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ABSTRACT 

 Behavioral studies in the green turtle (Chelonia mydas) have indicated that promiscuous mating 

is commonplace. Though it has been shown that there is much variation in the rate of polyandry 

(females mating with multiple males), the drivers behind polyandry in this species are unknown. It has 

been speculated, but never demonstrated, that indirect benefits (fitness benefits resulting from 

offspring genetic diversity) play a role. However, previous tests of this hypothesis have limited scope of 

inference due to lack of environmental control. In this thesis, I attempted to study the indirect benefits 

of polyandry in Archie Carr National Wildlife Refuge (ACNWR) green turtles, limiting environmental 

variation by selecting nests over  two week periods in a small subset of the ACNWR. Through the use of 

highly polymorphic microsatellite markers, I show that 85.7% of ACNWR green turtle females mate with 

multiple males, the highest rate yet reported for green turtles. I was successful in limiting environmental 

variation; however, I was unable to make comparisons among nests with one or multiple fathers 

because of a limited sample size of single father nests. Regardless, my thesis provides preliminary 

evidence (number of males per nest) that the density of males off Florida’s beaches may be relatively 

high, which is expected to be a driver behind the evolution of polyandry and likely plays a large role both 

in this population and the prevalence of multiple paternity in green turtles as a whole. 
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CHAPTER ONE: INTRODUCTION 

 Understanding behavior and its relationship to an individual’s fitness has been a central theme 

of ecological research since Darwin. The inherent plasticity of behavior in response to environmental 

factors often precludes analysis of a single cause as the “reason” for its evolution. Despite this 

complexity, a superficial grasp of the mechanisms driving behaviors is needed to both understand how 

such behaviors evolve and, in the case of species of conservation concern, how to apply this knowledge 

in species management. 

 The complexity of behavior is perhaps most apparent in mating strategies. Often males and 

females have different approaches for resource usage that can interact to produce drastically different 

mating strategies (Emlen and Oring 1977). Such differences in mating strategy are often based on 

questions of “fitness capital” (sensu Williams 1966). Fitness capital, in this context, is not limited to how 

much energy is spent in the actual conduct of mating. It also includes parental investment in the 

offspring and increased predation risk as a result of mating [for a review of possible factors, see Daly 

(1978)]. Difference in “investment” can lead to differing strategies. For example, an environment in 

which males invest less per reproductive event than females can lead to a polygynous system (Emlen 

and Oring 1977), where males mate with multiple females.  

 In many species, the opposite scenario is true: females invest more per reproductive event than 

males. Females generally invest heavily to feed and raise offspring, while males often simply mate with 

the female and provide no other resources. Consequently, in such systems female fitness is driven by 

energetic limits on offspring production while male fitness is driven by number of successful mating 

events (Bateman 1948), leading to a conflict between the male and female over mating. All else being 
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equal, as long as a female is provided with sufficient sperm to fertilize all of her eggs, her fitness has 

been maximized. 

For a female to incur the cost of mating with an additional male, then this action should provide 

a benefit that offsets the associated cost (Bateman 1948). Some benefits of polyandry are immediately 

apparent through behavioral observation; such benefits, termed direct benefits, can include increased 

parental care (Ihara 2002), nuptial gifts (Fedorka and Mousseau 2002), and protection from predation 

(González 1999). In the absence of direct benefits, indirect benefits, which include increased offspring 

genetic diversity, bet-hedging through phenotypic diversity, inbreeding avoidance, and fertility 

assurance [for review, see Jennions and Petrie (2000)], are hypothesized to play a role in driving the 

evolution of polyandry. 

 However, other factors must be considered before making a blanket statement about the 

mating system. Individual variation in habitat quality and food availability can play a role in reproductive 

investment, affecting both the number of mating events (Hunt et al. 2005, Hebets et al. 2008) and the 

variable of interest in most studies of indirect benefits, offspring fitness (McGinley 1987). In addition, 

absolute mate quality can affect the success of offspring, and maternal reproductive investment can 

change among different males (Cunningham and Russell 2000, Maklakov and Lubin 2004). Finally, 

population-level factors such as operational sex ratio (Emlen and Oring 1977) and population density 

(Kokko and Rankin 2006) can have large effects on mating strategies through changes in the cost of 

finding a mate. These factors must be considered before undertaking any study examining the indirect 

benefits of polyandry. 

 Although interesting as theoretical questions, the study of mating strategies in a population or 

species can also be of great benefit to conservation. Study of the island fox (Urocyon littoralis) showed 
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fox population density and mating system affect demographic parameters, and concluded that removal 

of a top predator was necessary for population survival (Angulo et al. 2007). Additionally, a study of the 

flatback turtle (Natator depressus) mating system (Theissinger et al. 2009) provided insight into both 

current and long-term effective population sizes in this threatened species. Conservation and 

management of the green turtle (Chelonia mydas), listed as an endangered species by both the U.S. 

Endangered Species Act and IUCN Red List, could benefit similarly from enhanced understanding of its 

mating system. Mating is energetically costly for green turtle females, as they must carry the male for 

the duration of mating [up to 6 hours (Booth and Peters 1972)], and is also subject to the harassment of 

other males at this time. Females have demonstrated the ability to refute mating attempts by traveling 

in all-female groups, blocking the cloaca with the rear flippers, or even beaching themselves (Booth and 

Peters 1972).  

Despite the high cost of mating, behavioral observations of mating green turtles indicate that 

they are polygynandrous, i.e., both males and females mate with multiple members of the opposite sex. 

However, molecular analyses suggest that the level of polyandry is more variable (Table 1). It is 

unknown whether polyandry provides indirect benefits to the female; Lee and Hays (2004) attempted to 

compare the hatching success of monandrous and polyandrous clutches but found no difference. 

However, this study did not control for environmental factors such as temperature and substrate which 

can have a large effect on hatching success (Mortimer 1990, Maloney et al. 1990, Ackerman 1997). 

More recently, Wright et al. (2013) again compared the hatching successes of polyandrous and 

monandrous clutches; again environmental factors such as lay date (and by proxy, nest temperature) 

and substrate were not controlled for a priori. Both of these studies attempted to control for 

environmental variation analytically; however, with the small sample size (18 nests on two different 

beaches) of Lee and Hays (2004) and the large temporal and spatial variation of Wright et al. (2013), it is 
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unclear if the results of these studies can be used as a general statement on the indirect benefits of 

polyandry in the green turtle. 

Table 1: Previous green turtle paternity studies. 

