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ABSTRACT 

The West Indian manatee (Trichechus manatus) is an herbivorous marine 

mammal that occupies freshwater, estuarine, and marine habitats.  Despite being 

considered endangered, relatively little is known about the feeding ecology of either of 

the two recognized subspecies, the Florida manatee (T.m. latirostris) and Caribbean or 

Antillean manatee (T.m. manatus).  A better understanding of their respective feeding 

preferences and habitat use is essential to establish criteria on which conservation plans 

can be based.  The present study expands on previous work on manatee feeding ecology 

by both assessing the application of stable isotope analysis to manatee tissue and 

providing critical baseline parameters for accurate isotopic data interpretation.   

The present study was the first to calculate stable isotope turnover rate in the skin 

of any marine mammal.  Stable carbon and nitrogen isotope ratios were examined over a 

period of more than one year in the epidermis of rescued Florida manatees that were 

transitioning from a diet of aquatic forage to terrestrial forage (lettuce) in captivity.  

Mean half-life for 13C turnover in manatee epidermis was 55 days and mean half-life for 

15N turnover was 42 days.  Due to these slow turnover rates, carbon and nitrogen stable 

isotope analysis in manatee epidermis is useful in summarizing average dietary intake 

over a long period of time rather than assessing recent diet.  In addition to turnover rate, a 

diet-tissue discrimination value of 2.8‰ for 13C was calculated for long-term captive 

manatees on a lettuce diet. 

Turnover and diet-tissue discrimination results were subsequently used to 

interpret carbon and nitrogen stable isotope data in epidermis samples collected from 
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free-ranging manatees in Florida, Belize, and Puerto Rico.  This study was the first 

application of stable isotope analysis to Antillean manatees.  Regional differences in 

stable isotope ratios in manatee skin were consistent with ratios in plant samples 

collected in those regions.  Signatures in the skin of manatees sampled in Belize and 

Puerto Rico indicated a diet composed mainly of seagrasses, whereas those of Florida 

manatees exhibited greater variation.  Mixing model results indicated manatees sampled 

from Crystal River and Homosassa Springs had an overall average intake of primarily 

freshwater vegetation whereas manatees sampled from Big Bend Power Plant, Ten 

Thousand Islands, and Warm Mineral Springs fed primarily on seagrasses.  Possible diet-

tissue discrimination values for 15N ranged from 1.0 to 1.5‰.  Stable isotope analysis can 

be successfully applied to interpret manatee feeding behavior over a long period of time, 

specifically the use of freshwater vegetation vs. seagrasses, and can aid in improving 

conservation efforts.  
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CHAPTER 1: INTRODUCTION 

The West Indian manatee (Trichechus manatus) is an herbivorous marine 

mammal comprised of two subspecies, the Florida manatee (T.m. latirostris) and the 

Antillean or Caribbean manatee (T.m. manatus).   Of the four extant sirenian species, the 

West Indian manatee is one of only two (T. manatus and T. senegalensis) that occupy 

marine, estuarine, and freshwater habitats (Hartman 1979, Best 1981).  Florida manatees 

are found in Floridian waters year-round but during warm seasons their range extends 

west along the Gulf coast to Texas, and as far north as the Carolinas and Virginia (Fertl et 

al. 2005).  The Antillean manatee is distributed along the coastlines of the Caribbean, 

Central America, and the northern coast of South America. 

Florida and Antillean manatees are endangered and both human-related and 

natural threats compromise their populations.  Injury due to watercraft and poaching rank 

the highest among human-related causes of mortality in Florida and Antillean 

populations, respectively (UNEP Caribbean Environment Programme 1995, U.S. Fish 

and Wildlife Service 2001).  Less common, yet still threatening, are entanglement in 

fishing gear, ingestion of debris, and crushing/drowning in flood gates or canal locks.  

Natural causes of mortality may include cold stress, red-tide poisoning, disease, or birth 

complications.  Habitat threats that can and are affecting both populations include 

scarring of seagrass beds due to boat traffic, loss of seagrass beds, coastal development, 

and pollution (Smith 1993, Duarte 2002). 

Relatively little is known about manatee feeding ecology and habitat use since 

they often occupy shallow, turbid water.  The Florida Manatee Recovery Plan (U.S. Fish 
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and Wildlife Service 2001) and the Regional Management Plan for the West Indian 

Manatee (UNEP Caribbean Environment Programme 1995) include identifying and 

evaluating manatee habitats through studies of their feeding ecology as one of many 

actions needed for species recovery and/or protection.  The present study focused on the 

feeding ecology of manatees in Florida, Belize and Puerto Rico. 

The Florida manatee has been divided regionally into four subpopulations: 

Northwest, Southwest, Atlantic (including the lower St. Johns River), and the upper St. 

Johns River.  Three of the four subpopulations occur in regions that contain marine, 

estuarine, and freshwater habitats, while the upper St. Johns River is exclusively a 

freshwater habitat.  There is some movement of individual manatees between 

subpopulations, but movements between the east and west coasts of Florida have not 

been documented (Reid et al. 1991).  Manatee habitat use in Florida may be characterized 

by access to freshwater, adequate and appropriate vegetation, bathymetry, currents, 

and/or shelter (reviewed by Lefebvre et al. 1989).  It is presumed that the need for regular 

access to fresh drinking water is based upon osmoregulatory requirements (Ortiz et al. 

1998, Ortiz et al. 1999).  If water temperatures drop below 20C, manatees in Florida 

aggregate at natural (springs) or artificial (power plant outflows) warm water sources due 

to physiological constraints on thermal tolerances (Irvine 1983, Worthy et al. 2000, 

Bossart et al. 2003). 

Habitat use by Antillean manatees in Mexico has been characterized most 

strongly by proximity to a freshwater source (Olivera-Gomez & Mellink 2005).  The 

tropical habitat occupied by Antillean manatees does not experience the same 

fluctuations in water temperatures that necessitate manatee migration during cold seasons 
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in Florida.  Antillean manatee distribution is patchy, with population counts in most 

countries totaling fewer than 100 individuals (summarized in O'Shea & Salisbury 1991).  

Within the range of the Antillean manatee, Belize has the largest population counts at 

approximately 100-250 individuals (O'Shea & Salisbury 1991, Morales-Vela et al. 2000).  

In Puerto Rico, the distribution is patchy, with most manatees being spotted along the 

southern and northeastern coasts.  Aerial survey counts in this region suggest a total 

population of 60-100 individuals (UNEP Caribbean Environment Programme 1995). 

Manatees are considered generalist herbivores and have been known to consume 

some 60 species of submerged, emergent, and floating vegetation in marine, estuarine, 

and freshwater habitats (Hartman 1979, Best 1981, Bengtson 1983).  Manatees may also 

incidentally ingest a considerable amount of encrusting organisms and/or algae found in 

the roots and foliage of aquatic vegetation (Hartman 1979, Mignucci-Giannoni & Beck 

1998, Courbis & Worthy 2003).  Additionally, there is evidence of manatees feeding on 

dead fish in the wild and captivity (Powell 1978, C. D. Alves pers. obs.) as well as 

terrestrial vegetation (e.g., O'Shea 1986).  Manatee feeding preference on different 

aquatic plant species may be influenced by species abundance and/or location, nutritional 

quality, sediment character, or water depth (e.g., Hartman 1979).  Depending on the plant 

type, nutritional quality, and/or palatability, sometimes manatees feed only on leaves and 

stalks whereas other plants are consumed whole (Hartman 1979, Best 1981). 

Seagrass species present in Florida and the Caribbean include Thalassia 

testudinum (turtle grass), Syringodium filiforme (manatee grass), Halodule wrightii (shoal 

grass), and Halophila spp., the first three of which are the most common.  Manatees have 

been observed both cropping the tops of seagrass blades and consuming the whole plant 
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including rhizomes (Hartman 1979, Packard 1984, Lefebvre & Powell 1990).  While 

consuming seagrass blades, it is also possible for manatees to inadvertently ingest 

invertebrates found in the seagrass community, and/or epiphytic algae on the blades. 

Evaluating feeding behavior and habitat use in marine mammals is challenging on 

multiple levels (reviewed by Pierce & Boyle 1991).  Feeding habits are difficult to 

observe directly since many marine mammal species feed at depth, are fast-moving, and 

may have expansive migration patterns.  Satellite transponders can be attached to a 

species during which movement patterns and time-depth analysis can provide information 

about feeding ecology (e.g., Laidre et al. 2003).  However, this analysis is costly and 

provides information only on specific individuals for a limited time period.  Stomach 

content analysis is another technique applied to marine mammal feeding research that 

provides evidence of recent diet (e.g., Spitz et al. 2006).  Stomach contents are either 

obtained from dead animals, or removed from live animals (gastric lavage).  

Identification of the ingested material is often difficult and may be biased towards 

undigested hard parts such as otaliths or beaks.  Ingested material can also be analyzed in 

the feces (e.g., Sinclair & Zeppelin 2002).  However, in the marine environment 

collection of fecal material and identification of the source individual can be problematic.  

Recently, the use of fatty acid signature analysis (FASA) has expanded as a dietary 

analysis methodology used in marine mammal research (reviewed by Budge et al. 2006).  

Potentially, FASA could distinguish between prey species through investigation of the 

proportions of fatty acids in the blubber layer of the consumer as they relate to those in 

the diet.  However, data interpretation is still in developmental stages and sampling is 

somewhat invasive, requiring full blubber depth.  FASA is also difficult to apply to 
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species that undergo fermentation, such as manatees, since fatty acids are a product of the 

fermentation process and would complicate tracing of dietary fatty acids. 

While the dietary preferences of manatees are understood within some habitats, it 

is unclear whether they are feeding in all habitats they occupy, and how their feeding 

habits vary.  While some work has been done, my goal is to expand on previous work by 

assessing the application of stable isotope analysis to manatee tissue, and providing 

critical baseline parameters for accurate isotopic data interpretation. 

Stable isotope analysis is a relatively new technique and its use in ecological 

research has expanded rapidly in recent years (reviewed by Kelly 2000).  Isotopic 

analysis has some advantages over the previously discussed techniques in feeding 

ecology because it provides information about assimilated nutrients, not just those 

ingested.  Also, sampling does not require sacrificing the animal because tissues such as 

skin, hair, or blood can be collected from live animals.  For marine mammals, this 

sampling method is often logistically easier than collecting stomach content and/or fecal 

samples and less invasive than sampling the full blubber depth required for FASA.  

Finally, stable isotope composition can provide information about both previous and 

current diet since isotope turnover rates vary between different tissues (Hobson & Clark 

1992a). 

Ratios of heavy to light stable isotopes naturally occurring in the diet are reflected 

in the tissues of the consumer.  These ratios can be used to make predictions about food 

web dynamics, diet composition, and even habitat use and migratory patterns (Deniro & 

Epstein 1978, 1981, Fry 1981, Peterson & Fry 1987, Hobson 1999, Jones & Waldron 
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2003, Cerling et al. 2006).  Two common naturally occurring stable isotope ratios used in 

ecological studies are 13C/12C and 15N/14N (expressed as δ13C and δ15N, respectively).   

Carbon and nitrogen stable isotope analyses of food source and consumer tissue 

can be used to make predictions about habitat use because freshwater and marine food 

webs have distinct isotopic compositions (e.g., Smith et al. 1996), as do terrestrial and 

aquatic food webs (e.g., Fry & Sherr 1984, Cree et al. 1999), as well as benthic and 

pelagic regions (e.g., Vizzini et al. 2002).  Specifically, carbon and nitrogen stable 

isotope ratios differ between the sources of primary production due to the differing rates 

of heavy (13C, 15N) vs. light (12C, 14N) isotope incorporation during biogeochemical 

reactions. 

The stable isotope ratios of consumer tissue differ slightly from those of the diet.  

This difference is referred to as diet-tissue discrimination (formerly fractionation) and 

occurs due to the biochemical processes that show affinity for either the heavier or lighter 

isotope (Ehleringer & Rundel 1989).  For example, most enzymes have an affinity for the 

lighter isotope.  It is important to calculate an accurate diet-discrimination value in order 

to properly analyze stable isotope results.  Carbon diet-tissue discrimination may occur 

due to one or more of the following processes: preferential loss of 12CO2 during 

respiration, preferential uptake of 13C during digestion, and/or metabolic discrimination 

during the synthesis of new tissues (Deniro & Epstein 1978, Tieszen et al. 1983).  

Consumer tissue is enriched in 13C compared to the diet by an average of approximately 

1‰ (Deniro & Epstein 1978).  Nitrogen is incorporated into the body through digestion 

and lost through excretion.  During both processes, there is a preferential loss of 14N 

(Minagawa & Wada 1984).  This diet-tissue enrichment for nitrogen (3‰ on average) 
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progresses step-wise up trophic levels and is what allows for the interpretation of trophic 

position in food web studies (Deniro & Epstein 1981, Peterson & Fry 1987). 

In terrestrial plants, carbon in the atmosphere in the form of CO2 is incorporated 

into the plant through stomata.  Discrimination against the heavier 13CO2 takes place 

during diffusion into the cytoplasm and during carbon fixation, resulting in low 13C/12C 

ratios (Criss 1999).  The two enzymes involved in carbon fixation are PEP carboxylase 

and RuBP carboxylase, the later of which discriminates more strongly against 13C.  

Consequently, C4 and C3 plants, which use these enzymes respectively, have distinct δ13C 

values that differ from each other by approximately 14‰ (Smith & Epstein 1971).  CAM 

plants may use PEP or RuBP carboxylase depending on environmental and/or 

developmental factors.  As a result, the range of carbon isotopic ratios for CAM plants 

overlaps with those of C3 (-35 to -20‰) and C4 plants (-14 to -9‰) (Deines 1980).  Much 

less is known about the dynamics of 15N/14N ratios in terrestrial plants.  Nitrogen isotopes 

may differ between plants that fix atmospheric nitrogen, and those that rely on soil 

nitrogen.  There is also a degree of discrimination that occurs during nitrogen metabolism 

in the plant (Lajtha & Marshall 1994). 

In aquatic plants, carbon and nitrogen are incorporated into the plant from the 

dissolved inorganic carbon (DIC) and dissolved inorganic nitrogen (DIN) available in the 

water, respectively.  Aquatic plants have δ13C values that range from -30 to -8‰ 

(Ehleringer & Rundel 1989).  Ratios depend on the form and isotope ratios of the carbon 

source (CO2 vs. bicarbonate) and the photosynthetic pathway.  The δ15N values in aquatic 

plants range from -2 to 17‰ (McClelland et al. 1997, Cloern et al. 2002) and depend on 

nitrogen source and metabolism.  These factors enable both carbon and nitrogen stable 
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isotope ratios to be used to distinguish between aquatic plants in fresh, estuarine, and 

marine habitats (e.g., Reich & Worthy 2006). 

Variables that can affect carbon signatures in aquatic plants include light, pH, and 

temperature.  Light can affect metabolic rates of aquatic plants (which may be a result of 

depth, season, turbidity, or community species composition), which in turn impacts 

isotopic ratios (e.g., Cooper & Deniro 1989).  The pH can affect the relative amounts of 

dissolved free CO2 and bicarbonate in water (Bade & Cole 2006), consequently affecting 

plant isotopic ratios.  Changes in temperature (lower temperatures allow for greater gas 

solubility) can also impact isotopic ratio (e.g., Rau et al. 1989).  Many anthropogenic 

factors may affect 15N signatures in aquatic habitats such as fertilizer runoff, sewage, or 

animal waste runoff from agricultural regions (e.g., Vizzini & Mazzola 2006). 

As diet changes over time, the turnover rate in consumer tissues must be known in 

order to compare isotope composition of tissues to that of the current diet (Bosley et al. 

