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ABSTRACT 
 

Artificial beach nourishment, the most common method to mitigate coastal erosion in the 

United States, is also considered the most ecologically friendly alternative for shoreline 

stabilization.  However, this habitat alteration has the potential to impact nesting marine turtles 

and developing hatchlings.  The first objective of this study was to determine how nourishing 

beaches with two different design templates affects loggerhead (Caretta caretta) and green turtle 

(Chelonia mydas) nesting success, the ratio of nests to the total number of nests and non-nesting 

emergences, and reproductive success, the ratio of hatched and emerged hatchlings to the total 

number of eggs deposited.  Two types of restoration designs exist along the southern Brevard 

County, FL coastline, which supports some of the highest density loggerhead and green turtle 

nesting worldwide.  Since 2005, approximately 35 kilometers of beach have undergone 1) full-

scale restoration (typically called nourishment), where sand was added above and below the 

mean high tide line (2005, 2010) or 2) dune restoration, where sand was placed on the dune 

(2005, 2006, 2008, 2009).  

To quantify the effects of these restoration types, we used a Before-After-Control-

Impact-Paired Series (BACIPS) model, which tests for significance between the difference in 

nesting success rates at the impact (engineered) and control sites (natural beach) before and after 

restoration ( ).  For loggerheads, there was a significant difference in  after dune restoration 

during the years of construction (2005, 2006, 2008, and 2009; p<0.001) and one year post-

construction (2007; p<0.05 and 2010; p<0.001).  After full-scale restoration, there was a 
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significant difference in  during the years of construction (2005 and 2010; p <0.001) and one 

year post-construction (2006; p<0.001).  For green turtles, there was a significant difference in  

after dune restoration during two of the four years of construction (2006; p<0.05 and 2008; 

p<0.01) and one of the two one-year post-construction years (2010; p<0.05).  After full-scale 

restoration, the significant difference in  lasted every season (2005-2010; p<0.001).  There were 

no significant differences in  for loggerhead or green turtle reproductive success rates after 

either type of restoration.  

The second objective was to use the different restoration designs to study what beach 

characteristics function as loggerhead nesting cues to explain why altering the beach decreases 

nesting success rates.  We examined beach elevation and slope, sand moisture content, sand 

grain size, beach width, and distance traveled.  Logistic regression model selection found all 

variables were important (R2=0.75).  Further examination of trends, with each crawl divided into 

quarters, found beach slope served as a nesting cue.  In all study sites except one, when turtles 

false crawled, the beach flattened out in the final quarter of the crawl.  Conversely, in nesting 

emergences, the final quarter rose at a steeper slope than the previous quarter.  Additionally, 

model selection found variables important in nest site selection were also important in hatching 

(R2=0.44) and emergence (R2=0.45) success.  These results offer new insight into how and why 

marine turtle nesting patterns change after artificial nourishment, providing information 

necessary to nourish beaches in a more “turtle-friendly” manner.       

  



iv 

 

I dedicate this thesis to anybody who has ever spent a night on the beach searching for turtles 

while being eaten by mosquitoes and no-see-ums, run survey in the pouring rain, gone netting in 

100 degree weather while being swarmed by love bugs, followed a green turtle track into the 

dune then couldn’t find the turtle even though you could hear her, jumped in the ocean on 

survey, thrown good money after bad, almost been decapitated by fishing line, waited on a green 

turtle only to have her cover without laying, dug the ATV out of a green turtle pit, biopsied 

yourself instead of the turtle, biopsied somebody else instead of the turtle, found an emerging 

leatherback on your last run of the night, spent days pulling cold-stunned turtles out of the Indian 

River Lagoon, run survey for eight months of the year, watched a turtle bounce off the net on a 

windy day, done an inventory in December, waited way too long for an emerging turtle that 

turned out to be a log, gotten excited about a false crawl, been hit by a rogue wave, gone reef 

netting during an upwelling, had your feet knocked out from under you by a leatherback or green 

turtle, been outsmarted by the equipment you work with, “laughed” at the penguin joke, laughed 

at the penguin joke, had the net catch on your clothes and almost pull you off the boat while 

setting, wondered how you made it from Orlando to Melbourne, been chased by a dog on survey, 

been chased by the same dog on survey every day of the season, been thrown into the water by 

something that swam into the net, or screamed when a ghost crab jumped out of an egg chamber 

at you. 
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CHAPTER 1: GENERAL INTRODUCTION 
 

 The world’s coastal population is expanding at an unprecedented rate.  Current 

predictions suggest that by 2020, over five billion people will live within 60 kilometers of the 

coast (Roberts and Hawkins 1999, Brown and McLachlan 2002).  Disturbances associated with 

population growth, such as construction, recreational activities, pollution, and exploitation of 

resources, are putting beaches under increasing pressures, such as erosion.  Erosion can often be 

attributed to permanent structures on the shoreline that prevent naturally dynamic beaches from 

migrating landward in response to storms and changes in currents and tides.  This coastal 

squeeze, where beaches are trapped between an immovable shoreline and a changing ocean, will 

only be exacerbated as sea level rise and storm severity increase with global climate change 

(Brown and McLachlan 2002, Schlacher et al. 2007; 2008).  In addition to coastal squeeze, 

beaches are also facing erosion because of activities that disrupt the natural sand-flow system, 

such as inlet dredging and jetty construction (Montague 2008).  As a result of these multiple 

anthropogenic factors, many of today’s beaches are eroding at an accelerated rate.  This can be 

seen in Florida, where there was an 83% increase in critically eroded beaches between 1989 and 

2011 (Florida Department of Environmental Protection 2011a).  

 One method to provide shoreline protection is hard armoring, or the construction of 

impermeable structures that reflect wave energy, such as seawalls and groins, on the beach or in 

nearshore waters (US Army Corps of Engineers 2002).  However, hard armoring can interrupt 

the longshore sediment transport system and prevent the beach from naturally rebuilding, 

causing increased erosion downdrift of the structure (reviewed in Kraus and McDougal 1996, 
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Brown and McLachlan 2002).  In the 1970s, there was a shift towards building beaches or 

structures to absorb energy in what is known as soft armoring (Valverde et al. 1999, US Army 

Corps of Engineers 2002).  In the most common form of soft armoring, which I will be calling 

full-scale restoration (typically called nourishment), the berm, or flat section of beach formed 

through wave-induced sediment deposition (US Army Corps of Engineers 2002), is raised and 

widened when sand is added above and below the mean high water line.  An alternate form of 

soft armoring, called dune restoration, places sand landward of the mean high water line, 

widening the dune while narrowing the berm (M. McGarry 2011, Brevard County, Melbourne, 

FL, personal communication).  

 Habitat alteration, whether natural or anthropogenic, has the potential to alter species’ life 

history characteristics (Bawa and Dayanandan 1998, Johnson et al. 1998, Donohue 2002).  

Placing imported sand on the shoreline, which can differ from native sand in characteristics such 

as moisture content, grain size, grain shape, mineral content, shear resistance and sand color 

(Nelson 1991), impacts species that live on the beach, ranging from benthic micro-algae, 

vascular plants and marine bivalve clams (Donax spp) to mole crabs (Emerita talpoida) and 

sanderlings (Calidris alba) (Bishop et al. 2006; Peterson et al. 2000, 2006).  In addition, 

shoreline restoration affects nesting adult marine turtles and their eggs (Raymond 1984, Steinitz 

et al. 1998, Herren 1999, Rumbold et al. 2001, Brock et al. 2009).  

 Studies of the impacts of full-scale beach restoration projects on nesting patterns of the 

federally threatened loggerhead (Caretta caretta) and the federally endangered green sea turtle 

(Chelonia mydas) show a post-restoration decrease in nesting success, or an increase in aborted 
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nesting attempts relative to successful nest deposition (Raymond 1984, Steinitz et al. 1998, 

Herren 1999, Rumbold et al. 2001, Brock et al. 2009).  In loggerheads, this decline usually lasts 

two to three seasons post-restoration; as the beach returns to its profile equilibrium, an idealized 

condition based on sediment characteristics and steady wave conditions (Dean 1983), nesting 

success returns to its pre-restoration state  (Steinitz et al. 1998, Rumbold et al. 2001, Brock et al. 

2009).  Fewer studies have recorded the impacts of restoration on green turtle nesting success; 

however, nesting success rates have been reported lower than the historical average up to a 

minimum of four seasons post-restoration (Brock 2005, Ehrhart et al. 2010).  

 As part of this post-restoration decrease in nesting success, an increase in both 

loggerhead and green turtle non-digging emergences has been recorded (Herren 1999, Brock et 

al. 2009).  A non-digging emergence is the first stage at which a turtle can abort nesting; she 

returns to the water without digging a body pit or an egg chamber (FWC Marine Turtle 

Conservation Guidelines 2007).  This increase in non-digging emergences can often be attributed 

to the formation of an escarpment, a fairly uninterrupted steep slope caused by erosion that runs 

parallel to the shore (US Army Corps of Engineers 2002).  Escarpments are often intensified on 

restored beaches and can physically impede turtles from ascending the beach (Davis et al. 1993, 

personal observations).  However, even in cases where escarpments did not form, an increase in 

non-digging emergences post-restoration has still been documented (Raymond 1984, Ernest 

2001, Brock et al. 2009).  Studies of the impacts of full-scale restoration projects have not 

provided answers as to why this drop in nesting success occurs when there is not a physical 
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barrier blocking access to the upper beach, although Brock (2005) suggested that this could 

indicate the absence of abiotic cues that initiate nesting.  

However, minimal and at times conflicting data about nesting cues make it difficult to 

assess how beach restoration alters nesting behavior (Crain et al. 1995).  Beach width, beach 

length, beach height, beach profile, sand temperature, sand type, sand softness, sand moisture 

content, distance from human settlement, and presence of a lagoon have all significantly affected 

loggerhead nest site selection (Stoneburner and Richardson 1981, Provancha and Ehrhart 1987, 

Cardinal et al. 1998, Garmestani et al. 1998,  Kikukawa et al. 1999, Wood and Bjorndal 2000, 

Karavas et al. 2004, Mazaris et al. 2006).  It has been hypothesized that a combination of 

changes in beach slope and sand characteristics interact with the distance the turtle crawls to 

provide the appropriate signal(s) for nest deposition.  This can occur through the integration of 

multiple cues at the appropriate nesting spot or by a stepwise series of signals; after a specific 

threshold from one environmental characteristic is crossed, the turtle then cues into the next 

characteristic (Wood and Bjorndal 2000, Mazaris et al. 2006).  