Location 

 

Breeding population 

size 

(All ref. cited by 

Jensen et al. 2006)  

Multiple paternity 

(Number of nests 

sampled with multiple 

fathers) 

Source 

Alagadi beach, Northern 

Cyprus  

Unknown 24% (22 of 78) Wright et al. (2013) 

Southern Great Barrier 

Reef, Australia 

≈5500 (N. Fitzsimmons 

pers. comm.) 

9% (2 of 18) Fitzsimmons (1998) 

Ascension Island ≈8000 (Broderick et al. 

2002) 

61% (11 of 18) Lee and Hays (2004) 

Tortuguero, Costa Rica ≈16000 (Harrison and 

Troёng 2004) 

50%  (5 of 10) Peare and Parker (1996) 

 

For the critically endangered green turtle, knowledge of the mating system also can provide 

management utility in the face of climate change. Green turtles, like all species of marine turtle, exhibit 

temperature-dependent sex determination. In green turtles, temperature is related to offspring sex 

ratio in a sigmoidal fashion, with higher temperatures producing a higher proportion of females (Spotila 

et al. 1987, Standora and Spotila 1985). In most green turtle populations, offspring sex ratios are highly 

female-biased (Godfrey et al. 1995, Booth and Freeman 2006). However, it is unknown what functional 

effect, if any, this has on the population as a whole. More frequent remigrations by males to breed and 

movement among nesting beaches has been suggested as a potential buffer against the effects of 

climate change in northern Cyprus (Wright et al. 2012), but whether the mating patterns in Cyprus are a 

reflection of green turtles everywhere is unknown. 
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 Understanding how the mating system works in other populations and what drives it could 

inform management decisions being considered on many nesting beaches about whether to manipulate 

nest temperatures in situ or relocate them to hatcheries. A 1:1 female:male ratio is often cited as the 

goal, but it is unknown whether this is needed or even desirable. My goals for this thesis were two-fold. 

First, I aimed to get a general understanding of the mating system in the Florida population of green 

turtles. Second, I aimed to understand how indirect benefits and demographic factors might play a role 

in the maintenance of polyandry.  

 

 



CHAPTER TWO: METHODS 

Study Site and Nest Selection 

The Florida green turtle population is the fastest growing nesting population in the world, with 

an annual growth rate of 13.9% year (Chaloupka et al. 2008). Over the last five years, an average of 

approximately 6800 green turtle nests were laid on Florida beaches between May 15 and August 31 

(INBS 2013). Of these nests, an average of 41% was laid within the boundaries of the ACNWR, making it 

an ideal site to study both the mating system of the population and indirect benefits of polyandry. 

In order to effectively evaluate the effect of paternity on hatching success, the influence of 

other variables on hatching success needed to be limited. The high nesting densities within the 

boundaries of the Archie Carr National Wildlife Refuge (ACNWR, 262 nests per km in 2011) allow for a 

priori consideration of environmental factors when setting up an observational study of the indirect 

benefits of polyandry. As temperature and other meteorological factors are known to have a large effect 

on hatching success, I limited nest marking to a continuous two-week period in late June and early July, 

near the peak of the green turtle nesting season. To control for substrate factors, I limited nests laid to a 

small, undeveloped area of the nesting beach.  

In 2011, this area consisted of one kilometer of nesting beach between University of Central 

Florida (UCF) kilometer markers 9 and 10. Due to lower nesting densities in 2012, this area was 

expanded to include all undeveloped areas between UCF kilometer 8.3 and 10.3. Historically, this area 

was the highest density natural area on the ACNWR. I excluded nests laid in substrate that was altered 

by dune restoration, e.g., in front of Juan Ponce de Leon Landing County Park. I marked all nests in 

suitable areas until a total of 20 was reached in each season. 



7 
 

Nesting Female Sampling and Reproductive Parameters 

 Each female encountered for this study had a standard set of morphometric measurements 

taken to examine their relationship with clutch size, egg mass, and paternity of the nest. Each individual 

was biopsied using a 4mm biopsy punch after nest deposition was completed. All sampled individuals 

were tagged using both Inconel and subcutaneous PIT (passive integrative transponder) tags to avoid 

pseudoreplication. Each sampled nest location was recorded using stakes in the dune and GPS 

coordinates. Additionally, measurements were taken from the clutch to the dune line (generally 

vegetation line where the slope of the beach begins to increase more rapidly) and the most recent high 

tide line (indicated by smoothed over sand and a small line of sediment).Clutch sizes were obtained by 

excavating the nest after the female returned to the ocean, and egg mass was measured for a random 

sample of 25 eggs from each clutch (in 2012 only). 

Nest Monitoring and Hatchling Sampling 

 A restraining cage was placed over each sampled nest after 45 days of incubation in order to 

detain any emergent hatchlings. Upon emergence, 24 random hatchlings from each nest were biopsied 

using a 2mm biopsy punch. Samples were stored in 100% ethanol. In the event that fewer than 24 

hatchlings were available to sample, dead hatchlings and unhatched fetuses in good condition were 

sampled as a substitute. After emergence, nests were excavated to determine the hatching success 

(number of hatched eggs/total eggs).  

DNA Extraction, Amplification, and Analysis 

 Template DNA was extracted from samples using a phenol-chloroform procedure followed by 

precipitation with 100% ethanol. Following extraction, I attempted to amplify template DNA at four 

microsatellite loci: CHMY02, CHMY04, CHMY15, and CM84. (Fitzsimmons et al. 1995, Shamblin et al. 

2012)(GenBank accession numbers JQ728653, JQ728654, JQ728659) Loci CHMY02, CHMY04, and 
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CHMY15 were amplified using the following touchdown PCR cycling parameters: an initial denaturation 

step of 95°C for 5 minutes followed by 30 cycles of 95°C for 30 seconds, annealing temperatures starting 

at 55°C and decreasing by 0.5°C each cycle, 72°C for 1 minute and then an additional 35 cycles of 95°C 

for 30 seconds, 43˚C for 1 minute, and 72°C for 1 minute, and a final extension step of 72°C for 10 

minutes . Locus CM84 was amplified using an initial denaturation step of 95°C for 5 minutes followed by 

37 cycles of 95°C for 30 seconds, annealing temperature of 43˚C for 30 seconds, and 72°C for 1 minute, 

with a final extension step of 72°C for 10 minutes . PCR products were sent to the University of Arizona 

Genetics Core for fragment analysis, and these results were analyzed in the program GeneMarker 

(Softgenetics LLC). 

