVICAILU. UAXALA	o mus.	7 mus.			Jauni 2010

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Cerrophidion petlalcalensis	UNAM LTH 3451-	Mexico: Veracruz: Munic, San Andres	5 inds.	2 inds.			Lopez-Luna et al. 1999
	3455	Teneianan	-				
Cerronhidion netlalcalensis	-	_		v			Campbell and Lamar 2004
Cerrophidion sasai	LITA R-51/03	Costa Rica: San José Prov		^		×	
Carrophidion sasai	01A N-51405	Costa Nica, San José Prov.	5 inde	5 inde		^	Ladia 2010
Cerrophidion tzotzilorum		Movico: Chiapas	Jinus.	Jinus.			
cerropination (2012)IOTUIN	21070	Mexico: Chiapas	~	X			AIVIE
Carronhidian tzatzilarum		Maxica: Chiapas	v	V		×	
Cerrophilaion (2012)Ioran	01A K-4529, K-	Mexico. Ciliapas	X	X		X	Alvir
Como abidio a tootoilo auro	9041	Mauiaa, Chianaa					
Cerrophiaion tzotzilorum	UTA K-9640	Mexico: Chiapas	10		х		
Cerrophialon tzotzilorum	-	-	18 	х			Campbell 1985
			inds.				
Cerrophiaion tzotzilorum	-	-		х			Campbell and Lamar 2004
Cerrophidion wilsoni	YPM R14017,	El Salvador: Depto. Santa Ana: Municip.	х	х			AMF
	R14021	Santa Ana					
Cerrophidion wilsoni	-	El Salvador: Dept. Chalatenango	5 inds.	5 inds.			Jadin 2010
Cerrophidion wilsoni	-	Honduras: Sierra de Omoa	7 inds.	7 inds.			Jadin 2010
Crotalus adamanteus	AMNH R-69123, R-	USA: Florida			х		AMF/KMD
	69725						
Crotalus adamanteus	AMNH R-85755, R-	USA: South Carolina: Jasper Co.			х		AMF/KMD
	86956						
Crotalus adamanteus	FMNH 31050,	USA: Georgia			х		AMF/KMD
	31051						
Crotalus adamanteus	UCF 2312, 2325,	USA: Florida: Orange Co.	х	х			AMF/KMD
	2331, 2333, 2334						
Crotalus adamanteus	UCF 2313	Florida: Osceola Co.	х	х			AMF/KMD
Crotalus adamanteus	UCF 2324	USA: Florida: Brevard Co.	х	х		х	AMF/KMD
Crotalus adamanteus	UCF CLP936	USA: Georgia	х	х			AMF/KMD
Crotalus adamanteus	UCF CLP937	USA	х	х		x	AMF/KMD
Crotalus adamanteus	-	_		х			Campbell and Lamar 2004
Crotalus aquilus	FLMNH 87873	Mexico: Queretaro	х	х			AMF/KMD
Crotalus aquilus	LSUMZ 321, 322	Mexico: San Luis Potosi: Xilitla Region	x	х			AMF/KMD
el etallae aquillae				~			
Crotalus aquilus	LSUMZ 325, 4192	Mexico: San Luis Potosi	х	х			AMF/KMD
Crotalus aquilus	LSUMZ 4193	Mexico: San Luis Potosi	x	х		x	AMF/KMD
Crotalus aquilus	SDNHM 46795	Mexico: Hidalgo: Munic, Jacala	x	x			AME/KMD
Crotalus aquilus	SDNHM 6575	Mexico: San Luis Potosi	x	x			
Crotalus aquilus		Mexico: Guanajuato	v	v			
Crotalus aquilus		Mexico: Guanajuato	^	^		×	
Crotalus aquilus	UTA R-12090	Mexico, Hudigo				X	
Crotalus aquilus	UTA R-10541	Mexico. Queretaro				x	
Crotalus aquilus	UTA R-22596	Mexico: Guanajuato	х	х		X	
Crotaius aquiius	01A K-4540, K-	Mexico: Hidaigo			х	X	AIVIF/KIVID
Castalia and	6115 UTA D 6470						
Crotalus aquilus	UTA R-6179	Mexico: Michoacan			х		AMF/KMD
Crotalus aquilus	-	-		х			Campbell and Lamar 2004
Crotalus aquilus	UTA R-17904	Mexico: Hidalgo		х			Campbell and Lamar 2004
Crotalus armstrongi	UTA R-12591	Mexico: Jalisco		х			Campbell and Lamar 2004
Crotalus atrox	AMNH R-124109	USA: Texas: Palo Pinto Co.			х		AMF/KMD
Crotalus atrox	AMNH R-57433	USA: Texas: Brewster Co.			х		AMF/KMD
Crotalus atrox	AMNH R-71199	USA: Arizona: Pima Co.			х		AMF/KMD
Crotalus atrox	AMNH R-81495	USA: New Mexico			х		AMF/KMD
Crotalus atrox	AMNH R-82420	USA: Louisiana: St. John the Baptist			х		AMF/KMD
		Parish					
Crotalus atrox	AMNH R-90666	USA: New Mexico: Grant Co.			х		AMF/KMD
Crotalus atrox	CAS 156174	USA: Arizona: Yavapai Co.			х		AMF/KMD
Crotalus atrox	CAS 50515	Mexico: Baja California Sur: Isla Tortuga	х	х			AMF/KMD
Crotalus atrox	FLMNH 120169	Mexico	х	х			AMF/KMD
Crotalus atrox	FLMNH 24810	Mexico: Coahuila	х	х		х	AMF/KMD
Crotalus atrox	FLMNH 42593	Mexico: Sinaloa	х	х			AMF/KMD
Crotalus atrox	FLMNH 42594	Mexico: Sinaloa	х	х		х	AMF/KMD
Crotalus atrox	FLMNH 42597	Mexico	х	х		х	AMF/KMD
Crotalus atrox	FLMNH 60768	Mexico: Veracruz-Llave	х	х			AMF/KMD
Crotalus atrox	SDNHM 3006.	Mexico: Baia California Sur: Isla Tortuga	х	х			AMF/KMD
	6595, 6597, 26798,	, 3					
	27077. 28377.						
	42013						
Crotalus atrox	SDNHM 27410	Mexico: Baia California Sur: Isla Tortuga	x	x		×	AME/KMD
	28551		~	X		X	,,
Crotalus atrox	LICE 2338-2340	USA: Texas: Brewster Co	x	x			AME/KMD
Crotalus atrox	LITA P-16283	USA: Texas: Wise Co	~	~		×	
Crotalus atrox		USA: Texas: Wise CO.				~	
Crotalus atroy	-			v		٨	Campboll and Lamor 2004
Crotalus atrov	_			X) inda		Campbell and Editial 2004
Crotalus atrov	-	_			∠ mus.		LaDuc
Crotalus atros	-	-			∠ mus.		Didustrolli 1904
Crotalus atrox		-		х			Campbell and Lamar 2004
Crotalus basiliscus	AIVINH R-75094	-			х		
Crotalus basiliscus	CAS C.basiliscus	-			х		AMF/KMD
	uncat.						
Crotalus basiliscus	FLMNH 120172,	-	х	х			AMF/KMD
	1201/3						
Crotalus basiliscus	FLMNH 120174,	Mexico	х	х			AMF/KMD
	19050, 19169						_
Crotalus basiliscus	FLMNH 16783	Mexico: Nayarit	х	х			AMF/KMD
Crotalus basiliscus	FMNH 31299	Mexico: Michoacán			х		AMF/KMD
Crotalus basiliscus	LACM 37329,	Mexico: Sinaloa	х	х		х	AMF/KMD
	104457						
Crotalus basiliscus	LACM 7222, 38213	Mexico: Sinaloa	х	х			AMF/KMD

Species Crotalus basiliscus Crotalus basiliscus	Voucher UTA R-6120 –	Locality Mexico: Michoacán –	Scales	Color x	Bones	Hemipenes x	Examiner or Publication AMF/KMD Campbell and Lamar 2004
Crotalus basiliscus	-	Mexico: Colima		x			Campbell and Lamar 2004
Crotalus catalinensis	CAS SU-15631	Mexico: Baja California Sur: Isla Santa	х	х			AMF/KMD
Crotalus catalinensis	FMNH 1169	Catalina Mexico: Baja California Sur: Isla Santa	х	x			AMF/KMD
Crotalus catalinensis	SDNHM 44352	Catalina Mexico: Baja California Sur: Isla Santa	x	x		x	AMF/KMD
Crotalus catalinensis	SDNHM 44353,	Catalina Mexico: Baja California Sur: Isla Santa	х	x			AMF/KMD
Crotalus catalinensis	48020, 53050 UCM 25953, 31446	Catalina Mexico: Baja California Sur: Isla Santa Catalina	x	x			AMF/KMD
Crotalus catalinensis	_			v			Campbell and Lamar 2004
Crotalus catalinensis	SDNHM no	-		^	2 inds.		LaDuc
	number						
Crotalus cerastes	AMNH R-72633	USA: Arizona: Maricopa Co.		x	х		AMF/KMD
Crotalus cerastes	AMNH R-73719, R- 75704	USA: California: Riverside Co.			х		AMF/KMD
Crotalus cerastes	CAS 156177, 201522	USA: California: San Bernardino Co.			х		AMF/KMD
Crotalus cerastes	CAS SU-7287	USA: Arizona: Maricopa Co.	х	х			AMF/KMD
Crotalus cerastes	FLMNH 141569	USA: Arizona	х	x			AMF/KMD
Crotalus cerastes		USA: California: Riverside Co.	x	x		v	
Crotalus cerastes		USA: Alizona	x	x		X	
Crotalus cerastes		USA: California USA: Nevada: Clark Co	×	x			
Crotalus cerastes		USA: Nevada: Clark Co.	~	×		×	
Crotalus cerastes	FLIMINH 26122	USA: California: Imperial Co	~	~	v	~	
Crotalus cerastes	FMNH 75802	USA: Arizona: Pima Co	v	×	~		
Crotalus cerastes	KU 77991	Mexico: Sonora	x	x		×	AMF/KMD
Crotalus cerastes	KU 77994	Mexico: Sonora	x	x		~	AMF/KMD
Crotalus cerastes	UTA R-8015	_		~		x	AMF/KMD
Crotalus cerastes	_	_		х			, Campbell and Lamar 2004
Crotalus cerberus	SDNHM 4923	USA: Arizona: Yavapai Co.	х	х		x	AMF/KMD
Crotalus culminatus	FMNH 126616	Mexico: Michoacán	х	х			AMF/KMD
Crotalus culminatus	FMNH 38496	Mexico: Guerrero	х	х			AMF/KMD
Crotalus culminatus	FMNH 38502	Mexico: Guerrero	х	х		x	AMF/KMD
Crotalus culminatus	-	-					Klauber 1972
Crotalus durissus	AMNH R-137172,	-			х		AMF/KMD
	R-140806						
Crotalus durissus	AMINH R-14/320	Brazil: Matto Grosso				x	
Crotalus durissus	AMNH R-62579 AMNH R-62580	Colombia: Dept. Meta: Munic.			x x		AMF/KMD AMF/KMD
Crotalus durissus	AMNH R-73161	Lesser Antilles: Kingdom of Netherlands:			x		AMF/KMD
Crotalus durissus	FLMNH 132639	Venezuela	x	x			AMF/KMD
Crotalus durissus	FLMNH 132640	Venezuela	х	х		х	AMF/KMD
Crotalus durissus	FLMNH 16157,	Guyana	х	х			AMF/KMD
	16160						
Crotalus durissus	FLMNH 16159,	Guyana	х	х		x	AMF/KMD
	16161						
Crotalus durissus	FLMNH 29388	Colombia	х	х		x	AMF/KMD
Crotalus durissus	FLMNH 29389	Venezuela	х	х			
Crotalus durissus	FLIVINH 57243	Colombia: Dept. Magdalena				x	
Crotalus durissus		Bidzii Venezuela	x	x		X	
Crotalus durissus	FI MNH 83821	Colombia	x	x			
Crotalus durissus	FMNH 51664	Brazil	~	~	х		AMF/KMD
Crotalus durissus	UTA R-7322, R-	Lesser Antilles: Kingdom of Netherlands:				x	AMF/KMD
	9633	Aruba					
Crotalus durissus	-	-		10			Campbell and Lamar 2004
				inds.			
Crotalus enyo	CAS SU-14021	Mexico: Baja California Sur: Isla Cerralvo	х	х			AMF/KMD
	ELA MUL 400476	(Jacques Cousteau Isl)					
Crotalus enyo	FLMINH 120176	Mexico: Baja California Sur	x	x		x	
Crotalus envo		Mexico: Baja California Sur	x	x			
Crotalus envo	LACM 126268	Mexico: Baja California Sur	x	x		×	
Crotalus envo	LACM 132134	Mexico: Baja California Norte	x	x		x	AMF/KMD
Crotalus envo	LACM 74024	Mexico: Baja California Norte	x	x			AMF/KMD
Crotalus enyo	UCM 51220	Mexico: Baja California Sur	х	х			AMF/KMD
Crotalus enyo	UMMZ 174666–	-	х	х	х		AMF/KMD
	174669						
Crotalus enyo	-	-		х			Campbell and Lamar 2004
Crotalus enyo	CJB 1064	-			.		LaDuc
Crotalus enyo	-	-			2 inds.		LaDuc
crotaius enyo	-	-			2-6		Brattstrom 1964
Crotalus pricomithi	11TA R-55277	Mexico: Guerrero: Sierra Madro dol Sur	v	v	mus.	v	ΔΜΕ/ΚΜΠ
Crotalus horridus	AMNH R-81547 R-	USA: New York: Rockland Co	^	٨	¥	^	AMF/KMD
	123907				^		,
Crotalus horridus	AMNH R-75173	USA: Virginia: Giles Co.				х	AMF/KMD
Crotalus horridus	AMNH R-97641	-				х	AMF/KMD
Crotalus horridus	FLMNH 116096,	USA: Kansas: Atchison Co.	х	х			AMF/KMD
	116098, 116099						

Species Crotalus horridus	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Crotalus horridus	FLMNH 140945	USA: Florida: Hamilton Co.	~	^	х		AMF/KMD
Crotalus horridus	FLMNH 14442-2	USA: Connecticut: Hartford Co.			x		AMF/KMD
Crotalus horridus	FLMNH 144643	USA: Florida: Alachua Co.	х	х			AMF/KMD
Crotalus horridus	FLMNH 14577	USA: Illinois: Jackson Co.	х	х			AMF/KMD
Crotalus horridus	FLMNH 16018,	USA: Illinois	х	х			AMF/KMD
	74513						
Crotalus horridus	FLMNH 19734	USA: Florida: Suwanee Co.	х	х		х	AMF/KMD
Crotalus horridus	FLMNH 42566,	USA: Florida: Baker Co.	х	х			AMF/KMD
	67009						
Crotalus horridus	FLMNH 67017	USA: Florida: Columbia Co.	х	х		х	AMF/KMD
Crotalus horridus	FLMNH 72645	USA: Oklahoma	х	х		х	AMF/KMD
Crotalus horridus	FLMNH 81527	USA: Florida: Alachua Co.	х	х		х	AMF/KMD
Crotalus horridus	FMNH 3502	USA: Mississippi: Bolivar Co.			х		AMF/KMD
Crotalus horridus	-	-		х			Campbell and Lamar 2004
Crotalus horridus	UTA R22358	USA: Texas: Ellís Co.		х			Campbell and Lamar 2004
Crotalus intermedius	FLMNH 52552	Mexico: Puebla	х	х			
Crotalus intermedius	FMNH 100749	Mexico: Veracruz	X	х			
Crotalus intermedius		Mexico: Hidalgo	X	x			
Crotaius intermedius	LSUIVIZ 10780,	Mexico, veracruz	х	х			
Crotalus intermedius	10781 UCM 40075	Maxica: Oavaca: Carro San Falina	v	v			
Crotaius intermedius	UCIVI 40075,	Mexico. Oaxaca. Cerro San Fenpe	X	х			
Crotalus intermedius	41224, 32367 LICM 52512	Mexico: Oaxaca: Ixtlan Dist	×	v			
Crotalus intermedius	UTA R-//538 R-	Mexico: Guerrero	^	^		×	
crotatas interineatas	4707	Mexico: Guerrero				X	
Crotalus intermedius	-	_		x			Campbell and Lamar 2004
Crotalus Iannomi	BYU 23800	Mexico: Jalisco: Puerto Los Mazos	x	x			Campbell and Elores-
	510 25000		A	X			Villela 2008. Tanner 1966.
							Campbell and Lamar 2004
Crotalus lannomi	MZFC 22941	Mexico: Colima	х	х			Reyes-Velasco et al. 2010,
							Jadin et al. 2010
Crotalus lannomi	UTA DC-4002, DC-	Mexico: Colima	х	х			Reyes-Velasco et al. 2010
	4003, DC-4005, DC-						-
	4006						
Crotalus lepidus	FLMNH 149088	Mexico: Chihuahua	х	х		х	AMF/KMD
Crotalus lepidus	FMNH 23787	USA: Texas: Brewster Co.			х		AMF/KMD
Crotalus lepidus	FMNH 900	USA: Arizona: Cochise Co.			х		AMF/KMD
Crotalus lepidus	LSUMZ 35156	Mexico: Durango	х	х			AMF/KMD
Crotalus lepidus	LSUMZ 36635,	Mexico: Zacatecas	х	х			AMF/KMD
	36636						
Crotalus lepidus	LSUMZ 36637	Mexico: Durango	х	х		х	AMF/KMD
Crotalus lepidus	UTA R-12789, R-	Mexico: Durango				х	AMF/KMD
	18351						
Crotalus lepidus	UTA R-17836	Mexico: Sinaloa				х	
Crotalus lepidus	UTA R-18347	Mexico: Chinuanua				x	
Crotalus lepidus	UTA R-25394	Mexico: Aguascalientes	X	х			
Crotalus lepidus	UTA K-25395	Mexico: Aguascalientes	x	х		x	
Crotalus Iepidus	UTA K-7100			V		X	AIVIF/ KIVID
Crotalus lepidus morulus	- 2001100 43333	– Mexico: Tamaulinas: Gomez Earias	v	x		×	
crotatas repidas moratas	3DN1101 43322	Munic	^	^		^	AWIT
Crotalus lenidus morulus	UMM7 101559	Mexico: Tamaulinas	x	x			AMF/KMD
crotatus tepiaus moratus	104307	Mexico: Turnunpus	Х	Х			
Crotalus mitchellii	FLMNH 120184	USA: California: San Diego Co.	x	х		x	AMF/KMD
Crotalus mitchellii	FMNH 1159	Mexico: Baia California	~	~	х		AMF/KMD
Crotalus mitchellii	LACM 28018.	USA: California: Riverside Co.	х	х		х	AMF/KMD
	134442						,
Crotalus mitchellii	LACM 25083	Mexico: Baja California Sur: Isla Cerralvo	х	х		х	AMF/KMD
Crotalus mitchellii	LACM 52593	USA: California: San Diego Co.	х	х		х	AMF/KMD
Crotalus mitchellii	LACM 74029	Mexico: Baja California Sur	х	х		х	AMF/KMD
Crotalus mitchellii	SDNHM 37446	Mexico: Baja California Norte: Isla El	х	х		х	AMF/KMD
		Muerto (Isla Miramar)					
Crotalus mitchellii	SDNHM 51991	Mexico: Baja California Norte: Isla Angel	х	х		х	AMF/KMD
		de la Guarda					
Crotalus mitchellii	YPM R490	Mexico: Baja California Sur	х	х			AMF/KMD
Crotalus mitchellii	-	-		х			Campbell and Lamar 2004
Crotalus molossus	AMNH R-68715	USA: New Mexico: Catron Co.			х		AMF/KMD
Crotalus molossus	AMNH R-74472, R-	-				х	AMF/KMD
	74787						
Crotalus molossus	AMNH R-74861,	USA: Arizona: Cochise Co.			х		
Crotalus malassus	/546/	USA: Arizona: Cashisa Ca					
Crotaius moiossus	LAS 150574,	USA. Alizona. Cochise Co.			Х		AWF/KWD
Crotalus molossus	130370 FLMNH 24706	Mexico: Coabuila	v	v		v	ΔΜΕ/ΚΜΠ
	120190,		X	X		X	
Crotalus molossus	FLMNH 48171	Mexico: Durango	¥	v			AMF/KMD
Crotalus molossus	FMNH 4770	USA: Texas: El Paso Co	^	^	v		AMF/KMD
Crotalus molossus	SDNHM 41123	Mexico: Durango	x	x	~	У	AMF/KMD
Crotalus molossus	SDNHM 49968	Mexico: Sonora: Isla San Esteban	x	x		~	AMF/KMD
Crotalus molossus	UCF 2346	USA: Texas	x	x			AMF/KMD
Crotalus molossus	UCF CLP968, M505	_	x	x			AMF/KMD
Crotalus molossus	UMMZ 77834,	Mexico: Zacatecas	x	х			AMF/KMD
	77835						
Crotalus molossus	UTA R-12572, R-	Mexico: Puebla				х	AMF/KMD
	12579, R-12582, R- 15295						

	Voucher	Locality	Scales	Color	Bones H	emipenes	Examiner or Publication
Crotaluc moloccuc		LISA: Toyas: Browster Co	000.00		201100 11	v	
		Navian Michardía				~	
Crotalus molossus	UTA R-7411	Mexico: Michoacan				х	AMF/KMD
Crotalus molossus	UTA R-9360	Mexico: Oaxaca				х	AMF/KMD
Crotalus molossus	_	_		х			Campbell and Lamar 2004
Crotalus molossus		Movico: Opyaca		v			Campbell and Lamar 2004
				~			
Crotalus oreganus	AMNH R-69935, R-	USA: California: Riverside Co			x		AMF/KMD
	74870						
Crotalus oreaanus	AMNH R-75411	USA: California: Riverside Co				х	AMF/KMD
Crotalus oraganus	CAS 165770	LISA: California: San Bornardino Co			V		
ciotalas oreganas					~		
Crotalus oreganus	CAS 200965	USA: California: Alameda Co.			x		AMF/KMD
Crotalus oreganus	CAS 201490	USA: California: San Diego Co.			х		AMF/KMD
Crotalus oreaanus	FLMNH 21346	USA: Washington: Grant Co.			х		AMF/KMD
Crotalus oreganus		Mexico: Baia California Sur: San José	v	v			
erotalas oregunas	FNANU 022 022		^	^			
Crotalus oreganus	FMNH 922, 923	USA: Colorado: Mesa Co.	х	Х			AMF/KMD
Crotalus oreganus	SDNHM 4924	Mexico: Baja California Norte: Islas de	х	х		х	AMF/KMD
		Los Coronados					
Crotalus oreganus	SDNHM 57127	Mexico: Baia California Norte	v	v			
Crotalus oreganas				~			
Crotaius oreganas	1 PIVI R-607, R-	USA: Washington: Shohomish Co.	х	Х			AIVIF/KIVID
	6258 <i>,</i> R-6263						
Crotalus oreganus	_	-		7 inds.			Campbell and Lamar 2004
Crotalus polystictus	EMNH 106074-	Mexico	x	x			AME/KMD
ciotulus polysticius	100070	WEXIEO	~	~			
	106076						
Crotalus polystictus	UMMZ 96873	Mexico	х	х		х	AMF/KMD
Crotalus polystictus	UTA R-12583	-			х		AMF/KMD
Crotalus nolystictus	UTA R-40482	Mexico: Jalisco			Y		
Crotalus polysullus					^		
Crotaius polystictus	UTA K-8270	-			х		
Crotalus polystictus	-	-		х			Campbell and Lamar 2004
Crotalus polvstictus	-	_					LaDuc
Crotalus nolustictus	11TA P-17E02	Mexico: Ialisco		v			Campbell and Lamar 2004
	014 1-12003			х			
crotalus pricei	CAS SU-1702	USA: Arizona: Pima Co.	х	х			AMF/KMD
Crotalus pricei	FLMNH 87340	USA: Arizona	х	х			AMF/KMD
Crotalus pricei	FLMNH 90054	USA: Arizona: Cochise Co	x	x			AMF/KMD
Crotalus pricei	ENANIE 20040	Maxico: Nuovo Loon	~				
crotaius pricer	FIVINE 30849,		х	X			AIVIF/KIVID
	30850						
Crotalus pricei	LSUMZ 28547,	Mexico: Durango	х	х		х	AMF/KMD
1	36631 70016	5					
	30031, 79910,						
	79922						
Crotalus pricei	LSUMZ 35365	Mexico: Durango	х	х			AMF/KMD
Crotalus pricei	UTA R-6769 R-	-			x		AMF/KMD
siotaius pricei	7422 0 0241 0				X		
	7432, R-9241, R-						
	9242						
Crotalus pricei	_	-		х			Campbell and Lamar 2004
, Crotalus pricei		Mexico: Aguascalientes: Munic, San José		v			Campbell and Lamar 2004
crotaius pricer	UNAWINL	Wexico. Aguascallentes. Wurlic. Sall Jose		X			Campbell and Lamar 2004
		Prov. de Gracia					
Crotalus pusillus	FMNH 37042,	Mexico: Michoacán	х	х			AMF/KMD
1	39097 39112						
	20112, 20117						
	39113, 39117,						
	39120, 39121,						
	39127, 40818,						
	40824						
	40824						
Crotalus pusillus	FMINH 37048	Mexico: Michoacan: Munic. Tancitaro	х	Х	х		AMF/KMD
Crotalus pusillus	UTA R-4530, R-	Mexico: Michoacán				х	AMF/KMD
	5846, R-9358						
Createrly a reveally a	5040, N 5550						Complete and Longer 2004
Crotaius pusilius	—	-		Х			Campbell and Lamar 2004
Crotalus pusillus	_	-			10		Brattstrom 1964
					inds.		
Crotalus rauns	EN/NIL 112010	Mexico: Verocruz					
					х		
Lrotalus ravus	LACM 64446	Mexico: Oaxaca	х	х		х	AMF/KMD
Crotalus ravus	UMMZ 95175,	Mexico: Districto Federal	х	х			AMF/KMD
	99839 99847						
Crotalus round		Mayica: Maralas					
Liotalus ravus	UTA K-12634			х		х	
Crotalus ravus	YPM R7797	Mexico: Puebla State: Munic. Oriental	х	х			AMF/KMD
Crotalus ravus	YPM R7798	Mexico: Puebla State: Munic. Oriental	х	х		х	AMF/KMD
Crotalus ravus		_					, LaDuc
Crotalus ruvus	UILF 333						
Lrotalus ravus	-	-		х			Campbell and Lamar 2004
Crotalus ravus	-	-			2 inds.		LaDuc
	-	-			10		Brattstrom 1964
Crotalus ravus					inde		
Crotalus ravus							
Crotalus ravus					Х		
Crotalus ravus Crotalus ruber	AMNH R-141158,	-					
Crotalus ravus Crotalus ruber	AMNH R-141158, R-75259	-					
Crotalus ravus Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061	-				x	AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259	- LISA: California: Riversido Co			v	x	AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259	– USA: California: Riverside Co.			x	x	AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888	– – USA: California: Riverside Co. Mexico: Baja California: Agua Caliente	x	x	x	x	AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949	– – USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co.	x x	x x	x	x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 ELMNH 2950	– USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California: San Diego Co.	x x	x x	x	x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950	– USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California: San Diego Co.	x x x	x x x	x	x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950 FLMNH 87325	– USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California: San Diego Co. USA: California	x x x x x	x x x x	x	x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950 FLMNH 87325 FMNH 31290	– USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California: San Diego Co. USA: California western USA	x x x x	x x x x	x x	x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950 FLMNH 87325 FMNH 31290 FMNH 5997 8050	 USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California: San Diego Co. USA: California western USA USA: California: San Diego Co. 	x x x x	x x x x	X X X	x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950 FLMNH 87325 FMNH 31290 FMNH 5997, 8050	 USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California San Diego Co. USA: California Western USA USA: California: San Diego Co. 	x x x x	x x x x	x x x	x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950 FLMNH 87325 FMNH 31290 FMNH 5997, 8050 LACM 122109,	 USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California San Diego Co. USA: California western USA USA: California: San Diego Co. USA: California: San Diego Co. USA: California: Riverside Co. 	x x x x x	x x x x x	x x x	x x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950 FLMNH 87325 FMNH 31290 FMNH 5997, 8050 LACM 122109, 122110, 138224	 USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California Western USA USA: California: San Diego Co. USA: California: Riverside Co. 	x x x x x	x x x x x	x x x	x x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950 FLMNH 87325 FMNH 31290 FMNH 5997, 8050 LACM 122109, 122110, 138224 LACM 20017	 USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California Western USA USA: California: San Diego Co. USA: California: Riverside Co. USA: California: Riverside Co. 	x x x x x x	x x x x x x	x x x	x x x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950 FLMNH 87325 FMNH 31290 FMNH 5997, 8050 LACM 122109, 122110, 138224 LACM 20017 LACM 2465	 USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California Western USA USA: California: San Diego Co. 	x x x x x x	x x x x x x	x x x	x x x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950 FLMNH 87325 FMNH 31290 FMNH 5997, 8050 LACM 122109, 122110, 138224 LACM 20017 LACM 2465	 USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California Western USA USA: California: San Diego Co. USA: California: Riverside Co. USA: California: Riverside Co. 	x x x x x x	x x x x x x	x x x	x x x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950 FLMNH 87325 FMNH 31290 FMNH 5997, 8050 LACM 122109, 122110, 138224 LACM 20017 LACM 2465	 USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California western USA USA: California: San Diego Co. USA: California: Riverside Co. USA: California: Riverside Co. USA: California: San Bernardino Co. Mexico: Baja California Sur: Isla de Cedros 	x x x x x x x	× × × × × ×	x x x	x x x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD
Crotalus ravus Crotalus ruber Crotalus ruber	AMNH R-141158, R-75259 AMNH R-69061 CAS 200259 CAS 45888 FLMNH 2949 FLMNH 2950 FLMNH 87325 FMNH 31290 FMNH 5997, 8050 LACM 122109, 122110, 138224 LACM 20017 LACM 2465 SDNHM 49961	 USA: California: Riverside Co. Mexico: Baja California: Agua Caliente USA: California: San Diego Co. USA: California: San Diego Co. USA: California western USA USA: California: San Diego Co. USA: California: Riverside Co. USA: California: San Bernardino Co. Mexico: Baja California Sur: Isla de Cedros Mexico: Baja California Norte: Isla San 	x x x x x x x x x x	× × × × × × ×	x x x	x x x x	AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD AMF/KMD

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Crotalus ruber	-	-		х			Campbell and Lamar 2004
Crotalus scutulatus	AMNH R-110177,	USA: Arizona: Cochise Co.			х		AMF/KMD
Crotalus scutulatus	CAS 156166, 156169	USA: Nevada: Clark Co.			х		AMF/KMD
Crotalus scutulatus	CAS 156172	USA: Arizona: Yavapai Co.			x		
	CAS 156267	USA: California: Kern CO.			х		
Crotalus scutulatus	FLIVINH 120196		X	X			
Crotalus scutulatus	120200	Mexico: Durango	х	х			AMF/KMD
Crotalus scutulatus	FLMNH 24785, 24787	Mexico: Zacatecas	x	x			AMF/KMD
Crotalus scutulatus	UTA R-14465	USA: Arizona: Pima Co.				x	
	UTA R-4554	Mexico: Chinuanua				x	
Crotalus scutulatus	UTA R-504	USA: New Mexico: Luna Co.				х	
Crotalus scutulatus	-	-		х			Campbell and Lamar 2004
Crotalus scutulatus	-	Mexico: Veracruz		х			Campbell and Lamar 2004
Crotalus simus	FLMNH 73641	Costa Rica: Guanacaste	х	х			AMF/KMD
Crotalus simus	FLMNH 83824	Honduras: Dept. Morazan	х	х			AMF/KMD
Crotalus simus	FMNH 1731	Costa Rica: Cartago Prov.: Tres Rios			х		AMF/KMD
Crotalus simus	FMNH 20160	Guatemala: Dept. Escuintla: Munic. Tiquisate			х		AMF/KMD
Crotalus simus	-	-		х			Campbell and Lamar 2004
Crotalus stejnegeri	KU 78972	Mexico: Sinaloa	х	х		х	AMF/KMD
Crotalus stejnegeri	LACM 37718	Mexico: Sinaloa	х	х			AMF/KMD
Crotalus stejnegeri	SDNHM 41120	Mexico: Durango	х	х		х	AMF/KMD
Crotalus stejnegeri	SDNHM 41121	Mexico: Durango	х	х			AMF/KMD
Crotalus stejnegeri	UTA R-10499	Mexico: Sinaloa: Munic. Rosario			х		AMF/KMD
Crotalus stejnegeri	UTA R-5926, R- 6234	Mexico: Sinaloa: Munic. Rosario	x	х		x	AMF/KMD
Crotalus stejnegeri	_	-		х			Campbell and Lamar 2004
Crotalus stejnegeri	-	-			4 inds.		Brattstrom 1964
Crotalus stephensi	AMNH R-124110	-			х		AMF/KMD
Crotalus stephensi	CAS 156575	USA: Nevada: Lincoln Co.			х		AMF/KMD
Crotalus tancitarensis	FMNH 39115	Mexico: Michoacán: Munic. Tancitaro	х	х			AMF/KMD
Crotalus tancitarensis	UTA R-52401	Mexico	х	х			AMF/KMD
Crotalus tancitarensis	INIRENA 309	Mexico: Michoacán: Cerro Tancitaro	х	х			, Alvarado-Diaz and
							Campbell 2004
Crotalus tigris	AMNH R-59500	USA: Arizona: Pima Co.				х	AMF/KMD
Crotalus tiaris	FLMNH 120201	_	х	х			AMF/KMD
Crotalus tigris	FLMNH 16784	Mexico: Sonora	x	x			AMF/KMD
Crotalus tigris	FLMNH 19126	USA: Arizona	x	x		x	AME/KMD
Crotalus tigris	I SUM7 28545	Mexico: Sonora	x	x			AME/KMD
Crotalus tigris	LSUMZ 28650,	USA: Arizona: Pima Co.	x	x		x	AMF/KMD
Crotalus tiaris	NAUOSP 7381	_					LaDuc
Crotalus tigris	-	-		x			Campbell and Lamar 2004
Crotalus tigris	_	_			6 inds		
Crotalus tigris	_	_			4 inds		Brattstrom 1964
Crotalus totonacus	FI MNH 83826	Mexico: Tamaulinas	x	x	1 11 431	×	AMF/KMD
	83829	inexicor runnaulpus	X	~		X	,, ,
Crotalus totonacus	FI MNH 83827	Mexico: Tamaulinas	x	x			AMF/KMD
	83828		X	~			
Crotalus totonacus	SDNHM 43323	Mexico: Tamaulipas: Munic. Gómez Farias	х	х		х	AMF/KMD
Crotalus totonacus	-	-		х			Campbell and Lamar 2004
Crotalus totonacus	-	Mexico: Queretaro		х			Campbell and Lamar 2004
Crotalus transversus	FMNH 100129,	Mexico: Morelos	х	х			AMF/KMD
	100710						
Crotalus transversus	UCM 51421-51423	Mexico: Morelos: Lagunas de Zempoala Ntl. Park	x	х			AMF/KMD
Crotalus transversus	-	_					Campbell and Lamar 2004
Crotalus triseriatus	LACM 25944	Mexico: Jalisco	х	х			AMF/KMD
armstronai							
Crotalus triseriatus	UTA R-12589	Mexico: Jalisco			х	х	AMF/KMD
Crotalus triseriatus	UTA R-7232	Mexico: Jalisco			x		AMF/KMD
armstrongi Crotalus triseriatus	UTA R-9357	Mexico: Jalisco				x	AMF/KMD
armstrongi Crotalus triseriatus	FLMNH 85096	Mexico: Veracruz-Llave	x	x			AMF/KMD
triseriatus Crotalus trisoriatus		Maying		v		¥.	
triseriatus		Mexico	X	x		X	
Crotalus triseriatus triseriatus	FMNH 126619	Mexico	х	x			AMF/KMD
Crotalus triseriatus triseriatus	LACM 66951	Mexico: Puebla	x	х			AMF/KMD
Crotalus triseriatus triseriatus	UTA R-12599	Mexico: Morelos: Lagunas de Zempoala Ntl. Park			x		AMF/KMD
Crotalus triseriatus	UTA R-12600,	Mexico: Morelos				x	AMF/KMD
triseriatus Crotalus triseriatus	12601 UTA R-7398	Mexico: Mexico			×		AMF/KMD
triseriatus Crotalus tashasa		Movico: Vucatán	~		~		
	-10100 30108, 40728		x	х			
Crotalus tzabcan	FMNH 49367	Mexico: Yucatán	Х	х			AMF/KMD