2002).  One can then infer changes in habitat, diet, or migratory pattern.  An effective 

method to determine turnover rates is to switch an animal experimentally from one 

known diet to another isotopically distinct diet.  Stable isotope turnover studies have 

shown that tissues with higher metabolic activity (e.g., blood, liver) have faster turnover 

rates than less active tissues (e.g., bone) (e.g., Hobson & Clark 1992a).  Stable isotope 

ratios in tissues with faster turnover rates will represent a recent diet whereas isotopic 

composition of tissues with slower turnover rates will represent feeding habits from some 

time previous.  Despite the large number of studies that have used stable isotope analysis 

across the marine mammal taxa (e.g., Ramsay & Hobson 1991, Hobson & Welch 1992, 

Ames et al. 1996, Walker et al. 1999, Clementz & Koch 2001, Kurle & Worthy 2002, 
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Yamamuro et al. 2004, Lee et al. 2005, Newsome et al. 2006, Reich & Worthy 2006), 

stable isotope turnover rates have only been calculated for seal vibrissae (Zhao & Schell 

2004, Hall-Aspland et al. 2005).  Because turnover rates often differ between tissues and 

species, it is crucial to broaden marine mammal isotope turnover research in order to 

accurately interpret stable isotope data. 

The overall objective of this study was to use stable isotope analysis of the skin of 

Florida and Antillean manatees to assess feeding ecology.  To accomplish this objective, 

I first determined stable isotope turnover rates and diet-tissue discrimination values in 

manatee skin in order to accurately interpret isotopic results.  Chapter 2 focuses on 

determining 13C and 15N turnover rates in the epidermis of rehabilitated Florida manatees.  

This study was the first to measure stable isotope turnover in marine mammal skin.  

Manatees that were brought into captivity for medical treatment and in need of 

rehabilitation were immediately transitioned to a diet consisting of mainly romaine 

lettuce, which has an isotopic signature distinct from that of aquatic vegetation.  Skin 

samples were collected over a period of up to 418 days following the diet switch.  Carbon 

diet-tissue discrimination values were also calculated.  Chapter 3 applies stable isotope 

analysis of skin tissue to free-ranging manatees in Florida, Belize, and Puerto Rico.  This 

study was the first to apply stable isotope analysis to Antillean manatees.  Regional 

differences in carbon and nitrogen isotopic signatures were compared between manatees.  

Additionally, factors including sex, season, and age class were explored.  Aquatic plants 

within the presumed manatee diet were also analyzed for carbon and nitrogen stable 

isotopes.  Using calculated and estimated diet-tissue discrimination values, a mixing 
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model was used to compare proportions of freshwater vegetation, estuarine vegetation, 

and seagrasses in the diet of Florida manatees that winter in different regions. 
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CHAPTER 2: CARBON AND NITROGEN STABLE ISOTOPE 
TURNOVER RATES IN THE SKIN OF THE FLORIDA MANATEE  

(TRICHECHUS MANATUS LATIROSTRIS) 

Introduction 

The use of stable isotope ratios in ecological research has expanded rapidly in 

recent years (reviewed by Kelly 2000).  Isotopic composition of consumer tissues reflects 

those of local food webs and can be used to predict diet composition, the trophic level at 

which the consumer is feeding, and even habitat use and migratory patterns (Deniro & 

Epstein 1978, 1981, Fry 1981, Peterson & Fry 1987, reviewed by Hobson 1999).  Two 

common stable isotope ratios analyzed in feeding ecology studies are those of carbon 

(13C/12C) and nitrogen (15N/14N).  Carbon stable isotope ratios indicate the source of 

primary production and have been used to differentiate between C3 and C4 plants, 

terrestrial and marine ecosystems, and benthic and pelagic aquatic systems (Cloern et al. 

2002, Hall-Aspland et al. 2005).  Nitrogen stable isotope ratios exhibit a predictable, 

step-wise enrichment between trophic levels and also have been shown to differ between 

terrestrial and marine ecosystems (Hobson & Welch 1992). 

Stable isotope analysis is especially advantageous when investigating the feeding 

ecology and habitat use of marine mammals for which it is often difficult to directly 

observe feeding or migratory behavior.  Tissue samples such as skin or blubber may be 

analyzed for stable isotope ratios without sacrificing the animal.  In addition, isotope 

ratios reflect assimilated nutrients rather than only those ingested.  Stable isotope analysis 

has been successfully applied to marine mammals including mysticetes (e.g., Lee et al. 

2005), odontocetes (e.g., Walker et al. 1999), pinnipeds (e.g., Hobson & Welch 1992, 
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Kurle & Worthy 2002, Newsome et al. 2006), sirenians (Ames et al. 1996, MacFadden et 

al. 2004, Yamamuro et al. 2004, Reich & Worthy 2006), sea otters (Clementz & Koch 

2001), and polar bears (e.g., Ramsay & Hobson 1991). 

In order to accurately interpret isotopic results, it is imperative to determine both 

isotopic discrimination (the difference in isotopic ratios between consumer tissue and 

diet) and turnover rate (the time it takes for the isotope to be assimilated into the 

consumer’s tissue) of the sampled tissue.  Diet-tissue discrimination may be difficult to 

determine for animals feeding on multiple, isotopically distinct prey items for which the 

proportions of contribution to the diet are unknown.  However, controlled captive studies 

on a variety of taxa have allowed for more precise measurements (Roth & Hobson 2000, 

Cherel et al. 2005, Logan et al. 2006, Seminoff et al. 2006).  In addition to diet-tissue 

discrimination, turnover rates in tissues must be determined in order to assess whether the 

isotope signature of the tissue represents the most recent diet or the long-term diet.  An 

effective method to determine turnover rate is to switch an animal experimentally from 

one known diet to another isotopically distinct diet.  Turnover rates of stable isotopes 

have been calculated using this method for mammals (e.g., Tieszen et al. 1983), birds 

(e.g., Hobson & Clark 1992a), fish (e.g., Bosley et al. 2002), and invertebrates (e.g., 

Olive et al. 2003).  These studies have shown that tissues with higher metabolic activity 

(e.g., blood, liver) have faster turnover rates than less active tissues (e.g., bone). 

The endangered Florida manatee (Trichechus manatus latirostris) is known to 

feed on aquatic plants in fresh, estuarine, and marine habitats (Campbell & Irvine 1977, 

Hartman 1979, Best 1981), each of which has a distinct isotopic signature (Alves Chapter 

3, Fry & Sherr 1984, Reich & Worthy 2006).  Little is known about manatee feeding 
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ecology and habitat use since they often occupy shallow, turbid water.  In addition, 

manatee population counts and trends remain unclear (Lefebvre et al. 1995, U.S. Fish and 

Wildlife Service 2001).  It has become increasingly important to understand manatee 

feeding ecology and its relation to habitat use in order to improve conservation efforts. 

The present study used tissue samples from Florida manatees transitioning 

between two isotopically distinct diets (terrestrial and aquatic) to determine turnover rates 

in epidermis tissue.  Manatees were part of the rehabilitation program at SeaWorld 

Orlando, and were in need of captive care for reasons including physical trauma, 

nutritional stress, and/or cold stress.  The objectives of this study were to (1) determine 

13C and 15N turnover rates in epidermis tissue using skin samples from rescued Florida 

manatees, (2) calculate diet-tissue discrimination values for carbon and nitrogen stable 

isotopes in the skin of captive manatees held long-term, and (3) suggest application of 

these findings as they relate to the analysis of stable isotope data for free-ranging 

manatees. 
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Materials and Methods 

Sample collection 

Food items fed to manatees in captivity at SeaWorld Orlando (Orlando, FL) were 

collected during 2003 and 2004 (n = 35, Appendix A).  Manatees held long-term at 

SeaWorld Orlando were fed a diet consisting primarily of lettuce with minimal amounts 

of other terrestrial vegetation including spinach, carrots, and cabbage.  Occasionally, 

monkey chow biscuits (Mazuri) were given as a protein supplement.  Rescued manatees 

held at SeaWorld for rehabilitation were fed primarily romaine lettuce with minimal 

amounts of spinach.  Additionally, upon rescue, manatees were fed a gruel mixture 

through a stomach tube for the first few weeks consisting of romaine lettuce, spinach, 

water, and monkey chow (P. L. Ramos-Navarrete pers. comm.).  Manatees are known to 

engage in coprophagy (Hartman 1979, C. D. Alves pers. obs.) and therefore fecal 

material from captive manatees was also collected and analyzed for stable isotope ratios 

(n = 4) for a comparison to the fed diet items. 

Skin samples were collected from captive Florida manatees at SeaWorld Orlando.  

Some of these manatees were rescued animals being held temporarily in captivity for 

rehabilitation (n = 8, Appendix B), while others were animals held long-term for over one 

year (n = 9, Appendix C).  Skin samples from long-term captive animals were used to 

calculate diet-tissue discrimination and to determine isotopic values in manatee skin that 

were fully representative of a captive diet.  To determine turnover rates, samples were 

obtained opportunistically from rescued animals at various time intervals as they 

transitioned from wild forage to a captive diet (Appendix B).  Frequency of sample 
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collection depended on logistic feasibility.  Carbon and nitrogen stable isotope turnover 

rates in skin were calculated for Florida manatees rescued near Naples on the gulf coast 

and Cape Canaveral on the central east coast (Fig. 2.1).  These manatees were referred to 

as “coastal.”  Turnover rates in skin were also calculated for Florida manatees rescued in 

a region of the lower St. Johns River near Jacksonville (Fig. 2.1).  These manatees were 

referred to as “riverine.” 

After rehabilitation, some manatees were fitted with satellite tags and tracked 

when released.  Tracking provided an opportunity to collect skin samples from two 

animals that were released and had transitioned from a diet of terrestrial forage in 

captivity to aquatic forage in the wild.  Post-release sampling occurred during routine 

physical examinations (coordinated by the Manatee Rehabilitation Consortium) which 

were scheduled two, six, and twelve months post-release.  Slight deviations from this 

schedule often occurred due to availability of staff, weather conditions, and health 

condition of the animal. 

Biopsies of epidermal tissue were collected from the edge of the paddle using 

either a scalpel or ronguers.  Sloughed epidermis was collected if biopsies were not 

available.  Body mass and sex were determined, and length measurements were taken, 

where body length was measured as the straight distance from snout to paddle (Fig. 2.2).  

Manatees were categorized into three age classes based on body length measurements 

(adults: >275 cm, subadults/late juveniles: 176-275 cm, and calves: <176, O'Shea et al. 

1985). 

Manatee skin samples in previous studies were obtained by gathering sloughed-

off tissue (Ames et al. 1996) or by using skin samples derived from dead manatees (Reich 
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& Worthy 2006).  I compared stable isotope ratios between a sloughed skin and biopsy 

sample from the same recently rescued manatees (n = 9) to determine precision between 

collection methods and analyses. 

Sample preparation and analysis 

Stable isotope ratios were expressed in ppt (‰) using delta notation: 

(1) 

in which Rsample and Rstandard are the absolute isotope ratios of the sample and standard, 

respectively, X is 13C or 15N, and the standards are PeeDee belemnite (from the 

Cretaceous marine fossil, Belemnitella americana, from the PeeDee formation in South 

Carolina, Craig 1957) and atmospheric N2, respectively. 

Turnover rate was calculated using the exponential model of Hobson and Clark 

(1992a): 

(2) 

in which y is δX, a is the value approached asymptotically, b is the total change in value 

after diet switch, c is turnover rate, and t is time (days) since diet switch.  Turnover rate 

was expressed in terms of half-life, the time it takes for the isotopic composition of the 

tissue to reach a midpoint between the initial and final values: 

 
(3) 

In order to better fit turnover data to the exponential model, an “anchor point” 

based on the mean stable isotope ratio (δ13C = -24.4 ± 0.2‰ SE, δ15N = 2.7 ± 0.2‰ SE) 

of skin samples from nine long-term captive manatees at SeaWorld Orlando, was set at 

600 days.  These animals were fed a diet of mainly lettuce for multiple years.  The 

δX = (Rsample/Rstandard - 1) x 1000 

y = a + bect

ln 0.5 
c 
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position of the anchor point at 600 days was chosen because it was well beyond the 

maximum sampling time for all rescued manatees (no manatee was sampled later than 

418 days), plots for almost all skin samples reached an asymptote at or before this point, 

and positions greater than 600 days did not alter results. Goodness of fit was first 

expressed by calculating the coefficient of determination (R2) using the anchor point as 

part of the data set.  To further illustrate fit, data for skin from each rescued manatee were 

paired with each individual data point contributing to the mean anchor point and 

minimum and maximum R2 values were computed. 

All statistical analyses were judged to be significant at <0.05.  Data were tested 

for normality using the Shapiro-Wilk test.  Levene’s F and Box’s M were used to test 

homogeneity of variance between factors and homogeneity of covariance, respectively.  

Differences in δ13C and δ15N values were tested using parametric and non-parametric 

analyses as appropriate.  Means are presented ± SE. 
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Results 

Stable isotope ratios were significantly different between diet items (MANOVA: 

Wilks’ Lambda, F8,50 = 16.79, p < 0.001).  Specifically, δ13C values differed (ANOVA: 

F4,26 = 75.60, p < 0.001), but δ15N values did not (F4,26 = 0.35, p = 0.84).  Gruel and 

monkey chow were both significantly enriched in 13C compared to romaine lettuce, 

spinach, and fecal samples (all p values < 0.01, Tukey HSD, Table 2.1). 

Skin from long-term captive manatees held at SeaWorld Orlando (mean δ13C =    

-24.4 ± 0.2‰) was enriched in 13C compared to the major diet components (romaine 

lettuce and spinach) by an average of 2.8‰.  The δ15N values did not differ between 

manatee skin (mean = 2.7 ± 0.2‰) and the diet (Table 2.1). 

Turnover rates 

Isotopic ratios in biopsy samples and sloughed skin from the same rehabilitated 

manatees were compared to determine the effect of differing collection methods.  The 

δ13C values did not differ significantly between biopsy and sloughed samples (paired t-

test: t = 0.15, df = 8, p = 0.89).  However, sloughed samples were significantly enriched 

in 15N compared to biopsy samples (mean enrichment = 1.3 ± 0.3‰, t = 4.32, df = 8, p = 

0.003).  To account for this difference, all δ15N values for sloughed samples were 

adjusted by the mean enrichment value. 

Coastal manatees 

Skin from manatees rescued from the Cape Canaveral region and Naples was 

greatly enriched in 13C relative to that of long-term captive manatees (mean enrichment = 
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13.8‰).  The δ13C values from four coastal manatees were fit to the exponential decay 

model (Fig. 2.3).  Carbon turnover half-lives in skin ranged from 42 to 63 days with a 

mean of 53 days (Table 2.2). 

Skin from manatees rescued from the Cape Canaveral region and Naples was only 

slightly enriched in 15N relative to that of captive manatees (mean enrichment = 3.5‰).  

The δ15N values for four rescued manatees were fit to the exponential decay model (Fig. 

2.4).  Nitrogen half-lives in the skin of coastal manatees ranged from 14 to 36 days with a 

mean of 27 days (Table 2.2) and were significantly shorter than carbon half-lives (paired 

t-test: t = 10.33, df = 3, p = 0.002). 

Riverine manatees 

Skin from manatees rescued from the St. Johns River had only slightly enriched 

or very similar carbon signatures relative to that of captive manatees (mean enrichment = 

4.3‰).  The δ13C values in the skin of four riverine manatees were fit to the exponential 

decay model (Fig. 2.5).  However, half-life was not calculated for manatee 0341 because 

the equation fit to the data points showed little to no change in signature over time (Table 

2.2, Fig. 2.5).  Carbon turnover half-lives in the skin of riverine manatees ranged from 39 

to 72 days with a mean of 59 days (Table 2.2). 

