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ABSTRACT 

 

Disturbance is one of the central concepts explaining how diversity arises and is 

perpetuated in ecological time. A good model system for testing hypotheses related to 

disturbance is the longleaf pine ecosystem in the southeastern U.S. because in this ecosystem 

frequent, low-severity fires acts as a disturbance that maintains a unique vegetation structure and 

high species richness. Vegetation structure influences animal distributions; in fire-dependent 

ecosystems many animals rely on open-structured, fire-maintained vegetation but shrubs and 

trees encroach into fire-dependent ecosystems where fire has been excluded. Prescribed burning 

and mechanical removal are commonly used as restoration tools to control encroachment. To 

better assess and compare the restoration potential of these tools, a more thorough understanding 

of how they change vegetation structure and habitat suitability for animals is necessary. 

The southeastern U.S. is a diversity hot-spot for amphibians, many of which require 

ephemeral wetlands embedded in longleaf pine uplands for the aquatic phase of their life cycle. 

Amphibian diversity has been declining in recent decades and habitat loss/degradation has been 

cited as one of the leading causes. Although often overlooked in studies of fire ecology, the 

ephemeral wetlands required by many amphibians are also fire-dependent habitats that have been 

negatively impacted by lack of fire. To understand how disturbance interacts with wetland 

vegetation and aquatic-phase amphibians, three disturbance treatments meant to mimic the 

effects of natural disturbance on vegetation structure were applied randomly to 28 dry ephemeral 
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wetlands in the Lower Coastal Plain of South Carolina, U.S.  The treatments consisted of early 

growing-season prescribed fire, mechanical vegetation removal (a proposed fire surrogate), and a 

combination of mechanical removal plus fire; some sites were left untreated for reference.  

Vegetation structure was quantified and amphibian assemblages were monitored before and after 

treatments.  In addition, one species of amphibian was used in a tadpole survival experiment to 

examine differences in performance among treatments. Other factors that could be affected by 

treatments and in turn influence amphibians were measured, including water chemistry, wetland 

depth, quantity and quality of epilithon, and leaf litter composition. 

Amphibian survival was lowest, and species depauperateness highest in untreated 

wetlands. Depauperateness of species whose range was restricted to the range of longleaf pine 

was lowest in sites that had mechanical treatment plus fire. The mechanical plus fire treatment 

created the most open vegetation structure with lowest leaf litter accumulation, especially of 

hardwood litter, conditions correlated with high amphibian survival and diversity.  When data 

from this study was combined with data from a previous study of similar nearby wetlands, a 

pattern emerged in which one suite of species was absent from recently burned sites, while an 

entirely different suite of species was absent from long-unburned sites. This evidence suggests 

that disturbance is related to a shift in amphibian assemblage possibly due to changes in 

vegetation structure and perhaps wetland ecology in general, from an algal-based system 

maintained by frequent fire to a detrital-based system that develops in the absence of fire. 

 



iv 

 

 

This is dedicated to my husband, best friend and mentor, Nathan Klaus. Thank you for your 

patience, advice, encouragement and shoulder to cry on. You never stopped believing in me, 

even when I had little faith in myself. You are one of the most dedicated, passionate, and 

knowledgeable conservationists I know, and an example I will strive towards always. 

This is also dedicated to my parents, Everett and Lee Brown. Your truly unconditional love has 

gotten me through the best and worst that life had to offer, you gave me the foundation to 

become the person I am, and supported me through all my crazy endeavors. 

Last but not least, this is dedicated to my dog, Hayduke. You followed me faithfully through hell 

and high water; ticks, chiggers, yellow flies and mosquitoes; cold, heat, rain, and ice. You would 

never leave my side and only hoped for my attention in return. Whoever said diamonds are a 

girl’s best friend never had a dog who did field work with them. 

 

  



v 

 

ACKNOWLEDGMENTS 

 

First and foremost I acknowledge my early mentor, Julian Harrison, a gentleman and a 

scholar, whose passion and dedication to amphibians, and lowcountry natural history in general 

will inspire me throughout my career. Other early academic inspirations include Richard Firenze 

of Broome Community College, and Jaap Hillenius of College of Charleston.  

 Much gratitude to my dissertation committee, Reed Noss, Pedro Quintana-Ascensio and 

David Jenkins of University of Central Florida, and Kay Kirkman of Jones Ecological Research 

Center (who introduced me to the cypress nubbiworm). I also extend thanks to Lora Smith of 

Jones Ecological Research Center and John Fauth of University of Central Florida for 

contribution of advice and ideas, and to John also for many hours of assistance with field work. I 

am privileged to have worked as a teaching assistant for Frank Logiudice. Many good ideas and 

terrible miseries were shared with my cohort of Conservation Biology PhD students, all whom 

influenced me as a teacher and researcher. Clark Jones, Scott Rush and Joshua Reece provided 

statistical consultation.  

I am fortunate to have worked with Steve Lohr, Mark Danaher, Bill Twomey and Carl 

Trettin of USDA Forest Service, as well as the Non-game Conservation Section of the Wildlife 

Resources Division of Georgia Department of Natural Resources. I also need to acknowledge the 

work, support and contributions of Southeastern Partners in Amphibian and Reptile 

Conservation. 



vi 

 

Many, many thanks to my funding sources, the US Department of Energy (Herp 

Conservation Challenge Grant) and the US Environmental Protection Agency (STAR 

Fellowship). Nathan Klaus helped fund my research when other funding sources ran out. 

Barbara Calhoon and Patricia Webster took care of my mental health throughout the 

dissertation process and I owe much to them for helping me reach my goal. The writings of 

Thich Nhatt Hanh, Krishnamurti and Edward Abbey also helped me through the process. 

Regular viewing of “The Big Lebowski” kept my spirits up as well. 

 One big acknowledgement to all of the amazing folks I’ve forgotten or don’t have room 

to mention, who are working hard for the conservation of this precious Earth’s beauty. 

 

  

   

 

  



vii 

 

TABLE OF CONTENTS 

LIST OF FIGURES ........................................................................................................................ x 

LIST OF TABLES ....................................................................................................................... xiii 

CHAPTER ONE: DISTURBANCE AND DIVERSITY ............................................................... 1 

References ................................................................................................................................... 7 

CHAPTER TWO: FIRE AND FIRE-SURROGATE TREATMENTS ALTER WETLAND 

VEGETATION AND INFLUENCE AMPHIBIAN SURVIVAL ............................................... 17 

Abstract ..................................................................................................................................... 17 

Introduction ............................................................................................................................... 18 

Methods..................................................................................................................................... 20 

Sites ....................................................................................................................................... 20 

Experimental Design and Sampling ...................................................................................... 21 

Data Analysis ........................................................................................................................ 23 

Results ....................................................................................................................................... 25 

Tadpole survival.................................................................................................................... 25 

Effects of treatments on canopy cover .................................................................................. 25 

Effects of treatments on litter mass and composition ........................................................... 26 

Effects of treatments on epilithon ......................................................................................... 26 



viii 

 

Effects of treatments on water chemistry .............................................................................. 26 

Relationship between wetland biotic and abiotic responses ................................................. 27 

Potential pathway for treatment effects on tadpole survival ................................................. 27 

Discussion ................................................................................................................................. 29 

References ................................................................................................................................. 45 

CHAPTER THREE: AQUATIC AMPHIBIAN DEPAUPERATENESS VARIES IN 

RESPONSE TO FIRE AND A FIRE-SURROGATE IN A LONGLEAF PINE WOODLAND 55 

Abstract ..................................................................................................................................... 55 

Introduction ............................................................................................................................... 56 

Methods..................................................................................................................................... 60 

Sites ....................................................................................................................................... 60 

Experimental Design and Sampling ...................................................................................... 61 

Data analysis ......................................................................................................................... 62 

Results ....................................................................................................................................... 64 

Effects of treatments on amphibian assemblages ................................................................. 64 

Relationship between vegetation structure and amphibian assemblages .............................. 65 

Effects of treatments on vegetation structure ........................................................................ 66 

Discussion ................................................................................................................................. 67 



ix 

 

References ................................................................................................................................. 81 

CHAPTER FOUR: THEORETICAL AND PRAGMATIC IMPLICATIONS: RELATING 

AQUATIC AMPHIBIAN SURVIVAL AND DISTRIBUTIONS TO HABITAT AND 

DISTURBANCE........................................................................................................................... 88 

Summary of key findings .......................................................................................................... 88 

Limitations of the study ............................................................................................................ 91 

Conservation implications ........................................................................................................ 92 

Disturbance promotes persistence of specialist species ............................................................ 94 

References ................................................................................................................................. 95 

 

  



x 

 

 LIST OF FIGURES  

Figure 1. Map of US showing location of (A) South Carolina and (B) Francis Marion National 

Forest............................................................................................................................................. 38 

Figure 2. Mean number of surviving tadpoles plus metamorphs by treatment over weeks. ........ 39 

Figure 3. Mean tadpole survival time by treatment with confidence limits. ................................ 40 

Figure 4. Comparison of correlated variables that also differed by treatment. Letters show 

significant differences in a variable by treatment; treatments with the same letter are not 

significantly different. ................................................................................................................... 41 

Figure 5. Oneway ANOVA of wetland environmental ordination score by treatment.  Diamonds 

represent group means with 95 % confidence intervals. Circles are a visual representation of the 

comparisons among group means; circles for means that are significantly different either do not 

intersect, or intersect so that the outside angle of intersection is less than 90°. Boxes to the left of 

the graph describe ordination components. .................................................................................. 42 

Figure 6. Tadpole mortality rate by wetland environmental ordination score with treatment 

interaction. Boxes below x-axis describe ordination components. ............................................... 43 

Figure 7. Hyla chrysoscelis tadpole mortality rate regressed against pH. The solid line is the 

regression line (df= 1, F = 13.82, P = 0.0023, r
2
 = 0.46). The dashed line represents the threshold 

below ............................................................................................................................................. 44 



xi 

 

Figure 8. Mean percent species depauperateness by treatment for longleaf pine habitat associate 

amphibians and coincidental amphibians before and after treatment application. Error bars 

represent 95% confidence intervals. ............................................................................................. 76 

Figure 9. Longleaf associate amphibian species depauperateness correlated with plant ordination 

axes. Boxes below x-axes describe the components of each ordination axis with minimum and 

maximum site means..................................................................................................................... 77 

Figure 10. One-way ANOVA of plant ordination axis 3 by treatment type after treatment 

applications. Diamonds represent group means with 95 % confidence intervals. Circles are a 

visual representation of the comparisons among group means; circles for means that are 

significantly different either do not intersect, or intersect so that the outside angle of intersection 

is less than 90°. ............................................................................................................................. 78 

Figure 11. One-way ANOVA of change in plant ordination axis 3 from before to after by 

treatment type. Diamonds represent group means with 95 % confidence intervals. Circles are a 

visual representation of the comparisons among group means; circles for means that are 

significantly different either do not intersect, or intersect so that the outside angle of intersection 

is less than 90°. ............................................................................................................................. 79 

Figure 12. Discriminant analysis describing direction of change of wetland vegetation by 

treatment type. Axes one, two and three are plant ordination axes. The yellow circle represents 



xii 

 

95% mean confidence limit of the untreated group, red is mulch, green is burn and blue is mulch-

and-burn. ....................................................................................................................................... 80 

 

  



xiii 

 

LIST OF TABLES 

Table 1. Test results comparing variables among treatments.  F-values are reported for 

parametric ANOVA and Monte Carlo permutation (1000 iterations) F-tests. * = significant 

difference among treatments.  DF = 3 and  = 0.05. .................................................................... 35 

Table 2. Correlation coefficients for canopy, litter and epilithon variables.  Can = % canopy 

closure, Hdwd = % hardwood litter, Gram = % graminoid litter, MaxT = maximum temperature, 

DM = epilithon dry mass, %C = epilithon percent carbon, %N = epilithon percent nitrogen, %P = 

epilithon percent phosphorus, C:N = epilithon carbon/nitrogen ratio, C:P = epilithon 

carbon/phosphorus ratio. Significant correlations determined by Spearman’s rho test are 

indicated in bold. ........................................................................................................................... 36 

Table 3. Models explaining tadpole mortality rate, ranked from best to worst. Variables include:  

Rx = treatment type, Axis2 = second ordination axis of environmental variables, and RxAxis2 = 

interaction between treatment and ordination score. .................................................................... 37 

Table 4. Wetland sites with corresponding fire history and restoration treatment. ...................... 72 

Table 5. Amphibian species categorized as longleaf pine associate (>80% of range within 

longleaf pine range) and longleaf pine coincidental (<80% of range within longleaf pine range).