 Nest placement impacts the nesting female’s reproductive success and fitness as well as 

the survival of her offspring, which are affected by factors such as sediment composition, 

distance from the water line, and distance from the dune (Martin 1988, Bjorndal and Bolten 

1992, Hays and Speakman 1993, Mota 2009).  Changes in sand type and quality have the 

potential to impact both the developing and emerging hatchlings by affecting gas and water 

exchange between the clutch and the sand and the sand and the atmosphere (Crain et al. 1995, 

Mota 2009).  Beach restoration has varying effects on reproductive success, defined as hatching 
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success (number of hatchlings hatched from the nest) and emergence success (number of 

hatchlings emerged from the nest) (reviewed in Brock et al. 2009).  

 I addressed two main objectives for this study.  The first was to determine the effects of 

full-scale and dune restoration on loggerhead and green turtle nesting and reproductive success.  

Although other published and unpublished studies have determined the impacts of full-scale 

restoration on loggerhead nesting (Raymond 1984, Steinitz et al. 1998, Herren 1999, Rumbold et 

al. 2001, Brock et al. 2009), only one has examined the impacts of full-scale restoration on green 

turtles (Brock et al. 2009), and none have quantified the impacts of dune restoration on either 

species.  The second objective was to elucidate what beach characteristics function as loggerhead 

nesting cues by comparing nests and false crawls on natural beaches and beaches with soft 

armoring (full-scale and dune restoration).  The decreased nesting success rates after full-scale 

restoration could be explained if characteristics that act as proximate cues to initiate nesting on 

natural beaches are changed too much on nourished beaches.  Understanding loggerhead nesting 

cues will supply data needed to build beaches in a manner more conducive to loggerhead nesting. 
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CHAPTER 2: EXAMINING THE EFFECTS OF TWO BEACH 
NOURISHMENT DESIGNS ON MARINE TURTLE NESTING AND 

REPRODUCTIVE SUCCESS IN BREVARD COUNTY, FL 
 

 

Introduction 

 

 A combination of natural and anthropogenic factors has caused an accelerated rate of 

erosion on sandy beaches worldwide.  Developed coastlines prevent naturally dynamic beaches 

from migrating landward in response to storms and changes in currents and tides, leaving 

beaches trapped in a coastal squeeze between the ocean and an immovable shoreline (Brown and 

McLachlan 2002, Schlacher et al. 2007; 2008).  This problem will be exacerbated as sea levels 

rise with global climate change, causing beaches to erode at a rate two orders of magnitude 

greater than that of the sea level rise (Zhang et al. 2004).  In addition, activities such as inlet 

dredging and jetty construction have been removing sediment for centuries, disrupting the 

natural sand-flow system (Montague 2008).   

The principal method to combat coastal erosion in the United States is artificial 

nourishment (Valverde et al. 1999), which is the addition of sand to the beach (US Army Corps 

of Engineers 2002).  Nourishment is more ecologically friendly than other anthropogenic 

methods for shoreline stabilization, such as the construction of seawalls and jetties (reviewed in 

Speybroeck et al. 2006).  However, a newly constructed beach provides a modified habitat that 

can have different sand characteristics (Nelson 1991) and an altered profile (Speybroeck et al. 

2006).  Habitat alteration, whether natural or anthropogenic, has the potential to affect species’ 
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behaviors associated with their life history (Bawa and Dayanandan 1998, Johnson et al. 1998, 

Donohue 2002); studies of beach nourishment have found impacts on species ranging from 

benthic micro-algae, vascular plants, and marine bivalve clams (Donax spp) to mole crabs 

(Emerita talpoida) and sanderlings (Calidris alba) (Peterson et al. 2000, 2006; Bishop et al. 

2006).   

Habitat changes associated with artificial nourishment can affect migratory marine turtles 

using the sandy beach for nesting.  Studies have found impacts on both gravid marine turtles 

searching for a nest site and on hatchlings developing in the new substrate (Raymond 1984, 

Steinitz et al. 1998, Herren 1999, Rumbold et al. 2001, Brock et al. 2009).  The effects of 

altering the nesting habitat are made more complex because marine turtles do not choose a 

nesting beach randomly.  They display an evolutionarily stable strategy of philopatry, migrating 

from foraging grounds to nest in the region of their natal beach every two to more than five years 

after reaching maturity (Carr 1986, Switzer 1993, Bowen 1995).  The individual and population-

level consequences of a philopatric turtle returning to nest in an area that no longer provides 

suitable nesting habitat are unknown.     

Florida serves as an important rookery for both the loggerhead (Caretta caretta) and 

green turtle (Chelonia mydas), which are listed as threatened and endangered, respectively, under 

the U.S. Endangered Species Act (1973).  Eighty to ninety percent of loggerhead nesting 

worldwide occurs in Florida and Oman (Witherington et al. 2009), and Florida is a regionally 

important nesting area for green turtles (Meylan et al. 1995).  Florida’s sandy beaches are also 

facing severe erosion, as evidenced by an 83% increase in critically eroded beach between 1989 
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and 2011 (Florida Department of Environmental Protection 2011a).  Since 1998, approximately 

55% of critically eroded beaches have been nourished, which comes at a cost to local, state, and 

federal governments.  Funding requests to the Florida Department of Environmental Protection 

for the 2011-12 fiscal year totaled more than $82 million for 68 projects (Florida Department of 

Environmental Protection 2011b). The prevalence of artificial beach nourishment on this 

important rookery makes understanding its impact on these two species of marine turtles crucial.  

In 2010, 23% of loggerhead nesting and 35% of green turtle nesting in Florida occurred 

in Brevard County (Ehrhart et al. 2011), where 59 of 116 kilometers of shoreline are listed as 

critically eroded (Florida Department of Environmental Protection 2011a).  Since 2005, 

approximately 35 kilometers have been replenished following two different methods.  In full-

scale restoration (typically referred to as nourishment or renourishment), the berm, or flat section 

of beach that is formed through wave-induced sediment deposition (US Army Corps of 

Engineers 2002), is raised and widened when sand is added above and below the mean high 

water line. Conversely, dune restoration places sand landward of the mean high water line, 

widening the dune while narrowing the berm (M. McGarry 2011, Brevard County, Melbourne, 

FL, personal communication).   

           Despite research since the 1980s on the impacts of beach nourishment on marine turtle 

nesting, there is still a paucity of information in many critical areas. While several studies have 

examined how full-scale restoration affects marine turtle nesting (Raymond 1984, Steinitz et al. 

1998, Herren 1999, Rumbold et al. 2001, Brock et al. 2009), none have determined the impacts 

of dune restoration.  In addition, all published studies, except Brock et al. (2009), only examined 
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the effect of full-scale restoration on loggerheads.  The purpose of this study was to examine the 

impacts of full-scale and dune restoration on both loggerhead and green turtle nesting and 

reproductive success, providing new information on the effects of different template designs on 

both species.  The results of this study provide a more thorough explanation of how altering a 

beach affects loggerhead and green turtle nesting patterns.   

 

 

Methods 

 

 

Data collection 

 

 We followed standard nesting survey protocol by traversing the beach at sunrise to count 

tracks left by turtles that came ashore to nest the previous night. When turtles emerge, they either 

successfully nest or abort nesting prior to egg deposition in what is known as a non-nesting 

emergence.  Nesting success is calculated as the ratio of nests to all emergences.  During daily 

surveys from May 5 -August 31, researchers tallied nests and non-nesting emergences, as 

characterized by crawl characteristics, for each species by location (to 0.5 km accuracy).  The 

surveyor each morning marked tracks from the previous night so that the following night’s 

crawls could be clearly identified as new on the next survey. 

  Researchers marked a subsample of nests the morning after deposition to determine 

reproductive success, or the number of hatchlings that hatched and emerged from the nest.  Three 
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days after a hatchling emergence, researchers excavated the nest to enumerate the contents.  Eggs 

were categorized as hatched, unhatched, pipped (a hatchling began hatching but was still in the 

egg), or damaged by a predator; live and dead hatchlings remaining in the nest were also 

counted.   

 

 

Study sites 

 

 We analyzed nesting and reproductive success on three treatments: beaches with dune 

restoration, beaches that have undergone full-scale restoration, and natural beaches.  All sites 

were located on a barrier island on the east central coast of Florida in Brevard County (Figure 

2.1). Table 1 shows the minimum and maximum number of loggerhead and green turtle nests 

deposited and marked from 2005-2010 in each study site. 
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Figure 2.1. Study sites in Brevard County, Florida  

 

 

 

 Full-scale 

restoration 

 

 

Dune restoration 

Natural  

Control 
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Table 2.1. Minimum and maximum number of loggerhead and green turtle nests deposited and 
marked on each study site from 2005-2010. 

 Loggerhead Green turtle 

Study site Min nests laid 
(# marked) 

Max nests laid  
(# marked) 

Min nests laid 
(# marked) 

Max nests laid  
(# marked) 

Dune restoration 1690 (37) 2800 (144) 58 (33) 224 (99) 
Full-scale restoration 752 (32) 1345 (124) 32 (31) 124 (88) 
Natural 1773 (33) 3450 (81) 353 (13) 1242 (50) 

 

 

Dune restoration (DR) 

 

 In response to hurricanes and winter storms, in 2005, 2006, 2008, and 2009, beach 

quality sand (similar in character to native sand and meeting standards set by Florida’s 

Department of Environmental Protection) was trucked from upland mines to rebuild dunes along 

a 12 kilometer stretch of shoreline.  In 2005, the profile design template called for the addition of 

sand to shape only the eroded dune (Figure 2.2a).  In the following years of dune restoration, the 

dunes were restored with an alternate design that included a dual slope: a longer, gentler slope 

preceded the newly shaped dune face (M. McGarry 2011, Brevard County, Melbourne, FL, 

personal communication) (Figure 2.2b) Each year, the amount of sand added in a given area 

depended on how much erosion had occurred there, so a constant volume of sediment was not 

added to the whole restored area (M. McGarry, 2011, Brevard County, Melbourne, FL personal 

communication).  
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Figure 2.2. The single slope engineered in 2005 compared to B) the dual slope engineered in 
2006, 2008, and 2009 

 

 

Full-scale restoration (FSR)  

 

 Full-scale restoration occurred immediately south of the DR site on a 6.5 kilometer 

stretch of coastline.  A pipeline pumped beach quality sand dredged from offshore borrow sites 

onshore in 2002-2003, 2005, and 2010.  The beach fill design called for the beach width to taper 

at the ends of the engineered area, so I used only the middle five kilometers for this analysis.  
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Natural beach 

  

 Natural areas were located in a 21 kilometer stretch of the Archie Carr National Wildlife 

Refuge (ACNWR).  Following the 2004 hurricane season, Brevard County constructed dunes on 

the ACNWR in front of permanent structures and county parks.  For statistical analyses prior to 

2005, I calculated nesting and reproductive success rates from the entire 21 kilometers.  