Paternity Determination 

 To determine whether a nest was monandrous or polyandrous, I used the methods described by 

Fitzsimmons (1998). This method was later termed the Minimum Method by Myers and Zamudio (2004), 

and I will refer to it as such. This procedure entails first identifying the female’s alleles in each hatchling 

and eliminating them from consideration. If, after the female’s alleles are removed, there were more 

than two alleles at more than one locus within a nest of hatchlings, the nest was determined to be 

polyandrous. If for some reason female allele data were not available, then I used five alleles at a locus 

as my criterion. This conservative procedure allows for the presence of null alleles and errors in 

genotyping. The probability of detecting multiple paternity using this method was assessed for each nest 

using the PrDM software (Neff and Pitcher 2002).  

Preliminary parentage inferences beyond one or multiple fathers were carried out in two 

manners. I used the maximum likelihood sibship clustering program COLONY v2.0 (Wang 2004, Wang 

and Santure 2009) using the “Medium” run length and 10 runs per nest. This program estimates 

paternal genotypes from the known offspring and maternal genotypes, and uses these estimates to 
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determine the number of fathers in the clutch. However, COLONY ideally needs at least 6-8 

microsatellite loci to effectively conduct this type of analysis. Secondly, in a similar manner to using the 

Minimum Method to determine whether there one or multiple fathers in a nest, I estimated the number 

of fathers by counting the number of paternal alleles at each locus. 3-4 alleles corresponded to two 

fathers, 5-6 corresponding to alleles to three, and so on. This method (which I will refer to as the “Brute 

Force” method) is a minimum estimate of the number of fathers in a clutch, as identical alleles at a locus 

among fathers would be unrecognizable as being from distinct individuals. 

Statistical Analyses  

 In order to evaluate how effective my strategy of limiting nests to a small temporal and spatial 

scale, I analyzed the effect of all environmental variables on hatching success. Hatching success, a 

proportional variable, was arcsine transformed to better conform to the normality and equal variance 

assumptions of parametric tests. These variables were: relative lay date (day relative to the first study 

nest in each season), distance to dune divided by total beach length (a measure of how far up the beach 

the nesting female crawled before depositing her eggs), and year. I conducted individual linear 

regressions of hatching success and these variables, and a forward stepwise regression including all 

these variables and their interactions (p-value<0.05 to enter the model, with more highly significant p-

values included in the model first), to evaluate these effects. 

 To evaluate the effect of nesting female and egg characteristics on hatching success, I conducted 

individual linear regressions and a stepwise forward regression (as before) of the following variables: 

over-the-curve length, clutch size, and egg mass. To understand better what could affect maternal 

investment, I analyzed the relationships between over-the-curve length, clutch size, and the preliminary 

number of fathers estimated by COLONY v2.0 (referred to as “number of fathers” hereafter) with egg 

mass.  



10 
 

Finally, I conducted two analyses to determine how indirect benefits could play a role in the 

evolution of polyandry in the green turtle. First, I conducted linear regressions of the number of fathers 

(from both the Brute Force and COLONY methods) and hatching success of nests. In addition, I used all 

significant variables covariates from previous analyses in a multiple regression models with number of 

fathers (both methods) as an additional factor. All analyses were conducted in the statistical software 

package JMP v.11 (SAS Institute Inc. 2013)



CHAPTER THREE: RESULTS 

 

Figure 1. Locations of study nests (2011=Blue, 2012=Purple). 

Reproductive Parameters and Nest Marking 

 Over the two year study period, I marked 40 nests for this study. The distribution of nests within 

my study area is displayed in Figure 1.  Average over-the-curve length (OCL) of the females that laid 

these nests was 107.2 cm with a standard deviation of 5.8 cm. Average clutch size was 130 eggs with a 

standard deviation of 27.9. For nests marked in 2012, the average mass of an egg was 49.97 grams, but 
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egg mass varied among clutches (F-Ratio=193.01, p<0.0001). Average egg mass was unrelated to clutch 

size and all morphometric parameters (head width, p=0.07; all others, p>0.27). 

Hatchling Sampling and Hatching Success Determination 

 Of the 40 nests marked for this study, I was able to obtain hatchlings from a subset of 34. I was 

unable to locate the stakes for two nests; one nest emerged as Hurricane Irene passed by Florida; one 

nest emerged as Hurricane Isaac passed by Florida; one nest emerged outside of the restraining cage, 

one nest was depredated by raccoons; and one nest had another green turtle clutch deposited directly 

over it, making it impossible to determine both whether hatchlings were from the correct nest and 

hatching success of the study nest.  

Of the remaining 34 nests, one nest (12/133) was significantly affected by plant roots (46 eggs 

infested) and therefore was not included in hatching success analyses; however, I was still able to obtain 

hatchling samples from this nest and included it in paternity analyses. Average hatching success was 

66.7% with a standard deviation of 24.2% for the remaining 33 nests. For five of these nests, I was 

unable to obtain 24 hatchling or fetus samples: 11/161 (18 samples), 11/167 (22), 11/168 (15), 11/169 

(15), 12/153 (6). 

Amplification and Genotyping 

 Difficulty in PCR amplification resulted from a variety of factors, most prominently low yield 

from phenol-chloroform extraction (<5 ng template DNA/microliter) of 2012 hatchling samples. As a 

result of this difficulty, I was unable to generate genotypic data for five nests. For the remaining 28 

nests, I had varying degrees of success in getting hatchling template DNA to amplify, but enough data 

were generated for all nests to discern whether they were monandrous or polyandrous by the Minimum 

Method alone (Table 2). 
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For the nests that I obtained genetic data, 24 (85.7%) were polyandrous (Table 2). All nests that I 

determined to be monandrous had probabilities of detecting multiple paternity above 0.95 

(mean=0.977, 0.967-0.986). Probability of detecting multiple paternity was much more strongly related 

to the number of hatchling samples I genotyped than the number of loci I could get to amplify in a given 

nest (Figure 2). Using COLONY v2.0 to preliminarily analyze the polyandrous nests, I determined that 2-7 

fathers were present in a given nest (mean= 4.39 fathers) (Table 2).  By the Brute Force method, I 

determined that 1-4 fathers were present in a nest (mean=2.21 fathers) (Table 2). 

Hatchlings Genotyped
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CHMY04 and 15
CHMY02 and 04
CHMY15 and CM84

 

Figure 2. Relationship between number of hatchlings genotyped and probability of detecting 
multiple paternity with different combinations of loci. These values are conservative, as this 
scenario assumes only two fathers and an 80%-20% paternity skew. 
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Table 2. Summary of genotyping success and paternity results. PrDM varies slightly 
dependent on which loci were used for genotyping. 