....................................................................................................................................................... 73 

Table 6. Model descriptions, ranked by model weight, for models explaining variation in 

longleaf associate amphibian species depauperateness and coincidental amphibian species 



xiv 

 

depauperateness with Akaike Information Criterion (BIC) scores, amount of variation explained 

(adjusted r
2
), and relative model weights (). Depth = mean maximum depth of wetland, axes = 

plant ordination axes,  pH is the range of concentration of hydrogen ions in wetland water and 

DO is the range of percent saturation of water with oxygen. ....................................................... 74 

Table 7. Combined species list from 
50

 and Klaus 2013. YSF = years since fire. Species NOT 

detected in a YSF category are marked with “X”. Three species have “?” in the 8+ YSF category 

indicating that they were not detected in the Schurbon or the Klaus study, but would likely be 

absent from this category based on other literature (e.g. Jensen et al. 2008). .............................. 75 

 



1 

 

CHAPTER ONE: DISTURBANCE AND DIVERSITY 

 

How is biological diversity created and maintained? This question has intrigued and 

challenged evolutionary biologists and ecologists dating back to Jean-Baptist Lamarck (1809) 

and Charles Darwin (1859). Competition, predation, productivity and disturbance are the central 

concepts explaining how diversity arises and is perpetuated in ecological time. Grime (1973), 

Horn (1975) and Connell’s (1978) ‘intermediate disturbance hypothesis’ was a seminal 

ecological theory that included competition and disturbance in explaining some observed 

patterns of diversity. Since then a variety of exceptions, extensions and alternatives have been 

proposed and tested (e.g. Petraitis, Latham and Niesenbaum 1989; Kondoh 2001; Mackey and 

Currie 2001; Cordonnier, Courbaud and Franc 2006) including Platt and Connell’s (2003) model 

of the effects of catastrophic and non-catastrophic disturbances on directional species 

replacement. In one of their modeled scenarios, directional species replacement is repeatedly 

interrupted by non-catastrophic disturbance, and a community of early successional species 

persists. They predicted that if disturbances are spatially heterogeneous but relatively consistent 

through time, early and late successional species may coexist across an 

environmental/geographic gradient. A good model system for testing hypotheses related to this 

proposed scenario is the longleaf pine ecosystem in the southeastern U.S. because this ecosystem 

is maintained by frequent, low-severity fires (Frost 1998), and a mosaic of fire histories/regimes 

have been created by site factors and land use/management. 
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The longleaf pine ecosystem is one of the most threatened ecosystems in North America 

(Noss et al. 1995) due to turpentine and timber extraction, open range grazing and, more 

recently, development and fire suppression (Blakey 1940, Croker 1987, Landers et al. 1995, Van 

Lear et al. 2005, Frost 2006). Fire acts as a heterogeneous, non-catastrophic disturbance in this 

system, but in contrast to what Platt and Connell (2003) predicted, many species associated with 

frequently burned habitats are not what is traditionally thought of as early successional species 

(i.e. short-lived, high reproductive output, high dispersal ability, poor competitor). Some 

longleaf-endemic plants are long-lived species with poor dispersal but have traits allowing them 

to take advantage of an environment associated with frequent fire (Myers 2010). These 

‘disturbance specialists’ typically do not compete well with species that invade in the absence of 

fire so without fire their abundance is reduced while other species increase (Walker and Peet 

1984, Peet and Allard 1993, Olson and Platt 1995, Walker and Silletti 2006). When fire is 

excluded from a fire-dependent system, habitat structure shifts from relatively open canopy with 

sparse midstory and dense or diverse groundcover, to dense canopy with thick midstory and 

reduced groundcover (Abrams 1992, Waldrop et al. 1992, Gilliam and Platt 1999, Metlen and 

Fiedler 2006, Collins et al. 2007, Nowacki and Abrams 2008, Kane et al. 2010, Outcalt and 

Brockway 2010).   

Although often overlooked, many ephemeral wetlands embedded within longleaf pine 

uplands are fire-dependent habitats. They are shallow topographical depressions that dry 

periodically and are fed by rainwater or groundwater with no obvious surface connections to 

other water bodies. Historically, fires were common during the driest part of the year, a time 
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when ephemeral wetlands were also frequently dry (De Steven and Toner 2004). Fire 

suppression in recent decades has affected embedded wetlands just as it has affected longleaf 

pine uplands; shrubs, vines and trees invade and reduce or replace a diverse groundcover of 

graminoids and forbs (Olson and Platt 1995; Kirkman et al. 2000; Drewa, Platt and Moser 2002). 

One would expect concomitant changes in the entire food web (Menge and Sutherland 1987; 

Jenkins, Kitching and Pimm 1992; Wardle 1995; Wootton, Parker and Power 1996), but this has 

not been explicitly tested in this system. In addition to other factors such as upland site 

characteristics, wetland hyrdoperiod, bathymetry, and soil type, fire determines leaf litter depth 

and composition, influences plant communities that donate litter and affects the availability of 

nutrients from leaf litter (Maclean et al. 1983; Wilbur and Christensen 1983; Debano, Neary and 

Ffolliott 1998). Growth and nutrient quality of algae and other components of epilithon depend 

on available light and nutrients (Gregory 1980, Urabe and Sterner 1996, Greenwood 2005, Hill 

et al. 2010), so fire may influence the extent to which a wetland is an algal-based or detritus-

based system by determining plant and litter structure and composition. In addition to water 

chemistry, hydroperiod, predator load,competition and degree of isolation (Eason and Fauth 

2001), vegetation structure, litter accumulation and litter composition also influence 

distributions, growth and survival of larval amphibians (a primary consumer)(Skelly, Werner and 

Cortwright 1999; Rubbo and Kiesecker 2004; Skelly et al. 2005), possibly by affecting epilithon 

food sources (Hessen, Ferovig and Andersen 2002; Stelzer and Lamberti 2002; Schiesari 2006; 

Williams, Rittenhouse and Semlitsch 2008; Maerz, Cohen and Blossey 2010; Cohen, Ng and 

Blossey 2012). 
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The southeastern U.S. is a diversity hot-spot for amphibians, many of which require 

ephemeral wetlands for the aquatic phase of their life cycle, but this diversity has been declining 

in recent decades (e.g. local extirpations or range-wide decline of Ambystoma tigrinum 

(Hammerson et al.  2004), Ambystoma cingulatum (Palis and Hammerson 2008) and Lithobates 

capito (Hammerson and Jensen 2004)). The effects of fire on amphibians in the southeastern 

U.S. are not clear (Pilliod et al. 2003; Perry, Craig Rudolph and Thill 2012); fire affects different 

amphibian guilds in different ways (e.g., Greenberg and Waldrop 2008; Steen et al. 2010). 

Although Schurbon and Fauth (Schurbon 2000; Schurbon and Fauth 2003) found that amphibian 

species richness increased with time since burn, their results may have been confounded with 

habitat type (Robertson and Ostertag 2004) and they did not distinguish guilds that may respond 

differently to fire. In addition, the effects of fire specifically on the aquatic stage of amphibians 

are unknown. I hypothesized that amphibian diversity in the longleaf pine ecosystem is 

influenced by disturbance, and that disturbance acts directly on vegetation and leaf litter, and 

indirectly on other components of the food web to ultimately cause amphibian response. I tested 

four specific main hypotheses: 1) survival of a larval amphibian was related to a wetland 

environmental gradient that included vegetation structure, leaf litter composition, wetland 

chemistry and epilithon 2) survival of a larval amphibian species varies with disturbance 

treatment (fire and a fire surrogate) 3) amphibian species depauperateness is related to a wetland 

environmental gradient that includes wetland vegetation structure, water chemistry and water 

depth, and 4) amphibian species depauperateness varies with disturbance treatment.  
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To test my hypotheses, I selected for study a set of 28 ephemeral depression wetlands in 

Francis Marion National Forest, South Carolina, U.S. in close proximity to the set of wetlands 

used for Schurbon’s previously mentioned study.  The sites used in the present study were 

located on a relatively high ridge (6-15 m elevation), parallel to and approximately 16 km distant 

from the Atlantic shoreline, and surrounded by longleaf pine woodland on well-drained, sandy 

soil. This area had a historic fire return interval of 2-4 years (Frost 1998), and is a diversity 

hotspot for amphibians in the U.S. (Young et al. 2004). At the onset of the study, the forest 

stands encompassing study wetlands were burned with prescribed dormant season burns on 

rotations ranging from 4-15 years. Sometimes the embedded wetlands burned during prescribed 

burns (as evidenced by fire scars on trees), but often times they did not due to inundation or 

because fire was actively excluded from them. This history resulted in a range of vegetation 

conditions from relatively herbaceous and open-canopied to shrub-dominated and closed-

canopied. Included in the set of sites were several wetlands historically occupied by threatened 

Ambystoma cingulatum (Frosted flatwoods salamander) and Lithobates capito (Carolina gopher 

frog).  

 Three disturbance treatments meant to mimic the effects of natural disturbance on 

vegetation structure were applied randomly to the 28 study-wetlands; a total of five were burned 

with early growing-season prescribed fire, five had mechanical midstory removal (mulched), 

seven were mulched and burned, and 11 were left untreated. Mulching treatments were of 

interest because managers faced with the challenges of using prescribed fire near developed 

areas or in areas with very high fuel loads are often interested in using this tool as a fire surrogate 



6 

 

or to enhance the restoration potential of prescribed fire (Kennedy and Fontaine 2009; McIver et 

al. 2012). 

 My research consists of two main components. In the first study, I selected a subset of 16 

of the 28 study sites and examined survival of a larval amphibian as a response to treatments 

because survival has important implications for diversity. I also estimated canopy density 

(including midstory), relative types and amounts of leaf litter, and amount and nutrient content of 

epilithon after treatment in an effort to elucidate potential pathways in the food web through 

which disturbance might influence larval amphibian survival. In the second study I selected 

another subset of 24 of the 28 study sites, and examined species richness of two larval amphibian 

guilds, species closely associated with the longleaf pine ecosystem (> 80% of range overlapping 

with longleaf pine range) and species coincidental occurring with the longleaf pine ecosystem (< 

80% of range overlapping with longleaf pine range), in response to treatments. For that subset of 

sites, I estimated canopy, midstory and groundcover vegetation density, and leaf litter depth 

before and after treatments, to determine which aspects of vegetation structure responded to 

treatment, and which aspects were correlated with amphibian diversity. I also combined 

amphibian data from my study and Schurbon’s study to look for patterns in assemblages related 

to my predefined guilds. 

 In the concluding chapter of this dissertation I relate the results of the two main 

components of my research and compare my results to other related research. Because amphibian 

diversity is declining in the system I studied and others, it is useful to suggest how these results 
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can be applied toward conservation. I address three areas of specific interest to land managers 

whose conservation goal is to maintain or increase amphibian diversity in the longleaf pine 

ecosystem: 1) is mulching an effective surrogate for fire, 2) can fire alone restore degraded 

wetland habitat and 3) what aspects of wetland habitat are most important in relation to 

amphibian diversity. I also address three areas of interest to theoretical ecologists and to the 

broader conservation community: 1) how is disturbance related to diversity in a system with 

frequent, non-catastrophic disturbance, 2) suggest multiple pathways through which disturbance 

affects wetland food webs and 3) make suggestions for future research that would improve our 

understanding of ephemeral wetland and amphibian ecology. 
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CHAPTER TWO: FIRE AND FIRE-SURROGATE TREATMENTS ALTER 

WETLAND VEGETATION AND INFLUENCE AMPHIBIAN SURVIVAL 

Abstract 

Vegetation structure influences animal distributions, and in fire-dependent ecosystems many 

animals rely on fire-maintained vegetation. Shrubs and trees encroach into fire-dependent 

ecosystems where fire has been excluded. Prescribed burning and mechanical removal are used 

as restoration tools to control encroachment.  To assess and compare the restoration potential of 

these tools, a more thorough understanding of how they change vegetation structure and habitat 

suitability for animals is necessary. Mechanical midstory removal, prescribed burning, and a 

combination of mechanical and burning treatments were applied to 12 ephemeral wetlands in 

South Carolina (USA) embedded in a fire-dependent ecosystem and in varying stages of 

encroachment; four wetlands were monitored but left untreated. After treatments were applied, I 

measured canopy closure; leaf litter mass and composition; water pH, dissolved oxygen, 

temperature and turbidity; and nutrient content and mass of epilithon (algae and other benthic 

microorganisms). In the same wetlands I conducted a survival experiment of larval anurans 

(primary consumers). Several wetland variables were interrelated, and when ordinated, 

ordination score differed by treatment. Tadpole survival was negatively correlated with canopy 

closure and hardwood litter, and positively correlated with graminoid litter, temperature, 

dissolved oxygen, pH and percent carbon in epilithon, conditions associated with the mulch-and-

burn treatment. The effects of the burn treatment were similar to mulch-and-burn, but not as 

pronounced. The effects of the mulch treatment were significantly less than mulch-and-burn, but 
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not statistically different from burned or untreated sites. No tadpoles survived past week one in 

untreated wetlands. Although canopy was one important element correlated with larval 

amphibian survival, leaf litter, pond chemistry and epilithon may have more direct effects on 

survival. By understanding key ecological elements associated with habitat suitability for 

animals, and how alternative management tools affect those elements, more precise and effective 

recommendations can be made for habitat restoration.  