Beginning in 2005, I calculated these rates from the remaining natural areas, which constitute 

approximately 25% of the total area of the ACNWR. 

 

 

Statistical analyses 

 

I used a Before-After-Control-Impact Paired Series (BACIPS) model to examine the 

impact of beach restoration on nesting and reproductive success. The  BACIPS is a relatively 

robust design that examines changes in the difference between the Control and Impact sites 

Before and After restoration (delta, or ).  The closer  is to zero, the more similar the sites.  

This design accounts for natural variation between the Control and Impact sites, avoiding 

problems of spatial and temporal variability that occur in other post-hoc impact assessments 

(Rumbold et al. 2001).  In addition, the BACIPS demands simultaneous sampling, with each 

sampling time considered as a replicate.  

I used a historical average (1997-2001) for the Before (pre-restoration) data.  To see the 

effect of time since restoration, I separated the After (post-restoration) data into each year of the 
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After period (2005-2010).  I compared each of the two Impact sites (DR and FSR sites) 

separately to the Control.  The Control during the Before period was the entire ACNWR; during 

the After period, the Control consisted of the natural, unmanipulated areas of the ACNWR.   

 

 

Nesting success  

 

 I calculated the nesting success rate (NSR) for each day of the nesting season for 

loggerheads from May 5-August 31.  Since green turtles begin nesting later in the summer 

(Weishampel et al. 2006), I calculated their NSR from June 1-August 31.  I used equation 2.1 to 

calculate the daily . 

 

           (2.1) 

I used log or log10 transformations for non-normal data, tested for significance with a 

paired t-test, then used Holm’s test to account for multiple comparisons. Holm’s test is more 

powerful and less conservative than Bonferroni’s one-step correction.  This test uses a step-down 

sequential approach, where the p-value for each test in the set is corrected in decreasing order of 

significance (Holm 1979, Garcia 2004). 

I tested for temporal autocorrelation in the historical dataset using GS+ (Gammadesign 

software, version 9). Temporal autocorrelation occurs when measured variables are more similar 

when closer in time and less similar when further apart in time (Legendre 1993).  For both 
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species, autocorrelation was only present in the Control site; since it was not present in all sites, 

the results will not be considered here. However, this analysis provided new information that is 

presented in Appendix A. 

Finally, I calculated the mean difference in s, which is the estimated average effect size. 

To determine which type of engineering had a larger impact, I used a t-test to compare the effect 

sizes during the years of construction and again one year post-construction at the DR and FSR 

sites.   

 

 

Reproductive success 

 

 I calculated reproductive success rates from the subset of nests marked at deposition and 

followed through incubation.  I used two measures of reproductive success: (1) hatching success, 

the number of hatched eggs divided by the total number of eggs deposited, and (2) emergence 

success, the number of hatchlings that emerged from the nest divided by the total number of eggs 

deposited.  Since the BACIPS requires simultaneous sampling, I combined data into distinct 

sampling periods according to the month the nest was deposited: May-August for loggerheads 

and June-August for green turtles.  The distribution of deltas was not normal, so I used the 

Wilcoxon matched-pairs signed rank test and adjusted the alpha with Holm’s test.  Since I 

already averaged the data for each month, I did not test for temporal autocorrelation. 
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Results 

 

 

Loggerhead nesting success 

 

 After dune restoration, there was a significant difference in loggerhead nesting success 

rate s during the years construction occurred (2005, p<0.001; 2006, p<0.001; 2008, p<0.001; 

2009, p<0.001) and during the two seasons that were one year post-construction (2007, p<0.05 

and 2010, p<0.001).  Historically, nesting success rates were marginally higher in the Control 

relative to the DR site, which remained true during each post-restoration season (Figure 2.3).  
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Year

HISTORICAL 2005 2006 2007 2008 2009 2010

N
S

R

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Control NSR

DR site NSR

Effect size

  

YOC        YOC                        YOC        YOC          

                                                               

        ***           ***             *              ***            ***            ***         

                                                               

 

YOC= year of construction. * indicates significant difference in  (estimated average effect size) 
at < 0.05 (*), <0.01 (**), and <0.001 (***) 

Figure 2.3. Loggerhead nesting success rates and effect sizes on the DR site compared to the 
Control. 

  

Following full-scale restoration, there was a significant difference in loggerhead nesting 

success rate s during the years of construction (2005, p<0.001 and 2010, p<0.001) and one year 

post-construction (2006, p<0.001) after correcting for multiple comparisons.  During 2007-2009, 

nesting success rates were lower at the FSR site relative to the Control and the historical dataset, 

but there was not a significant difference in s.  Historically, nesting success was marginally 

higher in the Control site, which remained consistent after construction (Figure 2.4).    
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Year

HISTORICAL 2005 2006 2007 2008 2009 2010

N
S

R

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Control NSR

FSR Site NSR

Effect size

YOC                                                                          YOC

 

        ***            ***                                                              ***

 

YOC= year of construction. * indicates significant difference in  (estimated average effect size) 
at < 0.05 (*), <0.01 (**), and <0.001 (***) 
 

Figure 2.4. Loggerhead nesting success rates and effect sizes on the FSR site compared to the 
Control.  

 

There was not a significant difference in effect sizes between the two Impact areas during 

the years of construction (Table 2.2).  At the FSR site, the effect size one year post-construction 

increased from the effect size during the years of construction, while the reverse occurred at the 

DR site.  This resulted in a significantly larger effect size at the FSR site compared to the DR site 

one year post-construction.  
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Table 2.2. Loggerhead nesting success rate estimated average effect sizes.  

Year DR effect size FSR effect size p-value 

YOC -0.1124 -0.1271 0.563 
1 year post-construction -0.0525 -0.1603 <0.001* 

YOC = year of construction. The further the effect size is from zero (positively or negatively), 
the greater the impact. 

 

 

Green turtle nesting success 

 

 After dune restoration, green turtle nesting success rate s differed significantly during 

two of the four years of construction (2006, p<0.05 and 2008, p<0.01) and during one of the two 

one year post-construction years (2010, p<0.05).  Historically, nesting success rates were higher 

in the DR site relative to the Control, but during all post-restoration years, nesting success rates 

were lower at the Impact site compared to the Control (Figure 2.5). 
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Year

HISTORICAL 2005 2006 2007 2008 2009 2010

N
S

R

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Control NSR

DR site NSR

Effect size

YOC          YOC                         YOC         YOC

                     *                              **                             *

 

YOC= year of construction. * indicates significant difference in  (estimated average effect size) 
at < 0.05 (*), <0.01 (**), and <0.001 (***) 

Figure 2.5. Green turtle nesting success rates and effect sizes on the DR site compared to the 
Control 

 

The analysis after full-scale restoration showed a significant difference in s every 

season post-construction (2005-2010, p<0.001). Historically, nesting success rates were higher in 

the FSR site relative to the Control; however, after construction, nesting success rates were 

higher in the Control (Figure 2.6).  
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Year

HISTORICAL 2005 2006 2007 2008 2009 2010

N
S

R

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Control NSR 

FSR site NSR

Effect size

  YOC                                                                         YOC

  ***             ***            ***            ***           ***            ***                

 

YOC= year of construction. * indicates significant difference in  (estimated average effect size) 
at < 0.05 (*), <0.01 (**), and <0.001 (***) 

Figure 2.6. Green turtle nesting success rates and effect sizes on the FSR site compared to the 
Control  

 

There was a significantly larger effect size in the FSR site compared to the DR site during 

the years of construction (p<0.01) as well as one year post-construction (p<0.001) (Table 2.3).  

After dune restoration, the effect size decreased one year post-construction while the opposite 

trend occurred after full-scale restoration.   
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Table 2.3. Green turtle nesting success rate estimated average effect sizes  

 DR effect size FSR effect size p-value 

YOC -0.1474 -0.2920 0.002* 

1 year post-construction -0.0787 -0.3166 <0.001* 

YOC = year of construction. The further the effect size is from zero (positively or negatively), 
the greater the impact. 
 

 

Loggerhead reproductive success 

 

 There were no significant differences in  for hatching or emergence success rates after 

dune restoration.  Historically, hatching and emergence success rates in the DR site were higher 

than in the Control; this remained true post-restoration except in 2008. After full-scale 

restoration, there were also no significant differences in  for hatching or emergence success.  

Historically, hatching and emergence success rates were higher in the Control than in the FSR 

site.  Post restoration, the hatching and emergence success rates were higher in the FSR site 

except in 2010, when hatching success was marginally higher in the Control.  

 

 

Green turtle reproductive success 

 

Following both dune and full-scale restoration, there were no significant differences in  

for hatching or emergence success rates.  Historically, hatching and emergence success in both 

Impact sites were slightly higher than in the Control, but this was not consistent post-restoration.  
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Discussion 

 

 

Dune restoration 

 

The significant difference in loggerhead nesting success rate  in the DR site indicates an 

increased rate of non-nesting emergences relative to successful nest deposition each year that 

dune restoration occurred.  This restoration impact was still significant the year following 

construction, even though no additional sand was added to the shoreline.  The smaller effect size 

observed during the years without construction (2007 and 2010) indicates that nesting success 

rates started to return to their pre-restoration state.  However, due to the frequency of dune 

restoration events, it was not possible to examine the long-term effects of a single project to see 

if or when nesting success rates returned to the historical average.  

These results corroborate those of Long et al. (2011), who found a consistent decrease in 

loggerhead nesting success after morphological changes to the beach, specifically the profile. 

Wood and Bjorndal (2000) concluded that profile is an important element of nest site selection 

on a natural beach, where loggerheads nest on a slope with their head higher than their tail.  If 

loggerheads are sensitive to topographic changes (Long et al. 2011), significantly altering the 

beach profile, a key factor in nest site selection (Wood and Bjorndal 2000), could affect whether 

a turtle nests or not.  The lower nesting success rates seen in my study could be the result of this 

sensitivity to the altered beach profile. Even in years where construction did not occur, the beach 

morphology remained sufficiently altered to negatively impact nesting success rates. 
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The largest impact for loggerheads occurred in 2005, which was the only year that the 

template design added sand to shape only the dune.  In the following years of construction, when 

the dunes were restored with a dual slope (Figure 2.2), there was less of an impact on loggerhead 

nesting success.  The decreased difference in nesting success rate  during the following years of 

construction indicates that the dual slope design was more conducive for loggerhead nesting, 

although this same pattern was not evident for green turtles. 