Skin from manatees rescued from the St. Johns River was enriched in 15N relative 

to that of captive manatees (mean enrichment = 6.7‰).  The δ15N values in the skin of 

four rescued manatees were fit to the exponential decay model (Fig. 2.6).  Nitrogen half-

lives in the skin of riverine manatees ranged from 21 to 115 days with a mean of 58 days 

(Table 2.2) and were not significantly different from carbon half-lives (paired t-test, t = 
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0.13, df = 2, p = 0.91).  MANOVA results indicated there were no significant differences 

in stable carbon or nitrogen isotope half-lives between manatees rescued from riverine vs. 

coastal regions (F test: F2,4 = 0.58, p = 0.60). 

After 434 days in captivity at SeaWorld Orlando, manatees 0340 and 0341 were 

successfully rehabilitated and released at Blue Spring on the St. Johns River (Figure 2.1).  

Skin samples were collected from both animals 77 days after release during a recapture 

coordinated by the Manatee Rehabilitation Consortium.  The exponential decay equations 

calculated for nitrogen turnover in the skin of those two manatees were reversed and 

plotted to show a change in signature after a diet switch from lettuce in captivity to 

freshwater aquatic plants in the St. Johns River (Fig. 2.7).  Skin from both manatees was 

enriched in 15N after release compared to values while on a captive diet.  The post release 

δ15N value for manatee 0340 (3.7‰) fell short of the model prediction (7.8‰) by 4.1‰.  

The post release δ15N value for manatee 0341 (3.1‰) fell short of the model prediction 

(5.7‰) by 2.6‰.  This calculation was not made for δ13C values due to the similarity of 

stable isotope ratios between skin from these riverine manatees and those of long-term 

captive manatees at SeaWorld Orlando (Fig. 2.5). 
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Discussion 

Diet-tissue discrimination 

The carbon enrichment value calculated in the skin of captive manatees relative to 

the diet (2.8‰) was similar to values previously reported.  Ames et al. (1996) found 

sloughed skin from captive manatees to be enriched in 13C by an average of 4.1‰ 

compared to lettuce.  Reich and Worthy (2006) assumed a carbon enrichment value of 

3.0‰ in manatee skin when applying the technique to diet interpretation of free-ranging 

manatees.  The only other known study on diet-tissue discrimination in skin is that of 

Hobson et al. (1996).  Seal skin was enriched in 13C relative to diet by 2.8‰.  In the 

present study, nitrogen enrichment could not be determined due to the variability of 

nitrogen signatures in the diet.  Typically, diet-tissue discrimination values for nitrogen 

are in the range of 2-5‰ (Peterson & Fry 1987, Kelly 2000). 

Turnover rates 

Carbon turnover 

Manatees rescued from coastal regions were ideal subjects for carbon turnover 

calculations because carbon signatures in their skin differed dramatically from those of 

captive manatees.  Interpreting δ13C values in the skin of riverine manatees was 

problematic due to variability in values at the time of rescue and similarity of δ13C values 

between skin from rescued manatees and those of long-term captive manatees.  The half-

lives in skin from riverine manatees were not significantly different than those of skin 

from coastal manatees; however, the carbon turnover data for manatees rescued from 
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riverine regions did not fit the exponential decay models as closely as those for coastal 

manatees (Table 2.2). 

The carbon half-life calculated for manatee epidermis was very slow compared to 

previous turnover studies on other species.  Stable isotope turnover rates can differ based 

on the particular isotope, tissue and/or taxon analyzed, diet, physiological state, feeding 

rate, and/or growth rate of the animal (Fry & Arnold 1982, Bosley et al. 2002, Hobson & 

Bairlein 2003, Olive et al. 2003).  Additionally, some studies removed lipids from 

samples while others did not.  Therefore, direct comparisons between studies are 

difficult.  Dalerum & Angerbjorn (2005) cautioned comparisons of turnover rates should 

be made between the same tissues to avoid these complications.  Additionally, turnover 

rates in tissues should be compared between animals of similar body size since metabolic 

rates have an effect on isotope turnover (Sponheimer et al. 2006). 

This study was the first to calculate stable isotope turnover rates in marine 

mammal skin.  Isotope turnover rates that have been reported for large terrestrial 

mammals, including bears (Hilderbrand et al. 1996), alpacas (Sponheimer et al. 2006), 

and domestic cattle and horses (Schwertl et al. 2003, Ayliffe et al. 2004), were 

determined using blood, muscle and liver, and hair, respectively.  Since no appropriate 

comparison between turnover rates in the skin of large mammals was possible, the results 

from this study will be cautiously compared to others.  Studies on stable isotope ratios in 

hair were omitted from this comparison since hair is a metabolically inert tissue in which 

the isotopic composition represents the period of growth. 

The only reported carbon half-lives in mammal tissue that were greater than that 

of manatee epidermis tissue were those of alpaca muscle (179 days, Sponheimer et al. 
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2006), and bat wing membrane ( >100 days) and whole blood (>100 days, Voigt et al. 

2003).  In the alpaca study, muscle tissues were not lipid extracted so direct comparisons 

may not be applicable.  Voigt et al. (2003) suggested the slow turnover rate in bat wing 

membrane was due to the tissue being composed primarily of collagen and elastin, which 

are known to have slow turnover rates in bone.  Additionally, Voigt et al. (2003) 

attributed the slow turnover rate in bat blood to long-lived erythrocytes.  Other reported 

carbon half-lives for muscle, liver, fat, blood, and brain tissue in mammals (5 to 37 days, 

Tieszen et al. 1983, Hilderbrand et al. 1996, Sponheimer et al. 2006) ranging in body size 

from gerbils (70 g) to American black bears (140 kg) were less than that calculated for 

manatee skin (average manatee body mass is approximately 1,000 kg, U.S. Fish and 

Wildlife Service 2001). 

Metabolic rate in adult Florida manatees has been shown to be slower than 

predicted based on their body size (15-40% of predicted values, Irvine 1983, Worthy et 

al. 2000).  Slow metabolism was likely a contributing factor to the slow carbon turnover 

rate in manatee skin.  It is also possible that feeding rate had an impact on turnover rate 

(as discussed in Post 2002).  Manatees use hindgut fermentation and the calculated 

passage rate in the digestive tract was 146 hours (Lomolino & Ewel 1984).  The manatees 

sampled in the present study were rescued for reasons including cold stress, 

entanglement, and watercraft injuries (Appendix B).  Due to their physical condition, 

their intake rates may have been slower than those of manatees not in need of 

rehabilitation. 

Epidermal tissue is composed of keratin in the epithelial and collagen and elastin 

in the basal lamina.  Manatee epidermis has been described as thick and possesses the 
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characteristic of hyperkeratosis (Sokolov 1982, Graham et al. 2003).  It is possible that a 

slow replacement of keratin in manatee epidermis and the presence of collagen and 

elastin in the basal lamina also contributed to the slow isotope turnover rate in the skin. 

The gruel mixture fed for the first few weeks of rehabilitation was enriched in 13C 

compared to the main diet components, romaine lettuce and spinach.  It is possible that 

the gruel in the diet affected the turnover rate slightly because essentially a change in the 

isotopic composition of the diet occurred a few weeks into the sampling period.  Also, 

while lettuce is offered from day one, the rate and/or frequency at which individual 

manatees begin feeding on the lettuce can vary.  It is presumed that the initial 

supplementation of gruel in the diet would only have had a small impact, if any on the 

carbon turnover rate since turnover was already very slow.  Also, the carbon half-lives 

calculated were on the same order (approximately 1.5 to 2.5 months) among individual 

manatees. 

There was no significant difference in δ13C values between biopsy and sloughed 

skin samples, so the differing sample types had no effect on carbon turnover rate.  Carbon 

isotope ratios of manatee fecal material did not differ from those of the main diet items, 

so even if manatees were engaging in coprophagy, it would not have had any effect on 

carbon turnover rate in the skin.  This result is further indication that stable isotope 

analysis of fecal material is useful in assessing short-term, recent diet. 

Nitrogen Turnover 

Manatees rescued from coastal regions were less than ideal subjects for nitrogen 

turnover calculations due to variability in initial δ15N values at time of rescue, similarity 
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of δ15N values between skin from rescued animals and those of captive animals, and 

variability in δ15N values in captive diet items.  Consequently, the nitrogen half-lives 

calculated were inconsistent (Table 2.2).  However, manatees rescued from the St. Johns 

River were better subjects because there was a greater difference in nitrogen signatures of 

skin between rescued and long-term captive animals and the data was a closer fit to the 

exponential model.  Even so, nitrogen half-lives for skin from riverine manatees were 

still variable.  Variability in half-lives was most likely due to the variability in nitrogen 

signatures of romaine lettuce and spinach fed in captivity (Table 2.1).  The lettuce and 

spinach in the captive manatee diet often originated from different agricultural producers 

and it is possible that different fertilization techniques were used.  Differences in 

fertilization techniques have been shown to contribute to variability in δ15N values of 

plants (Georgi et al. 2005). 

There are very few studies on nitrogen turnover in other species.  Nitrogen half-

lives in mammal tissues have been calculated for blood plasma and cells in black bears (3 

and 22 days, respectively, Hilderbrand et al. 1996).  Nitrogen half-lives have also been 

calculated in avian whole blood (10.0 to 14.4 days, Bearhop et al. 2002, Hobson & 

Bairlein 2003, Ogden et al. 2004) and plasma (0.5 to 1.7 days, Pearson et al. 2003).  

Nitrogen turnover in manatee skin was relatively slow compared to the results of these 

studies and is most likely due to the slow metabolic rate in manatees.  It might 

additionally be a result of epidermal tissue composition and/or feeding rate as previously 

discussed in terms of carbon turnover. 

Another factor that may affect nitrogen turnover is that nitrogen signatures in 

animal tissues may be dependant on nutritional state.  Hobson et al. (1993) found that 
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nutritional stress in birds resulted in elevated δ15N values, and suggested that this 

physiological effect be taken into consideration for other species.  Due to the variability 

in nitrogen signatures, it was not possible to determine whether enriched nitrogen 

signatures in skin of the rescued manatees were an indication of nutritional stress, or if 

nutritional stress might have had an effect on turnover rate.  At the time of rescue, each 

manatee’s body length and mass were recorded (Appendix B).  Those rescued for cold 

stress had the lowest mass to length ratio.  However, these manatees were also some of 

the smallest in size and a low mass to length ratio is typical of younger animals.  Of the 

eight rescued manatees, only two had a mass to length ratio less than 1:1.  Average adult 

manatee mass (1,000 kg) and length (300 cm) (U.S. Fish and Wildlife Service 2001) give 

a ratio of approximately 3:1. 

There was no compounding effect of the gruel supplement on nitrogen turnover 

rate since the signature of the gruel was not significantly different from that of romaine 

lettuce and spinach.  Likewise, coprophagy would have had no effect on nitrogen 

turnover rate in manatee skin since the δ15N values of manatee fecal material did not 

differ from those of the main diet items.  However, sloughed skin samples were 

significantly enriched in 15N compared to biopsy samples.  Though δ15N values were 

adjusted to account for this enrichment, variability in nitrogen turnover rates and lack of 

fit indicate that sample type may have contributed to the difficulty in calculating more 

precise half-lives.  At the present time, it is unclear as to why sloughed samples differed 

in δ15N values, but not δ13C values, from biopsy samples. 

Two rehabilitated manatees were sampled after release into the St Johns River.  

As expected, the post release nitrogen signatures in the skin began to approach the 
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original, free-ranging signature at time of capture.  It would be interesting to extend 

sampling of released manatees over a period of one year to determine whether the 

nitrogen turnover rate remains similar to that during rehabilitation.  It is not clear why the 

nitrogen ratios of the post-release skin samples fell short of the model.  However, 

seasonal variability in aquatic plant δ15N values in this region (Alves Chapter 3) may 

complicate post release turnover analysis.  Additionally, recently released animals may 

not eat for a period of time after release while adjusting to their new environment.  

Finally, both samples were sloughed skin and δ15N values were adjusted as previously 

mentioned.  Regardless of the adjustment, both samples still fell short of the model. 

Application to studies on free-ranging manatees 

When proportions of food sources contributing to a mixed diet are unknown, 

mixing models are often used to aid in estimating these proportions (e.g., Newsome et al. 

2004).  If a change in diet occurs, the resulting signature may not be representative of the 

current diet, but in fact, may be some intermediate value between the two distinct diets.  

While this result is the case in all stable isotope analyses, turnover rates in tissues with 

high metabolic activity, or turnover rates in tissues of other species with faster metabolic 

rates, are often fast enough to limit this complication.  Free-ranging manatees are known 

to switch diet sources (Best 1981, Lefebvre et al. 2000), and the very slow turnover rates 

for carbon and nitrogen stable isotopes in epidermis tissue complicate the interpretation 

of isotopic analyses.  Unless the manatee has been feeding on the same diet for an 

extended period of time, the skin signature will always be in a transitional state.  Slow 

turnover rates in manatee skin especially complicate the estimation of freshwater, 
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estuarine, and marine proportions of the diet because δ13C values for estuarine vegetation 

are intermediate between those of freshwater vegetation and seagrasses (Alves Chapter 

3).  For example, it might be assumed that an intermediate carbon signature in manatee 

skin is indicative of diet of primarily estuarine vegetation.  However, it is entirely 

possible that the manatee underwent a diet switch from freshwater vegetation to seagrass 

without ever consuming estuarine vegetation.  The incorporation of nitrogen stable 

isotope analysis aids in further separation of these three diet sources since nitrogen 

signatures for freshwater and estuarine vegetation differ from those of seagrasses (Alves 

Chapter 3).  The only known location in Florida where manatees may feed on the same 

type of vegetation for long periods of time is in freshwater habitat of the St. Johns River.  

Manatees that winter in the upper St. Johns tend to spend the remainder of the year in the 

lower St. Johns (Bengston 1981). 

Computing a precise diet-tissue discrimination value is essential when 

interpreting isotopic results.  Discrimination values for carbon have been calculated in the 

skin of manatees on a captive diet (present study,  Ames et al. 1996) and discrimination 

values for carbon and nitrogen have been estimated in the skin of free-ranging manatees 

on possible diets of freshwater, estuarine, and/or marine vegetation (Alves Chapter 3, 

Reich & Worthy 2006).  It is unknown whether diet-tissue discrimination in manatee skin 

differs between diet types as has been shown in other studies (e.g., Hobson & Clark 

1992b). 

Carbon and nitrogen stable isotope analysis of manatee epidermal tissue is 

difficult if not impossible to use when assessing short-term or recent changes in diet and 

habitat use because of slow turnover rates.  This technique would potentially have more 
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direct application in summarizing average dietary intake over longer periods of time.  In 

order to accurately interpret isotopic analyses, determining diet-tissue discrimination 

factors and turnover rates in the tissue are essential.  The difficulty with most studies is 

that isotope discrimination and turnover are best calculated under controlled situations in 

captivity.  Other marine mammals with faster metabolic rates such as dolphins and seals 

(Williams et al. 2001) should have a faster isotopic turnover rate in skin compared to that 

of manatees.  Mixing model results for tissues with slow turnover rates should be 

interpreted with caution, especially in species that may be switching between diets in 

which an intermediate isotope ratio may be mistakenly described as indicating a single 

diet source instead of a mixture of others. 
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Tables and Figures 

 

Figure 2.1.  Map of Florida. 
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Figure 2.2.  Straight line body length measurement in manatees. 
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Figure 2.3.  13C turnover in epidermis from manatees rescued from coastal regions in 
Florida. 
 
Mean (±95% CI) stable isotope ratio for skin from long-term captive manatees (   ) was 
used as an “anchor point” set at 600 day to better fit the model.  Mean (±95% CI) stable 
isotope ratio for the main diet items fed in captivity (romaine lettuce and spinach) were 
plotted for comparison and are indicated by a horizontal solid black line and horizontal 
dash-dot lines. 
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Figure 2.4.  15N turnover in epidermis from manatees rescued from coastal regions in 
Florida. 
 