Nest Number 

(Year/Number) 

Polyandrous

(Yes/No) 

Number of 

Fathers 

(COLONY) 

Number of 

Fathers 

(“Brute 

Force”) 

Hatchlings 

Genotyped 

Loci PrDM 

11/150 Yes 4 3 23 2 0.975 
11/151 No 1 1 21 3 0.986 
11/152 Yes 7 3 23 2 0.975 
11/153 Yes 5 3 22 2 0.981 
11/154 No 1 1 24 2 0.978 
11/155 Yes 7 3 23 2 0.984 
11/156 Yes 6 2 24 3 0.991 
11/158 Yes 6 3 22 3 0.988 
11/160 Yes 6 4 24 4 0.995 
11/161 Yes 3 2 15 2 0.931 
11/162 Yes 5 2 22 2 0.972 
11/163 Yes 4 2 22 3 0.988 
11/165 Yes 7 3 23 3 0.989 
11/167 Yes 4 2 22 3 0.988 
11/168 Yes 3 2 15 2 0.931 
11/169 Yes 4 2 13 2 0.906 
12/110 Yes 4 2 22 3 0.988 
12/111 Yes 5 2 12 3 0.918 
12/117 Yes 3 2 14 2 0.897 
12/126 Yes 6 3 16 2 0.924 
12/127 Yes 4 2 22 2 0.971 
12/133 Yes 4 3 13 2 0.906 
12/137 Yes 5 2 21 2 0.967 
12/138 No 1 1 24 2 0.978 
12/139 No 1 1 21 2 0.967 
12/140 Yes 5 2 24 2 0.978 
12/141 Yes 5 2 24 2 0.978 
12/142 Yes 7 2 24 2 0.978 
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Effect of Paternity and Environmental Factors on Hatching Success 

 Year was the only environmental or maternal variable to have a statistically significant effect 

both individually and when all environmental variables and their interactions were evaluated within a 

stepwise regression framework (F= 9.01, p=0.005).Therefore, in further analyses, I only included year as 

a blocking factor. Statistical significance of environmental and maternal effects is summarized in Table 3. 

Table 3. Relationship between environmental and maternal effects and hatching success. (Egg 
mass data taken only for 2012 nests.) 

Effect N R2 F-

Ratio 

p-value 

Environmental Factors     

Year 33 0.24 9.59 0.004 

Distance to High 

Tide/Beach Width 

33 0.071 2.36 0.135 

Relative Lay Date 33 9e-6 0.0003 0.987 

Maternal Factors     

Over-the-curve length 33 0.012 0.40 0.532 

Clutch Size 33 0.014 0.44 0.510 

Egg Mass 17 0.082 1.34 0.265 

 

 The high proportion of multiple paternity nests precluded a comparison of hatching success 

among monandrous and polyandrous nests. I conducted multiple regressions with year as a blocking 

factor and number of fathers as the variable of interest. In both analyses, the year effect remained 

significant. For the COLONY estimates, number of fathers was not significantly related to hatching 

success (t= 1.14, p=0.267; Figure 3) over both years. Within 2011, COLONY number of fathers had a 
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marginally significant effect (F=2.97, p=0.105). For the Brute Force estimates, number of fathers was 

again not significantly related to hatching success (t=0.020, p=0.888) (Figure 4). 
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Figure 3. Regressions within years (2011=filled circles, 2012=unfilled circles) of COLONY 
results for number of fathers and hatching success. Neither number of fathers nor its 
interaction with year had a significant effect on hatching success. 
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Figure 4. Regressions within years (2011=filled circles, 2012=unfilled circles) of Brute Force 
results for number of fathers and hatching success. Neither number of fathers nor its 
interaction with year had a significant effect on hatching success. 
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CHAPTER FOUR: DISCUSSION  

I was effective at limiting environmental variation where possible: no environmental factor aside 

from year was significant, and a year effect was unavoidable given my other constraints on turtle 

selection. A year effect is also unsurprising, given the differences in air temperature during the 

incubation periods of my study nests (2011 average high: 32.78 C˚, 2012 average high: 31.67 C˚; 

F(1,119)=12.811, p<0.001). Although a seemingly small difference, the 2011 average is near previously 

reported limits for successful development on some nesting beaches, and this likely played a large role 

in the difference I saw in hatching success among years.  

Despite my success, the sheer prevalence of multiple paternity nests prevented a comparison of 

hatching success among single and multiple paternity nests.  The proportion of green turtle nests on the 

ACNWR with multiple paternity is the highest yet recorded in marine turtles, only rivaled by arribada-

nesting olive ridleys in Ostional, Costa Rica (Jensen et al. 2006). Although I attempted to understand 

how the number of fathers is correlated with hatching success, it should be emphasized that these 

analyses are preliminary and need more genetic data to be truly informative. For COLONY v2.0 to 

provide accurate estimates of how many fathers are present within a group of hatchlings, 6-8 

microsatellite loci should be used (Wang 2004). In previous studies in the green turtle, the maximum 

number of fathers found in a nest was five (Lee and Hays 2004); COLONY v2.0 determined that there 

were five or more fathers in 15 of my 28 nests. This likely highlights the unreliability of my current 

dataset for this type of analysis, but it also holds promise for a more complete understanding of female 

mating behavior in the future. A distinct possibility is that the number of fathers in some nests with >5 

fathers will drop. In many of these nests, paternity was highly skewed toward 1-3 fathers, and remaining 

fathers represented by much smaller clusters (often only one hatchling). While skewed paternity is 

expected, these smaller clusters were often not as well supported by the genetic data, with high 
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probabilities of sharing a paternal genotype with another from the same clutch. Because COLONY only 

reports the number of fathers that maximizes the probability of generating the data, that is the result I 

chose to use; however it is clear from the COLONY results that competing hypotheses with less fathers 

are nearly as likely. With increased genetic information, I expect many of these situations to resolve 

themselves into smaller numbers of fathers. The Brute Force estimate of 2.21 fathers per nest is likely a 

minimum bound for these decreases. 