 

Introduction 

A foundational concept of ecology is that vegetation structure and composition influence 

animal distributions (Shelford 1913; Elton 1927). In many ecosystems, and prominently in the 

southeastern U.S., vegetation structure and composition are determined by fire regime (e.g. 

Harper 1911, Fisher et al. 2009; Scheintaub et al. 2009; Louzada et al. 2010; Smit et al. 2010). 

Research in fire dependent ecosystems demonstrates that fire exclusion affects habitat structure 

and composition, favoring woody vegetation to the detriment of graminoids and forbs (Gilliam 

and Platt 1999; Kirkman et al. 2000; Van Auken 2000; Archer, Boutton and Hibbard 2001; 

Arkle and Pilliod 2010). These changes decrease habitat suitability for animals that evolved in 

fire-maintained conditions. 

Survival rate of young is one metric for assessing habitat suitability. Vegetation structure 

and composition may affect animal survival through a variety of mechanisms including shading, 

determining availability and quality of food, and altering soil or water chemistry. Management 
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that mimics natural fire (such as prescribed burning and mechanical vegetation removal, a 

proposed fire surrogate), alters vegetation structure and can affect survival rate of young animals, 

but effects vary with method. It is necessary to understand which habitat elements are critical to 

animal survival, and how management changes those elements, to select the best management 

practices for conserving animals dependent on fire-maintained ecosystems. 

Ephemeral wetlands embedded within the longleaf pine ecosystem of the Lower Coastal 

Plain of South Carolina, US, are fire-maintained communities altered by canopy closure, shrub 

encroachment and leaf litter accumulation as a result of fire exclusion (Dr. Julian Harrison, 

personal communication; aerial photographs circa 1934-present). These wetlands are essential 

breeding and larval habitat for amphibians dependent on fire-maintained conditions. Canopy 

closure, litter accumulation and litter composition influence distributions, growth and survival of 

larval amphibians (Skelly, Werner and Cortwright 1999; Rubbo and Kiesecker 2004; Skelly et 

al. 2005). Canopy closure lowers water temperature and dissolved oxygen necessary for 

optimizing larval amphibian growth and development (Travis and Trexler 1986; Moore and 

Townsend 1998). Changes in leaf litter accumulation and composition associated with woody 

encroachment influence amphibians by altering detritus and epilithon (algae and other benthic 

microorganisms) food sources (Hessen, Ferovig and Andersen 2002; Stelzer and Lamberti 2002; 

Schiesari 2006; Williams, Rittenhouse and Semlitsch 2008; Maerz, Cohen and Blossey 2010; 

Cohen, Ng and Blossey 2012). The ratios of nitrogen, phosphorus and carbon in epilithon are 

indicators of food quality and influence primary consumer performance (Urabe and Sterner 
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1996; Sterner 1997; Frost et al. 2002); food quantity and quality affect larval anuran growth and 

metamorphosis (Steinwascher and Travis 1983; Kupferberg 1997).  

I hypothesized that canopy closure (mid- and overstory combined) and related wetland 

attributes affect the survival of larval amphibians, and that restoration treatments would improve 

conditions for survival. To test this, I examined the effects of prescribed burning, mechanical 

treatment (mulching), and mechanical plus burning on larval amphibian survival in enclosures in 

situ. I quantified habitat responses to treatments including canopy, litter accumulation and 

composition, water chemistry, and epilithon quantity and nutrient content, and used these 

variables to explain larval amphibian survival. 

 

Methods 

Sites 

I selected 16 wetlands in various stages of encroachment, in Francis Marion National 

Forest, Berkeley County, South Carolina, with various combinations of Nyssa biflora (Walter), 

Taxodium ascendens (Brongniart), Pinus serotina (Michaux), Pinus palustris (Miller), and 

Liquidamar styraciflua (Linnaeus) overstory. Wetland sizes ranged from 0.2–8 .0 ha, duration of 

inundation varied from a few weeks to two years and maximum depth was 25–95 cm. Wetlands 

were located on similar soils (poorly drained loamy fine sand) at similar elevation (< 6 m) (Long 

1980) and formed in shallow topographical depressions. Hydrology was driven by 
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evapotranspiration with no obvious surface water connections, and wetlands were typically 

inundated between January and April, drying down during summer (De Steven and Toner 2004). 

Uplands surrounding study sites were historically dominated by Pinus palustris woodland with 

pre-settlement fire regime of low-severity fire every two to four years (Frost 1998). Uplands are 

currently Pinus palustris woodland. Prescribed fire management records were unavailable prior 

to 1989, after which fire return intervals ranged from 3-10 years and fire frequency was one to 

two fires from 1989-2006. 

Experimental Design and Sampling 

Three restoration treatments were applied to 12 wetlands; four were untreated, four 

wetlands were mulched (mechanical midstory removal in the ecotone from normal high water 

mark to ~10 m beyond that mark), four burned, and four mulched and burned. Mulching 

occurred between 2006-2007 and consisted of removal of woody vegetation < 16 cm diameter at 

breast height (DBH), using hand-tools and a Gyro-Trac© (Charleston, SC, USA) low-impact 

mulching machine, leaving cut material on site. In early spring 2008 USDA Forest Service 

conducted a prescribed burn through dry wetland basins in burn treatments. Due to drought, 

wetlands did not hold water from 2006-2008.   

Adult, breeding Hyla chrysoscelis (Cope) were available 03 June 2009; I collected ten 

clutches of on eggs from two wetlands ~12 km from study sites. I chose Hyla chrysoscelis 

because it is a common, spring/summer-breeding treefrog species with a range encompassing 

most of the longleaf pine ecosystem (Platt, 1999; Jensen et al. 2008). In a separate study of 
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overlapping wetlands, Hyla chrysoscelis was detected at 13 of 24 sites surveyed over five years 

(J.M. Klaus, unpublished data). I maintained egg masses in separate 1-L plastic containers, in 

water from collection sites, at approximately 24°C. I fed thawed frozen spinach to tadpoles after 

hatching ad libitum for four weeks. Tadpole enclosures were constructed of rigid 10 mm mesh 

lined with fiberglass window screen to allow microorganisms, seston and light to pass through, 

but to exclude predators. The cone-shaped enclosures were 122 cm long and 40 cm diameter at 

the wide end, with a total volume of approximately 50 L; three enclosures were placed at 20 cm 

depth in each wetland. Ten tadpoles, stratified by clutch, were randomly assigned to each 

enclosure.  Each enclosure held approximately 25 L of water and 10 tadpoles, well below the 

density threshold for poor performance (Wilbur 1982). I checked enclosures in random order to 

evaluate survival of tadpoles and environmental variables weekly for four weeks.  

Metamorphosing individuals (hind limbs and at least one front limb emerged) were removed 

from the enclosure. Dissolved oxygen (DO), pH, and maximum temperature were measured in 

each wetland in water immediately adjacent to one of the enclosures.  

To determine treatment effects on litter accumulation and composition, in July 2009 I 

removed all accumulated litter from within three randomly positioned 30 cm diameter circular 

plots per wetland. Samples were dried for 24 hours in a forced-air oven and weighed. I 

estimated, to the nearest 5%, area of the sample taken up by hardwood and graminoid litter. 

To sample epilithon abundance and quality I placed five unglazed ceramic tiles (95 mm
2
) 

in each wetland in June 2009. Tiles remained submerged for 21 days then were retrieved and 
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each was brushed in 1 L deionized water to remove epilithon from the surface. I filtered water 

containing epilithon samples through a 0.7 nm glass fiber filter, placed each filter in a plastic 

tube and froze it. I used half of each sample for mass analsysis, and the other half for nutrient 

analysis. I used standard methods to analyze dry mass, ash-free dry mass (carbon, C), nitrogen 

(N) and phosphorus (P) content (Clesceri, Greenberg and Trussel 1989; Crumpton, Isenhart and 

Mitchell 1992). 

To quantify canopy cover in each wetland, I obtained hemispherical color photographs of 

the canopy in June 2010 using a Nikon Coolpix © camera with fish-eye (180°) lens, leveled on a 

tripod 0.5 m above the ground. I took photos at eight random points at the normal high water 

mark of each wetland. To estimate percent canopy openness measures from each image I used 

Gap Light Analyzer (GLA) software (Frazer, Canham and Lertzman 1999) with the color plane 

set to blue and the threshold set to capture as much vegetation as possible without selecting 

background pixels. Percent canopy closure was calculated by taking the inverse of percent 

canopy openness. 

Data Analysis 

I calculated H. chrysoscelis mortality rate and survival time as measures of performance. 

First, I used the Turnbull method (for right-, left- and interval- censored data) to estimate the 

survival function of tadpoles by treatment and interval (week), then fitted a smooth exponential 

model to the interval estimates to produce an estimate of constant mortality rate over the entire 

experimental period using the JMP© (SAS Institute 2008) survival function with exponential fit 
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and exponential plot. The results were estimates of mean survival time and mortality rate, by 

treatment. To examine differences in tadpole survival among groups, I examined the confidence 

limits for the estimated mean survival times to determine if they overlapped.   

To examine relationships among wetland environmental variables I performed pair-wise 

comparisons using Spearman’s rho. To test for differences in environmental variables among 

treatments, I used analysis of variance (ANOVA) (SAS Institute 2008) where appropriate and 

Monte Carlo permutation F-tests with 1000 iterations (R Development Core Team 2011) for data 

that could not be transformed to meet ANOVA assumptions. If ANOVA or Monte Carlo 

procedures detected a significant difference among treatments, I used a Tukey’s HSD test, or a 

permutation version of Tukey’s test with 1000 iterations (R Development Core Team 2011) to 

determine which groups were different. I used Spearman correlation (Conover and Iman 1981; 

SAS Institute 2008) to test the strength of associations among canopy, litter, water chemistry, 

and epilithon variables.  

To determine if tadpole survival was associated with wetland variables, I assessed 

correlations among variables in a correlation matrix and used non-metric multidimensional 

scaling (NMS) to ordinate variables (McCune and Mefford 1999). I relativized the data across 

columns (variables) so that they were on a similar scale, and then used Sorensen distance to 

ordinate data, reducing it to two axes. Only one of those axes showed a strong relationship 

between ordination distances and distances in the original n-dimensional space, so only this axis 

was used for further analysis. I used ANOVA to determine if the ordination scores of this axis 
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varied significantly by treatment (SAS Institute 2008). I constructed four models using treatment 

and ordination score as factors to explain tadpole mortality, and used Bayesian Information 

Criterion (BIC) (SAS Institute 2008) to select the most informative model.   

 

Results 

Tadpole survival  

Tadpole mortality was high but differed among treatments; within one week of placement 

in experimental enclosures, all tadpoles in untreated wetlands were dead while only partial 

mortality occurred in other treatments (Fig. 2). Estimated mean survival time averaged over the 

entire experimental period was significantly lower (i.e. mortality rate higher) in the untreated 

group than any of the treatment groups (Fig. 3). Estimated mean survival days were 3.81 for the 

untreated group (lower CL = 3.06, upper CL = 4.77), 10.32 for burn treatment (lower CL = 8.53, 

upper CL = 12.62), 13.34 for the mulch treatment (lower CL = 11.02, upper CL = 16.33) and 

10.61 for the mulch-and-burn treatment (lower CL = 8.85, upper CL = 12.86). Estimated mean 

mortality rates were 0.26/day (26 % of the ‘population’ dying/day) in untreated, 0.10/day in 

burn, 0.70/day in mulch and 0.90/day in mulch-and-burn. 