Mean (±95% CI) stable isotope ratio for skin from long-term captive manatees (   ) was 
used as an “anchor point” set at 600 days to better fit the model.  Mean (±95% CI) stable 
isotope ratio for the main diet items fed in captivity (romaine lettuce and spinach) were 
plotted for comparison and are indicated by a horizontal solid black line and horizontal 
dash-dot lines. 
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Figure 2.5.  13C turnover in epidermis from manatees rescued from the St. Johns River in 
Florida. 
 
Mean (±95% CI) stable isotope ratio for skin from long-term captive manatees (   ) was 
used as an “anchor point” set at 600 days to better fit the model.  Mean (±95% CI) stable 
isotope ratio for the main diet items fed in captivity (romaine lettuce and spinach) were 
plotted for comparison and are indicated by a horizontal solid black line and horizontal 
dash-dot lines. 
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Figure 2.6.  15N turnover in epidermis from manatees rescued from the St. Johns River in 
Florida. 
 
Mean (±95% CI) stable isotope ratio for skin from long-term captive manatees (   ) was 
used as an “anchor point” set at 600 days to better fit the model.  Mean (±95% CI) stable 
isotope ratio for the main diet items fed in captivity (romaine lettuce and spinach) were 
plotted for comparison and are indicated by a horizontal solid black line and horizontal 
dash-dot lines. 
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Figure 2.7.  15N turnover in epidermis from two manatees rescued from and later released 
in the St. Johns River. 
 
Both manatees remained at SeaWorld Orlando and were fed a diet of mainly romaine 
lettuce and spinach for 434 days before they were released.  Skin samples were collected 
77 days post release for analysis.  The exponential decay model was reversed to show a 
change in stable isotope ratios post release. 
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Table 2.1.  Stable isotope ratios of diet items fed to captive manatees at SeaWorld Orlando.  The gruel mixture was composed of 
romaine lettuce, spinach, monkey chow, and water.  Fecal material was analyzed because manatees are known to engage in 
coprophagy. 
 
 

Diet item n Mean ± SE Minimum Maximum Mean ± SE Minimum Maximum
Romaine lettuce 16 -27.2 ± 0.2 -28.8 -25.8 2.9 ± 0.7 -0.1 8.9
Spinach 3 -27.2 ± 0.3 -27.8 -26.7 1.8 ± 1.2 -0.7 3.0
Monkey chow 4 -21.2 ± 0.6 -23.0 -20.1 2.9 ± 0.4 2.1 4.1
Gruel 4 -20.3 ± 0.3 -21.0 -19.7 2.5 ± 0.3 1.9 3.2
Fecal material 4 -27.9 ± 0.8 -29.0 -25.6 3.7 ± 0.7 2.2 5.2

δ13C (‰) δ15N (‰)
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Table 2.2.  Exponential decay equations and half-lives representing stable isotope 
turnover in epidermis sampled from rehabilitated Florida manatees. 

 
 

Carbon turnover
Animal 

ID Equation R2
Half-life 
(days)

δ13C at 
day 0 (‰)

Coastal manatees 0301 y = -24.4 + 14.2e-0.01094x 1.00 63 -10.2 1.00 1.00
0318 y = -24.8 + 15.1e-0.01158x 0.97 60 -9.7 0.96 0.97
0322 y = -24.5 + 14.3e-0.01550x 0.83 45 -10.2 0.79 0.84
0431 y = -24.1 + 11.6e-0.01657x 0.97 42 -12.5 0.97 0.97

Mean 53 -10.7

Riverine manatees 0334 y = -24.6 + 8.2e-0.00963x 0.95 72 -16.4 0.90 0.96
0340 y = -24.7 + 0.9e-0.01787x 0.36 39 -23.8 0.05 0.51
0341 y = -23.8 + 1.9e-20920x 0.50 N/A -21.9 0.43 0.51
0501 y = -24.5 + 6.2e-0.01028x 0.70 67 -18.3 0.59 0.75

Mean 59 -20.1

Nitrogen turnover
Animal 

ID Equation R2
Half-life 
(days)

δ15N at 
day 0 (‰)

Coastal manatees 0301 y = 2.3 + 3.4e-0.01918x 0.96 36 5.7 0.83 1.00
0318 y = 2.4 + 2.4e-0.02125x 0.57 33 4.8 0.46 0.62
0322 y = 2.3 + 3.6e-0.04898x 0.56 14 5.9 0.29 0.68
0431 y = 2.5 + 4.7e-0.03038x 0.97 23 7.2 0.91 0.97

Mean 27 5.9

Riverine manatees 0334 y = 2.6 + 4.9e-0.00601x 1.00 115 7.5 0.98 1.00
0340 y = 2.7 + 6.4e-0.02055x 0.92 34 9.1 0.90 0.92
0341 y = 2.3 + 5.9e-0.01125x 0.85 62 8.2 0.80 0.87
0501 y = 2.0 + 9.4e-0.03273x 0.95 21 11.4 0.92 0.97

Mean 58 9.1

R2 range 
Min  Max

R2 range 
Min  Max
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CHAPTER 3: STABLE ISOTOPE ANALYSIS OF THE SKIN OF THE 
WEST INDIAN MANATEE (TRICHECHUS MANATUS) IN FLORIDA, 

BELIZE, AND PUERTO RICO 

Introduction 

The endangered West Indian manatee (Trichechus manatus) is one of only two 

extant sirenian species (T. manatus and T. senegalensis) that occupy marine, estuarine, 

and freshwater habitats (Hartman 1979, Best 1981).  This herbivorous species has two 

recognized subspecies, the Florida manatee (T.m. latirostris) and the Antillean or 

Caribbean manatee (T.m. manatus).  Relatively little is known about manatee feeding 

ecology and habitat use since they often occupy shallow, turbid water.  As a result, most 

feeding studies have been conducted in captivity (e.g., Marshall et al. 2000) or in the 

clear waters near natural springs (e.g., Hartman 1979).  Reliable population estimates for 

both subspecies remain elusive (Lefebvre et al. 1995, UNEP Caribbean Environment 

Programme 1995, U.S. Fish and Wildlife Service 2001) and a better understanding of 

manatee feeding ecology and its relation to habitat use is essential in order to improve 

conservation efforts. 

Though there are few morphological differences between the two subspecies 

(Antilleans tend to be smaller in body size than Florida manatees and have differing skull 

features, Converse et al. 1994), there are many other differences in habitat, climate, 

human impact, and population size that have unique effects on the success of each 

subspecies.  Both subspecies appear to require regular year-round access to a freshwater 

source (Lefebvre et al. 1989, Olivera-Gomez & Mellink 2005), a requirement that is 

presumed to be due to osmoregulatory constraints (Ortiz et al. 1998, Ortiz et al. 1999).  
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Winter habitat use by Florida manatees is primarily influenced by water temperature 

whereby physiological thermal constraints require that they aggregate at natural (springs) 

and/or artificial (power plant outflows) warm water sources when water temperatures 

drop below 20C (Irvine 1983, Worthy et al. 2000, Bossart et al. 2003).  This type of 

migration is unnecessary for Antillean manatees since their range lies in the tropics and 

lacks large seasonal fluctuations in water temperature.  In Florida, the primary human-

related cause of manatee mortality is injury due to watercraft.  Less common, yet still 

evident, are mortalities due to entanglement in fishery equipment, crushing/drowning in 

flood gates or canal locks, or ingestion of debris (U.S. Fish and Wildlife Service 2001).  

Human impact on the Antillean manatee population is dominated by injuries due to 

watercraft as well, but poaching is also a significant threat (UNEP Caribbean 

Environment Programme 1995).  Both the Florida and Antillean manatee habitats have 

been affected by coastal development, but it is a more prominent issue in Florida.  

Seagrass beds may be affected by runoff in developed areas (e.g., Lewis et al. 2002) as 

well as direct damage from boat traffic including propellers “scarring” or tearing 

seagrasses from the substrate (e.g., Uhrin & Holmquist 2003).  Population estimates for 

the Florida manatee suggest counts as high as 3,276 (U.S. Fish and Wildlife Service 

2001), whereas Antillean manatees in most countries are thought to number fewer than 

100 individuals (summarized in O'Shea & Salisbury 1991).  The largest Antillean 

manatee population is located in Belize (approximately 100-250 individuals, O'Shea & 

Salisbury 1991, Morales-Vela et al. 2000).  In Puerto Rico, manatee distribution is patchy 

and population counts suggest fewer than 100 individuals (summarized in O'Shea & 

Salisbury 1991). 
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Manatees are often considered generalist feeders and have been known to 

consume approximately 60 different species of vegetation in marine, estuarine, and 

freshwater habitats (Hartman 1979, Best 1981, Bengtson 1983).  Florida manatees appear 

to exhibit regional (Reich & Worthy 2006) and possibly seasonal differences in diet 

composition.  Because of the previously mentioned habitat and climate differences 

between the two West Indian manatee subspecies, seagrasses tend to make up a much 

larger portion of the manatee diet in Puerto Rico than do freshwater and/or estuarine 

vegetation (Mignucci-Giannoni & Beck 1998).  Even less is known of the feeding habits 

of Belize manatees, but seasonal differences in lagoon water levels may lead to changes 

in habitat use (Morales-Vela et al. 2000) and consequently diet composition.  There has 

been little research done on the Antillean subspecies and expanded effort is crucial to 

provide measures on which conservation plans can be based. 

It can be challenging to evaluating feeding behavior and habitat use in marine 

mammals since they are difficult to observe directly, and may have expansive migration 

patterns.  A variety of methods have been used, including satellite tracking (e.g., Laidre 

et al. 2003), stomach content analysis (e.g., Spitz et al. 2006), fecal analysis (e.g., Sinclair 

& Zeppelin 2002), and fatty acid signature analysis (e.g., Iverson et al. 1997).  Some 

complications involved in these methods include logistics, cost, invasiveness, difficulty 

in identifying and estimating the proportion of diet components, and the inability to 

assess long-term feeding history.  The application of stable isotope analysis to ecological 

research has expanded in recent years (reviewed by Kelly 2000) and has some advantages 

over these techniques.  Isotopic ratios of local food webs are incorporated into the tissues 

of the consumer and can be used to predict diet composition, the trophic level at which 
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the consumer is feeding, and even habitat use and migratory patterns (Deniro & Epstein 

1978, 1981, Fry 1981, Peterson & Fry 1987, Hobson 1999).  Tissues such as hair and 

skin can be sampled from live animals, and both recent and long-term feeding history can 

be assessed through analyzing tissues that incorporate nutrients at different rates.  In 

order to accurately interpret isotopic results it is important to know the diet-tissue 

discrimination value (the difference in isotope ratios between the diet and consumer 

tissue) as well as the turnover rate (the amount of time required to incorporate isotopes 

from the diet into the tissue).  Previous studies have calculated or estimated diet-tissue 

discrimination values (Alves Chapter 2, Ames et al. 1996, Reich & Worthy 2006) and 

turnover rates (Alves Chapter 2) for carbon and nitrogen isotopes in manatee skin, 

allowing for more accurate interpretation of stable isotope data. 

The present study is the first to apply stable isotope analysis to Antillean 

manatees and further expands the assessment of the feeding ecology of Florida manatees.  

The objectives of this study were to (1) analyze δ13C and δ15N values in epidermis 

samples collected from free-ranging manatees in Florida, Belize, and Puerto Rico, (2) 

compare signatures in the skin to those of fresh, estuarine, and marine vegetation within 

the presumed manatee diet, and (3) assess possible differences in feeding preferences by 

region, sex, age class, and season. 
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Materials and Methods 

Sample collection 

Aquatic plants 

Samples of aquatic vegetation were collected from several regions within Florida 

during the summer of 2001, the fall, winter, and spring of 2004 and 2005 (Charlotte 

Harbor: n = 15, Crystal River: n = 5, Indian River Lagoon: n = 21, St. Johns River near 

Blue Spring: n = 29, Tampa Bay: n = 16, and Ten Thousand Islands: n = 15), and from 

Belize during the summer of 2002 (Drowned Cayes: n = 18) (Figs. 3.1 & 3.2, Appendix 

D).  Each sample consisted of 2-3 whole plants or 20-30 seagrass blades of each available 

species at each site.  Collection sites in St Johns River were sampled repeatedly during 

different months to determine seasonal variability. 

Free-ranging manatees 

Skin samples from free-ranging manatees in Florida (n = 118), Belize (n = 68), 

and Puerto Rico (n = 23) were collected during 2002-2005 (Appendix E) and provided by 

Bob Bonde, Sirenia Project, U.S. Geological Survey (permit number MA791721) as part 

of a larger study examining genetic relatedness.  Sampling locations in Florida included 

Crystal River (city of Crystal River), Homosassa Springs (city of Homosassa Springs), 

Tampa Bay (Big Bend Power Station, Tampa), Ten Thousand Islands (Port of the Islands, 

Naples), and Charlotte Harbor (Warm Mineral Springs) (Fig. 2.1).  Most Florida 

manatees (n = 113) were sampled during the fall and winter months when they often 

congregate in large numbers at natural or artificial warm water sources.  Sampling 
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locations in Belize included the Northern Lagoon, Southern Lagoon, Western Lagoon 

(part of the Southern Lagoon), and Drowned Cayes (Fig. 3.2).  Locations in Puerto Rico 

included Boqueron (Cabo Rojo), Ceiba, Guayanilla, and Salinas (Fig. 3.3).  Samples from 

Antillean manatees in Belize and Puerto Rico were collected opportunistically over 

multiple years.  For seasonal comparisons, winter was defined as December through 

February, spring as March through May, summer as June through August, and fall as 

September through November. 

Epidermal tissue was collected from the edge of the paddle using a cattle ear 

notch tool.  Sex was determined by observing the position of the urogenital slit and body 

length was measured as the straight distance from snout to paddle (Fig. 2.2).  Florida 

manatees were categorized into three age classes based on body length measurements 

(adults: >275 cm, subadults/late juveniles: 176-275 cm, and calves: <176 cm, O'Shea et 

al. 1985).  Antillean manatees were also categorized into age classes, although the classes 

were defined by different body length measurements since Antillean manatees are 

slightly smaller (adults: >225 cm, subadults/late juveniles: 176-225 cm, and calves: <176 

cm, Mignucci-Giannoni et al. 2000). 

Sample preparation and analysis 

All manatee tissue and plant samples were frozen within two hours of collection 

and held at -20C until time of analysis.  Samples were then rinsed with distilled water and 

oven dried at 60C for 24 hours to remove water.  Lipids were removed using petroleum 

ether in a Soxhlet extractor for 24 hours to remove the effect of lipids on δ13C values 

(Rau et al. 1992).  Samples were then oven dried at 60C for 24 hours to remove any 
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remaining solvent.  Samples were ground and homogenized using a SPEX 8000 

Mixer/Mill (CertiPrep, Metuchen, NJ), Wig-L-Bug Amalgamator (Crescent Dental 

Manufacturing Co., Chicago, IL), or were chopped by hand using a scalpel.  

Approximately 1.0 mg of manatee tissue or 2.5 mg of plants were transferred to 5 mm x 9 

mm tin capsules and analyzed by mass spectrometry (Thermo Finnigan DELTAplus and 

DELTA C, Bremen, Germany) for carbon and nitrogen stable isotope ratios at the Stable 

Isotope and Ecology Lab, University of Georgia, Athens, GA. 

Seagrass samples were analyzed with and without epiphytes when possible.  

Seagrasses analyzed with epiphytes were prepared as discussed previously for other 

aquatic plants, with the exception that they were rinsed in saltwater instead of distilled 

water to prevent further removal of epiphytes. 

