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ABSTRACT 
 

 The growth and survival of all cells require functional ribosomes that are capable 

of protein synthesis.  The disruption of the steps required for the function of ribosomes 

represents a potential future target for pharmacological anti-cancer therapy.  ABCE1 is 

an essential Fe-S protein involved in ribosomal function and is vital for protein synthesis 

and cell survival. Thus, ABCE1 is potentially a great therapeutic target for cancer 

treatment.  Previously, cell biological, genetic, and structural studies uncovered the 

general importance of ABCE1, although the exact function of the Fe-S clusters was 

previously unclear, only a simple structural role was suggested.  Additionally, due to the 

essential nature of ABCE1, its function in ribosome biogenesis, ribosome recycling, and 

the presence of Fe-S within ABCE1, the protein has been hypothesized to be a target 

for oxidative degradation by ROS and critically impact cellular function.  In an effort to 

better understand the function of ABCE1 and its associated Fe-S cofactors, the goal of 

this research was to achieve a better biochemical understanding of the Fe-S clusters of 

ABCE1.  The kinetics of the ATPase activity for the Pyrococcus abyssi ABCE1 

(PabABCE1) was studied using both apo- (without reconstituted Fe-S clusters) and 

holo- (with full complement of Fe-S clusters reconstituted post-purification) forms, and is 

shown to be jointly regulated by the status of Fe-S clusters and Mg2+. Typically, 

ATPases require Mg2+, as is true for PabABCE1, but Mg2+ also acts as a unusual 

negative allosteric effector that modulates ATP affinity of PabABCE1. Comparative 

kinetic analysis of Mg2+ inhibition shows differences in the degree of allosteric regulation 

between the apo- and holo-PabABCE1 where the apparent Km for ATP of apo-
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PabABCE1 increases >30 fold from ~30 µM to over 1 mM when in the presence of 

physiologically relevant concentrations of Mg2+. This effect would significantly convert 

the ATPase activity of PabABCE1 from being independent of cellular energy charge () 

to being dependent on  with cellular [Mg2+].   

 The effect of ROS on the Fe-S clusters within ABCE1 from Saccharomyces 

cerevisiae was studied by in vivo 55Fe labeling.  A dose and time dependent depletion of 

ABCE1 bound 55Fe after exposure to H2O2 was discovered, suggesting the progressive 

degradation of Fe-S clusters under oxidative stress conditions.  Furthermore, our 

experiments show growth recovery, upon removal of the H2O2, reaching a growth rate 

close to that of untreated cells after ~8 hrs.  Additionally, a corresponding increase 

(~88% recovery) in the ABCE1 bound 55Fe (Fe-S) was demonstrated.  Observations 

presented in this work demonstrate that the majority of growth inhibition, induced by 

oxidative stress, can be explained by a comparable decrease in ABCE1 bound 55Fe and 

likely loss of ABCE1 activity that is necessary for normal ribosomal activity.   

 The regulatory roles of the Fe-S clusters with ABCE1 provide the cell a way to 

modulate the activity of ABCE1 and effectively regulate translation based on both 

cellular energy charge and the redox state of the cell.  Intricate overlapping effects by 

both [Mg2+] and the status of Fe-S clusters regulate ABCE1’s ATPase activity and 

suggest a regulatory mechanism, where under oxidative stress conditions, the 

translational activity of ABCE1 can be inhibited by oxidative degradation of the Fe-S 

clusters.  These findings uncover the regulatory function of the Fe-S clusters with 



v 
 

ABCE1, providing important clues needed for the development of pharmacological 

agents toward ABCE1 targeted anti-cancer therapy.  
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CHAPTER 1: INTRODUCTION 

 

ATP Binding Cassette Proteins 

Structure and Topology of ABC Proteins 

 ATP binding cassette (ABC) transporter proteins comprise one of the largest and 

most ancient protein superfamilies, and are present in all three domains of life [8-11].   

In humans, the ABC superfamily of proteins consists of forty-nine functional proteins 

divided into subfamilies A through G [12].  Most ABC proteins typically have four to six 

transmembrane domains (TMDs) that span the membrane.  The majority of ABC 

proteins function in transport of a wide variety of solutes, such as sugars, lipids, ions, 

and drugs, across membranes and are crucial for many processes within the cell [9, 10, 

13].  Some ABC transporters, such as the ABC transporters ABCC1 (MRP1), have been 

implicated in causing multidrug resistance with some cancer treatments, because 

therapeutic compounds are often transported out of the cell [14]. 

 Proteins are classified as ABC transporters based on their primary sequence and 

organization of their nucleotide binding domains (NBDs) [8].  ABC proteins contain one 

or two conserved ATP-binding domains which can exist as a single peptide or more 

than one peptide that dimerizes with another to form a fully functional transporter [15-

17].  The conserved NBDs contain the canonical Walker A ([AG]-x(4)-G-K-[ST]) and 

Walker B (D-E-x(5-D) motifs, typical of ATP binding proteins, separated by 

approximately 125 amino acids [18].  ABC proteins also contain an ABC signature 

sequence (LSGGQ) located between the Walker A and Walker B motifs which sets ABC 
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proteins apart from other ATPases [19].  The signature sequences within the NBDs are 

thought to provide some molecular interactions forming dimers in a distinctive head-to-

tail orientation. 

Mechanism of ATP Hydrolysis 

 The precise mechanism of ATP hydrolysis is still under debate and may not be 

universal among wide family of ABC proteins.  In general, within the NBD, there are 

several conserved motifs involved.  The formation of the NBD dimers, involves a 

conserved glutamate residue within the Walker B motif and the D-loop, which likely 

serves to catalyze ATP hydrolysis via an acid-base mechanism.  The Q loop is believed 

to provide communication between the NBDs and the TMDs.  A conserved lysine within 

the Walker A motif is thought to form hydrogen bonds with the α- and γ-phosphate while 

a conserved histidine contacts the γ-phosphate.  Most ATPases require Mg2+ in a 

complex with ATP in order to neutralize the negative charge of the phosphates.  A Mg2+ 

ion coordinates with the oxygen atoms of the β- and γ-phosphates as well as residues 

within the Q loop, and water molecules [20-23].  The aromatic residue of the A-loop 

stabilizes the nucleotide by π-π stacking interactions between the aromatic ring of 

tyrosine and the adenine of ATP [24].   

 The ATP hydrolysis cycle can vary for each ABC transporter.  For instance, the 

NBDs may be symmetric or asymmetric and may have equal or unequal ATPase 

activities.  Within the p-glycoprotein, ATP hydrolysis occurs at only one of the NBDs per 

cycle and alternates between the two NBDs [25].  Cooperativity between the NBDs of p-

glycoprotein is required.  As for CFTR, there is cooperativity between the NBDs, 
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although the hydrolysis rate may be slower in NBD1 [14].  In general, the ATP 

hydrolysis cycle is thought to involve first the binding of ATP to one or both NBDs, 

causing dimerization of the NBDs, resulting in a closed conformation.  Once ATP is 

hydrolyzed, the conformational changes are reversed, opening the channel allowing 

solutes to flow through, and the enzyme is then ready for the next cycle [14]. 

ABCE1: The Lone Member of Subfamily E 

 ABCE1 (also known as Rli1 [26], Pixie [27] or hp68 [28]) is one of the most 

unique members of the ABC superfamily.  To this date, there are only two known 

subfamilies (E and F) of ABC proteins that do not have TMDs and are not membrane 

spanning proteins.  Subfamily F consists of only three members that are associated with 

important processes, such as translation initiation and elongation in eukaryotes [29].  

There is only one known member of subfamily E, ABCE1 [30] that has essential roles 

during multiple ribosome related functions from ribosome biogenesis, ribosome 

recycling and steps of protein synthesis. 

   

 
Figure 1.   Schematic of ABCE1 protein domains  
Schematic representation of the domains within ScABCE1 indicates the relative 
locations of Fe-S domain and the NBDs.  

 
  

 What distinguishes ABCE1 from the other ABC proteins having no TMDs is that 

ABCE1 contains a domain having two ferredoxin-like iron-sulfur (Fe-S) clusters (Figure 

1).  This domain contains the characteristic sequence (CxPxxCxxxCxnKCP) with four 
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cysteines for binding a Fe4-S4 type Fe-S cluster, similar to the sequences 

(CPxnCx2Cx2C) found in Fe-S cluster containing ferredoxin (Figure 2) [31].  

Comparative analysis of ABCE1 primary sequences reveals conservation among 

diverse organisms, including those from two Pyrococcal species. All contain the 

conserved ATP binding domains and conserved cysteines found in their Fe-S domains 

[31].  Such conservation suggests these domains must be important for the general 

function of ABCE1.   

 

Figure 2.   Primary sequence alignment of the Fe-S domain of ABCE1 
Partial primary sequence alignment of the Fe-S domain indicates eight conserved 
cysteine residues, shown with red boxes, as well as other important residues 
(highlighted) within the indicated species (S. cerevisiae (Sc), H. sapiens (Hs), P. abyssi 
(Pab), P. furiosus (Pfu)). 
 

The X-ray diffraction crystallographic structures (Figure 3) of ABCE1 alone have 

been determined, with and without the Fe-S cluster domain, from Pyrococcus furiosus, 

Pyrococcus abyssi, and Sulfolobus solfataricus [31-34].  The protein has three distinct 

domains with a hinge region clearly separating the two NBDs.  The hypothesis has been 

presented that the hinge region is involved in mechanical conformational changes 

between the two NBDs upon ATP hydrolysis [13].  While these three structures are not 

of the human ABCE1 (HsABCE1), the availability of these structures that have a high 

ScABCE1  
HsABCE1 

PabABCE1 

PfuABCE1 

Ferredoxin-like Fe4-S4 

ABCE1 type  Fe4-S4 
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degree of sequence homology, and structural homology, should aid in understanding of 

how binding partners, both protein and RNA, may interact with them.  The information 

from the structures of these thermophilic ABCE1s provides a great starting point for 

biochemical understanding of this important protein. 

 

 

Figure 3.   X-Ray diffraction crystallographic structures of ABCE1 for three 
archeal species 
Shown is the (A) X-Ray structure of Pyrococcus abyssi (PDB 3BK7 [33]) and (B) 

Pyrococcus furiosus, ∆Fe-S (PDB 1YQT [32]), and (C) Sulfolobus solfataricus ∆Fe-S 

(PDB 3OZX [31]), as previously published.  All three indicate the binding of two ADP 
molecules within each of the nucleotide binding domains.  The two Fe-S clusters are 
shown in the complete structure of P. abyssi. 
 

Iron-Sulfur Cluster Biogenesis 

 Iron-sulfur clusters are cofactors found in proteins that function in a wide variety 

of processes and are found in bacteria, plant chloroplasts, and many animal tissues [35] 

Initially, the primary function of Fe-S clusters was believed to be electron transfer 

although other functions have been discovered, such as catalysis and radical 

generation.  Some of the well known Fe-S proteins are aconitase [36], Complex I and II 

of the mitochondrial electron transport chain, and nitrogenase [37].  Fe-S clusters have 
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now been recognized in a wide range of important cellular processes such as, 

enzymatic Lewis-acid catalysis, regulation of gene expression, DNA-RNA metabolism, 

and ribosome biogenesis [1].  Additionally, a role for Fe-S clusters in recognition of 

damaged bases in DNA base excision repair as in the DNA glycosylases, endonuclease 

III and MutY [38, 39] has been demonstrated. 

 Mitochondria play a central role in the metabolism of iron in the Eukaryotic cell, 

as well as the synthesis of heme, iron regulation, oxidative phosphorylation, and the 

assembly of Fe-S clusters.  Iron-sulfur cluster assembly is performed by the core Iron 

Sulfur Cluster (ISC) assembly machinery within the mitochondrial matrix.  Mitochondria 

also participate in the assembly of cytosolic and nuclear Fe-S proteins.  The key to this 

function lies in the presence of the Cytosolic Iron-sulfur Assembly (CIA) machinery. 

 The most current model for Fe-S cluster maturation by the ISC machinery within 

the mitochondria of S. cerevisiae involves at least seventeen proteins and have three 

major steps [4] (Figure 4).  First, after Fe+2 is transported into the mitochondria by 

monothiol glutaredoxins (Grx3/4) [40, 41], the cysteine desulferase complex of Nfs1-

Isc11 donates a sulfur, while Yfh1 (frataxin) likely donates iron and interacts with the 

scaffold protein, IscU.  Formation of Fe2-S2 cluster on IscU occurs with incorporation of 

reductive electrons from the electron transport chain involving ferredoxin, ferredoxin 

reductase, and NAD(P)H.  The second major step includes a chaperone system made 

up of Ssq1, Jac1, and MgeI, which induces the release of the Fe-S cluster from Isu1.  

Another monothiol glutaredoxin, Grx5, then transfers the Fe-S to apo-proteins to form 

Fe2-S2 holo-proteins.  The third step involves the formation of more complex Fe-S 
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clusters.  This is accomplished by the ISC targeting factors, or several proteins that are 

each involved in the assembly of specific Fe4-S4 proteins. 

 

 
 
 
Figure 4.   Representation of proteins involved in the core Iron Sulfur Cluster 
(ISC) assembly machinery within the mitochondria 
 

 Cytosolic apo-proteins receive their Fe-S clusters exported from the mitochondria 

through, yet another ABC protein, the ABC transporter ABCB7 (Atm1 in yeast) [42] 

(Figure 4).  Following export from the mitochondria, Fe-S clusters are then delivered to 

cytosolic apo-proteins via the CIA machinery in a ATP dependent process [7] (Figure 5).  

Limited information is available about the transfer reaction, although Dre2 [43] and Erv1, 

a FAD-linked sulfhydryl oxidase are suspected to be involved [44].  The two P-loop 

NTPases, Cfd1 and Nbp35 are involved in the initial step of the CIA machinery [45].  