Generating more genetic data will also help to identify individual male genotypes and generate 

an operational sex ratio (ratio of breeding males to females at a given time, OSR hereafter) for this 

breeding population. I hypothesize that the OSR will be more highly male-biased than other green turtle 

nesting populations for two reasons. First, my data show an unprecedented rate of multiple mating by 

females in this population. This could be due to higher densities of males related to increased 

population density as a whole (Jensen et al. 2006) limiting females’ ability to avoid mating with multiple 

males, increasing the cost of avoiding mating to prohibitive levels. In Florida, however, high population 

density seems an unlikely cause given the small population size and our knowledge of how male green 

turtles move among nesting beaches (Wright et al. 2012, D. Bagley unpublished data). More likely is that 

the OSR is more biased towards males relative to other populations. Hypothetically, a relatively male-

biased OSR is likely in Florida because it is at the northern extent of green turtle nesting worldwide. The 

resulting lower nest temperatures in this population should produce a higher percentage of male 

offspring through temperature-dependent sex determination. If there is no sex bias in dispersal or 

survival, Florida should exhibit a more male-biased adult population as well.  

My study both corroborates and refutes statements in the literature about the green turtle 

mating system. It has been implicitly assumed that mating is costly to green turtle females, and that this 

cost must either be so extreme as to make mating beneficial in comparison (Lee and Hays 2004) or there 
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must be an indirect benefit to multiple mating. My study is inconclusive on the second point; however, 

the preliminary indicators of high male densities and their correlation with high proportions of multiple 

paternity in this study and others (Jensen et al. 2006, Lee and Hays 2004) suggest that avoiding mating is 

a relevant factor in the evolution of polyandry in green turtles.  

In contrast, my results call into question the conclusions of Booth and Peters (1972). Their study 

strongly suggested that females have a large degree of control over whether they mate with a given 

male, and this study has been cited repeatedly as evidence that females are choosy. However, the high 

prevalence of multiple mating that I saw is unlikely to be present in a structured system like Booth and 

Peters (1972) describe. This could be a result of the habitat, as Booth and Peters describe specific, 

shallow areas in their lagoon study site (Fairfax Island in Australia) where females would congregate to 

avoid mating with males. Similar areas are not present off of Florida’s east coast.  

 It is apparent from my study of the mating system that the Florida population (which nests 

disproportionately within the ACNWR) is unusual. Florida’s green turtle population has exploded in the 

last 30 years, and is the fastest growing population in the world (Chaloupka et al. 2008); perhaps the 

unusually high prevalence of polyandry is playing a role. Although I was unable to make conclusions 

regarding the effects of polyandry on hatching success, it could be that this is just not the right measure 

of fitness. Using other measures, such as hatchling crawl speed or one-year survival, might reveal the 

benefits of increased genetic diversity resulting from polyandry. Fitness proxies from other life stages 

would be very difficult to study; hatching success is commonly used as a proxy success precisely because 

it is easy to measure. But the association of a mating system typically associated with more dense 

populations and the rapid growth of the Florida population is hard to ignore, and perhaps calls for action 

to preserve high male densities off the nesting beach.  
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If Florida has a relatively high male to female ratio, this ratio is almost certain to change as the 

climate warms. Changes of less than a degree could swing nests from male-biased offspring sex ratios to 

female-biased sex ratios (Spotila et al. 1987, Standora and Spotila 1985). Recent research (M. Schwoerer 

unpublished data) has indicated that nest shading can have a significant impact on nest and sand 

temperatures on a Florida nesting beach, and this strategy has been tested and implemented on other 

marine turtle nesting beaches (Patino-Martinez et al. 2012, Jourdan and Fuentes 2013). It may be 

appropriate to explore this strategy in Florida as well, given the results of my study of the mating 

system, a recent study that showed a persisting female bias in Indian River Lagoon juveniles (Sanchez 

unpublished thesis) and previous knowledge of how the mating system is affected by the availability of 

males (Emlen and Oring 1977, Jensen et al. 2006). More study of male behavior and how offspring sex 

ratios translate to the adult population is needed to be certain of the necessity of these actions. 

 In conclusion, I conducted a focused evaluation of the mating system in the green turtles nesting 

on the ACNWR. I found that this population has unprecedented rates of multiple paternity (85.7% of 

nests), but I was unable to evaluate the evolutionary relevance of the indirect benefits of polyandry as a 

result of this extremely high prevalence. My results, and other preliminary analyses, suggest that there 

is a relatively high male to female OSR in the Florida breeding population, and that the effects of this 

ratio drive the mating system in green turtles. 
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APPENDIX: GENETIC RESULTS FOR ALL NESTING FEMALES AND 
THEIR HATCHLINGS 
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In this appendix, I tabulate all of the microsatellite allele data that I was able to generate. They are 

sorted by nest, with the associated nesting female included at the top of the table. A non-zero number is 

the base pair size of the allele for that individual. Two zeroes indicate that I did not have any data for 

that individual at that locus. A non-zero number for one allele at locus and a zero for the other indicates 

I only saw one peak in GeneMarker that was the mother’s allele and no others and to be conservative I 

included a 0 for the other allele.  

11/150 

Hatchlings 

1010 1010 1014 1014 

NF 0 0 240 276 

1 252 276 240 244 

2 252 276 240 276 

3 252 276 0 0 

4 252 276 0 0 

5 240 252 0 0 

6 0 0 0 0 

7 240 252 240 268 

8 248 272 240 276 

9 252 276 268 276 

10 252 276 240 276 

11 252 276 240 276 

12 240 252 240 276 

13 240 252 0 0 

14 240 252 240 276 

15 236 252 0 0 

16 240 252 0 0 

17 240 252 268 276 
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18 252 276 278 276 

19 240 252 240 244 

20 240 252 240 244 

21 240 252 0 0 

22 252 276 0 0 

23 252 276 240 276 

 

 

11/151 

Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 CHMY15 CHMY16 

NF 238 266 168 184 252 268 

1 258 266 176 184 260 268 

2 238 258 168 176 252 260 

3 0 0 168 176 252 260 

4 0 0 176 184 260 268 

5 0 0 168 176 252 260 

6 0 0 176 184 260 268 

7 0 0 176 184 252 260 

8 0 0 168 176 252 260 

9 238 258 0 0 252 260 

10 238 258 168 176 252 260 

11 0 0 168 176 252 260 

12 258 266 0 0 252 260 

13 0 0 0 0 252 260 

14 0 0 0 0 252 260 

15 0 0 176 184 260 268 
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16 0 0 176 184 260 268 

17 238 246 0 0 252 260 

18 238 258 168 176 252 260 

19 0 0 168 176 252 260 

20 0 0 0 0 260 268 

21 0 0 0 0 252 260 

 

 