Data analysis 

Stable isotope ratios were expressed in ppt (‰) using delta notation: 

(1) 

in which Rsample and Rstandard are the absolute isotope ratios of the sample and standard, 

respectively, X is 13C or 15N, and the standards are PeeDee belemnite (from the 

Cretaceous marine fossil, Belemnitella americana, from the PeeDee formation in South 

Carolina, Craig 1957) and atmospheric N2, respectively. 

Statistical analysis 

All statistical analyses were judged to be significant at <0.05.  Data were tested 

for normality using the Shapiro-Wilk (n < 50) and Kolmogorov-Smirnov (n > 50) tests.  

Levene’s F and Box’s M were used to test homogeneity of variance between factors and 

δX = (Rsample/Rstandard - 1) x 1000 
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homogeneity of covariance, respectively.  Differences in δ13C and δ15N values were 

tested using parametric and non-parametric analyses as appropriate.  Diet-tissue 

discrimination values and proportions of freshwater vegetation, estuarine vegetation, and 

seagrasses contributing to the Florida manatee diet were estimated using the stable 

isotope mixing model, IsoError (Phillips & Gregg 2001).  Means are presented ± SE. 
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Results 

Quality assurance of mass spectrometer analysis 

Quality assurance of mass spectrometer results was tested by running two 

standard samples before and after every twelve unknown samples.  Standard samples 

were bovine tissue (n = 110) and poplar (n = 9).  Standard errors of the mean for bovine 

samples were ±0.04‰ for δ13C and ±0.01‰ for δ15N.  Standard errors for poplar samples 

were ±0.04‰ for both δ13C and δ15N. 

Precision of mass spectrometer analysis within a sample was tested by running a 

subset of manatee skin samples in duplicate.  Neither δ13C (paired t-test: t = 0.17, df = 8, 

p = 0.87) nor δ15N values (t = 1.36, df = 8, p = 0.21) differed between duplicate samples, 

therefore single samples were run for further analyses. 

Diet analysis 

Florida aquatic plants 

Because the seagrass Thalassia testudinum often has a large amount of epiphytic 

algae and other encrusting organisms attached to the blades, δ3C and δ15N values for 

clean and epiphytic blades were initially compared.  Paired t-tests indicated no significant 

difference in δ13C (t = 2.15, df = 10, p = 0.057) or δ15N values (t = 1.13, df = 10, p = 

0.29) between clean blades (mean δ13C = -11.9 ± 0.8‰, mean δ15N = 2.1 ± 0.4‰) and 

those with epiphytes present (mean δ13C = -12.9 ± 0.8‰, mean δ15N = 2.4 ± 0.5‰, so 

samples were grouped for further analyses. 
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Stable isotope signatures of aquatic vegetation were compared between collection 

locations in order to show distinctions between freshwater plants, estuarine plants, and 

seagrasses.  Welch ANOVA results indicated that δ13C values differed significantly (F6,27 

= 189.27, p < 0.001).  Freshwater plants were the most depleted in 13C, seagrasses were 

the most enriched in 13C, and plants collected from Crystal River as well as marine algae 

from the Indian River Lagoon, having intermediate δ13C values, were categorized as 

estuarine vegetation (Table 3.1, Figs. 3.4 & 3.5).  Regardless of collection location, δ13C 

values differed between all three plant types (Tamhane’s T2: all p values < 0.021).  

Welch ANOVA results also indicated that δ13N values differed significantly between 

collection locations (F6,34 = 38.19, p < 0.001).  Regardless of collection location, all 

seagrasses were significantly depleted in 15N compared to freshwater and estuarine 

vegetation (Tamhane’s T2: all p values < 0.002), but δ15N values did not differ between 

freshwater and estuarine vegetation (all p values > 0.61, Table 3.1, Figs. 3.4 & 3.5). 

Within all seagrass samples, δ13C values differed significantly between collection 

locations (Welch ANOVA: F3,27 = 5.51, p = 0.004).  Seagrasses from Tampa Bay were 

significantly depleted in 13C by an average of 3.8‰ compared to those from Charlotte 

Harbor (Tamhane’s T2: p = 0.003, Table 3.1, Fig. 3.5).  No other significant differences 

were calculated for δ13C values between any other collection locations (Tamhane’s T2: 

all p values > 0.26).  The δ13C values did not differ between seagrass species regardless 

of how locations were grouped (ANOVA: F < 1.1, all p values > 0.37).  Finally, δ15N 

values for seagrasses did not differ between collection locations (Welch ANOVA: F3,26 = 

1.79, p = 0.17, Table 3.1, Fig. 3.5) or species (ANOVA: F2,53 = 2.34, p = 0.11).  
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Halophila engelmannii was collected at one location (Ten Thousand Islands), preventing 

inclusion in this analysis. 

Freshwater plants from St. Johns River were collected during the months of April, 

July, and December, allowing for a seasonal comparison.  Main effects for month and 

plant species were tested using MANOVA.  There was a significant effect for month 

(Wilks’ Lambda: F4,28 = 4.22, p = 0.009), but there was no effect for species (F16,28 = 

1.63, p = 0.13).  The δ13C values of freshwater plants did not differ between months 

(ANOVA: F2,23 = 2.83, p = 0.080), but δ15N values were significantly different (F2,23 = 

12.73, p < 0.001).  Plants collected in July were depleted in 15N by an average of 3.9‰ 

compared to those collected in December and April (both p values < 0.002, Tukey HSD, 

Fig. 3.6). 

Belize aquatic plants 

Samples of T. testudinum and H. wrightii were collected opportunistically from 

the Drowned Cayes in Belize (Fig. 3.2, Appendix D).  The δ13C values ranged from         

-11.9‰ to -2.9‰ and δ15N values ranged from -5.1‰ to 2.6‰ (Table 3.1).  Species 

comparisons were not calculated due to small sample size, but δ13C and δ15N values for 

H. wrightii fell within the range of those of T. testudinum (Table 3.1).  There was no 

effect of collection month (July-September, MANOVA: Wilks’ Lambda: F4,28 = 0.97, p = 

0.44) between seagrasses in Belize. 
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Free-ranging manatees 

Florida manatees 

The δ13C values for manatee skin increased from very depleted signatures for skin 

collected in freshwater regions to more enriched signatures for skin collected in coastal 

regions.  The δ15N values for manatee skin decreased from enriched signatures for skin 

collected in freshwater regions to depleted signatures for skin collected in coastal regions 

(Table 3.2, Fig. 3.7). 

MANOVA was run for δ13C and δ15N values using the following main and 

interaction effects: sex, age class, location, sex and age class, and sex and location.  No 

significant effects were noted for sex (F test: F2,99 = 0.28, p = 0.76), age class (Wilks’ 

Lambda: F4,198 = 0.76, p = 0.55), or either of the interaction effects (F < 0.66, both p 

values > 0.73), but there was a significant effect for location (Wilks’ Lambda: F8,198 = 

13.49, p < 0.001). 

Both δ13C (ANOVA: F4,113 = 43.39, p < 0.001) and δ15N values (F4,113 = 20.15, p 

< 0.001) for manatee skin differed significantly based on location.  Skin from manatees 

sampled in Crystal River and Homosassa Springs was depleted on average in 13C by 

6.2‰ compared to skin from manatees at the Big Bend Power Plant, Port of the Islands, 

and Warm Mineral Springs (Tukey HSD: all p values < 0.010, Table 3.2, Fig. 3.8). The 

δ15N values differed significantly between skin from manatees at the Big Bend Power 

Plant and Port of the Islands by an average of 1.8‰  (Tukey HSD: p = 0.020, Table 3.2, 

Fig. 3.8).  The δ15N values did not significantly differ between skin from manatees at any 

other locations (Tukey HSD: all p values > 0.10). Because there were no significant 
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differences in δ13C or δ15N values in skin from manatees sampled in Crystal River and 

Homosassa Springs, data from these two Florida locations were pooled (“riverine 

manatees”) for further analyses (Table 3.2, Fig. 3.8).  In addition, because there were no 

significant differences in δ13C values in skin from manatees at the Big Bend Power Plant, 

Port of the Islands, and Warm Mineral Springs, data from these three Florida locations 

were pooled (“coastal manatees”) for further analyses. 

Age class comparisons were further investigated since sample distribution did not 

allow to test for an interaction effect between age class and location.  Within riverine 

manatees, all skin samples were from calves or subadults.  MANOVA showed no effect 

for age class (F test: F2,85 = 0.09, p = 0.91).  For skin from coastal manatees, δ13C values 

did not differ between any of the three age classes (ANOVA: F2,27 = 3.27, p = 0.054).  

Regardless of how locations were grouped for coastal manatees, δ15N values of skin also 

did not differ between age classes (all test statistics < 1.9, all p values > 0.082). 

Month of skin sample collection was further investigated as a possible effect on 

carbon and nitrogen stable isotope ratios.  For skin from riverine manatees, MANOVA 

failed to show an effect for month (October – February, Wilks’ Lambda: F8,160 = 0.72, p = 

0.67).  For skin from coastal manatees, δ13C values did not differ between months 

(January, December, and April, ANOVA: F2,27 = 1.57, p = 0.23).  The δ15N values of skin 

also did not differ between months, regardless of how the locations were grouped for 

coastal manatees (F < 0.2, all p values > 0.82). 
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Antillean manatees 

Belize 

The δ13C values for manatee skin ranged from depleted for skin collected from 

lagoon regions to more enriched for skin collected from the Drowned Cayes (Table 3.2, 

Fig. 3.9).  Differences in δ13C values were tested using ANOVA with the following main 

and interaction effects: sex, age class, season, location, sex and location, sex and season, 

and age class and season.  There were significant effects for location (F3,71 = 21.41, p < 

0.001) and season (F test: F2,71 = 3.77, p = 0.028) but no other effects were significant (F 

< 2.00, all p values > 0.13).   

Skin from manatees sampled in the Drowned Cayes was significantly enriched on 

average in 13C by 5.2‰ compared to samples from the three lagoons (Tukey HSD: all p 

values < 0.001, Table 3.2, Fig. 3.10), but there were no differences in δ13C values 

between lagoon samples (all p values > 0.37).  The δ15N values also differed significantly 

between manatee skin from different locations (Welch ANOVA: F3,22 = 17.86, p < 

0.001).    There was a difference in δ15N values between manatees sampled in the 

Drowned Cayes and Southern Lagoon (Tamhane’s T2: p < 0.001).  Additionally, for δ15N 

values, skin samples from the Northern Lagoon differed significantly from those of the 

Southern (p < 0.001) and Western Lagoons (p = 0.036, Table 3.2, Fig. 3.10). 

Samples in Belize were collected during fall and spring (rainy and dry seasons, 

respectively).  Results of t-tests indicated manatee skin collected in the spring was 

significantly enriched in both 13C (Drowned Cayes, t = 5.18, df = 11, p < 0.001; Southern 

Lagoon, t = 2.95, df = 35, p = 0.006) and 15N (Drowned Cayes, t = 2.32, df = 11, p = 
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0.041; Southern Lagoon, t = 2.41, df = 33, p = 0.022) compared to skin collected in the 

fall (Table 3.3).  There was no seasonal difference in δ13C values for manatee skin 

collected in the Western Lagoon (t = 0.50, df = 8, p = 0.63), but skin collected in the 

spring was significantly depleted in 15N compared to that collected in the fall (t = 6.22, df 

= 8, p < 0.001, Table 3.3).  Manatees from the Northern Lagoon were sampled 

exclusively during the spring. 

Puerto Rico 

The δ13C values for manatee skin ranged from -12.8‰ for an animal from Ceiba 

to a more enriched value of -7.5‰ for an animal from Guayanilla.  δ15N values ranged 

from 3.7‰ for an animal from Boqueron to 6.9‰ for an animal from Guayanilla (Table 

3.2, Fig. 3.11). 

Only one skin sample was analyzed from Salinas so it was not included in the 

following analyses.  Differences in δ13C and δ15N were tested using MANOVA with the 

following main and interaction effects: sex, age, season, location, sex and location, sex 

and age class, and sex and season.  There was a significant effect for location (F test: F2,11 

= 4.22, p = 0.043), but no other effects were significant (F < 2.60, all p values > 0.11).  

There were no significant differences in δ13C values (ANOVA: F2,19 = 0.32, p = 0.73) 

between the three locations (Guayanilla, Boqueron, and Ceiba), but there was a 

significant difference in δ15N values (F2,19 = 11.76, p < 0.001).   Samples from Guayanilla 

were enriched in 15N by an average of 1.4‰ compared to those from both Boqueron and 

Ceiba (Tukey HSD: both p values < 0.01, Table 3.2, Fig. 3.12). 
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Mixing model 

Carbon and nitrogen signatures for freshwater vegetation, estuarine vegetation, 

and seagrasses as possible manatee diet sources in Florida were plotted with a polygon 

connecting mean values (Fig. 3.13).  The diet source means for δ13C values were 

corrected for enrichment by 2.8‰ (Alves Chapter 2).  In order to fit the isotopic signature 

of the consumer within the diet source polygon, IsoError calculations indicated possible 

nitrogen enrichment values ranging from 1.0 to 1.5‰. 

As is a function of the model, IsoError results differed based upon the nitrogen 

enrichment value.  Either freshwater or estuarine vegetation was the main diet component 

for Florida riverine manatees, while seagrasses were always the main diet component for 

Florida coastal manatees regardless of the nitrogen enrichment value (Table 3.4).  It was 

possible that riverine manatees had no seagrass component in their diet for only one 

nitrogen enrichment value (1.0‰).  However, results for coastal manatees indicated the 

possibility of no freshwater diet component regardless of the nitrogen enrichment value. 
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Discussion 

Diet analysis 

For aquatic plants collected in Florida and Belize, seagrasses were the most 

enriched in 13C, while freshwater plants were the most depleted, and estuarine plants had 

intermediate values.  This pattern is consistent with findings in previous studies (e.g., 

Reich & Worthy 2006).  Aquatic plants incorporate carbon from the dissolved inorganic 

carbon (DIC) in the surrounding water into their tissues.  DIC in freshwater is depleted in 

13C compared to that of seawater due to the isotope discrimination that takes place upon 

the conversion of CO2 into bicarbonate and the contribution of decomposing terrestrial 

matter (Boutton 1991).  Freshwater and estuarine plants collected in Florida did not differ 

in their nitrogen signatures, but both plant types were significantly enriched in 15N 

compared to seagrasses.  Differences in nitrogen ratios have been shown to be based on 

nitrogen source, specifically in freshwater vs. marine ecosystems (e.g., Bardonnet & 

Riera 2005); however, the understanding of nitrogen isotope patterns especially in aquatic 

plants is limited compared to those of carbon isotopes.  The combined use of carbon and 

nitrogen stable isotope analysis further distinguishes the three aquatic plant types in this 

study. 

No significant differences were found in δ13C or δ15N values between Thalassia 

blades with or without epiphytes.  Previous studies have conflicting results, in which 

some did find differences between isotope ratios in seagrasses vs. epiphytes (e.g., 

Moncreiff & Sullivan 2001) while others did not (e.g., Fry et al. 1982).  Typically, the 

epiphytes are depleted in 13C and enriched in 15N compared to the seagrass blades from 
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which they were removed.  In terms of diet estimation, it is not likely that epiphyte 

signatures could cause seagrasses to be confused with signatures of freshwater plants.  

However, it is possible that the presence of epiphytes could cause carbon and nitrogen 

signatures of seagrasses to be more similar to those of estuarine vegetation. 

Carbon and nitrogen stable isotope analyses were not precise enough to 

distinguish between aquatic plant species, but regional and seasonal differences in stable 

isotope ratios were found in Florida.  Specifically, seagrasses collected from Charlotte 

Harbor were significantly enriched in 13C compared to those from Tampa Bay.  