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Crotalus viridis	AMNH R-147321	USA: Montana: Glacier Co.				х	AMF/KMD
Crotalus viriais Crotalus viridis	AIVINH R-69043	USA: Uklanoma: Texas Co.			x		
Crotalus viridis	FLMNH 41573	USA: New Mexico: Luna Co.			x		AMF/KMD
Crotalus viridis	FLMNH 62550	USA: Arizona: Coconino Co.			x		AMF/KMD
Crotalus viridis	FLMNH 99947	USA: NE Arizona			х		AMF/KMD
Crotalus viridis	LSUMZ 20584	USA: Oklahoma: Texas Co.	х	х		х	AMF/KMD
Crotalus viriais Crotalus viridis		USA: Texas: Concho Co.	x	x			
Crotalus viridis	LSUMZ 82043	USA: Texas: Brewster Co.	×	×			AMF/KMD
Crotalus viridis	LSUMZ 82179	USA: Arizona: Navajo Co.	x	x			AMF/KMD
Crotalus viridis	UTA R-14224	USA: Texas: Sherman Co.				х	AMF/KMD
Crotalus viridis	-	-		х			Campbell and Lamar 2004
Crotalus viridis Crotalus willardi	UTA 18255	USA: New Mexico: Union Co.		х	×.		Campbell and Lamar 2004
Crotalus Willardi Crotalus willardi	AIVINH K-119010	-			x		
crotulus willurur	56864				^		
Crotalus willardi	FLMNH 60656	Mexico: Sonora	x	x			AMF/KMD
Crotalus willardi	FMNH 1493	Mexico: Durango	х	х			AMF/KMD
Crotalus willardi	FMNH 902	USA: Arizona: Cochise Co.	х	х			AMF/KMD
Crotalus willardi	LACM 67265	USA: New Mexico: Hidalgo Co.	х	х			AMF/KMD
Crotalus willardi	SDNHM 3207,	USA: Arizona: Cochise Co.	х	х			AMF/KMD
Crotalus willardi	40888, 44056 UMM7 193361	USA: Arizona: Cochise Co			×		AMF/KMD
Crotalus willardi	UMMZ 78450,	Mexico: Sonora	х	x	X		AMF/KMD
	78452						
Crotalus willardi	UMMZ 78451	Mexico: Sonora	х	х		х	AMF/KMD
Crotalus willardi	UTA R-18425, R-	Mexico: Sonora				х	AMF/KMD
	6942						
Crotalus willardi	UTA R-40529	- Moving Durange			х	X	
Crotalus willardi	UTA K-9350			5 inds		X	Campbell and Lamar 2004
Crvptelvtrops albolabris	AMNH R-27946	China: Hainan		5 mus.	х		AMF
Cryptelytrops albolabris	CAS 215394	Myanmar: Sagaing Region				х	AMF
Cryptelytrops albolabris	CAS 233005	Myanmar: Kachin State: Myitkyina Dist.	х	х		х	AMF
Cryptelytrops albolabris	CAS 239623	Myanmar: Bago Region: Pyi Dist.	х	х			AMF
Cryptelytrops albolabris	CAS 243024	Myanmar: Maguay Region: Pakhokku	х	х		х	AMF
Cruntalutrons albalabris		Dist.					
Cryptelytrops albolabris	FLIVIINE 05013,	Inananu	X	X			AIVIF
	90855, 120225						
Cryptelytrops albolabris	FLMNH 61846	Thailand: Kanchanaburi Prov.	х	x			AMF
Cryptelytrops albolabris	FLMNH 65614	Thailand	х	х		х	AMF
Cryptelytrops albolabris	FLMNH 69255-	Thailand			х		AMF
	69258						
Cryptelytrops albolabris	FMNH 255251	Laos	х	х	х	x	
Cryptelytrops albolabris	FIVINE 255252, 255255 255256	Laos				X	AMF
Cryptelytrops albolabris	EMNH 263013	Cambodia: Mondolkiri Prov.	x	x		x	AMF
Cryptelytrops albolabris	FMNH 270451	Laos: Khammouan Prov.: Nakai Dist.	x	x			AMF
Cryptelytrops albolabris	FMNH 6710	China			х		AMF
Cryptelytrops albolabris	FMNH 6713	China: Hainan Prov.			х		AMF
Cryptelytrops albolabris	UMMZ 227454	Indonesia: Sumatra	х	х			AMF
Cryptelytrops albolabris	YPM R9151	China: Guangdong Prov.: Nan'ao Isi.	x	x			
Cryptelytrops albolabris	- -		X	x			AMF Vogel 2006
Cryptelytrops andersonii	ZSI 3057	India: Andaman Isl.		x			Theobald 1868
Cryptelytrops andersonii	_	-		x			Vogel 2006
Cryptelytrops andersonii	-	India: Middle Andaman Isl.		2 inds.			Gumprecht et al. 2004
Cryptelytrops andersonii	-	India: North Andaman Isl.		x			Gumprecht et al. 2004
Cryptelytrops andersonii		India: South Andaman Isl.		4 inds.			Gumprecht et al. 2004
Cryptelytrops cantori	USINIVI 29445 _	India: Nicobar Isis.: Camorta Isi. Nicobar Isis	х	x			AMF Theobald 1868
Cryptelytrops cantori	_	–		x			Vogel 2006
Cryptelytrops cantori	-	_		~			Malhotra and Thorpe
							2004
Cryptelytrops	FMNH 259191-	Cambodia: Koh Kong Prov.: Cardamom	х	х			Malhotra et al. 2011
cardamomensis	259192	Mtns.					
Cryptelytrops	-	Cambodia: Cardamom Mts.		2 inds.			Malhotra et al. 2011
caraamomensis Cruntelutrons	_	Cambodia: Kob Kong Broy - Kampong		2 inds			Malbotra et al. 2011
cardamomensis	-	Saom Bay		2 11105.			
Cryptelytrops	_	Thailand: Chantaburi Prov.: Khao		2 inds.			Malhotra et al. 2011
cardamomensis		Kitchakut Ntl. Park					
Cryptelytrops erythrurus	AMNH R-2158	-			х		AMF
Cryptelytrops erythrurus	CAS 213410,	Myanmar: Yangon Region	х	х	х		AMF
	213412						
cryptelytrops erythrurus	LAS 216423, 220254	wyanmar: Kaknine State	х	х		х	AIVIE
Cryptelvtrops ervthrurus	CAS 216575.	Myanmar: Rakhine State	x	x			AMF
//···/···	220336	,					
Cryptelytrops erythrurus	CAS SU8864	Myanmar: Yangon Region	x	х	х		AMF
Cryptelytrops erythrurus	TCWC 81398	India	х	х			AMF
Cryptelytrops erythrurus	-	-		х			Vogel 2006
cryptelytrops erythrurus	-	-		х			Mainotra and Thorpe 2004

Species	Voucher	Locality	Scales	Color	Bones	Heminenes	Examiner or Publication
Cryptelytrons fasciatus	7RC 2 5620	Indonesia: Sulawesi Selatan Prov :	v	00101	Dones	Hempenes	David et al. 2003
crypterytrops jusciatus	2110 2.3020	Tanahiamnea Isl	X				David et di. 2005
Cruntalutrans fassiatus		Indonesia: Sulawesi Selatan Drovi	v				David at al. 2002
crypterytrops jusciatus	2000 0/01	Tanahiamnea Isl	^				David et al. 2005
Cruntelytrons fasciatus	2000.0401 RMNH 06 / 20 / 6	Indonesia: Sulawesi Selatan Prov :	v				David et al. 2002
ci ypterytrops jusciatus	DIVINIT 50.4.25.40	Tanahiamnea Isl	X				David et di. 2005
Cryptelytrons fasciatus	7MEK Specimens	Indonesia: Sulawesi Selatan Prov :	x				David et al. 2003
cryptelytrops jusciatus	21vii K Specifiens 1_7	Tanahiamnea Isl	^				David et al. 2005
Cruntelutrons honsonensis	1 Z	Vietnam: Kien Giang Prov : Hon Son Isl	v	v			Grismer et al. 2008
Cryptelytrops nonsonensis	EL MNH 28223	Indonesia: Komodo Isl	^	^	v		
Cryptelytrops insularis		Indonesia: Komodo Isl.	v	v	^		
crypterytrops insularis	28602 28606-	indonesia. Komodo isi.	^	^			
	28692, 28090-						
	28098, 28703,						
Cryptelytrons insularis	ELMNH 28697	Indonesia: Komodo Isl	v	v		v	
crypterytrops insularis	28710 28711	indonesia. Komodo isi.	^	^		~	
Cruntelutrons insularis	ELMNH 20128	Indonesia: Lesser Sundas: Elores Isl	v	v		v	
crypterytrops insularis	301/19	muonesia. Lesser Sundas. Hores isi.	~	~		~	
Cryptelytrons insularis	FI MNH 30129	Indonesia: Lesser Sundas: Flores Isl	x	v			ΔΝ/Ε
crypterytrops insularis	301/12		X	~			
Cryptelytrons insularis	50142 FLMNH 36446	Indonesia: Timor	v	v			
Cryptelytrops insularis			^	×			
Cryptelytrops insularis		Thailand	v	×			
crypterytrops kundunensis	85090 89608	mananu	^	^			
	89609						
Cruptalutrons kanhuriansis			v	v			AN4E
crypterytrops kunbunensis	297337,	-	^	^			AWI
	297452, 545557-						
Crucia la desa la construcción de la construcción	345539						
Cryptelytrops kanburiensis	-	-		х			
Cryptelytrops kanburiensis	-	-					Mainotra and Thorpe
							2004
Cryptelytrops kanburiensis	QSIMI 508, 509	Inailand: Kanchanaburi Prov.	х	х			David et al. 2004
Cryptelytrops kanburiensis	BMNH 1988.383	Thailand: Kanchanaburi Prov.	х	х			David et al. 2004
Cryptelytrops kanburiensis	BMNH 1946.1.8.91	Thailand: Kanchanaburi Prov.		х			David et al. 2004
Cryptelytrops kanburiensis	BMNH 1987.943,	Thailand: Kanchanaburi Prov.: Sai Yok	х	х			David et al. 2004
	1992.535	Dist.					
Cryptelytrops labialis	USNM 29444	India: Nicobar Isls: Nancowry Isl.	х	X			AMF
Cryptelytrops labialis	-	India: Andaman Isls.		3 inds.			Vogel 2006
Cryptelytrops labialis	-	India: Central Nicobar Isl.: Nancowry		4 inds.			Vogel 2006
		Grp.					
Cryptelytrops macrops	CM 156455–	Thailand	х	х			AMF
	156458						
Cryptelytrops macrops	FMNH 258957,	Laos: Champasak Prov.: Paksong Dist.	х	х			AMF
	258958						
Cryptelytrops macrops	FMNH 259189	Cambodia: Kampong Speu Prov.: Phnom	х	х			AMF
		Sruoch Dist.					
Cryptelytrops macrops	FMNH 262715	Cambodia: Stung Treng Prov.: Siem Pang	х	х			AMF
		Dist.					
Cryptelytrops macrops	-	Thailand		2 inds.			Vogel 2006
Cryptelytrops macrops	FMNH 180271	Thailand: Nakhon Nayok Prov.					Guo et al. 2010
Cryptelytrops macrops	-	Thailand: Nakhon Ratchesima Prov.:		х			Vogel 2006
		Khao Yai Ntl. Park					
Cryptelytrops	CAS 212242,	Myanmar: Ayeyarwady Region:			х		AMF
purpureomaculatus	212244	Myaungmya Dist.					
Cryptelytrops	FLMNH 48828,	Myanmar: Yangon Region	х	х		х	AMF
purpureomaculatus	48830, 48833,						
	48834						
Cryptelytrops	FLMNH 48829,	Myanmar: Yangon Region	х	х			AMF
purpureomaculatus	48831, 48832						
Cryptelytrops	FMNH 80157	Singapore	х	х			AMF
purpureomaculatus							
Cryptelytrops	UMMZ 126386,	Thailand	х	х			AMF
purpureomaculatus	126387						
Cryptelytrops	-	-		х			Vogel 2006
purpureomaculatus							
Cryptelytrops	-	-			4 inds.		Brattstrom 1964
purpureomaculatus							
Cryptelytrops	-	Thailand		х			Vogel 2006
purpureomaculatus							
Cryptelytrops	-	West Malaysia		х			Vogel 2006
purpureomaculatus							
Cryptelytrops rubeus	FMNH 262717,	Cambodia: Mondulkiri Prov.: Ou Reang	х	х		х	AMF
	262720, 262721	Dist.					
Cryptelytrops rubeus	FMNH 262718	Cambodia: Mondulkiri Prov.: Ou Reang	х	х			Malhotra et al. 2011
		Dist.					
Cryptelytrops rubeus	-	Cambodia: Mondulkiri Prov.: Ou Reang		2 inds.			Malhotra et al. 2011
		Dist.					
Cryptelytrops rubeus	-	South Vietnam		2 inds.			Malhotra et al. 2011
Cryptelytrops rubeus	-	Vietnam: Nam Cat Tien Ntl Park		х			Malhotra et al. 2011
Cryptelytrops rubeus	-	Vietnam		2 inds.			Malhotra et al. 2011
Cryptelytrops	CAS 135750	Nepal: Hyangcha	х	х			AMF
septentrionalis							
Cryptelytrops	FMNH 131953	Nepal	х	х			AMF
septentrionalis							
Cryptelytrops	FMNH 83083	Nepal: Gorkha Dist.	х	х			AMF
septentrionalis							

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Cryptelytrops septentrionalis	-	-					Malhotra and Thorpe 2004
Cryptelytrops	-	India: Uttarakhand		х			Vogel 2006
Cryptelytrops	-	Nepal		x			Vogel 2006
septentrionalis Cryntelytrons venustus	LISNM 81860	Thailand: Surat Thani Prov	Y	×			ΔME
Cryptelytrops venustus	ZMB 48045	Thailand: Nakhon Si Thammarat Prov.	~	x			David et al. 2004, Vogel
Cryptelytrops venustus	ZMB 48046	Thailand: Nakhon Si Thammarat Prov.		x			David et al. 2004
Cryptelytrops venustus	– MNHN 1990.9091–	-		x			David et al. 2004
Cryptelytrops venustus	9095 ZMFK 79783–	-		х			David et al. 2004
Cryptelytrops venustus Cryptelytrops venustus	SMF 82550–82552 BMNH 1983.384–	– Thailand: Nakhon Si Thammarat Prov.		x x			David et al. 2004 David et al. 2004
Cryptelytrops venustus	386, 1987.944–945 QSMI 352–353,	Thailand: Nakhon Si Thammarat Prov.		x			David et al. 2004
Cryptelytrops venustus	383–384, 512–513 PSGV 600, 662	Thailand: Nakhon Si Thammarat Prov.:		x			David et al. 2004
Cryptelytrops venustus	QSMI 354–357,	Lan Saka Dist. Thailand: Nakhon Si Thammarat Prov.:		x			David et al. 2004
Cryptelytrops venustus	517–518 ZSM 127.1990	Thung Song Dist. Thailand: Nakhon Si Thammarat Prov.:		x			David et al. 2004
Dahoja nalaestinae		Thung Song Dist. –	Y	×			ΔME
Daboia russelii	FLMNH 74263,	India	x	x			AMF
Daboia russelii	FLMNH 54074	Pakistan			х		AMF
Daboia russelii	FLMNH 70644	Pakistan: Sind Prov.: Tatta Dist.	x	х		х	AMF
Daboia russelii	FLMNH 71133, 73350, 73356, 78405	Pakistan	x	х			AMF
Daboia siamensis	CAS 206671	Myanmar: Sagaing Region	х	х		х	AMF
Daboia siamensis	CAS 210536	Myanmar: Magway Region	х	х			AMF
Daboia siamensis	CAS 210836	Myanmar: Magway Region	х	х		х	AMF
Dabola slamensis	CAS 210838	Myanmar: Magway Region: Minbu Twnsp.	x	х		x	AMF
Daboia siamensis	CAS 215924	Myanmar: Mandalay Region: Myin Gyan Dist.	х	х			AMF
Daboia siamensis	FLMNH 87944	Thailand	x	х			AMF
Dubolu siumensis	CLP903	-	X	X			AIVIF
Deinagkistrodon acutus	CM 147733	China	х	х			AMF
Deinagkistrodon acutus	CM 147735	China	х	х	х		AMF
Deinagkistrodon acutus	FLMNH 120204	China	x	х			AMF
Deinagkistroaon acutus	FLIVINH 24083, 120205	Taiwan	x	х			AME
Deinagkistrodon acutus	FLMNH 50805, 51120	China: Fukien Prov.			х		AMF
Deinagkistrodon acutus	FMNH 25177	China: Fukien Prov.			х		AMF
Deinagkistrodon acutus	-			х	a · 1		Vogel 2006
Deinagkistrodon acutus Echis carinatus	CIB no number	China: Jiangxi Prov., Fujian Prov.	v	v	3 inds.	v	Guo et al. 1999
multisquamatus	179145	Nature Reserve	~	~		~	
Echis carinatus	CAS 179144,	Turkmenistan: Lebap Prov.: Repetek	х	х			AMF
Echis carinatus	CAS 179737,	Turkmenistan: Mary Prov.	x	x		x	AMF
multisquamatus	179741	Turker and the set of the set					
Echis carinatus multisauamatus	CAS 179738- 179740 179742	Turkmenistan: Mary Prov.	Х	х			AMF
Echis carinatus	UCF CLP906,	-	х	х			AMF
multisquamatus	CLP907						
Echis pyramidum	CAS 131532	South Sudan: Ilemi Triangle	x	x		X	AMF
echis pyrumaum	174028		X	X		X	AIVIE
Echis pyramidum Echis pyramidum	FLMNH 62318	Kenya: Rift Valley Prov.	x	X			AMF
Garthius chaseni	FMNH 71860	– North Borneo	×	x			AMF
Garthius chaseni	MCZ 43615, 43616	Malaysia: Sabah: Borneo	x	x			AMF
Garthius chaseni	MCZ 43618	Malaysia: Sabah: Borneo: Kiau: Mt.	x	х			AMF
Garthius chaseni	USNM 134126	Kinabalu Malaysia: Sabah: Borneo: Kiau: Mt.	x	x			AMF
Garthius chaseni	_	kinabalu -		¥			Vogel 2006
Gloydius blomhoffii	CAS 14622	China: Munic. Shanghai		~	х		AMF
Gloydius blomhoffii	FLMNH 24025,	Japan: Kantō Region: Honshu Isl.:	х	х		x	AMF
Gloydius blomhoffii	FLMNH 120208	Japan: Kantō Region: Honshu Isl.: Saitama Pref	x	х			AMF
Gloydius blomhoffii	FLMNH 24024,	Japan: Kantō Region: Honshu Isl.:				х	AMF
Glovdius blomhoffii	FLMNH 24023	Japan: Hachiiō-iima Isl.				x	AMF
Gloydius blomhoffii	FMNH 7164, 7165	China: Anhui Prov.	х	х			AMF
Gloydius blomhoffii	FMNH 7167	China: Anhui Prov.				x	AMF
Gloydius blomhoffii	FMNH 7171	China: Anhui Prov.	х	х	х		AMF

Species	Voucher	Locality	Scales	Color	Bones	Heminenes	Examiner or Publication
<u>Claudius blambaffii</u>		lanan	Juies	000	Dones	Hempenes	
Gloyalas biolilliojjii	FIVINE 75500,	Japan	X	×			AMF
	/39/0, /39/1						
Gloydius blomhoffii	FMNH 73969	Japan	х	х	х		AMF
Gloydius blomhoffii	-	-		х			Vogel 2006
Gloydius blomhoffii	-	-	2 inds.		3 inds.		Gutberlet 1998
Gloydius brevicaudus	AMNH R-147936,	Korea			х		AMF
	R-147937						
Gloydius brevicaudus	AMNH R-17438	China			х		AMF
Gloydius brevicaudus	CM 69430	Korea	х	х			AMF
Glovdius brevicaudus	KU 208078	China: Sichuan Prov.	х	х			AMF
Glovdius brevicaudus	KU 215579	South Korea: Gyeonggi Prov	x	x		x	AME
Glovdius brevicaudus	KU 38798	China: Sichuan Prov	v	v		v	
Cloydius brevicaudus		South Koroa: Cyconggi Droy	~	~		~	
Glovalus brevicaudus		China China	X	X			
Gioyalus brevicauaus		China	х	х			AMF
Gloydius brevicaudus	UTA R-16873	Korea	х	х		х	AMF
Gloydius brevicaudus	UTA R-18699	Korea	х	х			AMF
Gloydius brevicaudus	YPM R9828	China: Guangdong Prov.: Nan'ao Isl.	х	х		х	AMF
Gloydius brevicaudus	-	-		х			Vogel 2006
Gloydius halys	AMNH R-143775	-			х		AMF
Glovdius halys	CAS 183387	Kazakhstan: Aral Sea	х	х		х	AMF
Glovdius halvs	CM 69431	Azerbaijan	x	x			AMF
Glovdius halvs	EMNH 1/163/	Iran: Mazandaran Prov	v	v			
Gioyalas naiys	141625		^	^			AMI
	141035						A. A. 45
Gioyalus naiys	FIVINH 170638	China: Sichuan Prov.	х	х		x	AIMF
Gloydius halys	FMNH 230008,	Kyrgyzstan and Tajikistan	х	х			AMF
	230009						
Gloydius halys	FMNH 234287	Kyrgyzstan	х	х			AMF
Gloydius halys	FMNH 7127	Mongolia	х	х		х	AMF
Glovdius halys	FMNH 7128	Mongolia	х	х			AMF
Glovdius halvs	FMNH 7161, 7163	China: Chihli: Hsing Sung Shan	x	х			AMF
Glovdius halvs	_	_	A	X	2 inds		Brattstrom 1964
Glovdius himalayanus		Pakistan: Khyhor Pakhtunkhwa: Kaghan	v	v	2 1103.		
Gioyulus minuluyunus		Vallavi	X	X			AMF
	70657,70668	valley					
Gloydius himalayanus	FLMNH 70658	Pakistan: Khyber Pakhtunkhwa: Kaghan	х	х		х	AMF
		Valley					
Gloydius himalayanus	FLMNH 82634	Pakistan: Khyber Pakhtunkhwa: Hazara	х	х			AMF
		Region					
Gloydius himalayanus	KU 129591	India: Uttar Pradesh: Nag Tiba: 9200	х	х			AMF
Glovdius himalayanus	UMMZ 50086	India: Himachal Pradesh: Kullu Dist.	х	х			AMF
Glovdius himalavanus	_	-		х			Vogel 2006
Glovdius intermedius	ΔMNH R-108505	Korea	x	x		×	
Glovdius intermedius		Koroa	~	×		X	
Gloyalas interinealas	AWINIT N-100507,	Korea	^	^			Alvii
Claudius internet dive	R-140532	North Kanas, North Hansenara Duari					
Gloyalus intermedius	CAS 31540	North Korea: North Hamgyong Prov.:			х		AMF
		Chongjin					
Gloydius intermedius	FMNH 11484	Korea: Songdo			х		AMF
Gloydius intermedius	FMNH 230006,	Russia: Primorsky Krai	х	х			AMF
	230007, 230013						
Gloydius intermedius	KU 87848	Kyrgyzstan	х	х			AMF
<i>Glovdius intermedius</i>	ROM 20462, 20467	China: Jilin Prov.: Kougian Twnsp.	х	х			AMF
Glovdius intermedius	ROM 20465 20466	China: Iilin Prov : Kougian Twnsp	x	x		x	AME
Glovdius intermedius	_	_	A	v		<i>x</i>	
Glovdius intermedius	CIP no number	China: Iilin Droy Lippning Prov		~	2 inde		Gue et al 1999
Glovalus internedius	CIB no number	China: Jinii Prov., Lidoning Prov.			5 mus.		Guo et al. 1999
Gioyalus intermedius	CIB no number	China: Xinjiang Oygnur Autonomous			5 mas.		Guo et al. 1999
		Region					
Gloydius monticola	AMNH R-21020	China: Yunnan Prov.: Jade Dragon Snow	х	х			AMF
		Mt.					
Gloydius monticola	-	-		х			Vogel 2006
Gloydius shedaoensis	_	-		х			Vogel 2006
Gloydius shedaoensis	-	_	var.	х			Zhao 1979
,			inds	-			-
Glovdius shedanensis	CIB no number	China: Liaoning Prov			4 inde		Guo et al 1999
Cloydius strauchi		China: Sichuan Drov	v	v	-11103.		
Gioyalas straucili	1 IVIINE 13134,		X	X			
	151/2						
Gioyalus strauchi	FMINH 151/1	China: Sichuan Prov.	х	х		x	AMF
Gloydius strauchi	MVZ 216678,	China: Sichuan Prov.	х	х			AMF

216680,	216826,
216829,	216830

	210829, 210830						
Gloydius strauchi	-	-		х			Vogel 2006
Gloydius strauchi	CIB no number	China: Shaanxi Prov.			2 inds.		Guo et al. 1999
Gloydius strauchi	CIB no number	China: Sichuan Prov.			3 inds.		Guo et al. 1999
Gloydius tsushimaensis	OMNH R-3934	Japan: Nagasaki Pref.: Tsushima Isl.	х	х			Isogawa et al. 1994
Gloydius tsushimaensis	-	-		х			Vogel 2006
Gloydius tsushimaensis	-	Japan: Nagasaki Pref.	32	х			Isogawa et al. 1994
			inds.				
Gloydius ussuriensis	FMNH 11470,	North Korea: North Hwanghae Prov.:	х	х			AMF
	11475, 11478	Munic. Kaesŏng					
Gloydius ussuriensis	FMNH 229985–	Russia: Primorsky Krai	х	х			AMF
	229988						
Gloydius ussuriensis	ROM 20454, 20456	China: Jilin Prov.: Yongji Co.	х	х		х	AMF
Gloydius ussuriensis	UTA R-19421	Russia: Primorsky Krai	х	х			AMF
Gloydius ussuriensis	-	-		х			Vogel 2006
Gloydius ussuriensis	CIB no number	China: Jilin Prov.			4 inds.		Guo et al. 1999
Himalayophis tibetanus	CAS 177460,	China: Tibet Aut. Region: Shigatse Pref.	х	х			AMF
	177471, 177472,						
	177573, 177574,						
	177677						

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Himalayophis tibetanus	FU 80001, 80002	China: Xizang Prov.: Nielamou Dist.	x	X			David and Tong 1997
Himalayophis tibetanus	_ ,	_				х	Malhotra and Thorpe
						~	2004
Himalavonhis tihetanus	_	Nenal: Central Region: Phulchoki Mtn		2 inds			Vogel 2006
Himalayophis tibetanus	_	Nepal: Bagmati Zone: Sindhunalchok		2 mas. v			Vogel 2006
minuluyopins tibetanus		Dict		^			Vogel 2000
Huppala huppala		Dist. Sri Lanka: North Western Brow:	v	v			
пурните пурните	AIVING K-90061	SH Lanka. North Western Prov	X	X			AMF
	CN4 454242	Kurunegala Dist.					
Hypnale hypnale	CIVI 151343	India: Tamii Nadu: Tiruneiveli Dist.	х	х			AMF
Hypnale hypnale	CM 151796	India: Kerala	х	х			AMF
Hypnale hypnale	CIVI 67694, 67695	Sri Lanka: Uva Prov.	х	х			AMF
Hypnale hypnale	CM 67813	Sri Lanka: North Western Prov.	х	х			AMF
Hypnale hypnale	CM 67996	Sri Lanka: Central Prov.: Kandy Dist.	х	х			AMF
Hypnale hypnale	FMNH 120932-	Sri Lanka: Central Prov.	х	х			AMF
	120934, 120936						
Hypnale hypnale	FMNH 121450	Sri Lanka	х	х			AMF
Hypnale hypnale	FMNH 165058	Sri Lanka: Western Prov.: Colombo Dist.	х	х			AMF
Hypnale hypnale	FMNH 217683,	India: Kerala: Trivandrum Dist.	х	х			AMF
	217686, 217687						
Hypnale hypnale	WHT 5857	-	х				Maduwage et al. 2009
Hypnale hypnale	-	-		х			Vogel 2006
Hypnale hypnale	WHT 5852	Sri Lanka: Southern Prov.: Galle Dist.	х				Maduwage et al. 2009
Hypnale nepa	AMNH R-99385	Sri Lanka: Southern Prov.	х	х			AMF
Hypnale nepa	CAS 16916	Sri Lanka	х	х			AMF
Hypnale nepa	WHT 6515	Sri Lanka	х	х			Maduwage et al. 2009
Hypnale nepa	_	-		2 inds.			Vogel 2006
Hypnale nepa	WHT 6082	Sri Lanka	х				Maduwage et al. 2009
Hypnale zara	AMNH R-94469	Sri Lanka: Western Prov.	х	х			AME
Hypnale zara	CM \$6383	Sri Lanka	x	x			AME
Hypnale zara	KII 24143	Sri Lanka	x	x			AME
Hyphale zara	LIMM7 65626	Sri Lanka	x	x			ΔΜΕ
Hypnale zara			A V	×			Maduwago ot al. 2000
нурние зиги		-	X	X			Maduwage et al. 2009
	1940.1.19.90						Maduuraa at al. 2000
	WHI 6089	-	x				Maduwage et al. 2009
Hypnale zara	WHI 2198	Sri Lanka: Southern Prov.: Galle Dist.	х				Maduwage et al. 2009
Hypnale zara	WHI 5848	Sri Lanka	х				Maduwage et al. 2009
Lachesis acrochorda	AMNH R-63419	Colombia: Dept. Chocó: Munic. Tadó			х		AMF
Lachesis acrochorda	KU 112608	Panama: Canal Zone	х	х			AMF
Lachesis acrochorda	KU 117479	Panama: Darién Prov.			х		AMF
Lachesis acrochorda	UTA R-51433	Colombia: Dept. Valle	х	х			AMF
Lachesis acrochorda	UTA R-56349	Ecuador: Esmeraldas Prov.	х	х			AMF
Lachesis acrochorda	UTA R-7234	Colombia	х	х			AMF
Lachesis acrochorda	-	-		х			Campbell and Lamar 2004
Lachesis acrochorda	UTA R7593	Colombia: Dept. Chocó	х				Campbell and Lamar 2004
Lachesis melanocephala	FLMNH 120209	Costa Rica: Puntarenas Prov.: Rincón de	х	х			AMF
		Osa					
Lachesis melanocephala	KU 102539	Costa Rica: Puntarenas Prov.	х	х			AMF
Lachesis melanocephala	LACM 154666	Costa Rica: Puntarenas Prov.: Buenos	x	x			AMF
		Aires Canton	A	X			
Lachesis melanocenhala	SDNHM 46013	Costa Rica: Puntarenas Prov	v	x			ΔΜΕ
Lachesis melanocephala	-	_	X	x			Campbell and Lamar 2004
Lachesis melanocephala	_			v			Eernandes et al. 2004
		- Tripidad: Arima Vallov		X	v		
		Trinidad. Anna Valley			×		
Luchesis muta		Surinam			X	X	
		Surman	х	х		X	
Lachesis muta	FLMINH 56383	Guyana			х		AMF
Lachesis muta	FMNH 54183,	Peru	х	х			AMF
	59182, 68603						
Lachesis muta	ROM 23318	Trinidad and Tobago: St. George: Arima	х	х			AMF
		Ward Twnsp.					
Lachesis muta	-	-		х			Campbell and Lamar 2004
Lachesis muta	UTA R40468	-	х				Campbell and Lamar 2004
Lachesis muta	-	Brazil: Atlantic Forest		х			Fernandes et al. 2004
Lachesis muta	-	Brazil: Espírito Santo: Munic. Vitória		х			Campbell and Lamar 2004
Lachesis muta	-	Brazil: Matto Grosso		х			Fernandes et al. 2004
Lachesis muta	-			2 inds			Fernandes et al. 2004
Lachesis muta	-	Suriname: Paramaribo Dist.		х			Campbell and Lamar 2004
Lachesis stenophrys	FLMNH 120215,	Panama: Canal Zone	х	х			AMF
	120216						
Lachesis stenophrys	FLMNH 52873	Costa Rica: Limón Prov.	х	х			AMF
Lachesis stenophrys	FLMNH 83585	Costa Rica: Cartago Prov.			х		AMF
Lachesis stenophrys	FLMNH 88663,	Costa Rica	х	х			AMF
	88883						
Lachesis stenophrvs	FMNH 31748-	Panama			х		AMF
1 / -	31751						
Lachesis stenonhrvs	UTA R-12944	Costa Rica: Cartago Prov.				x	AMF
Lachesis stenophrys	-			v		~	Campbell and Lamar 2004
Lachesis stenophrys	_	_		v			Fernandes et al 2004
Lachecis stenophys		Costa Rica: Cartago Prov		~			Campbell and Lamar 2004
Luchesis stenophra	UTA N-10410	Costa Nica. Calidgo MOV.		×			Company and Lamor 2004
Luchesis stenophrys	UTA R-12945	CUSLA RICA: LIMON PROV.		X			
iviuci ovipera lebetina	UTA K-0078, K-	-	х	х		х	AIVIE
iviacrovipera lebetina	UTA K-7297, K-	-	х	х			AIVIE
	8022	Maximu C					
iviixcoatius barbouri	UTA K-6231, R-	iviexico: Guerrero	х	х			AME
	15558						