Adapted from [1-3] 
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The Fe-S clusters are assembled involving the Cft1-Nbp35 complex, Dre2, and an iron 

and sulfur source. Cft1 binds available iron to promote entry into the CIA machinery [7, 

46].  Ultimately, a complex consisting of the Fe-S protein Nar1 and the scaffold protein 

Cia1 then transiently interact with Cfd1-Nbp35, promoting Fe-S cluster transfer, 

facilitated by energy from ATP hydrolysis, to cytosolic and nuclear apo-proteins (I, 

Figure 5).  Following dissociation of Nar1-Cfd1, holo-Nbp35 supports Fe-S assembly of 

a second subset of cytoplasmic and nuclear apo-proteins [7] (II, Figure 5). 

 
 
 
Figure 5.   A current model for the steps involved in the Cytosolic Iron-sulfur 
Assembly (CIA) cycle 
 

 Cellular iron regulation is intimately linked to cytosolic Fe-S cluster assembly 

based on iron availability.  In yeast, the genes involved in iron uptake, storage and 

utilization are controlled transcriptionally and post-transcriptionally by the iron regulon, 

involving transcription factors Aft1 and Aft2 [7] (Figure 6).  Communication between the 

I II 

Adapted from [7] 
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mitochondrial Fe-S assembly to Aft, in the iron regulon, is mediated by cytosolic Fe-S 

proteins, Fra1 and Fra2 [5, 7].  Fra1 and Fra2 bind with Grx3 or Grx4 [47] in a signaling 

pathway where the presence of bound Fra1 or Fra2 results in the repression of Aft1 

activity of the iron regulon, by blocking translocation of Aft1 to the nucleus.  The Fra-Grx 

interaction is thought to function as a signaling intermediate between mitochondrial Fe-

S cluster biosynthesis and activation of iron regulon transcription [5]. 

 

 

 

 
Figure 6.   Illustrative description of the iron regulon 

Adapted from [4, 5]. 
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ABCE1 and Disease 

ABCE1 is Essential for Cell Survival 

 The importance of ABCE1 in Eukaryotes was first observed when it was found to 

be one of 356 genes in S. cerevisiae that cause a lethal phenotype when deleted as 

part of a systematic genome-wide deletion analysis [48].  More recent studies have 

shown that disruption of this cytosolic Fe-S cluster pathway is also lethal since it causes 

ABCE1 to be devoid of its Fe-S clusters [49].  Importantly, the studies demonstrated the 

significance of the Fe-S clusters by genetic tetrad analysis of heterozygous site-specific 

mutations at the key cysteine residues that coordinate the Fe-S clusters [50].  While the 

function of the Fe-S clusters in ABCE1 was initially elusive, a recent study by Barthelme 

et al. (2011) suggested a structural role.  In their study with the S. solfataricus ABCE1, 

the turnover rates and affinity for ATP were not affected by the oxidation state.  

Furthermore, deletion of the entire Fe-S domain abolished ribosomal binding [34], 

suggesting that the Fe-S domain or the presence of the Fe-S clusters was required for 

ribosome binding. While these studies clearly show the essentialness of the Fe-S 

clusters in ABCE1, the oxidatively sensitive experiments were not conducted in a proper 

anaerobic environment and thus a role that is more significant than a simple structural 

component is very possible for the Fe-S clusters of ABCE1. 

Expression of ABCE1 in Cancer Cells and Tissue 

ABCE1 is a key protein involved in ribosomal function and thus could be 

hypothesized to be critical for protein synthesis in relation to tumor growth and cancer. 
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Several studies have investigated the expression levels of multiple ABC transporters in 

various tissues [51-57], including ABCE1. An earlier report showed that there are two 

ubiquitously expressed transcripts for ABCE1 (2.4 kb and 3.8 kb in size) in the 15 

human tissues examined, albeit that differential expression between tissues is evident 

[52].  Langmann et al. investigated the expression levels of 47 ABC proteins in 20 

different human tissues [57].  This study showed ABCE1 was expressed in all tissues, 

though highly expressed in testis, prostate, and the trachea.  Another study, 

investigating the role of ABC transporters in drug permeability, demonstrated that 

ABCE1 expression was increased in brain microvessel endothelial cells of five different 

mammalian species, including human [53]. 

The precise role that ABCE1 has in tumorigenesis, progression of cancer, or 

resistance to therapeutics is not clear. Nevertheless, some data show the hyper-

expression of ABCE1 in some tumors [58-60].  Investigating the expression levels of 47 

ABC transporters in melanoma versus normal melanocytes, Heimerl et al. demonstrated 

that ABCE1 is highly expressed in all cell lines investigated [58].  Additionally, there is a 

significant increase in expression of ABCE1 in Y79 cells, a chemotherapeutic resistant 

retinoblastoma cell line [51].  Acquired drug resistance among cancer cell lines could be 

the result of gene duplication or other genomic alterations of ATP transporter genes.  In 

fact, thirteen ABC transporter genes, including ABCE1, were shown to have multiple 

gene copies in over 80% of cancer cell lines studied [61].  

More recently, the role of ABCE1 has been investigated in specific cancers, such 

as colon cancer, a very aggressive small cell lung cancer, and hepatocellular carcinoma 
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[59, 60]. Two peptides derived from ABCE1 are capable of inducing cytotoxic T 

lymphocytes that react against colon cancer [60] while another study verified the up-

regulation of ABCE1 in colon cancer tumors [59].  The proliferation, invasiveness and 

apoptotic nature of a small cell lung cancer cell line (HCI-H446) was investigated upon 

the down-regulation of ABCE1 [62].  The knock-down of ABCE1 inhibited proliferation of 

NCI-H446 cells by 30%. Additionally, an siRNA based knockdown of ABCE1 reduced 

invasiveness and induced apoptosis as compared to cells that were not transfected with 

the ABCE1 targeting siRNA [62].   

The role of microRNAs (miRNAs) has been investigated for their regulation of 

ABCE1 in hepatocellular carcinoma [56, 63].  miRNAs are noncoding RNAs that 

generally repress gene expression and miRNA expression can be deregulated in some 

cancers.  This has been studied in hepatocellular carcinoma cell lines and tumor tissue, 

where miR-124 and miR-203 have been shown to be epigenetically silenced by 

methylation.  Interestingly, ABCE1 was identified as a possible target of miR-203 in 

hepatocellular carcinoma cells [56], indicating a possible explanation for high ABCE1 

expression levels in some cancers.  This was qualitatively confirmed where most of the 

tumors examined demonstrated high ABCE1 expression levels with a corresponding 

low expression of miR-203, providing further evidence of the potential role of miR-203 in 

regulating ABCE1 [63].  There are limited data on the role of ABCE1 in cancer, although 

this protein is clearly important for cell survival and controlling its activity as a form of 

cancer treatment could be effective in limiting or eliminating tumor growth. 
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Role of ABCE1 in Viral Life Cycle 

ABCE1 was initially identified as the RNAseL Inhibitor (RLI) that inhibited the 

binding of RNA and the anti-viral nuclease activity of RNAse L [26], indicating a role for 

ABCE1 in viral infections.  ABCE1 was also introduced as a modulator of a protein-RNA 

interaction in relation to HIV.  RNase L is thought to be the major pathway for interferon 

mediated antiviral defense and may modulate the stability of both the HIV mRNA 

transcripts, intended for the expression of the HIV proteins, or the viral genomic RNA 

that will be inserted into capsids for viral particle production [64, 65].  The capsid protein 

is translated as part of the Gag polypeptide, which also includes the matrix, 

nucleocapsid, and three other small peptides.  All six peptides are formed following 

post-translational processing by a HIV-1 protease, resulting in mature functional 

proteins (Figure 7).   

 

Figure 7.   Schematic of the HIV-1 Gag polyprotein 
 

The expression of ABCE1 appears to be upregulated upon HIV infection, which 

increases the virulence of HIV by decreasing the 2’-5’A/RNAse activity [26, 66]. 

Additionally, ATP and ABCE1 were shown to be required for late stage capsid assembly 

which is part of the HIV life cycle (Figure 8) [67].  Lingappa et al. narrowed the portion of 

the GAG polypeptide where ABCE1 binds to the nucleocapsid domain (NC) domain.  A 

Adapted from [6] 
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recent study confirmed that the NC domain is required for ABCE1 binding, although it is 

not binding directly [68].  The data suggest GAG dimerization via the NC domain results 

in exposure of an ABCE1 binding domain located outside the NC domain [68]. 

The viral life cycle involves several steps starting from invasion and leading to 

the maturation within the cell.  First a mature viron binds CD4+ cells through a receptor 

on the surface of the cell.  Next, membrane fusion results in the entry of the packaged 

viral RNA where the coat proteins are then removed exposing the RNA.  The RNA is 

then transcribed to DNA by the viral reverse transcriptase, imported to the nucleus, and 

integrated into the endogenous DNA.  The incorporated viral DNA is then transcribed 

into the GAG polypeptide, which is then processed to form the proteins required for 

maturation of viral particles.  HIV exploits endogenous ABCE1, requiring its ATPase 

activity, for use in assembly of the viral capsids at the membrane prior to budding and 

release of new mature virons (Figure 8).  The required use of ABCE1 by HIV capsid 

assembly intermediates indicates importance of this protein and its potential use as a 

target for anti-viral therapeutics.   
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Figure 8.   Role of ABCE1 in the HIV viral life cycle. 
 

  ABCE1: Ribosome Biogenesis, Translation, and Recycling 

Ribosome Biogenesis 

 The growth and survival of all cells require functional ribosomes that are capable 

of protein synthesis.  Ribosomes are the most complex and most abundant ribozyme in 

the cell and their production is not merely dependent on the transcription of the 

ribosomal RNA (rRNA). The ribosome is an intricate protein-RNA complex that has 

defined folds and sites of interactions for not only the binding of tRNA and mRNA, but 



30 
 

also for numerous factors that regulate the process of translation. Recent structural 

biology efforts have shed light on structures of both the prokaryotic [69] and eukaryotic 

[70] ribosomes, but more information needs to be established about how the cell 

produces such a complex structure. To produce the proper structure of the ribosome, 

multiple processing events are required in the nucleolus after the transcription of the 

nascent single ~9.1 Kbase rRNA (80S) [71] . The nascent rRNA is processed by a 

complex pathway of molecular events involving multiple cleavages to form the 

respective subunit precursors, trimming by exonucleases, base modifications, structural 

remodeling to give it the correct fold, followed by their export from the nucleus to the 

cytoplasm. The sizes of the intermediate rRNA molecules are known, but how the 

different fragments are produced or how they associate is not well defined. Over 200 

non-ribosomal proteins that includes ABCE1, many of which are uncharacterized or 

undefined, are suspected to be involved in many of these steps [72].  Biochemical 

understanding of the processing of such RNA molecules to form one of the cell’s most 

important super-structures and learning how small RNA may regulate such a process 

represents an emerging paradigm in both RNA biology and cancer biology [73, 74]. 

Undoubtedly, current and future studies will uncover much about the currently unknown 

processes that are required in ribosome maturation and their impairment leading to 

cancer. Such processes represent potential molecular targets for the next generation of 

pharmacological anti-cancer therapies.  
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Ribosome Maturation and Translation 

Among the numerous proteins involved in ribosome biogenesis translation, and 

recycling, ABCE1 has been identified to play a crucial role in this process.  In two 

simultaneous studies, the importance of the cytosolic Fe-S assembly machinery to both 

ABCE1 and ribosome biogenesis was demonstrated [49, 50].  The disruption of the 

cytosolic Fe-S assembly machinery resulted in impaired ABCE1 and nuclear 

accumulation of pre-ribosomes and ribosomal proteins in S. cerevisiae.  ABCE1 was 

shown to co-sediment with 40S, 60S, 80S pre-ribosomes, polysomes, and other 

ribosomal proteins.  Additionally, genetic suppression of ABCE1 causes a similar 

accumulation of pre-ribosomes in the nuclei [49, 50].  These studies show an important 

connection between the process of cytosolic iron-sulfur (Fe-S) cluster formation and the 

function of ABCE1 and the process of ribosome biogenesis.  As noted above, ABCE1 

interacts with polysomes and it also takes an active role at some stage of protein 

translation by interacting with eukaryotic initiation factors [75, 76].  

The association of S. solfataricus ABCE1 with 30S ribosomes occurs when the 

enzyme is, at least partially, in the closed state where a minimum of one ATP is bound  

[34].  Wild-type (ABCE1wt, with AMPPNP) and several mutants (ABCE1E238/485Q, 

ABCE1E238Q, ABCE1E485Q, with no AMPPNP required) of ABCE1 bind 30S ribosomal 

particles, suggesting a conformational switch to the closed state is required for stable 

association with 30S ribosome particles.  In the same study, the Fe-S domain was 

shown to be required for 30S ribosome association.  Upon the deletion of the Fe-S 

domain, ABCE1∆Fe-S, no association with 30S or 50S particles was observed.  The 
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presence of Fe-S clusters was required but the oxidation state of the Fe-S clusters had 

no effect on 30S binding.  In this case, ABCE1C54S, a mutant with one paramagnetic 

cluster retains binding with 30S particles while the Fe-S defective mutant (ABCE1C24S) 

does not [34].  These data collectively demonstrate the importance of ABCE1 and its 

Fe-S clusters in ribosome maturation as well as the connection between Fe-S 

biogenesis, ribosome biogenesis, and ultimately the survival of the cell. 

Ribosome Recycling 

A role for ScABCE1 in ribosome recycling was proposed when ABCE1 was 

discovered to be involved in the splitting of 40S and 60S ribosomes following translation 

termination [76-78].  Initially, ABCE1 was demonstrated to physically interact with 

eukaryotic release factors eRF1/Sup35 and eRF3/Sup45 [78].  Later, the interaction of 

ABCE1 with Dom34 was shown to be involved in the splitting of 40S and 60S ribosomes 

following translation termination [76-78].   

Interestingly, the concentration of Mg2+ seems to affect the dissociation of post-

termination complexes into their respective subunits.  Ribosomes were found to 

dissociate in the presence of 1.0 mM Mg2+ while dissociation does not occur in the 

presence of 2.5 mM Mg2+ and required release factors.  However, ribosomes efficiently 

dissociated with the addition of ABCE1 at the higher Mg2+ concentration.  Dissociation 

(~40%) of ribosomes occurs efficiently below 2.5 mM Mg2+ and decreases significantly 

between Mg2+ concentrations of 3.5-10mM.  This study reveals that ABCE1 can 

accelerate ribosome recycling when lower (~1.0 mM) Mg2+ concentrations are available.  
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Also, ABCE1 can still recycle and is required for ribosome recycling in the presence of 

higher (~2.5 mM) Mg2+ concentrations [76].  