Effects of treatments on canopy cover 

Percent canopy cover by wetland ranged from 47.31-90.56 % and strongly differed in 

response to treatment (Table 1). The mean percent canopy closure by treatment varied from 52-
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89 % and was lowest in mulch-and-burn and significantly higher in all other treatments; 

untreated wetlands had the highest percent canopy closure (Fig. 4).  

Effects of treatments on litter mass and composition 

Mean total litter mass differed significantly by treatment (Table 1); mulch had more litter 

than any of the other treatments. Percent hardwood litter and percent graminoid litter varied by 

treatment (Table 1). Mean hardwood litter ranged from 7 % in mulch-and-burn to 59 % in 

untreated. Mean hardwood-litter in mulch-and-burn was significantly lower than in mulch, and 

significantly higher in untreated than any treatment. Mean graminoid litter was higher in mulch-

and-burn (77 %) than any other treatment (17-19%)  (Fig. 4). 

Effects of treatments on epilithon 

I failed to reject the null hypothesis of no difference among treatments for epilithon 

biomass and for most of the epilithon nutrient ratios. Although there was evidence to reject the 

null of no difference in percent P in epilithon by treatment (df = 3, Monte Carlo F-observed = 

4.85, P = 0.026), I failed to reject the null of no difference between the largest mean (no 

treatment = 0.12 % P) and the smallest mean (mulch = 0.08 % P) using a permutation Tukey test 

(df = 3, T-
2
 = 0.27).  

Effects of treatments on water chemistry 

Mean maximum water temperature by treatment ranged from 28-36 °C, was highest in 

the mulch-and-burn treatment, followed by burn, then mulch, and lowest in the untreated group 
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(Fig. 4). Mean DO by treatment ranged from 21-64 % and followed the same pattern as 

temperature. I failed to reject the null hypothesis of no difference in pH or turbidity among 

treatments. 

Relationship between wetland biotic and abiotic responses 

Several wetland variables were correlated (Table 2). Canopy closure was positively 

correlated with hardwood litter and negatively correlated with graminoid litter, temperature, DO, 

pH and percent C in epilithon (Figs 5 and 6). DO was positively correlated with water 

temperature because high light level increases algal photosynthetic activity, which in turn 

increases DO, while high light level coincidentally increases temperature (Schiesari 2006; 

Williams, Rittenhouse and Semlitsch 2008). Other litter and water chemistry variables were not 

significantly correlated with each other.  

Potential pathway for treatment effects on tadpole survival 

Because several variables that could explain tadpole survival co-varied (were 

interrelated) I ordinated wetland variables with NMS; a two-dimensional solution was best with 

a final stress of 8.75. The first axis explained only 3.6 % of the variation in the original 

ordination space, while the second axis explained 89.6 % of the variation. The first axis most 

strongly correlated with C in epilithon (r
2
 = 0.400), followed by graminoid litter (r

2
 = 0.323), DO 

(r
2
 = 0.094), canopy closure (r

2
 = 0.050), hardwood litter (r

2
 =0.043), pH (r

2
 = 0.014) and 

temperature (r
2
 = 0.003). The second axis most strongly correlated with canopy closure (r

2
 = 

0.794), followed by hardwood litter (r
2
 = 0.767), graminoid litter (r

2
 = 0.571), temperature (r

2
 = 
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0.537), DO (r
2
 = 0.450), pH (r

2
 = 0.320) and C in epilithon (r

2
 = 0.317) (Figs 5 and 6). I did not 

use the first ordination axis in further analysis because it explained little of the variation in the 

original ordination space.  

The second ordination axis score differed significantly by treatment (DF = 3, F = 

12.1988, P = 0.0006, r
2
 = 0.6913) (Fig. 5). Mulch-and-burn had the highest ordination score 

(lowest canopy closure and hardwood litter, and highest graminoid litter, temperature, DO, pH 

and C in epilithon), and was significantly higher than mulch and untreated (P = 0.0270 and P = 

0.0004 respectively). Burn also had a significantly higher score than untreated (P = 0.0070).  

Using treatment and ordination score I constructed a set of models to explain tadpole 

mortality rate. One consisted of treatment alone, another consisted of the wetland environmental 

ordination axis alone, another included treatment plus ordination axis plus treatment-ordination 

axis interaction, and one was treatment plus ordination axis without an interaction term. Using 

Bayesian Information Criterion (BIC) (SAS Institute 2008) I determined treatment plus 

ordination axis plus treatment-axis interaction to be the most informative model explaining 65.43 

% (
2 

 = 0.64) of the variation in tadpole mortality (Table 3). Of the variables included in that 

model, environmental ordination axis had a significant effect on mortality (df = 1, F = 5.4121, P 

= 0.0484), and although treatment alone did not have a significant effect (df = 3, F = 3.46, P = 

0.0712), there was a significant effect of the interaction of treatment and environmental 

ordination axis (df = 3, F = 4.5351, P = 0.0388) (SAS Institute 2008). For burn, mulch-and-burn 

and untreated sites, tadpole mortality rate decreased as ordination score increased. In mulch, 
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tadpole mortality rate increased with increasing ordination score, although the pattern was 

largely influenced by a single site (Fig. 6). That site had higher tadpole mortality rate than any of 

the other mulch sites and had the lowest pH (3.34) of any site in the study. Although it did not 

correlate strongly (r
2
 = 0.320) with the ordination axis used in the models, pH had a strong 

correlation with Hyla chrysoscelis tadpole mortality rate (df = 1, F = 13.82, P = 0.0023. 
2 

= 

0.44). 

 

Discussion 

Differences in amphibian performance and survival among wetlands were explained in 

this study and others by canopy cover (Werner and Glennemeier 1999; Skelly et al. 2005; 

Hocking and Semlitsch 2007), water temperature and dissolved oxygen (Werner and 

Glennemeier 1999; Schiesari 2006; Williams, Rittenhouse and Semlitsch 2008), and litter 

amount or type (Skelly, Freidenburg and Kiesecker 2002; Rubbo, Belden and Kiesecker 2008; 

Williams, Rittenhouse and Semlitsch 2008), but the mechanism that results in the effect is 

elusive. In this study, closed-canopy wetlands had high hardwood litter. A closed canopy 

prevents light needed by shade-intolerant graminoids from reaching the ground (Warren et al. 

2007; Martin and Kirkman 2009), and shade may slow decomposition of hardwood litter (Henry, 

Brizgys and Field 2008) while the accumulating hardwood litter inhibits graminoid germination 

and sprout emergence (Facelli and Pickett 1991); many amphibians endemic to longleaf pine 

ecosystems are associated with ‘grassy’ open wetlands (Jensen et al. 2008). In this study, percent 
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N, percent C and C:P ratio of epilithon, a tadpole food source, were correlated with relative 

amount of hardwood litter, and percent C in epilithon was positively associated with tadpole 

survival. Other studies found that food quantity or quality affected amphibian performance 

(Steinwascher and Travis 1983; Schiesari 2006) and open-canopy food was better assimilated 

than closed-canopy food (Skelly and Golon 2003). One hypothesis is that closed-canopy ponds 

are more detritus-based systems and open-canopy ponds are more autotroph-based systems 

(Skelly, Werner and Cortwright 1999), with different species performing better in different 

systems. Despite the potential importance for conservation, we have barely begun to understand 

the feeding ecology and trophic interactions of larval amphibians (Altig, Whiles and Taylor 

2007).  In addition, many amphibians call from and attach egg masses to emergent vegetation 

(Jensen et al. 2008) or use it for cover to escape some types of predators (Sredl and Collins 1992; 

Kopp, Wachlevski and Eterovick 2006; Hartel et al. 2007). It is likely that a single factor, like 

graminaceous cover or litter composition, affects amphibians through several pathways. 

A single site with low pH and high mortality largely influenced the relationship between 

vegetation structure and tadpole mortality in the mulch treatment. pH is a strong predictor of 

larval amphibian species distribution (Eason and Fauth 2001). Warner and Dunson (1998) 

discovered that at least 50 % of Hyla chrysoscelis tadpoles failed to hatch in the lab at pH = 3.99, 

and 4.61 was the lowest pH recorded in a pond occupied by H. chrysoscelis in north Florida. In 

my study, pH was a significant predictor of tadpole mortality rate, explaining 46 % of the 

variation in mortality. Nine of ten wetlands with pH < 3.7 had mortality rates > 15 % of the 

population/day. Hardwood litter was negatively correlated with pH and graminoid litter was 
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positively correlated with pH, so one could expect that reducing hardwood canopy and hardwood 

litter would produce concomitant increases in graminoids and pH, and potentially increase 

survival of some amphibian species. However, even though the correlations between pH and 

hardwood litter and graminoid litter were significant, they only explained 27 % and 40 % 

(respectively) of the variation in pH, meaning that other factors may play an equal or more 

important role. 

Treatments affected both vegetation structure and tadpole survival. Although I could not 

detect differences among the three treatment types, mean survival was significantly lower in 

untreated sites than any of the treated sites. This result at first seems to contradict the results of 

Williams and others (2008), who found that H. chrysoscelis survival was higher in leaf litter than 

grass litter mesocosms; in my study the untreated wetlands with high leaf litter and low grass 

litter had low survival. However, Williams and others also detected an interaction between shade 

and litter; H. chrysoscelis performed better in grass litter with low shade, a result consistent with 

the results of this study where all high-grass-litter wetlands also had low shade. Reproduction 

and larval survival of H. chrysoscelis, as well as other species, benefit from open-canopy 

conditions created by management (Hocking and Semlitsch 2007; Semlitsch et al. 2009).  

The National Fire and Fire Surrogate study and other studies were conducted in response 

to concerns about the effects of wildfire fuel management activities on forests and wildlife 

(Kennedy and Fontaine 2009). Although upland mechanical thin plus prescribed-burn had a 

negative effect on amphibian species richness in the southern Appalachians (Matthews et al. 
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2010) it had a positive effect on species richness of longleaf pine woodland associated 

amphibians in the Gulf Coastal Plain (Steen et al. 2010). This difference can be explained by 

differences in the suite of species studied and ecology of the sites; the coastal plain longleaf pine 

sites had ongoing fire and timber management starting in the 1980s (Solon Dixon Forestry 

Education Center 2012) and contained amphibian species that require open or fire-maintained 

habitat (e.g. Ambystoma tigrinum (Green), Hyla femoralis (Bosc), Hyla gratiosa (LeConte), 

Pseudacris ornata (Holbrook)), whereas the Appalachian sites had no fire for at least 50 years, 

were composed of many mesic tree and shrub species, and contained amphibian species not 

expected in fire-maintained habitat (e.g. Lithobates sylvaticus (LeConte), Plethodon metcalfi 

(Brimley), Desmognathus monticola (Dunn), Pseudotriton ruber(Latreille)). If the restoration 

goal were to change plant composition from mesic, fire-intolerant species to fire-adapted, shade-

intolerant species, one would expect co-occurring animals to experience a similar shift in 

community composition. Although the H. chrysoscelis used in my study is a widespread species, 

larvae perform better in open habitats (Hocking and Semlitsch 2007; Semlitsch et al. 2009). 

Although it is likely that overall mortality was too high and replicates too few in this study to 

detect differences among treatments, there are still important distinctions to be made between 

fire and fire-surrogate treatments; effects on vegetation were not equal, and vegetation structure 

was a strong predictor of tadpole survival.  

The mulch-and-burn treatment had the lowest hardwood litter, highest graminoid litter 

and lowest canopy closure, conditions correlated with high amphibian survival, while the mulch 

treatment had the highest hardwood litter and canopy closure of the three treatments, and burn 
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was intermediate. These results are similar to those of studies conducted in other geographic 

regions and across multiple habitats. Research in northern Sierra Nevada, northern Arizona, Gulf 

Coastal Plain, southern Appalachia and Ohio Hills Country demonstrated that mechanical plus 

burn treatments are most effective at decreasing over- or midstory and increasing graminoid 

abundance or diversity (Griffis et al. 2001; Phillips, Brudnak and Waldrop 2007; Kane et al. 