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Mixcoatlus barbouri	USNM 46347	-	х				Jadin et al. 2011
Mixcoatlus barbouri	M7FC 2881	_	x				ladin et al 2011
Mixcoatlus barbouri	_	_	~	v			Campbell and Lamar 2004
Mixeo atlus barbouri	-	-	1.4	۲ 1 نمط			
Mixcoatius barbouri	-	-	14	1 ind.			Jadin et al. 2011
			inds.				
Mixcoatlus browni	UTA R-56264	Mexico: Guerrero: Sierra Madre del Sur	х	х			AMF
Mixcoatlus browni	MCZ 42678, 42679	-					Jadin et al. 2011
Mixcoatlus browni	UTA 56265	_		x			ladin et al. 2011
Mixcoatlus browni	-		12	X			Jadin et al. 2011
Wixcoullus browin	-	-					Jaum et al. 2011
			inds.				
Mixcoatlus browni	UTA R-4450	-	Х				Jadin et al. 2011
Mixcoatlus melanurus	FMNH 100407,	Mexico: Puebla	х	х			AMF
	120234						
Mixcoatlus melanurus	EMNH 105726	Mexico	v	v			ΔΝΛΕ
Mixcoatlus melanurus	1 4 CN 4 1 2 9 5 2 0	Mexico Mexico: Buebla	~	~	v		
		MEXICO: PUEDIa			Х		AIVIF
Mixcoatlus melanurus	UTA R-34604	-			х	х	AMF
Mixcoatlus melanurus	UTA R-34605, R-	-			х		AMF
	34606						
Mixcoatlus melanurus	_	_		х			Campbell and Lamar 2004
Mixcoatlus melanurus	_	_	31		1 inds		Gutherlet 1998
wixcoutius meiunurus	-	-			4 mus.		Guibenet 1998
			inds.				
Mixcoatlus melanurus	UTA R-34606	-					Campbell and Lamar 2004
Mixcoatlus melanurus	UTA R-12557	Mexico: Puebla		х			Campbell and Lamar 2004
Ophryacus undulatus	FMNH 38505	Mexico: Guerrero: Munic. Chilpancingo			х		AMF
Onhrvacus undulatus	LITA R-4517	Mexico: Guerrero: Omilteme	x	x			АMF
Ophryacus undulatus		Moxico: Guerrero: Omiteme	~	× ×		v	
		Mexico. Guerrero. Oninterne	~	X		X	ANT
Ophryacus undulatus	UTA R-4641	Mexico: Guerrero: Omilteme			Х		AMF
Ophryacus undulatus	UTA R-5810	Mexico: Oaxaca	х	х		х	AMF
Ophryacus undulatus	-	_		х			Campbell and Lamar 2004
Onhrvacus undulatus	_	_	44		3 inds		Gutherlet 1998
opinyacus unaulatus			inde		5 1105.		Guidemet 1990
			mus.				
Ophryacus undulatus	UTA R-4108	Mexico: Guerrero		х			Campbell and Lamar 2004
Ovophis monticola	AMNH R-34294	China: Fukien Prov.	х	х			AMF
Ovophis monticola	CAS 224376	Myanmar: Kachin State: Putao Dist.:	х	х			AMF
		Nagmung Twnsp.					
Ovonhis monticola	CAS 22/12/	Myanmar: Kachin State: Putao Dist :	v	v	v		ΔΝΛΕ
ovopins monticola	CAJ 224424	Nogmung Tunon	^	^	^		
		Nagmung Twisp.					
Ovophis monticola	CAS 233203	Myanmar: Chin State: Phalum Dist.:	х	х	х	х	AMF
		Haka Twnsp.					
Ovophis monticola	CAS 233241	Mvanmar: Chin State: Phalum Dist.:	х	х	х		AMF
		Phalum Twinsn					
Quanhia mantiagla	CAC CU12020	Malaysia: Dahana: Camanaan Hishlanda					
Ovopnis monticola	CAS SU12920	Malaysia: Panang: Cameroon Highlands	Х	х	Х		AIVIF
Ovophis monticola	FMNH 18760	China: Szechuan: Mouping			х		AMF
Ovophis monticola	FMNH 25187	China			х		AMF
Ovonhis monticola	FMNH 258632	laos	x	x		x	AMF
Overhis menticela	VII 156206	Nonal: Dhankuta Dist	~	v		~	
	KU 130290		~	X			
Ovophis monticola	MCZ 7392	Taiwan: Mt. Arizan	Х	х			AMF
Ovophis monticola	-	-		х			Vogel 2006
Ovophis monticola	SCUM 035030	China: Sichuan: An Co.			х		Guo and Zhao 2006, Guo
							et al. 2010
Ovonhis monticola	AFS 06 30	China			v		Guo et al 2009
Overhie menticela		China: Sishuan			∧ Dimele		Guo er d Zhao 2000
Ovopnis monticola	SCU 1035047,	China: Sichuan			z mas.		Guo and Zhao 2006
	035052						
Ovophis monticola	SCUM 035040,	China: Sichuan: Huili Co.			х		Guo and Zhao 2006, Guo
	035082, 035083						et al. 2010
Ovonhis monticola	AFS 06 49	Nenal			x		Guo et al. 2010
Overhis ekingyensis	CAS 21027	Japan, Kagashima Draf , Duuluu, Isla ,			~		
Ovopnis okinavensis	CAS 21927	Japan: Kagosnima Pref.: Kyukyu Isis.:			Х		AIVIF
		Amami Isls.					
Ovophis okinavensis	CM 147772	Japan	х	х			AMF
Ovophis okinavensis	CM 25918	Japan	х	х		х	AMF
Ovophis okinavensis	FLMNH 120357	Japan: Kagoshima Pref.: Rvukvu Isls	x	х			AMF
		Amami Isls					
Quanhic alignmentic		Janani Kazachima Drof - Duuluus I-I-					0.N4E
		Japan. Nagushinna Pret.: KyuKyu ISIS.	х	х		х	
Ovophis okinavensis	FLMNH 24037–	Japan: Kagoshima Pret.: Ryukyu Isls.:	х	х			AMF
	24040	Amami Isl.					
Ovophis okinavensis	FLMNH 24041	Japan: Kagoshima Pref.: Ryukyu Isls.:	х	х		х	AMF
		Amami Isls	-	-		-	
Ovonhis okinguansis	ΕΙ ΜΝΙΗ ΛΕΕΛΟ	_			v		ΔΜΕ
Ovophis okingueseis		Japan: Dyukuu Jala			^ 		
Ovopriis okinaverisis		Japan: Ryukyu Isis.			х		AIVIF
Ovophis okinavensis	-	-		х			Vogel 2006
Ovophis okinavensis	CAS 21927	Japan			х		Guo et al. 2009, Guo et al.
							2010
Ovophis okinavensis	FMNH 45074	Japan			x		Guo et al. 2010
Ovonhis okinguonsis	KIJ7 D_10071 P	lanan			~		Guo et al 2010
ovopilis okiliuvelisis	KUZ K-190/1, K-	Jahan			X		
	19248						
Parias flavomaculatus	AM 01	Philippines, Luzon Isl.			х		Guo et al. 2010
Parias flavomaculatus	RTV 35	Philippines, Luzon Isl.			х		Guo et al. 2009, Guo et al.
							2010
Parias flavomasulatus		Philippings Luzon Isl					
	AF3 U0.33	Frilippines, Luzoff ISI.			х		
Parias J. Jiavomaculatus	FLIVINH 51015,	Philippines: Luzon Isis.: Luzon:	х	х			AME
	51016, 54645,	Camarines Sur Prov.					
	54945						
Parias f. flavomaculatus	FLMNH 53430	Philippines: Luzon Isls.: Luzon:			х		AMF
,,		Camarines Sur Prov					
Parias f flavomaculatur	ELVANIM EVEEN	Philippines: Luzon Isla - Luzon:	v	v			ΔΝΛΕ
Punus J. Jiuvomuculatus	FLIVIINE 34034,		х	х			AIVIE
	54055	Catanduanes Prov.					

ConstructionConstructionConstructionAAAAAParing functional formInterpret interpret interpr	Species Parias f. flavomaculatus	Voucher KU 313904	Locality Philippines: Luzon Isls.: Luzon:	Scales x	Color x	Bones	Hemipenes	Examiner or Publication
Control Partial Partial Partial Partial Partial Partial Partial			Camarines Norte Prov.	~	~			
memory forwards (1998)-Philippines (1998)xxMappine (1998)Prival / forwards/that (1998)-Philippines (1998)2008Nove 2008Prival / forwards/that (1998)-Philippines (1998)2004Nove 2008Prival / forwards/that (1998)-Philippines (1998)Nove 2008Nove 2008Prival / forwards/that (1998)-Philippines (1998)Nove 2008Nove 2008Prival / forwards/that (1998)Philippines (1998)Nove 2008Nove 2008Prival / forwards/that (1998)Philippines (1998)Nove 2008Nove 2008Prival / forwards/that 	Parias f. flavomaculatus	-	-				x	Malhotra and Thorpe 2004
PACIAL FLOOR TACK STORE STORE Proc. S Voget 2005 PACIAL FLOOR TACK STORE STORE Proc. S Voget 2005 PACIAL FLOOR TACK STORE STORE PROC. S Voget 2005 PACIAL FLOOR TACK STORE STORE PROC. S S Voget 2005 PACIAL FLOOR TACK STORE STORE PROC. S S Voget 2005 PACIAL FLOOR TACK STORE STORE PROC. S S Voget 2005 PACIAL FLOOR TACK STORE STORE PROC. S S S Note 2005 PACIAL FLOOR TACK STORE STORE PROC. S S S Note 2005 PACIAL FLOOR TACK STORE STORE PROC. S S S Note 2005 PACIAL FLOOR TACK STORE STORE PROC. S S S Note 2005 PACIAL FLOOR TACK STORE STORE PROC. S S S Note 2005 PACIAL FLOOR TACK STORE STORE PROC. S S S Note 2005 PACIAL FLOOR TACK STORE STORE PROC. S S S Note 2005 PACIAL FLOOR TACK STORE STORE PROC. S S S Note 2005 PACIAL FLOOR TACK STORE STORE PROC. S S S NOTE 2005 PACIAL FLOOR TACK STORE STORE PROC. S S S NOTE 2005 PACIAL FLOOR STORE STORE STORE PROC.	Parias f. flavomaculatus	-	Philippines		х			Vogel 2006
Particly productional of any particly in the set of any particle in the set of any pa	Parias f. flavomaculatus	-	Philippines: Bicol Prov.: Sorsogon Prov.		x			Vogel 2006
Antice in an interval in a second s	Parias f. flavomaculatus Parias f. flavomaculatus	-	Philippines: NW of Panay Isl. Philippines: NW of Panay Isl		X 2 inds			Vogel 2006
Neuros for constraints Interest for the sector Normal processed of the sector 	Parias f. flavomaculatus	_	Philippines: NW of Panay Isl.		2 mus. x			Vogel 2006
NamiaSectorSectorAmerican deficienceAmerican deficience<	Parias flavomaculatus	CAS 62407–62410,	Philippines: Polillo Isl.	x	x			AMF
Names Note Note Note Note Note Notes Notes Constructions Constructions AMP Notes Notes Notes Notes AMP Notes Notes Notes Notes AMP Notes Notes Notes Notes Notes No	halieus Parias flavomaculatus	62576	Philippings: Polillo Isls	×	v			
Notice forwards missing bioreands missing bioreands missing bioreands missing bioreands missing bioreands missing bioreands 	halieus			^	^			
Parker program pr	Parias flavomaculatus mcgregori	CAS 60525	Philippines: Batanes Isls.: Batanes Prov.: Batan Isl.	х	х			AMF
Partice Report 2014 STATUS 2014.5 Partice Report 2014.5 Parti	Parias flavomaculatus mcgregori	MCZ 173403	Philippines: Luzon Isls.: Luzon	х				AMF
Prints Programme USM 231415 Pultiparties Batames Mat. Batames Mat. * * * * Mathematication of the programme of the prog	Parias flavomaculatus mcgregori	USNM 291414, 291415, 291417, 328683	Philippines: Batanes Isls.: Batanes Prov.: Batan Isl.	х	х			AMF
nindig forwarded were set of the set of	Parias flavomaculatus mcaregori	USNM 291416	Philippines: Batanes Isls.: Batanes Prov.: Batan Isl.	x	х		x	AMF
Image of the section	Parias flavomaculatus	-	-				x	Malhotra and Thorpe
magnegod magneg	Parias flavomaculatus	_	Philippines: Batanes Isls.		4 inds.			Vogel 2006
margeni margenise margenise margenise previse forgeni Cost 56331 Malaysia: Pathang State x x x AM Parise forgeni UMMAZ 227132 Indonessi: Sumatria x x x AM Parise forgeni UMMAZ 227132 Indonessi: Sumatria x x x AM Parise forgeni UMMAZ 227132 Thailand x x x AM Parise forgeni UTA (1-5525) Malaysia: Pathang x x AM Parise forgeni - - x x Gue et al. 2010 Parise forgeni - - x Gue et al. 2010 Malaytia: Pathang Parise forgeni - - x X Gue et al. 2010 Gue et al. 2010 Parise forgeni AM G Malaysia: Pathang X X Gue et al. 2010 Gue et al. 2010 Parise forgeni AM G Malaysia: Pathang X X Malaysia: Pathang Y Malaysia: Pathang Y Malaysia: Pathang Y Malaysia:	mcgregori Parias flavomaculatus	AM 03	Philippines: Batanes Prov.: Batan Isl.			x		Guo et al. 2010
m.gr.gr.godi view	mcgregori Parias flavomaculatus	AFS 06.28. 06.31	Philippines: Batanes Prov.: Batan Isl.			x		Guo et al. 2010
Partice Register CNS Less 11 Oblightisk paranet gatzer × × × × × × ADVE Portice Register UMM 227773 Indensels. Sumitar × × × ADVE Portice Register UMM 227773 Indensels. Sumitar × × ADVE Portice Register UMM 227773 Indensels. Sumitar × × ADVE Partice Register UTA 8 52256, R Malaysia Sumitar × × ADVE Partice Register CM 065 Malaysia Partice Register K Guo et al. 2010 Partice Register APS 05.52 Sumatra × K Guo et al. 2010 Partice Register APS 05.52 Sumatra × K Guo et al. 2010 Partice Margent APS 05.52 Sumatra × K Guo et al. 2010 Partice Margent APS 05.52 Sumatra Y NA ADVE Partice Margent APS 05.52 Sumatra X X ADVE	mcgregori	0.05.1.0021				X		
Partice SurgerieUMME 22773 Underseise SumationxxxxAMFPartice SugerieUSMA 22770, SPECEThallandxxxAMFPartice SugerieUTRA 852526, P.MalaysiaxxxAMFPartice SugeriexMalforta and ThorpePartice SugeriexGuo et al. 2010Partice SugerieAM 06MalaysiaxxCuo et al. 2010Partice SugerieAM 50 6.52SumatraxxCuo et al. 2010Partice SugerieAM 50 6.53SumatraxxCuo et al. 2010Partice SugerieMC2 43605, 43666Malaysia: Borneo: SabahxxxAMFPartice SuccioniMC2 43605, 43666Patigonice: Palawan Prov: Palawan Ist.xxAMFPartice SuccioniMC2 43605, 43666Patigonice: Palawan Prov: Palawan Ist.xxAMFPartice SuccioniMC2 43605, 43667Philippines: Palawan Prov: Palawan Ist.xxAMFPartice SuccioniPartice SuccioniPartice SuccioniMAFSuccioniAMFPartice SuccionizationPartice SuccionizationiPartice Succionizat	Parias hageni Darias hageni	CAS 16831	Malaysia: Panang State	x	x		Y	
Parties negen!USNM 23720, DissonThailand MalaydiaxxXAMPParties hagen!	Parias haaeni	UMMZ 227032	Indonesia: Sumatra	×	x		X	AME
norms9959Parish RaperiURS 5257.NalaysiaxxAMFParish RaperiXMalhora and ThorpeParish RaperiAM 06MalaysiaxxCoupet 2.006Parish RaperiAM 06MalaysiaxxGuo et al. 2010Parish RaperiAM 06MalaysiaxxGuo et al. 2010Parish RaperiAFS 06.52SumatraxxGuo et al. 2010Parish RaperiAFS 06.53Malaysia: Borneo: SabahxxxMAFParish RaberiMCZ 43605, 4360Malaysia: Borneo: SabahxxxMAFParish RadeoliniMCZ 43605, 4360Malaysia: Borneo: SabahxxxMAFParish RadeoliniXVogel 2006Parish RadeoliniCMR 2265-H:236Philippines: Palawan Prov. Balawan Invo.xxxAMFParias schultzeiCMR 12545-H:236Philippines: Palawan Prov. Palawan Isl.xxxXParias schultzeiGB3762006Parias schultzeiXVogel 2006Parias schultzeiXXMAFParias schultzei <t< td=""><td>Parias hageni</td><td>USNM 23770,</td><td>Thailand</td><td>x</td><td>x</td><td></td><td></td><td>AMF</td></t<>	Parias hageni	USNM 23770,	Thailand	x	x			AMF
Parties RogeniUTA R-S5256, PMakydaxxAMFPories IngeniXVogel 2006Pories Ingeni2004Pories IngeniM 06MakysiaxCuc ct al. 2010Pories IngeniATS 06.52SumatraxCuc ct al. 2010Pories IngeniATS 06.52SumatraxCuc ct al. 2010Pories IngeniATS 06.52SumatraxCuc ct al. 2010Pories IndeximiATS 06.52SumatraxxCuc ct al. 2010Pories Indeximi-Mc2 43605, 43606Makysia: Borneo: Sabah: Ranau Dist.xxXPories Indeximi20042006Pories Indeximi-Mc2 24605, 43606Makyai: Borneo: Sabah: Ranau Dist.xxXPories IndeximiAMF2004Pories IndeximiAMF2004Pories Indeximi2004Pories Indeximi2004Pories Indeximi20042006Pories Indeximi2004Pories Indeximi2004Pories Indeximi2004Pories Indeximi2004Pories IndeximiPories Sundatronus <td< td=""><td>5</td><td>95959</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	5	95959						
Partics Rageri -	Parias hageni	UTA R-55256, R- 55257	Malaysia	x	х			AMF
Paries hageni - - Malaysia x Malaysia Paries hageni AM 06 Malaysia x Guo et al. 2010 Paries hageni AFS 06.52 Sumatra x Guo et al. 2009, Guo et al. Paries hageni AFS 06.19 Sumatra x x AMF Paries malcolni MC 24905, 4006 Malaysia: Borneo: Sabah: Ranau Dist. x x AMF Paries schultzei CM F. 226-F. 2268 Philippines: Palawan Prov.: Balawan Ist. x x X AMF Paries schultzei CM F. 226-F. 2268 Philippines: Palawan Prov.: Palawan Ist. x x X AMF Paries schultzei FMH F15045 Philippines: Palawan Prov.: Palawan Ist. x x AMF Paries schultzei FMH F1545 Philippines: Palawan Prov.: Palawan Ist. x x AMF Paries schultzei FMH F1545 Philippines: Palawan Prov.: Palawan Ist. x x AMF Paries schultzei FMH F1545 Philippines: Palawan Prov.: Palawan Ist. x x AMF Paries schultzei - - - x AMF Paries schultzei - - - - - Paries schultzei	Parias hageni	-	-		х			Vogel 2006
Partics kageni Partics kageniAH 06Malaysia: SumatraxGuo et al. 2010Partics kageniAFS 06.52SumatraxGuo et al. 2010Partics kageniAFS 06.59SumatraxGuo et al. 2010Partics malchiniMC2 43605, 43606Malaysia: Borneo: SabahxxPartics malchiniSM no numberMalaysia: Borneo: Sabah: Ranau Dist.7 inds.Struebing and Inger 1998Partics malchiniCM R-2265-R-2268Philippines: Palawan Prov.: Palawan Ist.xxMAFPartios schultzeiCM R-2265-R-2268Philippines: Palawan Prov.: Palawan Ist.xxMAFPartios schultzeiFMMH 53561Philippines: Palawan Prov.: Palawan Ist.xxMAFPartios schultzeiFMMH 53561Philippines: Palawan Prov.: Palawan Ist.xxMAFPartios schultzeiFMMH 53661Philippines: Palawan Prov.: Palawan Ist.xxMAFPartios schultzeiXMalhorta and ThorpePartios sum	Parias hageni	-	-					Malhotra and Thorpe
Partis Augent ANI 05 Malaysia X Guo et al. 2010 Partis Augent AFS 06:19 Sumatra X Guo et al. 2010 Partis Magent AFS 06:19 Sumatra X Guo et al. 2010 Partis maclonin MCZ 43605, 43606 Malaysia: Borneo: Sabah: Kanau Dist. Y inds. X AMF Partis maclonin MCZ 43605, 43606 Malaysia: Borneo: Sabah: Kanau Dist. Y inds. Struebing and inger 1998 Partis schultzei CMR -2265–R-2265 Philippines: Palawan Prov.: Balabac Isl. x x AMF Partis schultzei FMMH 15045, Philippines: Palawan Prov.: Palawan Isl. x x AMF Partias schultzei FMMH 15054, Philippines: Palawan Prov.: Palawan Isl. x x AMF Partias schultzei FMMH 15056, Philippines: Palawan Prov.: Palawan Isl. x x AMF Partias schultzei FMMH 15056, Philippines: Palawan Prov.: Palawan Isl. x x AMF Partias schultzei - - - x AMF 2004 Partias schultzei - - x X	Daviaa haaani	ANA OC	Malauria					2004
Porios hogoni Porios functionLTO OLS Porios matcolmiSumatraxGuo et al. 2009, Guo et al. 2010Parios matcolmiMCZ 43605, 43606Malaysia: Borneo: SabahxxAMFParios matcolmiSM no numberMalaysia: Borneo: Sabah: Ranau Dist.7 linds.Struebing and Inger 1998Parios matcolmixVogel 2006Parios schultzeiCM R 2265–R-2268Philippines: Palawan Prov.: Palawan Isl.xxAMFParios schultzeiFIMNH 67314Philippines: Palawan Prov.: Palawan Isl.xxAMFParios schultzeiFIMNH 53551Philippines: Palawan Prov.: Palawan Isl.xxAMFParios schultzeiFIMNH 53551Philippines: Palawan Prov.: Palawan Isl.xxAMFParios schultzeiXVogel 2006Parios schultzeiXMaleysia:Parios schultzeiXMaleysia:Parios schultzeiXMaleysia:Parios schultzeiXMaleysia:Parios schultzeiXMaleysia:Parios sumatronusFMH 71643, Ti3860, 1488229Malaysia: Borneo: SarawakxxParios sumatronusFMH 120948Malaysia: Borneo: SarawakxXParios sumatronusFMH 123959Malaysia: Borneo: SarawakxXParios sumatronusFMH 123959Malaysia: Borneo: Sarawak <t< td=""><td>Parias hageni</td><td>ΔFS 06 52</td><td>Nididysid Sumatra</td><td></td><td></td><td>x</td><td></td><td></td></t<>	Parias hageni	ΔFS 06 52	Nididysid Sumatra			x		
DariesDataDataDataDataParios molicolmiSM no numberMalaysia: Borneo: Sabah: Ranau Dist.7 Inds.AMFParios molicolmi7Struebing and Inger 1998Parios schultzeiFLMMH 67914-Philippines: Palawan Prov.: Balabae List.xxAMFParios schultzeiFLMMH 67914-Philippines: Palawan Prov.: Balabae List.xxAMFParios schultzeiFLMMH 15045,Philippines: Palawan Prov.: Palawan Ist.xxAMFParios schultzeiFLMMH 15045,Philippines: Palawan Prov.: Palawan Ist.xxAMFParios schultzeiXVogel 2006Parios schultzeiZ004Parios schultzeiZ004Parios schultzeiZ004Parios sumatronusFMNH 71643, 76326, 138697,Malaysia: Borneo: Sabah: Lahad Datu Dist.xxAMFParios sumatronusFMNH 23954, Malaysia: Borneo: Sabah: Spitang Dist.xxAMFParios sumatronusFMNH 23959, Malaysia: Borneo: Sabah: Spitang Dist.xxAMFParios sumatronusFMNH 23959, Malaysia: Borneo: Sabah: Spitang Dist.xxAMFParios sumatronusFMNH 23959, Malaysia: Borneo: Sabah: Tenom Dist.xxAMFParios sumatronusFMNH 23959, Malaysia: Borneo: Sabah: Spitang Dist.xxAMFParios sumatronusFMNH 249756Malay	Parias hageni	AFS 06.19	Sumatra			x		Guo et al. 2009. Guo et al.
Parias moleclamiMCZ 43605, 43605Malaysia: Borneo: SabahxxxAMFParias moleclami7 inds.Struebing and Ingre 1998Parias moleclamiXVogel 2006Parias schultzeiCM 8-226-8-2268Philippines: Palawan Prov.: Palawan Isl.xxxParias schultzeiFLM NH 6791-4Philippines: Palawan Prov.: Palawan Isl.xxxAMFParias schultzeiFLM NH 5551Philippines: Palawan Prov.: Palawan Isl.xxxAMFParias schultzeiFLM NH 5551Philippines: Palawan Prov.: Palawan Isl.xxxAMFParias schultzeiFLM NH 5551Philippines: Palawan Prov.: Palawan Isl.xxxMalerParias schultzeiFLM NH 71643Alaysia: Borneo: SarawakxxxMalerParias schultzei20042006Parias schultzeiFLM NH 71643Malaysia: Borneo: SarawakxxAMFParias schultzeiFLM NH 23954Malaysia: Borneo: SarawakxxAMFParias sumatronusFLM H 239954Malaysia: Borneo: Sabah: Tenom Dist.xxAMFParias sumatronusFLM H 239954Malaysia: Borneo: Sabah: Tanau Dist.xxAMFParias sumatronusFLM H 239554Malaysia: Borneo: Sabah: Tanau Dist.xxAMFParias sumatronusFLM H 239554Malaysia: Borneo: Sabah: Tanau Dist.xx <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2010</td>								2010
Parias malcolmiSM no numberMalaysia: Borneo: Sabah: Ranau Dist.7 inds.Struebing and Inger 1998 Vogel 2006Parias schultzeiCM R-2265-R-226Philippines: Palawan Prov.: Balabac Isl.xxAMFParias schultzeiFLMNH 67914- 69176Philippines: Palawan Prov.: Palawan Isl.xxAMFParias schultzeiFNMH 15043, 53560Philippines: Palawan Prov.: Palawan Isl.xxxAMFParias schultzeiFNMH 15043, 53560Philippines: Palawan Prov.: Palawan Isl.xxxAMFParias schultzeixVogel 2006Parias schultzeixXVogel 2006Parias schultzeixMalhotra and Thorpe 2004Parias schultzeixAMFParias schultzeixAMFParias schultzeixXAMFParias schultzeixXAMFParias schultzeixXAMFParias sumatronusFMMH 71643Malaysia: Borneo: Sabah: Lahad DatuxxxAMFParias sumatronusFMMH 23096Malaysia: Borneo: Sabah: Kota MaruduxxxAMFParias sumatronusFMMH 239958Malaysia: Borneo: Sabah: Kota MaruduxxxAMFParias sumatronusFMMH 239959Malaysia: Borneo: Sabah: Sipitang Dist. <t< td=""><td>Parias malcolmi</td><td>MCZ 43605, 43606</td><td>Malaysia: Borneo: Sabah</td><td>х</td><td>х</td><td></td><td></td><td>AMF</td></t<>	Parias malcolmi	MCZ 43605, 43606	Malaysia: Borneo: Sabah	х	х			AMF
Parias subultei - - x Vogel 2006 Parias schultzei CM R-2265-R-2268 Philippines: Palawan Prov.: Balabac Isl. x x AMF Parias schultzei FLMNH 67314- 60176 Philippines: Palawan Prov.: Palawan Isl. x x AMF Parias schultzei FLMNH 5361 Philippines: Palawan Prov.: Palawan Isl. x x AMF Parias schultzei - - - X AMF Parias schultzei - - X AMF Parias schultzei - - X Maliotra and Thorpe Parias schultzei - - X AMF Parias sumatranus FMNH 71643, T38690, 148829 Malaysia: Borneo: Sabah: Lahad Datu x x X Parias sumatranus FMNH 120964 Malaysia: Borneo: Sabah: Kota Marudu x x AMF Parias sumatranus FMMH 239953 Malaysia: Borneo: Sabah: Tenom Dist. x x AMF Parias sumatranus FMMH 239954 Malaysia: Borneo: Sabah: Siptag Dist. x x AMF Parias sumatranus FMMH 239954 Malaysia: Borneo: Sabah: Siptag Dist. x x AMF Parias sumatranus FMMH 239954 Malaysia: Borneo: Sabah	Parias malcolmi	SM no number	Malaysia: Borneo: Sabah: Ranau Dist.		7 inds.			Struebing and Inger 1998
Parias schultzeiCM R-2265-R-2268 FUMNH 67914 Brilippines: Palawan Prov.: Palawan Isl.xxxAMFParias schultzeiFUMH 15045, FUMH 15045, Parias schultzeiPhilippines: Palawan Prov.: Palawan Isl.xxxAMFParias schultzeiFUMH 15045, Parias schultzeiPhilippines: Palawan Prov.: Palawan Isl.xxxAMFParias schultzeiFUMH 153561Philippines: Palawan Prov.: Palawan Isl.xxxXAMFParias schultzeiXMalatorta and Thorpe 20042004Parias schultzeiXMalatorta and Thorpe 2004Parias sumatranusFMNH 71643, 76326, 13869, 14829Malaysia: Borneo: Sabah: Lahad Datu Dist.xxXAMFParias sumatranusFMNH 230954, 20957, 239558Malaysia: Borneo: Sabah: Kota Marudu Dist.xxXAMFParias sumatranusFMNH 23954, 20957, 239558Malaysia: Borneo: Sabah: Sipitang Dist. Dist.xxXAMFParias sumatranusFMNH 23954, 20957, 239558Malaysia: Borneo: Sabah: Tawau Dist. Dist.xxAMFParias sumatranusFMNH 23954, 20957, 239558Malaysia: Borneo: Sabah: Tawau Dist. Dist.xxAMFParias sumatranusFMNH 23954, 20957, 239558Malaysia: Borneo: Sabah: Sipitang Dist. Dist.xxAMFParias sumatranusFMNH 23954, 20957, 239558Malaysia: Borneo: Sabah: Sipitang Dist. 2005x <td>Parias malcolmi</td> <td>-</td> <td>-</td> <td></td> <td>х</td> <td></td> <td></td> <td>Vogel 2006</td>	Parias malcolmi	-	-		х			Vogel 2006
Parias schultzeiFLMNH 67914- 69176Philippines: Palawan Isl. 69176xxAMFParias schultzeiFLMNH 5361Philippines: Palawan Prov.: Palawan Isl. 53560xxXAMFParias schultzeiFMNH 5361Philippines: Palawan Prov.: Palawan Isl. 53560xxxXAMFParias schultzeiFMNH 5361Philippines: Palawan Prov.: Palawan Isl. 53560xxxXMAFParias schultzeixMalhotra and Thorpe 20042006Parias schultzeixXMAFParias schultzei20042004Parias sumatranusFMNH 71643, Takeson, 148829Malaysia: Borneo: Sabah: Lahad Datu Dist.xxAMFParias sumatranusFMNH 230964 Parias sumatranusMalaysia: Borneo: Sabah: Kota Marudu Dist.xxxAMFParias sumatranusFMNH 239959 Parias sumatranusFMNH 239959, FMNH 239959Malaysia: Borneo: Sabah: Siptang Dist. Tawau Dist.xxAMFParias sumatranusFMNH 71644 Parias sumatranusMalaysia: Borneo: Sabah: Tawau Dist. Parias sumatranusxxAMFParias sumatranusFMNH 71644 Parias sumatranusMalaysia: Borneo: Sarawa Parias sumatranusxxAMFParias sumatranusFMNH 71644 Parias sumatranusMalaysia: Borneo: Sarawa Parias sumatranusxxAMFParias sumatranusFMNH 71644 Parias sumatr	Parias schultzei	CM R-2265-R-2268	Philippines: Palawan Prov : Balabac Isl	x	x			AME
G9176MParias schultzeiFMNH 1505, S3560Philippines: Palawan Prov.: Palawan Isl. S3560xxAMFParias schultzeiFMNH 5505, Parias schultzeiPhilippines: Palawan Prov.: Palawan Isl. xxxxAMFParias schultzeiXMalhotra and Thorpe 2006Parias schultzeixXAMFParias schultzeiXMalhotra and Thorpe 2004Parias sumatranusFMNH 71643, 76326, 138687, 138690, 148827Malaysia: Borneo: Sabah: Lahad Datu Dist.xxAMFParias sumatranusFMNH 20064Malaysia: Borneo: Sabah: Lahad Datu Dist.xxAMFParias sumatranusFMNH 230954, 20957, 239958Malaysia: Borneo: Sabah: Kota Marudu Dist.xxAMFParias sumatranusFMNH 230954, 20957, 239958Malaysia: Borneo: Sabah: Tenom Dist. Dist.xxAMFParias sumatranusFMNH 239959, 20957, 239958Malaysia: Borneo: Sabah: Tawau Dist. Dist.xxAMFParias sumatranusFMNH 239258Malaysia: Borneo: Sabah: Tawau Dist. Dist.xxAMFParias sumatranusFMNH 239954, 20957, 239958Malaysia: Borneo: Sabah: Tawau Dist. Dist.xxAMFParias sumatranusFMNH 249756 Malaysia: Borneo: Sabah: Tawau Dist. Parias sumatranusxxAMFParias sumatranusFMNH 249756 Malaysia: Borneo: Sabah: Matra Prov.: Nias Isl. Parias sumatranus <td< td=""><td>Parias schultzei</td><td>FLMNH 67914–</td><td>Philippines: Palawan Prov.: Palawan Isl.</td><td>x</td><td>x</td><td></td><td></td><td>AMF</td></td<>	Parias schultzei	FLMNH 67914–	Philippines: Palawan Prov.: Palawan Isl.	x	x			AMF
Parias schultzeiFNNH 1504S, S3560Philippines: Palawan Prov.: Palawan Isl.xxxxAMFParias schultzeiFNNH 53561Philippines: Palawan Prov.: Palawan Isl.xxxxAMFParias schultzeixVogel 2006Parias schultzeixMalhotra and ThorpeParias schultzeixMalhotra and ThorpeParias schultzeiFNNH 71643, 138690, 148829Malaysia: Borneo: SarawakxxAMFParias sumatranusFNNH 72644 138690, 148829Malaysia: Borneo: Sabah: Lahad Datu Dist.xxAMFParias sumatranusFNNH 239954 239957, 239958Malaysia: Borneo: Sabah: Kota Marudu Dist.xxAMFParias sumatranusFNNH 239954 239957, 239958Malaysia: Borneo: Sabah: Sipitang Dist. Dist.xxAMFParias sumatranusFNNH 239954 239957, 239958Malaysia: Borneo: Sabah: Sipitang Dist. Tarias sumatranusxxAMFParias sumatranusFNNH 249765 Malaysia: Borneo: Sabah: Sipitang Dist. Tarias sumatranusxxAMFParias sumatranusUMM2 23462 Indonesia: North Sumatra Prov.: Nias Ist. Tarias sumatranusxXAMFParias sumatranusUMM2 23464 Indonesia: SumatraxxAMFParias sumatranusUMM2 23464 Indonesia: SumatraxXAMFParias sumatranus-Indonesia: SumatraxXAMFParias sumatranu		69176						
33500Parias schultzeiFMNH 53561Philippines: Palawan Prov.: Palawan Isl.xxXMFParias schultzeixMalhotra and Thorpe2004Parias schultzei20042006Parias schultzei20042006Parias schultzei20042006Parias sumatranusFMNH 71643,Malaysia: Borneo: SarawakxxxAMFParias sumatranusFMNH 230064Malaysia: Borneo: Sabah: Lahad DatuxxxAMFParias sumatranusFMNH 230954Malaysia: Borneo: Sabah: Lahad DatuxxxAMFParias sumatranusFMNH 239948Malaysia: Borneo: Sabah: Cata MaruduxxxAMFParias sumatranusFMNH 239954Malaysia: Borneo: Sabah: Tanan Dist.xxxAMFParias sumatranusFMNH 239958Malaysia: Borneo: Sabah: Tanau Dist.xxxAMFParias sumatranusFMNH 249756Malaysia: Borneo: Sabah: Tanau Dist.xxxAMFParias sumatranusFMNH 71644Malaysia: Borneo: Sabah: Tanau Dist.xxxAMFParias sumatranusUMM2 23244Indonesia: SumatraxxAMFParias sumatranusUMM2 225449Indonesia: SumatraxxAMFParias sumatranusxAMF2004Parias sumatranusxXAMF<	Parias schultzei	FMNH 15045,	Philippines: Palawan Prov.: Palawan Isl.	х	х			AMF
Partas schultzerFMINE JSSb1Philippines: Palawan Prov.: Palawan Isi.xxxxxAMFParias schultzerXMalahotra and Thorpe 2006Parias schultzerxMalahotra and Thorpe 2004Parias schultzerxXAMFParias sumatranusFMNH 71643, Ta38690, 148809Malaysia: Borneo: Sabah: Lahad Datu Dist.xxxAMFParias sumatranusFMNH 230064Malaysia: Borneo: Sabah: Lahad Datu Dist.xxxAMFParias sumatranusFMNH 239948Malaysia: Borneo: Sabah: Sobah: Sob		53560						
Parias subulterxMolect 2000Parias subulterxMalhotra and Thorpe 2004Parias subulterFMNH 71643, 76326, 138687, 138690, 148829Malaysia: Borneo: SarawakxxAMFParias sumatranusFMNH 230064Malaysia: Borneo: Sabah: Lahad Datu Dist.xxAMFParias sumatranusFMNH 239954, Dist.Malaysia: Borneo: Sabah: Kota Marudu Dist.xxAMFParias sumatranusFMNH 239954, Dist.Malaysia: Borneo: Sabah: Tenom Dist. Dist.xxAMFParias sumatranusFMNH 239954, Dist.Malaysia: Borneo: Sabah: Tenom Dist. Dist.xxAMFParias sumatranusFMNH 239959Malaysia: Borneo: Sabah: Tenom Dist. Dist.xxAMFParias sumatranusFMNH 2399564Malaysia: Borneo: Sabah: Tawau Dist. Dist.xxAMFParias sumatranusFMNH 239956Malaysia: Borneo: Sabah: Tawau Dist. Malaysia: Borneo: Sabah: Tawau Dist.xxAMFParias sumatranusFMNH 249756Malaysia: Borneo: SarawakxXAMFParias sumatranusUMMZ 225044IndonesiaxXAMFParias sumatranusxXAMFParias sumatranusxXAMFParias sumatranusxXAMFParias sumatranusxXAMFParias sumatranusx<	Parias schultzei Darias schultzei	FMNH 53561	Philippines: Palawan Prov.: Palawan Isl.	х	x		х	AMF Vogel 2006
Parias sumatranusFMNH 71643, FMNH 230964Malaysia: Borneo: SarawakxxxAMFParias sumatranusFMNH 230964Malaysia: Borneo: Sabah: Lahad Datu Dist.xxxAMFParias sumatranusFMNH 230964Malaysia: Borneo: Sabah: Kota Marudu Dist.xxxAMFParias sumatranusFMNH 239948Malaysia: Borneo: Sabah: Kota Marudu Dist.xxxAMFParias sumatranusFMNH 239954, 239957, 239958Malaysia: Borneo: Sabah: Sipitang Dist. Sabah: Sipitang Dist.xxAMFParias sumatranusFMNH 239954, 239957, 239958Malaysia: Borneo: Sabah: Sipitang Dist. Parias sumatranusxxAMFParias sumatranusFMNH 2349550Malaysia: Borneo: Sabah: Sipitang Dist. Parias sumatranusxxAMFParias sumatranusFMNH 2349550Malaysia: Borneo: Sabah: Sipitang Dist. Parias sumatranusxxAMFParias sumatranusFMNH 2349750Malaysia: Borneo: Sabah: Sipitang Dist. Parias sumatranusxxAMFParias sumatranusMINH 243750Malaysia: Borneo: SarawakxxAMFParias sumatranusUMMZ 213496Malaysia: PahangxxXAMFParias sumatranusUMMZ 225449Indonesia: SumatraxxAMFParias sumatranus20042006Parias sumatranus2004Parias sumatranus2006	Parias schultzei	-	-		x		x	Malhotra and Thorpe
Parias sumatranusFMNH 71643, 76326, 138680, 138690, 148829Malaysia: Borneo: Sabah: Lahad Datu Dist.xxxAMFParias sumatranusFMNH 230064Malaysia: Borneo: Sabah: Lahad Datu Dist.xxxAMFParias sumatranusFMNH 239948Malaysia: Borneo: Sabah: Lahad Datu Dist.xxxAMFParias sumatranusFMNH 239954, 239957, 239958Malaysia: Borneo: Sabah: Tenom Dist. Dist.xxxAMFParias sumatranusFMNH 239954, 239957, 239958Malaysia: Borneo: Sabah: Sipitang Dist. 239957, 239958xxxAMFParias sumatranusFMNH 249956Malaysia: Borneo: Sabah: Sipitang Dist. 239957, 239958xxxAMFParias sumatranusFMNH 24956Malaysia: Borneo: Sabah: Tawau Dist. 24956xxAMFParias sumatranusFMNH 71644Malaysia: Borneo: Sabah: Tawau Dist. 249618xxAMFParias sumatranusMUZ 24505IndonesiaxxAMFParias sumatranusUMMZ 173496Malaysia: PanagxxAMFParias sumatranusUMMZ 225044IndonesiaxxAMFParias sumatranusxAMFMalaysia: PanagxxParias sumatranusxAMFMalaysia: PanagxxAMFParias sumatranusxAMFMalaysia: PanagxxMIParias sumatranus <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td>2004</td>							~	2004
76326, 138687, 138680, 148829Parias sumatranusFMNH 230064Malaysia: Borneo: Sabah: Lahad Datu Dist.xxAMFParias sumatranusFMNH 239948Malaysia: Borneo: Sabah: Kota Marudu Dist.xxAMFParias sumatranusFMNH 239954, 239957, 239958Malaysia: Borneo: Sabah: Tenom Dist.xxxParias sumatranusFMNH 239954, 239957, 239954Malaysia: Borneo: Sabah: Tenom Dist.xxxParias sumatranusFMNH 249756Malaysia: Borneo: Sabah: Tawau Dist.xxxAMFParias sumatranusFMNH 249756Malaysia: Borneo: Sabah: Tawau Dist.xxxAMFParias sumatranusFMNH 249756Malaysia: Borneo: Sabah: Tawau Dist.xxAMFParias sumatranusFMNH 249756Malaysia: Borneo: Sabah: Tawau Dist.xxAMFParias sumatranusMCZ 43625Indonesia: North Sumatra Prov.: Nias Ist.xxAMFParias sumatranusUMMZ 173496Malaysia: PahangxxAMFParias sumatranusUMMZ 225044IndonesiaxxAMFParias sumatranus20042006Parias sumatranus20042006Parias sumatranus20042006Parias sumatranus20042006Parias sumatranus20042006Parias sumatranus-<	Parias sumatranus	FMNH 71643,	Malaysia: Borneo: Sarawak	x	х			AMF
Parias sumatranusFMNH 230064Malaysia: Borneo: Sabah: Lahad Datu Dist.xxAMFParias sumatranusFMNH 239948Malaysia: Borneo: Sabah: Kota Marudu Dist.xxxAMFParias sumatranusFMNH 239954, 239957, 239958Malaysia: Borneo: Sabah: Tenom Dist. Dist.xxxAMFParias sumatranusFMNH 239959Malaysia: Borneo: Sabah: Sipitang Dist. 239957, 239958xxxAMFParias sumatranusFMNH 249756Malaysia: Borneo: Sabah: Sipitang Dist. Parias sumatranusxxAMFParias sumatranusFMNH 71644Malaysia: Borneo: SarawakxxAMFParias sumatranusMCZ 43625Indonesia: North Sumatra Prov.: Nias Isl. Parias sumatranusxxAMFParias sumatranusUMMZ 123496Malaysia: PahangxxAMFParias sumatranusUMMZ 225044Indonesia: SumatraxxAMFParias sumatranusUMMZ 225449Indonesia: SumatraxxXParias sumatranus2004Parias sumatranus-Malaysia: Borneo: Sabah: Mt. KinabaluxXVogel 2006Parias sumatranus2004Parias sumatranus2004Parias sumatranus2004Parias sumatranus2004Parias sumatranus200		76326, 138687,						
Parias sumatranusFMNH 230054Malaysia: Borneo: Sabah: Lanao DatuxxxAMFParias sumatranusFMNH 239958Malaysia: Borneo: Sabah: Kota Marudu Dist.xxxAMFParias sumatranusFMNH 239954,Malaysia: Borneo: Sabah: Tenom Dist. 239957, 239958xxxAMFParias sumatranusFMNH 239959Malaysia: Borneo: Sabah: Sipitang Dist. 239957, 239958xxXAMFParias sumatranusFMNH 249756Malaysia: Borneo: Sabah: Tawau Dist. Parias sumatranusxxAMFParias sumatranusFMNH 71644Malaysia: Borneo: SarawakxXAMFParias sumatranusMCZ 43625Indonesia: North Sumatra Prov.: Nias Isl. Parias sumatranusxxAMFParias sumatranusUMMZ 173496Malaysia: Borneo: Sabah: Tawau Dist.xxAMFParias sumatranusUMMZ 225044IndonesiaxxAMFParias sumatranusxMaleysia:Parias sumatranusxXMGFParias sumatranusxMGFParias sumatranusxXMGFParias sumatranusxXMGFParias sumatranusxXMGFParias sumatranusxXCoolParias sumatranus2004 </td <td>Danian ann atamara</td> <td>138690, 148829</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Danian ann atamara	138690, 148829						
Parias sumatranusFMNH 239948Malaysia: Borneo: Sabah: Kota Marudu Dist.xxxAMFParias sumatranusFMNH 239954, 239957, 239958Malaysia: Borneo: Sabah: Tenom Dist. 239957, 239958xxxAMFParias sumatranusFMNH 239959Malaysia: Borneo: Sabah: Sipitang Dist. Parias sumatranusxxxAMFParias sumatranusFMNH 249756Malaysia: Borneo: Sabah: Sipitang Dist. Malaysia: Borneo: Sabah: Tawau Dist. Parias sumatranusxxAMFParias sumatranusFMNH 71644Malaysia: Borneo: Sabah: Tawau Dist. Malaysia: Borneo: Sabah: Tawau Dist. Parias sumatranusxxAMFParias sumatranusMCZ 43625Indonesia: North Sumatra Prov.: Nias Isl. Parias sumatranusxxAMFParias sumatranusUMMZ 173496Malaysia: PahangxxAMFParias sumatranusUMMZ 225044Indonesia: SumatraxxAMFParias sumatranusxMalaysia: PahangxxParias sumatranusXAMFParias sumatranusXMaleotra and Thorpe 2004Parias sumatranusXXMaleotraParias sumatranusXMaleotra2004Parias sumatranusXMaleotra2004Parias sumatranusXMaleotra2004Parias sumatranus </td <td>Parias sumatranus</td> <td>FIVINH 230064</td> <td>Dist.</td> <td>x</td> <td>х</td> <td></td> <td></td> <td>AIVIF</td>	Parias sumatranus	FIVINH 230064	Dist.	x	х			AIVIF
Parias sumatranusFMNH 239954, 239957, 239958Malaysia: Borneo: Sabah: Tenom Dist. 239957, 239958xxxAMFParias sumatranusFMNH 249756Malaysia: Borneo: Sabah: Tawau Dist. Parias sumatranusxxAMFParias sumatranusFMNH 71644Malaysia: Borneo: Sabah: Tawau Dist. Malaysia: Borneo: Sabah: Tawau Dist.xxAMFParias sumatranusFMNH 71644Malaysia: Borneo: SarawakxXAMFParias sumatranusMCZ 43625Indonesia: North Sumatra Prov.: Nias Isl. Malaysia: PahangxxAMFParias sumatranusUMMZ 173496Malaysia: PahangxxAMFParias sumatranusUMMZ 225044IndonesiaxxAMFParias sumatranusUMMZ 225449Indonesia: SumatraxxAMFParias sumatranusxMalaysia: PahangxxParias sumatranusxMaleysia: PahangxxAMFParias sumatranusxMaleysia: PahangxxAMFParias sumatranusxMaleysia: PahangxxAMFParias sumatranusxMaleysia: PahangxxMaleysia: PahangParias sumatranusxMaleysia: PahangxxMaleysia: PahangxxXParias sumatranus <td>Parias sumatranus</td> <td>FMNH 239948</td> <td>Malaysia: Borneo: Sabah: Kota Marudu Dist.</td> <td>х</td> <td>х</td> <td></td> <td></td> <td>AMF</td>	Parias sumatranus	FMNH 239948	Malaysia: Borneo: Sabah: Kota Marudu Dist.	х	х			AMF
Parias sumatranusFMNH 239959Malaysia: Borneo: Sabah: Sipitang Dist.xxxAMFParias sumatranusFMNH 249756Malaysia: Borneo: Sabah: Tawau Dist.xxxAMFParias sumatranusFMNH 71644Malaysia: Borneo: SarawakxXAMFParias sumatranusMCZ 43625Indonesia: North Sumatra Prov.: Nias Isl.xxXAMFParias sumatranusUMMZ 173496Malaysia: PahangxxxAMFParias sumatranusUMMZ 225044IndonesiaxxXAMFParias sumatranusUMMZ 225449IndonesiaxxXAMFParias sumatranusxMalaysia: BorneoXMalaysia: BorneoParias sumatranusXMalaysia: BorneoXXMalaysia: BorneoParias sumatranusXMogel 20062004Parias sumatranus-Indonesia: SumatraxXVogel 20062004Parias sumatranus-Indonesia: SumatraxCooled 20062004Parias sumatranus-Indonesia: Borneo: Sabah: Mt. KinabaluxVogel 20062004Parias sumatranus-Indonesia: SumatraxXGuo et al. 2010Parias sumatranus-Indonesia: SumatraxXGuo et al. 2010Parias sumatranus-Indonesia: SumatraxXAMFParias sum	Parias sumatranus	FMNH 239954,	Malaysia: Borneo: Sabah: Tenom Dist.	х	х			AMF
Parias sumatranusFMNH 249756Malaysia: Borneo: Sabah: Tawau Dist.xxAMFParias sumatranusFMNH 71644Malaysia: Borneo: SarawakxAMFParias sumatranusMCZ 43625Indonesia: North Sumatra Prov.: Nias Isl.xxAMFParias sumatranusUMMZ 173496Malaysia: PahangxxAMFParias sumatranusUMMZ 225044IndonesiaxxAMFParias sumatranusUMMZ 225449Indonesia: SumatraxxAMFParias sumatranusUMMZ 225449Indonesia: SumatraxxAMFParias sumatranusUMMZ 225449Indonesia: SumatraxxAMFParias sumatranusxMalhotra and ThorpeParias sumatranusxVogel 2006Parias sumatranus-Indonesia: SumatraxXVogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus-Indiaesia: Sumatra: Bengkulu Prov.2 inds.Cuo et al. 2010Parias sumatranusAFS 06.57SumatraxAMF2010Peltopelor macrolepisCAS 17276India: AnaimalaixxAMFPeltopelor macrolepisMCZ 3864India: Tamil NaduxxAMFPeltopelor macrolepisTCWC 11781, 1783South IndiaxxAMFPeltopelor macrolepisTCWC 11782-xxAMF<	Parias sumatranus	EMNH 239959	Malavsia: Borneo: Sabah: Sinitang Dist	x	x			AMF
Parias sumatranusFMNH 71644Malaysia: Borneo: SarawakxxAMFParias sumatranusMCZ 43625Indonesia: North Sumatra Prov.: Nias Isl.xxXAMFParias sumatranusUMMZ 173496Malaysia: PahangxxxAMFParias sumatranusUMMZ 225044IndonesiaxxAMFParias sumatranusUMMZ 225049Indonesia: SumatraxxAMFParias sumatranusUMMZ 225049Indonesia: SumatraxxAMFParias sumatranusxMIF2004Parias sumatranusxVogel 2006Parias sumatranus-Indonesia: SumatraxVogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranusAFS 06.33SumatraxSumatraSumatraPeltopelor macrolepisAMNH R-43332IndiaxXAMFPeltopelor macrolepisMCX 1384India: AnaimalaixxAMFPeltopelor macrolepisTCWC 11781, 11783South IndiaxxXAMFPeltopelor macrolepisTCWC 11782xxAMF	Parias sumatranus	FMNH 249756	Malaysia: Borneo: Sabah: Tawau Dist.	х	х			AMF
Parias sumatranusMCZ 43625Indonesia: North Sumatra Prov.: Nias Isl.xxxAMFParias sumatranusUMMZ 173496Malaysia: PahangxxxAMFParias sumatranusUMMZ 225044IndonesiaxxXAMFParias sumatranusUMMZ 225449Indonesia: SumatraxxXAMFParias sumatranusUMMZ 225449Indonesia: SumatraxxXAMFParias sumatranusxMalaysia: Borneo: SubatraxxMalaysia: Borneo: SubatraxXMalaysia: Borneo: Subatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 20062006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus-Indonesia: SumatraxSGuo et al. 2010Parias sumatranus-Indonesia: SumatraxSGuo et al. 2010Parias sumatranusAFS 06.33SumatraxxAMFPeltopelor macrolepisAMNH R-43332India: AnaimalaixxAMFPeltopelor macrolepisMCZ 3864India: Tamil NaduxxAMFPeltopelor macrolepisTCWC 11781, 1783South IndiaxxAMFPeltopelor macrolepisTCWC 11782-AMFAMF </td <td>Parias sumatranus</td> <td>FMNH 71644</td> <td>Malaysia: Borneo: Sarawak</td> <td></td> <td></td> <td>х</td> <td></td> <td>AMF</td>	Parias sumatranus	FMNH 71644	Malaysia: Borneo: Sarawak			х		AMF
Parias sumatranusUMMZ 173496Malaysia: PahangxxxAMFParias sumatranusUMMZ 225044IndonesiaxXAMFParias sumatranusUMMZ 225449Indonesia: SumatraxxXAMFParias sumatranusXMalhotra and Thorpe 2004Parias sumatranus-BorneoxVogel 2006Parias sumatranus-Malaysia: Borneo: Sabah: Mt. KinabaluxVogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranusAFS 06.33SumatraxGuo et al. 2010Parias sumatranusAFS 06.57Sumatrax2004Peltopelor macrolepisAMNH R-43332IndiaxxAMFPeltopelor macrolepisMCZ 3864India: AnaimalaixxAMFPeltopelor macrolepisTCWC 11781, 11783South IndiaxxAMFPeltopelor macrolepisTCWC 11782-xxAMF	Parias sumatranus	MCZ 43625	Indonesia: North Sumatra Prov.: Nias Isl.	х	х			AMF
Parias sumatranusUMMZ 225044IndonesiaSumatraxxAMFParias sumatranusxMalhotra and Thorpe 2004Parias sumatranusxMalhotra and Thorpe 2004Parias sumatranus-BorneoxVogel 2006Parias sumatranus-Malaysia: Borneo: Sabah: Mt. KinabaluxVogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranusAFS 06.33SumatraxGuo et al. 2010Parias sumatranusAFS 06.57SumatraxGuo et al. 2009, Guo et al.Peltopelor macrolepisAMNH R-43332IndiaxxAMFPeltopelor macrolepisCAS 17276India: AnaimalaixxAMFPeltopelor macrolepisTCWC 11781, 11783South IndiaxxAMFPeltopelor macrolepisTCWC 11782-xxAMF	Parias sumatranus	UMMZ 173496	Malaysia: Pahang	х	х			AMF
Parias sumatranusxXXXParias sumatranusxMalaysia: BorneoxVogel 2006Parias sumatranus-Malaysia: Borneo: Sabah: Mt. KinabaluxVogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranusAFS 06.33SumatraxGuo et al. 2010Parias sumatranusAFS 06.57SumatraxGuo et al. 2009, Guo et al.Peltopelor macrolepisAMNH R-43322IndiaxxAMFPeltopelor macrolepisMCZ 3864India: AnaimalaixxAMFPeltopelor macrolepisTCWC 11781,South IndiaxxAMFPeltopelor macrolepisTCWC 11782-xxAMF	Parias sumatranus Parias sumatranus	UIVIIVIZ 225044 LIMMZ 225449	Indonesia Indonesia: Sumatra	×	×	x		
Parias sumatranus–Borneox2004Parias sumatranus–Malaysia: Borneo: Sabah: Mt. KinabaluxVogel 2006Parias sumatranus–Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranus–Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranusAFS 06.33SumatraxGuo et al. 2010Parias sumatranusAFS 06.57SumatraxGuo et al. 2009, Guo et al.Parias sumatranusAFS 06.57SumatraxAMFPeltopelor macrolepisAMNH R-43332IndiaxXAMFPeltopelor macrolepisMCZ 3864India: AnaimalaixxAMFPeltopelor macrolepisTCWC 11781, 11783South IndiaxxAMFPeltopelor macrolepisTCWC 11782–xXAMF	Parias sumatranus	-	–	٨	۸		x	Malhotra and Thorpe
Parias sumatranus-BorneoxVogel 2006Parias sumatranus-Malaysia: Borneo: Sabah: Mt. KinabaluxVogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranusAFS 06.33SumatraxGuo et al. 2010Parias sumatranusAFS 06.57SumatraxGuo et al. 2009, Guo et al.Parias sumatranusAFS 06.57SumatraxGuo et al. 2009, Guo et al.Parias sumatranusAFS 06.57IndiaxXAMFPeltopelor macrolepisAMNH R-43332IndiaxxAMFPeltopelor macrolepisCAS 17276India: AnaimalaixxAMFPeltopelor macrolepisMCZ 3864India: Tamil NaduxxAMFPeltopelor macrolepisTCWC 11781,South IndiaxxAMFPeltopelor macrolepisTCWC 11782AMF							~	2004
Parias sumatranus-Malaysia: Borneo: Sabah: Mt. KinabaluxVogel 2006Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranusAFS 06.33SumatraxGuo et al. 2010Parias sumatranusAFS 06.57SumatraxGuo et al. 2009, Guo et al.Peltopelor macrolepisAMNH R-43332IndiaxxAMFPeltopelor macrolepisCAS 17276India: AnaimalaixxAMFPeltopelor macrolepisMCZ 3864India: Tamil NaduxxAMFPeltopelor macrolepisTCWC 11781, 11783South IndiaxxAMFPeltopelor macrolepisTCWC 11782-xxAMF	Parias sumatranus	-	Borneo		х			Vogel 2006
Parias sumatranus-Indonesia: Sumatra: Bengkulu Prov.2 inds.Vogel 2006Parias sumatranusAFS 06.33SumatraxGuo et al. 2010Parias sumatranusAFS 06.57SumatraxGuo et al. 2009, Guo et al.Peltopelor macrolepisAMNH R-43332IndiaxxAMFPeltopelor macrolepisCAS 17276India: AnaimalaixxAMFPeltopelor macrolepisMCZ 3864India: Tamil NaduxxAMFPeltopelor macrolepisTCWC 11781, 11783South IndiaxxAMFPeltopelor macrolepisTCWC 11782xxAMF	Parias sumatranus	_	Malaysia: Borneo: Sabah: Mt. Kinabalu		x			Vogel 2006
Parias sumatranusAFS 06.33SumatraxGuo et al. 2010Parias sumatranusAFS 06.57SumatraxGuo et al. 2009, Guo et al. 2010Peltopelor macrolepisAMNH R-43332IndiaxxAMFPeltopelor macrolepisCAS 17276India: AnaimalaixxAMFPeltopelor macrolepisMCZ 3864India: Tamil NaduxxAMFPeltopelor macrolepisTCWC 11781, 11783South IndiaxxxAMFPeltopelor macrolepisTCWC 11782-xxxAMF	Parias sumatranus	-	Indonesia: Sumatra: Bengkulu Prov.		2 inds.			Vogel 2006
Partos sumatramasArs 00.57SumatraxGuo et al. 2009, Guo et al. 2010Peltopelor macrolepisAMNH R-43332IndiaxxAMFPeltopelor macrolepisCAS 17276India: AnaimalaixXAMFPeltopelor macrolepisMCZ 3864India: Tamil NaduxxAMFPeltopelor macrolepisTCWC 11781, 11783South IndiaxxxAMFPeltopelor macrolepisTCWC 11782-xxAMF	Parias sumatranus	AFS 06.33	Sumatra			X		Guo et al. 2010
Peltopelor macrolepisAMNH R-43332IndiaxxxAMFPeltopelor macrolepisCAS 17276India: AnaimalaixXAMFPeltopelor macrolepisMCZ 3864India: Tamil NaduxxXAMFPeltopelor macrolepisTCWC 11781, 11783South IndiaxxxAMFPeltopelor macrolepisTCWC 11782xxAMF	runus sumatranus	AL2 NO.21	Suilidua			х		Guo et al. 2009, Guo et al. 2010
Peltopelor macrolepis CAS 17276 India: Anaimalai x AMF Peltopelor macrolepis MCZ 3864 India: Tamil Nadu x x AMF Peltopelor macrolepis TCWC 11781, South India x x AMF Peltopelor macrolepis TCWC 11781, South India x x AMF Peltopelor macrolepis TCWC 11782, - - X X	Peltopelor macrolenis	AMNH R-43332	India	x	x			AMF
Peltopelor macrolepis MCZ 3864 India: Tamil Nadu x x AMF Peltopelor macrolepis TCWC 11781, South India x x AMF 11783 Peltopelor macrolepis TCWC 11782 - AMF	Peltopelor macrolepis	CAS 17276	India: Anaimalai	x				AMF
Peltopelor macrolepis TCWC 11781, South India x x AMF 11783 Peltopelor macrolepis TCWC 11782 – X X AMF	Peltopelor macrolepis	MCZ 3864	India: Tamil Nadu	х	х			AMF
11783 Peltopelor macrolepis TCWC 11782 − × × ΔMF	Peltopelor macrolepis	TCWC 11781,	South India	х	х			AMF
	Peltopelor macrolenis	11783 TCWC 11782	_	x	¥			AMF