In the work done by Barthelme et al. [36] with ABCE1 isolated from S. 

solfataricus, the interaction between ABCE1 and the peptide release factor aRF1 was 

found to promote translation post-termination and ribosome recycling. Their structural 

data suggest that upon ATP binding, ABCE1 undergoes a conformational switch from 

an open (ADP bound) to a closed (ATP bound) state.  Using sucrose gradient 

centrifugation, they showed that the closed state is required for ABCE1 30S ribosomal 

particle association.  The involvement of aRF1 alone or ABCE1ΔFe-S cannot promote 

ribosome breakdown indicating that ABCE1 and its Fe-S cluster domain is required for 

this process to occur. Additionally, ATP hydrolysis by ABCE1 is required for the release 

of ABCE1 from 30S subunits to begin a new cycle, resulting in continuous ribosomal 

recycling [34]. 

Recently, Shoemaker and Green [79] investigated the role of ScABCE1 in 

ribosome recycling using an in vitro yeast translation system.  A stepwise account of the 

ordered events leading to peptide release and ribosome recycling involving activity of 

ScABCE1, Hbs1 and Dom34, was proposed (Figure 9).  Shoemaker and Green then 

investigated whether ScABCE1 had a role in eRF1/eRF3-mediated peptide release, 

thus a dual role in translation termination as well as ribosome recycling [77].  The rate of 

peptide release was measured using elongated ribosome complexes and different 

combinations of eRF1, eRF3, eRF3H348E (no GTPase activity), and ScABCE1.  Results 

showed that both ScABCE1 and eRF3WT can promote peptide release in the presence 
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of eRF1.  Also, a striking increase in peptide release rates (48 fold) in the presence of 

all three wild-type enzymes was observed, indicating a synergistic effect in the presence 

of both eRF3WT and ScABCE1. 

  

 
Adapted from [77, 80] 

Figure 9.   Model for the proposed dual function of ScABCE1 in translation 
termination and ribosome recycling. 

 
1.) eRF1:eRF3 or Dom34:Hbs1 bind  
2.) GTP hydrolysis by eRF3 or Hbs1 and conformation change in ribosome or 

eRF3/Dom34 
3.) eRF1:GDP or Hbs1:GDP dissociation 
4.) Accommodation of eRF1 or Dom34 to the active site, ScABCE1 association 
5.) Peptide release (promoted by ScABCE1, independent of ATP hydrolysis) 
6.) ScABCE1:eRF1 or ScABCE1:Dom34, ATP hydrolysis, ribosome splitting 
 

Recently, the interaction between Dom34 and ABCE1 has been confirmed by 

cryo-electron microscopy reconstructions of eukaryotic and archeal ribosome recycling 

complexes [80].  Particularly, the Fe-S domain of ABCE1 interacts with CTD of Dom34, 

stabilizing the complex and inducing a conformational change affecting the central 
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domain of Dom34.  This conformational change results in a direct interaction between 

Dom34 and the peptidyl transferase center [80], providing an explanation of how 

ABCE1 could promote peptide release was proposed based on interactions between 

ScABCE1 and Dom34 [77].   

The dual roles ABCE1 has in translation termination and ribosome biogenesis 

has been clearly established.  Although the studies have identified the function of 

ABCE1 in translation termination and recycling, a proposal has been made that a similar 

role likely occurs during ribosome maturation.  In this case, evidence suggests ABCE1 

splits 80S-like ribosome complexes, resulting in pre-40S ribosomes, during ribosome 

maturation [81].  

Hypotheses 

Much remains to be elucidated about the biochemical roles and mechanism of 

ABCE1 in relation to translation, ribosome recycling, and viral lifecycles.  While the 

previous genetic and cell biological experiments have shown the crucial function of 

ABCE1 in translation as well as its connection with Fe-S assembly, the precise 

biochemical role of the Fe-S clusters or the mechanism of ATP hydrolysis is currently 

unknown.   

The work in this dissertation aims to biochemically define the ATPase activity of 

PabABCE1, to establish the nature of the requirement of the Fe-S clusters, and to 

determine what effect ribosomes have on its activity.  This study also proposes that 

oxidative stress affects the Fe-S status of ABCE1 and ultimately affects the function of 

ABCE1 in relation to protein synthesis and cell growth. 
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Data generated from this study should provide some intricate clues to the 

ATPase activity of this unique enzyme, its function in relation to ribosome recycling, and 

the effects of oxidative stress on the function of ABCE1.  There are no known 

pharmaceuticals developed against Fe-S proteins.  Determining the specific 

biochemical role that ABCE1 has in ribosome biogenesis may lead to the development 

of a novel anti-cancer pharmaceutical to cause impaired ribosome biosynthesis of 

uncontrollably dividing cells such as tumor cells. 
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CHAPTER 2: REGULATION OF THE ATPASE ACTIVITY OF ABCE1 FROM 
PYROCOCCUS ABYSSI BY FE-S CLUSTER STATUS AND MG2+: IMPLICATION FOR 

RIBOSOMAL FUNCTION 
 

Introduction 

Biogenesis and the functions of the ribosome are supported by numerous 

proteins at various stages. Among these proteins, ABCE1 is essential for ribosome 

function and for cellular viability in eukaryotic systems.  ABCE1 is the lone member of 

class E in the wide family of ATP Binding Cassette (ABC) proteins [31, 49, 50, 82, 83].  

While most members of the ABC protein family have trans-membrane domains (TMDs) 

and function as transporters of various metabolites, ABCE1 has no TMDs [84]. Instead, 

ABCE1 has two nucleotide binding domains that are connected by a hinge region and 

uniquely has a domain containing two Fe4S4 clusters (Figure 1).  The exact function of 

these Fe4S4 clusters has been somewhat enigmatic. 

ABCE1 was initially identified as the RNAseL Inhibitor (RLI) that inhibited the 

binding of RNA and the anti-viral nuclease activity of RNAse L, which is involved in the 

pathway for interferon mediated antiviral defense [26]. Later, ABCE1 was also found to 

be a modulator of a protein-RNA interaction in relation to HIV [64, 65].  The expression 

of ABCE1 appears to be upregulated upon HIV infection, which increases the virulence 

of HIV by decreasing the 2’-5’ oligoA/RNAse activity [26, 66].  Later, ABCE1 has also 

been shown to be required for late stage capsid assembly as part of the HIV life cycle 

[67]. 
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The critical importance of ABCE1 in Eukaryotes was first observed when it was 

found to be one of 356 genes in S. cerevsiae that cause a lethal phenotype when 

deleted as part of a systematic genome-wide deletion analysis [48]. A later study 

showed the specific in vivo essentiality of the Fe-S clusters of ABCE1 where the 

cytosolic Fe-S cluster assembly system was disrupted and led to stalling of ribosome 

maturation [50]. In these studies in cells with disrupted Fe-S cluster assembly, the Fe-S 

clusterless form of ABCE1 (apo-ABCE1) accumulated in vivo and was found bound to 

nucleolar non-functional immature ribosomes and also to cytoplasmic polysomes. 

Furthermore, tetrad analysis using strains with heterozygous mutations of the Fe-S 

cluster ligating cysteine residues further showed the specific importance of the Fe-S 

clusters toward the function of ABCE1 where the homozygous mutated progeny did not 

grow [50].  These studies showed the essential nature of ABCE1 and its Fe-S clusters 

in ribosome assembly and maturation.  

Recent cell biological studies have shown that ABCE1 and its ATPase activity 

have roles in translation termination and ribosome recycling.  First, it was demonstrated 

with HsABCE1 that ATP hydrolysis is required for ribosome dissociation [76].  Studies 

with the ABCE1 from Sulfolobus solfataricus showed that the Fe-S domain is required 

for association with ribosomes [34].  In a more recent study, the role of S. cerevisiae 

ABCE1 and other recycling factors, Dom34 and Hbs1, in ribosome recycling was 

investigated and results show the ATPase activity is significantly increased in the 

presence of Hbs1 and/or Dom34.  Additionally, ScABCE1 can promote recycling prior to 

the release of the peptide [77].   
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The structures of ABCE1 from two Pyrococci have been determined with (P. 

abyssi) and without (P. furiosus) the Fe-S cluster domain [32, 33]. A recent cryo-

electron microscopy reconstruction of mixed complexes of S. cerevisiae ribosome 

recycling factors and P. furiosus ABCE1 shows interactions with Dom34/Pelota near the 

peptidyl transferase center on the ribosomes [80]. The structures of these thermophilic 

ABCE1s are a great starting point for biochemical understanding of this important 

protein.  Much remains to be elucidated about the biochemical roles and mechanism of 

this protein in relation to ribosome biogenesis, translation and possibly with viral 

lifecycles.  Among the key questions are: how is the energy derived from ATP 

hydrolysis utilized, what is the role of the Fe-S clusters, and how does it interact with 

immature and mature ribosomes?  Toward the goal of better biochemical understanding 

for some of these aspects, the hydrolysis of MgATP by the Pyrococcus abyssi ABCE1 

(PabABCE1) was studied in the present work. Somewhat unexpectedly, the ATP 

hydrolysis activity was found to be very sensitive to the concentration of Mg2+, which 

may possibly be relevant to a mode of regulation in vivo.  

 



40 
 

 
 
Figure 10.  Structure of PabABCE1, ligands and cofactors.   
Shown is the complete crystal structure (A) and Fe-S domain (B) of PabABCE1 (PDB 
3BK7, ([33]).  The two Fe-S clusters and both ADP molecules located with each of the 
nucleotide binding domains are shown in colored ball-and-stick models and green 
spheres represent two Mg2+ ions. Labels refer to different parts of the proteins as 
described in the Introduction. A box is shown in Panel (A) to indicate the section shown 
in Panel (B). 

 

Materials and Methods 

Expression and Purification of PabABCE1  

Recombinant protein was expressed in E. coli, Rosetta2 BL21(DE3)pLysS 

transformed with plasmid pET28-N-strep-PabABCE1Δ4 (gift from K.P. Hopfner).  

Briefly, cells were grown to an optical density of 0.8 followed by induction with 0.5 mM 

IPTG for 4 hours at 37 ˚C.  Purification was performed as described [33] with one 

modification (Figure 11):  Q-sepharose was used for ion exchange chromatography.  

Following Streptactin affinity chromatography, protein was concentrated to 35 µM using 
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a Vivaspin 20 concentrator (GE Healthcare).  Protein concentration was determined by 

standard BCA assay with TCA precipitation of purified protein in order to remove 

reductants [85]. 

Fe-S Reconstitution  

The ‘as purified’ PabABCE1, designated the apo-PabABCE1, typically contained 

~0.9 Fe per protein. The holo-PabABCE1 was prepared by reconstituting the Fe-S 

cluster after purification. The Fe-S reconstitution procedure was conducted in an 

anaerobic glove box containing at least 5% H2 and less than 1 ppm O2. The buffer for 

the concentrated protein was exchanged to 50 mM Tris, pH 8.0, 200 mM NaCl, 5 mM 

DTT simultaneously with the Fe-S cluster reconstitution by dialysis overnight at 4 ˚C.  All 

buffers, protein, and other solutions were degassed and buffers were stored in the glove 

box for at least 6 hours prior to beginning Fe-S reconstitution.  Dialysis was performed 

using a Slide-A-Lyzer MINI dialysis device, 10K MWCO (Thermo Scientific).  FeCl2 was 

added anaerobically to degassed protein (15:1 Fe:protein ratio) for 5 min prior to 

dialysis.  The protein supplemented with Fe2+ was placed into dialysis and equilibrated 

against 500 fold greater volume of buffer containing 20 µM sodium sulfide.  Dialysis/Fe-

S reconstitution proceeded overnight at 4 ˚C.  The buffer was then thoroughly 

exchanged to dialysis buffer containing no sodium sulfide.  The protein was then 

removed from dialysis and aliquots in crimp-sealed vials were prepared, frozen on liquid 

N2, and stored at -80 ˚C until ready for use.  Concentration of bound iron was 

determined by a colorimetric assay [86] with an additional procedure of modifying DTT 

by incubating samples with 20 mM iodoacetamide at 37 ˚C for 1 hour, prior to the 
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colorimetic detection of Fe. The reconstituted holo-PabABCE1 contained 8.5 ± 0.6 Fe 

per protein. 

 

 
 
Figure 11.  Purification and post purification Fe-S cluster reconstitution scheme 

 

RNA Extraction and Purification 

Total RNA was extracted from fresh cultures of S. cerevisiae.  Yeast cells were 

disrupted using the BeadBeater (BioSpec) using 0.5 mm beads and shaking 2 min 

increments for a total of 20 min maintaining a temperature of 4 ˚C. Total RNA was 
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extracted and purified using Tri-Reagent (Ambion) according to the manufacturer’s 

protocol.  Total RNA was quantified using a UV spectrophotometer while its purity and 

quality was monitored by ensuring the 260:280 nm ratio was close to 2.0.  

ATPase Assays 

ATPase assays for PabABCE1 were performed at 70 ˚C for 30 min with 10 pmol 

PabABCE1 in 100 mM MOPS, pH 7.5 in a total reaction volume of 200 µL.  Anaerobic 

and reducing conditions were achieved by first degassing all reagents and adding 5mM 

DTT in an anaerobic chamber for samples that contained PabABCE1 with its Fe-S 

clusters (holo-PabABCE1).  Magnesium, ADP, and ATP concentrations are indicated in 

figure legends for each experimental set.  A micro-scale malachite green assay [87-89], 

with some modifications, was employed for determination of ATPase activity.  Briefly, 

the reaction contained 0.11 mM malachite green, 0.74 N sulfuric acid, 0.31% (w/v) 

ammonium molybdate, and 0.018% (v/v) Tween-20 in a final volume of 300 µL.  