2010; Outcalt and Brockway 2010). In every case mulching or thinning alone had no effect or 

was a detriment to understory vegetation; hypotheses explaining the effect include shade or root 

competition from resprouting woody plants, slash or chipped material preventing germination or 

sprouting of understory plants and lack of exposure of mineral soil. In other studies, graminoid 

abundance or diversity was not affected by treatment even when mechanical treatments reduced 

woody plants (Metlen, Fiedler and Youngblood 2004; Metlen and Fiedler 2006; Collins, 

Moghaddas and Stephens 2007). the effects of treatments on forest floor development can 

explain this result (Hiers et al. 2007); as demonstrated in my study and others, litter has a critical 

role in ecosystem function and is affected differently by various management tools. Although 

fire has the most direct effect on litter of the treatments discussed here, fire alone may not be 

sufficient to push a degraded system onto a trajectory that would sustain desired future 

conditions (Suding, Gross and Houseman 2004; Martin and Kirkman 2009). Fire effects are 

highly variable and depend on starting conditions; in the absence of fire, some systems pass an 

ecological threshold that is resistant to change by fire (Olson and Platt 1995; Drewa, Platt and 

Moser 2002; Nowacki and Abrams 2008).  



34 

 

Considering all research on fire and fire surrogates, a picture is emerging that shows 

mechanical treatments are not a precise fire surrogate. Prescribed burning is useful and 

preferable for maintenance, but in the initial stages of restoration or fuel reduction, mechanical 

treatments plus fire may be more efficient or effective. Midstory mulching followed by 

prescribed fire created conditions most conducive to survival of a larval amphibian in my study 

wetlands, but for amphibians, as with any taxon, different species will have different responses 

depending on their particular ecology; there are no silver bullets in restoration. Careful 

consideration of site characteristics, ecological relationships and conservation goals should be 

given before management activities are implemented. 
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Table 1. Test results comparing variables among treatments.  F-values are reported for 

parametric ANOVA and Monte Carlo permutation (1000 iterations) F-tests. * = significant 

difference among treatments.  DF = 3 and  = 0.05. 

 

Variable Test F-value P-value 

Canopy ANOVA 15.77 0.0002* 

Litter dry mass ANOVA 8.90 0.0022* 

% Hardwood litter Monte Carlo 13.48 0.0030* 

% Graminoid litter Monte Carlo 7.26 0.0050* 

Epilithon dry mass Monte Carlo 1.84 0.1220 

Epilithon % C Monte Carlo 1.66 0.1800 

Epilithon % N Monte Carlo 1.52 0.1820 

Epilithon % P Monte Carlo 4.85 0.0260* 

Epilithon C:N Monte Carlo 0.65 0.6890 

Epilithon C:P Monte Carlo 1.66 0.2220 

Water pH ANOVA 1.61 0.2434 

Water DO Monte Carlo 3.58 0.0500* 

Water turbidity ANOVA 0.50 0.6930 

Water max temp ANOVA 15.59 0.0004* 
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Table 2. Correlation coefficients for canopy, litter and epilithon variables.  Can = % canopy 

closure, Hdwd = % hardwood litter, Gram = % graminoid litter, MaxT = maximum temperature, 

DM = epilithon dry mass, %C = epilithon percent carbon, %N = epilithon percent nitrogen, %P = 

epilithon percent phosphorus, C:N = epilithon carbon/nitrogen ratio, C:P = epilithon 

carbon/phosphorus ratio. Significant correlations determined by Spearman’s rho test are 

indicated in bold. 

 Can Hdwd Gram pH DO MaxT DM %C %N %P C:N 

Can            

Hdwd 0.69           

Gram -0.75 -0.57          

pH -0.43 -0.56 0.66         

DO -0.74 -0.43 0.49 0.13        

MaxT -0.81 -0.64 0.47 0.38 0.72       

DM -0.28 -0.38 -0.02 0.11 0.10 0.21      

%C -0.36 -0.47 0.09 0.22 0.15 0.28 0.97     

%N -0.30 -0.35 -0.02 0.08 0.11 0.21 0.98 0.97    

%P 0.46 0.48 -0.32 -0.21 -0.39 -0.22 -0.16 -0.26 -0.14   

C:N 0.01 -0.13 -0.05 -0.11 0.22 0.23 -0.29 -0.26 -0.24 -0.05  

C:P -0.41 -0.55 0.22 0.30 0.28 0.30 0.86 0.93 0.85 -0.42 -0.30 
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Table 3. Models explaining tadpole mortality rate, ranked from best to worst. Variables include:  

Rx = treatment type, Axis2 = second ordination axis of environmental variables, and RxAxis2 = 

interaction between treatment and ordination score. 

Rank Model 

Description 

log(£) BIC adjusted r
2 



1 Rx + Axis2 + 

RxAxis2 

2.93 -30.33 0.65 0.9113 

2 Axis2 3.75 -24.86 0.21 0.0592 

3 Rx + Axis2 3.48 -22.75 0.32 0.0206 

4 Rx 3.67 -21.06 0.18 0.0089 
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Figure 1. Map of US showing location of (A) South Carolina and (B) Francis Marion National 

Forest. 

A

B
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Figure 2. Mean number of surviving tadpoles plus metamorphs by treatment over weeks. 
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Figure 3. Mean tadpole survival time by treatment with confidence limits. 
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Figure 4. Comparison of correlated variables that also differed by treatment. Letters show 

significant differences in a variable by treatment; treatments with the same letter are not 

significantly different.   
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Figure 5. Oneway ANOVA of wetland environmental ordination score by treatment.  Diamonds 

represent group means with 95 % confidence intervals. Circles are a visual representation of the 

comparisons among group means; circles for means that are significantly different either do not 

intersect, or intersect so that the outside angle of intersection is less than 90°. Boxes to the left of 

the graph describe ordination components. 
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Figure 6. Tadpole mortality rate by wetland environmental ordination score with treatment 

interaction. Boxes below x-axis describe ordination components.  
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Figure 7. Hyla chrysoscelis tadpole mortality rate regressed against pH. The solid line is the 

regression line (df= 1, F = 13.82, P = 0.0023, r
2
 = 0.46). The dashed line represents the threshold 

below 
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CHAPTER THREE: AQUATIC AMPHIBIAN DEPAUPERATENESS 

VARIES IN RESPONSE TO FIRE AND A FIRE-SURROGATE IN A 

LONGLEAF PINE WOODLAND 

Abstract 

Specialist species with an evolutionary history closely tied to a limited habitat type may be more 

vulnerable to extinction than generalist species that tend to be successful in a broad range of 

habitats. If conservation priority is given to specialist species, we must understand specialist’s 

habitat requirements, and determine responses to habitat degradation and restoration efforts as 

distinct from generalist species. I examined the relationship between aquatic amphibian species 

depauperateness and wetland vegetation structure, and determined response to two commonly 

used habitat restoration tools, prescribed fire and mechanical vegetation removal (a fire 

surrogate), plus a combination of mulching and burning. I trapped aquatic amphibians and 

measured vegetation structure in wetland basins and ecotones in 24 ephemeral wetlands 

embedded in imperiled, fire-dependent, longleaf pine upland before and after prescribed fire and 

mechanical treatments were applied. Amphibians were categorized as longleaf associates 

(specialists) or longleaf coincidentals (generalists) based on range overlap with longleaf pine, 

and depauperateness was regressed onto vegetation structure ordination axes. I quantified 

changes in amphibian species depauperateness and vegetation structure in response to treatments. 

Data from this study and a previous study were combined to elucidate patterns in amphibian 

assemblage composition in relation to fire history. Wetlands that were mulched and burned had 

the lowest species depauperateness of associates, and wetlands that were untreated had the 

highest species depauperateness of coincidentals. Coincidental depauperateness was not 
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correlated with vegetation structure, but associate depauperateness was negatively correlated 

with groundcover and graminoid mass, and canopy openness, and positively correlated with leaf 

litter depth. The combination of mulching and burning significantly increased canopy openness 

and decreased leaf litter depth. There was a suite of species not detected in wetlands embedded 

within uplands with >8 years since fire, and a distinct suite of species not detected in wetlands 

with 0-1 years since fire, indicating that as wetlands succeed with time since fire, there is a 

related shift in amphibian assemblages. Important patterns in species distributions can be 

overlooked if relationships to environment and responses to change are too generalized. 

Appropriate management action should be based on carefully selected conservation priorities and 

consideration of site characteristics. 

Introduction 

Endemic or specialist taxa that evolved in the context of a limited habitat may be more 

vulnerable to extinction than widespread generalist species, especially where declines are caused 

by habitat loss and degradation related to anthropogenic disturbance (Futuyma and Moreno 

1988, Foufopoulos and Ives 1999, Owens and Bennett 2000, Davies et al. 2004, Munday 2004, 

Devictor et al. 2008, Clavel et al. 2010). Habitat specialists tend to be less resilient to habitat 

change (e.g. unable to utilize alternative food resources or unable to tolerate changes in 

temperature) or more limited in dispersal abilities (i.e. ability to move to another suitable and 

available area) than generalists. These differences have been noted in taxa ranging from plants 

(Witt 2004) to fish (Feary 2007), lizards (Gilchrist 1995), birds (Klaus and Keyes 2007) and 

primates (Harcourt et al. 2002), although it may not hold true for all taxa in all situations (Jonsen 
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and Fahrig 1997, Attum et al. 2006, Ali and Agrawal 2012). Studies that focus on species 

richness without regard to such potential differences may overlook important patterns in species 

distribution or make imprecise recommendations for habitat restoration and maintenance 

(Schurbon and Fauth 2003, Means et al. 2004, Robertson and Ostertag 2004, Schurbon and Fauth 

2004, Steen et al. 2010). To restore degraded habitat to benefit vulnerable specialist taxa we need 

to understand species habitat requirements, how different suites of species respond to 

degradation and restoration efforts, and how restoration efforts affect habitat elements crucial to 

persistence (Palmer, Falk and Zedler 2006). This study was designed to examine the relationship 

between wetland vegetation structure and specialist and generalist species of amphibians, and to 

determine if the responses to habitat restoration efforts differed between these groups for the 

purpose of informing management decisions intended to benefit amphibians in a highly 

threatened ecosystem. 

  The longleaf pine ecosystem is one of the most endangered ecosystems in North America 

(Noss, LaRoe and Scott 1995; Frost 2006), making its numerous endemic taxa (Sorrie and 

Weakley 2001) equally vulnerable. Several longleaf-endemic species of amphibians have been 

locally extirpated or are in serious decline throughout their range (e.g. Ambystoma cingulatum 

and Lithobates capito, IUCN 2012). These species require terrestrial and ephemeral aquatic 

breeding habitat maintained by fire, but fire regimes have been disrupted since European 

colonization (Croker 1987; Nowacki and Abrams 2008). Although prescribed fire is utilized in 

many fire-dependent systems for restoration and maintenance, it can be difficult to apply, 

especially with increasing encroachment of human development and disturbance around and into 
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natural systems. In response to the challenges of managing fire-dependent systems in the 

wildland-urban interface, recent research examined alternatives to fire that are intended to mimic 

the effects of fire mainly on vegetation structure (Schwilk et al. 2009, Stephens et al. 2012, 

McIver et al. 2013). Fire surrogates used in these studies are frequently some type of mechanical 

vegetation removal such as thinning of overstory trees or ‘mulching’ of woody midstory plants. 

Although the number of fire and fire surrogate studies have increased in the last decade, few 

studies have examined the effects of fire and fire surrogates in wetland habitat embedded within 

the fire-dependent landscape. 

Ephemeral wetlands embedded within the longleaf pine ecosystem of the Lower Coastal 

Plain of South Carolina, US, are fire-maintained communities altered by canopy closure, shrub 

encroachment and leaf litter accumulation as a result of fire exclusion (Kirkman et al. 2000; 

Hester 2001; Dr. Julian Harrison, personal communication; aerial photographs circa 1934-

present). These wetlands are essential breeding and larval habitat for many amphibians, and 

provide habitat for all life-stages of obligate aquatic species like Siren spp. and Amphiuma spp. 