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Peltopelor macrolepis	USNM 42465,	India: Kerala	х	х			AMF
	42466						
Peltopelor macrolepis	-	-		х			Vogel 2006
Peltopelor macrolenis	_	-				x	Malhotra and Thorpe
						~	2004
Peltonelor macrolenis	AES 06 45	South India			v		Guo et al. 2010
	AF3 00.45				X		
Peltopelor macrolepis	AM 02	South India			х		Guo et al. 2010
Popeia barati	-	-		х			Vogel 2006
Popeia barati	-	-				х	Malhotra and Thorpe
							2004
Popeia barati	-	Sumatra	19	х			Vogel et al. 2004
			inds.				-
Poneia huniana	7RC 2 6176	Malaysia: Pahang: Tioman Isl	x	x			Grismer et al 2006
Poneja hunjana	ZRC 2 2/20	Malaysia: Pahang: Tioman Isl	v	X			Grismer et al. 2006
Popela buniana		Malaysia. Fallang. Homan Isl.	~	v			Crismor et al. 2006
Popela bumana		Ividiaysid. Pallalig. Holliali isi.	X	X			Grismer et al. 2006
	uncataloged, 2007						
Popeia buniana	ZRC 2.6177	Malaysia: Pahang: Tioman Isl.	х				Grismer et al. 2006
Popeia buniana	LSUDPC 1135	-		х			Grismer et al. 2006
Popeia fucata	CAS 242721	Myanmar: Mon State: Thaton Dist.	х	х			AMF
Popeia fucata	CM S-6377	Malaysia: Perak	х	х			AMF
Poneia fucata	FMNH 263429	, Thailand: Prachuan Khiri Khan Prov	x	x			AME
Popeia fucata	LISNIM 1/1751	Malaysia: Selangor	v	v			
	USINIVI 141751	The ille of Neukeer Ci The second parts	*				
ropeia jucata	IVINHIN 1990.4283	mananu: Naknon Si Thammarat Prov	х	х			voger et al. 2004
Popeia fucata	ZRC 2.2876,	-	х	х			vogel et al. 2004
	2.2881, 2.3493						
Popeia fucata	PSGV 274	-	х	х			Vogel et al. 2004
Popeia fucata	QSMI 510, 511,	-	х	х			Vogel et al. 2004
	519. 520						-
Popeia fucata	BMNH 197/ 1995-	_	v	v			Vogel et al 2004
ι ορεία juculu	1074 5000		~	~			νο _δ ει ει αι. 2004
	1974.5000						
Popeia fucata	ымnн 1988.879-	-	х	х			vogel et al. 2004
	1988.884						
Popeia fucata	MNHN 1990.4247,	-	х	х			Vogel et al. 2004
	1990.4280,						
	1990.4281.						
	1990 / 28/						
Donaia fucata	100.4204		v	v			Vagal at al. 2004
	IRSINB 2588, 2589	-	х	х			vogel et al. 2004
Popeia fucata	ZSM 4/2004	-	х	х			Vogel et al. 2004
Popeia fucata	ZFMK 82855	-	х	х			Vogel et al. 2004
Popeia fucata	-	-		х			Vogel 2006
Popeia nebularis	CAS SU-8863	Malaysia: Pahang: Cameron Highlands	х	х	х		AMF
, Popeia nebularis	USNM 142425	Malaysia: Pahang: Cameron Highlands:	x	х			Vogel et al. 2004
r opera neoarano	0011111111111	Mt. Batu Brinchang	~	X			
Panaia nabularia	700 2 2004	Malaysia: Dahang: Camaron Highlands	v	v			Vagal at al. 2004
Popela nebularis	ZRC 2.2884,	Malaysia: Panang: Cameron Highlands	х	х			vogei et al. 2004
	2.2885, 2.2887						
Popeia nebularis	PSGV 626	Malaysia: Pahang: Cameron Highlands	х	х			Vogel et al. 2004
Popeia nebularis	MNHN 2004.0501	Malaysia: Pahang: Cameron Highlands	х	х			Vogel et al. 2004
Popeia nebularis	IRSNB 2627	Malaysia: Pahang: Cameron Highlands	х	х			Vogel et al. 2004
, Popeia nebularis	ZEMK 82856	Malaysia: Pahang: Cameron Highlands:	x	х			Vogel et al. 2004
		Mt Batu Brinchang					
Donaia nahularia		Malaysia: Dahang: Camoron Highlands		v			Vagal 2006
	-	Walaysia: Panang: Cameron Highlanus		х			Vogel 2006
Popeia nebularis	-	Malaysia: Pahang		х			Vogel 2006
Popeia popeiorum	CAS 205847	Myanmar: Bago Div.	х	х	х		AMF
Popeia popeiorum	CAS 216609,	Myanmar: Mon State	х	х	х		AMF
	222195						
Popeia popeiorum	CAS 239273	Myanmar: Avevarwady Div.: Pathein	x	x		x	AMF
		Dict	~	^		~	
Donoia namaia		Uist.					
Popeia popeiorum	FIVINH 178655,	Inaliand: Chiang Mai Prov.	х	х			AMF
	178656						
Popeia popeiorum	FMNH 265805	Thailand: Loei Prov.	х	х		х	AMF
Popeia popeiorum	FMNH 271590	Thailand: Nan Prov.: Bo Kluea Dist.	х	х			AMF
Popeia popeiorum	USNM 145481	Malaysia	х	х			AMF
Popeia popeiorum	_	_		x			Vogel 2006
Popeia noneiorum	_	_					Malhotra and Thorne
ο ορεία ρορείσιατη							2004
Donaia non-i		Thailand, Chiang Mai Draw					Cup et al. 2000, Cure I. I
ropeia popeiorum	AIM 05	i nalland: Chiang Mai Prov.			х		Guo et al. 2009, Guo et al.
							2010
Popeia sabahi	CAS 8316	Malaysia: Borneo: Sabah	х	х			AMF
Popeia sabahi	FMNH 240512	Malaysia: Borneo: Sabah: Sipitang Dist.	х	х			AMF
Popeia sabahi	FMNH 67273	Malaysia: Borneo: Sarawak	х		х		AMF
Popeia sabahi	MCZ 43607, 43609	Malaysia: Borneo: Sabah	x	x			AMF
	Δ3610		~	~			
Donaia sahahi	-3010 MC7 12612	Malaysia: Romoo, Sabab		~			
- opeiu subulli Demoin a la la	IVICZ 43012	ividiaysia, DUTIEU, SdUdfi	х	х	х		
Popela sabani	UIVIIVIZ 82925	ivialaysia: Borneo: Sabah	х	х			
Popeia sabahi	USNM 130253	Malaysia: Borneo	х	х			AMF
Popeia sabahi	USNM 134128	Malaysia: Borneo: Sabah	х	х			AMF
Popeia sabahi	-	_				х	Malhotra and Thorpe
						~	2004
Donaia cababi	_	_					
-opeia sabani Denein e d		en e		х			
ropeia sabahi	AFS 06.47	inailand: Fraser's Hill			х		Guo et al. 2010
Popeia sabahi	AFS 06.36	Malaysia: Selangor			х		Guo et al. 2010
Popeia toba	MSNG 30988,	Indonesia: Sumatra: North Sumatra	х	х			David et al. 2009
	54282. 54338	Prov.					-
Poneia toha	NMRF 1012072	Indonesia: Sumatra: North Sumatra	v	v			David et al 2009
	1010074		^	^			Davia et al. 2003
Deuthidian		FIUV.					
Porthidium arcosae	UTA R-55938	Ecuador: Manabi Prov.	х	х			AMF
Porthidium arcosae	_	-		х			Campbell and Lamar 2004