Following ten minutes of incubation at room temperature, A630nm measurements were 

achieved using an Infinite 200 PRO micro plate reader (Tecan).  Background correction 

was achieved with care by performing the same reactions with increasing amounts of 

ATP with no enzyme present.  A standard curve was generated and the amount of 

background phosphate generated from the corresponding amount of ATP was 

subtracted from the reactions with enzyme present.  Typical measurements at 0.9 fold 

of Vmax for a standard ATP titration were about 25 fold above the background.  
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Results 

Temperature Dependence of PabABCE1 

As PabABCE1 originates from a hyperthermophile that thrives in elevated 

temperatures, the temperature dependence of its ATPase activity was investigated 

(Figure 12).  Activity is very low below 60 C, but activity increases with temperature 

above 65 C, reaching a plateau around 80 C. All work described hereafter was 

performed at 70 C. 

 

 

Figure 12.  Temperature dependence of PabABCE1 ATPase activity.  
Specific activity of holo-PabABCE1 was determined over a range of temperatures (60 
˚C - 85 ˚C) in the presence of 1.0 mM ATP and 1.0 mM Mg2+ for 1 hour. 
 

Mg2+ Dependence of PabABCE1 ATPase Activity 

Most ATPases require Mg2+ in the form of a Mg2+-ATP complex to counter the 

charge on the phosphoesters.  This allows ATP to bind in the active site of an ATPase 
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and facilitate its subsequent hydrolysis.  Toward the goal of fully characterizing the 

ATPase activity of PabABCE1 and eventually understanding how it relates to ribosomal 

modification and function, the kinetics for ATPase activity of PabABCE1 were 

characterized.  Most ATPases have an optimal Mg2+ to ATP ratio, and determination of 

biochemical parameters for ATP are typically performed with a slight excess of Mg2+ 

where Kd ~ 10-5 M (p 247 in [90]) and thus nearly all the ATP in solution exists as 

MgATP.  A preliminary determination of the optimal Mg2+ concentration was initially 

performed, and surprisingly an inhibitory sensitivity to Mg2+ was found.  Two Mg2+ ions 

are observed (Figure 10AB) in the X-ray diffraction structure [33] of PabABCE1, but are 

in an odd location in the structure.  The assignment of these observed electron densities 

as Mg2+ ions is often difficult to verify and their possible relevance to the apparent Mg2+ 

inhibition properties is difficult to interpret.  Inhibition by Mg2+ for an ATPase is rare, but 

has been previously observed for other ATPases [91-96].  For these studies, both the 

as purified apo- form, without in vitro Fe-S cluster reconstitution, and the holo- form, 

loaded with full complement of Fe-S cluster by reconstitution after purification, were 

inspected.  ATPase activity was determined with increasing [Mg2+] (MgCl2) in the 

presence of 1.2, 0.4 and 0.12 mM ATP for both the apo- and holo-forms of PabABCE1 

(Figure 13AB).  PabABCE1 ATPase activity was the highest without any externally 

added Mg2+ and was apparently inhibited by Mg2+, even at very low concentrations (10 

µM) of Mg2+.  



46 
 

 A          B 

 

 

               C 

 

Figure 13.  Mg2+ inhibition of PabABCE1 ATPase activity. 
ATPase activity in the presence of increasing Mg2+ concentrations (0-0.5 mM) for the 
apo-PabABCE1 (A) and holo-Pab ABCE1 (B).  Specific activity was determined in the 
presence of 1.2 mM ATP (■),0.4 mM ATP (□) and  0.12 mM ATP (●). 
 

 The inhibition appears to be non-linear and saturates at ~50-40% of non-inhibited 

activity without Mg2+. Also, the activity does not approach zero as it would if it were a 

classical simple inhibition system, as in the case of a pure competitive or pure non-
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competitive inhibition. The data were fit to a function that describes partial competitive 

inhibition:                           
         (2.1) 

 

where [I] is the total added Mg2+ concentration and   is a factor by which Ks changes 

when I (inhibitor), in this case Mg2+, occupies the enzyme or similarly a factor by which 

Ki changes when S (substrate) occupies the enzyme.  This function describes the rate 

for system shown in Figure 13C where    > 1 and β = 1  (p 162 in [90]).  

The data obtained without Mg2+ were initially fitted to a standard Michaelis-

Menten equation to estimate Vmax and Km.  The data with increasing Mg2+ were fit to Eq. 

2.1 by non-linear fitting both individually for each titration curve and also by global fitting 

(IGOR Pro, Wavemetrics).  Similar values for Vmax and Km were obtained, whether Mg2+ 

titrations were fit individually or globally (Table 1).   

By a global fitting procedure, linking   among the data does not yield satisfactory 

fits.  Global fits where the values for    were allowed to float yields satisfactory fits 

where the value for   increases as [ATP] increased with a somewhat linear relationship 

between the inverse of   and the inverse of [ATP] (Figure 14AB). 
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         A      B 

                 

Figure 14.  Alpha factor increases linearly with [ATP] 

Data from Figure 13 were fitted to equation 1 globally while allowing the   value to vary 
for apo-PabABCE1 (A) and holo-Pab ABCE1 (B).   
 

Mg2+ inhibition was investigated with both apo- and holo- forms of PabABCE1 

and found to be slightly different.  The apo-PabABCE1 exhibits higher Vmax and Km, and 

values of α were larger at higher [ATP] for the apo-enzyme.  This suggests a complex 

mechanism of regulation for this enzyme by both the status, i.e. the occupancy or 

oxidation state, of the Fe-S clusters, and effects of Mg2+.  To verify the inhibition 

assigned to Mg2+ and not Cl-, ATPase assays were also performed with MgOAc and 

MgSO4 or other divalent metal chloride ions, and similar levels of inhibition were 

observed with corresponding concentrations (Figure 15AB). 
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   A            B. 

  

Figure 15.  Activity of Holo-PabABCE1 in the presence of various anions or 
divalent metal ions 
ATPase activity in the presence of increasing Mg2+ concentrations (0-1.0 mM) for 
MgSO4 (□) and Mg (C2H3O2) (○) (A) or various divalent metal chloride ions (B).   
FeCl2 (■), MgCl2 (●), MnCl2(), ZnCl2(▲), CaCl2(∆). 
 

Dependence of ATP Hydrolysis Parameters on Mg2+ 

Mg2+ clearly has inhibitory effects on the ATPase activity of PabABCE1, which is 

peculiar for an ATPase.  For the vast majority of ATPases, Mg2+ typically affects the Km 

of MgATP, Vmax of ATP hydrolysis, or both.  Biochemical parameters with respect to 

[ATP] were determined in the presence of varying Mg2+ concentration for both the apo- 

and holo-PabABCE1 (Figure 16AD).  The rates for each individual data set at the 

various [Mg2+] concentrations were initially fit to the Hill form of the Michaelis-Menten 

equation and showed that Vmax did not significantly change, but showed increasing 

apparent Km values with increasing concentration of MgCl2 (Figure 16BE).  The data 

were also fit to the Hill form (i.e. [S] raised by n as [S]n) of Eq. 2.1 by global fitting 
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methods.  The data fit well, yielding global Vmax, Km and Ki values that were comparable 

to those determined from the [Mg2+] titrations (Table 1).  

 

A                  D 

      

B                   C                E            F 

         

 
Figure 16.  ATP saturation kinetics of PabABCE1 ATPase activity with varying 
[Mg2+]. 
The effects of Mg2+ on the ATPase activity and affinity on PabABCE1 were determined 
for by titration of ATP in the presence of increasing [Mg2+]. ATPase activity vs [ATP] 
plotted for apo-PabABCE1 (A) with  No Mg2+ (■),  0.015 mM Mg2+ (□), 0.03 mM Mg2+ 
(▲), and 0.05 mM Mg2+ (∆).  ATPase activity vs [ATP] plotted for holo-PabABCE1 (B) 
with no Mg2+ (■),0.015 mM Mg2+ (□),0.03 mM Mg2+ (▲), 0.05 mM Mg2+ (∆), 0.075 mM 
Mg2+ (●), and 1.0 mM Mg2+ (○). Apparent Km are plotted vs [Mg2+] for apo- (B) and holo-
PabABCE1 (E). Plots of 1/α vs 1/[Mg2+] are shown for apo- (C) and holo-PabABCE1 (F).  
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There appears to be a dependence of n with respect to [Mg2+].  Interestingly, the 

Hill constant is near 2 in the absence of any added Mg2+ for both the apo- and holo- 

enzymes and decreases to n = 0.6 as [Mg2+] is increased to 0.1 mM.  This apparent 

cooperativity may be due to cooperative interaction between the two ATPase domains 

within the enzyme in the absence of Mg2+.  Addition of Mg2+ appears to disrupt this 

cooperativity.  Also, for both forms of the enzyme in the absence of externally added 

Mg2+, some product inhibition appears to exist at ATP concentrations greater than ~0.5 

mM.  Activity peaks at around 0.5 mM ATP and then has a slight decreasing trend 

toward higher concentrations.  Such behavior is observed in some ATPases when there 

is insufficient Mg2+ and the Mg2+: ATP ratio is below optimum.  This suggests that ATP 

itself, not only MgATP, may be binding in an inhibitory fashion at high ATP 

concentrations and that, while Mg2+ is inhibitory, Mg2+ is definitely required.  This point is 

further explored below. 

 

Table 1.  Kinetic parameters for Mg+2 inhibition of apo- and holo-PabABCE1. 
    Vmax  Km  Ki  

    (nmol Pi min-1 mg-1)  (mM)  (µM)  

Globally fitted from 
Mg2+ titrationsa 

 apo-PabABCE1  1.71±0.09  0.35±0.05  7.2±0.3 
 holo-PabABCE1  1.34±0.05  0.16±0.02  6.9±0.2 

Globally fitted from 
ATP titrationb 

 apo-PabABCE1  1.39±0.03  0.029±0.007  0.7±0.5 
 holo-PabABCE1  1.47±0.05  0.047±0.01  0.3±0.1 

aKinetic constants were determined by global fitting using Eq. 2.1 applied to data in 

Figure 13. Vmax, Km and Ki were kept linked while    was allowed to vary. 
bKinetic constants were determined by global fitting using Eq. 2.1 with [S] raised by n as 

[S]n and applied to data in Figure 16. Vmax, Km and Ki were kept linked while n and    
were allowed to vary. 
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As was the case for the [Mg2+] titrations shown in Figure 13, the ATP titration 

data could only be fit when   was allowed to vary with [Mg2+].  For both the apo- and 

holo- forms of PabABCE1, there is a linear relationship between the inverse of   with 

the inverse of [Mg2+].  A significant difference is observed when comparing the slopes 

for these replots between apo- and holo-PabABCE1 (Figure 16CF).  The slope appears 

to be much steeper for the apo-PabABCE1 and thus indicates that the apo-PabABCE1 

is more sensitive to Mg2+ inhibition.  This suggests the involvement of both Fe-S cluster 

status and Mg2+ in a complex regulatory mechanism that is not currently understood for 

this enzyme. 

Effect of Mg2+ on Product (ADP) Inhibition 

A possible mechanism for the inhibitory effect of Mg2+ on this ATPase may be by 

exacerbating product inhibition.  ADP is a product of ATP hydrolysis and often acts as 

an inhibitor for many ATPases [97].  The PabABCE1 may be extremely sensitive to 

product inhibition in conjunction with Mg2+.  To probe the effect of Mg2+ on product 

inhibition, reactions of holo-PabABCE1 with constant concentration of ATP (0.3 mM) 

were titrated with ADP, with and without inhibitory concentrations of Mg2+ (0.05 mM) 

(Figure 17).  The ATPase activity in the presence of 50 µM Mg2+, without ADP, was 

diminished by about 50% as expected.  With increasing [ADP], PabABCE1 ATPase 

activity was inhibited in a hyperbolic fashion.  However, in contrast to a standard simple 

inhibitor, the activities do not diminish to zero with increasing [ADP].  Attempts were 

made to fit the data to standard functions describing simple inhibition kinetics, but were 

not satisfactory.   Since ADP often exhibits mixed inhibition behavior, the data were fit to 
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the following function describing hyperbolic mixed inhibition or a combination of partial 

competitive and partial non-competitive inhibition:  

           
                   

                 
           
    

 (2.2) 

 

where   is a coefficient for Ks as in Eq 2.1, β is a coefficient on the rate constant kp for 

product formation and [I] represents the inhibitor concentration of ADP in this case.  

This function represents the equilibrium model shown in Figure 13C where    > 1 and   

0 < β < 1 (p 179 in[90]).  Note that    described here is with respect to ADP and is 

distinct from   for Mg2+ inhibition in the previous section.  Comparison of the kinetic 

constants derived from data sets with and without 50 µM MgCl2 shows minimal 

differences for apparent Ki for ADP (Table 2).  While only limited interpretations should 

be made from fitting only the two curves in Figure 17, it does not appear that Mg2+ 

greatly affects the inhibition by ADP.  The experiment does show that Mg2+ again 

decreases the rate by more than 50% and that ADP acts as a partial inhibitor, where β 

is about 0.17 both with and without Mg2+, indicating that the rate constant for product 

formation is decreased to 17% with saturating ADP. 
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Figure 17.  Inhibition by ADP of holo-PabABCE1 ATPase activity with and without 
0.05 mM Mg2+. 
ATPase activity of holo-PabABCE1 is plotted with 0.3 mM ATP and with increasing 
[ADP] (0-2.0 mM) in the presence of Mg2+ (■) and 0.05 mM Mg2+ (□). 
 

 

To further probe the effects of Mg2+ on ADP inhibition of PabABCE1, ATP 

saturation kinetics were examined in the presence of varying ADP as an inhibitor, both 

with and without added 0.05 mM Mg2+ (Figure 18AC).  Initially, the data were fit using 

standard Hill form of the Michaelis-Menten equation.  Replots of the apparent Vmax in 

the presence of inhibitor (     ) are somewhat linear, but not perfect (Figure 18BD). In 

the case of a classical intersecting, linear non-competitive inhibitor (mixed inhibition), 

replots of 1/(     ) versus [ADP] should be linear, but appear not to be.  Attempts were 

also made to globally fit the data in Figure 18 A and C to functions for a classical mixed 

inhibitor, but these did not yield satisfactory fits.  Given that titrations with ADP at fixed 

[ATP] do not diminish the ATPase activity to zero, Eq. 2.2 for hyperbolic mixed inhibitor 

was applied to the data sets in Figure 18A and C by global fitting methods, and 
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satisfactory fits were obtained. Kinetic constants obtained from this procedure are 

presented in Table 2. 