Canopy closure, litter accumulation and litter composition influence distributions, growth and 

survival of larval amphibians (Skelly, Werner and Cortwright 1999; Rubbo and Kiesecker 2004; 

Skelly et al. 2005). Canopy closure lowers water temperature and dissolved oxygen necessary 

for optimizing larval amphibian growth and development (Travis and Trexler 1986; Moore and 

Townsend 1998). Changes in leaf litter accumulation and composition associated with woody 

encroachment influence amphibians by altering detrital and epilithonal food sources (algae and 

other benthic microorganisms)(Hessen, Ferovig and Andersen 2002; Stelzer and Lamberti 2002; 
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Schiesari 2006; Williams, Rittenhouse and Semlitsch 2008; Maerz, Cohen and Blossey 2010; 

Cohen, Ng and Blossey 2012) and increasing or decreasing water pH beyond the tolerance of 

some species ((Warner and Dunson 1998, Eason and Fauth 2001), J.M. Klaus unpublished data). 

Amphibian distributions among wetlands may be influenced by some amphibians avoiding 

reproduction in some wetlands or by poor larval survival, growth or recruitment into the adult 

population from some wetlands. 

I assumed that amphibian species whose range overlaps > 80% with that of longleaf pine 

habitat were restricted to that range by some elements of the habitat (i.e. were specialists on 

longleaf pine habitat). I predicted that amphibian species ‘restricted’ to longleaf pine habitat 

would be negatively correlated with canopy closure, shrub density and litter accumulation in 

ephemeral breeding wetlands embedded within longleaf pine uplands, while generalist species 

(i.e. range overlapping < 80% with habitat of interest) would have varying relationships with 

those variables. Historically, periodic fire would have kept canopy closure, shrub density and 

litter accumulation low, and I would expect many animals restricted to fire-maintained longleaf 

pine habitat to have evolved mechanisms for taking advantage of those conditions. Because 

habitat specialists are frequently less resilient or resistant to habitat changes (i.e. increased 

canopy closure, shrub density and litter accumulation) than generalists, I would expect 

generalists to be less negatively affected by habitat changes than longleaf habitat specialists. For 

the same reasons, I also predicted that these guilds would respond differently to restoration 

treatments. 
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Methods 

Sites 

Within dispersal distance of known records of two imperiled amphibian species 

(Ambystoma cingulatum and Lithobates capito), I randomly selected 24 geographically isolated 

wetlands in a range of stages of woody encroachment, in Francis Marion National Forest, 

Berkeley County, South Carolina, with various combinations of Nyssa biflora, Nyssa sylvatica, 

Taxodium ascendens, Pinus serotina, Pinus palustris, and Liquidamar styraciflua overstory. 

Wetland sizes ranged from 0.2–8.0 ha, duration of inundation varied from a few weeks to two 

years and maximum depth was 25–95 cm. Wetlands were located on similar soils (poorly 

drained loamy fine sand) at similar elevation (6-15 m above sea level) (Long 1980) and formed 

in shallow topographical depressions. Hydrology was driven by evapotranspiration with no 

obvious surface water connections, and wetlands were typically inundated between January and 

April, drying down during summer (De Steven and Toner 2004). Uplands surrounding study 

sites were historically dominated by Pinus palustris woodland with a pre-settlement fire regime 

of low-severity surface fire every two to four years (Frost 1998), and continue to be dominated 

by Pinus palustris woodland. Fire management records were unavailable prior to 1989, after 

which prescribed fire frequency was one to three fires from 1989-2007 and time since fire was 4-

15 years (Table 4). There is no record of fire effects prior to this study, so whether or not fires 

burned through wetlands is unknown. 
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Experimental Design and Sampling 

Three restoration treatments were applied to 17 wetlands and seven were untreated; six 

wetlands were mulched as a fire surrogate treatment (mechanical midstory removal in the 

ecotone from normal high water mark to ~10 m beyond that mark), four burned with prescribed 

fire and seven mulched and burned (Table 4). Mulching occurred between 2006-2007 and 

consisted of removal of trees, shrubs, vines < 16 cm DBH, using hand tools and a Gyro-Trac© 

low-impact mulching machine, leaving cut material on site. In early spring 2008 USDA Forest 

Service conducted a prescribed fire that burned through dry wetland basins in burn treatments. 

Due to drought wetlands did not hold water from 2006-2008. 

To determine amphibian species present in the wetlands prior to treatment application, I 

sampled aquatic-phase amphibians (larvae of all species and adult obligate aquatic species) ten 

times between May 2005 and November 2006, and I sampled amphibians seven times from 

September 2008 to February 2010 after treatments were applied. In each wetland I placed 16 

plastic double-ended funnel-type minnow traps in sets of four positioned in cardinal directions. 

The traps were aligned parallel to wetland edge and deployed in enough water to cover funnel 

openings but allow enough air space at the top so that animals would not drown (~15-20 cm 

water). Traps were left in wetlands for 24 hours then all animals were removed, identified, 

counted and returned to the wetland. 

Vegetation was sampled after leaf-out was complete in June 2006 prior to treatment 

application and again in June 2008 post-treatment. To quantify basin shrub cover, line-transects 

were established in eight directions (N, NE, E, SE, S, SW, W, NW) radiating from the center 
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(deepest point) of each wetland basin and terminating at the normal high-water mark; I measured 

the length of transect intersected by any part of a midstory plant (trees < 16 cm diameter at 

breast-height, shrubs, and vines) and calculated percent cover. To measure canopy closure, at 

each of the eight transect termini I took hemispherical color photographs of the canopy using a 

Nikon Coolpix © camera fitted with a fish-eye (180°) lens, leveled on a tripod 0.5 m above the 

ground. To calculate percent canopy openness from each image I used Gap Light Analyzer 

(GLA) software (Frazer, Canham and Lertzman 1999) with the color plane set to blue and the 

threshold set to capture as much vegetation as possible without selecting background pixels. To 

sample ecotone shrub-layer density, at the same eight points previously described I took pictures 

of a 1.0-m x 0.75-m, orange target 5 m outside the high water line and parallel to it.  I analyzed 

photos using Adobe Photoshop to select non-orange pixels and calculate percent target covered 

by vegetation. To sample groundcover, I placed sixteen 0.25-m
2
 quadrats in each wetland, eight 

at the termini and eight at the half-way points of each previously described transect. I clipped all 

herbaceous vegetation within two centimeters of the ground and dried samples in a forced-air 

oven. Dried plant material was sorted into categories: grass/sedge, redroot/iris, fern, or other and 

weighed. I measured leaf litter depth from the duff/peat layer (organic particles too small to 

identify with the naked eye) to the litter surface within each ground cover sampling quadrat. 

Data analysis 

To examine differences in aquatic amphibian assemblages before and after treatments, I 

used minimum abundance (maximum abundance of each species observed during a single 

sampling session) of amphibians as a response variable. For this analysis, I used naïve abundance  



63 

 

because detection rates were very low for most species, resulting in nonsensical estimates of 

detection, abundance and occupancy (Steen 2010).  I used multi-response permutation 

procedures (MRPP) with Sorensen distance measure to test the null hypothesis of no differences 

in amphibian assemblages among wetlands before and after treatments were applied. I followed 

up with an indicator species analysis to determine if any species was indicative of any particular 

treatment (McCune and Mefford 1999). These analyses were performed with PC-ORD. 

To examine the difference in amphibian assemblages based on their range of occurrence, 

I categorized amphibian species as longleaf pine assoicate (> 80 % of their range overlapping the 

range of longleaf pine) or longleaf pine coincidental (< 80 % of their range overlapping the range 

of longleaf pine) (Steen et al. 2010).  I used naïve percent species depauperateness as a response 

variable (number of species missing from the total species pool divided by number of species in 

the species pool) because treatments and environmental variables act as ecological filters, 

excluding some species. I did not adjust depauperateness for potential differences in detection 

because the sampling technique I employed has known species detection of 83-100% (Werner et 

al. 2007; Farmer et al. 2009; J. Fauth, unpublished data). I used ANOVA to test the null 

hypotheses of no difference in associate and coincidental species depauperateness among 

treatment groups before and after treatments were applied. I used the same method to test the 

null hypothesis of no difference in change in species depauperateness among treatment groups.  

Because Canonical Correspondence Analysis cannot handle data with a large number of 

zero detections (McCune and Mefford 1999), I ordinated vegetation variables with PC-ORD 

(McCune and Mefford 1999) and used linear regression to examine relationships between 
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vegetation gradients and associate and coincidental amphibian species depauperateness (SAS 

Institute 2008). I then used vegetation ordination axes that had significant correlations with 

species depauperateness, in conjunction with pH, maximum water temperature and maximum 

wetland depth to construct and compare sets of models that explained depauperateness (SAS 

Institute 2008).  

Because direct effects of treatments on amphibian occupancy may have a lag time or be 

difficult to detect, I also examined treatment effects on elements of vegetation structure that were 

correlated with amphibian species depauperateness. I used ANOVA to test the null hypotheses of 

no difference in vegetation ordination scores due to treatments. I set  = 0.05 for all tests. 

 

Results 

Effects of treatments on amphibian assemblages 

No differences among amphibian assemblages were present in ordination space prior to 

treatments but untreated wetlands differed in species composition from all treatment wetlands 

after treatments (T = -4.9898, A = 0.2038, P < 0.0001). Using species indicator analysis I found 

Acris gryllus (indicator value = 81.8, mean indicator value from randomized groups = 17.5, SD = 

9.84, P = 0.0004), Anaxyrus terrestris (indicator value = 41.2, mean indicator value from 

randomized groups = 14.1, SD = 8.75, P = 0.0222), and Scaphiopus holbrookii (indicator value = 

56.4, mean indicator value from randomized groups = 16.2, SD = 9.9, P = 0.0080) indicative of 

the mulch-and-burn treatment. 
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Of 22 amphibian species sampled, 13 were longleaf pine associates and nine were 

coincidentals (Table 5). Species depauperateness increased over the duration of the study for 

associates and coincidentals regardless of treatment, presumably due to drought. I detected no 

differences in species depauperateness of associate or coincidental amphibians among groups of 

wetlands selected for different treatment types before treatments, but found evidence that there 

were differences after treatments were applied (df = 3, F = 6.0550, P = 0.0042, and df = 3, F = 

4.0795, P = 0.0206 for associate and coincidental species respectively) (Fig. 8). The mulched-

and-burned wetlands had lower mean species depauperateness of associate amphibians (mean = 

0.8878, confidence limits = 0.8568 and 0.9187) than burned (mean = 0.9583, confidence limits = 

0.9174 and 0.9993) or untreated (mean = 0.9702, confidence limits = 0.9413 and 0.9992) 

wetlands. Untreated wetlands had higher mean species depauperateness of coincidental larval 

amphibians (mean = 0.9494, confidence limits = 0.8924 and 1.0064) than mulched (mean = 

0.8238, confidence limits = 0.7517 and 0.8959) or mulched-and-burned wetlands (mean = 

0.8333, confidence limits = 0.7724 and 0.8943). However, I failed to reject the null hypothesis of 

no significant difference in the change (after – before) in species depauperateness among 

treatment types for associates or coincidentals using ANOVA because confidence intervals were 

very large. 

Relationship between vegetation structure and amphibian assemblages 

Vegetation variables ordinated onto three axes: the first axis was most strongly correlated 

with fern mass, basin shrub cover, leaf litter depth and ecotone shrub-layer openness; the second 

most strongly correlated with total groundcover mass and graminoid mass; and the third with 
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canopy openness and leaf litter depth. Coincidental amphibian species depauperateness was not 

correlated with any of the vegetation ordination axes. Associate amphibian species 

depauperateness was positively correlated with axis two (negatively correlated with groundcover 

mass and graminoid mass) (F = 11.1725, P = 0.0017), which explained 18% of the variation in 

depauperateness (Fig. 9). Associate species depauperateness was negatively correlated with axis 

three (negatively correlated with canopy openness and positively correlated with leaf litter depth) 

(F = 6.4219, P = 0.0147) which explained 10% of the variation in depauperateness (Fig. 9). I 

constructed two sets of models, including plant ordination axes, pH range, DO range, and 

maximum water depth, for a more comprehensive understanding of species depauperateness of 

longleaf associates and coincidentals among wetland environmental gradients (Table 6). For 

associates, the most informative model included plant ordination axes two (ground cover mass 

and graminoid mass) and three (canopy openness and leaf litter depth), DO range, and pH range 

(AIC =  -155.58,  = 0.9965, adjusted r
2
 = 0.49). For coincidentals, models including pH range, 

DO range and maximum depth were closely ranked with depth being the most influential factor 

(Table 6).  