Variability in δ13C values in seagrasses is mainly an effect of carbon source but can also 

vary with irradiance and temperature (Hemminga & Mateo 1996).  Additionally, both 

carbon and nitrogen stable isotope ratios of seagrasses have been shown to exhibit 

seasonal and intra-annual variability (Anderson & Fourqurean 2003, Vizzini et al. 2003).  

Seagrasses from Charlotte Harbor were collected in late spring and those from Tampa 

Bay were collected during the summer.  It is unknown whether differences in δ13C 

between the two sites were due to location or a seasonal effect.  In the St. Johns River, 

aquatic plants collected in July were significantly depleted in 15N compared to those 

collected in December and April.  Differences in nitrogen signatures in plants may be due 

to seasonal variation in the amount of fertilizer runoff, wastewater discharge, and/or 

animal waste runoff into the aquatic system (Vizzini & Mazzola 2006).  Additionally, 

seasonal differences in water temperature, streamflow, and dissolved oxygen 

concentrations have been shown to affect nitrogen balance in the St. Johns River 

(Kroening 2004).  Temporal and geographical variability in stable isotope ratios for 
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aquatic plants should be taken into consideration when estimating diet proportions for 

consumers. 

Mixing model 

Reliance on mixing model results to estimate manatee diet and/or habitat use 

through stable isotope analysis of epidermal tissue is problematic due to slow turnover 

rates in the skin (Alves Chapter 2).  Free-ranging manatees are known to switch diet 

sources (Best 1981, Lefebvre et al. 2000) and an intermediate isotope signature often may 

be measured rather than one representing the more recent diet.  Instead of attempting to 

predict manatee diet composition involving all three aquatic plant types, it may be more 

useful and more accurate to focus on the use of freshwater plants vs. seagrasses since 

they have very distinct δ13C and δ15N values, whereas the δ15N values for estuarine plants 

do not differ from those of freshwater plants.  Also, the slow turnover rate in epidermal 

tissue makes this analysis better fit as a representation of average overall dietary intake 

over a long period of time rather than an indication of recent intake (Alves Chapter 2).  

Finally, when interpreting mixing model results, upper and lower 95% CI should be 

considered in addition to the mean values as a complete representation of possible diet 

source proportions (Phillips & Gregg 2003). 

Seagrasses were the most frequently “required” component present in the diets of 

Florida manatees.  Due to slow turnover rates, seagrasses were therefore not necessarily a 

recent diet component, but all Florida manatees in this study likely fed on seagrasses 

sometime in the past months prior to sampling.  Seagrasses were an even more critical 

component in the diet of manatees sampled at the Big Bend Power Plant, Port of the 
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Islands, and Warm Mineral Springs.  For manatees from these locations, it was even 

possible that they consumed no freshwater vegetation in past months.  Manatees from 

Crystal River and Homosassa Springs had a more varied reliance on plant types with 

freshwater vegetation most often being the main component. 

Reich & Worthy (2006) used IsoError to estimate diet source proportions using 

skin from stranded manatee carcasses, but comparisons to the results of their study may 

not be appropriate.  Diet-tissue discrimination values used for carbon were consistent 

(2.8‰, present study; 3.0‰, Reich & Worthy), but those for nitrogen were not (1.0 to 

1.5‰, present study; 5.0‰, Reich & Worthy).  Computing an accurate diet-tissue 

discrimination value is essential when using mixing models to estimate proportions of a 

multiple source diet (Phillips & Koch 2002).  The δ15N enrichment values for whole body 

samples average 3‰ (Deniro & Epstein 1981, Minagawa & Wada 1984, Peterson & Fry 

1987).  Most tissues are enriched in 15N by 2-5‰ compared to the diet (Peterson & Fry 

1987, Kelly 2000), yet values ranging from <1 to 6‰ have also been calculated for 

mammal tissue (Vanderklift & Ponsard 2003).  Hobson et al. (1996) calculated the only 

known diet-tissue discrimination value for nitrogen (2.3‰) in the skin of marine 

mammals (phocid seals).  Further captive study is needed to determine an accurate diet-

tissue discrimination value for nitrogen in manatee skin and thus improve the accuracy of 

diet source estimation.  Another difference is Reich and Worthy (2006) grouped 

manatees by much larger geographical regions.  For example, the entire northwest Florida 

coast was grouped (including Tampa Bay).  In the present study, manatees sampled in 

Crystal River and Homosassa Springs (northwest Florida) were grouped separately from 

those sampled at the Big Bend Power Plant (Tampa Bay) because stable carbon and 
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nitrogen isotope ratios were significantly different in the skin.  Consequently, it is likely 

too much of a generalization to categorize manatee feeding across larger geographical 

regions.  Finally, it should be noted that no study involving manatee stable isotope 

analysis has used a concentration-dependent model such as that of Phillips & Kock 

(2002) which may further refine results. 

Free-ranging manatees 

Though the unavailability of freshwater and estuarine plant samples prevented 

mixing model analysis for Antillean manatees, general comparisons and interpretations 

were made based on known patterns.  Skin from manatees sampled in the Drowned 

Cayes in Belize was enriched in 13C compared to that of lagoon manatees, which is 

consistent with a coastal diet of predominantly seagrasses, while the lagoon animals 

probably relied more heavily on estuarine and/or freshwater vegetation.  There were no 

differences in carbon signatures among manatees from the three lagoons.  However, skin 

from Northern lagoon manatees was enriched in 15N compared to that of the Southern and 

Western Lagoon manatees.  The Western Lagoon is part of the Southern Lagoon, while 

the Northern Lagoon is a more distinct body of water (Fig. 3.2).  It is possible that 

regional differences in nitrogen input from surrounding terrestrial sources had an effect 

on the nitrogen signatures of lagoon vegetation. 

Enriched carbon ratios in the skin of manatees sampled in Puerto Rico indicate 

that seagrasses are likely the main component of their diet.  The lack of significant 

regional differences in carbon ratios suggests this reliance on seagrasses is consistent 

among manatees in Puerto Rico.  There were, however, significant regional differences in 
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nitrogen ratios in the skin of Puerto Rico manatees.  As in the Belize analysis, it is 

possible that differences in coastal development, pollution, and agriculture had an effect 

on nitrogen input in the surrounding waters.  The stable isotope results for free-ranging 

manatees agree with the hypothesis of Lefebvre et al. (2000) that due to thermally driven 

seasonal migrations, Florida manatees are less specialized grazers than manatees in 

Puerto Rico, for which seagrasses are the main diet component. 

There were no sex based differences in isotopic composition of Florida or 

Antillean manatee skin.  In the manatee social system there are not separate breeding or 

feeding grounds as in other animals systems in which we may expect to see sex based 

differences in diet and thus isotopic composition of tissues.  Additionally, no differences 

were found in stable carbon or nitrogen isotope signatures in Florida manatee skin based 

on the collection month.  Skin samples were collected mainly during the months of 

November, December, and January.  This sampling period coincided with the large 

number of manatees aggregated at warm water sources.  In general, all manatee skin 

sampling was opportunistic, so it does not necessarily mean that a manatee sampled in 

November arrived at a warm water refuge earlier than a manatee sampled in January.  A 

manatee sampled in January may have been frequenting the refuge since November, and 

was just not able to be sampled until later that season.  It is also unknown how long each 

manatee spent in the refuge or whether it left, traveling a long distance (giving it access 

to alternative diet sources) and then returned again.  For these reasons, it is 

understandable that we do not see a progression towards a greater number of manatee 

skin signatures representative of the vegetation available near the refuge over time. 
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Seasonal differences in δ13C and/or δ15N values were found within the skin of 

Belize manatees; however, results for manatees from the Drowned Cayes and Western 

Lagoon should be interpreted with caution due to small sample sizes.  Reported 

differences may be due to seasonal changes in manatee feeding, habitat, and/or seasonal 

variability in the stable isotope ratios of aquatic plants, the later two of which have been 

previously documented in Belize manatees (Self-Sulivan et al. 2003) and Florida aquatic 

plants, respectively (present study, Anderson & Fourqurean 2003). 

There was no difference in δ13C or δ15N values in manatee skin between any of 

the three age classes for Florida or Antillean manatees.  Calves (<176 cm) are considered 

nutritionally dependent but manatees up to body lengths of 260cm may nurse in addition 

to feeding on aquatic vegetation (O'Shea et al. 1985).  Most calves that were sampled 

were of body lengths ≥170 cm, near the calf/subadult division.  It is likely that these 

manatees were already feeding on aquatic vegetation and possibly only nursing 

occasionally.  In that case, we would not expect to see signatures different from those of 

subadults, especially if some manatees of subadult-length occasionally nurse.  Had the 

manatees been very young calves, whose diet consisted of predominantly milk, we might 

expect δ15N values of their skin to be enriched compared to adults.  Nursing animals are 

consuming milk derived from the mother’s tissues and are in essence, feeding at a higher 

trophic level (e.g., Fogel et al. 1989).  Skin from the smallest manatees sampled (both 

body lengths = 130 cm, Florida) did not have enriched δ15N values (5.8 and 4.3‰) 

compared to those of longer body lengths.  Finally, the variability in nitrogen signatures 

found for aquatic plants in Florida (-2.9 to 10.3‰) makes it difficult to assess possible 

differences in trophic level between nursing and weaned manatees.  The age class 
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division between subadults and adults is a gross estimate based on sexual maturity and is 

mainly used to assess manatee mortality rates and population structure (O'Shea et al. 

1985).  It has no relation to any specific feeding distinction. 

Conservation implications 

The interpretation of mixing model results warrants caution as discussed.  

However, if we are to make general estimates in relation to manatee conservation, 

seagrasses were a required component for Florida manatees from all regions sampled in 

this study (Gulf Coast) and even likely made up over half of the diet of manatees 

wintering at the Big Bend Power Plant in Tampa Bay, Warm Mineral Springs near 

Charlotte Harbor, and Port of the Islands in Ten Thousand Islands.  In an effort to provide 

more suitable habitat for Florida manatees, focus should be on reducing the further loss 

of seagrass beds especially near the regions mentioned above.  Finally, individual 

variation in δ13C and δ15N values in Florida manatee skin within a location suggests these 

warm water sources provide refuge for manatees previously feeding in differing habitats.  

Consequently, there may not be one single conservation solution regarding feeding 

habitat that caters to all manatees wintering at one of the specific locations in this study. 

It is apparent that seagrasses are also an important component in the diet of 

Antillean manatees in Belize and even more so for those in Puerto Rico.  Management 

plans here should also emphasize the protection of seagrass beds. 



 63

Tables and Figures 

 

Figure 3.1.  Aquatic plant collection sites in Florida. 
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Figure 3.2.  Manatee skin and seagrass collection locations in Belize. 
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Figure 3.3.  Manatee skin collection locations in Puerto Rico. 
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Figure 3.4.  δ13C and δ15N values for aquatic plants in Florida. 
 
Circles indicate freshwater vegetation, triangles indicate estuarine vegetation, and squares 
indicate seagrasses. 
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Figure 3.5.  Regional differences in δ13C and δ15N values (mean ± SE and 95% CI) for 
aquatic plants in Florida. 
 
Circles indicate freshwater vegetation, triangles indicate estuarine vegetation, and squares 
indicate seagrasses. 
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Figure 3.6.  Seasonal differences in δ13C and δ15N values in freshwater aquatic plants 
from the St. Johns River (mean ± SE and 95% CI). 
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Figure 3.7.  δ13C and δ15N values in manatee skin from free-ranging animals in Florida. 
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Figure 3.8.  Regional differences in δ13C and δ15N values (mean ± SE and 95% CI) in 
manatee skin from free-ranging animals in Florida. 
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Figure 3.9.  δ13C and δ15N values in manatee skin collected from free-ranging animals in 
Belize. 
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Figure 3.10.  Regional differences in δ13C and δ15N values (mean ± SE and 95% CI) in 
manatee skin from Belize. 
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Figure 3.11.  δ13C and δ15N values in manatee skin from free-ranging animals in Puerto 
Rico. 
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Figure 3.12.  Regional differences in δ13C and δ15N values (mean ± SE and 95% CI) for 
manatee skin from free-ranging animals in Puerto Rico. 
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Figure 3.13.  Estimation of diet-tissue discrimination in the skin of free-ranging Florida 
manatees. 
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Table 3.1.  Stable isotope ratios of aquatic plants collected in Florida and Belize. 
 
 

Plant type n Mean ± SE Minimum Maximum Mean ± SE Minimum Maximum
Florida

Freshwater vegetation
St. Johns River 29 -28.1 ± 0.3 -31.6 -25.0 7.3 ± 0.5 1.9 10.3

Estuarine vegetation 13 -22.1 ± 0.6 -25.1 -18.8 6.3 ± 0.2 5.4 7.6
Crystal River 5 -22.3 ± 0.8 -24.2 -20.1 6.0 ± 0.3 5.4 7.1
Indian River Lagoon 8 -21.9 ± 0.9 -25.1 -18.8 6.4 ± 0.3 5.5 7.6

Seagrasses 59 -13.1 ± 0.4 -19.6 -6.6 1.6 ± 0.3 -2.9 5.4
Charlotte Harbor 15 -11.0 ± 0.5 -15.5 -8.3 1.4 ± 0.3 -0.7 4.4
Indian River Lagoon 13 -13.8 ± 1.2 -19.6 -6.6 1.1 ± 0.7 -2.0 5.3
Tampa Bay 16 -14.8 ± 0.8 -19.5 -9.2 2.5 ± 0.4 0.2 5.4
Ten Thousand Islands 15 -12.9 ± 0.5 -16.9 -9.5 1.1 ± 0.6 -2.9 3.8

Belize
Seagrasses 18 -7.2 ± 0.5 -11.9 -2.9 -0.6 ± 0.5 -5.1 2.6

δ13C (‰) δ15N (‰)
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Table 3.2.  Stable isotope ratios in manatee skin from free-ranging animals in Florida, Belize, and Puerto Rico. 
 
 

Location n Mean ± SE Minimum Maximum Mean ± SE Minimum Maximum
Florida

Riverine manatees 88 -20.4 ± 0.3 -27.0 -14.6 7.0 ± 0.1 2.7 10.1
Crystal River 67 -20.0 ± 0.3 -24.9 -14.6 7.1 ± 0.2 3.8 10.1
Homosassa Springs 21 -21.4 ± 0.6 -27.0 -16.3 6.5 ± 0.3 2.7 9.2

Coastal manatees 30 -14.2 ± 0.5 -20.4 -9.3 4.6 ± 0.3 2.0 8.1
Big Bend Power Station 10 -13.5 ± 0.5 -15.4 -10.9 5.8 ± 0.6 2.0 8.1
Port of the Islands 14 -13.8 ± 0.7 -17.6 -9.3 4.0 ± 0.2 3.0 6.2
Warm Mineral Springs 6 -16.3 ± 1.2 -20.4 -13.1 4.0 ± 0.5 2.8 5.6

Belize
Drowned Cayes 13 -7.5 ± 0.4 -11.0 -5.9 3.4 ± 0.2 2.1 4.7

All lagoons 55 -12.7 ± 0.2 -16.0 -9.2 1.6 ± 0.3 -2.3 5.7
Northern Lagoon 8 -13.4 ± 0.4 -15.5 -12.4 4.1 ± 0.3 2.6 5.3
Southern Lagoon 37 -12.4 ± 0.3 -16.0 -9.2 1.0 ± 0.3 -2.3 5.7
Western Lagoon 10 -13.3 ± 0.4 -15.1 -11.5 1.5 ± 0.7 -2.3 4.1

Puerto Rico
Boqueron 7 -9.6 ± 0.5 -10.9 -7.9 4.9 ± 0.2 3.7 5.7
Ceiba 6 -10.1 ± 0.6 -12.8 -8.8 4.6 ± 0.3 3.8 5.4
Guayanilla 9 -9.6 ± 0.4 -11.0 -7.5 6.2 ± 0.2 5.2 6.9
Salinas 1  -10.4 -10.4 -10.4   5.7 5.7 5.7

δ13C (‰) δ15N (‰)
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Table 3.3.  Seasonal differences in stable isotope ratios of manatee skin from Belize. 
 