 

A                                                         C 

 

B                                                           D                    

                                

Figure 18.  ATP saturation kinetics of holo-PabABCE1 ATPase activity with 
varying ADP and Mg2+. 
The effects of ADP on the ATPase activity and affinity of holo-PabABCE1 were 
determined. ATPase activity vs [ATP] is plotted for reactions without any added Mg2+ (A) 
for no ADP (■), 0.2 mM ADP (□), 0.4 mM ADP (▲) and 0.6 mM ADP (∆) or for reaction 
containing 0.05 mM Mg2+ (C) for No ADP (■), 0.2 mM ADP (□), 0.4 mM ADP (▲) and 
0.8 mM ADP (∆). Replots of 1/Vmax vs [ADP] are shown for without added Mg (B) and 
with 0.05 mM Mg2+ (D). 
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The value of Vmax in the presence of Mg2+ decreased by about ~50%, as shown 

above. The Km increased in the presence of Mg2+ by ~3 fold from 90 µM to 320 µM.  

The addition of Mg2+ only minimally affected the Ki for ADP, changing from 100 µM to 75 

µM. Even the    and β parameters with ADP as the inhibitor for conditions with and 

without Mg2+ did not change. As seen before for the ATP titrations with varying Mg2+ 

(Figure 16), the most conspicuous change that occurred with the presence of Mg2+ was 

that it abolished apparent cooperativity where n changes from ~2 to ~1 for all 

concentrations of ADP.  These data taken together suggest that inhibitory effect upon 

addition of Mg2+ was not due to modulation of product inhibition through MgADP. 

 

Table 2.  Kinetic parameters for ADP inhibition of holo-PabABCE1 with and 
without 0.05 mM MgCl2.   
 Mg2+  Vmax  Km  Ki     
 (mM)  (nmol Pi 

min-1 mg-1) 
 (mM)  (mM)     β 

Globally fitted ADP 
titrationsa 

0.00  1.56±0.02  0.15±0.02  0.07±0.01  1.3±0.1  0.17±0.01 
0.05  0.68±0.02  0.17±0.02  0.36±0.02  0.13±0.02  0.17±0.01 

Globally fitted ATP 
titrations with 
varying ADP 

0.00  1.67±0.02  0.090±0.002  0.102±0.002  7.4±0.4  0.17±0.02 
0.05  0.87±0.01  0.32±0.01  0.074±0.001  7.4±0.7  0.14±0.02 

aKinetic constants were determined by global fitting using Eq. 2.2 applied to data in 

Figure 17.  Vmax, Km and Ki    and β were kept linked while n was allowed to vary. 
bKinetic constants were determined by global fitting using Eq. 2.2 applied to data in to 

data in Figure 18. Vmax, Km and Ki    and β were kept linked while n was allowed to vary. 

 

Divalent Metal Chelators, EDTA and EGTA, Affect Activity of PabABCE1 

The apparent ATPase activity by PabABCE1 without externally added Mg2+ and 

its inhibition with added Mg2+ raises the following question: does ATP hydrolysis by this 
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enzyme occurs without any Mg2+?   Alternatively, does PabABCE1 indeed require Mg2+ 

as a cofactor, and could there be Mg2+ associated with the as-prepared form of 

PabABCE1? This was evaluated by adding EDTA or EGTA to chelate the Mg2+, 

presumably bound to the enzyme, and thus inhibiting the ATPase activity.  The addition 

of EDTA or EGTA to ATPase reactions with 0.3 mM ATP, but no added Mg2+, resulted 

in a decrease in activity (Figure 19AB).  For both EDTA and EGTA, approximately 20 

µM was sufficient to decrease ATPase activity.  This observation suggests that Mg2+ is 

likely required for ATP hydrolysis, and that the as-purified form of PabABCE1 probably 

has some Mg2+ bound with high affinity. 
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A 

 

B 

 

Figure 19.  Mg2+ bound to PabABCE1 shown by inhibition of ATPase activity with 
EDTA or EGTA. 
The effect divalent metal chelators on the ATPase activity of PabABCE1 were observed 
with increasing concentrations of EDTA (0-0.5 mM) (A) or EGTA (0-10 mM) (B) in the 
presence of 0.3 mM ATP and without any added Mg2+. 
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Effect of Total RNA on Mg2+ Inhibition 

ABCE1 has been shown to be associated with both polysomes and immature 

nascent ribosomes.  ABCE1 has been shown to be functionally essential for both 

ribosome biogenesis and ribosome recycling [49, 50, 98].  Thus ABCE1 interacts with 

ribosomes in some sort of intimate way and possibly remodels RNA-RNA or RNA-

protein interactions, most likely in an MgATP dependent way. Structural and 

biochemical analysis of RNA and ribosome structures have shown well the importance 

of Mg2+ in stabilizing structure [99, 100] and also the possible movement of Mg2+ upon 

ribosomal structural changes [101].  Therefore, RNA could have some effect, through 

Mg2+, to modulate the ATPase activity of PabABCE1.  For the ABCE1 from S. 

solfataricus, addition of ribosomes has been shown to stimulate ATPase activity [34]. 

Total RNA from yeast, containing 80-85% rRNA [83], was added to PabABCE1 ATPase 

reactions to observe possible effects (Figure 20A).  Indeed, addition of RNA did have 

significant effects.  Addition of total RNA from S. cerevisiae to PabABCE1 without 

added Mg2+ moderately increased ATPase activity by roughly 1.5 fold.  The activity 

increased up to 20 µg of added total RNA, and then decreased with higher amounts of 

RNA.  Inclusion of 0.5 mM total Mg2+ to ABCE1 inhibited its ATPase activity by more 

than 50% as observed above. Interestingly, addition of total RNA to the Mg2+ inhibited 

reaction increased the ATPase activity by ~4 fold from the Mg2+ inhibited activity.  While, 

the binding of PabABCE1 to the S. cerevisiae rRNA, contained in the total RNA, may 

not be a specific interaction and the high temperature may result in the disruption of 

rRNA secondary structure, the fact that Mg2+ inhibition diminishes is highly significant.   
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To further confirm the apparent reversal of the Mg2+ inhibition of PabABCE1 

ATPase activity by addition of RNA, Mg2+ was titrated in the presence of two fixed 

concentrations of RNA (Figure 20B).  In contrast to the Mg2+ titration experiment in 

Figure 13, addition of Mg2+ in the presence of 10 or 20 g of RNA stimulated the 

ATPase activity of PabABCE1.  The ATPase activity increased as [Mg2+] neared the 

presumed physiological conditions and then declined at much higher concentrations. 

The addition of 20 g RNA had a greater activating effect than 10 g and maximum 

activation with respect to Mg2+ required about double the concentration of Mg2+. This 

experiment utilized 0.3 mM ATP and maximal activity required between 0.3 to 0.6 mM 

Mg2+ giving a ratio of 1:1-1:2 between ATP and Mg2+, which is very common for 

ATPases. 
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   A 

 

   B 

 

Figure 20.  Total RNA activates PabABCE1 ATP hydrolysis in the presence of 
inhibitory concentrations of Mg2+.   
The affect of total RNA on the inhibition of PabABCE1 by Mg2+ was observed by (A) 
determining the specific activity in the absence (□) or presence (♦) on 0.5 mM Mg2+ and 
0.3 mM ATP while increasing the amount of total RNA from 0-35 µg and (B) determining 

the specific activity in the presence of constant (◊) 10 µg or (♦) 20 µg total RNA and 0.3 

mM ATP while increasing the amount of Mg2+ from 0-2.0 or 2.5 mM. 
 

2.5

2.0

1.5

1.0

0.5

0.0

S
p

e
c
if

ic
 A

c
ti

v
it

y
 (

n
m

o
l 

P
i 
m

in
-1

µ
g

-1
)

35302520151050

Total RNA (µg)

2.5

2.0

1.5

1.0

0.5

0.0

S
p

e
c
if

ic
 A

c
ti

v
it

y
 (

n
m

o
l 

P
i 
m

in
-1

µ
g

-1
)

2.52.01.51.00.50.0

[Mg
2+

] (mM)



62 
 

The exact mechanism for interaction between the RNA, Mg2+ and PabABCE1 

may be complex.  An interpretation could be made that the RNA is simply acting as a 

“sponge” for Mg2+. RNA can definitely bind Mg2+ and may possibly counteract the 

inhibitory effects of Mg2+, but that would not necessarily explain activation of the 

ATPase activity.  The exact biochemical or molecular mechanism for RNA to reverse 

the inhibitory effects of Mg2+ is not possible to interpret from the experiments here. 

While this investigation used total RNA from S. cerevisiae, ribosomes contained in the 

total RNA are likely to be involved in this effect.  However, the data seem to clearly 

indicate that both Mg2+ and some form of RNA positively affect the ATPase activity of 

PabABCE1. 

Discussion 

ABCE1 is an essential protein found in eukaryotic and archaeal organisms that is 

essential for ribosome biogenesis and ribosome recycling.  While recent studies [32, 34, 

49, 50, 77, 80] highlight the crucial role of this protein in critical cellular processes, very 

little is known at the biochemical mechanistic level.  Key questions to be answered in 

the future are 1) how does it interact with ribosomes and what exactly are the 

transformations that it enacts on ribosomes, 2) what is the role of the Fe-S clusters, and 

3) how is the energy from ATP utilized?  Toward the goal of elucidating some of these 

unknowns, this study sought to characterize the ATP hydrolysis activity of PabABCE1.  
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Mg2+ Inhibition of the PabABCE1 and Other ATPases 

Somewhat unexpectedly, the experiments described in this work clearly show 

that Mg2+ apparently inhibits the ATP hydrolysis activity of ABCE1 from P. abyssi.  We 

do not know if Mg2+ is involved in regulation of ABCE1 enzymes from other organisms. 

Such inhibition by Mg2+ is definitely unusual for an ATPase, but is not without 

precedent.  For instance, the activity of human GCH I, an enzyme that regulates cellular 

levels of tetrahydrobiopterin, is inhibited by Mg2+ due to the decrease in Mg2+-free GTP 

[102].  Also, the ATPase activity of CASK, Ca2+/calmodulin-activated Ser-Thr kinase, 

has been shown to function in an Mg2+ independent manner [96].  The ATPase activity 

of chloroplast coupling factor 1 has complex Mg2+ inhibition properties at physiologically 

relevant concentrations of free Mg2+ [93].  Some ATPases are very sensitive to Mg2+ 

mediated product inhibition where Mg2+-ADP binds tightly to such systems as the F0F1 

ATPase [103-105] or the hRAD51, an enzyme involved in homologous recombination 

[94, 106].  Such inhibition has been termed ADP-induced Mg2+-dependent inhibition [91, 

107-109] where it is likely to be caused by tight binding and slow release of Mg2+-ADP 

once Pi leaves or the binding of a triple complex of Mg2+-ADP-Pi at the catalytic site [92, 

97].  All these examples show the importance of Mg2+ having a role in the regulation of 

enzyme activity. 

The data presented here show that PabABCE1 is evidently inhibited by Mg2+.  

The Mg2+ inhibition did not occur at high concentration, but at physiologically relevant 

low to mid µM-concentrations of Mg2+.  The addition of increasing [Mg2+] decreased the 

ATPase activity in a saturating fashion, but did not decrease to the limit of no activity as 
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it would in the case of classical simple inhibition (Figure 13AB).  Analysis of the kinetics 

for ATP hydrolysis, in the presence of varying Mg2+, shows characteristics of complex 

partial inhibition.  The data sets for both Figure 13 and Figure 16 fit well to a function 

that models partial competitive inhibition [90], where the Vmax does not change but the 

apparent Km increases in the presence of inhibitor. This is demonstrated by the 

significant increase in Km, where Mg2+ seems to adversely affect the affinity for ATP by 

PabABCE1.  The    values for this fitting cannot be held constant, but vary linearly 

between 1/   and 1/[Mg2+] (Figure 16CF), which may correlate to an additional 

equilibrium involving Mg2+, perhaps in an allosteric fashion to affect the Km towards 

ATP.  Magnesium(II) may bind elsewhere on the protein to alter its conformation and 

shift the enzyme to a state with low affinity toward ATP.  For the apo-PabABCE1, the 

apparent Km for ATP increases from ~30 µM to 1.2 mM with the addition of only 50 µM 

Mg2+, a concentration that is significantly lower than physiological conditions.  This 

effectively alters the apo-PabABCE1 ATPase activity from essentially not being 

dependent on the cellular energy charge in the absence of Mg2+ to being modulated by 

cellular energy charge () where intracellular ATP concentrations fluctuate dependent 

on cellular conditions and metabolism [110].  

As noted above, several ATPases have apparent Mg2+ inhibition through tight 

MgADP product binding.  ADP product inhibition is typical for most ATPases, and was 

further examined here with the PabABCE1 in relation to Mg2+.  Addition of increasing 

[ADP] decreases activity in a saturating way to about 15-18%, with or without added 

Mg2+.  Kinetic analysis of ATPase activity with varying [ADP] and contrasting between 
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no externally added Mg2+ and with 0.05 mM Mg2+ shows that Mg2+-dependent inhibition 

is not due to MgADP.  Global fitting of the ADP inhibition data (Figure 17) to a model for 

complex hyperbolic mixed inhibition [90] shows only a small decrease in Ki for ADP from 

~100 µM to ~75 µM, but indicates a significantly altered Km by 3.5 fold (not the apparent 

Km with respect to added ADP) with addition of Mg2+.  The values for the    and β 

parameters for ADP inhibition determined by global fitting analysis are reasonable with 

  indicating effectively a decreased apparent affinity toward ATP and β indicating an 

effective decrease in apparent catalytic rate constant. Importantly here with respect to 

Mg2+, the   and β values determined from both data sets, with and without added Mg2+, 

are essentially the same.  These data, taken together, show that the Mg2+-dependent 

inhibition of PabABCE1 ATPase activity is independent of ADP inhibition. 