Effects of treatments on vegetation structure 

Wetlands did not differ in vegetation structure before treatments were applied but 

vegetation structure ordination axis one and axis three differed after treatment application (DF = 

3, F = 3.3669, P = 0.0390; and DF = 3, F = 45.5633, P <0.0001 respectively). I could not 

differentiate among treatment groups for axis one using Tukey’s HSD, likely owing to large 

standard errors (ranging from 0.15937 to 0.23905), but for axis three, untreated wetlands had a 
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lower ordination score (higher leaf litter depth and lower canopy openness) than any of the 

treatment groups (Fig. 10). In addition, the mulch-and-burn group had a higher ordination score 

(lower leaf litter depth and higher canopy openness) than mulch or untreated groups, and burn 

was intermediate between mulch-and-burn and mulch. The change in axis three score (post-

treatment – pre-treatment) for mulch-and-burn (0.65) was significantly different from untreated 

(-0.11) (F = 4.12, P = 1.0199, Fig. 11). Change in axis three score for burn and mulch were 

intermediate (0.22 and 0.33 respectively). The change observed in mulch-and-burn was toward 

more open canopy and less leaf litter, whereas the change in untreated wetlands was toward less 

open canopy and more leaf litter. MRPP on direction of change revealed that vegetation in 

mulch-and-burn and burn treatments changed in a similar direction, one that was different from 

the untreated group (Fig. 12) (A = 0.0991, P = 0.0169). 

 

Discussion 

As predicted, the two amphibian guilds differed in their relationship to vegetation, but 

contrary to predictions, they had similar responses to management treatments. Associate species 

depauperateness was lowest when total canopy openness was high and leaf litter was low, 

conditions best achieved by the mulch-and-burn treatment. Although coincidental species 

depauperateness was also lowest in the mulch-and-burn treatment, it does not appear to be due to 

any relationship with total canopy cover, but rather to fern and shrub cover. Species 

depauperateness was highest in untreated wetlands. 
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Other studies have shown that amphibian responses to fire and fire surrogates are variable 

because different species respond in different ways. For example, upland mechanical thin plus 

prescribed-burn had a negative effect on amphibian species richness in the southern 

Appalachians (Matthews et al. 2010) but had a positive effect on species richness of longleaf 

pine woodland associated amphibians in the Gulf Coastal Plain (Steen et al. 2010). This 

difference can be explained by initial disparities in the suite of species studied and the ecology of 

the sites; the coastal plain longleaf pine sites had ongoing fire and timber management starting in 

the 1980s (Solon Dixon Forestry Education Center 2012) and contained amphibian species that 

require open or fire-maintained habitat (e.g. Ambystoma tigrinum, Hyla femoralis, Hyla gratiosa, 

Pseudacris ornata), whereas the Appalachian sites had no fire for at least 50 years, were 

composed of many mesic tree and shrub species and contained amphibian species not expected 

in fire-maintained habitat (e.g. Lithobates sylvaticus, Plethodon metcalfi, Desmognathus 

monticola, Pseudotriton ruber). If the restoration goal were to change plant composition from 

mesic, fire-intolerant species to fire-adapted, shade-intolerant species, one would expect co-

occurring animals to experience a similar shift in community composition.  

In my study all sites were located in close proximity to each other at similar elevation, in 

longleaf pine stands, and all but two were on the same ridge; if I had included sites in hardwood 

stands, for example, it is likely results would be different. Schurbon and Fauth (Schurbon and 

Fauth 2003) found that total species richness was higher in long-unburned areas, but all of their 

sites in the > 8 years since fire category were located at lower elevation and on different soils 

from the sites in the < 1 year since burn and 1 year since burn categories potentially confounding 
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these factors. The sites I used in my study were more comparable to Schurbon and Fauth’s < 0 

and 1 year since burn sites than to their > 8 year since burn sites. 

When comparing Schurbon and Fauth’s associate species richness to coincidental species 

richness (using the same criterion I used for my study) for each time-since-fire category, I found 

that associate species richness was higher than coincidental species richness in the < 1 year since 

burn category (ANOVA, df = 1, p = 0.0022). Six coincidental species were missing from the 0-1 

year categories and five longleaf associate species were missing from the > 8 years since fire 

category, indicating a shift in community composition (Table 7). Three of the species missing in 

Schurbon and Fauth’s zero and one year categories were present in at least one of my mulch-and-

burn sites, and three species detected only in their > 8 year category were completely missing 

from my study. This demonstrates how taxa-lumping can obscure important patterns in 

community data (Robertson and Ostertag 2004; Steen et al. 2010; Fontaine and Kennedy 2012).   

Of the three species identified in my study as mulch-and-burn treatment indicators, two 

(Acris gryllus and Anaxyrus terrestris) are longleaf pine habitat associates that can be expected 

to thrive in open-canopied, fire-maintained conditions. Acris gryllus prefers to breed in open 

areas of vegetated wetlands (Bayless 1969; Jensen et al. 2008), and Anaxyrus terrestris has rapid 

larval development and performs well in high water temperatures associated with an open 

canopy (Noland and Gordon 1981). One of the three mulch-and-burn indicator species, 

Scaphiopus holbrookii, is not a longleaf pine associate, but has rapid larval development, like 

Anaxyrus terrestris. The mulch-and-burn treatment may have provided a high light, high 

temperature environment with high primary production, resulting in abundant and high quality 



70 

 

food resources necessary for rapid development (Chapter 2 this document; John Jensen, personal 

communication). More information about trophic interactions and tadpole feeding ecology is 

necessary to better understand these possibilities.  

Incidentally, I documented very large (on the order of hundreds) choruses of Lithobates 

capito, a globally vulnerable species petitioned for listing under the Endangered Species Act 

(IUCN 2012) during a breeding event in March 2009 (J.M. Klaus, unpublished data). These 

choruses were heard at two mulch sites and one mulch-and-burn site. Additional smaller 

choruses were heard at one burn site, one mulch site and one mulch-and-burn site, but none were 

observed at untreated wetlands. Tadpoles were confirmed at one mulch-and-burn site (J.M. 

Klaus, unpublished data, Steve Bennett, personal communication). 

The longleaf pine ecosystem has been greatly reduced and some of its endemic 

amphibians are threatened with extinction; hence, my goal was to find restoration tools to 

improve habitat for longleaf-associated amphibian species. Careful consideration of historical 

and present site factors should guide restoration goals; trying to restore fire-maintained 

conditions on a site that presumably never supported frequent fire in evolutionary time makes no 

more sense than expecting species that are not adapted to fire-maintained conditions (e.g. 

Ambystoma maculatum, Ambystoma opacum, etc.) to persist in fire-maintained habitat. Because 

altered fire regimes allow for invasion of fire-intolerant species (Klaus and Keyes 2007; 

Nowacki and Abrams 2008), land managers should not be alarmed if they observe a reduction in 

populations of some of those species when fire-maintained conditions are restored. My study 
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demonstrates that when restoration tools designed to mimic natural fire are applied at appropriate 

sites, even some generalist species may benefit, while fire-dependent species prosper. 
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Table 4. Wetland sites with corresponding fire history and restoration treatment. 

Site # # Fires Years-since-fire Treatment 

1 3   4 Burn 

2 3   4 Burn 

3 3   4 Burn 

4 3   4 Burn 

5 1 10 Mulch 

6 1   8 Mulch 

7 1   4   Mulch 

8 1 15 Mulch 

9 1   4 Mulch 

10 3   4 Mulch and burn 

11 3   4 Mulch and burn 

12 3   4 Mulch and burn 

13 3   4 Mulch and burn 

14 3   4 Mulch and burn 

15 2   4 Mulch and burn 

16 3   4 Mulch and burn 

17 1 10 None 

18 1 10 None 

19 2   4 None 

20 2   4 None 

21 1 15 None 

22 2   4 None 

23 1 10 None 

24 1   8 None 
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Table 5. Amphibian species categorized as longleaf pine associate (>80% of range within 

longleaf pine range) and longleaf pine coincidental (<80% of range within longleaf pine range). 

LL associate LL coincidental 

Acris gryllus Ambystoma talpoideum 

Ambystoma mabeei Gastrophryne carolinensis 

Amphiuma means Hyla chrysoscelis 

Anaxyrus terrestris Notopthalmus viridescens 

Hyla cinerea Lithobates catesbeianus 

Hyla femoralis Lithobates clamitans 

Hyla gratiosa Lithobates sphenocephalus 

Hyla squirella Scaphiopus holbrookii 

Pseudacris ocularis Siren intermedia 

Pseudacris ornata   

Lithobates capito   

Lithobates grylio   

Lithobates virgatipes   
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Table 6. Model descriptions, ranked by model weight, for models explaining variation in 

longleaf associate amphibian species depauperateness and coincidental amphibian species 

depauperateness with Akaike Information Criterion (BIC) scores, amount of variation explained 

(adjusted r
2
), and relative model weights (). Depth = mean maximum depth of wetland, axes = 

plant ordination axes,  pH is the range of concentration of hydrogen ions in wetland water and 

DO is the range of percent saturation of water with oxygen. 

Associate models AIC adjusted r
2
  

1. pH + DO + Axis2 + Axis3 -155.58 0.49 0.9965 

2. pH + DO -143.59 0.30 0.0025 

3. pH -140.46 0.23 0.0005 

4. DO -139.15 0.21 0.0003 

5. Axis2 + Axis3 -137.84 0.21 0.0001 

6. Axis2 -137.16 0.18 0.0001 

7. Axis3 -132.00 0.10 0.0000 

Coincidental models AIC adjusted r
2
  

1. pH + Depth -86.29 0.40 0.3449 

2. DO + Depth -85.66 0.39 0.2525 

3. pH + DO + Depth -85.24 0.38 0.2049 

4. Depth -85.12 0.34 0.1927 

5. pH + DO -76.82 0.24 0.0030 

6. pH -74.83 0.18 0.0011 

7. DO -74.25 0.17 0.0008 
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Table 7. Combined species list from (Schurbon 2000) and Klaus 2013. YSF = years since fire. 

Species NOT detected in a YSF category are marked with “X”. Three species have “?” in the 8+ 

YSF category indicating that they were not detected in the Schurbon or the Klaus study, but 

would likely be absent from this category based on other literature (e.g. Jensen et al. 2008). 

Species 0-1 YSF 3-5 YSF 8+ YSF 

    

Longleaf associates    

Acris gryllus   X 

Ambystoma cingulatum   ? 

Ambystoma maybeei    

Amphiuma means    

Anaxyrus terrestris    

Hyla cinerea    

Hyla squirella    

Lithobates virgatipes   X 

Pseudacris ornata  X X 

Pseudacris ocularis    

Anaxyrus quercicus  X X 

Pseudacris nigrita    

Hyla gratiosa   ? 

Lithobates capito   ? 

Lithobates grylio   ? 