Long et al. (2011) concluded that green turtles are also sensitive to changes in the beach 

shape.  However, since green turtles tend to nest closer to the dune than loggerheads 

(Witherington 1986), both Long (2010) and Brock et al. (2009) suggested that green turtles are 

more influenced when choosing a nest site by specific dune features than by overall topography. 

The inconsistencies in post-restoration nesting success rates found in my study could be 

explained if green turtles are responding to more acute changes, such as the presence of a dune 

feature (Brock et al. 2009, Long 2010).  It is possible that green turtles were not as affected by 

the overall altered beach shape as much as by changes in key characteristics that may not have 

been consistent along the restored shoreline or among years (e.g., dune vegetation may have 

changed within and among seasons).  

 There were no significant results in comparisons of both hatching and emergence success 

rates.  Other studies have found that beach restoration has varying effects on reproductive 

success (reviewed in Brock et al. 2009), with sand quality, which can impact both the developing 

and emerging hatchlings, as the determinant factor (Mortimer 1990). However, the results from 
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this study should be interpreted cautiously because the nests were grouped by month laid, 

resulting in a small sample size (four for loggerheads and three for green turtles).  

 

 

Full-scale restoration 

 

 Loggerhead results after full-scale restoration showed a similar pattern to those found in 

other studies (Steinitz et al. 1998, Brock et al. 2009).  A decreased nesting success rate in the 

FSR site led to significantly larger nesting success rate s during the years of construction and 

one year post-construction.  In the following years, the decreasing effect size shows nesting 

success returning to near normal rates.  These results also support the idea that significantly 

altering the profile can affect whether a loggerhead nests or not (Long et al. 2011).  Immediately 

after construction, the beach morphology was severely altered, but as the beach started to return 

to its profile equilibrium, which can take months to years (Greene 2002), nesting success rates 

began to return to normal.       

 Prior to applying Holm’s test, the significant difference in deltas continued through the 

second year post-construction (p < 0.05).  While it is common practice to adjust the alpha to 

avoid a Type 1 error, a compelling argument can be made for using an unadjusted alpha of 0.05 

when making multiple comparisons.  Constantly adjusting the alpha destroys the standard that is 

used throughout scientific literature and essentially penalizes researchers for performing more 

than one test (Gotelli and Ellison 2004).  When I used Holm’s test to adjust the p-value rather 

than using a test that adjusts the alpha, the same argument can be made.  The purpose of this 



27 

 

research was to determine the length of time that each species was impacted by restoration 

projects, making multiple tests an integral component of this study.  Adjusting p-values each 

post-construction year downplays the restoration impact by making it harder to have a significant 

result the longer the time since construction.  When applying the results of this study, especially 

for management decisions, one should strongly consider using the unadjusted p-values, which 

show a significant difference in loggerhead nesting success rate deltas during the year of 

construction and the following two seasons.  The only other place in my study where a 

discrepancy occurs between the original and the adjusted p-value is for green turtle nesting in 

2005 in the DR site.  Whether that value is significant or not, it does not impart any pattern to the 

impact of dune restoration on green turtle nesting success.  

During the five seasons of post-construction monitoring, green turtle nesting success rates 

never recovered statistically.  Post-restoration, the FSR site was substantially wider than before 

restoration; the 2010 project extended the berm 19.5m seaward (Olsen Associates 2010), which 

forced turtles to crawl further inland to reach the dune.  If the presence of a dune feature is 

important to initiate green turtle nesting (Brock et al. 2009, Long 2010), the wide berm made 

reaching the dune much more difficult and could have caused the increased number of non-

nesting emergences and ensuing lower nesting success rates.  

Beaches that have undergone full-scale restoration must be maintained and are re-

engineered every three to ten years on average (Weggel 1995).  Nesting green turtles’ inability to 

adapt quickly to a beach with full-scale restoration, combined with the frequency of full-scale 

restoration projects, could permanently alter the nesting patterns of green turtles by not allowing 
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nesting success rates to recover between projects.  Serious reproductive consequences will result 

if gravid females return to natal beaches that no longer provide a suitable nesting environment 

(Meylan et al. 1995).  However, since each treatment was not replicated, the results of this study 

need to be interpreted cautiously if extrapolated to other beaches (Hurlbert 1984).  

 As with the DR site, there were no significant results when examining reproductive 

success, but these results should be viewed cautiously due to a small sample size.     

 

 

Comparing effect size between engineered sites 

 

 Both projects significantly impacted loggerhead and green turtle nesting success rates 

during the years of construction and one year post-construction.  However, the significant 

differences in effect size for loggerheads (one year post-construction) and green turtles (year of - 

and one year post-construction) indicate a longer-lasting impact after full-scale restoration.  

Additionally, the impact on both species was slightly stronger during one year post-construction 

compared to the year of construction, which was not true after dune restoration.  It is clear that 

both species were not impacted to the same degree by the different types of engineering.  
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Caveats 

 

Since this study was a post-hoc impact assessment and not a controlled experiment, there 

were certain factors over which I had no control.  The most important of these is the lack of a 

true Control with physical boundaries that did not change during the entire study period.  While 

it is possible that the altered Control could have impacted the results, there was not a significant 

difference in nesting success rates at the Before Control compared to the After Control, 

indicating that the decreased size of the Control site after restoration did not significantly affect 

the results.  

 

 

Implications for practice 

 

 Beach nourishment projects can have varied design templates that affect loggerhead and 

green turtle nesting success rates differently.  

 Loggerheads and green turtles respond differently to an altered beach, so the species of 

turtle nesting on a specific beach needs to be considered when restoring beaches or 

dunes.   

 After dune restoration, loggerhead nesting success rates were less impacted by a dual 

slope dune than by a single slope dune. 

  



30 

 

CHAPTER 3: USING NATURAL AND NOURISHED BEACHES TO 
UNDERSTAND LOGGERHEAD NESTING CUES 

 

 

Introduction  
 

Migratory marine turtles select a variety of habitats depending on their life stage 

(reviewed in Musick and Limpus 1997).  Adults migrate between foraging and nesting grounds, 

with philopatry serving as the driving force behind rookery selection (Carreras et al. 2007, 

Shamblin et al. 2011).  Unlike most avian nesting species, marine turtles leave their nest site 

after egg deposition, providing no parental care and only remaining on land long enough to 

deposit the clutch.  Bjorndal and Bolten (1992) suggested that an individual turtle may choose a 

nesting site based on her own survival rather than that of her clutch because of her inability to 

judge changes in the nest environment over the course of the incubation period (e.g., through 

hurricane-induced storms and tidal surges).  Therefore, the variable(s) that serve as the most 

important cue(s) for nest site selection may differ from those characteristics that result in the 

success of the clutch.     

 Previous research provide minimal and often conflicting results concerning beach 

characteristics that serve as proximate nesting cues for the federally threatened loggerhead 

(Caretta caretta).  Wood and Bjorndal (2000) concluded that significant increases in beach slope 

indicate beach profile plays a role in loggerhead nest site selection; however, beach width, beach 

length, beach height, sand temperature, sand type, sand softness, sand moisture content, distance 

from human settlement and presence of a lagoon have also been shown to significantly affect 
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loggerhead nest site selection (Stoneburner and Richardson 1981, Provancha and Ehrhart 1987, 

Cardinal et al. 1998, Garmestani et al. 2000,  Kikukawa et al. 1999, Wood and Bjorndal 2000, 

Karavas et al. 2004, Mazaris et al. 2006).  It has been hypothesized that a combination of beach 

slope and sand characteristics interact with distance traveled to provide the appropriate signal(s) 

for nest deposition.  This could occur in one of two ways: a turtle could nest where the 

appropriate patterns of associations of all characteristics exist, or she could cue into individual 

characteristics in a stepwise manner; i.e., after passing the appropriate sand temperature 

threshold, the turtle then cues into sand moisture content (Wood and Bjorndal 2000, Mazaris et 

al. 2006).  

 Miller et al. (2003) suggested that studying both successful and unsuccessful nesting 

attempts by manipulating beach characteristics when a turtle chooses a nesting site could better 

elucidate factors important in nest site selection.  Examining unsuccessful nesting attempts 

(commonly called non-nesting emergences or false crawls) is logistically difficult.  Turtles can 

false crawl for reasons not related to the beach (e.g, interactions with beachgoers, obstructions, 

etc.), so researchers would have to observe a turtle as she false crawled to make sure her return to 

the water was not due to alternate reasons.  Additionally, manipulating the beach for purposes of 

a nest site selection study is not a viable option due to logistic difficulties. 

 However, Brevard County, Florida, contains beaches that have been artificially 

nourished, which is the principal method to combat mitigate erosion in the United States 

(Valverde et al. 1999).  Beach nourishment is the addition of sand to the shoreline, which can 

alter the beach profile (Speybroeck et al. 2006) and introduce sand with different characteristics 
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(Nelson 1991).  In Brevard County, beaches were engineered following two different templates.  

In the full-scale restoration design, typically referred to as nourishment or renourishment, the 

berm was raised and widened when sand was added above and below the mean high water line. 

Alternately, dune restoration placed sand landward of the mean high water line, widening the 

dune while narrowing the berm (M. McGarry 2011, Brevard County, Melbourne, FL, personal 

communication).  These engineering projects used sand from different areas; the full-scale 

project piped sand dredged from offshore while the dune restoration project trucked sand from 

upland mines.  Essentially, these projects provided what Miller et al. (2003) suggested; they 

manipulated beach features, giving me the opportunity to study the driving forces behind nest 

site selection on beaches with different shapes and sand characteristics.  

The purpose of this study was to determine what characteristics function as loggerhead 

nesting cues by examining nests and false crawls on natural and nourished beaches.  Previous 

studies have documented a temporary decrease in loggerhead nesting success, which is defined 

as an increase in aborted nesting attempts relative to successful nest deposition, after full-scale 

restoration (Raymond 1984, Steinitz et al. 1998, Herren 1999, Rumbold et al. 2001, Brock et al. 

2009, Hays 2012: Chapter 2).  Examining the role of beach elevation and slope, sand moisture 

content, and sand grain size on natural and recently nourished beaches will help elucidate 

characteristics important in nest site selection and provide the mechanism behind this decline.  I 

chose these characteristics based on previous nest site selection studies and because they can be 

changed after artificial nourishment.  Additionally, I determined if those characteristics that 

played a role in selecting a nesting site were also important in determining the reproductive 
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success of the clutch.  I examined two measures of reproductive success: hatching success, which 

is the percent of hatchlings that hatched from the nest and emergence success, which is the 

percent of hatchlings that emerged from the nest. 