Magnesium(II) ion also appears to alter the cooperativity with respect to [ATP] on 

PabABCE1.  The Hill coefficient is near n = 2 without added Mg2+, but decreases to 

around n = 1 when Mg2+ is added.  Interestingly, there is a difference between the ATP-

bound and the Mg2+-ATP bound X-ray structures of the E. coli HlyB [21], haemolysin B, 

a different ABC protein, where there are twice as many water contacts in the ATP-

bound form as there are in the Mg2+-ATP-bound structure. Additionally, asymmetry 

between the two NBDs was discovered in the presence of Mg2+ in the HylB ABC 

protein.  The full mechanism of where Mg2+ may bind and how it inhibits the PabABCE1 

cannot be fully elucidated from this study and needs further investigation. 
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Mg2+ and Fe-S Cluster Status as Possible Component of PabABCE1 Regulation and 

Impact on Translation 

Magnesium(II) ions are obviously important for growth and regulation of 

metabolism.  More specifically, intracellular Mg2+ concentrations have an effect on 

protein synthesis [111].  The importance of Mg2+ for ribosomal structural integrity and its 

role in stabilizing, and possibly regulating, ribosomal RNA-RNA and RNA-protein 

interactions is well appreciated [99, 100, 112-114].  

Addition of total RNA (from S. cerevisiae) appears to reverse the Mg2+ to an 

apparent activator of ATP hydrolysis.  This result is fitting with a model where the 

PabABCE1 ATPase activity is inhibited at cellular [Mg2+], but is ready to encounter a 

ribosome to enact its full activity.  Such a model warrants further experiments that are 

beyond the scope of the current work.  Furthermore, current experiments do not show if 

this would be a general model for all ABCE1 or possibly only specific to P. abyssi.  In 

relation specifically to ABCE1 and ribosome recycling in eukaryotes, Mg2+ concentration 

does affect dissociation of ribosomal subunits at post-termination where 1.0 mM Mg2+ is 

permissible, but 2.5 mM Mg2+ and higher is inhibitory [98].   

This study suggests complex and somewhat opposing dual roles for Mg2+ in the 

mechanism of the PabABCE1, which may be very appropriate for an enzyme that 

interacts intimately with ribosomes.  First, Mg2+ may bind somewhere other than the 

MgATP sites to allosterically alter the affinity and cooperativity of MgATP binding. 

Second, as shown by the EDTA chelation experiment (Figure 19) and by the slight ATP 

substrate inhibition in the absence of added Mg2+, Mg2+ is required for ATPase activity, 
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likely in the form of MgATP.  The apparent tight binding of Mg2+ and the apparent 

inhibition at cellular concentrations of Mg2+ may be part of a regulatory mechanism for 

the PabABCE1 where needless and deleterious ATP hydrolysis is inhibited in the 

absence of ribosomes.  These results correlate with a model where the PabABCE1 

ATPase activity is inhibited at cellular [Mg2+], but is ready to encounter a ribosome to 

enact its full activity.  RNA and ribosomes are well known to chelate Mg2+ and binding to 

a ribosome may remove the bound Mg2+ and alleviate the inhibition.  Such a model 

warrants further experiments that are beyond the scope of the current work.  

Furthermore, current experiments do not show if this would be a general model for all 

ABCE1 or possibly only specific to P. abyssi.  In relation, specifically to ABCE1 and 

ribosome function in eukaryotes, Mg2+ concentration does affect dissociation of 

ribosomal subunits at post-termination where 1.0 mM Mg2+ is permissible, but 2.5 mM 

Mg2+ and higher has been observed to be inhibitory [98].   

An aspect of ABCE1 that has been rather elusive to define is the role of the Fe-S 

clusters.  The inhibition by Mg2+ was probed with both the holo- and Fe-S cluster 

deficient apo-PabABCE1.  The Ki values for Mg2+ determined from global fitting of data 

in Figure 16 showed a 4-fold increase of the apparent Km for ATP between the apo- and 

holo-forms.  Furthermore, the slope for plots of 1/  vs. 1/[Mg2+] is steeper (Figure 16CF) 

for the apo- form.  This indicates that the apo-PabABCE1 without its full complement of 

Fe-S clusters is more sensitive to Mg2+ inhibition and would be more sensitive to overall 

energy charge.  This observed modality for inhibition through Mg2+ may be a possible 

mechanism for regulation of ABCE1 by Fe-S cluster status.  A purely structural role for 
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the Fe-S clusters has been made [34], suggesting that the apo- form may just degrade.  

Studies in yeast clearly show that the in vivo apo-ABCE1, produced by inhibiting the Fe-

S cluster assembly machinery, does exist both in the nucleolus, bound to immature 

ribosomes, and in the cytoplasm, bound to stalled polysomes [49].  This may be a basis 

for regulation of translation with respect to oxidative stress.  Recent studies have shown 

that oxidative stress globally inhibits translation [115, 116].  Previous studies on the S. 

solfataricus ABCE1 by Barthelme et al. suggests that its ATPase activity is not affected 

by mutations of the Fe-S cluster ligands, but do show that ribosome binding is 

negatively affected by deletion of the Fe-S cluster domain [34].  The S. solfataricus 

ABCE1 may not be affected by Mg2+ as the PabABCE1 or strict anaerobic conditions 

may not have been maintained where a difference could have been observed.  Clearly, 

more biochemical studies are necessary to truly understand the role(s) of the Fe-S 

clusters on ABCE1. 

Ribosomal modification in either the context of ribosome biogenesis or translation 

is an extremely complex series of events.  This work shows the somewhat unusual Mg2+ 

inhibition of the ATPase activity of PabABCE1.  This inhibition by Mg2+ is not through 

modulation of MgADP product inhibition.  The degree of inhibition by Mg2+ appears to 

be different between the apo- and holo- forms of PabABCE1.  The work taken together 

supports a model where PabABCE1 is jointly regulated by Mg2+, Fe-S cluster status, 

and the likely binding of ribosomes. 

A model can be envisioned where resting ABCE1 bound with Mg2+ is 

allosterically inhibited.  Binding to active ribosomes, ABCE1, with associated release 
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factors, performs mechanical work upon ATP hydrolysis, resulting in rearrangement of 

ribosome, where Mg2+ could be moved to a different site upon structural changes of the 

ribosome.  
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CHAPTER 3:  ABCE1 IRON-SULFUR CLUSTERS ARE SENSITIVE TO REACTIVE 
OXYGEN SPECIES RESULTING IN GROWTH INHIBITION IN SACCHAROMYCES 

CEREVISIAE 
 

Introduction 

Exposure to oxidative stress is a common drawback to all known aerobically 

respiring organisms [117].  Oxidative stress is most generally caused from the full or 

partial reduction of oxygen (O2), forming an endogeneous reactive oxygen species 

(ROS), such as superoxide (O2
-), hydroxyl radical (OH), hydroxide ion (OH-) and 

hydrogen peroxide (H2O2) [118].  Additionally, environmental exposure to oxidants, such 

as ionizing radiation or heavy metals, can also form ROS.  Reactive oxygen species are 

a normal consequence of aerobic metabolism. Therefore, cells have evolved several 

different antioxidant mechanisms for limiting oxidative stress and damage to 

macromolecules [117-121].  Oxidative stress occurs when the buildup of ROS 

overwhelms the cells’ natural defense systems that are evolved to fight against 

oxidative effects.   

Oxidative stress defense mechanisms can consist of enzymatic and non-

enzymatic systems that are either constitutively present or induced during an adaptive 

response [117].  Non-enzymatic defense involves antioxidants such as glutathione, 

thioredoxin, and glutaredoxin [40, 122, 123].  There are several enzymatic antioxidants 

including catalase, superoxide dismutase, glutathione reductase and peroxidase, as 

well as thioredoxin reductase [117, 124, 125].  All of these systems work together to 

maintain the redox state of the cell. 
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Oxidative stress can result in damage to proteins, DNA, RNA, and lipids as well 

as the disruption of cellular signalling cascades.  Direct oxidation to proteins can result 

in protein disfunction, degradation, or aggregation [126].  This can have a direct effect 

on translation, especially if the target is a protein or other component of the translation 

apparatus.  A reversible inhibition of protein synthesis due to ROS has been 

demonstrated [115, 119].  Cells treated with H2O2 resulted in the phosphorylation of 

eIf2α by Gcn2 kinase, which inhibits translation initiation [12].  Interestingly in the same 

study, a slower rate of ribosomal runoff in polysome analysis following H2O2 treatment 

was demonstrated, suggesting inhibition of translation downstream of initiation, at 

elongation and termination.  While the inhibition of translation is a clear result of H2O2- 

induced oxidative stress, the precise target of oxidation by H2O2 and the mechanism of 

inactivation is still unknown.   

The direct target of oxidation could be the translation complex or it may be a 

specific components involved in the translation cycle [121, 127].  Some proteins are 

more sensitive to ROS induced oxidative stress, especially those that contain oxygen 

sensitive Fe-S clusters.  Proteins containing Fe-S clusters can serve as a target or a 

source of further oxidative damage [128].  As a target of ROS, Fe-S clusters could be 

converted, by superoxide, to an unstable oxidized state where it loses an Fe2+ which 

also produces H2O2.  Hydrogen peroxide can react with ferrous iron released during Fe-

S degradation, generating a hydroxyl radical in the Fenton reaction, eventually resulting 

in a chain reaction that forms more ROS species resulting in systemic oxidative stress 

[118].  
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ABCE1 could be at the interface between Fe-S biogenesis, protein synthesis, 

and oxidative stress.  In yeast, a defect in the core ISC machinery in the mitochondria 

due to depletion of yfh1 (frataxin), results in reduced incorporation of 55Fe into ABCE1 

[129] and increased sensitivity to oxidative stress.  Since ABCE1 functions in such vital 

cellular processes as ribosome biogenesis, translation initiation, and ribosome 

recycling, ABCE1 is central to cell growth and survival [34, 49, 50, 76, 82, 130, 131].  

The dependence of ABCE1 function on the status of its Fe-S clusters and their essential 

nature suggests ABCE1 as a likely target for oxidative damage by ROS.  This study 

aims to address whether excess ROS exposure to cells could have an effect on Fe-S 

clusters of ScABCE1, a cytosolic Fe-S protein, and also whether the effect correlates 

with the growth inhibition expected when translation is inhibited (Figure 21). 

 

 

Figure 21.  Model depicting the effect of exposure to to excess H2O2 on ABCE1 Fe-
S clusters  
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Materials and Methods 

Recombinant Expression of ABCE1 in S. cerevisiae 

The diploid S. cerevisiae strain, Y258 (MATa pep4-3, his4-580, ura3-53, leu2-

3,112), transformed with BG1805-ScABCE1-His6-HA-ZZ was used for all experiments 

(Open Biosystems).  The BG1805-ScABCE1-His6-HA-ZZ vector provides expression of 

ScABCE1 with an HA fusion tag on the C-terminus, of under the control of the GAL1 

promotor.  In all experiments, cells were originally grown in SC medium lacking uracil 

and containing 2% raffinose with or without 2% galactose unless otherwise noted.  

Briefly, cells were either induced by the addition of 2% galactose or un-induced for 24 

hours.  The cells were then pelleted centrifugation (2,000 X g, 5 min) and lysed using 

the bead-beating method.  Cell lysate was then subjected to SDS-PAGE, the proteins 

were transferred to a nitrocellulose membrane and probed with either mouse anti-HA 

primary antibody (1:5,000) (Covance, MMS-101P) or mouse anti-actin (1:500) (Abcam, 

ab8224) primary antibody.  Colorimetric detection was performed subsequent to the 

incubation of the membranes with a alkaline phosphatase (AP)-conjugated goat anti-

mouse IgG secondary antibody. 

Treatment of Cells with H2O2  

Cells were subjected to oxidative stress by the addition of H2O2 (0-20 mM) to the 

culture media once they reached an optical density of ~1.4.  This was followed by a 30 

min incubation (unless otherwise noted) at 30 ˚C and shaking (180 RPM).  Samples at 

the indicated H2O2 concentration and time intervals were analyzed by pelleting cells by 
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by centrifugation (2000 x g, 8 min), then washed as described previously [132], frozen 

with liquid nitrogen, and stored at -80˚C. 

In vivo 55Fe Incorporation 

In vivo labeling of yeast cells was performed following the addition of 1 µCi 55Fe 

per liter and allowing growth to an optical density of ~1.3-1.5, at 30˚C, shaking at 180 

RPM in SC medium lacking uracil, 2% raffinose, 2% galactose.  When appropriate, cells 

were then subjected to oxidative stress by addition of H2O2 as described above or in 

figure legends.  Cells were then harvested by centrifugation (2000 x g, 8 min) washed 

as described previously [132].   

Immunoprecipitation 

All immunoprecipitations were conducted in an anaerobic chamber containing at 

least 5% H2 and less than 1 ppm O2.  All buffers were degassed and stored in the 

anaerobic chamber for at least 12 hours prior to beginning immunoprecipitations.  

Following growth to the desired optical density, H2O2 treatments where indicated, 

ScABCE1 was isolated by immunoprecipitation described Pierik et al [132] with a slight 

modification.  Briefly, lysates were divided evenly to provide duplicate samples , then 

were incubated in the presence of α-HA antibody (100 ng) for one hour at 4 ˚C followed 

by a one hour incubation with 100 L IgG Sepharose (50% slurry in 50 mM phosphate 

buffer, pH 7.5).  Beads were then washed 4 times  with 1 ml TNETG buffer (20 mM Tris 

pH 7.4, 150 mM NaCl, 2.5 mM EDTA, 0.5% Triton X-100, 10% glycerol), then 2 mL of 
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scintillation fluid was added.  The amount of 55Fe bound to ScABCE1-HA was measured 

with a liquid scintillation analyzer. 