 

Location n Mean ± SE Minimum Maximum Mean ± SE Minimum Maximum
Drowned Cayes

fall 3 -9.7 ± 0.7 -11.0 -8.8 2.6 ± 0.2 2.3 2.9
spring 10 -6.8 ± 0.2 -8.4 -5.9 3.6 ± 0.2 2.1 4.7

Southern Lagoon
fall 11 -13.6 ± 0.4 -15.8 -11.6 0.1 ± 0.3 -1.6 2.0
spring 26 -11.9 ± 0.3 -16.0 -9.2 1.4 ± 0.4 -2.3 5.7

Western Lagoon
fall 7 -13.4 ± 0.5 -15.1 -11.5 2.8 ± 0.3 2.1 4.1
spring 3 -13.0 ± 0.3 -13.4 -12.4 -1.4 ± 0.8 -2.3 0.3

δ13C (‰) δ15N (‰)
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Table 3.4.  IsoError results representing possible proportions of freshwater vegetation, estuarine vegetation, and seagrasses 
contributing to the manatee diet.  Diet source means were corrected for enrichment by 2.8‰ for carbon.  Model criteria allowed 
enrichment factors for nitrogen ranging from 1.0 to 1.5‰, so three possible solutions are shown below for riverine and coastal 
manatees. 
 
 

Diet source
Mean ± SE 

(%)
Lower 95% 

CI (%)
Upper 95% 

CI (%)
Mean ± SE 

(%)
Lower 95% 

CI (%)
Upper 95% 

CI (%)
Mean ± SE 

(%)
Lower 95% 

CI (%)
Upper 95% 

CI (%)
Riverine manatees

Freshwater vegetation  41 ± 12 16 66  50 ± 13 24 76  64 ± 15 34 95
Estuarine vegetation  44 ± 19 5 82  28 ± 21 0 70    5 ± 25 0 55
Seagrasses  15 ±   8 0 30  21 ±   8 4 38  31 ± 10 10 51

Coastal manatees
Freshwater vegetation    2 ± 17 0 36  11 ± 17 0 45  25 ± 18 0 61
Estuarine vegetation  40 ± 26 0 92  25 ± 26 0 77    1 ± 28 0 57
Seagrasses  58 ± 10 39 77  64 ± 10 44 84  73 ± 11 52 95

δ15N enrichment = 1.0‰ δ15N enrichment = 1.2‰ δ15N enrichment = 1.5‰
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CHAPTER 4: CONCLUSIONS 

The overall objective of this study was to assess feeding ecology of Florida and 

Antillean manatees through the use of carbon and nitrogen stable isotope analysis of 

manatee skin.  This was accomplished by first calculating isotope turnover rates and diet-

tissue discrimination values in manatee skin, parameters that must be known in order to 

accurately interpret isotopic data.  Turnover rates and discrimination values, paired with 

isotopic analysis of aquatic vegetation, were then used to assess 13C/12C and 15N/14N 

ratios in the skin of free-ranging manatees in Florida, Belize, and Puerto Rico.   

The present study was the first to calculate stable isotope turnover rates in the skin 

of a marine mammal.  Turnover rates were determined by collecting epidermis tissue 

over a period of more than one year from manatees transitioning between two 

isotopically distinct diets (terrestrial and aquatic vegetation).  These manatees were in 

need of rehabilitation, were brought into captivity at SeaWorld Orlando, and were 

immediately transitioned to a diet of primarily lettuce.  Mean stable carbon and nitrogen 

isotope half-lives in the skin (55 and 42 days, respectively) were slower than most other 

half-lives calculated in metabolically active tissues in mammals.  Slow turnover rate was 

most likely a consequence of the manatee’s slow metabolic rate.  Manatees rescued from 

coastal regions were the best subjects for carbon turnover and those rescued from riverine 

regions were the best subjects for nitrogen turnover due to distinct isotope signatures 

compared to those of terrestrial vegetation.  Because of slow turnover rates in manatee 

epidermis, analysis of carbon and nitrogen stable isotopes in this tissue is more useful in 
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summarizing average dietary intake over a long period of time rather than assessing 

short-term or recent changes in diet, and thus habitat use.   

Diet-tissue discrimination values for 13C were also calculated in the skin of 

manatees on a lettuce diet for more than one year.  Manatee skin was enriched in 13C 

relative to diet by an average of 2.8‰.  Nitrogen stable isotope enrichment values were 

unable to be calculated during this portion of the study due to variability in the δ15N 

values for lettuce fed in captivity. 

These established values for turnover and diet-tissue discrimination, along with an 

analysis of aquatic plant isotopic data, were used to interpret δ13C and δ15N values in 

epidermis collected from free-ranging manatees in Florida, Belize, and Puerto Rico.  This 

was the first application of stable isotope analysis to Antillean manatees. 

Significant differences in δ13C and δ15N values between freshwater plants, 

estuarine plants, and seagrasses allowed for an assessment of manatee feeding in 

differing habitats.  Specifically, freshwater plants were the most depleted in 13C and 

enriched in 15N whereas seagrasses were most the most enriched in 13C and depleted in 

15N.  Stable isotope analysis of aquatic vegetation was not powerful enough to distinguish 

between plant species.  Regional differences in isotope ratios in manatee skin were 

consistent with expected dietary intake from that region.  Variability in δ13C and δ15N 

values in the skin of individual manatees within a region suggested that individuals were 

previously feeding in different habitats. 

No differences in stable isotope ratios of manatee skin were found with respect to 

sex or age class.  Based upon results from manatees from Belize, there may be seasonal 

differences in the isotope ratios in manatee skin representing seasonal changes in diet 
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composition, or seasonal changes in stable isotope ratios of aquatic vegetation.  This 

would also be expected in the skin of Florida manatees since they seasonally aggregate at 

warm water sites.  However in this study, Florida samples were collected primarily 

during winter months so it was not possible to assess seasonality. 

A mixing model (IsoError) and the previously calculated diet-tissue 

discrimination value for 13C were used to estimate nitrogen discrimination in manatee 

skin.  Enrichment values for 15N ranged from 1.0 to 1.5‰.  IsoError was then used to 

estimate proportions of freshwater plants, estuarine plants, and seagrasses contributing to 

the diet of Florida manatees.  In general, manatees sampled in Crystal River and 

Homosassa Springs likely fed on a diet of predominantly freshwater vegetation whereas 

manatees sampled at the Big Bend Power Plant (Tampa Bay), Port of the Islands (Ten 

Thousand Islands), and Warm Mineral Springs (near Charlotte Harbor) likely fed on a 

diet of predominantly seagrasses.  It was also likely that all Florida manatees sampled 

consumed seagrasses sometime in the previous months.  Mixing model results should be 

considered only an approximation since diet source proportions varied with enrichment 

values and slow stable isotope turnover rates in manatee tissue complicates analyses. 

This study contributes to the further refinement of stable isotope analysis as a 

technique used to investigate feeding ecology.  The appropriate use of the analysis is 

especially important when it is applied to endangered or threatened species for which 

conservation and management decisions are crucial.   
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Future studies 

Establishing a more precise nitrogen stable isotope turnover rate in manatee 

epidermis would further aid in stable isotope data interpretation and would be better 

achieved in future studies by assuring a consistent nitrogen signature in the new diet.  For 

diet transitions between aquatic and terrestrial vegetation, manatees rescued from riverine 

regions would be more ideal subjects for nitrogen turnover studies than those from 

coastal regions since there was a greater difference in δ15N values between the skin of 

riverine manatees and the lettuce diet.  For isotope analysis of short-term changes in 

manatee diet, more metabolically active tissues could be used such as blood, or possibly 

the most recent hair or vibrissae growth.  Taking deeper tissues from live manatees such 

as muscle is likely not feasible due to the invasive procedure and risk of infection. 

Diet-tissue discrimination values for 15N in manatee skin are inconsistent between 

studies, so caution should be taken in estimating diet proportions through the use of 

mixing models, as model results are highly dependent upon an accurately calculated diet-

tissue discrimination value.  These values have been estimated for manatee skin based on 

free-ranging data; however a controlled study on a known diet with little variability in 

nitrogen isotope signature is needed.  Additionally, it would be useful to examine 

whether diet-tissue discrimination in manatee tissue differs based upon diet source. 

As the first application of stable isotope analysis to Antillean manatees, regional 

differences in isotopic ratios in manatee skin were presented.  A thorough investigation of 

isotope signatures in aquatic plants in Belize and Puerto Rico (including an analysis of 

freshwater, estuarine, and seagrass vegetation in different regions and during different 

seasons) would allow for a more detailed interpretation of results. 
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APPENDIX A: CAPTIVE MANATEE DIET ITEMS COLLECTED FROM 
SEAWORLD ORLANDO 
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Collection date Item
13-Feb-03 Romaine lettuce
19-Feb-03 Romaine lettuce
21-Feb-03 Romaine lettuce
01-Apr-03 Romaine lettuce
12-Sep-03 Romaine lettuce
11-Oct-03 Romaine lettuce
24-Oct-03 Romaine lettuce

14-Nov-03 Romaine lettuce
02-Jan-04 Romaine lettuce
06-Jan-04 Romaine lettuce
26-Feb-04 Romaine lettuce
15-Apr-04 Romaine lettuce
17-Jun-04 Romaine lettuce
24-Jun-04 Romaine lettuce
unknown Romaine lettuce
unknown Romaine lettuce

19-Feb-03 Spinach
01-Apr-03 Spinach
06-May-03 Spinach
24-Feb-03 Gruel
12-Sep-03 Gruel
24-Jun-04 Gruel
unknown Gruel

21-Feb-03 Monkey chow
14-Nov-03 Monkey chow
06-Jan-04 Monkey chow

18-May-04 Monkey chow
24-Oct-03 Fecal material
08-Apr-04 Fecal material
15-Apr-04 Fecal material
24-Jun-04 Fecal material  
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APPENDIX B: RESCUED FLORIDA MANATEES SAMPLED DURING 
REHABILITATION AND POST RELEASE 
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Animal ID Sex Length 
(cm)

Mass 
(kg)

Location of 
rescue

Reason for rescue Sample 
collection 

dates

Days 
since diet 

switch

Sample 
type

SWF Tm 0301 M 174 105 Cape Canaveral Cold stress 24-Feb-03 3 B
09-Mar-03 18 B
08-Apr-04 414 B

SWF Tm 0318 M 255 273 Cape Canaveral Watercraft injury 14-Jul-03 1 B
24-Jul-03 11 B

29-Aug-03 47 B
12-Sep-03 61 B, S
23-Sep-03 72 S
11-Oct-03 90 S
24-Oct-03 103 S
26-Feb-04 228 B

SWF Tm 0322 F 248 305 Cape Canaveral Watercraft injury 29-Aug-03 17 B
12-Sep-03 31 B
23-Sep-03 42 S
11-Oct-03 60 S
24-Oct-03 73 S

SWF Tm 0334 F 298 593 Jacksonville Entanglement 24-Nov-03 13 B
02-Jan-04 52 S
08-Apr-04 149 B

SWF Tm 0340 M 222 232 Jacksonville Cold stress 18-Dec-03 0 B
02-Jan-04 15 B, S
16-Jan-04 29 B, S
30-Jan-04 43 B, S
11-Feb-04 55 B
27-Feb-04 71 B
08-Apr-04 112 B
08-Feb-05 418 B

12-May-05      77 * S

SWF Tm 0341 F 208 209 Jacksonville Cold stress 18-Dec-03 0 B
02-Jan-04 15 B, S
16-Jan-04 29 B, S
30-Jan-04 43 B
11-Feb-04 55 B
27-Feb-04 71 B
08-Apr-04 112 B
08-Feb-05 418 B, S

12-May-05      77 * S  
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Animal ID Sex Length 
(cm)

Mass 
(kg)

Location of 
rescue

Reason for rescue Sample 
collection 

dates

Days 
since diet 

switch

Sample 
type

SWF Tm 0431 F 90 125 Naples Unknown 30-Dec-04 1 B
14-Jan-05 16 B
28-Jan-05 30 B
11-Feb-05 44 B
28-Feb-05 61 B
11-Mar-05 72 B
29-Mar-05 90 B

SWF Tm 0501 F 216 177 Jacksonville Cold stress 14-Jan-05 1 B
28-Jan-05 15 B
11-Feb-05 29 B
28-Feb-05 46 B
04-Mar-05 50 B
11-Mar-05 57 B
29-Mar-05 75 B  

 
(SWF Tm) = SeaWorld Florida Trichechus manatus 
(B) = Biopsy, (S) = Sloughed skin 
* Sample collected post release 
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APPENDIX C: LONG-TERM CAPTIVE FLORIDA MANATEES 
SAMPLED 
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Animal ID/name Sex Mass (kg) Length (cm) Date Days on 
lettuce diet

Bo M unknown >176 15-Jul-04 512
Charlotte F 1136 330 17-Jun-04 >365
Primo F 494 277 27-Jul-04 >365
Rita F >900 >275 17-Jun-04 >365
Sarah F 1136 325 17-Jun-04 >365
Stubby F 823     252* 27-Jul-04 >365
SWF Tm 0110 F 367 255 27-Jul-04 1231
SWF Tm 0302 F unknown >176 15-Jul-04 512
SWF Tm 0338 F unknown >176 08-Feb-05 429  

 
(SWF Tm) = SeaWorld Florida Trichechus manatus  
* Missing large portion of paddle 
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APPENDIX D: AQUATIC PLANT COLLECTIONS IN FLORIDA AND BELIZE 
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Date Location Site Latitude Longitude Temperature 
(C)

Salinity 
(‰)

Depth 
(m)

Species

Florida
6-Apr-04 St. Johns River 1 28.94507 -81.34730 U    <5 2.0 A.p., E.c., H., L.v., M.a., N.l., P.s., P.c., U.g.
5-Jul-04 St. Johns River 1 28.94507 -81.34730 U    <5 1.5 A.p., E.c., H., L.v., N.l., P.s., U.g.

9-Dec-04 St. Johns River 1 28.94507 -81.34730      <24.0    <5 2.2 A.p., E.c., H., L.v., M.a., N.l., P.s., U.g.
12-Jan-05 Ten Thousand Islands 1 25.86982 -81.66802 21.7 40 <0.5 H.e., H.w., T.t.
12-Jan-05 Ten Thousand Islands 2 25.85423 -81.67165 21.7 41 <0.5 H.w., T.t.
12-Jan-05 Ten Thousand Islands 3 25.86032 -81.55838 21.1 40 1.0 H.e., H.w., S.f., T.t.
12-Jan-05 Ten Thousand Islands 4 25.84282 -81.52627 21.1 40 1.1 H.e., H.w., T.t.
18-Feb-05 Crystal River 1 28.87935 -82.60023      <24.0 8 <0.5 H.v., C., M.s.
18-Feb-05 Crystal River 2 28.88392 -82.59533      <24.0 6 <0.5 H.v., M.s.

23-May-05 Charlotte Harbor 1 26.83600 -82.06693 30.0 26 0.9 H.w., T.t.
23-May-05 Charlotte Harbor 2 26.70182 -82.12158 28.3 30 0.8 H.w., S.f., T.t.
23-May-05 Charlotte Harbor 3 26.71743 -82.15440 28.3 35 1.1 H.w., S.f., T.t.
23-May-05 Charlotte Harbor 4 26.71282 -82.18127 28.3 35 0.7 H.w., S.f., T.t.