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Porthidium dunni	FMNH 73392	Mexico: Oaxaca: Tehuantepec Dist.	х	х			AMF
Porthidium dunni	UMMZ 82739	Mexico: Oaxaca	х				Campbell and Lamar 2004
Porthidium dunni	_	_	~	v			Campbell and Lamar 2004
Porthidium homore		- Maviaa: Calima		^			
Portniaium nespere	UTA R-4443	Mexico: Colima	х	х			AMF
Porthidium hespere	UTA R4443	Mexico: Colima: Munic. Ixtlahuacan	х				Campbell and Lamar 2004
Porthidium hespere	-	-		х			Campbell and Lamar 2004
Porthidium lansbergii	FMNH 21797	Honduras: Yoro: Subriana Valley	х	х			AMF
Porthidium lansberaii	_	_		х			Campbell and Lamar 2004
Porthidium nasutum	AMNH R-46958	Honduras			x		
Porthidium nasutum		Customala er Handuras			~		
					X		ANT
Porthidium nasutum	FLMNH 99121,	Honduras			х		AMF
	99200						
Porthidium nasutum	UTA R-14180	Costa Rica: Cartago Prov.: Turrialba	х	х		х	AMF
		Canton: Pavones Dist.					
Porthidium nasutum	UTA R-14183	Costa Rica: Cartago Prov · Turrialba				x	AMF
r or cindiani nasatani	01/11/14105	Canton: Bayonos Dist				A	/
		Califon. Pavones Dist.					A. N. 45
Porthialum hasutum	UTA R-23066, R-	-	х	х			AMF
	24515						
Porthidium nasutum	UTA R-24516	Guatemala: Izabal Dept.	х	х			AMF
Porthidium nasutum	UTA R-31057	Costa Rica: Cartago Prov.	х	х		х	AMF
Porthidium nasutum	_	_		х			Campbell and Lamar 2004
Porthidium nasutum	_	_	20		2 inds		Gutherlet 1998
r or thiarann nasatann			2.5		2 mus.		Guibenet 1998
			mas.				
Porthidium nasutum	UTA R-23065	Guatemala: Dept. Izabal		х			Campbell and Lamar 2004
Porthidium ophryomegas	UTA R-14532	-			х		AMF
Porthidium ophryomegas	UTA R-39755	Guatemala: Zacapa Dept.: Cabañas	х	х		х	AMF
		Munic.					
Porthidium onbruomenas	_	_		~			Campbell and Lamar 2004
Porthidium on have a series			- احصان ()	~			Cuthorlat 1000
ronniaian ophryomegas	-	-	a inas.		х		
Porthidium ophryomegas	UTA R46502	Guatemala: Dept. Zacapa	х				Campbell and Lamar 2004
Porthidium porrasi	UTA R-59119	Costa Rica: Puntarenas Prov.	х	х			AMF
Porthidium porrasi	UTA R-30829	Costa Rica: Puntarenas Prov.: Osa	х	х			Lamar and Sasa 2003
		Peninsula					-
Porthidium porrasi	_			~			Campbell and Lamar 2004
Porthidium volganicum		Costa Disa, Duntaranas Dray		^ 			
Portniaium voicanicum	UTA K-24828–K-	Costa Rica: Puntarenas Prov.	х	х			AIVIF
	24830						
Porthidium volcanicum	UCR 11642	-		х			Campbell and Lamar 2004
Porthidium volcanicum	-	_		х			Campbell and Lamar 2004
Porthidium vucatanicum	FMNH 544, 20621	Mexico: Yucatán	х	x			AMF
Porthidium vucatanicum	EMNH 36181	Mexico: Vucatán	~		v		AME
		Maxiaa Carries ha			^		
Porthialum yucatanicum	UTA K-16960	Mexico: Campeche	Х	х		X	AIVIF
Porthidium yucatanicum	-	-		х			Campbell and Lamar 2004
Protobothrops cornutus	-	-		х			Vogel 2006
Protobothrops cornutus	MNHN 1937.35	Vietnam	х				Herrmann et al. 2004
Protobothrons cornutus	BMNH	Vietnam: Lai Chau Prov : Mt. Fan Si Pan	Y				Herrmann et al. 2004
rotobotinops connutus	1046 1 10 25		~				Hermann et al. 2004
	1940.1.19.25						
Protobothrops cornutus	ZMFK 75067	Vietnam: Mquang Binh Prov.: Phong	х	х			Herrmann et al. 2004
		Nha-Ke Bang Ntl. Park					
Protobothrops elegans	CAS 21946	Japan: Okinawa Pref.: Ryukyu Isls.:			х		AMF
		Ishigaki Isl.					
Protobothrons elegans	CAS 21947 21954-	Janan: Okinawa Pref : Ryukyu Isls :	x	x			AME
rotobotin ops cicguits	21056 21059	Johigaki Isl	X	~			
	21956, 21958,	ISNIgaki ISI.					
	21961, 21962,						
	21966, 21970						
Protobothrops elegans	FMNH 75170	Japan: Ryukyu Isls.	х	х		х	AMF
Protobothrons elegans	USNM 133984	lanan: Ryukyu Isls - Yaeyama Isls			x		AMF
Protohothrons elegans	_			v	~		
Protobotinops elegans		-		х			
rotopothrops elegans	AIVI U7-09	Japan			х		Guo et al. 2010
Protobothrops elegans	AFS 06.27	Japan			х		Guo et al. 2010
Protobothrops elegans	RTV 10	Japan			х		Guo et al. 2010
Protobothrops flavoviridis	_	_		х			Vogel 2006
Protobothrons flavoviridis	SCUM 035056	Japan			x		Guo and Zhao 2006 Guo
					^		at al 2010
Durate hastly fill in the							
rotopothrops flavoviridis	FIMINH /2584	Japan			х		Guo et al. 2010
Protobothrops flavoviridis	KUZ R48345	Japan			х		Guo et al. 2010
Protobothrops flavoviridis	FLMNH 24047,	Japan: Kagoshima Pref.: Ryukyu Isls.:	х	х			AMF
	24050, 24052,	Amami Isls.					
	120226. 120229						
	120233						
Protobothrong flower initia							AN4E
-rocobochrops Jiavoviriais	FLIVINH 24049	-	х	х			
rotobothrops flavoviridis	FMNH 72584	Japan: Kyukyu Isls.			х		AMF
Protobothrops flavoviridis	FMNH 74895	Japan: Okinawa Pref.: Ryukyu Isls.: Kume	х	х			AMF
		lsl.					
Protobothrops flavoviridis	TCWC 86183	_			х		AMF
Protobothrons flavoviridis	LISNIM 122086	_			v		ΔΝ/Ε
	DOCCET MINICO	Jopone Developer Int-		-	х		
Dreteksterne (1 · · · ·	USINIVI 137287	Japan: Kyukyu Isis.	х	х		х	AME
Protobothrops flavoviridis	USNM 139985	Japan: Ryukyu Isls.			х		AMF
Protobothrops flavoviridis Protobothrops flavoviridis		_	х	х	х	х	AMF
Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops flavoviridis	USNM 297391		v	v			AMF
Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops ierdonii	USNM 297391 CAS 224428	Myanmar: Kachin State: Putao Dist	x	~			
Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops jerdonii	USNM 297391 CAS 224428, 224429	Myanmar: Kachin State: Putao Dist.	~	^			
Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops jerdonii	USNM 297391 CAS 224428, 224429	Myanmar: Kachin State: Putao Dist.	X	~			
Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops jerdonii Protobothrops jerdonii	USNM 297391 CAS 224428, 224429 CAS 90668	Myanmar: Kachin State: Putao Dist. Nepal: Central Region: Janakpur Zone	x	x			AMF
Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops jerdonii Protobothrops jerdonii Protobothrops jerdonii	USNM 297391 CAS 224428, 224429 CAS 90668 FMNH 28199	Myanmar: Kachin State: Putao Dist. Nepal: Central Region: Janakpur Zone China	x	x	x		AMF AMF
Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops jerdonii Protobothrops jerdonii Protobothrops jerdonii Protobothrops jerdonii	USNM 297391 CAS 224428, 224429 CAS 90668 FMNH 28199 MCZ 163258	Myanmar: Kachin State: Putao Dist. Nepal: Central Region: Janakpur Zone China China: Hubei Prov.	x x x	x	x	x	AMF AMF AMF
Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops jerdonii Protobothrops jerdonii Protobothrops jerdonii Protobothrops jerdonii Protobothrops jerdonii	USNM 297391 CAS 224428, 224429 CAS 90668 FMNH 28199 MCZ 163258 UCF CLP921	Myanmar: Kachin State: Putao Dist. Nepal: Central Region: Janakpur Zone China China: Hubei Prov. –	x x x	x x x	x	x	AMF AMF AMF AMF
Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops flavoviridis Protobothrops jerdonii Protobothrops jerdonii Protobothrops jerdonii Protobothrops jerdonii Protobothrops jerdonii Protobothrops jerdonii	USNM 297391 CAS 224428, 224429 CAS 90668 FMNH 28199 MCZ 163258 UCF CLP921 USNM 270854	Myanmar: Kachin State: Putao Dist. Nepal: Central Region: Janakpur Zone China China: Hubei Prov. – China	x x x x	x x x	x	x	AMF AMF AMF AMF
Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
-----------------------------------	---------------------	--	--------	-------	-------	-----------	---
Protobothrops Jerdonii	USNIN 69933,	China	х	x			AIVIF
Protobothrons ierdonii	-	_		x			Vogel 2006
Protobothrops jerdonii	SCUM 035078	China: Shaanxi		~	x		Guo and Zhao 2006. Guo
							et al. 2010
Protobothrops jerdonii	SCUM 035028,	China: Sichuan: An Co.			х		Guo and Zhao 2006, Guo
	035029						et al. 2010
Protobothrops jerdonii	SCUM 035041,	China: Sichuan: Huili Co.			х		Guo and Zhao 2006, Guo
	035075						et al. 2010
Protobothrops jerdonii	SCUM 035081	China: Sichuan: Zoigê Co.			х		Guo and Zhao 2006, Guo
							et al. 2010
Protobothrops kaulbacki	CAS 224430	Myanmar: Kachin State: Putao Dist.	х	х			AMF
Protobothrops kaulbacki	-			х			Vogel 2006
Protobothrops	CIB no number, ZS	China: Hunan Prov.: Yizhang Co.:	х	х			David and Tong 1997
mangsnanensis Drotobothrons	8901-8902	Pingheng Dist.		v			Vegel 2006
manashanensis	-	_		X			Vogel 2008
Protobothrons	SCUM 035024	China: Hunan: Yizhang Co			x		Guo and Zhao 2006, Guo
manashanensis	300W 033024				~		et al. 2010
Protobothrops maolanensis	SYS r000211	China: Guizhou: Libo Co.: Maolan	х	х			Yang et al. 2011
		Twnsp.					0
Protobothrops maolanensis	SYS r000210,	China: Guizhou: Libo Co.: Maolan	х				Yang et al. 2011
·	r000276, r000277	Twnsp.					0
Protobothrops	AMNH R-33212	China: Fujian Prov.			х		AMF
mucrosquamatus							
Protobothrops	CAS 232934	Myanmar: Kachin State: Myitkyina Dist.	х	х			AMF
mucrosquamatus							
Protobothrops	CAS 238906	Myanmar: Mohnyin Dist.: Mohnyin	х	х		х	AMF
mucrosquamatus		Twnsp.					
Protobothrops	FLMNH 13256,	Taiwan	х	х		х	AMF
mucrosquamatus	13257, 120355	Taiwan	-	-			
Protobothrops	FLIVINH 13260	raiwan	x	х			AIVIF
mucrosquamatus Protobothrong		Taiwan					
mucrosquamatus	FININE 140101	Talwan			x		AIVIF
Protobothrons	EMNH 16255	China: Sichuan Prov			~		ΔΝΛΕ
mucrosauamatus	110101110255	China. Sichuan Frov.			^		
Protobothrons	MV7 22324	China: liangxi Prov : Lushan Dist			x		AMF
mucrosauamatus					~		,
Protobothrops	MVZ 226628	Vietnam: Vïnh Phúc Prov.: Tam Đao Dist.	х	х		х	AMF
mucrosquamatus							
Protobothrops	MVZ 23908	China: Jiangxi Prov.	х	х			AMF
mucrosquamatus							
Protobothrops	MVZ 241450	China: Hainan Prov.: Hainan Isl.	х	х		х	AMF
mucrosquamatus							
Protobothrops	-	_		х			Vogel 2006
mucrosquamatus							
Protobothrops	SCUM 035050	China: Sichuan: Chengdu Sub-Prov. City			х		Guo and Zhao 2006, Guo
mucrosquamatus	CCUNA 025024	Chinas Cishaana Ulanaya Ca					et al. 2010
Protobothrops		China: Sichuan: Hongya Co.			х		Guo and Znao 2006, Guo
Protobothrons	035032, 035070	China: Sichuan: Vihin Braf Jul City			v		et al. 2010 Cup and Zhao 2006, Cup
mucrosquamatus	300101 055020	China. Sichuan. fibin PreiIvi. City			X		
Protohothrons sieversorum	7EN/K 71262	Vietnam: Quang Binh Prov : Phong Na	v	×			
riotobotinops sieversorum	211011071202	Nature Reserve	~	~			
Protobothrops sieversorum	_	_		x			Vogel 2006
Protobothrops sieversorum	PNNP 00220	Vietnam		~	х		Guo et al. 2010
Protobothrops tokarensis	FLMNH 120361-	Japan: Tokara Isl.	х	х			AMF
,	120364	-					
Protobothrops tokarensis	FMNH 218975,	-	x	х			AMF
	218976						
Protobothrops tokarensis	ROM 22881	-	х	х			AMF
Protobothrops tokarensis	TCWC 60446,	-	х	х			AMF
	60455, 60456						
Protobothrops tokarensis	-	-		х			Vogel 2006
Protobothrops tokarensis	KUZ R21123	Japan			х		Guo et al. 2009, Guo et al.
Destate 11							2010 Onlaw to 1, 2000
Protobothrops	ZISP 25351	vietnam: Cao Bang Prov.: Trung Khanh	x	х			Orlov et al. 2009
u uriyknannensis Drotobothrono		UIST.					Orlay at al. 2000
riviuuuuuuuups trunakhanhansis	IEDK A.0901	vietnam. Cao bang Prov.: Trung Khanh Dist	х	х			0110V et al. 2009
Protohothrons	CIB 7250/18-	China: Sichuan: Xiangcheng Co	~	v			David and Tong 1007
xianachenaensis	725055		X	X			אפבד אווט ו אווע מווע מווע מווע מער איז
Protobothrons	-	_		x			Vogel 2006
xiangchenaensis				~			-0000
Protobothrops	CIB no number	China: Sichuan				х	Guo and Zhang 2001
xiangchengensis							
Protobothrops	SCUM 035042,	China: Sichuan: Jiulong Co.			х		Guo and Zhao 2006, Guo
xiangchengensis	, 035043, 035046						et al. 2010
Rhinocerophis alternatus	AMNH R-31737	Brazil			х		AMF
Rhinocerophis alternatus	AMNH R-76209	Paraguay			х		AMF
Rhinocerophis alternatus	CAS uncataloged	-			х		AMF
Rhinocerophis alternatus	FMNH 51663	Brazil			х		AMF
Rhinocerophis alternatus	LACM 146309	Argentina: Entre Ríos Prov.	х	х			AMF
Rhinocerophis alternatus	LSUMZ 27748	Uruguay: Dept. Maldonado	х	х			AMF
Rhinocerophis alternatus	LSUMZ 55460	-			х		AMF

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Rhinocerophis alternatus	UMM7 62921.	Brazil: São Paulo	X	X			AME
	62926 62927		X	X			
	79626						
Phinocorophic alternatus	79020 LINANAZ 62022	Prazil: São Daulo	v	V		v	AN4E
Rhinocerophis alternatus		Diazii. Sau Paulu	X	X		X	
Rhinocerophis alternatus	UTA R-32427	Brazili, Rio Grande do Sul	X	X			
Rhinocerophis alternatus	UTA R-37709	Brazil: Millas Gerais: Mullic. Frutai	X	X		X	
Rhinocerophis alternatus	UTA R-38293	Brazil: Sao Paulo	X	X		x	
Rhinocerophis alternatus	UTA R-38294	Brazil: Sao Paulo	х	х			AMF
Rhinocerophis alternatus	UTA R-5602	Paraguay				х	AMF
Rhinocerophis alternatus	-	-		х			Campbell and Lamar 2004
Rhinocerophis	CM 147885	Argentina: Catamarca Prov.	х	х			AMF
ammodytoides							
Rhinocerophis	LACM 146317	Argentina: San Luis Prov.	х	х			AMF
ammodytoides							
Rhinocerophis	MVZ 127512	Argentina: Mendoza Prov.: Dept. Las	х	х		х	AMF
ammodytoides		Heras					
Rhinocerophis	MVZ 127513	Argentina: Mendoza Prov.: Dept.	х	х			AMF
ammodytoides		Malargüe					
Rhinocerophis	MVZ 127514	Argentina: Mendoza Prov.: Dept.	х	х		х	AMF
ammodytoides		Malargüe					
Rhinocerophis	MVZ 127518	Argentina: Neuguén Prov., Dept. Zapala	х	х			AMF
ammodytoides		· · · · · · · · · · · · · · · · · · ·					
Rhinoceronhis	MV7 134149	Argentina: San Luis Prov	x	x			AME
ammodytoides	10102 134145	Algentina. Sun Euis 1100.	~	~			
Phinocoronhic	TNUC 44902	Argontina: Catamarca Broy	v	v		v	0.N/E
ammodutoidos	TNEC 44605	Algentina. Catamarca Prov.	X	X		X	AIVIE
Bhina agreentia		Arresting, Con Luis Drev					
Rhinocerophis	UTA R-16334	Argentina: San Luis Prov.	х	х		x	AIMF
ammodytoides							e
Rhinocerophis	MACN 32893,	-		х			Carrasco et al. 2010
ammodytoides	39068						
Rhinocerophis	-	-		х			Campbell and Lamar 2004
ammodytoides							
Rhinocerophis	MLP-JW 20	-		х			Carrasco et al. 2010
ammodytoides							
Rhinocerophis	-	-		variou			Carrasco et al. 2010
ammodytoides				s inds.			
Rhinocerophis cotiara	CM R 364	Brazil: Minas Gerais	х	х			AMF
Rhinocerophis cotiara	FLMNH 39811	Brazil: Santa Catarina	х	х			AMF
Rhinocerophis cotiara	FLMNH 39812	Brazil: São Paulo	х	х			AMF
Rhinocerophis cotiara	FMNH 51662	Brazil			х		AMF
, Rhinocerophis cotiara	KU 124648.	Brasil: Santa Catarina	х	х			AMF
	124650						
Rhinocerophis cotiara	MVZ 200831	Brazil: São Paulo	x	x			AME
Rhinocerophis cotiara	USNM 100695	Brazil: Santa Catarina	x	x			AME
Rhinocerophis cotiara	USNM 76317	Brazil	v	v			AME
Kimbeeropins collara	1007E0 16E442	ם מבוו	^	^			AM
Phina coronhic cotiara	100750, 165443						Comphell and Lamar 2004
Rhinocerophis cotiara	-	-		X	2 in da		Campbell and Lamar 2004
Rhinocerophis cotlara	-	- Dro-il Cão Doulo			z mas.		Brattstrom 1964
Rhinocerophis fonsecal	CAS 116332	Brazil, Sao Paulo	х	х			AMF
Rhinocerophis fonsecai	FMINH 1/1285,	Brazil	х	х			AMF
	1/1288						
Rhinocerophis fonsecai	KU 125379	Brasil: São Paulo	х	х			AMF
Rhinocerophis fonsecai	MCZ 20893	Brazil, São Paulo	х	х			AMF
Rhinocerophis fonsecai	UMMZ 129625,	Brazil: São Paulo	х	х			AMF
	204214						
Rhinocerophis fonsecai	USNM 165449	Brazil	х	х			AMF
Rhinocerophis fonsecai	UTA R-38291, R-	Brazil: Minas Gerais	х	х			AMF
	38292						
Rhinocerophis fonsecai	-	-		х			Campbell and Lamar 2004
Rhinocerophis itapetiningae	FMNH 10815	Brazil: Matto Grosso	х	х	х		AMF
Rhinocerophis itapetiningae	FMNH 2619	Brazil: São Paulo	х	х			AMF
Rhinocerophis itapetiningae	MCZ 20904, 20908,	Brazil: São Paulo	х	х			AMF
	20910						
Rhinocerophis itapetininaae	UMMZ 62913.	Brazil: São Paulo	х	х			AMF
	62914						
Rhinocerophis itapetiningae	USNM 38187.	Brazil	x	x			AME
	39059, 76320,						
	165514-165516						
Rhinoceronhis itanetiningge	-	_		v			Campbell and Lamar 2004
Rhinocerophis ionathani	LITA R-24564	Bolivia: Cochabamba	v	v			
Rhinocerophis jonuthulli	MNK R-1000	Bolivia: Dent Cochabamba: Carrasco	∧ ∨	∧ ∨			Harvey 100/
minoceropins jonatham	UUUT V-TOOD	Bonvia, Dept. Cothabamba: Carrasco	X	X			11a1 vey 1994
Phinocoronhia ica athani	MNIVD 710 4C40	FIUV.					Carrage at al. 2000
Rhinocerophis Jonathani	IVIINKK /18, 1018	-			X	х	Carrasco et al. 2009
kninoceropnis jonathani	CBF 2319	-			х		Carrasco et al. 2009
kninoceropnis jonathani	-	-		х			Campbell and Lamar 2004
кпіпоcerophis jonathani	-	-					Harvey 2005
Rhinocerophis jonathani	-	-	var.	х			Carrasco et al. 2009
			inds.				
Rhinocerophis jonathani	CBF 2318	Bolivia: Dept. Tarija: José María Aviles	х				Carrasco et al. 2009
		Prov.					
Sinovipera sichuanensis	YBU 030116,	China: Sichuan: Hejiang Co.	х	х			Guo and Wang 2011
	071077						
Sistrurus catenatus	AMNH R-64925	USA: Illinois: Lake Co.				х	AMF/KMD
Sistrurus catenatus	AMNH R-74841, R-	-			х		AMF/KMD
	75282						
Sistrurus catenatus	AMNH R-87494	USA: Kansas: McPherson Co.			х		AMF/KMD

Species Sistrurus catenatus	Voucher FMNH 11034	Locality USA: Indiana	Scales	Color	Bones x	Hemipenes	Examiner or Publication AMF/KMD
Sistrurus catenatus	UCF 2341	USA: Texas: Throckmorton Co.	x	х			AMF/KMD
Sistrurus catenatus	UTA R-11290, R- 21924	USA: Texas: Tarrant Co.				x	AMF/KMD
Sistrurus catenatus Sistrurus catenatus	UTA R-33955 	USA: Texas: Wise Co. –		×		x	AMF/KMD Campbell and Lamar 2004
Sistrurus catenatus	UTA R-21923	USA: Texas: Tarrant Co.		x			Campbell and Lamar 2004
Sistrurus miliarius Sistrurus miliarius	AMNH R-140812	-			x		
Sistrurus miliarius	AMNH R-63825, R-	USA: Louisiana			X	х	AMF/KMD
Sistrurus miliarius	AMNH R-79049	-			x		AMF/KMD
Sistrurus miliarius	FLMNH 143944	USA: Florida: Hamilton Co.			x		AMF/KMD
Sistrurus miliarius	FMNH 21761	USA: Florida			х		AMF/KMD
Sistrurus miliarius	FMNH 98899	USA: North Carolina: Hyde Co.		.,	х		
Sistrurus miliarius Sistrurus miliarius	UCF 2364 UCF 2367	USA: Florida: Orange Co. USA: Florida: Osceola Co.	x x	x x			AMF/KMD AMF/KMD
Sistrurus miliarius	UCF CLP210	-	x	x		х	AMF/KMD
Sistrurus miliarius	UCF CLP212, CLP214	-	х	х			AMF/KMD
Sistrurus miliarius	UCF CLP901	USA: Florida	х	х			AMF/KMD
Sistrurus miliarius	UCF CLP941	USA: Florida: Orange Co.	х	х		х	AMF/KMD
Sistrurus miliarius	UTA R-18364	USA: Florida: Dade Co.		.,		х	AMF/KMD
Sistrurus miliarius Sistrurus miliarius	– LITA R-19315	– LISA: Texas: Montague Co		X X			Campbell and Lamar 2004
Trimeresurus andalasensis	SMF 22429	–	х	x			David et al. 2006
Trimeresurus andalasensis	PSGV 548	-	х				David et al. 2006
Trimeresurus andalasensis	ANSP 21536	-	х				David et al. 2006
Trimeresurus andalasensis	ZMB 29641	-	x				David et al. 2006
i rimeresurus anaalasensis	1018070, 1018071	-	x				David et al. 2006
Trimeresurus andalasensis	- 75N/ 17/1027	-	v	х			Vogel 2006
Trimeresurus unuulusensis Trimeresurus horneensis	CAS 16860	– Malaysia: Borneo: Sarawak	x x	x			AMF
Trimeresurus borneensis	FMNH 131847	Malaysia: Borneo: Sarawak	<i>n</i>	X	x		AMF
Trimeresurus borneensis	TCWC 81406– 81410	Borneo	х	х			AMF
Trimeresurus borneensis	USNM 36277	Malaysia: Borneo: West Kalimantan Prov.	х	х			AMF
Trimeresurus borneensis	-	-		х			Vogel 2006
Trimeresurus borneensis	-	-		х			David et al. 2006
Trimeresurus borneensis	-	-				x	Malhotra and Thorpe
Trimeresurus brongersmai	USNM 104340	Indonesia: Sumatra: North Sumatra	х	х			AMF
Trimeresurus brongersmai	RMNH 5654A	-					David et al. 2006
Trimeresurus brongersmai Trimeresurus brongersmai	_	-		х			David et al. 2006
Trimeresurus gracilis	MVZ 23905	Taiwan: Chiayi County	х	х			AMF
Trimeresurus gracilis	UMMZ 198961– 198965	Taiwan: Nantou County	х	х			AMF
Trimeresurus gracilis	USNM 134034	Taiwan			х		AMF
Trimeresurus gracilis	USNM 152453	Taiwan: Tainan County	х	х			AMF
Trimeresurus gracilis Trimeresurus gracilis	- LISNIM 124024	- China: Taiwan		х			Vogel 2006 Guo et al. 2009, Guo et al.
Thineresulus gruchis	0311101 134034						2010
Trimeresurus gramineus	AMNH R-57963, R-	India: Khandala	x	х			AMF
Trimeresurus gramineus	CAS 17272	Myanmar: Kachin: Putao Dist.	х	х			AMF
Trimeresurus gramineus	FLMNH 20112	India: Kerala	х	х			AMF
Trimeresurus gramineus	FLMNH 21365	India: Maharashtra	х	х			AMF
Trimeresurus gramineus Trimeresurus gramineus	-	-		x		x	Vogel 2006 Malhotra and Thorpe
							2004
Trimeresurus malabaricus Trimeresurus malabaricus	CAS 104089	India: Tamil Nadu: Kanyakumari Dist.	x	X			
Trimeresurus malabaricus	CAS 17273	India: Kerala	x	x		x	AMF
Trimeresurus malabaricus	CAS 17274	India	х	х			AMF
Trimeresurus malabaricus	CM 115132, 115195, 122112,	India: Kerala	х	х			AMF
Trine and the second	122113						
Trimeresurus malabaricus Trimeresurus malabaricus	MCZ 119447 MCZ 3845 3846	India: Kerala India: Tamil Nadu	x	X			
mineresulus malabaneas	3851, 3883		~	^			
Trimeresurus malabaricus	_	-		х			Vogel 2006
Trimeresurus malabaricus	-	-				x	Malhotra and Thorpe 2004
Trimeresurus malabaricus	AFS 06.27	India			х		Guo et al. 2009, Guo et al. 2010
Trimeresurus malabaricus		to alta			х		Guo et al. 2010
Trimeresurus puniceus	AM 08, 09	India					
ı rımeresurus puniceus	AM 08, 09 LSUMZ 81719	Indonesia: Java: West Java Prov.	x	х			AMF
Trimeresurus nunicous	AM 08, 09 LSUMZ 81719 LSUMZ 81720 MCZ 37700	India Indonesia: Java: West Java Prov. Indonesia: Java: West Java Prov.	X X	x x		x	AMF AMF AME
Trimeresurus puniceus	AM 08, 09 LSUMZ 81719 LSUMZ 81720 MCZ 37799	India Indonesia: Java: West Java Prov. Indonesia: Java: West Java Prov. Indonesia: Sumatra: North Sumatra: Langkat Regency	x x x	x x x		x	AMF AMF AMF
Trimeresurus puniceus Trimeresurus puniceus Trimeresurus puniceus	AM 08, 09 LSUMZ 81719 LSUMZ 81720 MCZ 37799 MCZ 8018, 8019 UMMZ 227772	India Indonesia: Java: West Java Prov. Indonesia: Java: West Java Prov. Indonesia: Sumatra: North Sumatra: Langkat Regency Indonesia: Java: West Java Prov. Indonesia: Java	x x x x x	x x x x		x	AMF AMF AMF AMF

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Trimeresurus puniceus	RMNH 1557	Thailand: Nakhon Si Thammarat Prov.		х	-		David et al. 2006
, Trimeresurus puniceus	-	_			2 inds.		Brattstrom 1964
Trimeresurus puniceus	_	_				x	Malhotra and Thorpe
							2004
Trimeresurus puniceus	AFS 06.45	Indonesia			х		Guo et al. 2009, Guo et al.
·							2010
Trimeresurus puniceus	AM 02, 05	Indonesia			х		Guo et al. 2010
Trimeresurus puniceus	_	Indonesia: Java		5 inds.			Vogel 2006
Trimeresurus puniceus	_	Indonesia: Sumatra		2 inds.			Vogel 2006
Trimeresurus puniceus	-	Indonesia: Java and South Sumatra		х			David et al. 2006
Trimeresurus strigatus	CAS 17271	India: Orissa	х	х		х	AMF
Trimeresurus striaatus	_	_		х			Vogel 2006
Trimeresurus strigatus	_	_				x	Malhotra and Thorpe
							2004
Trimeresurus	CM 67657, 67660.	Sri Lanka: Central Prov: Kandy Dist.	x	x			AME
trigonocenhalus	67714 68000		~				
ingonocephanas	68001						
Trimeresurus	1104047 225452		v	~	v		
trigonocenhalus	225455		^	^	^		
Trimorocurus		Srilanka	v	v			A N 4 E
trizeneeneeneelue	01A K-25105, K-	SILLAIIKA	X	X			AIVIE
	32124	Cri Lanka					
Trimeresurus	UTA R-7292, R-	Sri Lanka	х	х		x	AIVIF
trigonocephalus	8191, R-40461						
Trimeresurus	UTA R-45032	-			х		AMF
trigonocephalus							
Irimeresurus	-	-		х			vogel 2006
trigonocephalus — :							
Trimeresurus	AFS 06.36, 06.37,	Sri Lanka					Guo et al. 2010
trigonocephalus	06.47						
Trimeresurus wiroti	UTA R-16428	Thailand	х	х		х	AMF
Trimeresurus wiroti	UTA R-31829	Thailand	х	х			AMF
Trimeresurus wiroti	UTA R-31940	Thailand	х	х			AMF
Trimeresurus wiroti	UTA R-38540	Thailand	х	х		х	AMF
Trimeresurus wiroti	UTA R-50567	Thailand	х	х			AMF
Trimeresurus wiroti	UTA R-50574	Thailand	x	x			AMF
Trimeresurus wiroti	SMF 69695	Thailand: Nakhon Si Thammarat Prov	x	x			David et al. 2006
		Chawang Co	X	A			
Trimeresurus wiroti	_	_		×			David et al. 2006
Trimeresurus wiroti	_	South Thailand		2 inds			Vogel 2006
Trimeresurus wiroti	_	Thailand: Trang Prov		v v			Vogel 2006
Tranidalgamus huttani		Indianu. Indig Prov.		X			Vogel 2000
Tropidoidemus nuttoni	BIVINH 1948.1.8.75	india: Punjab: Maiwa Dist.	х	х			David and Vogel 1998,
-	DN 40111 20000						Vogel 2006
Tropidolaemus huttoni	BMNH 2658	India: Tamil Nadu	х				David and Vogel 1998
Tropidolaemus laticinctus	BMNH 96.12.9.80	Indonesia: Sulawesi: Central Sulawesi	х	х			Kuch et al. 2007
		Prov.					
Tropidolaemus laticinctus	NMW 27963:2	Indonesia: Sulawesi: South Sulawesi		х			Kuch et al. 2007
		Prov.					
Tropidolaemus laticinctus	ZMB 34317	Indonesia: Sulawesi: Central Sulawesi	х	х			Kuch et al. 2007
		Prov.					
Tropidolaemus laticinctus	ZMB 34318	Indonesia: Sulawesi: North Sulawesi		х			Kuch et al. 2007
		Prov.: Subdist. Paleleh					
Tropidolaemus laticinctus	ZMB 47809	no data		х			Kuch et al. 2007
Tropidolaemus laticinctus	-	-	var.				Kuch et al. 2007
			inds.				
Tropidolaemus philippensis	CM R2307, R2314,	Philippines	х	х			AMF
	R2316, S6376						
Tropidolaemus philippensis	FMNH 15017.	Philippine Isls.: Mindanao Isl.	х	х			AMF
······································	53568						
Tropidolaemus nhilinnensis	MNHN 4064	Philippines		x			Vogel et al. 2007
				~			
Tropidolaemus philippensis	-	-		х			Vogel 2006
Tropidolaemus philippensis	BMNH 1946.1.17.7	Philippines: Mindanao Isl.		х			Vogel et al. 2007
Tropidolaemus	CM 147768	Indonesia	х	x			AMF
subannulatus			-	-			
Tropidolaemus	CM R2163	Philippines: Palawan Prov.: Balabac Isl	x	x			AMF
subannulatus			- •				
Tropidolaemus	FLMNH 120365	Malaysia: Borneo: Sabah	x	x			AMF
subannulatus			~	~			
Tronidolaemus	FI MNH 50801	Philippines: Luzon Isls - Luzon	v	Y			AME
suhannulatus	54656	Camarines Sur Prov	^	~			
Tronidolaemus	54050 FI MNH 67010	Philinnings Dalawan Droy · Dalawan Isl	v	v		v	ΔΜΕ
subannulatus	67012	י יווויאטיוניט. רמומשמוו דו טע PaldWdli ISI.	*	×		X	
Tropidolognuc		Philippines: Luzon Isla - Luzon	v	~			
subannulatus	ILIVIINE / 9803	Comprines, Luzon ISIS., Luzon:	х	х		Х	
supurinulatus Tropidatata		Camarines Sur Prov.					
i ropiaolaemus	FIVINH /1640,	ivialaysia: Borneo: Sarawak			х		AMF
subannulatus	129468						
Tropidolaemus	FMNH 158669,	Malaysia: Borneo: Sarawak	х	х		х	AMF
subannulatus	188496						
Tropidolaemus	KU 303036	Philippines: Antique Prov.: Munic.	х	х			AMF
subannulatus		Pandan					
Tropidolaemus	KU 303037	Philippines: Negros Oriental Prov:	х	х		х	AMF
subannulatus		Munic. Valencia					
Tropidolaemus	KU 306592,	Philippines: Dinagat Isls. Prov.: Munic.	х	х			AMF
subannulatus	310176	Loreto					
Tropidolaemus	KU 307696	Philippines: Quezon Prov.: Munic. Polillo	х	x			AMF
subannulatus							

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Tropidolaemus	KU 310863	Philippines: Eastern Samar Prov.: Munic.	X	x		x	AMF
subannulatus		Taft					
Tropidolaemus	KU 311289.	Philippines: Levte Prov.: Municip.	x	x			AME
subannulatus	311292	Baybay					
Tronidolaemus	BMNH	_		x			Vogel et al 2007
subannulatus	1946.1.19.32						
Tropidolaemus	_	Malaysia: Borneo: Sarawak		2 inds.			Vogel 2006
suhannulatus		india yolar borneor baranak		2 11/45.			10801 2000
Tronidolaemus	_	Philippines		x			Vogel 2006
subannulatus				~			10801 2000
Tronidolaemus	_	Sulawesi		2 inds			Vogel 2006
subannulatus		Suluwesh		2 1103.			108012000
Tronidolaemus waaleri	CAS 16781 16782	Singanore	×	v			ΔΜΕ
Tropidolaemus wagleri	CAS 10781, 10782	Singapore: Singapore Isl	~	×			
Tropidolaemus wagleri	CA3 300317	Indonosia: Sumatra	×	×	v		
Tropidolaemus wagleri		Thailand	×	×	X		
Tropidolaemus wagleri		Singanoro	X	X			
nopidoldenius wugien	ГIVIINП 11152, 11122	Singapore	X	X			AME
Tranidalaamus waalari		Thailand	~	v			A N 4 E
Tropidolaemus wagleri	ENNU 193700	Malaysia	×	×			
rropidoldernus wügleri	FIVINE 183789-	WididySid	X	х			AME
Terridale en en en el eni	183/91	The still so of					
iropiaolaemus wagieri	UTA R-45037			х	х		
Tropidolaemus wagieri	MNHN 1879.0708	Sumatra: West Sumatra	х	X			Vogel et al. 2007
Iropidolaemus wagieri	-	Indonesia: Sumatra		2 inds.			Vogel 2006
Tropidolaemus wagieri	-	Indonesia: Sumatra: Acen Prov.: Subdist.		х			Vogel 2006
,, , .		Ketambe					N/ 10000
Iropidolaemus wagleri	-	West Malaysia: Cameron Highlands		х			Vogel 2006
Tropidolaemus wagleri	-	West Malaysia: Templer Park		х			Vogel 2006
Vipera ammodytes	UTA R-18216, R-	Austria	х	х			AMF
	18217						
Vipera ammodytes	UTA R-34195	-	х	х		х	AMF
Vipera ammodytes	UTA R-8003, R-	Croatia	х	х			AMF
	8004						
Viridovipera gumprechti	AMNH R-147163	Vietnam: Hà Tính Prov.: Huong Son Dist.	х	х		х	AMF
Viridovipera gumprechti	CAS 230233	Myanmar: Chin State	х	х			AMF
Viridovipera gumprechti	CAS 234873	Myanmar: Chin State	х	х		х	AMF
Viridovipera gumprechti	CAS 235959	Myanmar: Chin State: Phalum Dist.	х	х			AMF
Viridovipera gumprechti	MVZ 226641	Vietnam: Vĩnh Phúc Prov.: Tam Dao Ntl.	х	х		х	AMF
		Park					
Viridovipera gumprechti	ROM 25814	Vietnam: Nghệ An Prov.: Con Cuông	х	х		х	AMF
		Dist.					
Viridovipera gumprechti	ROM 35321	Vietnam: Cao Bắng Prov.	х	х		х	AMF
Viridovipera gumprechti	USNM 70353	Thailand	х	х			AMF
Viridovipera gumprechti	MNHN 1999.9072	Thailand: Loei Prov.	х	х			David et al. 2002
Viridovipera gumprechti	PSUAA 0047	-	х	х			David et al. 2002
Viridovipera gumprechti	RFI 1345	-	х	х			David et al. 2002
Viridovipera gumprechti	MNHN 1999.9073	-	х	х			David et al. 2002
Viridovipera gumprechti	ZFMK 75797	-	х	х			David et al. 2002
Viridovipera gumprechti	-	-				х	Malhotra and Thorpe
							2004
Viridovipera gumprechti	AM 07, 09	Thailand: Loei Prov.			х		Guo et al. 2010
Viridovipera gumprechti	RTV 10	Thailand: Loei Prov.			х		Guo et al. 2009, Guo et al.
							2010
Viridovipera qumprechti	-	Thailand: Loei Prov.		2 inds.			Vogel 2006
Viridovipera gumprechti	-	Vietnam: Lao Cai Prov.		х			Vogel 2006
Viridovipera medoensis	AMNH R-58532	Myanmar: Kachin State: Myitkyina Dist.	х	х			AMF
Viridovipera medoensis	CAS 221528	Myanmar: Kachin State: Putao Dist.	х	х			AMF
Viridovipera medoensis	CIB no number	China: Tibet					Guo and Zhang 2001
Viridovipera medoensis	CIB 73 II 5208, 73 II	China: Tibet Aut. Region: Mêdog Co.	х	х			David and Tong 1997
	5209						-
Viridovipera medoensis	-	_		х			Vogel 2006
Viridovipera stejnegeri	AMNH R-33769	China: Fujian Prov.			х		AMF
Viridovipera stejnegeri	FLMNH 13262-	Taiwan: Taichung Co.	х	х			AMF
	13264	C					
Viridovipera stejnegeri	FLMNH 13265,	Taiwan: Pingtung Co.	х	х			AMF
	13267						
Viridovipera steineaeri	FLMNH 13266	Taiwan: Yangmingshan Ntl. Park	х	х			AMF
Viridovipera stejnegeri	FMNH 127229,	Taiwan			х		AMF
, , , ,	127233						
Viridovipera steineaeri	FMNH 127238	Taiwan: Taichung Co.			х		AMF
Viridovipera steineaeri	FMNH 170642	China: Sichuan Prov.	х	х		x	AMF
Viridovipera steineaeri	FMNH 25195	China: Fuijan Prov.			х		AMF
Viridovipera steineaeri	FMNH 7134	China: Anhui Prov.	х	х			AMF
Viridovipera steineaeri	MVZ 22326	China: Jiangxi Prov.: Jiuiiang City: Lushan			х		AMF
,		Dist.			-		
Viridovipera steineaeri	UMMZ 71247a-h	China: Jiangsu Prov.: Naniing Citv	х	х			AMF
Viridovipera steineaeri	_	_	-	x			Vogel 2006
Viridovipera steineaeri	_	China		x			Vogel 2006
Viridovinera steineaeri	CIB no number	China: Fujian		~			Guo and Zhang 2001
Viridovipera steineaeri	_	China: Guangdong		×			Vogel 2006
Viridovinera steineaeri	_	China: Hainan		x			Vogel 2006
Viridovinera steineaeri	SCUM 035079	China: Guangdong		~	¥		Guo and Zhao 2006 Guo
	20011 000075				^		et al. 2010
Viridovinera steineaeri	AM 07	China: Hainan			¥		Guo and Zhao 2006 Guo
					~		et al. 2010
Viridovinera steineaeri	RTV 10	China: Hainan			x		Guo and Zhao 2006 Guo
	-	-					et al. 2010