Results 

The Stability and Persistence of ScABCE1 Protein Upon Treatment with H2O2 

Since observations for this study must rest solely on the amount of 55Fe 

specifically associated with ABCE1-HA, the ability to detect the ABCE1-HA bound 55Fe 

in the absence or presence of H2O2 is a necessity.  Immunoprecipation performed on 

lysate from cells not expressing ABCE1-HA reveal negligible detection of 55Fe, while 

detection in induced cells indicates expression and specific detection of ABCE1-HA by 

the α-HA antibody (Figure 22 ABC).   

 

A                       B        C 

  

Figure 22.  Recombinant expression and detection of 55Fe bound to ScABCE1-HA 
in S. cerevisiae 
Recombinant expression of ScABCE1-HA was confirmed by polyacrylamide 
electrophoresis (A) followed by a western blot (B) using an α-HA antibody (C) control 
55Fe measurements from immunoprecipitations of uninduced cells (glucose) and 
induced cells (2%raffinose +2% galactose). 

0.0 

5.0 

10.0 

15.0 

20.0 

25.0 

30.0 

Glucose Galactose 

p
m

o
l 
A

B
C

E
1

 b
o

u
n

d
 

5
5
F

e
/g

 c
e

ll
s

 



76 
 

The amount of detectable protein present in the cells should not decrease upon 

the treatment of H2O2, although it is possible that with H2O2 treatment, ABCE1-HA could 

become undetectable due to insolubility or the protein being degraded.  This could 

result in the absence of the protein in the soluble fraction, which would prevent accurate 

interpretation of results.  The ability to detect ABCE1-HA consistently over a wide range 

of H2O2 concentrations, to confirm integrity of ABCE1-HA peptide upon peroxide 

treatment was important for future experiments.  Cells were subjected to 0-20 mM H2O2 

with fixed amount of antibody, followed by SDS-PAGE and western blot analysis (Figure 

23).  This allowed the identification of available (soluble) ABCE1-HA so that any distinct 

differences in the ability to detect ABCE1-HA or any changes in protein amount upon 

exposure to H2O2 could be determined. 

 

 

Figure 23.  ScABCE1 expression analysis following oxidative stress  
S. cerevisiae expressing BG1805-ScABCE1 were subjected to oxidative stress by the 
addition of the indicated [H2O2] for 30 minutes.  Western blots were probed for α-HA 
(ScABCE1) or α-actin. 
 

 

Western blot analysis demonstrated there was no significant decrease is the 

amount of ABCE1-HA present in the cells upon treatment with H2O2 concentrations up 
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to 20 mM (Figure 23).  In fact, there seems to be a slight increase of ABCE1-HA upon 

treatment with lower concentrations of H2O2 (1-4 mM). 

Next, the experimental strategy for immunoprecipitation was to determine an 

optimal fixed amount of ABCE1-HA but still limiting the amount of ABCE1-HA being 

detected to a fraction of the available ABCE1-HA.  This ensures that even if there were 

any changes in the amount of protein in future experiments, the depletion of 55Fe bound 

ABCE1-HA due to the effects of H2O2 could be accurately detected rather than just a 

decrease in the availability of ABCE1-HA.  An optimal limiting amount of α-HA antibody 

and IgG sepharose was determined and described in the methods section.   

ABCE1 Bound Iron is Depleted with Exposure to H2O2 

To explore whether exposure to the prooxidant H2O2 has an effect on the 

occupancy of Fe-S clusters within ABCE1, cells were treated with increasing amounts of 

H2O2.  Overexpression of ABCE1 has been shown to provide resistance to prooxidants, 

including H2O2 (0.25mM), in a tet-regulatable system [133]. 
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Figure 24.  55Fe depletion from ScABCE1-HA with increasing [H2O2].  
S. cerevisiae Y258 transformed with BG1805-ScABCE1-HA, were subjected to 
oxidative stress by the addition of increasing H2O2 concentration (0-40 mM H2O2) for 30 
min, in 1.5% raffinose/2%galactose.  

 

At H2O2 concentrations under 5 mM, a minimal decrease in ABCE1 bound 55Fe 

was observed, suggesting some resistance to oxidative stress in the presence of lower 

H2O2 concentrations (Figure 24, inset).  At higher concentrations of H2O2, there was a 

dose dependent decrease in the amount of ABCE1 bound 55Fe with exposure to H2O2.  

The depletion of 55Fe reached ~75% with the addition of 40 mM H2O2.  These data 

suggest that ROS generated from H2O2 or H2O2 itself affects the Fe-S cofactors bound 

to ABCE1-HA. 

ABCE1 Bound Iron Declines Due to Continued Exposure to H2O2 

To support the conclusion that H2O2 caused the reduction in the amount of 

ABCE1 bound 55Fe, cells were subjected to oxidative stress over time with a constant 
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amount of H2O2.  The effect on ABCE1 bound 55Fe due to H2O2 induced oxidative stress 

were consistent between experiments, where there was a ~40% decreased of ABCE1 

bound 55Fe (Figure 24) after 30 min of H2O2 exposure.  Continued exposure to 10 mM 

H2O2 resulted in a gradual decline in the amount of ABCE1 bound 55Fe where after 2.5 

hours ABCE1 bound 55Fe decreased by ~62% (Figure 25).  

 

  

Figure 25.  55Fe depletion from ScABCE1 over time following treatment with 10 
mM H2O2.  
S. cerevisiae, Y258 transformed with BG1805-ScABCE1-HA, were subjected to 
oxidative stress by the addition of 10 mM H2O2 for 30 min. Aliquots of cells were 
harvested, washed, and weighed, every 30 min. for up to 2.5 hours.   
 

 There appears to a lag in the time between 0.5 and 1.5 hours of exposure, 

possibly due to resistance or some other adaptive response (Figure 25).  This suggests 

there may be sufficient antioxidant resistance to maintain a level of functional (or 55Fe 

bound) ABCE1.  After 1.5 hours, the balance between antioxidant resistance and 
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oxidative stress could have been shifted, perhaps due to the build-up of ROS.  These 

data provide additional support for the hypothesis that exposure to H2O2 affects the Fe-

S status of ABCE1.  Here, the effects of H2O2 are likely partial or total degradation of the 

Fe-S clusters, since the Fe-S clusters (55Fe) were already incorporated into ABCE1-HA.  

In addition, the possible negative impact of H2O2 on 55Fe incorporation over time is also 

very possible. 

Growth Rate can be Recovered Upon the Removal of H2O2 

If the decrease in growth is the result of the presence of H2O2, then the growth 

rate should recover after the removal of H2O2.  Upon media exchange and removal of 

H2O2, the growth rate began to increase gradually to ~6 hrs/doubling, almost completely 

recovered from the toxic effects of H2O2 (Figure 26A).  Meanwhile, the growth rate 

remained very low for cells with continuous exposure to H2O2 where there was only 

slightly increasing and the doubling time extended to ~12 hrs. Thus, the growth rate of 

the stressed cells is ~50% lower than that of the recovering cells.  The 40% reduction in 

ABCE1 bound 55Fe described above can be the source of almost all the growth 

inhibition observed upon continued exposure to H2O2.  These data suggest that, during 

conditions of oxidative stress, the key mediator between growth and growth inhibition 

could be the Fe-S status of ABCE1. 

Following Exposure to H2O2, the Majority of ABCE1 Bound Iron can be Recovered 

Results from the growth recovery experiment suggest the removal of H2O2 allows 

the restoration of function of ABCE1-HA.  If the ABCE1-HA bound 55Fe show a 
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corresponding increase over time, upon the removal of H2O2, then the Fe-S cluster and 

function of ABCE1-HA has likely been restored.  Following removal of the H2O2, the 

amount of ABCE1 bound 55Fe began to increase within the first 2 hours of recovery, 

where in comparison the amount ABCE1 bound 55Fe did not increase in the cells 

subjected to continued exposure to H2O2 (Figure 26B).  After ~8 hrs, the amount of 55Fe 

bound to ABCE1 reached a maximum where it stayed through 12 hrs.  The amount of 

ABCE1 bound 55Fe following recovery was within 12% of the original amount prior to 

H2O2 treatment.  The original, untreated cells contained ~26 pmol 55Fe/g cells whereas 

at 12 hrs post-recovery, there were ~23 pmol 55Fe/g cells.  Following media exchange, 

the amount of ABCE1 bound 55Fe detected cells that were subjected to, continued 

exposure to H2O2 continued to decline to ~56%.  What is most notable is that the 

initiation of increase of growth rate corresponds to the same time that the ABCE1 bound 

55Fe started to increase (Figure 26AB).  Combined, these data further support that the 

Fe-S clusters of ABCE1 are degraded upon oxidative stress and its activity is likely 

negatively modulated by loss of its Fe-S clusters.  In turn, translation may be affected 

with decreased ABCE1 activity upon Fe-S cluster degradation and likely affects overall 

cellular growth rate. 
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  A 

 

  B 

 

Figure 26.  Repletion of ABCE1 bound 55Fe in cells subjected to oxidative stress 
with 10 mM H2O2, occurs within 4 hours  
S. cerevisiae, Y258 transformed with BG1805-ScABCE1-HA, were grown to an OD600 of 
1.0, subjected to oxidative stress for 30 min by the addition of 10 mM H2O2.  Cells were 
then harvested and resuspended in fresh media containing 55Fe, consisting of () No 
H2O2 and () 10 mM H2O2. The OD600 was monitored (A) in conjunction with the 
amount of 55Fe determined from immunoprecipitations (B). 
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Discussion 

Effect of ROS on ABCE1 Function in Translation  

This study aimed to address the proposed effect of ROS on the Fe-S clusters 

within the the cytosolic Fe-S protein, ScABCE1 (Figure 21).  The global effect that H2O2 

has on translation in yeast has been previously shown where protein synthesis declines 

with even mild oxidative stress [115, 119].  In S. cerevisiae, H2O2 has been shown to 

cause global translation inhibition and a corresponding dose-dependent decrease in 

growth rate, which can be reversed [115, 134].  The effects of oxidative stress have 

been observed at all stages of translation, including initiation, elongation, and 

termination [115].  Previously, in yeast, a defect in the core ISC machinery, by deletion 

of Yfh1 (frataxin), in the mitochondria demonstrated diminished incorporation of 55Fe 

into ABCE1 [129].  In the same study, deletion of Yfh1 caused a considerable decrease 

in growth rates, demonstrating increased sensitivity to oxidative stress induced by H2O2, 

which was attributed to a defect in activities of mitochondrial Fe-S proteins. What 

exactly caused the global translation inhibition, growth rate decline, and ultimate toxicity 

demonstrated in wild-type cells was unknown.  Due to the essential nature of ABCE1, 

its function in ribosome biogenesis, ribosome recycling, and the presence of Fe-S within 

ABCE1, the protein has been deemed a target for ROS, accounting for the growth 

inhibition typically observed under oxidative stress conditions [133].   

The work presented here investigates the specific role of ABCE1 in response to 

oxidative stress in yeast. Our results demonstrate a 30 min of treatment with [H2O2] 

>5mM was required to see a marked decrease in ABCE1 bound 55Fe (Figure 24), 
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suggesting overexpression of ABCE1 could confer resistance to oxidative stress.  

Resistance to the effects of oxidative stress, due to overexpression of ABCE1-HA, was 

demonstrated in a Fe-S defective strain (mxr∆), and an antioxidant defective strain 

(sod2∆), which are normally sensitive to prooxidants [133].  This may explain the high 

concentrations of H2O2 required in our system, where the endogenous ABCE1 is 

supplemented by the recombinant ABCE1-HA.  ABCE1 may be up-regulated as a 

defense mechanism, upon exposure to low levels of H2O2, although this warrants further 

investigation. 

The data shown in this work also shows a slight increase in ABCE1 bound 55Fe 

between 30 min and 1.5hrs following H2O2 (Figure 25).  It could be resistance caused 

by H2O2-induced expression of antioxidant defense systems, including possible up-

regulation of ABCE1, which may have been able to fight against the toxic effects of 

H2O2 for a short period of time until they were overwhelmed.  An alternative is that at the 

H2O2 concentration used in the experiment, a limit for direct Fe-S degradation could 

have been reached after 30 minutes.  Over time, the buildup of additional H2O2 induced 

ROS can occur, overwhelming the cellular anti-oxidant defense systems where Fe-S 

degradation can continue.   

Our initial experiments were principally restricted to the measurement of the 

amount ABCE1 bound 55Fe depleted from Fe-S clusters pre-incorporated into ABCE1.  

A dose and time dependent depletion of ABCE1 bound 55Fe under oxidative stress 

conditions induced by H2O2 was observed.  While our experiments primarily measured 

the degradation of pre-incorporated 55Fe (Fe-S) upon H2O2 treatment, experiments 
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conducted by others have shown the disruption of incorporation of 55Fe to ABCE1 upon 

treatment with Cu(NO3)2 and paraquat [133].  The results presented here show the 

damaging effects the buildup of H2O2 can have on cell survival, through the likely 

degradation of the essential Fe-S clusters. 

Implications for the Role of ABCE1 During Oxidative Stress 

Although ABCE1 has been considered a credible target for ROS, the effects of 

oxidation in vivo were not investigated until recently.  Here we have shown that H2O2 

exposure results in a diminishment of the ABCE1 bound 55Fe amount, suggesting direct 

oxidative degradation of the Fe-S clusters.  Observations presented in this work 

demonstrate that the majority of growth inhibition, induced by oxidative stress, can be 

explained by a comparable decrease in ABCE1 bound 55Fe (Figure 26AB) and likely 

loss of ABCE1 activity to facilitate ribosomal activity [49, 50].  Interestingly, our 

experiments show growth recovery upon removal of the H2O2, reaching a growth rate 

close to that of untreated cells after ~8 hrs.  Additionally, a corresponding increase 

(~88% recovery) in the ABCE1 bound 55Fe (Fe-S) was demonstrated.  The results 

suggest a regulatory mechanism, where under oxidative stress conditions, the activity of 

ABCE1 supporting protein synthesis can be inhibited temporarily by oxidative 

degradation of the Fe-S clusters.  In agreement with our data, the nuclear accumulation 

of Rps2-GFP was observed when yeast was exposed to various oxidants, which was 

subsequently rescued by overexpression of ABCE1 [133].   In our case, the cause of 

reduced growth and a decrease of ABCE1bound 55Fe is very likely caused by oxidative 

damage to the Fe-S, decreasing the amount of 55Fe (Fe-S) bound to ABCE1 and 
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causing a growth rate decline, although a decrease in 55Fe incorporation could 

contribute over time.   