11/152 

Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 

NF 242 246 252 252 

1 242 246 244 252 

2 246 250 248 252 

3 246 246 252 272 

4 242 246 244 252 

5 242 246 248 252 

6 246 250 248 252 

7 242 246 252 272 

8 242 246 244 252 

9 242 246 244 252 

10 242 246 252 264 

11 242 246 244 252 

12 246 254 248 252 

13 242 254 248 252 

14 246 258 252 272 

15 0 0 252 264 
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16 0 0 248 252 

17 238 242 244 252 

18 0 0 252 264 

19 242 246 244 252 

20 246 246 252 272 

21 246 246 252 272 

22 0 0 248 252 

23 242 246 244 252 

 

11/153 Hatchlings CHMY02 CHMY02 CM84 CM84 

NF 239 267 341 363 

1 267 279 341 353 

2 239 251 341 353 

3 263 267 353 363 

4 263 267 341 353 

5 263 267 343 363 

6 267 271 341 363 

7 239 251 341 351 

8 239 271 343 363 

9 239 251 361 363 

10 239 279 341 353 

11 251 267 353 363 

12 267 271 341 343 

13 267 279 353 363 

14 263 267 343 363 

15 267 279 351 363 
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16 239 267 341 343 

17 239 279 0 0 

18 239 279 341 353 

19 239 251 361 363 

20 239 251 0 0 

21 251 267 341 353 

22 251 267 351 363 

 

 

11/154 

Hatchlings 

CHMY02 CHMY02 CHMY15 CHMY15 

NF 238 254 240 252 

1 254 254 252 268 

2 254 254 252 256 

3 238 254 252 268 

4 238 254 252 256 

5 254 254 252 268 

6 254 258 240 268 

7 0 0 240 256 

8 254 258 240 268 

9 238 254 252 268 

10 254 254 240 268 

11 238 254 240 256 

12 254 258 240 268 

13 238 254 252 256 

14 254 258 240 268 
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15 0 0 240 256 

16 238 258 252 268 

17 254 254 240 256 

18 254 254 240 256 

19 238 254 240 256 

20 254 254 240 268 

21 238 258 252 256 

22 238 254 252 256 

23 238 258 0 0 

24 254 254 252 256 

 

 

11/160 

Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 CHMY15 CHMY15 CM84 CM84 

NF 0 0 160 168 244 252 345 351 

1 242 246 168 168 248 252 351 351 

2 238 242 168 176 252 260 345 361 

3 242 246 160 168 244 252 345 361 

4 242 246 160 168 244 252 345 361 

5 242 246 168 168 252 252 351 357 

6 0 0 160 168 244 252 345 361 

7 242 262 168 168 248 252 345 357 

8 246 281 168 176 252 260 351 361 

9 242 285 160 168 244 252 351 361 

10 242 246 160 168 244 252 341 345 

11 242 250 168 188 252 272 345 361 
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12 246 285 160 168 244 252 351 351 

13 238 242 160 168 244 252 341 351 

14 242 250 160 188 244 272 345 345 

15 246 285 160 168 244 252 341 351 

16 242 285 160 168 244 252 351 361 

17 246 285 168 168 248 252 345 351 

18 238 242 168 176 252 260 345 351 

19 242 246 168 168 248 252 345 357 

20 242 262 160 168 244 252 341 351 

21 242 262 168 168 248 252 341 351 

22 242 246 0 0 252 252 351 351 

23 242 246 168 168 252 252 351 361 

24 242 246 168 168 248 252 351 351 

 

 

11/155 

Hatchlings 

CHMY15 CHMY15 CM84 CM84 

NF 256 268 341 363 

1 0 0 341 345 

2 252 256 341 345 

3 268 272 341 343 

4 268 272 341 353 

5 0 0 341 353 

6 252 268 345 363 

7 252 256 341 363 

8 256 272 361 363 
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9 256 272 353 363 

10 268 268 363 363 

11 268 276 345 363 

12 268 272 361 363 

13 256 268 361 363 

14 268 272 353 363 

15 252 276 341 345 

16 268 272 361 363 

17 268 276 0 0 

18 256 276 361 363 

19 268 276 353 363 

20 252 256 345 363 

21 0 0 341 345 

22 252 268 341 345 

23 256 276 341 343 
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Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 CHMY15 CHM15 

NF 254 254 168 172 256 272 

1 234 254 168 172 252 272 
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2 254 290 168 172 252 256 

3 0 0 168 172 252 272 

4 0 0 168 172 248 256 

5 0 0 168 172 256 0 

6 254 282 160 172 244 256 

7 254 282 160 172 252 256 

8 234 254 168 188 0 0 

9 254 282 168 172 252 272 

10 234 254 168 188 252 272 

11 0 0 160 172 0 0 

12 234 254 160 168 0 0 

13 254 282 160 172 0 0 

14 0 0 160 172 0 0 

15 254 282 0 0 244 272 

16 234 254 168 188 252 272 

17 254 282 168 172 252 256 

18 234 254 168 172 0 0 

19 0 0 160 172 0 0 

20 254 282 168 188 0 0 

21 254 282 168 172 0 0 

22 234 254 168 172 0 0 

23 234 254 168 188 0 0 

24 234 254 168 172 0 0 

 

11/158 

Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 CHMY15 CHMY15 
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NF 258 282 156 184 240 268 

1 242 282 180 184 268 284 

2 246 258 156 156 240 240 

3 246 258 156 188 240 240 

4 246 258 156 156 0 0 

5 0 0 156 156 0 0 

6 242 282 184 204 0 0 

7 242 258 184 204 0 0 

8 246 258 156 184 0 0 

9 0 0 156 156 0 0 

10 242 258 156 168 0 0 

11 246 282 0 0 0 0 

12 242 258 156 156 240 240 

13 242 258 184 204 0 0 

14 242 258 0 0 0 0 

15 242 282 0 0 268 288 

16 242 258 156 204 240 288 

17 242 258 156 204 240 0 

18 242 282 156 204 240 284 

19 0 0 176 184 0 0 

20 242 282 184 204 0 0 

21 242 282 0 0 0 0 

22 242 258 0 0 0 0 
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11/162 

Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 

NF 238 246 180 184 

1 238 254 176 184 

2 238 258 180 184 

3 238 254 176 180 

11/161 

Hatchlings 

1010 1010 1014 1014 

NF 258 262 240 264 

1 242 258 248 264 

2 242 258 0 0 

3 242 262 240 268 

4 242 258 240 248 

5 242 262 240 248 

6 254 262 240 248 

7 242 258 264 268 

8 242 262 264 268 

9 254 262 248 264 

10 242 262 264 268 

11 242 258 0 0 

12 242 258 0 0 

13 242 262 240 252 

14 238 262 0 0 

15 242 262 264 268 
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4 246 274 156 180 