Species	Voucher	Locality	Scales	Color	Bones	Hemipenes	Examiner or Publication
Viridovipera stejnegeri	-	Vietnam: Tam Dao		х			Vogel 2006
Viridovipera stejnegeri	SCUM 035053	China: Sichuan: Hejiang Co.			х		Guo and Zhao 2006, Guo
							et al. 2010
Viridovipera truongsonensis	ZISP 22931, 22932	Vietnam: Quảng Binh Prov.	х	х			Orlov et al. 2004
Viridovipera truongsonensis	ZISP 22933, 22934	Vietnam: Quảng Binh Prov.	х				Orlov et al. 2004
Viridovipera truongsonensis	VNUH 190606	-	х				Dawson et al. 2008
Viridovipera truongsonensis	-	-		х			Vogel 2006
Viridovipera vogeli	FMNH 180256	Thailand	х	х	х	х	AMF
Viridovipera vogeli	FMNH 180258	Thailand	х	х	х		AMF
Viridovipera vogeli	FMNH 180260,	Thailand	х	х		х	AMF
	180269, 180273						
Viridovipera vogeli	FMNH 180261	Thailand	х	х	х		AMF
Viridovipera vogeli	FMNH 180263, 180274	Thailand				х	AMF
Viridovipera vogeli	FMNH 258941	Laos	х	х			AMF
Viridovipera vogeli	FMNH 258945,	Laos	х	х		х	AMF
	258946, 258953						
Viridovipera vogeli	-	-		х			Vogel 2006
Viridovipera vogeli	FMNH 180269	Thailand: Nakhon Ratchasima Prov.					Guo et al. 2010
Viridovipera vogeli	AM 07	Thailand: Nakhon Ratchasima Prov.					Guo et al. 2010
Viridovipera vogeli	RTV 10	Thailand: Nakhon Ratchasima Prov.					Guo et al. 2009, Guo et al.
							2010
Viridovipera yunnanensis	AMNH R-21057	China: Yunnan Prov.: Baoshan Pref.:	х	х			AMF
		Tengchong Co.					
Viridovipera yunnanensis	CAS 215141	China: Yunnan Prov.: Nujiang Pref.:	х	х	х	x	AMF
		Fugong Co.					
Viridovipera yunnanensis	CAS 230260	Myanmar: Kachin State	х	х			AMF
Viridovipera yunnanensis	CAS 234261	China: Yunnan Prov.: Baoshan Pref.: Longling Co.	х	х			AMF
Viridovipera yunnanensis	FLMNH 63903	China: Yunnan Prov.	х	х			AMF
Viridovipera yunnanensis	FMNH 7064, 7065	China: Yunnan Prov.	х	х			AMF
Viridovipera vunnanensis	MCZ 14671	China: Yunnan Prov.	х	х			AMF
Viridovipera yunnanensis	_	_		х			Vogel 2006
Viridovipera yunnanensis	SCU M035108,	China: Sichuan			2 inds.		Guo et al. 2006
. ,	M035114						
Viridovipera yunnanensis	SCUM 035037,	China: Sichuan: Huili Co.					Guo and Zhao 2006, Guo
	035045, 035114						et al. 2010
Viridovipera yunnanensis	SCUM 035077	China: Yunnan: Kunming					Guo and Zhao 2006, Guo
		-					et al. 2010

APPENDIX C: MOLECULAR DATA COLLECTED FOR PHYLOGENY OF CROTALINAE

Species used, voucher data, collecting locality, and GenBank accession numbers for each species analyzed in pitviper phylogeny. Accession numbers labeled TBD are sequences original to this study. Institutional abbreviations are listed in Leviton, Gibbs, Heal & Dawson (1985).

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Crotalinae								
Agkistrodon bilineatus	Lamar 2		Costa Rica: Guanacaste Prov.	AF156593	AF156572	AY223613	AY156585	TBD
Agkistrodon contortrix	M338		USA: Ohio	AF057229	AF057276	AY223612	AF156576	TBD
Agkistrodon piscivorous	CLP 30 (mtDNA), CLP 74 (Rag1)		USA: South Carolina (mtDNA), USA: Florida (Rag1)	AF057231	AF057278	AY223615	AF156578	TBD
Agkistrodon taylori	CLP 140		Mexico: Tamaulipas	AF057230	AF057230	AY223614	AF156580	TBD
Atropoides indomitus	ENS 10630		Honduras: Dept. Olancho	TBD		DQ061194	DQ061219	
Atropoides mexicanus	CLP 168 (mtDNA), ENS 10512 (Rag1)		Costa Rica: San José Prov. (mtDNA), Mexico: Chiapas (Rag1)	AF057207	AF057254	AY223584	U41871	TBD
Atropoides nummifer	ENS 10515		Mexico: Puebla	DQ305422	DQ305445	EU684273	EU684290	TBD
Atropoides occiduus	ENS 4584 (Rag1)	UTA R-29680 (mtDNA), UTA R- 41219 (Rag1)	Guatemala: Dept. Escuintla (mtDNA), unknown (Rag1)	DQ305423	DQ305446	AY220315	AY220338	TBD
Atropoides olmec	JAC 16021 (mtDNA)	UTA R-25113 (mtDNA), UTA R- 34158 (Rag1)	Mexico: Veracruz (mtDNA), Guatemala: Dept. Baja Verapaz (Rag1)	AY223656	AY223669	AY223585	AY223632	TBD
Atropoides picadoi	CLP 45 (12S, 16S, cyt-b, Rag1)	MZUCR 11156 (12S, 16S, cyt-b, Rag1), UMMZ 177000 (ND4)	Costa Rica: Alajuela Prov. (12S, 16S, cyt- b, Rag1), Costa Rica: Heredia Prov. (ND4)	AF057208	AF057255	AY223593	U41872	TBD
Bothriechis aurifer	DPL 2984	UTA R-35031	Guatemala	DQ305425	DQ305448	DQ305466	DQ305483	TBD
Bothriechis bicolor	ENS 10507 (mtDNA), DPL 2899 (Rag1)	UTA R-34156 (mtDNA)	Mexico: Chiapas (mtDNA), unknown (Rag1)	DQ305426	DQ305449	DQ305467	DQ305484	TBD

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Bothriechis lateralis	CLP 48	MZUCR 11155	Costa Rica: San José Prov.	AF057211	AF057258	AY223588	U41873	TBD
Bothriechis marchi	San Antonio Zoo 5 (Rag1)	UTA R-52959 (mtDNA)	Guatemala: Dept. Zacapa (mtDNA), unknown (Rag1)	DQ305428	DQ305451	DQ305469	DQ305486	TBD
Bothriechis nigroviridis	CLP 49 (mtDNA), ICP 1068 (Rag1)	MZUCR 11151 (mtDNA)	Costa Rica: San José Prov.	AF057212	AF057259	AY223589	AY223635	TBD
Bothriechis rowleyi	JAC 13295	UTA R-22243	Mexico: Oaxaca	DQ305427	DQ305450	DQ305468	DQ305485	TBD
Bothriechis schlegelii	CLP 51 (mtDNA)	MZUCR 11149 (mtDNA)	Costa Rica: Cariblanco de Sarapiqui (mtDNA), unknown (Rag1)	AF0572113	AF057260	AY223590	AY223636	TBD
Bothriechis supraciliaris	San Vito 5		Costa Rica: Puntarenas Prov.	DQ305429	DQ305452	DQ305470	DQ305487	TBD
Bothriechis thalassinus	ENS 9416 (Rag1)	UTA R-52958 (mtDNA), UTA R- 46526 (Rag1)	Guatemala: Dept. Zacapa (mtDNA), Guatemala: Dept. Izabal (Rag1)	DQ305424	DQ305447	DQ305465	DQ305482	TBD
Bothriopsis bilineata	S.2		Brazil: São Paulo	TBD	TBD	TBD	TBD	TBD
Bothriopsis chloromelas		LSUMZ 41037	Peru: Pasco Region	DQ305430	DQ305453	DQ305471	DQ305488	
Bothriopsis oligolepis	WW 2957		Peru: Cuzco Region			TBD	TBD	
Bothriopsis pulchra	JM 78		Ecuador	JN870179		TBD	TBD	
Bothriopsis taeniata	-		Suriname	AF057215	AF057262	AY233592	AY223637	TBD
Bothrocophias campbelli	INHMT, uncataloged		Ecuador: Chimborazo Prov.			AF292584	AF292622	
Bothrocophias hyoprora	unknown (mtDNA), WED 59884 (Rag1)		Colombia: Dept. Amazonas (mtDNA), Peru: Loreto Region (Rag1)	AF057206	AF057253	AY223593	U41886	TBD
Bothrocophias microphthalmus		LSUMZ H9372	Peru: Pasco Region	AY223657	AY223670	AY223594	AY223638	TBD
Bothrocophias myersi			-					

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Bothropoides alcatraz	CBGM baz001		Brazil: São Paulo: Ilha de Alcatrazes			AY865820		
Bothropoides diporus	PT 3404		Argentina: La Rioja Prov.	DQ305431	DQ305454	DQ305472	DQ305489	TBD
Bothropoides erythromelas	RG 829		Brazil: Algoas	AF057219	AF057266	AY223600	U41877	TBD
Bothropoides insularis	WW		Brazil: São Paulo: Ilha Queimada Grande	AF057216	AF057263	AY223596	AY223641	
Bothropoides jararaca	(19)6		Brazil: São Paulo	EU867254	EU867266	EU867278	EU867290	
Bothropoides lutzi			-					
Bothropoides marmoratus			-					
Bothropoides mattogrossensis			-					
Bothropoides neuwiedi		IB 5555	Brazil: São Paulo			AF292585	AF292623	
Bothropoides pauloensis	CLP 3 (mtDNA), B941 (Rag1)		unknown (mtDNA), Brazil: São Paulo (Rag1)	EU867260	EU867272	EU867284	EU867296	TBD
Bothropoides pubescens	SC N132 (mtDNA), SC N331 (Rag1)		Uruguay: Dept. Rocha (mtDNA), Uruguay: Dept. Canelones (Rag1)	JN870180	JN870192	JN870200	TBD	TBD
Bothrops andianus		Corbidi 8355	-	TBD	TBD	TBD	TBD	
Bothrops asper	CLP 50	MZUCR 11152	Costa Rica: Puntarenas Prov.	AF057218	AF057265	AY223599	U41876	TBD, EU402838 in part
Bothrops atrox	WW 743		-	AY223659	AY223672	AY223598	AY223641	TBD
Bothrops barnetti	WW 2060		Peru	TBD	TBD	TBD	TBD	
Bothrops brazili		RWM 17831 (from USNM)	Venezuela: Amazonas	EU867252	EU867264	EU867276	EU867288	TBD

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Bothrops caribbaeus	released after sampling		Saint Lucia			AF292598	AF292636	
Bothrops jararacussu	DPL 104		-	AY223661	AY223674	AY223602	AY223643	TBD
Bothrops lanceolatus	unknown		Martinique			AF292599	AF292637	
Bothrops leucurus	CLP 195		-	EU867255	EU867267	EU867279	EU867291	TBD
Bothrops marajoensis	unknown		-			AF292605	AF292643	
Bothrops moojeni	ITS 418		Brazil: São Paulo	EU867257	EU867269	EU867281	EU867293	TBD
Bothrops osbornei	FHGO live 2166		Ecuador: Pichincha Prov.			AF292595	AF292633	
Bothrops pictus	WW 2471	Corbidi 2066	-		TBD	TBD	TBD	
Bothrops punctatus	FHGO live 2452		-			AF292594	AF292632	
Bothrops roedingeri	WW 2479		-				TBD	
Calloselasma rhodostoma		UTA R-22247	-	AF057190	AF057237	AY223562	U1878	TBD
Cerrophidion godmani	ENS 5857 (mtDNA), ENS 7005 (Rag1)	UTA R-40008 (mtDNA), UTA R- 39567 (Rag1)	Guatemala: Dept. Baja Verapaz (mtDNA), Guatemala: Dept. Guatemala (Rag1)	DQ305419	DQ305442	AY220325	AY220348	TBD
Cerrophidion petlalcalensis	ENS 10528		Mexico: Veracruz	DQ305420	DQ305443	DQ061202	DQ061227	TBD
Cerrophidion sasai	CLP 46	MZUCR 11153	Costa Rica: San José Prov.	AF057203	AF057250	AY223578	U41879	TBD
Cerrophidion tzotzilorum	ENS 10529 (mtDNA), ENS 10530 (Rag1)		Mexico: Chiapas	JN870182	JN870193	DQ061203	DQ061228	TBD
Cerrophidion wilsoni	ENS 10632		Honduras: Dept. Francisco Morazán			EU684286	EU684301	
Crotalus adamanteus	CLP 4		USA: Florida	AF057222	AF057269	AY223605	U41880	TBD

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Crotalus aquilus		ROM 18114 (12S, 16S, cyt-b), ROM 42394 (ND4)	Mexico: Distrito Federal (12S, 16S, cyt-b), Mexico: Aguascalientes (ND4)	AF259231	AF259124	AF259161	HQ257762	
Crotalus atrox	CLP 64		USA: Texas	AF0572225	AF057272	AY223608	AY223646	TBD
Crotalus basiliscus		ROM 18188 (12S, 16S, cyt-b), unknown (ND4)	Mexico: Nayarit	AF259244	AF259136	AF259174	AY704894	
Crotalus catalinensis		ROM 18250, BYU 34641-42	Mexico: Baja California Sur: Santa Catalina Isl.	AF259259	AF259151	AF259189		
Crotalus cerastes		ROM FC-2099 (12S), ROM 19745 (16S, cyt- b)	USA: California	AF259235	AF259128	AF259165		
Crotalus cerberus	CP 016		USA: Arizona			AF147859	AF194150	
Crotalus culminatus	WW 3291	ROM 18261	Mexico: Morelos	AF259247	AF259139	AY704830	AY704880	TBD
Crotalus durissus	CFLZoo (Rag1)	(mtDNA)	Venezuela (mtDNA), unknown (Rag1)			AF259177	TBD	
Crotalus enyo		ROM FC-441 (12S), ROM 13648 (16S, cyt- b)	Mexico: Baja California Sur	AF259245	AF259137	AF259175		
Crotalus horridus		UTA R-14697 (12S, 16S, cyt-b), TNHC 65471 (ND4, Rag1)	USA: Arkansas (12S, 16S, cyt-b), USA: Texas (ND4, Rag1)	AF259252	AF259144	AF259182	JN870207	TBD
Crotalus intermedius	JAC 8881	TNHC	Mexico: Oaxaca	TBD	TBD	TBD	JN870208	TBD
Crotalus lepidus		ROM 18128 (12S, 16S, cyt-b), unknown (ND4), TNHC 65409 (Rag1)	Mexico: Chihuahua (12S, 16S, cyt-b), USA: New Mexico (ND4), USA: Texas (Rag1)	AF259230	AF259123	AF259160	U41881	TBD

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Crotalus mitchelli		ROM 18178	USA: California	AF259250	AF259142	AF259180		
Crotalus molossus	CLP 66		USA: Texas	AF057224	AF057271	AY223607	AY223645	TBD
Crotalus oreganus	CP 014 (ND4)	ROM 19656 (12S, 16S, cyt-b)	USA: California (12S, 16S, cyt-b), Mexico: Baja California: Coronado Sur Isl. (ND4)	AF259253	AF259145	AF259183	AF194149	
Crotalus polystictus		ROM FC-263 or ROM 18139	Mexico: Distrito Federal	AF259236	AF259129	AF259166		
Crotalus pricei		ROM FC-2144 or ROM 18158	Mexico: Nuevo León	AF259237	AF259130	AF259167		
Crotalus pusillus		ROM FC-271 (12S, 16S, cyt-b), ROM 47056 (ND4)	Mexico: Michoacán	AF259229	AF259122	AF259159	HQ257880	
Crotalus ravus	OFV 296 (Rag1)	UTA-live (mtDNA)	Mexico: Puebla (mtDNA), unknown (Rag1)	AF057226	AF057273	AY223609	AY223647	TBD
Crotalus ruber		ROM 18197-98 or ROM 18207 (12S, 16S, cyt-b), RWV 2001-08 (ND4)	USA: California	AF259261	AF259153	AF259191	DQ679838	
Crotalus scutulatus		ROM 18210 or ROM 18218 (12S, 16S, cyt-b), UTEP CRH-153 (ND4)	USA: Arizona (12S, 16S, cyt-b), USA: New Mexico (ND4)	AF259254	AF259146	AF259184	AF194167	

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Crotalus simus	WW-1321 (12S, 16S), 1097 (cyt- b, ND4), MSM 192 (Rag1)		Costa Rica: Guanacaste Prov. (12S, 16S), Costa Rica: Puntarenas Prov. (cyt-b, ND4), Guatemala: Dept. Zacapa (Rag1)	EU624240	EU624274	EU624302	AY704885	TBD
Crotalus tigris	CLP 169		USA: Arizona	AF057223	AF057270	AY223606	AF156574	TBD
Crotalus totonacus	SD		Mexico: Tamaulipas			AY704837	AY704887	
Crotalus transversus	KZ shed skin		Mexico	AF259239		AF259169		
Crotalus triseriatus	YMH 47 (Rag1)	ROM 18121 (12S, 16S, cyt-b), ROM 18120 (ND4)	Mexico: Distrito Federal (12S, 16S, cyt-b), Mexico (ND4), unknown (Rag1)	AF259233	AF259126	AF259163	HQ257879	TBD
Crotalus tzabcan	255, 258-Peter Singfield live coll.		Belize: Corozal Dist.			AY704806	AY704856	
Crotalus viridis	CP 048	UTEP 17625	USA: Colorado	DQ020027		AF147866	AF194157	
Crotalus willardi	HWG 2575 (12S, 16S, cyt-b), W9306 (ND4, Rag1)	TNHC (ND4, Rag1)	USA: Arizona	AF259242	AF259134	AF259172	JN870209	TBD
Cryptelytrops albolabris	AM A165 (mtDNA)	ROM 16497 (Rag1)	Thailand: Loei Prov. (mtDNA), unknown (Rag1)	AF517169	AF517182	AF517185	AF517214	TBD
Cryptelytrops andersoni	AM A77 (12S, 16S, ND4), AM A76 (cyt-b)		India: Andaman Is.	AY352801	AY352740	AF171922	AY352835	
Cryptelytrops cantori	AM A85 (mtDNA)		India: Nicobar Is.	AY352802	AY352741	AF171889	AY352836	TBD

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Cryptelytrops erythrurus	AM B220 (mtDNA)	CAS 204989 (Rag1)	Bangladesh: Chittagong Div. (mtDNA), Myanmar: Rakhine State (Rag1)	AY352800	AY352739	AY352768	AY352634	TBD
Cryptelytrops fasciatus	AM B212		Indonesia: Tanadjampea Isl.	GQ428492	GQ428466	GQ428475	GQ428482	
Cryptelytrops insularis	AM A109		Indonesia: Java	AY352799	AY352738	AY352767	AY352833	
Cryptelytrops kanburiensis	AM B522		Thailand	AY289219	AY352737	AY289225	AY289231	
Cryptelytrops macrops	AM B27 (mtDNA), AM B72 (Rag1)		Thailand: Bangkok (mtDNA), unknown (Rag1)	AF517163	AF517176	AF517184	AF517219	TBD
Cryptelytrops pupureomaculatus	AM B418 (mtDNA)	CAS 212246 (mtDNA), CAS 206604 (Rag1)	Myanmar: Ayeyarwade Region	AY352807	AY352746	AY352772	AY352841	TBD
Cryptelytrops septentrionalis	AM A100		Nepal: Central Region: Janakpur Zone	AY059543	AY059559	AF171909	AY059592	
Cryptelytrops venustus	AM A241		Thailand: Nakhon Si Thammarat Prov.	AY293931	AY352723	AF171914	AY293930	
Deinagkistrodon acutus	CLP 28		China	AF057188	AF057235	AY223560	U41883	TBD
Garthius chaseni	AM B306		Malaysia: Sabah	AY352791	AY352729	AY352760	AY352825	
Gloydius blomhoffii	CLP 44		-	TBD	TBD	TBD	TBD	TBD
Gloydius brevicaudus	AM B525		China	AY352781	AY352720	AY352752	AY352815	
Gloydius halys caraganus	-		Kazakhstan	AF057191	AF057238	AY223564	AY223621	
Gloydius intermedius	unknown (12S, 16S, cyt-b), NNU 95050 (ND4)		Japan (12S, 16S, cyt- b), Mongolia (ND4)	JN870184	JN870194	JN870201	EF012788	
Gloydius monticola	Zhou, J., Zhang, Y. and Huang, M., unpub.		-			AF182530		
Gloydius saxatilis	60588-2, Alec		-	JN870185	JN870195	JN870202	JN870210	TBD

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Gloydius shedaoensis		ROM 20468	China: Liaoning Prov.	AF057194	AF057241	AY223566	AY223623	TBD
Gloydius strauchi		ROM 20473 (mtDNA), MVZ 216826 (Rag1)	China: Sichuan Prov.	AF057192	AF057239	AY223563	AY223620	AY662614
Gloydius tsushimaensis	-		-	JN870186	JN870196	JN870203	JN870211	
Gloydius ussuriensis		ROM 20452	China: Jilin Prov.	AF057193	AF057240	AY223565	AY223622	TBD
Himalayophis tibetanus	AM B258	ZMB 65641	Nepal: Helambu	AY352776	AY352715	AY352749	AY352810	
Hypnale hypnale	CLP 164		Sri Lanka: Western Prov.	AF057189	AF057236	AY223561	U41884	TBD
Lachesis acrochorda	CLP 319		Colombia	JN870187	JN870197	JN870197	JN870212	TBD
Lachesis melanocephala	-		Costa Rica: Peninsula de Oro			U96018	U96028	
Lachesis muta	Cadle 135		Peru	AF057221	AF057268	AY223604	AY223644	TBD
Lachesis stenophrys	-		Costa Rica: Limón Prov.	AF057220	AF057267	AY223603	U41885	TBD
Mixcoatlus barbouri		MZFC 21432	Mexico: Guerrero	HM363639	HM363640	HM363641	HM363642	
Mixcoatlus browni		MZFC 21431	Mexico: Guerrero	HM363643	HM363644	HM363645	HM363646	
Mixcoatlus melanurus	RLG 1086	UTA R-34605	Mexico	AF057210	AF057257	AY223587	AY223634	TBD
Ophryacus undulatus	CLP 73		Mexico	AF057209	AF057256	AY223586	AY223633	TBD
Ovophis monticola	JBS 16330	CAS 215050	China: Yunnan Prov.	DQ305416	DQ305439	DQ305462	DQ305480	TBD
Ovophis okinavensis	CLP 162		USA: Louisiana	AF057199	AF057246	AY223573	AY223627	TBD
Parias flavomaculatus	AM B3		Philippines: Luzon	AY059535	AY059551	AF171916	AY059584	
Parias hageni	AM B33		Thailand: Songhkla Prov.	AY059536	AY059552	AY059567	AY059585	
Parias malcolmi	AM B295		Malaysia: Sabah	AY371758	AY371793	AY371822	AY371860	
Parias schultzei	AM B210		Philippines: Palawan	AY352785	AY352725	AY352756	AY352819	
Parias sumatranus	AM B367		Indonesia: Sumatra: Bengkulu Prov.	AY371765	AY371791	AY371824	AY371864	

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Popeia barati	AM B361		Indonesia: Sumatra: Bengkulu Prov.	AY371753	AY371769	AY371801	AY371837	
Popeia buniana	AM B519		Malaysia: Pahang: Tioman Isl.	AY371752	AY371778	AY371818	AY371853	
Popeia fucata	AM A203		Thailand: Nakhon Si Thammarat Prov.	AY059537	AY059553	AY371796	AY059588	
Popeia nebularis	AM A197		Malaysia: Cameron Highlands	AY371746	AY371773	AY371808	AY371846	
Popeia popeiorum	AM B34		Thailand: Phetchaburi Prov.	AY059542	AY059558	AY059572	AY059591	
Popeia sabahi	AM B338		Malaysia: Sabah	AY371733	AY371785	AY371798	AY371835	
Porthidium arcosae	WW 750		Ecuador	AY223655	AY223668	AY223582	AY223631	TBD
Porthidium dunni	ENS 9705		Mexico: Oaxaca	AY223654	AY223667	AY223581	AY223630	
Porthidium hespere	UOGV 726		-			EU017534	EU016099	
Porthidium lansbergii	WW 787		Venezuela: Falcón	EU624242	EU624276	AY713375	AF393623	
orthidium nasutum	CLP 52 (mtDNA), WWL (Rag1)	MZUCR 11150 (mtDNA)	Costa Rica: Limón Prov. (mtDNA), Costa Rica: Puntarenas Prov. (Rag1)	AF057204	AF057251	AY223579	U41887	TBD
orthidium ophryomegas	MSM 23 (Rag1)	UMMZ 210276 (mtDNA)	Costa Rica: Guanacaste Prov. (mtDNA), Guatemala: Dept. Zacapa (Rag1)	AF057205	AF057252	AY223580	U41888	TBD
Porthidium porrasi	MSM		Costa Rica: Puntarenas Prov.	DQ305421	DQ305444	DQ061214	DQ061239	
Porthidium yucatanicum	JAC 24438		Mexico: Yucatán	JN870189	JN870198	DQ061215	DQ061244	TBD
Protobothrops cornutus	AM B350	ZMFK 75067	Vietnam: Phong Nha-Kẻ Ntl. Park	AY294276	AY294267	AY294272	AY294262	
Protobothrops elegans		UMMZ 199970	Japan: Ryukyu Isls.: Ishigaki Isl.	AF057201	AF057248	AY223575	U41893	

Species	Field ID	Museum ID	Locality	125	16S	cyt-b	ND4	Rag1
Protobothrops flavoviridis		UMMZ 199973	Japan: Ryukyu Isls.: Tokunoshima Isl.	AF057200	AF057247	AY223574	U41894	
Protobothrops jerdonii		CAS 215051	China: Yunnan Prov.	AY294278	AY294269	AY294274	AY294264	
Protobothrops kaulbacki	SYNU 04001130		China	DQ666056	DQ666055	DQ666060	DQ666057	
Protobothrops mangshanensis	AM B300		China: Hunan Prov.	AY352787	AY352726	AY352758	AY352821	
Protobothrops mucrosquamatus	AM B106 (mtDNA), HWG (Rag1)		Vietnam: Vĩnh Phúc Prov. (mtDNA), unknown (Rag1)	AY294280	AY294271	AY294275	AY294266	TBD
Protobothrops sieversorum	AM B162		Central Vietnam	AY352782	AY352721	AY352753	AY352816	
Protobothrops tokarensis	FK 1997 (mtDNA)	ROM 22881 (Rag1)	Japan: Ryukyu Isls.: Takarajima (mtDNA), unknown (Rag1)	AF057202	AF057249	AY223576	AY223628	TBD
Protobothrops xiangchengensis	SCUM 035046		-	AY763189	AY763208	DQ666062	DQ666059	
Rhinocerophis alternatus	DPL 2879		-	AY223660	AY223673	AY223601	AY223642	TBD
Rhinocerophis ammodytoides	REE 206 (Rag1)	MVZ 223514 (mtDNA)	Argentina: Neuquén Prov. (mtDNA), Argentina: Catamarca Prov. (Rag1)	AY223658	AY223671	AY223595	AY223639	TBD
Rhinocerophis cotiara	WW (mtDNA), CLP 444 (Rag1)		Brazil (mtDNA), Brazil: São Paulo (Rag1)	AF057217	AF057264	AY223597	AY223640	TBD
Rhinocerophis fonsecai	IB 55543		Brazil: São Paulo			AF292580	AF292618	
Rhinocerophis itapetiningae	ITS 427 (mtDNA), 83E (Rag1)		Brazil: São Paulo	EU867253	EU867265	EU867277	EU867289	TBD
Sinovipera sichuanensis	GP7	YBU 030116	China: Sichuan Prov.	HQ850445	HQ850446	HQ850447	HQ850449	
Sistrurus catenatus	M502		USA: Texas	AF057227	AF057274	AY223610	AY223648	TBD

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Sistrurus miliarius	M504 (Rag1)	UTA-live (mtDNA)	USA: Florida (mtDNA), unknown (Rag1)	AF057228	AF057275	AY223611	U41889	TBD
Trimeresurus borneensis	AM B301		Malaysia: Sabah	AY352783	AY352722	AY352754	AY352817	
Trimeresurus gracilis	NTNUB 200515		Taiwan	DQ305415	DQ305438	DQ305460	DQ305478	TBD
Trimeresurus gramineus	AM A220		India: Tamil Nadu	AY352793	AY352731	AY352761	AY352827	
Trimeresurus malabaricus	AM A218		India: Tamil Nadu	AY059548	AY059564	AY059569	AY059587	
Trimeresurus puniceus	AM B213		Indonesia	AF517164	AF517177	AF517192	AF517220	
Trimeresurus trigonocephalus	AM A58		Sri Lanka: Sabaragamuwa Prov.	AY059549	AY059565	AF171890	AY059597	
Trimeresurus wiroti			Thailand: Nakhon Si Thammarat Prov.			DQ646788		
Tropidolaemus subannulatus	CLP141		Indonesia: Borneo: West Kalimantan Prov.	AF057198	AF057245	AY223571	AY223625	TBD
Tropidolaemus wagleri	AM-B132		Malaysia: Perak	AF517167	AF517180	GQ428472	AF517223	
Viridovipera gumprechti	AM-A164		Thailand: Loei Prov.	AF517168	AF517181	AY352766	AF157224	
Viridovipera medoensis	AM-B416	CAS221528	Myanmar: Kachin State	AY352797	AY352735	AY352765	AY352831	
Viridovipera stejnegeri	AM-A160		Taiwan: Taipei	AY059539	AY059555	AF171896	AY059593	
Viridovipera truongsonensis	AM-B659	VNUH 190606	Vietnam: Quảng Bình Prov.	EU443817	EU443818	EU443815	EU443816	
Viridovipera vogeli	AM-B97		Thailand: Nakhon Ratchasima Prov.	AY059546	AY059562	AY059574	AY059596	
Viridovipera yunnanensis	GP37		China: Sichuan Prov.	EU443811	EU443812	EF597522	EF597527	
Azemiopinae								
Azemiops feae	CLP157		China	AF057187	AF057234	AY223559	U41865	TBD, EU402836 in part

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Viperinae outgroups								
Atheris ceratophora	Unknown (mtDNA), CLP 920 (Rag1)		_	DQ305410	DQ305433	DQ305456	DQ305474	TBD
Atheris nitschei		CAS 201653 (mtDNA), R- 970152 (Rag1)	Uganda: Kabale Dist. (mtDNA), unknown (Rag1)	AY223650	AY223663	AY223557	AY223618	TBD
Atheris squamigera		CAS 207866	Equatorial Guinea: Bioko Sur Prov.	TBD	TBD	TBD	TBD	TBD
Bitis arietans			Тодо	AF057185	AF57232	AY223558	AY223619	TBD
Bitis nasicornis		CAS 207874	Equatorial Guinea: Bioko Sur Prov.	DQ305411	DQ305434	DQ305457	DQ305475	TBD
Bitis peringueyi		CAS 193863	South Africa: Cape Prov.	DQ305412	DQ305435	DQ305458	DQ305476	TBD
Causus defilippi	CLP 154		Tanzania	AF057186	AF057233	AY223556	AY223617	TBD
Causus resimus	CLP 79		Africa	AY223649	AY223662	AY223555	AY223616	TBD
Causus rhombeatus	Unknown		Africa	DQ305409	DQ305432	DQ305455	DQ305473	TBD
Cerastes cerastes	WW 1640	Latoxan, live coll. 0504-2	Egypt	EU624254	EU624288	EU624308	EU624222	EU852329
Cerastes gasperettii	CLP 910 (12S), HLMD RA-1593 (16S, cyt-b)		-	JN870181	AJ275756	AJ275704		
Daboia russelli	HLMD RA-2899		Pakistan		AJ275776	AJ275723		
Daboia siamensis	JBS 1019, MS 205253	CAS 205253	Myanmar: Mandalay	DQ305413	DQ305436	DQ305459	DQ305477	TBD
Echis carinatus	Latoxan, live coll. 0012-74 (mtDNA), WW 1668 (Rag1)		Pakistan (mtDNA), United Arab Emirates (Rag1)	EU624255	EU624289	EU624309	EU624223	EU852325
Echis pyramidum	WW 1611 (mtDNA), WW 1521 (Rag1)		Egypt (mtDNA), Kenya (Rag1)	EU624258	EU624292	EU624312	EU624226	EU852326

Species	Field ID	Museum ID	Locality	12S	16S	cyt-b	ND4	Rag1
Macrovipera lebetina	Latoxan live coll. 0413-2 (12S, 16S, ND4), G. Nilson private coll. (cyt-b)		Turkmenistan : Kopet Dag (12S, 16S, ND4), Uzbekistan: Nuratau Biosphere Reserve (cyt-b)	EU624260	EU624294	AJ275713	EU624228	
Vipera ammodytes	Liverpool School of Tropical Medicine, live coll., Va1		_	EU624266	EU624297	EU624314	EU624232	

APPENDIX D: SUPPLEMENTAL PHYLOGRAMS SUPPORTING BOTHROPOID TAXONOMY

Fig. S-1. Majority-rule consensus cladogram of six most parsimonious trees from analysis excluding taxa with morphological data only (analysis 10). Cladogram derived from analysis of 2343 bp of mitochondrial DNA and 85 gap weighted or majority coded morphological characters (3083 steps, CI = 0.399 RI = 0.533). Bootstrap support above 50% shown above nodes. Gray circles indicate bootstrap values of 70 or greater. Bootstrap values 56 for sister relationship of *Bothrops pictus* to lineage B and 57 for clade containing *B. osbornei*, *B. punctatus*, *B. caribbaeus*, *B. lanceolatus*, *B. asper*, *B. atrox*, *B. leucurus*, *B. isabelae*, *B. marajoensis*, and *B. moojeni*; these relationships were not found in the consensus of shortest trees. Letters correspond to major lineages: *Bothrops pics* clade (A), *Bothrops atrox* clade (B), *Bothrops neuwiedi* + *B. jararaca* clade (C), *Bothriopsis* clade (D), and *Bothrops atrox* clade (E).