 

 

Methods 

 

 

Study sites 

 

 I collected environmental data from turtles’ emergence tracks in six study sites in 

Brevard and Indian River Counties (Figure 3.1).  There were three treatments with two replicates 

of each treatment: full-scale restoration (FSR), dune restoration (DR), and natural beach.  Both 

FSR sites were engineered in the winter-spring of 2010 prior to the nesting season, while the DR 

sites were engineered in winter-spring of 2009.  Ideally, to have the most variation among 

treatments, all engineering would have occurred during the same season; however, we had no 

control over the construction schedule.  

I designed this project to have two replicates each of FSR, DR, and natural beach.  

However, the two FSR sites were engineered differently from one another and could not be 

considered replicates.  The site referred to as FSR:flat was engineered with a slightly sloped 

(1%) berm, while in the site referred to as FSR:sloped, the berm was widened, and a steep dune 

was constructed on the landward edge of the beach.  For this reason, I have two replicates each 
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of natural beach and DR, which I pooled for analyses, but I present results from each FSR site 

separately.  

 

 

 

  Figure 3.1 Study sites in Brevard and Indian River Counties 
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Data collection 

 

 I collected environmental data along selected turtles’ tracks nightly from May – August 

2010.  After observing an emerging turtle in one of the study sites, I stayed far enough away so 

as not to disturb her. Once she began egg deposition, I collected sand samples from the water 

line to the nest site using the incoming crawl as a transect (Wood and Bjorndal 2000).  I took 

surface sand every 1.5 m from where the turtle emerged to just before the point at which she 

started to body pit, which is the start of egg deposition (the turtle pushes aside loose sand at the 

surface to create a depression for herself before digging an egg chamber).  Additionally, I 

collected sand samples from the top of the nest chamber and from just in front of the head of the 

turtle.  I took a straight line measurement from the water line to the base of the dune and used a 

clinometer to profile the beach.  I took profile readings every 1.5 m until just landward of the 

point at which the turtle nested, then I took readings in 10 m increments to the base of the dune.   

 If I observed an emerging turtle and then saw her turn back to the water before depositing 

eggs, as long as there was no obvious reason for her return (e.g., she encountered an obstacle, 

people approached her, etc.), I collected data from her crawl in the same manner as with nesting 

turtles.  However, I only collected data from turtles that false crawled without beginning the 

nesting process (i.e., they returned to the water without digging a body pit or an egg chamber).  

Once the turtle begins digging, a new suite of potential cues may be introduced.  Examining only 

turtles that did not start to dig allowed me to focus on the cues that initiate the start of the nesting 

process. 
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 After each turtle finished nesting or was clearly returning to the water after an aborted 

nesting attempt, I inserted unique Inconel flipper tags into both front flippers in conjunction with 

a single passive integrated transponder (PIT) tag in the right front flipper.  This allowed me to 

maintain independence in my sampling.  

 I marked each nest to monitor its incubation.  Three days after a hatchling emergence, I 

dug up the contents and enumerated the number of hatched and unhatched eggs, eggs damaged 

by a predator, live and dead hatchlings, and live and dead pipped (the hatchling started to hatch 

but was still in the egg).  From these, I calculated both measures of reproductive success.  The 

calculation for hatching success is displayed in equation 3.1 and emergence success in 3.2: 

 

 

 (3.1) 

 

 

           (3.2) 
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Sand analyses 

 

 

Moisture content  
 

Moisture content is the ratio of the mass of water to the mass of dry soil, which can also 

be expressed as the percent of water on a dry-weight basis (Klute 1986).  I obtained a wet mass 

by weighing (±0.1 g) sand samples immediately after returning to the field station (within eight 

hours of collection).  I dried the sample to a constant mass to determine dry weight and 

calculated moisture using equation 3.3. 

 

 

           (3.3) 

 

 

Grain size 

 

 I followed the methods described by Head (1984) to calculate grain size.  I only sieved 

one soil type, so I used a short set of sieves (Head 1984) with mesh sizes of 2 mm, 1 mm, 0.425 

mm, 0.25 mm, 0.15 mm, and 0.075 mm.  I weighed the sand remaining in each sieve (±0.1 g) 

after a mechanical sand shaker shook the stack of sieves for 10 minutes.  Before sieving the sand, 

I combined samples from the turtle’s track to represent a larger beach width.  The first sample 
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contained sand from the water to 3.0 m up the crawl, and the second sample contained sand from 

the median 3.0 m of the crawl.  I sieved the sand taken from the cloaca and head positions 

separately.  

 I calculate particle size with equation 3.4 and used the program GRADISTAT (Blott and 

Pye 2001) to calculate the mean grain size for each sample 

 

 

           (3.4) 

 

 

Analyses 

 

 

Nests and false crawls 

 

 I used forward stepwise logistic regression model selection to determine what beach 

characteristics determined whether or not a turtle nested.  Prior to the analyses, I created a 

collinearity matrix with a cutoff of 0.85 to remove collinear variables.  For the first analysis, 

predictors entered into the model included: beach slope, beach width, distance turtle traveled, the 

slope at the head position of the turtle, moisture content at the head position, and grain size at the 

head position. For the second analysis, I included the same variables as well as the type of beach 

(FSR, DR, or natural). 
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 I measured the distance each turtle traveled in addition to the straight line measurement 

from the water to the egg chamber.  I used a Student’s t-test to compare nest and false crawl 

lengths within study sites and one-way ANOVAs to compare nest and then false crawl lengths 

among sites.  I also calculated a straightness index, which is the distance traveled divided by the 

straight line distance. 

 I graphed the crawl transect data in a variety of ways to determine trends between nests 

and false crawls within and among study sites.  For elevation, slope, and moisture content, I 

divided each crawl into quarters and averaged the sampling points within each quarter.  This 

allowed me to examine crawls of different lengths and compare what individual turtles 

experienced during each quarter of their crawl. Since I combined samples for the grain size 

analysis, I present data from the start of the crawl, the median of the crawl, and the head position 

of the turtle.  

To determine statistical significance, I used a Student’s t-test to compare the values at 

each quarter between nests and false crawls.  I also used a single factor ANOVA to compare 

values in each quarter among nests and then among false crawls.  After all analyses, I used 

Holm’s test to adjust the p-values for multiple comparisons.  

Additionally, I determined the change in elevation between sampling points.  I started at 

the head position of the turtle and moved along the transect towards the water, calculating the 

difference in beach height between one sampling point and the sample 1.5 m seaward.  The head 

position served as a common reference point among crawls so that I could compare crawls of 

different lengths.  I used the length of the shortest crawl as the length for all crawls in a study site 
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(i.e., if the shortest crawl was 10 m, I only used the final 10 m, starting at the head, of a longer 

crawl).    

  

 

Reproductive success 

 

 I used forward stepwise regression to determine the effects of beach characteristics on 

hatching and emergence success.  Before running the analysis, I created a collinearity matrix 

with a cutoff of 0.85 to remove collinear variables.  Variables entered into the model included 

sand moisture content, sand grain size, slope at the nest position, distance traveled, and beach 

width. 

 

 

Results 
 

 

Nests and false crawls 

 

 I analyzed data from a total of 19 nests and 7 false crawls in the two natural sites (10 

nests and 5 false crawls in the first replicate, 9 nests and 2 false crawls in the second), 17 nests 

and 6 false crawls in the DR sites (8 nests and 2 false crawls in the first replicate, 9 nests and 4 

false crawls in the second), 5 nests and 8 false crawls in the FSR:sloped site, and 9 nests and 4 

false crawls in the FSR:flat site.  Sample sizes for each analysis are included in figures but are 
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sometimes smaller than that which is listed here due to problems in data collection (e.g., sand 

spilled during drying precluded an accurate moisture content, so that sample was removed from 

that analysis).    

 

 

Logistic regression model selection 

 

 Both analyses resulted in R2 values of 0.75.  The best-fit models included all predictor 

variables, mainly as interaction terms (Tables 3.1 and 3.2).  Likelihood ratio tests determined 

each term’s contribution to the model; the most important term in the first analysis, which 

excluded beach type as a predictor, was the interaction of beach slope, head slope, and distance 

traveled (χ2= 32.95). The interaction of beach type, head slope, beach width, moisture content, 

grain size, and distance traveled had the highest χ2 (24.53) in the second analysis.  In both 

models, the terms with a positive estimate, where higher predictors are associated with a greater 

likelihood of nest deposition, included interactions of several variables (Tables 3.1 and 3.2). 

Table 3.3 shows the χ2 values of individual variables in the model; the only statistically 

significant predictors were head slope (p=0.03) and moisture content (p=0.03).  I also chose 

specific models and ranked them by AICc.  These also show the importance of interaction terms 

and are illustrated in Appendix B. 
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Table 3.1. Best-fit model for nest site selection excluding beach type as a predictor variable 

* Denotes significance at 0.05. + estimates indicate a positive relationship between the term and 
the chance of nesting. Head slope is the slope at the head position of the turtle while beach slope 
is the overall beach slope (from the water to the base of the dune) where she nested. 
 
  

Term Estimate 
Standard 
Error 

Likelihood 
Ratio χ2  Prob> χ2 

Head slope -1.50 0.58 12.64 0.0004* 

Beach slope*Head slope 0.87 0.42 15.68 <.0001* 

Head slope*Moisture content -0.73 0.39 5.99 0.0144* 
Head slope*Beach width*Moisture 
     content -0.08 0.06 7.38 0.0066* 

Grain size -11.56 6.75 4.98 0.0256* 

Beach slope*Distance traveled -0.32 0.14 15.03 0.0001* 
Beach slope*Head slope*Distance 
     traveled 0.25 0.12 32.95 <.0001* 

Grain size*Distance traveled 1.73 0.94 10.21 0.0014* 
Beach slope*Beach width*Grain 
     size*Distance traveled 0.09 0.06 9.97 0.0016* 
Beach slope*Head slope*Beach 
     width*Grain size*Distance traveled -0.07 0.04 16.62 <.0001* 
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Table 3.2. Best-fit model for nest site selection including beach type as a predictor variable. 