A model can be envisioned where, under periods of stress, translation could be 

repressed by means of temporarily suppressing the function of ABCE1 via its oxidatively 

sensitive Fe-S clusters.  Once the cause of the oxidative stress is removed (H2O2), 

normal cellular processes can be eventually restored.  These data reveal that ABCE1 is 

likely to be at the center of an intricate balance between translation, cell growth, and 

cellular redox status.   
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CHAPTER 4: SUMMARY 

 

Introduction 

 ABCE1 is an essential Fe-S protein involved in ribosomal function and vital for 

protein synthesis and cell survival, and thus has strong potential as a therapeutic target 

for cancer treatment.  The function of ABCE1 in tumorigenesis, progression of cancer, 

or resistance to therapeutics is unclear, but nevertheless is likely to be significant.  

Additionally, the essential role of ABCE1 in viral infections, such as HIV/AIDS, could be 

important chemotherapeutic target toward the control of one of the most widespread 

pandemics.  Previously, cell biological, genetic, and structural studies uncovered the 

cellular importance of ABCE1.  The function of the Fe-S clusters of ABCE1 has been 

unclear until recently, where only a simple structural role was previously suggested. In 

an effort to better understand the function of ABCE1 and its associated Fe-S cofactors, 

the goal of this research was to elucidate the function of the Fe-S clusters of ABCE1 

from a biochemical standpoint.   

 Upon biochemical analysis of PabABCE1, the ATPase activity was found to be 

regulated by its Fe-S cluster status and [Mg2+], while total RNA had a positive effect on 

the regulation.  Additionally, the Fe-S clusters were determined to regulate the function 

of ABCE1 based on the redox state of the cell.  The oxidatively labile Fe-S clusters of 

 ABCE1 are lost under oxidative stress, resulting in a decrease in growth rate. 

This oxidative effect was reversible where an increase in ABCE1 bound Fe content 
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coincided with an increase in growth rate.  The two major studies described here 

uncovered a more likely regulatory role for the Fe-S clusters of ABCE1.   

Mg2+ Dependence of Pyrococcus abyssi ABCE1 

Role of Fe-S Status and [Mg2+] in the Function of ABCE1 

 The ATPase activity of the PabABCE1 was studied using both apo- and holo- 

forms, and was shown to be regulated by both Fe-S cluster status and Mg2+.  The rates 

were determined at the various [Mg2+] concentrations and the data were fit to the Hill 

form of the Michaelis-Menten equation which determined that the apparent Km values 

for ATP hydrolysis increased with increasing concentration of Mg2+ while the Vmax did 

not change significantly.  Physiological [Mg2+] inhibits the PabABCE1 ATPase for both 

apo- and holo-PabABCE1, although the apo-PabABCE1 is more sensitive to Mg2+ 

inhibition.  This is demonstrated by at least a 30 fold increase in the apparent ATP Km of 

apo-PabABCE1, which is above the typical metabolic concentration of ATP.   

 PabABCE1 does require Mg2+, like most ATPases, but Mg2+ also acts as a 

negative allosteric effector that controls the ATP affinity of PabABCE1, and does not 

inhibit by exacerbating product inhibition.  Interestingly, an apparent cooperativity was 

seen in the absence of added Mg2+, where the Hill constant is near 2 for both the apo- 

and holo- enzymes and decreases as [Mg2+] is increased.  A cooperative interaction 

between the two ATPase domains within the enzyme in the absence of Mg2 may occur, 

where the addition of Mg2+ appears to disrupt the cooperativity.  This suggests some 
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type of allosteric effect of Mg2+ binding to induce conformational change upon Mg2+ 

binding. 

 ABCE1 requires its Fe-S clusters for proper function in ribosome biogenesis and 

recycling.  The inhibitory effect of Mg2+ could be alleviated and slightly activated by the 

presence of total RNA.  All these data combined suggest that the function of PabABCE1 

can be regulated by not only Fe-S status but also cellular energy charge () in the 

presence of cellular [Mg2+].    

Future Perspectives for Studying the Regulatory Roles of Mg2+ and Fe-S Cluster Status  

 The main goal of this study was investigate the function of the Fe-S clusters 

associated with ABCE1 from a biochemical perspective.  Comparative analysis of 

ABCE1 primary sequences reveals conservation among diverse organisms, from the 

archeal Pyrococcus abyssi ABCE1 to the human ABCE1, and suggests an important 

cellular function.  Even with the high degree of sequence homology of ABCE1 and 

presumed structural homology between the ABCE1 from these organisms, the 

conclusions drawn from the studies with PabABCE1 may still not be directly extended to 

HsABCE1 or even ScABCE1.  Once these proteins are able to be purified in sufficient 

quantity and appropriate quality for biochemical analysis, and kinetic analysis, then the 

question of Mg2+ sensitivity can be addressed.   

 The abolished cooperativity seen in PabABCE1 with added Mg2+ could be a 

consequence of NBDs that differ in activity or sensitivity to the inhibitory [Mg2+].  In this 

case, the Mg2+ could bind in a fashion that inhibits one of the NBDs, while the other is 

still active, which can explain the Mg2+ titration curves that never reached an activity of 
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zero.  To address this possibility, construction of point mutations at one or both of the 

catalytic amino acids (glutamate and/or aspartate) within each of the NBDs would be 

necessary to inactivate one NBD while allowing the activity of the other to be discretely 

studied. 

 The interpretation of the influence of RNA presented in this work should be 

interpreted with some caution, but may be significant.  The work here suggests that 

Mg2+ may be bound to an inhibitory site on ABCE1 until it comes into contact with a 

binding partner such as, the ribosome, Dom34, of eRF3 [80].  Once associated with the 

translation apparatus, the inhibitory Mg2+ is released or relocated, resulting in ABCE1 

activity.  This hypothesis could be addressed using a reconstituted in vitro yeast 

translation system to address how Mg2+ could regulate the function of ABCE1 in 

ribosomal subunit splitting [77].    

 The in vivo effects of excess Mg2+ in relation to ribosome recycling are not yet 

clear.  Since the RNA experiments in this work show a 2 fold increase in activity at a 

maximum of 0.5 mM Mg2+ followed by a decline in activity, the Mg2+ associated with 

pabABCE1 activity could have declined due to excess RNA.  To test this hypothesis, 

experiments involving the addition of increasing amount of Mg2+ could be performed.  In 

this case, an increased amount of available Mg2+ could result in a more dramatic 

activation of PabABCE1 in the presence of RNA as opposed to the condition without 

added Mg2+.   

 Sensitivity to Mg2+ by either ScABCE1 or HsABCE1 has not yet been 

demonstrated.  It may be specific only to hyperthermophiles.  In fact, some 
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hyperthermophiles are known to have high intracellular salt concentrations and studies 

on DNA polymerase demonstrate that high salt concentrations protects the DNA from 

heat-induced cleavage, by preventing depurination [135, 136].  HsABCE1 is particularly 

important, mainly because it directly applies to a function in humans where cancer is 

prevalent.  Depletion of HsABCE1 in the small cell lung cancer cell line, affects the 

proliferation of the cancer, suggesting a direct role for ABCE1 in cancer invasiveness 

[62].  The link between magnesium and cancer is somewhat complicated due to the fact 

that magnesium deficiency can either help prevent or promote tumor development  

[137].  Additionally, the alteration in the expression of magnesium channels has been 

demonstrated.  If the ATPase activity of HsABCE1 is sensitive to magnesium as in 

PabABCE1, then magnesium deficiency could promote tumor development.  The 

hypothesis could be tested using a cell line overexpressing a Mg2+ transporter, such as 

SLC41A1, which is associated with magnesium deficiency in some tissues [138, 139].  

Here, a deficiency of Mg2+ in the cell would be expected to allow cells to proliferate due 

to increased activity of HsABCE1. 

Effect of Reactive Oxygen Species (ROS) on ABCE1 Fe-S Clusters 

Impact of Reactive Oxygen Species on the Fe-S Status and Function of ABCE1 

 The data presented in this work support the hypothesis that, during conditions of 

oxidative stress, one of the key mediators between growth and growth inhibition could 

be the Fe-S status of ABCE1.  The oxidatively labile Fe-S clusters of ABCE1 can be 

degraded upon oxidative stress, and ABCE1 and/or its Fe-S cluster activity decreased 
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due to the partial or total degradation of the Fe-S clusters.  In turn, translation is affected 

with decreased ABCE1 activity resulting in a decrease in cellular growth rate.   

 Some resistance to oxidative stress was discovered, in the presence of relatively 

low H2O2 while at higher concentrations of H2O2 (>5mM) there was a dose dependent 

decrease in the amount of ABCE1 bound 55Fe with exposure to H2O2.  Most (~75%) of 

the 55Fe was depleted with the addition of 40 mM H2O2.  The dose dependent decrease 

in ABCE1-HA bound 55Fe suggests degradation of the ABCE1-HA bound Fe-S clusters 

due to ROS generated from H2O2 or H2O2 itself.  Additionally, continued exposure to 10 

mM H2O2 resulted in a progressive decline in ABCE1-HA bound 55Fe, supporting the 

conclusion obtained with the dose dependent data.  

 Our results suggest a regulatory mechanism, where under oxidative stress 

conditions, the translational activity of ABCE1 can be inhibited temporarily by oxidative 

degradation of the Fe-S clusters.  This was demonstrated when a growth recovery and 

concurrent increase in ABCE1 bound 55Fe, upon removal of the H2O2, occurred 

reaching a growth rate (~88% recovery) close to that of untreated cells after ~8 hrs.  

Combined, these data further support that the Fe-S clusters of ABCE1 are degraded 

upon oxidative stress and ABCE1 activity is likely negatively modulated by loss of its 

Fe-S clusters. 

Future Perspectives for Studying the Role of ROS in Regulation of ABCE1 Activity  

 The main goal in this study was to investigate the effects of ROS on the function 

of ScABCE1 in S. cerevisiae.  Translation repression due to the effects of ROS has 
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been documented [115, 119].  Since ScABCE1 has an essential function in ribosome 

biogenesis and recycling, the protein is ultimately linked to translation and cell survival. 

The work here suggests that exposure to ROS such as H2O2 itself can affect the 

function of ScABCE1, due to the likely degradation of its Fe-S cofactors.  A structural 

role has been suggested for the Fe-S domain, where ScABCE1 Fe-S clusters are 

required to interact with Dom34 during ribosome recycling and/or the rescue of stalled 

ribosomes [77, 80, 140].  A defect in the export of ribosomes from the nucleus during 

oxidative stress has been demonstrated [133].  In our system, a decrease in translation 

would be expected to follow degradation of ABCE1 associated Fe-S clusters following 

treatment with H2O2.  This hypothesis could be addressed by monitoring the depletion of 

ABCE1 bound 55Fe while simultaneously monitoring the progress of global translation 

using 35S cysteine/methionine.  Upon recovery, or removal of H2O2, a likewise increase 

in ABCE1 bound 55Fe as well as an increase in the amount of protein bound 35S 

cysteine/methionine, providing a direct link to oxidative stress and translational output. 

 A few additional questions could be presented:  Does exposure to H2O2 result in 

a defect in ribosome recycling or only the export of ribosomes from the nucleus?  Does 

oxidative stress abolish the binding of ABCE1 to partners such as, the ribosome, 

Dom34, or eRF3, during ribosome biogenesis or recycling?  Additionally, does 

ScABCE1 become sequestered to stress granules during oxidative stress and then 

released upon recovery?  One preliminary experiment could be to investigate the 

apparent Kd for ribosome binding in the presence of ROS.  Some of these other 

questions could be answered using the reconstituted in vitro yeast translation system 
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described previously [77] or utilizing a GFP-ScABCE1 fusion protein to determine the 

location of ScABCE1 during oxidative stress.  In this case, ribosome splitting would 

decline in the presence of a prooxidant and possibly co-localize with proteins associated 

with stress granules such as Tia-1 or Tiar [141].  If the effects of oxidative stress result 

in abolished interactions with recycling factors, then co-immunoprecipitation 

experiments would show the absence of Dom34, in cells exposed to a prooxidant as 

well as a decrease in growth rate. 

 The work presented here investigated the effect of H2O2 on Fe-S clusters already 

loaded into ScABCE1.  Treatment with Cu(NO3) or paraquat has shown a decrease in 

ABCE1 bound 55Fe, indicative of disruption of Fe-S incorporation into ABCE1 [133].  

The effect of H2O2 on the incorporation of Fe-S clusters has not been determined and 

could be addressed in our system by simply adding H2O2 and 55Fe simultaneously.  If 

ROS affects the incorporation of Fe-S into ScABCE1, at what step does ROS affect the 

Fe-S clusters in the cytosolic machinery?  This could be addressed by monitoring the 

presence of 55Fe in each of the proteins involved in the CIA complex, possibly 

answering the question of whether the Fe-S are more labile during the transfer to 

ABCE1 or at some point prior to that. 

 The effect of ROS on ABCE1 in relation to cancer is not quite clear.  Metabolism 

in cancer cells is known to vary and overproduction of ROS is common in many cancers 

[142].  If this is so, and ABCE1 function is regulated by ROS resulting in translation 

inhibition, how do cancer cells continue to proliferate?   This suggests there may be 
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other factors involved in the progression of cancer due to the effects of ROS and further 

research in the area is needed. 

 The studies described in this dissertation point to a regulatory role for the Fe-S 

clusters of ABCE1, where the ATPase activity and likely ribosome binding is modulated 

based on redox and occupancy status of the Fe-S cluster.  The ATPase activity of 

PabABCE1 is regulated by its Fe-S status and cellular charge, in terms of [Mg2+] and 

the in vivo work in S. cerevisiae show the Fe-S clusters of ScABCE1 can be regulated 

by the physiological state of the cell, in this case oxidative stress.  Both of these 

concepts have implications in cancer progression or tumorigenesis and provide clues 

needed for a future research for the development of cancer or viral therapeutics to 

target ABCE1.  
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