Fig. S-2. Phylogram of single most parsimonious tree from analysis excluding taxa with morpholgical data only (analysis 9). Phylogram derived from analysis of 2343 bp of mitochondrial DNA and 85 generalized frequency coded morphological characters (109,284,371 weighted steps = 3335 unweighted steps, CI = 0.468, RI = 0.520). Bootstrap support above 50% shown above nodes. Gray circles indicate bootstrap values of 70 or greater. Bootstrap value 69 for sister relationship of *Bothriopsis chloromelas* and *B. taeniata*; this relationship was not found in the shortest tree. Letters correspond to major lineages: *Bothrocophias* clade (A), *Bothrops alternatus* dade (B), *Bothrops neuwiedi* + *B. jararaca* clade (C), *Bothrops is* clade (C).

Fig. S-3. Majority rule consensus cladogram of ten most parsimonious trees from analysis including taxa with morphological data only (analysis 7). Cladogram derived from analysis of 2343 bp of mitochondrial DNA and 85 gap weighted or majority coded morphological characters (3164 steps, Cl = 0.390, Rl = 0.531). Bootstrap support above 50% shown above nodes. Gray circles indicate bootstrap values of 70 or greater. Letters correspond to major lineages: *Bothrocophias* clade (A), *Bothrops alternatus* clade (B), *Bothrops neuwiedi* + *B. jararaca* clade (C), *Bothriopsis* clade (D), and *Bothrops atrox* clade (E).

Fig. S-4. Phylogram of single most parsimonious tree from analysis including taxa with morphological data only (analysis 6). Phylogram derived from analysis of 2343 bp of mitochondrial DNA and 85 generalized frequency coded morphological characters (110,255,413 steps = 3364 unweighted steps, CI = 0.464, RI = 0.518). Bootstrap support above 50% shown above nodes. Gray circles indicate bootstrap values of 70 or greater. Bootstrap values 64 for clade of *Bothrops alcatraz, B. jararaca*, and *B. insularis*, 66 for sister relationship of *Bothriopsis pulchra* and *Bothriopsis chloromelas*, and 61 for *Bothrops asper, B. leucurus, B. moojeni, B. marajoensis, B. atrox*, and *B. isabelae*; these relationships were not found in the shortest tree. Letters correspond to major lineages: *Bothrocophias* clade (A), *Bothrops alternatus* clade (B), *Bothrops neuwiedi* + *B. jararaca* clade (C), *Bothriopsis* clade (D), and *Bothrops atrox* clade (E).

Fig. S-5. Bayesian MCMC 50% majority-rule consensus phylogram derived from analysis of 2343 bp of mitochondrial DNA (analysis 5). Posterior probability support above 50% shown above nodes. Gray circles indicate posterior probabilities of 95 or greater. Letters correspond to major lineages: *Bothrocophias* clade (A), *Bothrops alternatus* clade (B), *Bothrops neuwiedi* + *B. jararaca* clade (C), *Bothriopsis* clade (D), and *Bothrops atrox* clade (E).

Fig. S-6. Majority-rule consensus cladogram of 11 most parsimonious trees derived from analysis of 2343 bp of mitochondrial DNA (analysis 4, 2475 steps, CI = 0.423, RI = 0.563). Bootstrap values shown above nodes. Gray circles indicate bootstrap values of 70 or greater. Letters correspond to major lineages: *Bothrocophias* clade (A), *Bothrops alternatus* clade (B), *Bothrops neuwiedi* + *B. jararaca* clade (C), *Bothriopsis* clade (D), and *Bothrops atrox* clade (E).

Fig. S-7. Bayesian MCMC 50% majority-rule consensus phylogram derived from analysis of 85 gap weighted or majority coded morphological characters (analysis 3). Posterior probability support above 50% shown above nodes. Gray circles indicate posterior probabilities of 95 or greater. Letters correspond to major lineages: *Bothrocophias* clade (A), *Bothrops alternatus* clade (B), *Bothrops neuwiedi* + *B. jararaca* clade (C), *Bothriopsis* clade (D), and *Bothrops atrox* clade (E).

Fig. S-8. Parsimony 50% majority-rule consensus clado gram of 107 shortest trees derived from analysis of 85 gap weighted or majority coded morphological characters (analysis 2, 640 unweighted steps, CI = 0.295 RI = 0.464. Bootstrap support above 50% shown above nodes. Gray circles indicate bootstrap values of 70 or greater. Letters correspond to major lineages: *Bothrocophias* clade (A), *Bothrops alternatus* clade (B), *Bothrops neuwiedi* + *B. jararaca* clade (C), *Bothriopsis* clade (D), and *Bothrops atrox* clade (E).

Fig. S-9. Phylogram of single most parsimonious tree derived from analysis of 85 generalized frequency coded morphological characters (analysis 1, 7,920,556 weighted steps = 242 unweighted steps, CI = 0.309, RI = 0.447). Bootstrap support above 50% shown above nodes. Gray circles indicate bootstrap values of 70 or greater. Letters correspond to major lineages: *Bothrocophias* clade (A), *Bothrops alternatus* clade (B), *Bothrops neuwiedi* + *B. jararaca* clade (C), *Bothriopsis* clade (D), and *Bothrops atrox* clade (E).

APPENDIX E: SPECIMENS EXAMINED FOR BOTHROPOID TAXONOMY

Institutional abbreviations, except UTT (University of Texas at Tyler), are listed in Leviton et al. (1985).

Agkistrodon contortrix USA: Arkansas: Colombia Co. (UTA R-38098 [skeleton]). Oklahoma: LeFlore Co. (UTA R-40961 [skeleton]). *Texas*: Freestone Co. (UTA TBD [skeleton]), Henderson Co. (UTT 516), Smith Co. (UTT 102, 104, 113, 154, 245-246, 262, 529). NO DATA (UTT 587).

Bothriopsis b. bilineata SURINAME (UTA R-19490, R-16084), southern, captive born (FLMNH 78036), Lely Mountains (MCZ 149525). *Marowinje*: Tepoe (UTA R-15645, R-15647, R-15650).

Bothriopsis bilineata smaragdina COLOMBIA: Vaupes: Wacara (UTA R-3588). ECUADOR (UTA R-22581). Napo (LACM 73359), Rio Yasuni (FLMNH 83837). PERU (UTA R-34144). Loreto (ANSP 7015), near Iquitos (UTA R-2468). Pasco (LACM 76790). Iquitos: Amagou Basin (LACM 104360). NO DATA (UTA R-34145).

Bothriopsis choromelas PERU: Junin: Chanehamayo, Pulcalpa (FMNH 59205). Loreto (CM R-373). Pasco: Santa Cruz (LSUMZ, 41037).

Bothriopsis oligolepis PERU (USNM 119020). *Tambopato*: San Juan (FMNH 68597).

Bothriopsis pulchra ECUADOR (USNM 165183-165185, 165388, FLMNH 68161). Tungurahua (KU 121347-121348). PERU: Amazonas (LSUMZ 39316 [skeleton]). NO DATA (UMMZ 82900, 105894). *Bothriopsis taeniata* BRAZIL: *Pará*: IPEAN, 3km E Belém (KU 128263). *Rondonia*: Rio Jamari (UTA R-29687). SURINAME: *Marowinje*: Tepoe (UTA R-15618). *Sipaliwini* (UTA R-10501, R-10502), within 5mi of Tepoe (UTA R-30817). NO DATA (UTA R-32087 [body + skull], R-32088).

Bothrocophias campbelli ECUADOR: Pichincha: Mindo (USNM 165340), Pacto (USNM 165322).

Bothrocophias hyoprora ECUADOR (USNM 165297-165299, 165301-165302, 165304-165307, 165309-165310). *Cuyabueno* (MCZ R-163236). PERU: *Loreto*: San Jacinto (KU 222208), 1.5km N Teniente Lopez (KU 222209).

Bothrocophias microphthalmus ECUADOR (USNM 165303). PERU (FMNH 63740 [skeleton]). Buena Vista: Valley of the Chimchao (FMNH 40242). Loreto (MCZ 45920), 4mi NE Iquitos along Amazon River (FLMNH 38922). Pasco (LSUMZ 43286). San Martin: 20km NE Tarapato (KU 211621). NO DATA (LACM 76791).

Bothrocophias myersi COLOMBIA: *Valle*: camp "Carton de Colombia" (FMNH 165587, 165589, 165593 [skin + skeleton]), Rio Calima, 7km from lumber camp (FMNH 165594-165595), Caimancito (UTA R-21689). NO DATA (FMNH 165586, 165588, 165590-165592, 165596).

Bothrops alternatus ARGENTINA: Gualeguaychu: Entre Rios (LACM 146309). BRAZIL (FMNH 51663 [skeleton]). *Minas Gerais*: Frutal (UTA R-37709). *Rio Grande do Sul*: Sao Sebastiano do Ta (UTA R-32427). *Sao Paulo*: Americo Brasiliense (UTA R-38294), Morro abudo (UTA R-38293). PARAGUAY: near Asunción (UTA R-5602 [hemipene prep]). URUGUAY: *Maldonado*: Laguna Sance (LSUMZ 27748). NO DATA (UMMZ 62921, 62923, 62926-62927, 79626, 225041 [skeleton], LSUMZ 55460 [skeleton]).

Bothrops ammodytoides ARGENTINA: Catamarca (TNHC 44803), Angdalgala (CM 147885). Mendoza: Las Heras (MVZ 127512), Malargue (MVZ 127513, 127514). Neuquea: Zapata (MVZ 127518). San Luis: Union (MVZ 134149, UTA R-16334). NO DATA (LACM 146317).

Bothrops andianus BOLIVIA: *La Paz*: Sur Yungas (UTA R-39107). *Santa Cruz*: Florida, Yungas (UTA R-39104). PERU: *Cuzco* (KU 135212, FMNH 62943), Machu Picho (MCZ 12415). *Puño* (UTA R-26719), 11km NNE (airline) Ollachea (USNM 267836-267837). NO DATA (FLMNH 83845).

Bothrops asper BELIZE (FMNH 3480 [skull]). COLOMBIA: possibly from Chocó region (UTA R-6770). COSTA RICA (USNM 220377 [skull], UTA R-34157). *Cartago*: Parones de Turrialba (UTA R-14507-14510), Texeira de Freitas (UTA R-12932, R-12936). *Limón*: Linda Vista de Siquirres (UTA R-12920, R-12996). *Puntavenas*: Rio Peñas Blancas (UTA R-32494). GUATEMALA: *Izabal*: Morales (UTA R-40321), Puerto Barrios (UTA R-40320). HONDURAS: *Gracias a Dios*: Mocoron (UTA R-52545). *Tela* (FMNH 20641 [skull]). MEXICO: *Quintana Roo*: between Tulúm and Coba (UTA R-17095 [hemipene prep]). *Veracruz*: 20 km S Jesus Carranza (KU 23915), 60km SW Jesus Carranza (KU 23995). NICARAGUA: *Zelaya*: El Recreo, S side Rio Mico (KU 112957-112958). PANAMA: *Chiriquí*: Dolega, Central American Mission (UTA R-41026). TRINIDAD: Aripo River (UTA R-17862), St. George, Simla Research Station (UTA R-22345). NO DATA (UTA R-16961 [skull]). *Bothrops atrox* BRAZIL (FMNH 51658 [skull]). *Bahía* (MCZ 1189). *Pará*: Obídos (MCZ 1211). COLOMBIA (UTA R-9328). *Meta*: 21.5mi E Puerto Gaitan (UTA R-3378), Lomalinda (UTA R- 3590, R-3610, R-3771-3772, R-3852, R-5219, R-5848, R-5850, R-5862), Serrania de la Macarena (UTA R-3377). *Vaupés*: Lomalinda (UTA R-5853). *Vichada*: Corocito (UTA R-9345). GUYANA: *Rupununi*: road between Moses and Levi's (UTA R-52552), Maca-maca (UTA R-52553), near Chinese camp (UTA R-52554). PANAMA (SDNHM 59573 [skull]). PERU: *Amazonas* (LSUMZ 39317 [skull]). *Junín*: La Mercad (MCZ 45911, 54638). *Loreto*: near Iquitos (UTA R-7196). VENEZUELA: *Amazonas*: Puerto Ayacucho (UTA R-30826). NO DATA (CM 91926 [skull], SDNHM 59509 [zoo specimen, skeleton], 59589 [skeleton]).

Bothrops barnetti PERU (LSUMZ 39318). Sechura Desert (CAS 92343). Quebrada Parinas: near Negritos (FMNH 11013), N of Negritos (FMNH 9777-9778, 9787-9789). Piura: Parinas Valley (FMNH 41603). Tumbes: Grau Tombes (CAS 14570).

Bothrops brazili COLOMBIA (FMNH 165563 [skull]). *Vaupés*: Timbo (UTA R-3764). PERU: *Amazonas* (MVZ 163340, 163342-163343), vicinity of Huampani, Rio Cenepa (MVZ 163341 [skeleton]), vicinity of San Rio Cenepa (MVZ 163344 [skeleton]), vicinity of Kush, Rio Cenepa (MVZ 163346 [skeleton]), Rio Cenepa (MVZ 163345). *Loreto* (KU 222206), Rio Alto Purus, San Bernardo (LSUMZ 26851 [skeleton]). SURINAM: *Sipaliwini* (UTA R-29977).

Bothrops caribbaeus WEST INDIES: *St. Lucia* (UTA R-3850, R-7304, R-8351-8353), Anse-la-Raye (KU 268957), Fond Citron, Grande Anse (MCZ 70194, 70196, 70200). NO DATA (UTA R-16311).
Bothrops cotiara BRAZIL (FMNH 51662 [skull]). *Minas Gerais*: Sao Jao del Rei (CM R-364). *Santa Catarina* (KU 124648, 124650), Ibicare City (FLMNH 39811). *Sao Paulo*: Ibicare City (FLMNH 39812), Instituto Piulueiros (MVZ 200831).

Bothrops diporus ARGENTINA: Catamarca: Route 1 (TNHC 44863, 44877, 44989). Chaco: Corzuela (MVZ 134155). Cordoba: La Posta (MVZ 134156). La Rioja: Chamical (TNHC 46875-46876). Vermejo: La Plata (ANSP 7013). Jujuy: Ledesma (MVZ 127510). PARAGUAY: Villeta: Colonia Nueva Italia (MCZ 47029).

Bothrops erythromelas BRAZIL: Ceara: Limoeiro do Norte (LSUMZ 24446).

Bothrops fonsecai BRAZIL (FMNH 171285, 171288). *Minas Gerais*: Bocaina de Minas (UTA R-38291-38292). *São Paulo* (KU 125379, MCZ 20893), Campos do Jordano (CAS 116332). NO DATA (UMMZ 129625, 204214).

Bothrops insularis BRAZIL: *São Paulo*: Isla Quemada Grande (MVZ 176399, CM R-2682). NO DATA (MCZ 17620, 17622-17623, 17625-17627, UMMZ 58506-58507).

Bothrops itapetiningae BRAZIL (USNM 38187, 39059, 76320, 165514-165516). Matto Grosso: Descalvados (FMNH 10815). São Paulo (FMNH 2619, MCZ 20904, 20908, 20910). NO DATA (UMMZ 62913-62914).

Bothrops jararaca ARGENTINA: Bahía: Itapetingo City (FLMNH 39821). Minas Gerais: Juíz de Flora City (FLMNH 39817). Misiones (LACM 14601). BRAZIL (ANSP 7030). Paraná (KU 124655). Santa Caterina (KU 124651). São Paulo (FMNH 69951 [skull], KU 125036). PERU: Iquitos (FLMNH 39813). Bothrops jararacussu ARGENTINA: Misiones: El Dorado (LACM 146081). BRAZIL (FMNH 51659-51660, UTA R-32425). Espirito Santo (KU 124656). Santa Caterina: (KU 68959), Blumenau (UTA R-38295-38296). São Paulo: Evangelista Souza, Camal Santos (FMNH 171283), Jacarei (UTA R-37700), Taubate (FMNH 171300). PARAGUAY: Cazaapa (KU 290723).

Bothrops jonathani BOLIVIA: Cochabamba: 97km S Cochabamba (UTA R-34564). Bothrops lanceolatus WEST INDIES (ANSP 7016, 7017). Martinique (ANSP 7018, 7022, CM S-6390, KU 268958, USNM 11317). Tobago (USNM 10116, 10122). NO DATA (USNM 11318).

Bothrops leucurus BRAZIL: Bahia: Teixeira de Freitas (UTA 38290). Espirito Santo (KU 124659), Sao Domingos, Aguia Branca (CAS, 116342, CM 50981), Municipio de Aracruz, Barr (UTA R-19512), Nova Venecia (UTA R-38299-38301).

Bothrops lojanus ECUADOR (USNM 98927, 98935, 232519). Loja (KU 135213, MCZ 93587). Zamora (UTA R-23529).

Bothrops mattogrossensis ARGENTINA: *Salta* (KU 183007). BOLIVIA (FMNH 16558-16560). *Bení* (FMNH 104200), San Joaquin (FMNH 140199). *Santa Cruz* (MCZ 11857, 20620, 29229, 29231). PARAGUAY (MCZ 182691), mouth of Rio Aracay on Brazilian frontier (MCZ 34211-34212). *Boqueron* (KU 73475).

Bothrops moojeni BRAZIL: Goías: Cristianopolis (UTA R-28231). Parana (KU 124657), Foz do Iguaco (UTA R-35940). São Paulo (4 specimens of FMNH 2617), Biriqui (FMNH 171278 [skull]), Paraguacu Paulista (UTA 38298), Pirrasunuga (UTA 38297). *Bothrops neuwiedi* BRAZIL (FMNH 171255). *Parana* (MCZ 20938), Arau Caria (MCZ 54645), Jaguariavia (UTA R-38284), Piraquara (UTA R-35939), Telmaco Borba (UTA R-35938). *São Paulo* (KU 12468, MCZ 20923), Analandia (UTA R-38283), São Paulo (MVZ 134157). NO DATA (AMNH 29256 [skull]).

Bothrops osbornei ECUADOR (USNM 310822). Chimborazo: Pallatanga (KU 218462). Bothrops pauloensis BRAZIL (FMNH 171277), southeast (MCZ 17729, 17731). Goias, Goiania (UTA R-31000). São Paulo (MCZ 20919).

Bothrops pictus PERU (ANSP 11521, 11522, 11524, FMNH 5662, 5663, USNM 49992), Valle de Majes (FMNH 39991). *Cajmarca*: 7km W Tembladera (FLMNH 39826). *Lima* (FMNH 229982). *Madre de Diós* (FMNH 39990).

Bothrops pubescens BRAZIL: Rio Grande do Sul (R-41141), Porto Alegre (CAS 90737). URUGUAY (FMNH 10245, 10503).

Bothrops punctatus COLOMBIA: Caldas: Pueblo Rico, Santa Cecelia (FMNH 55888 [skull], 55894). Chocó: Cano Dorcodo (CAS 119594), Pangala (CAS 119921). Vallé (FMNH 165384-165386).

Bothrops sanctaecrucis BOLIVIA: Santa Cruz (MCZ 20618-20619). Santa Cruz de la Sierra (MCZ 17693, 20619). NO DATA (3 specimens of UMMZ 68027, 68028, 68031). BRAZIL (USNM 48931).

Bothrops venezuelensis VENEZUELA: Aragua (KU 182734). Sucre (KU 133536). NO DATA (USNM 129583, 259175, CBGR0027).

APPENDIX F: DATA USED IN REPRODUCTIVE MODE ANALYSIS

			DNA					
Species	Locality	Voucher/ sample	12S	16S	cyt-b	ND4	Rep. mode	Source
Viperinae								
Bitis (B. albanica, B. armata, B. heral	dica, B. inornata, B. parviocula and B. schneideri n	ot in analysis)						
B. arietans (Merrem, 1820)	Тодо	-	AF057185	AF57232	AY223558	AY223619	V	1, 2
B. atropos (Linnaeus, 1758)	South Africa, Western Cape, Bettys Bay (12S,	WW1446 (12S, 16S, ND4), PEM (no	EU624246	EU624281	AJ275691	EU624214	V	1, 2
	16S, ND4), South Africa, Swartburg (cyt-b)	number, cyt- <i>b</i>)						
B. caudalis (Smith, 1839)	South Africa, Northern Cape, Springbok (12S,	WW1555 (12S, 16S, ND4), ZMFK	EU624247	EU624282	AJ275693	EU624215	V	1, 2
	16S, ND4), Namibia, Swakopmund (cyt-b)	65212 (cyt- <i>b</i>)						
<i>B. cornuta</i> (Daudin, 1803)	near South Africa, Northern Cape, Springbok	WW1554 (12S, ND4), WW1589 (16S,	EU624248	EU624283	EU624305	EU624216	V	1, 2
		cyt-b)						
B. gabonica (Duméril, Bibron, and	South Africa, Kwazulu Natal, St. Lucia (12S,	WW1330 (12S, 16S, ND4), ZMFK	EU624249	EU624284	AJ275695	EU624217	V	1, 2
Duméril, 1854)	16S, ND4), DRC, Kivu (cyt- <i>b</i>)	64335 (cyt <i>-b</i>)						
B. nasicornis (Shaw, 1802)	Equatorial Guinea, Bioko	CAS207874	DQ305411	DQ305434	DQ305457	DQ305475	V	1, 2
<i>B. peringueyi</i> (Boulenger, 1888)	Namibia, Swakopmund	CAS193863	DQ305412	DQ305435	DQ305458	DQ305476	V	1, 2
B. rhinoceros (Schlegel, 1855)	Ghana (12S, 16S, ND4), Togo (cyt- <i>b</i>)	Liverpool School of Tropical Medicine,	EU624250	EU624285	AJ275696	EU624218	V	1, 2
		live coll. (12S, 16S, ND4), HLMD RA-						
		2909 (cyt <i>b</i>)						
<i>B. rubida</i> (Branch, 1997)	South Africa, Ceres	WW1397	EU624251	EU624286	EU624306	EU624219	V	1, 2
<i>B. worthingtoni</i> (Parker, 1932)	Kenya	WW1369 (12S, ND4), no data (16S,	EU624252	AJ275745	AJ275692	EU624220	V	1, 2
		cyt-b)						
<i>B. xeropaga</i> (Haacke, 1975)	-	WW1380	EU624253	EU624287	EU624307	EU624221	V	1, 2
Atheris (A. acuminata, A. broadleyi, A	A. hirsuta, A. katangensis, A. rungweensis, and A. s	ubocularis not in analysis)						
A. barbouri (Loveridge, 1930)	Masisiwe, Tanzania	ZMK R68297	-	AJ275739	AJ275686	-	?	3, see
								Methods
<i>A. ceratophora</i> (Werner, 1896)	-	-	DQ305410	DQ305433	DQ305456	DQ305474	V	1, 2
A. chlorechis (Pel, 1851)	unknown (12S, 16S, ND4), Togo (cyt- <i>b</i>)	WW1579 (12S, 16S, ND4), HLMD RA-	EU624244	EU624278	AJ275679	EU624211	V	1, 2
		2892 (cyt-b)						
<i>A. desaixi</i> (Ashe, 1968)	Kenya, Mt. Kenya	NHMN, no number	-	AJ275733	AJ275680	-	V	1, 2
A. hispida (Laurent, 1955)	Kenya, Kakamega	Collection Klaus Zahn, no number	-	AJ275734	AJ275681	-	V	1, 2
<i>A. nitschei</i> (Tornier, 1902)	Tanzania	CAS201653	AY223650	AY223663	AY223557	AY223618	V	1, 2
A. squamigera (Hallowell, 1854)	DRC (12S), unknown (16S, cyt- <i>b</i> , ND4)	no data (12S), WW1314 (16S, cyt- <i>b</i> ,	AF544762	EU624279	EU624303	EU624212	V	1, 2
		ND4)						

Taxa and data used in analysis, with reproductive mode for each species. Asterisks denote newly generated sequences for this project. Source numbers refer to reference list following table.

12S and 16S = small ribosomal RNA fragments, cyt b = cytochrome b, ND4 = NADH dehydrogenase subunit 4, tDNA = genomic or total DNA, O = oviparous, V = viviparous, OV = reproductively bimodal, ? = unknown mode

			DNA					
Species	Locality	Voucher/ sample	12S	16S	cyt b	ND4	Rep. mode	Source
Montatheris hindii not in analysis								
Proatheris superciliaris (Peters,	unknown (12S, 16S, ND4), Malawi (cyt-b)	WW1578 (12S, 16S, ND4),	EU624263	EU624296	AJ275685	EU624230	V	4
1855)		HLMD RA-2880 (cyt- <i>b</i>)						
Causus (C. bilineatus, C. lichtensteinii,	and <i>C. maculatus</i> not in analysis)							
C. defilippi (Jan, 1862)	Tanzania	CLP154	AF057186	AF057233	AY223556	AY223617	0	1, 2
C. resimus (Peters, 1862)	Africa	Moody 515	AY223649	AY223662	AY223555	AY223616	0	1, 2
C. rhombeatus (Lichtenstein, 1823)	Africa	-	DQ305409	DQ305432	DQ305455	DQ305473	0	1, 2, 5
Cerastes								
C. cerastes (Linnaeus, 1758)	Egypt	Latoxan, live coll. 0504-2	EU624254	EU624288	EU624308	EU624222	0	2
C. gasperettii (Leviton and	unknown (12S), Israel (16S, cyt <i>b</i>)	CLP910 (12S), HLMD RA-1593 (16S,	JN870181*	AJ275756	AJ275704	_	0	4
Anderson, 1967)		cyt b)						
C. vipera (Linnaeus, 1758)	Tunisia, Djebil	HLMD RA-1432	-	AJ275757	AJ275705	-	V	6
Echis (E. jogeri, E. khosatzkii, and E. b	orkini not in analysis)							
E. carinatus (Schneider, 1801)	Pakistan	Latoxan, live coll. 0012-74	EU624255	EU624289	EU624309	EU624223	OV	2, 7
E. coloratus (Günther, 1878)	Israel	WW597	EU624256	EU624290	EU624310	EU624224	0	1, 2
E. ocellatus (Stemmler, 1970)	Тодо	WW1378	EU624257	EU624291	EU624311	EU624225	0	4
E. omanensis (Babocsay, 2004)	-	E3026.8	-	EU642581	EU642590	-	0	1, 2
E. pyramidum (Geoffroy Saint-	Egypt	WW1611	EU624258	EU624292	EU624312	EU624226	0	4
Hilaire, 1827)								
Eristicophis macmahonii (Alcock	unknown (12S, 16S, ND4), Pakistan (cyt-b)	WW1360 (12S, 16S, ND4), HLMD RA-	EU624259	EU624293	AJ275711	EU624227	0	8
and Finn, 1897)		2890 (cyt- <i>b</i>)						
Pseudocerastes (P. urarachnoides not	: in analysis)							
P. fieldi (Schmidt, 1930)	unknown (12S), Israel (16S, cyt-b)	WW1365 (12S), HLMD RA-1182 (16S,	EU624264	AJ275769	AJ275716	-	0	1, 7
		cyt-b)						
P. persicus (Duméril, Bibron, and	Pakistan	HLMD RA-1724	-	AJ275770	AJ275717	-	0	2,9
Duméril, 1854)								
Macrovipera (M. deserti not in analys	is)							
<i>M. lebetina</i> (Linnaeus, 1758)	Turkmenistan, Kopet Dagh (cyt-b), Uzbekistan,	Latoxan live coll. 0413-2 (12S, 16S,	EU624260	EU624294	AJ275713	EU624228	0	1, 10, 11
	Nuratau (12S, 16S, ND4)	ND4), G. Nilson private coll. (cyt-b)						
M. schweizeri (Werner, 1935)	Greece, Milos	Latoxan live coll. 0413-2 (12S), G.	EU624262	AJ275768	AJ275715	-	0	11, 12
		Nilson private coll. (16S, cyt-b)						

			DNA				_	
Species	Locality	Voucher/sample	12S	16S	cyt b	ND4	Rep. mode	Source
Montivipera			_					
M. albizona (Nilson, Andrén and	_	WW1377 (12S, ND4), no data (16S,	EU624265	AJ275780	AJ275727	EU624231	V	10
Flärdh, 1990)		cyt-b)						
<i>M. bornmuelleri</i> (Werner, 1898)	Lebanon	-	-	AJ275779	AJ275726	-	V	2
<i>M. latifii</i> (Mertens, Darewsky and	unknown	CLP570	JN870191*	JN870199*	JN870205*	-	V	2
Klemmer, 1967)								
<i>M. raddei</i> (Boettger, 1890)	Ararat, Turkey	Collection Mario Schweiger, no number	-	AJ275784	AJ275730	-	V	2
M. wagneri (Nilson and Andrén,	unknown (12S, ND4), Turkey, Karakurt (16S,	CLP568 (12S, ND4), Collection Mario	JN870188*	AJ275778	AJ275725	JN870213*	V	2
1984)	cyt b)	Schweiger, no number (16S, cyt b)						
<i>M. xanthina</i> (Gray, 1849)	unknown (12S, ND4), Turkey (16S, cyt-b)	Zoran Tadić, private coll. (12S, ND4),	EU624268	AJ275777	AJ275724	EU624234	V	2
		G. Nilson, private coll. (16S, cyt-b)						
Daboia			_					
D. mauritanica (Duméril and Bibron,	Morocco	Latoxan live coll. 0415-3 (12S, 16S,	EU624261	EU624295	EU624313	EU624229	0	4
1848)		ND4), HLMD RA-1182 (cyt-b)						
D. palaestinae (Werner, 1938)	unknown (12S), Israel (16S, cyt b)	CLP905 (12S), HLMD RA-1904 (16S,	JN870183*	AJ275775	AJ275722	-	0	2
		cyt b)						
D. russelii (Shaw and Nodder, 1797)	Pakistan	HLMD RA-2899	_	AJ275776	AJ275723	_	V	1, 2
D. siamensis (Smith, 1917)	Myanmar, Mandalay Div.	CAS205253	DQ305413	DQ305436	DQ305459	DQ305477	V	1, 2
Vipera (V. darevskii, V. lotievi, V. mag	nifica, V. monticola, V. orlovi, V. renardi, and V. s	achalinensis not in analysis)	-					
V. ammodytes (Linnaeus, 1758)	-	Liverpool School of Tropical Medicine, live coll., Va1	EU624266	EU624297	EU624314	EU624232	V	1, 2
V. aspis (Linnaeus, 1758)	unknown (12S), Herault, France (cyt b)	CLP573 (12S), no number (cyt <i>b</i>)	JN870190*	_	AY321098	-	V	1, 2
<i>V. barani</i> (Böhme and Joger, 1983)	Turkey	-	-	-	AY321092	-	V	1, 13
V. berus (Linnaeus, 1758)	United Kingdom (12S, ND4), Sweden,	WW 199 (12S, ND4), HLMD RA-1665	EU624267	AJ275772	AJ275719	EU624233	V	1, 2, 5
	Göteborg (16S, cyt-b)	(16S, cyt-b)						
<i>V. dinniki</i> (Nikolsky, 1913)	Georgia	HLMD RA-1610	_	AJ275773	AJ275720	_	V	2
V. kaznakovi (Nikolsky, 1909)	Turkey	_	_	_	AY321093	_	V	2
V. latastei (Bosca, 1878)	Spain	-	_	_	AY321094	-	V	2
V. nikolskii (Vedmederya, Grubant	-	Sar1 (12S), no data (16S, cyt-b)	EU543219	AJ275774	AJ275721	-	V	1, 13
and Rudajewa, 1986)								
V. seoanei (Lataste, 1879)	San Sebastian, Spain	HLMD RA-2875	-	AJ275782	AJ275729	-	V	2
V. ursinii (Bonaparte, 1835)	Nileke, Xinjiang Uygur Zizhiqu, China (ND4, 12s) / Vaucluse, France (cyt-b)	NNU 95045 (ND4, 12s) / no data (cyt- b)	EF012817	-	AY311383	EF012798	V	1, 2

			DNA					
Species	Locality	Voucher/sample	12S	16S	cyt b	ND4	Rep. mode	Source
Crotalinae								
Calloselasma rhodostoma (Boie,	-	UTA-R22247	AF057190	AF057237	AY223562	U41878	0	1, 5, 14
1827)								
Hypnale (H. nepa and H. walli not in a	nalysis)							
H. hypnale (Merrem, 1820)	Sri Lanka, Columbo	CLP-164	AF057189	AF057236	AY223561	U41884	V	5
Garthius chaseni (Smith, 1931)	Malaysia, Sabah	AM B306	AY352791	AY352729	AY352760	AY352825	?	
Deinagkistrodon acutus (Günther,	China	CLP-28	AF057188	AF057235	AY223560	U41883	0	1, 5, 14
1888)								
Tropidolaemus (T. huttoni, T. laticinct	us and T. philippensis not in analysis)							
T. subannulatus (Gray, 1842)	Indonesia, West Kalimantan	CLP-141	AF057198	AF057245	AY223571	AY223625	V	5
<i>T. wagleri</i> (Boie, 1827)	Malaysia, Perak	AM B132	AF517167	AF517180	AF517191	AF517223	V	5, 14
Trimeresurus (T. andalasensis, T. bron	gersmai, T. strigatus, and T. wiroti not in analysis)							
T. borneensis (Peters, 1872)	Malaysia, Sabah	AM B301	AY352783	AY352722	AY352754	AY352817	0	5
T. gramineus (Shaw, 1802)	India, Tamil Nadu	AM A220	AY352793	AY352731	AY352761	AY352827	V	7
T. malabaricus (Jerdon, 1854)	India, Tamil Nadu	AM A218	AY059548	AY059564	AY059569	AY059587	?	
T. puniceus (Boie, 1827)	Indonesia	AM B213	AF517164	AF517177	AF517192	AF517220	V	14
T. trigonocephalus (Latreilee, 1801)	Sri Lanka, Balangoda	AM A58	AY059549	AY059565	AF171890	AY059597	V	1, 15
Peltopelor macrolepis not in analysis		-	-	-	-	-		
Himalyophis tibetanus (Huang,	Nepal, Helambu Prov.	ZMB-65641	AY352776	AY352715	AY352749	AY352810	V	14
1982)								
Popeia								
P. barati (Regenass and Kramer,	Sumatra, Bengkulu Prov.	AM-B361	AY371753	AY371769	AY371801	AY371837	V	2
1981)								
P. buniana (Grismer et al. 2006)	Malaysia, Pulau Tioman	AM-B519	AY371752	AY371778	AY371818	AY371853	V	2
P. fucata (Vogel, David and	Thailand, Thammarat Prov.	AM A203	AY059537	AY059553	AY371796	AY059588	V	2
Pauwels, 2004)								
P. nebularis (Vogel et al. 2004)	Malaysia	AM-B238	AY371737	AY371774	AY371814	AY371839	V	2
P. popeiorum (Smith, 1937)	Laos, Phongsaly Prov.	FMNH-258950	AY059538	AY059554	AY059571	AY059590	V	2, 14
P. sabahi (Regenass and Kramer,	Borneo (East Malaysia)	AM B344	AY371736	AY371771	AY371815	AY371842	V	2
1981)								
Parias								
P. flavomaculatus (Gray, 1842)	Philippines, Luzon	AM B3	AY059535	AY059551	AF171916	AY059584	0	5
<i>P. hageni</i> (Lidth de Jeude, 1886)	Thailand, Songhkla Prov.	AM B33	AY059536	AY059552	AY059567	AY059585	0	5
P. malcolmi (Loveridge, 1938)	Malaysia. Sabah	AM B349	AY371757	AY371786	AY371832	AY371861	0	5
P. schultzei (Griffin, 1909)	Philippines, Palawan	AM B210	AY352785	AY352725	AY352756	AY352819	0	5
, , ,		-		-				