Term Estimate 
Standard 
Error 

Likelihood 
Ratio χ2  Prob> χ2 

Beach type 2.40 2.06 1.85 0.1738 

Beach type*Head slope*Beach width 0.26 0.18 4.69 0.0303* 

Beach type*Moisture content -5.53 2.90 16.05 <.0001* 

Beach width*Moisture content*Grain size -0.20 0.13 4.30 0.038* 

Beach type*Beach slope*Distance traveled -0.59 0.33 7.78 0.0053* 
Beach type*Beach width*Distance 
     traveled -0.09 0.05 5.91 0.015* 
Beach type*Beach slope*Moisture 
     content*Distance traveled -0.75 0.38 24.53 <.0001* 

Grain size*Distance traveled 0.19 0.94 0.04 0.8408 

Beach type*Grain Size*Distance traveled -2.52 1.13 8.04 0.0046* 
Beach type*Head slope*Beach width* 
     Moisture content*Grain size*Distance 
     traveled 0.36 0.18 30.71 <.0001 

*Denotes significance at 0.05. + estimates indicate a positive relationship between the term and 
the chance of nesting. Head slope is the slope at the head position of the turtle while beach slope 
is the overall beach slope (from the water to the base of the dune) where she nested. Beach type 
is natural, DR, or FSR. 
 

Table 3.3. Likelihood ratio tests for predictor variables in logistic regression. 

 Variables 
Likelihood 
Ratio χ2 Prob> χ2 

Head slope 4.64 0.0312* 

Moisture content 4.58 0.0324* 

Beach type 2.89 0.2351 

Distance traveled 1.73 0.1887 

Beach slope 1.03 0.3099 

Grain size 0.03 0.8655 

Beach width 0.00 0.9518 
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Straightness index and distance traveled 

 

 Nesting crawls were not significantly longer than false crawls.  Turtles that nested 

traveled a mean of 21.7 m (SD=6.9) while false crawling turtles traveled a mean of 17.2 m 

(SD=9.3) Nest and false crawl lengths among sites were not statistically significant.  

Additionally, turtles traveled in relatively straight lines from the water to the dunes, with an 

average straightness index of 0.94 for nests and 0.93 for false crawls (Table 3.4).   

 

Table 3.4. Distance traveled and straightness index by beach type. 

 Nests False crawls 

 
n Distance 

traveled (m) 
Straightness 
index 

n Distance 
traveled (m) 

Straightness 
index 

All natural 19 19.66 0.97 7 15.56 0.95 

All dunes 17 20.84 0.95 6 12.51 0.98 
FSR:flat 9 22.52 0.94 4 15.59 0.85 

FSR:sloped 5 23.76 0.88 8 25.22 0.94 

Average -- 21.69 0.94 -- 17.22 0.93 

 

 

Trend analysis: crawl quarters 

 

 

Beach elevation/slope  

 

 The pooled nest and false crawl data from each study site (n=6) revealed a trend of an 

increase in beach elevation as turtles crawled landward.  There was also a trend of turtles nesting 
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in areas of higher elevation than where they false crawled (Figure 3.2).  The mean heights for 

nesting crawls during the first through fourth quarters, respectively, were 0.3 m (standard 

deviation (SD=0.1), 0.8 m (SD=0.1), 1.2 m (SD=0.1), and 1.8 m (SD=0.3).  For false crawls, the 

mean height at each quarter, starting at one and ending at four, was 0.3 m (SD=0.1), 0.7 m 

(SD=0.2), 1.0 m (SD=0.3), and 1.5 m (SD=0.6).  The difference in heights at nests compared to 

false crawls was not statistically significant in any of the quarters 

 
Sample size = 6. Error bars show standard error 

Figure 3.2. Pooled elevation of nests and false crawls at all study sites (n=6).  

 

Figure 3.3 shows the elevation changes by treatment.  The FSR:sloped site (Figure 3.3C) 

was the only beach where turtles false crawled at higher elevations than where they nested.  

Figure 3.4 illustrates the differences in elevation among the natural beaches and the FSR sites, 

which had the most distinct profiles.  A one-way ANOVA among these three beaches revealed 
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that there was not a statistically significant difference among nests or among false crawls in any 

of the quarters.  

 

Sample size for natural (18 nests, 7 false crawls), DR (16 nests, 6 false crawls), FSR:sloped (5 
nests, 8 false crawls), FSR:flat (8 nests, 4 false crawls) 

Figure 3.3 Elevation of nests and false crawls at A) natural sites, B) DR sites, C) FSR:sloped , 
and D) FSR:flat  
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Sample size for natural (18 nests, 7 false crawls), FSR:sloped (5 nests, 8 false crawls), FSR:flat 
(8 nests, 4 false crawls) 

Figure 3.4. Changes in elevation among nests and false crawls at natural and FSR sites. 

 

 The percent slope of each crawl quarter on each treatment is illustrated in Figure 3.5 and 

Appendix B.  For all nesting crawls, turtles emerged in areas with a mean slope of 6.7% 

(SD=2.4); the mean slopes in the second, third, and fourth quarters, respectively, were 9.0% 

(SD=4.1), 8.3% (SD=4.7), and 10.3% (SD=4.8).  For false crawls, the mean slope in the first 

quarter was 7.2% (SD=2.6), the second was 9.8% (SD=3.5), the third was 9.8% (SD=3.4), and 

the fourth was 12.4% (SD=7.2). 
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Sample size for natural (18 nests, 7 false crawls), DR (16 nests, 6 false crawls), FSR:sloped (5 
nests, 8 false crawls), FSR:flat (8 nests, 4 false crawls). Error bars show standard error. 

Figure 3.5. Mean percent slope for each quarter for false crawls and nests on A) natural sites, B) 
DR sites , C) FSR:sloped, and D) FSR:flat .   

 

 

Moisture content 

 

An analysis of pooled nest and false crawl data from each study site (n=6) revealed a 

trend of decreasing moisture content as turtles crawled landward, which was expected (Figure 

3.6).  Additionally, nests occurred in drier areas than false crawls, a trend that remained 
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consistent in each quarter (Figure 3.6) and was statistically significant during the third (p=0.02) 

and fourth (p=0.04) quarters. This trend was evident in all treatments (Figure 3.7). 

 

 
Sample size = 6. Error bars show standard error. 

Figure 3.6. Pooled moisture content of nests and false crawls at all study sites.  
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Sample size for natural (19 nests, 7 false crawls), DR (17 nests, 6 false crawls), FSR:sloped (4 
nests, 6 false crawls), FSR:flat (9 nests, 4 false crawls). Error bars show standard error. 

Figure 3.7. Moisture content of nests and false crawls at A) natural sites, B) DR sites, C) 
FSR:sloped, and D) FSR:flat. 

 

The mean moisture contents during nesting crawls, starting in the first quarter and ending 

in the fourth quarter, were 7.8% (SD=2.2), 4.1% (SD=1.4), 2.4% (SD=0.4) and 1.8% (SD=0.4).  

False crawls had mean moisture contents, starting in the first quarter and moving to the fourth, of 

11.1% (SD=4.1), 6.5% (SD=1.9), 4.1% (SD=1.0), and 2.9% (SD=0.8).  
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Grain size 

 

 To analyze grain size, I used the Wentworth Grade Scale, which provides a description of 

particle size (e.g., clay) as well as measurements in mm and phi ( ) units.  Phi is on a logarithmic 

scale and is commonly used because it expresses particle size in units of equal value. The grain 

size (diameter) increases as  decreases (Flugel 2004). 

The pooled nest and false crawl data from each study site (n=6) show the average grain 

size was larger throughout false crawls than nesting crawls, although this difference was not 

statistically significant (Figure 3.8).  This pattern was not consistent among treatments (Figure 

3.9).  For nesting crawls, the sites closest to the water had an average grain size of 1.3  (SD=0.2) 

the median site had a mean grain size of 1.2  (SD=0.3) and the head position had a mean grain 

size of 1.3  (SD=0.2).  For false crawls, sites closest to the water had a mean of 1.5  (SD=0.3), 

the median site averaged 1.4  (SD=0.2), and the head position averaged 1.3  (SD=0.2).   
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Sample size=6. Error bars show standard error. 

Figure 3.8. Pooled grain size (Φ) along nests and false crawls at all study sites.  
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Sample size for natural (18 nests, 7 false crawls), DR (17 nests, 6 false crawls), FSR:sloped (5 
nests, 8 false crawls), FSR:flat (9 nests, 4 false crawls). Error bars show standard error. 

Figure 3.9. Grain size (Φ) of nests and false crawls at A) natural sites, B) DR sites, C) 
FSR:sloped, and D) FSR:flat site.  
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Trend analysis: rate of change 

 

 

Elevation 

  

In all beaches, the change in elevation in the final five meters of false crawls decreased 

(Figure 3.10).  In nesting crawls, the change in elevation just before the nest site stayed flat or 

increased except in the DR beaches.   
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Sample size for natural (18 nests, 7 false crawls), DR (16 nests, 6 false crawls), FSR:sloped (5 
nests, 8 false crawls), FSR:flat (8 nests, 4 false crawls). Error bars show standard error. 

Figure 3.10 Rate of change in elevation of nests and false crawls at A) natural sites, B) DR sites, 
C) FSR:sloped, and D)FSR:flat. 

 

 

Reproductive success 

 

 Tables 3.5 and 3.6 show the best-fit models for hatching and emergence success, 

respectively.  The adjusted R2 for hatching success was 0.44 and 0.45 for emergence success.  I 

expected the two models to be similar; they had three overlapping terms, two of which were the 
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most significant terms in both models (interaction of moisture content and nest slope and the 

interaction of moisture content, distance traveled, and nest slope).  Positive estimates, where 

higher values are associated with a greater likelihood of higher reproductive success, were also 

the same in both models (distance traveled and the interaction of moisture content and nest 

slope).  

 

Table 3.5. Best-fit model for hatching success. 

Term Estimate 
Standard 
Error 

F 
Ratio Prob>|t| 

Distance traveled 0.01 0.01 4.47 0.0427* 

Moisture content*Distance traveled -0.01 0.01 2.22 0.1467 

Beach width -0.01 0.00 3.29 0.0792 

Moisture content*Nest slope 0.03 0.01 9.86 0.0037* 

Moisture content*Distance traveled*Nest slope -0.01 0.00 9.05 0.0052* 

Nest slope is the slope at the nest location. * Denotes significance at 0.05. + estimates indicate a 
positive relationship between the term and hatching success.  
 

Table 3.6. Best-fit model for emergence success. 

Term Estimate 
Standard 
Error 

F 
Ratio Prob>|t| 

Moisture content -0.05 0.03 2.45 0.1277 

Distance traveled 0.01 0.01 3.19 0.0843 

Grain size*Distance traveled*Beach width  0.00 0.00 3.64 0.0662 

Moisture content*Nest slope 0.04 0.01 17.14 0.0003* 

Moisture content*Distance traveled*Nest slope -0.00 0.00 4.98 0.0332* 

Nest slope is the slope at the nest location. * Denotes significance at 0.05. + estimates indicate a 
positive relationship between the term and emergence success.  
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Discussion 
 

 

Nests and false crawls 

 

 

Beach shape 

 

 While the majority of sites showed a trend of nesting crawls occurring higher in elevation 

throughout the crawl than false crawls, the FSR:sloped site displayed the opposite trend (Figure 

3.3).  Additionally, the difference in elevation between crawl types and among sites was most 

distinct during the fourth quarter (Figure 3.4).  These data indicate that there was an ideal range 

of nesting elevation, which was most evident towards the end of the crawl.  Too much or too 

little height, especially during the fourth quarter of the crawl, was less conducive to nesting.  