5 238 0 176 180 

6 238 254 176 180 

7 238 254 176 180 

8 238 238 176 184 

9 238 254 176 180 

10 238 254 176 184 

11 238 274 180 184 

12 246 254 176 180 

13 246 274 180 184 

14 238 274 156 184 

15 246 258 176 180 

16 238 254 176 180 

17 238 254 176 180 

18 238 258 184 184 

19 246 258 184 184 

20 246 258 0 0 

21 238 0 156 184 

 

 

11/163 

Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 CHMY15 CHMY15 

NF 234 254 160 176 244 268 

1 234 254 160 176 244 260 

2 0 0 168 176 0 0 

3 234 234 160 176 244 260 
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4 234 234 160 184 244 268 

5 234 246 0 0 0 0 

6 234 254 176 192 0 0 

7 234 246 160 184 244 268 

8 234 234 160 176 244 260 

9 246 254 176 192 244 260 

10 246 254 176 192 0 0 

11 234 234 0 0 268 276 

12 246 254 176 192 0 0 

13 246 254 0 0 0 0 

14 234 234 160 184 244 268 

15 234 254 160 176 244 260 

16 234 254 160 176 244 260 

17 246 254 176 192 0 0 

18 234 254 176 192 0 0 

19 246 254 160 176 244 260 

20 234 234 0 0 244 268 

21 234 246 0 0 268 276 

22 234 254 176 192 0 0 

 

 

11/165 

Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 CHMY15 CHMY15 

NF 246 266 156 168 240 252 

1 258 266 156 184 240 268 

2 246 258 156 168 240 252 
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3 258 266 156 184 0 0 

4 238 0 156 156 0 0 

5 246 258 0 0 252 268 

6 0 0 156 168 0 0 

7 238 246 156 168 240 252 

8 266 278 156 168 0 0 

9 266 278 168 184 0 0 

10 246 258 168 184 0 0 

11 234 266 156 168 0 0 

12 234 246 164 168 0 0 

13 246 258 168 184 252 268 

14 246 278 156 184 0 0 

15 246 278 168 184 252 268 

16 246 278 156 168 0 0 

17 266 266 156 168 240 252 

18 0 0 168 184 0 0 

19 238 266 156 168 0 0 

20 238 246 168 184 0 0 

21 238 266 156 168 240 252 

22 258 266 156 184 0 0 

23 238 246 156 156 240 240 
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Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 CHMY15 CHMY15 

NF 250 282 160 188 244 272 
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1 234 250 160 168 244 252 

2 242 282 160 160 240 244 

3 234 282 160 0 244 252 

4 242 282 160 176 240 244 

5 242 282 156 160 240 244 

6 234 250 0 0 252 272 

7 242 250 156 188 240 272 

8 238 282 184 188 268 272 

9 234 250 168 188 252 272 

10 242 282 160 168 244 252 

11 238 282 160 184 244 268 

12 242 250 156 188 240 272 

13 242 250 156 160 240 244 

14 234 282 160 168 244 252 

15 234 282 160 168 244 252 

16 242 250 156 188 240 272 

17 234 282 160 168 244 252 

18 234 282 156 188 240 272 

19 234 282 168 188 252 272 

20 242 250 156 188 240 272 

21 242 282 156 160 240 244 

22 238 250 0 0 252 272 
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11/168 

Hatchlings 

CHMY02 CHMY02 CHMY15 CHMY15 

NF 254 266 240 268 

1 262 266 244 268 

2 254 258 244 268 

3 254 266 240 244 

4 262 266 240 244 

5 258 266 244 268 

6 254 258 0 0 

7 254 266 244 268 

8 254 258 240 244 

9 254 258 268 272 

10 258 266 268 272 

11 254 258 268 272 

12 262 266 268 272 

13 262 266 244 268 

14 254 258 268 272 

15 254 266 244 268 
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Hatchlings 

CHMY02 CHMY02 CHMY15 CHMY15 

NF 234 250 252 256 

1 242 250 0 0 

2 250 282 244 256 

4 234 242 248 252 



39 
 

5 234 242 248 252 

6 250 274 252 252 

7 250 254 252 256 

8 242 250 248 252 

10 250 254 252 256 

11 234 254 252 256 

12 242 250 248 252 

13 250 254 252 256 

14 242 250 252 256 

15 250 274 252 256 

 

2012 Nests 

 

12/110 

Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 CHMY15 CHMY15 

NF 246 258 160 168 244 252 

1 254 258 164 168 0 0 

2 0 258 160 168 244 252 

3 258 254 160 168 244 252 

4 0 0 160 168 244 252 

5 246 282 156 160 240 244 

6 254 258 168 160 252 240 

7 246 258 160 168 244 252 

8 254 258 160 168 244 252 

9 246 282 160 168 244 252 



40 
 

10 254 258 164 168 252 252 

11 246 258 160 168 244 252 

12 246 258 164 168 252 252 

13 254 258 160 168 244 252 

14 246 282 0 0 0 0 

15 246 282 160 168 244 252 

16 246 258 156 160 240 244 

17 258 0 168 168 252 252 

18 246 258 168 0 252 0 

19 246 282 160 168 244 252 

20 246 258 160 168 244 252 

21 246 258 160 168 244 252 

22 246 282 156 160 244 244 

 

 

12/111 

Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 CHMY15 CHMY15 

NF 0 0 156 156 240 240 

1 0 0 0 0 240 244 

2 254 274 0 0 0 0 

3 0 0 0 0 240 280 

4 250 266 156 176 240 260 

5 250 266 156 176 240 260 

6 0 0 156 176 240 260 

7 250 254 0 0 240 268 

8 0 0 156 160 240 244 
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9 254 274 156 184 240 268 

10 0 0 0 0 240 268 

11 0 0 0 0 240 240 

12 238 274 156 156 240 0 

 

 