	DNA							
Species	Locality	Voucher/sample	12S	16S	cyt b	ND4	Rep. mode	Source
P. sumatranus (Raffles, 1822)	Indonesia, Sumatra, Bengkulu Prov.	AM B367	AY371765	AY371791	AY371824	AY371864	0	5
Cryptelytrops (C. fasciatus, C. honson	ensis, and C. labialis not in analysis)							
C. albolabris (Gray, 1842)	Hong Kong, Port Shelter Is., Yim Tin Tsi	MCZR-177966	AF057195	AF057242	AY223567	U41890	V	14
C. andersonii (Theobald, 1868)	India, Andaman Is.	AM A77	AY352801	AY352740	AF171922	AY352835	V	2
C. cantori (Blyth, 1846)	India, Nicobar Is.	AM A85	AY352802	AY352741	AF171889	AY352836	V	2
C. erythrurus (Cantor, 1839)	Myanmar, Rangoon	AM A209	AF517161	AF517174	AF171900	AF517217	V	14
C. insularis (Kramer, 1977)	Indonesia, Java	AM A109	AY352799	AY352738	AY352767	AY352833	V	2
C. kanburiensis (Smith, 1943)	Thailand	AM B522	AY289219	AY352737	AY289225	AY289231	V	2
C. macrops (Kramer, 1977)	Thailand, Bangkok	AM B27	AF517163	AF517176	AF517184	AF517219	V	2, 14
C. pupureomaculatus (Gray, 1832)	Thailand, Satun Prov.	AM A83	AF517162	AF517175	AF517188	AF517218	V	2
C. septentrionalis (Kramer, 1977)	Nepal, Mahattari Dist.	AM A100	AY059543	AY059559	AF171909	AY059592	V	14
C. venustus (Vogel, 1991)	Thailand, Thammarat Prov.	AM A241	AY293931	AY352723	AF171914	AY93930	V	2
Viridovipera								
V. gumprechti (David, Vogel,	Thailand, Loei Prov.	AM A164	AF517168	AF517181	AY352766	AF157224	V	1
Pauwels and Vidal, 2002)								
V. medoensis (Zhao, 1977)	Myanmar, Kachin	CAS 221528	AY352797	AY352735	AY352765	AY352831	V	1
V. stejnegeri (Schmidt, 1925)	Taiwan, Taipei	UMMZ-190532	AF057197	AF057244	AY223570	U41892	V	1, 14, 16
V. truongsonensis (Orlov, Ryabov,		B659	EU443817	EU443818	EU443815	EU443816	V	1
Thanh and H Cuc, 2004)								
V. vogeli (David, Vidal and Pauwels,	Thailand, Ratchasima Prov.	AM B97	AY059546	AY059562	AY059574	AY059596	V	1
2001)								
V. yunnanensis (Schmidt, 1925)		GP37	EU443811	EU443812	EF597522	EF597527	V	1
Ovophis in part (O. tonkinensis and C	<i>D. zayuensis</i> not in analysis)							
O. monticola (Günther, 1864)	China, Yunnan Prov., Nu Jiang Prefecture	CAS215050	DQ305416	DQ305439	DQ305462	DQ305480	0	1, 5, 7, 14
Gloydius (G. himalayanus and G. mol	<i>nticola</i> not in analysis)							
<i>G. blomhoffii</i> (Boie, 1826)	Japan	AM B524	AY352780	AY352719	AY352751	AY352814	V	5
G. brevicaudus (Stejneger, 1907)	China	AM B525	AY352781	AY352720	AY352752	AY352815	V	5
G. halys (Pallas, 1776)	Kazakhstan	_	AF057191	AF057238	AY223564	AY223621	V	5, 14
G. intermedius (Strauch, 1868)	Japan (12S, 16S, cyt-b), Mongolia (ND4)	unknown (12S, 16S, cyt-b), NNU	JN870184*	JN870194*	JN870201*	EF012788	V	5, 14
		95050 (ND4)						
<i>G. saxatilis</i> (Emelianov, 1937)	_	Alec 60588-2	JN870185*	JN870195*	JN870202*	JN870210*	V	5
G. shedaoensis (Zhao, 1979)	China, Liaoning	ROM-20468	AF057194	AF057241	AY223566	AY223623	V	5, 17
G. strauchi (Bedriaga, 1912)	China, Jilin, Wagie Sichuan	ROM-20473	AF057192	AF057239	AY223563	AY223620	V	5
G. tsushimaensis (Isogawa, Moriya		_	JN870186*	JN870196*	JN870203*	JN870211*	V	5
and Mitsui, 1994)								

			DNA					
Species	Locality	Voucher/sample	12S	16S	cyt b	ND4	Rep. mode	Source
G. ussuriensis (Emelianov, 1929)	China, Jilin, Kouqian	ROM-20452	AF057193	AF057240	AY223565	AY223622	V	5, 14
Protobothrops								
P. cornutus (Smith, 1930)	Vietnam, Phong Nha-Ke NP	ZFMK-75067	AY294272	AY294262	AY294276	AY294267	0	5
P. elegans (Gray, 1849)	Japan, Ryukyu Is., Ishigaki	UMMZ-199970	AF057201	AF057248	AY223575	U41893	0	5
P. flavoviridis (Hallowell, 1861)	Japan, Ryukyu Is., Tokunoshima	UMMZ-199973	AF057200	AF057247	AY223574	U41894	0	1, 5, 18
<i>P. jerdonii</i> (Günther, 1875)	China, Nu Jiang, Yunnan	CAS215051	AY294278	AY294269	AY294274	AY294264	OV	1, 14
P. kaulbacki (Smith, 1940)	China	SYNU0400II30	DQ666056	DQ666055	DQ666060	DQ666057	0	5
P. mangshanensis (Zhao, 1990)	China, Hunan Prov.	AM B300	AY352787	AY352726	AY352758	AY352821	0	5
P. mucrosquamatus (Cantor, 1839)	Vietnam	ROM-2717	AY223653	AY223666	AY223577	AY223629	0	5, 14
P. sieversorum (Ziegler, Herrmann,	Vietnam, Phong Nha-Quang Ping Province	ZFMK 75066	DQ305414	DQ305437	DQ305460	DQ305478	0	5
David, Orlov and Pauwels, 2000)								
P. tokarensis (Nagai, 1928)	Japan, Ryukyu Is., Takarajima	FK-1997	AF057202	AF057249	AY223576	AY223628	0	1
P. xiangchengensis (Zhao, Jiang and	-	SCUM 035046	AY763189	AY763208	DQ666062	DQ666059	0	5
Huang, 1979)								
Ovophis okinavensis (Boulenger,	Japan, Okinawa	CLP-162	AF057199	AF057246	AY223573	U41895	0	1, 5
1892)								
Trimeresurus gracilis (Oshima,	Taiwan	NTNUB 200515	DQ305415	DQ305438	DQ305460	DQ305478	V	2
1920)								
Agkistrodon			_					
A. bilineatus (Günther, 1863)	Costa Rica, Guanacaste	WWL	AF156593	AF156572	AY223613	AY156585	V	19
A. contortrix (Linnaeus, 1766)	USA, Ohio, Athens Co.	Moody 338	AF057229	AF057276	AY223612	AF156576	V	5, 19
A. piscivorous (Lacépède, 1789)	USA, South Carolina	CLP-30	AF057231	AF057278	AY223615	AF156578	V	5, 19
A. taylori (Burger and Robertson,	Mexico, Tamaulipas	CLP-140	AF057230	AF057230	AY223614	AF156580	V	19
1951)								
Sistrurus			_					
S. catenatus (Rafinesque, 1818)	USA, Texas, Haskel Co.	Moody 502	AF057227	AF057274	AY223610	AY223648	V	1, 5, 19
S. miliarius (Linnaeus, 1766)	USA, Florida, Lee Co.	UTA-live	AF057228	AF057275	AY223611	U41889	V	1, 5, 19
Crotalus (C. ericsmithi, C. lannomi, C.	stejnegeri, and C. tancitarensis not in analysis)		_					
C. adamanteus (Palisot de Beauvois,	USA, Florida, St. Johns Co.	CLP-4	AF057222	AF057269	AY223605	U41880	V	5, 19
1799)								
C. aquilus (Klauber, 1952)	Mexico, San Luis Potosi	ROM-18117	AF259232	AF259125	AF259162	-	V	19
C. atrox (Baird and Girard, 1853)	USA, Texas, Jeff Davis Co.	CLP-64	AF0572225	AF057272	AY223608	AY223646	V	5, 19
C. basiliscus (Cope, 1864)	Mexico, Nayarit	ROM-18188 (12S, 16S, cyt-b), 822	AF259244	AF259136	AF259174	AY704894	V	19
		(ND4)						

			DNA					
Species	Locality	Voucher/sample	12S	16S	cyt b	ND4	Rep. mode	Source
C. catalinensis (Cliff, 1954)	Mexico, Baja California Sur, Isla Santa Catalina	ROM-18250 (12S, 16S, cyt-b), BYU- 34641-42	AF259259	AF259151	AF259189	-	V	19
C. cerastes (Hallowell, 1854)	USA, California, Riverside Co.	ROM-FC-20099 (12S), ROM-19745 (16S, cyt- <i>b</i>)	AF259235	AF259128	AF259165	-	V	5, 19
C. culminatus (Klauber, 1952)	Mexico, Morelos	3291	-	-	AY704830	AY704880	V	19
C. durissus (Linnaeus, 1758)	Venezuela (12S, 16S, cyt- <i>b</i>), Brazil, Sao Paulo, Pindamonhangaba (ND4)	ROM-18138 (12S, 16S, cyt- <i>b</i>), IB 55601 (ND4)	AF259248	AF259140	AF259178	AF292608	V	5, 19
<i>C. enyo</i> (Cope, 1861)	Mexico, Baja California Sur	ROM-FC 441 (12S), ROM13648 (16S, cyt- <i>b</i>)	AF259245	AF259137	AF259175	-	V	19
C. horridus (Linnaeus, 1758)	USA, Arkansas (12S, 16S, cyt-b), USA, Texas, Lee Co. (ND4)	UTA-R14697 (12S, 16S, cyt-b), TNHC65471 (ND4)	AF259252	AF259144	AF259182	JN870207*	V	5, 19
C. intermedius (Troschel, 1865)	Mexico, Veracruz (12S, 16S, cyt- <i>b</i>), Mexico, Oaxaca, El Tejocote (ND4)	ROM-FC223 (12S), ROM-18164 (16S, cyt-b), JAC8881 (ND4)	AF259238	AF259131	AF259168	JN870208*	V	5, 19
C. lepidus (Kennicott, 1861)	Mexico, Chihuahua (12S, 16S, cyt-b), USA, Mew Mexico, Socorro Co. (ND4)	ROM-18128 (12S, 16S, cyt-b), UMMZ 199960 (ND4)	AF259230	AF259123	AF259160	U41881	V	5, 19
C. mitchelli (Cope, 1861)	USA, California, Imperial Co.	ROM-18178	AF259250	AF259142	AF259180	-	V	5, 19
C. molossus (Baird and Girard, 1853)	USA, Texas, El Paso Co.	CLP-66	AF057224	AF057271	AY223607	AY223645	V	5, 19
C. oreganus (Holbrook, 1840)	USA, California, Los Angeles Co. (12S, 16S, cyt- b), USA, Colorado, Moffat Co. (ND4)	ROM-19656 (12S, 16S, cyt-b), Kyle Ashton specimen, no number (ND4)	AF259253	AF259145	AF259183	AF194158	V	5, 19
C. polystictus (Cope, 1865)	Mexico, Districto Federal	ROM-FC263 (12S, 16S), ROM-18139 (cyt-b)	AF259236	AF259129	AF259166	-	V	5, 19
<i>C. pricei</i> (Van Denburgh, 1895)	Mexico, Nuevo Leon	ROM-FC2144	AF259237	AF259130	AF259167	-	V	19
C. pusillus (Klauber, 1952)	Mexico, Michoacán	ROM-FC271	AF259229	AF259122	AF259159	-	V	19
<i>C. ravus</i> (Cope, 1865)	Mexico, Puebla, Zapotitlán	UTA-live	AF057226	AF057273	AY223609	AY223647	V	19
<i>C. ruber</i> (Cope, 1892)	USA, California, Riverside Co.	ROM-18197 (12S, 16S, cyt-b), RWV2001-08 (ND4)	AF259261	AF259153	AF259191	DQ679838	V	19
C. scutulatus (Kennicott, 1861)	USA, Arizona, Mojave Co. (12S, 16S, cyt-b), USA: New Mexico: Doña Ana Co. (ND4)	ROM-18210 (12S, 16S, cyt-b), UTEP- CRH 153 (ND4)	AF259254	AF259146	AF259184	AF194167	V	5, 19
C. simus (Latrielle, 1801)	Costa Rica, Guanacaste	WW-1312 (12S, 16S), WW-1097 (cyt b, ND4)	EU624240	EU624274	EU624302	AY704885	V	19
C. tigris (Kennicott, 1859)	USA, Arizona, Pima Co.	CLP-169	AF057223	AF057270	AY223606	AF156574	V	19
<i>C. tortugensis</i> (Van Denburgh and Slevin, 1921)	Mexico, Baja California Sur, Isla Tortuga	ROM-18192 (12S, 16S, ND4), ROM- 18195	AF259257	AF259149	AF259187	DQ679839	V	19
<i>C. totonacus</i> (Gloyd and Kauffeld, 1940)	Mexico, Tamaulipas	SD	-	-	AY704837	AY704887	V	19
C. transversus (Taylor, 1944)	Mexico	KZ-shed skin	AF259239	-	AF259169	-	V	19

			DNA					
Species	Locality	Voucher/sample	125	16S	cyt b	ND4	Rep. mode	Source
C. triseriatus (Wagler, 1830)	Mexico, Districto Federal, Xochomiko	ROM-18120	AF259234	AF259127	AF259164	-	V	5, 19
<i>C. tzabcan</i> (Klauber, 1952)	Belize, Corozal District	255 - Peter Singfield, live coll.	-	-	AY704806	AY704856	V	19
C. viridis (Rafinesque, 1818)	USA, Arizona, Coconino Co. (12S); USA, Colorado, Dona Ana Co. (cyt- <i>b</i> , ND4)	131S (12S), UTEP 17625 (cyt- <i>b</i> , ND4)	DQ020029	-	AF147866	AF194157	V	5, 19
C. willardi (Meek, 1905)	USA, Arizona, Cochise Co. (12S, 16S, cyt-b, ND4)	HWG-2575(12S, 16S, cyt- <i>b</i>), TNHC- W9306 (ND4)	AF259242	AF259134	AF259172	JN870209*	V	5, 19
Ophryacus			_					
O. melanurus (Müller, 1923)	Mexico	UTA-R34605	AF057210	AF057257	AY223587	AY223634	V	5, 19
O. undulatus (Jan, 1859)	Mexico	CLP-73	AF057209	AF057256	AY223586	AY223633	V	19
Lachesis			_					
L. acrochorda (Garcia, 1896)	Colombia	CLP-319	JN870187*	JN870197*	JN870204*	JN870212*	0	5, 19
L. melanocephala (Solórzano and	Costa Rica, Peninsula de Oro, Rincon	-	-	-	U96018	U96028	0	5, 19
Cerdas, 1986)								
<i>L. muta</i> (Linnaeus, 1766)	Peru	Cadle 135	AF057221	AF057268	AY223604	AY223644	0	5, 19
L. stenophrys (Cope, 1876)	Costa Rica, Limón	-	AF057220	AF057267	AY223603	U41885	0	5, 19
Bothriechis			_					
B. aurifer (Salvin, 1860)	Guatemala	UTA-R35031	DQ305425	DQ305448	DQ305466	DQ305483	V	5, 19
B. bicolor (Bocourt, 1868)	-	UTA-R34156	DQ305426	DQ305449	DQ305467	DQ305484	V	19
B. lateralis (Peters, 1862)	Costa Rica, Acosta	MZUCR-11155	AF057211	AF057258	AY223588	U41873	V	19
<i>B. marchi</i> (Barbour and Loveridge, 1929)	Guatemala, Zacapa, Cerro del Mono	UTA-R52959	DQ305428	DQ305451	DQ305469	DQ305486	V	19
B. nigroviridis (Peters, 1859)	Costa Rica, San Gerondo de Dota	MZUCR-11151	AF057212	AF057259	AY223589	AY223635	V	5, 19
B. rowleyi (Bogert, 1968)	Mexico: Cerro Baúl	JAC 13295	DQ305427	DQ305450	DQ305468	DQ305485	V	19
B. schlegelii (Berthold, 1846)	Costa Rica, Cariblanco de Sarapiquí	MZUCR-11149	AF057213	AF057260	AY223590	AY223636	V	5, 19
B. supraciliaris (Taylor, 1954)	Costa Rica. San Vito	_	DQ305429	DQ305452	DQ305470	DQ305482	V	19
B. thalassinus (Campbell and Smith,	Guatemala, Zacapa	UTA-R52958	DQ305424	DQ305447	DQ305465	U41875	V	19
2000)								
Atropoides								19
A. indomitus (Smith and Ferrari- Castro. 2008)	Honduras, Olancho	ENS-10630	_	-	DQ061194	DQ061219	V	19
<i>A. mexicanus</i> (Duméril, Bibron and Duméril, 1854)	Costa Rica	CLP-168	AF057207	AF057254	AY223584	U41871	V	19
A. nummifer (Rüppell, 1845)	Mexico, Puebla, San Andres Tziaulan	ENS-10515	DQ305422	DQ305445	DQ061195	DQ061220	V	19
A. occiduus (Hoge, 1966)	Guatemala, Escuintla	UTA-R29680	DQ305423	DQ305446	AY220315	AY220338	V	19

				DI				
Species	Locality	Voucher/sample	12S	16S	cyt b	ND4	Rep. mode	Source
A. olmec (Perez-Higareda, Smith	Mexico, Veracruz	JAC-16021	AY223656	AY223669	AY220321	AY220344	V	5, 19
and Julia-Zertuche, 1985)								
A. picadoi (Dunn, 1939)	Costa Rica, Alajuella	CLP-45	AF057208	AF057255	AY223593	U41872	V	5, 19
Cerrophidion (C. barbouri not in anal	ysis)							
C. godmani (Günther, 1863)	Costa Rica, San Jose	MZUCR-11153	AF057203	AF057250	AY223578	U41879	V	5, 19
C. petlalcalensis (Lopéz-Luna,	Mexico, Veracruz, Orizaba	ENS-10528	DQ305420	DQ305443	DQ061202	DQ061227	V	19
Antonio, Vogt and Torre-Loranca,								
1999)								
C. tzotzilorum (Campbell, 1985)	Mexico, Chiapas, Las Rosas	ENS10529	JN870182*	JN870193*	DQ061203	DQ061228	V	19
Porthidium (P. volcanicum not in ana	lysis)							
P. arcosae (Schätti and Kramer,	Ecuador	WWW-750	AY223655	AY223668	AY223582	AY223630	V	19
1993)								
P. dunni (Hartweg and Oliver, 1938)	Mexico, Oaxaca	ENS-9705	AY223654	AY223667	AY223581	AY223630	V	19
P. hespere (Campbell, 1976)	Mexico, Michoacán	UOGV 726	-	-	EU017534	EU016099	V	19
P. lansbergii (Schlegel, 1841)	Venezuela, Falcón, San Antonio	WW-787	EU624242	EU624276	AY713375	AF393623	V	19
P. nasutum (Bocourt, 1868)	Costa Rica	MZUCR-11150	AF057204	AF057251	AY223579	U41887	V	19
P. ophryomegas (Bocourt, 1868)	Costa Rica, Guanacaste	UMMZ-210276	AF057205	AF057252	AY223580	U41888	V	19
P. porrasi (Lamar, 2003)	Costa Rica, Puntarenas	MSM	DQ305421	DQ305444	DQ061214	DQ061239	V	19
P. yucatanicum (Smith, 1941)	Mexico: Yucatán: Car. Yaxcabá-Tahdzibichen	JAC-24438	JN870189*	JN870198*	DQ061215	DQ061244	V	19
Bothrocophias (B. colombianus and E	<i>B. myersi</i> not in analysis)							
B. campbelli (Freire-Lascano, 1991)	Ecuador, Chimborazo, Pallatanga	INHMT, uncatalogued	_	-	AF292584	AF292622	V	19
<i>B. hyoprora</i> (Amaral, 1935)	Colombia, Letícia	_	AF057206	AF057253	AY223593	U41886	V	19
B. microphthalmus (Cope, 1876)	Peru, Pasco Dept.	LSUMZ H-9372	AY223657	AY223670	AY223594	AY223638	V	19
Rhinocerophis (R. jonathani not in an	alysis)							
R. alternatus (Duméril, Bibron and	_	DLP-2879	AY223660	AY223673	AY223601	AY223642	V	19
Duméril, 1854)								
R. ammodytoides (Leybold, 1873)	Argentina, Neuguen	MVZ-223514	AY223658	AY223671	AY223595	AY223639	V	19
R. cotiara (Gomes, 1913)	Brazil	WWW	AF057217	AF057264	AY223597	AY223640	V	19
R. fonsecai (Hoge and Belluomini,	Brazil, São Paulo, Campos do Jordão	IB 55543	-	-	AF292580	AF292618	V	19
1959)								
R. itapetiningae (Boulenger, 1907)	Brazil, São Paulo, Itarapina	ITS427	EU867253	EU867265	EU867277	EU867289	V	19
Bothropoides (B. lutzi, B. marmoratu	s and <i>B. mattogrossensis</i> not in analysis)							
B. alcatraz (Marques, 2002)		CBGM baz001	-	-	AY865820	-	V	19
B. diporus (Cope, 1862)	Argentina, La Rioja, Depto. Castro Barros	PT3404	DQ305431	DQ305454	DQ305472	DQ305489	V	19

				DI				
Species	Locality	Voucher/sample	12S	16S	cyt b	ND4	Rep. mode	Source
B. erythromelas (Amaral, 1923)	Brazil, Algóas, Piranhas	RG-829	AF057219	AF057266	AY223600	U41877	V	19
<i>B. insularis</i> (Amaral, 1921)	Brazil, São Paulo, Ilha Queimada Grande	WWW	AF057216	AF057263	AY223596	AY223641	V	19
<i>B. jararaca</i> (Wied, 1824)	Brazil, São Paulo, Itarapina	MM (19)6	EU867254	EU867266	EU867278	EU867290	V	19
<i>B. neuwiedi</i> (Wagler, 1824)	Brazil, São Paulo, Angatuba	IB 5555	-	_	AF292585	AF292623	V	19
<i>B. pauloensis</i> (Amaral, 1925)	-	CLP 3	EU867260	EU867272	EU867284	EU867296	V	19
B. pubescens (Cope, 1870)	Uruguay, Rocha, Potrerillo de Santa Teresa	N132 (12S, 16S), N331 (cyt- <i>b</i> , ND4)	JN870180*	JN870192*	JN870200*	JN870206*	V	19
Bothriopsis (B. medusa and B. oligolep	<i>is</i> not in analysis)							
<i>B. bilineata</i> (Wied, 1825)	Colombia, Letícia	-	AF057214	AF057261	AY223591	U41875	V	19
B. chloromelas (Boulenger, 1912)	Peru, Pasco Dept.	LSUMZ 41037	DQ305430	DQ305453	DQ305471	DQ305488	V	19
<i>B. pulchra</i> (Shreve, 1934)	Ecuador, Zamora Chinchipe	FHGO live 2142	JN870179*	-	AF292593	AF292631	V	19
<i>B. taeniata</i> (Wagler, 1824)	Suriname	_	AF057215	AF057262	AY223592	AY223637	V	19
Bothrops (B. andianus, B. barnetti, B. l	ojanus, B. muriciencis, B. pirajai, B. roedingeri, B.	sanctaecrucis, and B. venezuelensis not i	n analysis)					
<i>B. asper</i> (Garman, 1883)	Costa Rica	MZUCR-11152	AF057218	AF057265	AY223599	U41876	V	19
<i>B. atrox</i> (Linnaeus, 1758)	-	WWW-743	AY223659	AY223672	AY223598	AY223641	V	19
<i>B. brazili</i> (Amaral, 1923)	Venezuela, Amazonas	USNM RWM17831	EU867252	EU867264	EU867276	EU867288	V	19
<i>B. caribbaeus</i> (Garman, 1887)	Saint Lucia	released after sampling	_	_	AF292598	AF292636	V	19
<i>B. isabelae</i> (Sandner Montilla, 1979)	-	_	_	_	AF292603	AF292641	V	19
<i>B. jararacussu</i> (Lacerda, 1884)	-	DPL-104	AY223661	AY223674	AY223602	AY223643	V	19
<i>B. lanceolatus</i> (Bonnaterre, 1790)	Martinique	-	_	_	AF292599	AF292637	V	19
B. leucurus (Wagler, 1824)	-	CLP195	EU867255	EU867267	EU867279	EU867291	V	19
B. marajoensis (Hoge, 1966)	Brazil, Pará, Ilha de Marajó	-	_	_	AF292605	AF292643	V	19
<i>B. moojeni</i> (Hoge, 1966)	Brazil, São Paulo, Itarapina	ITS 418	EU867257	EU867269	EU867281	EU867293	V	19
B. osbornei (Freire-Lascano, 1991)	Ecuador, Pichincha, Pedro Vicente Maldonado	FHGO live 2166	_	_	AF292595	AF292633	V	19
<i>B. pictus</i> (Tschudi, 1845)	Peru, Ayacucho, Pullo	MM OP	-	-	AF292583	AF292621	V	19
<i>B. punctatus</i> (Garcia, 1896)	-	FHGO live 2452	_	-	AF292594	AF292632	V	19
Azemiopinae								
Azemiops feae (Boulenger, 1888)	China	CLP-157	AF057187	AF057234	AY223559	U41865	0	5, 14
Outgroups							<u>.</u>	
Acrochordus granulatus (Schneider, 1799)	-	NUM-AZ0375	NC007400	NC007400	NC007400	NC007401		
Leioheterodon madaaascariensis	Madagascar	no data (12S). MRSN-FAZC 10621	AF544768	AY188061	AY188022	U49318		
(Duméril, Bibron and Duméril, 1854)		(16S, cyt- <i>b</i>), RAN 42543 (ND4)						
Malpolon monspessulanus	Morocco (12S), Greece (16S. cvt-b). Spain	E2509.18 (12S), HLMD RA-2606 (16S.	DQ451927	AY188068	AY188029	AY058989		
(11	(ND4)	a + b = 1, -1, -1, -1, -1, -1, -1, -1, -1, -1,	-,					

			DNA					
Species	Locality	Voucher/sample	12S	16S	cyt b	ND4	Rep. mode	Source
Malpolon monspessulanus	Morocco (12S), Greece (16S, cyt-b), Spain	E2509.18 (12S), HLMD RA-2606 (16S,	DQ451927	AY188068	AY188029	AY058989		
(Hermann, 1804)	(ND4)	cyt- <i>b</i>), MVZ 186256 (ND4)						
Mimophis mahfalensis (Grandidier,	Madagascar	MZUSP 12188 (12S, ND4), HLMD J68	AF544771	AY188071	AY188032	AF544662		
1867)		(16S, cyt- <i>b</i>)						
<i>Psammophis condanarus</i> (Merrem, 1820)	Thailand (12S, 16S), Myanmar (cyt-b, ND4)	RH 5601 (12S, 16S), CAS 205003 (cyt- b, ND4)	Z46450	Z46479	AF471075	AY058987		
Lamprophis fuliginosus (Boie, 1827)	unknown (12S), Tanzania (16S, cyt- <i>b</i>), Burundi (ND4)	SH1210 (12S), CAS 168909 (16S, cyt- b), no data (ND4)	AY122681	AY188079	AF471060	AF544664		
<i>Ophiophagus hannah</i> (Cantor, 1836)	unknown (12S, 16S), Myanmar (cyt-b, ND4)	RH 6081 (12S, 16S), CAS 206601 (cyt- <i>b</i> , ND4)	U96803	Z46480	AF217842	AY058984		
<i>Bungarus fasciatus</i> (Schneider, 1801)	unknown (12S, 16S), Myanmar (cyt-b), Brunei (ND4)	RH 63881 (12S, 16S), CAS 207988 (cyt-b), UMMZ 201916 (ND4)	Z46466	Z46501	AF217830	U49297		
Naja kaouthia (Lesson, 1831)	Thailand, Chumphon Prov.	WW585	EU624235	EU624269	EU624298	EU624209		
Naja naja (Linnaeus, 1758)	Nepal	WW595	EU624236	EU624270	EU624299	AY713378		
Naja nigricollis (Reinhardt, 1843)	northern Cameroon, Kaélé, Lara	Latoxan live coll. N.ni.ssp. 9735002	EU624237	EU624271	EU624300	AY713377		
<i>Naja nivea</i> (Linnaeus, 1758)	South Africa (12S, 16S), unknown (cyt-b, ND4)	WW1295 (12S, 16S), no data (cyt- <i>b,</i> ND4)	EU624238	EU624272	AF217827	AY058983		
<i>Cerberus rynchops</i> (Schneider, 1799)	Polillo (12S, 16S), Myanmar (cyt-b), Sabah (ND4)	USNM 497590 (12S, 16S), CAS 206574 (cyt- <i>b</i>), FMNH 251594 (ND4)	AF499289	AF499303	AF471092	U49327		
Natrix natrix (Linnaeus, 1758)	France	no data	AF158461	AF158530	AY866537	AY873736		
<i>Contia tenuis</i> (Baird and Girard, 1852)	unknown (12S, 16S), California (cyt-b, ND4)	no data (12S, 16S), CAS 202582 (cyt- b), CAS207044 (ND4)	AY577021	AY577030	AF471095	AF402656		
<i>Diadophis punctatus</i> (Linnaeus, 1766)	unknown (12S, 16S), Florida (cyt-b), California (ND4)	no data (12S, 16S), CAS 184351 (cyt- b), SDSNH 68893 (ND4)	AY577051	AY577023	AF471094	DQ364667		
Heterodon simus (Linnaeus, 1766)	unknown (12S, 16S), Florida (cyt-b, ND4)	no data (12S, 16S), CAS195598 (cyt- <i>b,</i> ND4),	AY577020	AY577029	AF217840	DQ902310		
Borikenophis portoricensis (Reinhardt and Lütken, 1862)	Puerto Rico (12S, 16S, cyt-b), British Virgin Islands (ND4)	SBH 160062 (12S, 16S), CAS 200813 (cvt-b), FK 2440 (ND4)	AF158448	AF158517	AF471085	U49308		
Farancia abacura (Holbrook, 1836)	Georgia (12S), unknown (16S, cyt-b), Florida (ND4)	RH 53660 (12S), no data (16S, cyt-b), UMMZ 205023 (ND4)	Z46467	AY577025	U69832	U49307		
Coronella girondica (Daudin, 1803)	unknown (12S), Morocco (16S, cyt-b, ND4)	no data (12S), E512.20 (16S), MVZ 178073 (cvt- <i>b</i> . ND4)	AY122835	AY643353	AF471088	AY487066		
Elaphe sauromates (Pallas, 1811)	unknown (12S, 16S), European Turkey (cyt-b, ND4)	SH972 (12S), no data (16S), LSUMZ 40626 (cyt-b. ND4)	AY122795	AF215267	AY486931	AY487067		
Dinodon semicarinatum (Cope, 1860)	unknown	no data	AB008539	AB008539	AB008539	AB008539		

			DNA				_	
Species	Locality	Voucher/sample	125	16S	cyt b	ND4	Rep. mode	Source
Macroprotodon brevis (Günther,	Spain	E608.6 (12S, 16S, MVZ186073 (cyt-b,	AY643280	AY643321	AF471087	AY487064		
1862)		ND4)						
Eirenis modestus (Martin, 1838)	unknown (12S, 16S), Turkey (cyt- <i>b</i> , ND4)	no data (12S, 16S), HLMD J159 (cyt-b,	AY039143	AY376780	AY486933	AY487072		
		ND4)						
Hemorrhois algirus (Jan, 1863)	unknown (12S), Tunisia (16S), Morocco (cyt-b,	MHNG 2415.6 (12S), E1110.1 (16S),	AY039149	AY643349	AY486911	AY487037		
	ND4)	HLMD RA1187 (cyt- <i>b</i> , ND4)						
Hemorrhois hippocrepis (Linnaeus,	unknown (12S), Morocco (16S), Spain (cyt-b,	MHNG 2415.94 (12S), E2509.2 (16S),	AY039158	AY643350	AY486916	AY487045		
1758)	ND4)	MNN 11988 (cyt- <i>b,</i> ND4)						
Hemorrhois nummifer (Reuss, 1834)	unknown (12S), Armenia (16S, cyt- <i>b</i> , ND4)	SH548 (12S), ZISP 27709 (16S, cyt-b,	AY039163	AY376771	AY376742	AY487049		
		ND4)						

References for reproductive mode

- 1. Fitch HS (1970) Reproductive cycles in lizards and snakes. Univ Kan Mus Nat Hist, Misc Publ, 52:1-247.
- 2. Blackburn DG (1985) Evolutionary origins of viviparity in the Reptilia. II. Serpentes, Amphisbaenia, and Ichthyosauria. Amphib-Reptil, 6:259-291.
- 3. Spawls S, Howell K, Drewes R, Ashe J (2004) A field guide to the reptiles of East Africa. Academic Press.
- 4. Spawls S, Branch B (1995) The dangerous snakes of Africa: natural history, species directory, venoms, and snakebite. Ralph Curtis Books, Sanibel Island, FL.
- 5. Greene HW, May PG, David L, Hardy S, Sciturro JM, Farrell TM (2002) Parental behavior by vipers. In: Schuett GW, Höggren M, Douglas ME, Greene HW (eds), Biology of the Vipers. Eagle Mountain Publishing, Eagle Mountain, UT, pp 179-206.
- 6. Shine R (1985) The Evolution of Viviparity in Reptiles: An Ecological Analysis. John Wiley and Sons, New York, NY.
- 7. Tinkle DW, Gibbons JW (1977) The distribution and evolution of viviparity in reptiles. Misc Publ Mus Zool Univ Mich 154:1-55.
- 8. Mehrtens JM (1987) Living Snakes of the World in Color. Sterling Publishing Co, New York, NY.
- 9. Shine R, Bull JJ (1979) The evolution of live-bearing in lizards and snakes. Am Nat 113:905-923.
- 10. Latifi M (1991) The Snakes of Iran. Society for the Study of Amphibians and Reptiles, Oxford, OH.
- 11. Kamelin ER, Lukin YA, Mil'to K (1997) Hybridization of *Vipera schweizeri* (Werner, 1935) and *Vipera lebetina obtuse* (Dvigubsky 1832). Russ J Herp 4:75-78.
- 12. Nilson G, Andren C, Ioannidis Y, Dimaki M (1999) Ecology and conservation of the Milos viper, *Macrovipera schweizeri* (Werner, 1935). Amphib-Reptil 20:355-375.
- Joger U, Fritz U, Guicking D, Kalyabina-Hauf S, Nagy ZT, Wink M (2007) Phylogeography of western Palaearctic reptiles – Spatial and temporal speciation patterns. Zool Anz 246:293– 313.
- 14. Orlov N, Ananjeva N, Barabanov A, Ryabov S, Khalikov R (2002) Diversity of vipers (Azemiopinae, Crotalinae) in East, Southeast, and South Asia: Annotated checklist and

natural history data (Reptilia: Squamata: Serpentes: Viperidae). Faunistische Abhandlungen Staatliches Museum fur Tierkunde Dresden 23:177-218.

- 15. Wall F (1921) Snakes of Ceylon. H.R. Cottle, Government Printer, Colombo, Ceylon [Sri Lanka].
- 16. Tsai TS, Tu MC (2001) Reproductive cycle of female Chinese green tree vipers, *Trimeresurus stejnegeri stejnegeri*, in northern Taiwan. Herpetologica 57:157-168.
- 17. Shine R, Sun L-X, Zhao E-M, Bonnet X (2002) A review of 30 years of ecological research on the Shedao pitviper, *Gloydius shedaoensis*. Herp Nat Hist 9:1-14.
- 18. Nishimura M, Kamura T (1993) Sex ratio and body size among hatchlings of habu, *Trimeresurus flavoviridis*, from the Okinawa Islands, Japan. Amphib-Reptil 14:275-283.
- 19. Campbell JA, Lamar WW (2004) The Venomous Reptiles of the Western Hemisphere. Comstock Publishing Associates, Ithaca, NY.