 However, elevation by itself did not likely serve as a cue, but rather its relationship with 

beach slope.  Higher elevations did not necessarily indicate steeper slopes; since I averaged 

elevation data by quarter, crawl distances were not explicitly taken into account.  For example, at 

the FSR:flat site, the average elevation in nests was higher, but the slope was steeper in false 

crawls (Figure 3.3D, 3.5D). This was the result of shorter false crawls relative to nests; although 

the elevation was higher along nesting crawls, each quarter was also longer, which made the 

slope more gradual.  

On all beaches except the FSR:sloped site, mean slope decreased between the third and 

fourth quarters in false crawls (Figure 3.5), which means the beach flattened out in the fourth 
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quarter.  At the FSR:sloped site, there was instead an increase in slope between the third and 

fourth quarters, indicating a steep rise in the beach profile.  In crawls that resulted in nests, there 

was also an increase in slope between the third and fourth quarters, though none so drastic as the 

increase seen in false crawls at the FSR:sloped site.  These results indicate that the last half of the 

crawl was important in determining whether a turtle nested.  If the beach flattened out or rose too 

steeply during the final quarter, turtles were less likely to nest, while if the beach was steeper 

during the final quarter compared to the third quarter, turtles were more likely to nest,  

For a fine-scale look at where these changes in beach shape occurred, I examined the 

difference in elevation between sampling points along the crawl transect   For nests laid in the 

natural and FSR sites, the change in beach height between sampling points in the last five meters 

was relatively consistent.  The fairly flat line representing nests in natural and FSR sites (Figure 

3.10) indicates that the beach was rising at approximately the same rate between sampling sites 

towards the end of the crawl.    

Conversely, the line representing false crawls slopes downward in the final five meters, 

illustrating the beach shape getting flatter (Figure 3.10).  At the FSR:flat site, the height is 

negative at the final sampling point, indicating that the beach sloped backwards between the 

head position and the next sampling site.  At the FSR:sloped site, even though the slope was 

steeper in the fourth quarter (Figure 3.5), the beach still flattened out towards the end of non-

nesting crawls (Figure 3.10).  Most of the turtles that false crawled at this site began climbing a 

steep dune, then turned back to the water at or near the top of the dune.  The steep dune caused 

the slope of the final quarter to be steeper than the slope of the third quarter, but the dune rose 



59 

 

less sharply towards the top of the dune. This is seen in the decreased change in elevation that 

occurred between sample sites towards the end of the crawl (Figure 3.10).    

These results indicate that finding a beach slope most conducive to nesting is more 

complex than determining a single range of acceptable slopes.  Although a more gradual slope 

appeared to be more conducive to nesting than a short, steep slope, there was overlap in nest and 

false crawl slopes throughout each crawl quarter (Appendix B).  It seems that the relationship 

between changes in slope towards the end of the crawl is more important than the overall beach 

slope.  For instance, if a turtle is crawling on a beach with a 5% slope, an increase to an 8% slope 

could provide the signal to nest.  However, a turtle crawling on a beach with an 8% slope that 

decreases to a 5% slope would not receive the appropriate cue to nest.   

These findings could clarify some contradictory results concerning beach slope in the 

literature.  Provancha and Ehrhart (1987) described a “preferred” nesting beach, based on high 

and low density nesting, as steeply sloped (15.8% ±3.5%).  This is contradictory to Garmestani 

et al. (2000), who found high loggerhead nesting densities on wider, flatter beaches.  Both 

studies examined overall slopes without studying changes in slope along the beach width, which 

could be significant for determining if a turtle nests or not. 

 

 

Sand characteristics 

 

 Moisture content and grain size did not have as much of an impact on nest site selection 

as beach shape.  Trends across the beach width in moisture content occurred as expected, with 
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moisture content decreasing as turtles traveled away from the water.  The trend of drier sand 

throughout nesting crawls likely corresponds to differences in crawl lengths.  False crawls were 

almost 5 m shorter than nesting crawls, so they were in wetter areas.  It is unlikely that the 

gradient of decreasing moisture content served as more than a coarse scale cue.  It seems 

reasonable that turtles could notice an obvious change in moisture content, such as that which 

they experience in the swash zone, where they are in wet sand and are being hit by waves, 

compared to the dry sand mid-way up the beach.  However, it seems unlikely that they could cue 

into very specific changes in moisture.   

 Grain size naturally decreases from the water to the dune (Edwards 2001), which is the 

opposite of what I observed (as  decreases, grain size increases).  This is likely due to two 

reasons.  The first is that I averaged my sampling points; if I had used each sample rather than 

combining them, it is possible that I could have observed the natural trend.  Additionally, tidal 

cycles during data collection could have played a role.  Turtles that emerged at low tide emerged 

in finer sand than those that emerged at higher tides, where wave action deposits more shells.  

Although I did not observe the trend I expected, the differences in particle size are small, never 

moving out of the range described in the Wentworth Scale as medium sand.  As with moisture 

content, it seems probable that a turtle could notice large scale changes, such as the difference 

between shells and silt, but it seems unlikely that a turtle could notice minor changes in grain 

size while crawling up the beach. 

 While these characteristics do not appear to serve as initial nesting cues, it is likely that 

they play a role later in the nesting process.  For example, when a turtle digs the egg chamber, 
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sand that is too dry can collapse the chamber, which could impact whether a turtle continues 

digging or returns to the water before depositing eggs. 

 

 

Multiple cues 

 

 The best-fit logistic regression model, excluding beach type as a predictor, included all 

variables, mainly as interaction terms, indicating that beach profile, width, moisture content, and 

grain size all served as nesting cues (Table 3.1).  Although the best-fit model in the second 

analysis also included all variables, it had the same R2 value, indicating that beach type by itself 

did not help further explain the model (Table 3.2).   

 Likelihood ratio tests helped tease apart the results and determined each term’s 

contribution to the model.  In both analyses, the high chisquare values associated with interaction 

terms (first analysis: interaction of beach slope, head slope, and distance traveled; second 

analysis: interaction of beach type, head slope, each width, moisture content, grain size, and 

distance traveled), compared to the lower chisquare values of individual predictors, indicate that 

interactions among variables were more important than individual predictors in nest site 

selection.  Additionally, only slope at the head position and moisture content were significant on 

their own, whereas all but one interaction term (grain size and distance traveled in the second 

analysis) in both analyses were significant (Tables 3.1-3.3).   

The positive estimates associated with interactions of beach slope, beach width, head 

slope, distance traveled, moisture content, grain size, and beach type indicate an increased 
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chance of nesting as those characteristics increased.  Since these are interaction terms, we cannot 

determine their exact relationship, but it appears that variables associated with the beach shape 

and width play an important role in determining if a turtle nested, in conjunction with sand 

characteristics, to a lesser degree. 

Wood and Bjorndal (2000) suggested that turtles selecting a nesting site could follow a 

stepwise series of cues, passing the threshold of one characteristic before cueing into the next.  

Based on these results, a change in moisture content could provide the first broad-scale cue.  

Although it is unlikely that a turtle notices minute changes, it is likely that she could recognize a 

difference when she crosses from very wet sand in the swash zone into drier sand.  Once a turtle 

passes a moisture content threshold, these results indicate that she could then cue into the shape 

of the beach.  Increases in slope (as long as they are not too drastic), could provide the signal to 

nest, while decreases in slope could provide the signal to return to the water.  

 

 

Reproductive success 

 

 The relationship between nest site selection and reproductive success rates is not as 

straightforward with marine turtles as with avian species.  The beach is subject to varying 

environmental conditions, which can significantly impact the nesting environment throughout 

the approximately 50-day incubation period.  While a relationship should exist between where 

the nest was laid and its reproductive success, I expect that other variables, such as those that 
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affect gas exchange, are more important in reproductive success than those the nesting turtle uses 

to choose a nest site (Mortimer 1990).  

The best-fit models for both hatching and emergences success were similar, and the most 

important term for both was the interaction of moisture content and slope at the nest chamber 

(Tables 3.5 and 3.6).  There were also marginally positive estimates associated with this 

interaction and distance traveled.  This makes intuitive sense for distance traveled, as the further 

landward a nest was deposited, the less chance it had of being inundated by tides, which can 

lower reproductive success by impeding gas exchange.  The positive estimate associated with the 

interaction of moisture content and nest slope was less clear, as there is a range of acceptable 

moisture contents that preclude desiccation or inundation; however, the estimate for this term is 

very small (0.03 for hatching success and 0.04 for emergence success), which could take that 

into account.  These data indicate that variables important in nest site selection do also play a 

role in the reproductive success of the nest.  

 

 

Conclusion 
 

I elucidated characteristics that initiate loggerhead nesting by examining nests and false 

crawls on beaches with varying types of construction.  While the logistic regression best-fit 

model included all variables, I found the most distinct differences in trends between nests and 

false crawls in analyses of elevation and slope.  The data indicate that loggerheads preferred 

longer, more gradual slopes to short, steep slopes.  Perhaps more important than the overall slope 
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were changes during the second half of the crawl, where false crawling turtles generally 

encountered a flatter beach while nesting turtles encountered a more sloped beach.  On a fine-

scale, changes in profile within five meters of the nest site appeared to serve as nesting cues, 

with a decreased rate of change generally resulting in false crawls.  Other variables could play a 

role in nest site selection on a more broad-scale; a gradient in decreasing moisture content further 

from the ocean could provide an initial cue, and once the turtle reaches drier sand, she cues into 

changes in slope. Variables important in nest site selection, specifically the slope, distance 

traveled, and moisture content were also important in determining reproductive success. 