12/117 

Hatchlings 

CHMY04 CHMY04 CHMY15 CHMY15 

NF 172 184 256 268 

1 0 0 256 268 

2 168 172 252 256 

3 172 184 256 268 

4 168 172 252 256 

5 168 172 0 0 

6 172 184 256 268 

7 0 184 264 268 

8 168 172 252 256 

9 168 172 256 256 

10 172 184 256 268 

11 168 184 0 0 

12 172 184 256 268 

13 180 184 264 268 

14 172 184 256 268 
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12/126 

Hatchlings 

CHMY04 CHMY04 CHMY15 CHMY15 

NF 176 184 260 268 

1 0 0 260 264 

2 156 176 240 260 

3 156 184 240 268 

4 184 192 268 276 

5 156 184 240 268 

6 176 192 260 276 

7 156 176 240 260 

8 0 0 256 260 

9 156 176 0 0 

10 0 0 240 268 

11 156 176 240 260 

12 176 176 260 256 

13 176 192 260 276 

14 176 0 260 260 

15 168 184 252 268 

16 156 184 240 268 
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12/127 

Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 

NF 0 0 252 268 

1 270 0 248 268 

2 0 0 256 268 

3 262 0 252 268 

4 0 0 252 256 

5 0 0 256 268 

6 0 0 256 268 

8 0 0 268 268 

9 254 270 244 252 

10 254 262 244 268 

11 242 270 248 268 

12 0 270 248 252 

13 254 270 244 252 

14 0 0 244 252 

15 254 262 244 268 

16 254 0 0 0 

17 254 262 244 252 

19 254 270 0 0 

20 254 262 244 252 

21 254 270 244 268 

22 0 270 248 252 

23 254 0 244 252 

24 254 262 244 252 
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12/133 

Hatchlings 

CHMY02 CHMY02 CHMY04 CHMY04 

NF 0 0 240 256 

1 254 270 256 268 

2 254 270 256 268 

3 270 282 256 268 

4 270 282 256 268 

5 262 270 0 0 

6 254 270 256 268 

7 254 270 256 268 

8 0 0 268 240 

9 254 270 256 268 

10 258 274 0 0 

11 254 270 0 0 

12 0 0 256 268 

13 250 270 0 0 

 

 

12/137 

Hatchlings 

CHMY02 CHMY02 CHMY15 CHMY15 

NF 246 266 256 268 

1 254 266 256 268 

2 246 250 0 0 

3 242 246 0 0 
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4 242 266 0 0 

5 242 246 0 0 

6 250 266 0 0 

7 246 250 268 0 

8 246 250 0 0 

9 242 246 252 256 

10 250 266 248 256 

11 0 0 256 268 

12 246 250 268 0 

13 242 246 268 0 

14 246 254 252 268 

15 246 250 252 268 

16 242 266 0 0 

17 242 266 252 256 

18 246 250 252 268 

19 250 266 252 256 

20 246 250 268 0 

21 250 266 252 268 

 

 

12/138 

Hatchlings 

CHMY02 CHMY02 CHMY15 CHMY15 

NF 242 250 240 244 

1 242 266 240 244 

2 250 266 244 252 

3 242 266 244 252 
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4 242 266 0 0 

5 250 266 244 252 

6 250 266 240 244 

7 242 266 0 0 

8 242 266 0 0 

9 250 266 240 244 

10 242 266 240 244 

11 242 266 244 252 

12 250 266 244 252 

13 250 266 240 244 

14 242 266 244 252 

15 242 266 244 252 

16 242 266 240 244 

17 242 266 244 252 

18 242 266 0 0 

19 242 266 0 0 

20 242 266 244 252 

21 242 266 0 0 

22 250 266 244 252 

23 242 266 244 252 

24 250 266 240 244 

 

 

12/139 

Hatchlings 

CHMY02 CHMY02 CHMY15 CHMY15 

NF 242 246 256 260 
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1 242 262 260 268 

2 242 262 260 268 

3 242 0 240 256 

4 242 262 260 268 

5 246 262 256 268 

6 246 262 256 268 

7 242 246 240 260 

8 242 246 240 260 

9 246 262 260 268 

10 246 262 260 268 

11 242 262 240 256 

12 242 262 256 268 

13 246 262 260 268 

14 242 246 240 260 

15 246 262 260 268 

16 242 246 240 260 

17 242 246 240 260 

18 242 246 240 256 

19 246 262 256 268 

20 242 246 260 268 

21 242 246 240 260 

 

 

12/140 

Hatchlings 

CHMY02 CHMY02 CHMY15 CHMY15 

NF 242 258 268 268 
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1 0 0 256 268 

2 0 0 252 268 

3 254 258 252 268 

4 242 254 268 268 

5 258 270 268 268 

6 254 258 252 268 

7 0 0 252 268 

8 254 258 268 272 

9 250 258 256 268 

10 0 0 256 268 

11 242 254 252 268 

12 254 258 252 268 

13 242 270 268 268 

14 242 254 252 268 

15 242 250 268 272 

16 242 254 256 268 

17 258 270 256 268 

18 0 0 252 268 

19 242 270 256 268 

20 242 254 268 268 

21 258 270 268 268 

22 254 258 0 0 

23 258 270 268 272 

24 242 274 256 268 
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12/141 

Hatchlings 

CHMY02 CHMY02 CHMY15 CHMY15 

NF 242 250 256 268 

1 242 254 268 272 

2 250 274 264 268 

3 242 274 264 268 

4 242 274 264 268 

5 242 274 256 268 

6 250 254 268 272 

7 242 254 256 272 

8 242 0 260 268 

9 242 274 256 268 

10 242 274 256 268 

11 250 274 264 268 

12 250 254 256 268 

13 242 274 264 268 

14 250 274 268 268 

15 242 254 256 272 

16 242 246 260 268 

17 250 254 268 272 

18 250 274 268 272 

19 242 254 256 272 

20 250 274 256 268 

21 242 274 264 268 

22 242 254 256 272 

23 242 254 256 272 

24 242 246 0 0 
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12/142 

Hatchlings 

CHMY02 CHMY02 CHMY15 CHMY15 

NF 234 254 252 272 

1 0 0 252 252 

2 250 254 240 272 

3 250 254 240 252 

4 254 282 252 272 

5 234 250 240 252 

6 250 254 0 0 

7 234 254 252 272 

8 234 282 252 272 

9 0 0 252 252 

10 242 254 252 252 

11 254 282 0 0 

12 234 250 240 252 

13 234 282 252 272 

14 250 254 240 252 

15 234 250 240 252 

16 234 282 252 252 

17 254 282 252 252 

18 234 282 252 252 

19 234 282 240 252 
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20 234 250 252 252 

21 250 254 240 272 

22 254 282 252 272 

23 254 282 240 252 

24 234 250 252 252 

 

 

   

  

  

 .   
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