    

Longleaf coincidentals    

Ambystoma talpoideum    

Gastrophryne carolinensis    

Hyla chrysoscelis X   

Lithobates catesbeinus    

Lithobates clamitans    

Lithobates sphenocephalus    

Notopthalmus viridecens X   

Scaphiopus holbrookii    

Siren intermedia X   

Ambystoma maculatum X X  

Ambystoma opacum X   

Pseudacris crucifer X   

Plethodon variolatus    
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Figure 8. Mean percent species depauperateness by treatment for longleaf pine habitat associate 

amphibians and coincidental amphibians before and after treatment application. Error bars 

represent 95% confidence intervals. 
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Figure 9. Longleaf associate amphibian species depauperateness correlated with plant ordination 

axes. Boxes below x-axes describe the components of each ordination axis with minimum and 

maximum site means. 
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Figure 10. One-way ANOVA of plant ordination axis 3 by treatment type after treatment 

applications. Diamonds represent group means with 95 % confidence intervals. Circles are a 

visual representation of the comparisons among group means; circles for means that are 

significantly different either do not intersect, or intersect so that the outside angle of intersection 

is less than 90°. 
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Figure 11. One-way ANOVA of change in plant ordination axis 3 from before to after by 

treatment type. Diamonds represent group means with 95 % confidence intervals. Circles are a 

visual representation of the comparisons among group means; circles for means that are 

significantly different either do not intersect, or intersect so that the outside angle of intersection 

is less than 90°. 
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Figure 12. Discriminant analysis describing direction of change of wetland vegetation by 

treatment type. Axes one, two and three are plant ordination axes. The yellow circle represents 

95% mean confidence limit of the untreated group, red is mulch, green is burn and blue is mulch-

and-burn. 
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CHAPTER FOUR: THEORETICAL AND PRAGMATIC IMPLICATIONS: 

RELATING AQUATIC AMPHIBIAN SURVIVAL AND DISTRIBUTIONS 

TO HABITAT AND DISTURBANCE 

 

Summary of key findings 

 The purpose of this study was to gain insight into the wetland habitat requirements of 

amphibians in a fire-dependent (disturbance-dependent) ecosystem and to assess two restoration 

tools (fire and a fire surrogate meant to mimic natural disturbance) in terms of their effectiveness 

in enhancing wetland habitat suitability for amphibians, especially those restricted to the longleaf 

pine ecosystem. I tested four main hypotheses: 1) survival of a larval amphibian is related to a 

wetland habitat gradient that includes vegetation structure, litter composition, water chemistry 

and epilithon quantity and quality; 2) survival of a larval amphibian varies across 

restoration/disturbance treatments; 3) aquatic amphibian species depauperateness is related to a 

wetland habitat gradient that includes vegetation structure, water chemistry and water depth; 4) 

aquatic amphibian species depauperateness varies across restoration/disturbance treatments. I 

found that species depauperateness was lowest in mulched-and-burned wetlands and highest in 

untreated wetlands, and survival of a larval amphibian was lowest in untreated wetlands. I 

studied a set of wetlands that were located on similar soils, at similar elevation, and embedded 

within longleaf pine uplands, and found that the entire species pool, including specialists and 

generalists, benefited from creating more open vegetation structure.  
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Untreated and degraded wetlands in a longleaf pine woodland had higher canopy closure, 

higher litter accumulation, more hardwood litter and less graminaceous litter than wetlands 

treated by mulching, burning or a combination of mulching and burning. The mulched-and-

burned wetlands had the lowest canopy closure, lowest litter accumulation, least hardwood litter 

and most graminaceous litter. Other researchers observed similar results of fire and fire 

surrogates on canopy (Harrod et al. 2009; Schwilk et al. 2009; Stephens et al. 2009; Outcalt and 

Brockway 2010) but little attention has been given to the effects of fire and fire surrogates on 

leaf litter. Research focused on leaf litter suggests it is a critical component of energy and 

nutrient cycling that requires further study (Skelly and Golon 2003; Hiers et al. 2007; Maerz, 

Cohen and Blossey 2010). Fire removes leaf litter, influences plant communities that donate 

litter and affects the redistribution of nutrients in leaf litter (Maclean et al. 1983; Wilbur and 

Christensen 1983; Debano, Neary and Ffolliott 1998). Thus, impacts to the litter layer should be 

given more consideration in fire effects studies. 

I found evidence to suggest several pathways through which disturbance and vegetation 

structure influence larval amphibian survival and aquatic amphibian species depauperateness, all 

of which warrant further research. This and other research documented a consistent effect of 

litter type and amount on consumer performance and community assembly (Skelly, Freidenburg 

and Kiesecker 2002; Skelly and Golon 2003; Rubbo and Kiesecker 2004; Schiesari 2006; 

Williams, Rittenhouse and Semlitsch 2008). Although tadpoles in my survival experiment did 

not have direct access to detritus they presumably accessed flocculent detritus from the water 

column (Seale and Wassersug 1979; Seale and Beckvar 1980; Viertel 1992; Hart and Lovvorn 
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2003). Leaf litter type was influential on survival, and leaf litter depth was important in 

determining species depauperateness. In addition to having varying nutritional quality, some 

litter types break down readily while other litter types are difficult for decomposers to break 

down (Taylor, Parkinson and Parsons 1989; Enriquez, Duarte and Sand-Jensen 1993; Ostrofsky 

1997; Baker et al. 2001) and pass through the guts of detritivores with little of their nutrients 

absorbed (Skelly and Golon 2003). Canopy closure affects this process by regulating available 

light and influencing temperature, which in turn affects litter decomposition rates (Kadlec and 

Reddy 2001; Fierer et al. 2005) and consumer feeding and growth rates (Warkentin 1992; 

Álvarez and Nicieza 2002). 

Canopy closure and leaf litter influence the amount and nutritional quality of epilithon, 

the other main tadpole food source in addition to detritus (Altig, Whiles and Taylor 2007). 

Canopy regulates light needed for growth of autotrophic components of epilithon (a.k.a. 

periphyton) (Urabe and Sterner 1996; Mosisch, Bunn and Davies 2001; Hill, Smith and Stewart 

2010) and litter can enhance or diminish growth and nutritional quality of epilithon (Friberg and 

Winterbourn 1996). In my study, mass and percent organic matter (carbon) of epilithon were 

negatively correlated with relative amount of hardwood litter and percent canopy closure, and 

positively correlated with amphibian survival. In addition, high litter accumulation was 

correlated with high species depauperateness. Slow decomposition rates of leaf litter suggests 

nutrients are not as readily available for epilithon growth. 

This study and others suggest that closed-canopied wetlands with high litter accumulation 

and low macrophyte abundance are detritus-based systems that support different consumer 
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assemblages than open-canopied, macrophyte-rich, algal-based systems (Hart and Lovvorn 2000; 

Engelhardt and Ritchie 2001; Rubbo and Kiesecker 2004). Fire regime plays a major role in 

determining depressional wetland plant community development in the southeastern U.S. 

(Kirkman et al. 2000) and I contend that fire regime can be manipulated to result in a range of 

conditions from detritus-based to algal-based depressional wetland systems.  

Future research in wetland restoration should focus on the effects of management on 

entire food webs, or at least key elements of them, to better understand how a diversity of 

systems develop and function (Hart and Lovvorn 2000; Engelhardt and Ritchie 2001; Hart and 

Lovvorn 2003). Amphibian conservation would greatly benefit from further examinations of 

tadpole-feeding ecology, specifically ontogenetic and opportunistic niche shifts, selective 

feeding, and how different food resources affect growth, survival and distribution of species. 

Limitations of the study 

One of the main limitations of this study was that amphibian-sampling design and lack of 

appropriate models restricted the types of analysis that could be performed. Larval amphibians 

present a unique set of problems in estimating detection and occupancy: 1) one female anuran 

can produce thousands of larva at a single site, making detection of any one individual extremely 

low, 2) some larval periods are as short as three weeks, 3) tadpole mortality can be extremely 

high, 4) the population of tadpoles at a site is continuously open and several species breed year-

round and 5) reproduction can be sporadic and unpredictable. Future research should focus on 

developing sampling protocols and models that can account for all of these factors. 
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Survival of larval amphibians in enclosures was extremely low in all treatment types. 

Some factors that could account for this include enclosure design, water pH and rapid dry-down 

of wetlands during the experiment. It would be helpful to test alternative enclosure designs to 

determine if survival could be increased. I also hoped to use several species of amphibians in the 

survival experiment, but only one was available. In future experiments I would also sample 

epilithon from both inside and outside the enclosure to determine a) if the enclosure was 

affecting what food was available and b) to see what effect tadpoles had on epilithon growth. 

In addition, this study confounded the effects of canopy closure and leaf litter because 

closed-canopy wetlands tended to be composed of hardwood trees and shrubs. Wetlands with 

equal basal areas of hardwoods versus pines or cypress have disparate canopy densities due to 

variation in leaf shapes, and different tree compositions naturally donate different amounts and 

types of litter. It would be useful for restoration to separate these effects and better understand 

how they interact.  

Conservation implications 

Mulching or other mechanical treatments are not an effective surrogate for fire. There 

were several important distinctions between fire and mechanical treatments in this study: 1) 

mechanical treatments did not improve herbaceous groundcover and probably suppressed, 2) 

chipped material left on site effectively increased litter depth, a detriment to longleaf associated 

amphibian species, and 3) cut woody plants resprouted quickly and in some cases mulched 

habitat was indistinguishable from untreated habitat. Repeated mulching may be cost-prohibitive 

(Hartsough et al. 2008) and the effects of mulching versus burning on soil properties are unclear 
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(Boerner et al. 2009). On the other hand, fire alone may not be enough to restore degraded 

habitat. Research has demonstrated that in several cases habitat is degraded to a point that simply 

reintroducing the historical disturbance regime is not enough to reset the successional trajectory 

(Suding et al. 2004, Martin and Kirkman 2009).  

Past research has shown that degree of isolation, wetland size and hydroperiod, presence 

of keystone predators, conserving amphibian diversity in ephemeral wetlands (Fauth 1999, 

Eason and Fauth 2001). In addition to those factors, some of which are difficult for managers to 

manipulate, vegetation structure influences amphibian diversity. Canopy closure, groundcover 

type and density, and leaf litter especially, were correlated with species depauperateness in this 

study, and affected growth, survival or diversity in other studies (Skelly et al. 2002, Skelly and 

Golon 2003, Skelly et al. 2005, Schiesari 2006, Williams et al. 2008, Maerz et al. 2010). When 

managers are manipulating habitat to benefit amphibians they may monitor some or all of these 

factors to assess effectiveness of management to better understand the outcome and make 

restoration an iterative process. 

The contrasting results of my research and that of Schurbon and Fauth (2003) 

demonstrate the effect of scale on diversity. My research focused on alpha diversity (similar 

habitats in terms of elevation and soils) while Schurbon and Fauth’s study included both alpha 

and beta diversity (habitats spanning a broader range of elevation and soils types). While higher-

elevation, recently burned sites (0-5 years since fire) had lower alpha diversity than the low-

elevation, less recently burned sites (> 8 years since fire), if one considers species richness across 

the entire gradient of sites, a pattern of high ‘regional landscape’ (Noss 1983), gamma 
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(Whittaker 1960) diversity emerges, one unique to the U.S. Southeastern Coastal Plain. This 

diversity is maintained, in part, by heterogeneous, non-catastrophic disturbance, i.e. fire that 

burns lower, wetter areas less frequently and intensely, and higher, drier areas more frequently 

and intensely. Although this effect is partially anthropogenic because fire is either suppressed or 

applied by managers, one could reasonably expect similar patterns of fire behavior and effects 

without human intervention.  

To recommend a single specific disturbance regime on a landscape scale to promote 

species richness may be too broad a generalization to result in accurate and precise habitat 

management because the response depends on the scale of the observation (Walker and Peet 

1984; White and Pickett 1985; Schwilk, Keeley and Bond 1997) and species richness alone does 

not take into account community composition (Noss 1983). Although a particular disturbance 

regime may produce high alpha diversity, a variety of regimes across the landscape in 

accordance with edaphic and other environmental gradients will create a mosaic of communities 

and seral stages supporting greater beta and ultimately gamma diversity (Noss 1990; Parr and 

Brockett 1999; Tews et al. 2004). 

Disturbance promotes persistence of specialist species 

My research was a snap-shot of how disturbance can create a vegetation structure that 

sustains a specific assembly of species. The longleaf pine ecosystem and its embedded wetlands 

fit the criteria for what Bond et al. (2005) describe as “fire-dependent ecosystems,” i.e., they 

would disappear in the absence of fire; amphibian assemblages associated with fire-dependent 

ecosystems will cease to exist in the absence of fire. While some amphibian species have 
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evolved mechanisms to take advantage of closed canopy wetlands, others are better adapted to, 

and in fact require, open canopy conditions (Steinwascher and Travis 1983; Skelly, Werner and 

Cortwright 1999; Werner and Glennemeier 1999; Schiesari 2006; Williams, Rittenhouse and 

Semlitsch 2008). The assembly that is found in open canopied wetlands approximates what Platt 

and Connell (Platt and Connell 2003) describe as ‘early successional species’ that persist because 

frequent, non-catastrophic disturbance (e.g. fire) interrupts directional species replacement, 

except that several of the species examined in this study are long-lived, have low fecundity or 

low vagility. Shift in amphibian assemblies associated with disturbance regime may not be due 

to direct competition, but instead determined by species tolerances to environmental factors 

associated with different disturbance regimes and resulting habitats. To what degree competition 

among amphibian species influences assemblages in natural settings remains to be seen; more 

research on tadpole feeding ecology and physiology could help sort these factors out. More 

empirical research is needed to test specific hypotheses about how patterns of amphibian 

diversity arise and are maintained (Platt and Connell 2003). 
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