This study was the first to provide data about loggerhead nest site selection by studying 

both successful and unsuccessful nesting attempts on beaches with different templates.  As such, 

it provides valuable insight into how to nourish beaches in a manner more conducive to 

loggerhead nesting; most notably by providing more slope mid-beach as turtles enter the crucial 

third and fourth quarters of the crawl.  This study provides the framework for more research that 

continues to examine differently shaped beaches to try to determine the relationship among the 

beach slopes most conducive to nesting.  
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CHAPTER 4: GENERAL DISCUSSION 
 

 

Loggerheads 
 

 Since the 1980s, studies have documented a temporary decrease in loggerhead nesting 

success after full-scale restoration (Raymond 1984, Steinitz et al. 1998, Herren 1999, Rumbold 

et al. 2001, Brock et al. 2009).  However, none have examined the effects of alternate template 

designs on nesting success or determined the mechanism behind this decline.  Without learning 

why nesting loggerheads are impacted by an altered shoreline, we do not have the data needed to 

engineer beaches in a more “turtle-friendly” manner. 

  My first study showed that full-scale and dune restoration affected nesting loggerheads 

to different degrees.  There was a significant difference in deltas, due to a decreased nesting 

success rate at engineered sites, during the years of construction and one year post-construction 

for both designs.  Effect sizes between the two engineered sites were similar during the years of 

construction, but the effect size during the first year post-construction was significantly stronger 

after full-scale restoration than after dune restoration.  This indicates that loggerheads were 

sensitive to changes in both engineered beaches, but something about full-scale restoration 

caused them to be negatively affected for longer than they were after dune restoration. 

 The objective of the second study was to provide the mechanism behind the decreased 

nesting success rates by determining what beach characteristics serve as nesting cues.  I found 

that beach elevation and slope were the most important nesting cues.  When each crawl was 
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divided into quarters, loggerheads nested more often in areas with longer, more gradual slopes, 

and the slope of the first half of the crawl did not appear to be as important as the slope at the end 

of the crawl.  In all study sites, there was an increase in slope between the third and fourth 

quarters of crawls that resulted in nests, whereas there was generally a decrease in slope between 

the third and fourth quarters of unsuccessful nesting attempts.  The slope itself may not have 

been as important as the change in slope; if the beach slope kept increasing after the turtle 

completed three-quarters of the crawl, the turtle was more likely to nest.  It seems likely that the 

turtles cue into a different characteristic(s) during the beginning of the crawl, only cueing into 

slope after passing a threshold from the prior characteristic(s) (Wood and Bjorndal 2000).  My 

results indicate that the initial signal could be moisture content; once the turtle reached drier sand 

than what was found in the swash zone, she cued into slope.  However, other variables that I did 

not examine could also be important (i.e., sand temperature) (Wood and Bjorndal 2000). 

This study helped elucidate the mechanism behind the decrease in nesting success rates 

observed in the first study.  If increases in slope were key to initiating the start of the nesting 

process, the flat berm built during full-scale restoration provided little opportunity for an increase 

in slope.  Alternately, dune restoration more closely followed the shape of a natural beach, which 

could explain the smaller effect size one year post-restoration.  A better understanding of the 

relationship between slopes that initiate nesting would provide data needed to build dunes that 

are more conducive to loggerhead nesting.  Although full-scale restoration beaches are generally 

built with little to no slope, a more sloped beach could provide habitat more favorable for 

loggerhead nesting.  Increasing the slope mid-beach, when turtles enter the crucial second half of 
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the crawl, could provide the appropriate nesting cue.  This study provides the framework for 

more research to design experiments with the purpose of finding slopes that are the most 

conducive to loggerhead nesting.   

Both studies also examined hatching and emergence success.  The first analysis showed 

that neither type of restoration caused a significant change in either measure of reproductive 

success.  Other studies have documented varying impacts on reproductive success post-

construction (reviewed in Brock et al. 2009). Although there were no changes in reproductive 

success, I did have a small sample size.   

In the second analysis, I determined if characteristics that served as nesting cues were 

important in reproductive success.  Since a turtle has a limited ability to assess how the 

environment will change during incubation, it has been suggested that a gravid female may 

choose a nest site based on her survival rather than that of her offspring (Bjorndal and Bolten 

1992).  Model selection found the best-fit models included all terms that were also included in 

nest site selection, with the interaction of moisture content and slope at the nest chamber as the 

most significant term.  These results indicate that there is overlap in beach characteristics that 

serve as nesting cues and those that result in higher reproductive success. 

 

 

Green turtles   
 

This was only the second study to examine the impacts of full-scale restoration on green 

turtle nesting and reproductive success (Brock et al. 2009) and the first to look at the impacts of 
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dune restoration.  There was no pattern to changes in green turtle nesting success rates after dune 

restoration.  Similar to loggerhead results, something about the full-scale restoration was less 

conducive to nesting than dune restoration; during the five seasons between full-scale restoration 

projects, nesting success rates never recovered statistically.  This lack of a tendency for nesting 

success rates to recover between projects could result in permanently altered nesting patterns; 

after an initial full-scale restoration project, beaches are re-engineered every three to ten years 

(Weggel 1995).  It is critical that an experiment similar to the one I did for loggerheads is 

performed to determine how to engineer beaches that do not impact green turtle nesting so 

negatively.  

There was not a significant change in hatching or emergence success rates post-

restoration.  However, as with loggerheads, the sample size was very small. 

 

 

Summary 
 

 Results from these analyses of loggerhead nesting provide data needed to start 

experimenting with methods to engineer more “loggerhead-friendly” nesting beaches.  I also 

showed that green turtle nesting patterns could be altered if a design more conducive to green 

turtle nesting is not developed.  Both studies fill gaps in the literature concerning beach 

restoration and provide the framework for additional studies to continue providing data about the 

relationship between nesting turtles and beach characteristics.    
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APPENDIX A: TEMPORAL AUTOCORRELATION 
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Methods 
 

 In Chapter 2, I compared nesting and reproductive success rates at a Control (natural 

beach) compared to two Impact sites (FSR and DR).  As part of the nesting success analysis, I 

used GS+ (Gammadesign software, version 9) to test for temporal autocorrelation in the 

historical dataset (1997-2001).  Temporal autocorrelation occurs when measured variables are 

more similar when closer in time and less similar when further apart in time (Legendre 1993).  I 

expected to find similar results among the three sites; however, this was not the case. 

 

 

Results 
 

 Figures 5.1 and 5.2 illustrate temporal autocorrelation rates that occurred in the three 

study sites from 1997-2001.  For both loggerheads and green turtles, there was a clear pattern of 

autocorrelation present in the Control site at approximately 20 days.  However, this pattern was 

not present in either Impact site for either species. 
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A. 

 

B. 

 

C. 

 

Figure 5.1.  Historical loggerhead nesting success rate autocorrelation results at each study site: 
A) Control, B) DR, and C) FSR 
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A. 

 

B. 

 

C. 

 

Figure 5.2. Historical green turtle nesting success rate autocorrelation results at each study site: 
A) Control, B) DR, and C) FSR  
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Discussion 
 

The test for temporal autocorrelation yielded some unexpected results, as one would 

expect to find similar degrees of autocorrelation among the three sites prior to restoration.  The 

main difference between the Control and the two Impact sites during the historical time period is 

the degree of development along the coastline.  The shoreline along the Control has been less 

developed than the other two sites, consisting mainly of single-family residences interspersed 

with patches of vegetated, undeveloped areas. The FSR and DR sites have historically been more 

highly developed areas fronting condominiums, hotels, and single family residences.  Since 

temporal autocorrelation was only present in the less developed site, it is possible that unnatural 

factors in the developed areas, such as a human influence, interrupted the nesting pattern, 

causing the difference in results.     

People on the beach can impact marine turtle nesting by approaching turtles prior to egg 

deposition, which can cause a non-nesting emergence. In addition, although Witherington (1992) 

found no direct effects of mercury vapor lights on whether loggerheads and green turtles nested 

after emerging above the high tide line, he did note the possibility of an indirect effect of 

lighting.  On a well-lit beach, turtles are more visible and more likely to be approached by 

people; conversely, turtles are more aware of people in their line of sight.  Both people and 

artificial lighting are more prevalent in the highly developed FSR and DR sites, making it 

possible that these human influences interrupted the natural nesting pattern and ensuing temporal 

autocorrelation that was evident in the Control.  
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Table 6.1. Top five models for nest site selection excluding beach type as a predictor variable 

 

Models AICc Prob>χ2 

Moisture content*Grain size*Head slope*Distance traveled 82.8568 0.3597 

Grain size*Distance traveled 84.5295 0.0012* 

Moisture content*Grain size 84.5896 0.0556 

Moisture content*Head slope*Distance traveled 87.3221 0.6635 

Moisture content 87.4952 0.0324* 

 

Table 6.2. Top five models for nest site selection including beach type as a predictor variable 

 Models AICc Prob>χ2 

Beach type*Head slope*Moisture content 85.6449 0.0907 
Beach type*Head slope*moisture content*grain size 
     *Distance traveled 85.8628 0.0005* 
Beach type*Head slope*Moisture content 
     *Distance traveled 86.8033 0.2344 

Beach type*Moisture content*Grain size 87.1235 0.1901 

Moisture content 87.4952 0.0324* 
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Histograms start with the 1st quarter at the top and continue in ascending order with the 4th 
quarter at the bottom. 

Figure 6.1. Percent slopes for each quarter for A) nests and B) false crawls laid on natural 
beaches. 
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Histograms start with the 1st quarter at the top and continue in ascending order with the 4th 
quarter at the bottom. 

Figure 6.2. Percent slopes for each quarter for A) nests and B) false crawls laid on DR beaches 
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Histograms start with the 1st quarter at the top and continue in ascending order with the 4th 
quarter at the bottom. 

Figure 6.3. Percent slopes for each quarter for A) nests and B) false crawls laid in the 
FSR:sloped site. 
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Histograms start with the 1st quarter at the top and continue in ascending order with the 4th 
quarter at the bottom. 

Figure 6.4. Percent slopes for each quarter for A) nests and B) false crawls laid in the FSR:flat 
site. 
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The boxes represent the middle quartiles, the line is the median, and the whiskers show the first 
and fourth quartiles.  Single points show outliers. 
 

Figure 6.5. Mean percent slope for each quarter for false crawls and nests laid on natural 
beaches.   
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The boxes represent the middle quartiles, the line is the median, and the whiskers show the first 
and fourth quartiles. Single points show outliers 
 

Figure 6.6. Mean percent slope for each quarter for false crawls and nests laid on DR beaches. 
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The boxes represent the middle quartiles, the line is the median, and the whiskers show the first 
and fourth quartiles.  Single points show outliers. 
 

Figure 6.7.  Mean percent slope for each quarter for false crawls and nests laid at the FSR:sloped 
site.  
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The boxes represent the middle quartiles, the line is the median, and the whiskers show the first 
and fourth quartiles.  Single points show outliers. 
 

Figure 6.8. Mean percent slope for each quarter for false crawls and nests laid at the FSR:flat 
site.  
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