27-Jul-05 Tampa Bay 1 27.67750 -82.51780 32.2 26 <0.5 H.w., S.f., T.t.
27-Jul-05 Tampa Bay 2 27.69050 -82.52932 31.7 28 0.3 H.w., S.f., T.t.
27-Jul-05 Tampa Bay 3 27.71640 -82.50247 31.7 22 0.6 H.w., S.f., T.t.
27-Jul-05 Tampa Bay 4 27.61210 -82.57463 32.8 28 0.8 H.w., S.f., T.t.
20-Jun-01 Indian River Lagoon 1 27.33944 -80.23717 32.0 35 <0.5 H.w.

9-Jul-01 Indian River Lagoon 1 27.33944 -80.23717 30.0 34 <0.5 H.w.
25-Jul-01 Indian River Lagoon 1 27.33944 -80.23717 29.0 30 0.5 H.w.
7-Aug-01 Indian River Lagoon 1 27.33944 -80.23717 29.5 24 0.5 H.w.
25-Jun-01 Indian River Lagoon 2 27.33158 -80.23681 28.5 33 1.4 G.
7-Aug-01 Indian River Lagoon 2 27.33158 -80.23681 29.5 26 1.3 H.w., G.
10-Jul-01 Indian River Lagoon 2 27.33158 -80.23681 29.0 35 1.2 G.
25-Jul-01 Indian River Lagoon 2 27.33158 -80.23681 28.0 31 1.3 G.
29-Jun-01 Indian River Lagoon 3 27.53603 -80.34847 29.5 35 0.7 H.w., S.f., T.t.
17-Jul-01 Indian River Lagoon 3 27.53603 -80.34847 31.0 25 0.9 S.f.
30-Jun-01 Indian River Lagoon 4 27.56422 -80.33078 33.0 36 0.6 G.
18-Jul-01 Indian River Lagoon 4 27.56422 -80.33078 30.5 25 0.9 G.
30-Jul-01 Indian River Lagoon 4 27.56422 -80.33078 31.0 25 0.9 G.
18-Jul-01 Indian River Lagoon 5 27.56225 -80.33239 30.5 25 0.9 G., S.f.  
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Date Location Site Latitude Longitude Temperature 
(C)

Salinity 
(‰)

Depth 
(m)

Species

Florida
30-Jul-01 Indian River Lagoon 5 27.56225 -80.33239 31.0 25 0.9 G., H.w., S.f.
30-Jun-01 Indian River Lagoon 5 27.56225 -80.33239 33.0 36 0.6 H.w., S.f.

13-Aug-01 Indian River Lagoon 6 27.49972 -80.30783 34.0 25 0.5 H.w.

Belize
1-Sep-02 Drowned Cayes 1 17.45349 -88.06873      >24.0 37 U T.t.
31-Jul-02 Drowned Cayes 2 17.46028 -88.07813      >24.0 35 U H.w.

30-Aug-02 Drowned Cayes 3 17.40824 -88.07497      >24.0 35 U T.t.
7-Jul-02 Drowned Cayes 4 17.48239 -88.07482      >24.0 37 U T.t.
2-Jul-02 Drowned Cayes 5 17.50538 -88.10929      >24.0 39 U T.t.

15-Aug-02 Drowned Cayes 5 17.50494 -88.10907      >24.0 37 U T.t.
26-Jul-02 Drowned Cayes 6 17.45407 -88.08223      >24.0 37 U T.t.

8-Jul-02 Drowned Cayes 7 17.49657 -88.10286      >24.0 37 U T.t.
28-Jul-02 Drowned Cayes 7 17.49646 -88.10277      >24.0 38 U T.t.

29-Aug-02 Drowned Cayes 7 17.49631 -88.10280      >24.0 37 U H.w.
3-Jul-02 Drowned Cayes 8 17.52261 -88.11116      >24.0 37 U T.t.

2-Sep-02 Drowned Cayes 9 17.45920 -88.07199      >24.0 U U T.t.
14-Aug-02 Drowned Cayes 10 17.49054 -88.09344      >24.0 36 U T.t.  

 
(U) = Unknown 
 
Species abbreviations

A.p. Alternanthera philoxeroides M.a. Myriophyllum aquaticum
C.   Chara sp. M.s. Myriophyllum spicatum
E.c. Eichhornia crassipes N.l. Nuphar luteum
G.   Gracilaria  sp. P.c. Pontederia cordata
H.   Hydrocotyle sp. P.s. Pistia stratiotes
H.e. Halophila engelmannii S.f. Syringodium filiforme
H.v. Hydrilla verticillata T.t. Thalassia testudinum
H.w. Halodule wrightii U.g. Unknown grass
L.v. Lemna valdiviana  
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APPENDIX E: FREE-RANGING MANATEES SAMPLED IN FLORIDA, 
BELIZE, AND PUERTO RICO 
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Animal ID Sex Length 
(cm)

Age class Date Location

Florida
02-232-1 M 180 subadult 20-Aug-02 Homosassa Springs
02-303-1 F 200 subadult 30-Oct-02 Crystal River
02-303-2 M 170 calf 30-Oct-02 Crystal River
02-318-1 F 170 calf 14-Nov-02 Crystal River
02-323-1 M 200 subadult 19-Nov-02 Crystal River
02-323-2 F 200 subadult 19-Nov-02 Crystal River
02-323-3 M 230 subadult 19-Nov-02 Homosassa Springs
02-324-1 M 170 calf 20-Nov-02 Crystal River
02-324-2 M 220 subadult 20-Nov-02 Crystal River
02-324-3 F 180 subadult 20-Nov-02 Homosassa Springs
02-324-4 F 200 subadult 20-Nov-02 Homosassa Springs
02-329-1 M 180 subadult 25-Nov-02 Crystal River
02-330-1 M 220 subadult 26-Nov-02 Crystal River
02-330-2 M 170 calf 26-Nov-02 Crystal River
02-330-3 M 220 subadult 26-Nov-02 Homosassa Springs
02-336-1 M 210 subadult 02-Dec-02 Crystal River
02-336-2 M 170 calf 02-Dec-02 Crystal River
02-336-3 M 180 subadult 02-Dec-02 Crystal River
02-336-4 M 190 subadult 02-Dec-02 Crystal River
02-336-5 F 180 subadult 02-Dec-02 Crystal River
02-336-6 F 220 subadult 02-Dec-02 Homosassa Springs
02-337-1 U 200 subadult 03-Dec-02 Crystal River
02-337-2 M 190 subadult 03-Dec-02 Crystal River
02-337-3 F 230 subadult 03-Dec-02 Crystal River
02-337-4 F 210 subadult 03-Dec-02 Crystal River
02-337-5 M 180 subadult 03-Dec-02 Crystal River
02-337-6 F 170 calf 03-Dec-02 Crystal River
02-337-7 F 235 subadult 03-Dec-02 Homosassa Springs
02-340-1 M 284 adult 06-Dec-02 Port of the Islands
02-340-2 M 256 subadult 06-Dec-02 Port of the Islands
02-340-3 F 266 subadult 06-Dec-02 Port of the Islands
02-341-1 M 272 subadult 07-Dec-02 Port of the Islands
02-341-2 F 323 adult 07-Dec-02 Port of the Islands
02-346-1 U 230 subadult 12-Dec-02 Crystal River
02-346-2 M 225 subadult 12-Dec-02 Crystal River
02-347-1 F 290 adult 13-Dec-02 Big Bend Power Station
02-347-2 F 259 subadult 13-Dec-02 Big Bend Power Station
02-347-3 M 290 adult 13-Dec-02 Big Bend Power Station
02-350-1 M 160 calf 16-Dec-02 Crystal River
02-350-2 U 180 subadult 16-Dec-02 Crystal River
02-350-3 M 190 subadult 16-Dec-02 Crystal River
02-350-4 F 190 subadult 16-Dec-02 Crystal River
02-350-5 F 170 calf 16-Dec-02 Crystal River
02-350-6 F 170 calf 16-Dec-02 Crystal River
02-350-7 M 170 calf 16-Dec-02 Homosassa Springs
02-350-8 M 170 calf 16-Dec-02 Homosassa Springs
02-352-1 F 180 subadult 18-Dec-02 Crystal River  
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(cm)
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Florida
02-352-2 M 180 subadult 18-Dec-02 Crystal River
02-352-3 F 200 subadult 18-Dec-02 Crystal River
02-364-1 M 170 calf 30-Dec-02 Crystal River
02-364-2 M 200 subadult 30-Dec-02 Crystal River
02-364-3 F 200 subadult 30-Dec-02 Homosassa Springs
03-008-1 M 180 subadult 08-Jan-03 Crystal River
03-008-2 M 230 subadult 08-Jan-03 Crystal River
03-008-3 M 190 subadult 08-Jan-03 Crystal River
03-010-1 M 180 subadult 10-Jan-03 Crystal River
03-010-2 M 190 subadult 10-Jan-03 Crystal River
03-010-3 F 200 subadult 10-Jan-03 Homosassa Springs
03-013-1 F 241 subadult 13-Jan-03 Warm Mineral Springs
03-013-2 F 259 subadult 13-Jan-03 Warm Mineral Springs
03-014-1 M 224 subadult 14-Jan-03 Warm Mineral Springs
03-015-1 M 236 subadult 15-Jan-03 Warm Mineral Springs
03-017-1 F 210 subadult 17-Jan-03 Crystal River
03-017-2 F 170 calf 17-Jan-03 Crystal River
03-017-3 F 210 subadult 17-Jan-03 Crystal River
03-017-4 F 180 subadult 17-Jan-03 Crystal River
03-022-1 F 180 subadult 22-Jan-03 Crystal River
03-024-1 F 180 subadult 24-Jan-03 Crystal River
03-024-2 F 210 subadult 24-Jan-03 Crystal River
03-028-1 M 190 subadult 28-Jan-03 Crystal River
03-028-2 F 180 subadult 28-Jan-03 Crystal River
03-028-3 F 277 adult 28-Jan-03 Warm Mineral Springs
03-028-4 F 277 adult 28-Jan-03 Warm Mineral Springs
03-029-1 U 190 subadult 29-Jan-03 Crystal River
03-036-1 M 200 subadult 05-Feb-03 Homosassa Springs
03-038-1 F 210 subadult 07-Feb-03 Crystal River
03-315-1 M 190 subadult 11-Nov-03 Crystal River
03-315-2 M 170 calf 11-Nov-03 Crystal River
03-317-1 M 130 calf 13-Nov-03 Crystal River
03-317-1B M 130 calf 13-Nov-03 Crystal River
03-345-1 F 200 subadult 11-Dec-03 Crystal River
03-345-2 F 220 subadult 11-Dec-03 Crystal River
03-345-3 M 210 subadult 11-Dec-03 Crystal River
04-010-1 M 180 subadult 10-Jan-04 Crystal River
04-010-2 M 180 subadult 10-Jan-04 Crystal River
04-022-1 F 150 calf 22-Jan-04 Crystal River
04-068-1 M 220 subadult 08-Mar-04 Crystal River
04-357-1 M 170 calf 22-Dec-04 Homosassa Springs
05-019-1 F 220 subadult 19-Jan-05 Homosassa Springs
05-019-2 F 190 subadult 19-Jan-05 Homosassa Springs
05-019-3 M 160 calf 19-Jan-05 Homosassa Springs
05-022-1 F 180 subadult 22-Jan-05 Crystal River
05-022-2 M 190 subadult 22-Jan-05 Crystal River
05-022-3 M 230 subadult 22-Jan-05 Crystal River  
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Florida
05-022-4 F 190 subadult 22-Jan-05 Crystal River
05-022-5 M 210 subadult 22-Jan-05 Crystal River
05-022-6 M 220 subadult 22-Jan-05 Homosassa Springs
05-022-7 M 230 subadult 22-Jan-05 Homosassa Springs
05-022-8 F 170 calf 22-Jan-05 Homosassa Springs
05-025-1 F 180 subadult 25-Jan-05 Homosassa Springs
05-028-1 M 230 subadult 28-Jan-05 Homosassa Springs
05-043-1 F 190 subadult 12-Feb-05 Crystal River
CNP-04-01 M 245 subadult 17-Jan-04 Port of the Islands
CTB-042 M 177 subadult 14-Dec-04 Big Bend Power Station
CTB-043 F 174 calf 14-Dec-04 Big Bend Power Station
CTB-044 M 147 calf 14-Dec-04 Big Bend Power Station
CTB-045 F 173 calf 14-Dec-04 Big Bend Power Station
CTB-046 F 212 subadult 14-Dec-04 Big Bend Power Station
TNP-25 M 242 subadult 15-Jan-04 Port of the Islands
TNP-26 M 312 adult 15-Jan-04 Port of the Islands
TNP-27 M 267 subadult 16-Jan-04 Port of the Islands
TNP-28 M 234 subadult 16-Jan-04 Port of the Islands
TNP-29 F 289 adult 18-Apr-04 Port of the Islands
TNP-30 M 274 subadult 18-Apr-04 Port of the Islands
TNP-31 F 308 adult 19-Apr-04 Port of the Islands
TNP-32 M 306 adult 19-Apr-04 Port of the Islands
TTB-109 F 282 adult 30-Dec-03 Big Bend Power Station
TTB-110 F 295 adult 30-Dec-03 Big Bend Power Station

Belize
BZ01F18 F 276 adult 08-Mar-02 Western Lagoon
BZ02F20 F 254 adult 07-Mar-02 Southern Lagoon
BZ02F21 F 188 subadult 07-Mar-02 Southern Lagoon
BZ02F22 F 244 adult 10-Mar-02 Southern Lagoon
BZ02F26 F 279 adult 07-Nov-02 Southern Lagoon
BZ02F27 F 242 adult 08-Nov-02 Western Lagoon
BZ02M23 M 248 adult 13-Mar-02 Northern Lagoon
BZ02M24 M 240 adult 13-Mar-02 Western Lagoon
BZ02M25 M 289 adult 07-Nov-02 Western Lagoon
BZ03F28 F 190 subadult 09-Apr-03 Southern Lagoon
BZ03F29 F 277 adult 07-May-04 Southern Lagoon
BZ03F31 F 302 adult 10-Apr-03 Southern Lagoon
BZ03F35 F 300 adult 12-Apr-03 Southern Lagoon
BZ03F39 F 234 adult 13-Apr-03 Northern Lagoon
BZ03F41 F 296 adult 14-Apr-03 Western Lagoon
BZ03F42 F 318 adult 15-Apr-03 Northern Lagoon
BZ03F44 F >275 adult 15-Apr-03 Northern Lagoon
BZ03F47 M 205 subadult 20-Nov-03 Western Lagoon
BZ03F48 F 159 calf 20-Nov-03 Western Lagoon
BZ03F50 F 224 subadult 21-Nov-03 Western Lagoon
BZ03M30 M 293 adult 09-Apr-03 Southern Lagoon
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Belize
BZ03M32 M 245 adult 11-Apr-03 Southern Lagoon
BZ03M33 M 296 adult 11-Apr-03 Northern Lagoon
BZ03M34 M 248 adult 12-Apr-03 Southern Lagoon
BZ03M36 M 249 adult 12-Apr-03 Southern Lagoon
BZ03M37 M 324 adult 13-Apr-03 Northern Lagoon
BZ03M38 M 257 adult 13-Apr-03 Northern Lagoon
BZ03M40 M 211 subadult 14-Apr-03 Southern Lagoon
BZ03M43 M 272 adult 15-Apr-03 Northern Lagoon
BZ03M45 M 250 adult 16-Apr-03 Southern Lagoon
BZ03M46 M 230 adult 16-Apr-03 Southern Lagoon
BZ03M49 M 269 adult 21-Nov-03 Western Lagoon
BZ04F52 F 205 subadult 05-May-04 Southern Lagoon
BZ04F53 F 285 adult 05-May-04 Southern Lagoon
BZ04F55 F 292 adult 06-May-04 Southern Lagoon
BZ04F56 F 170 calf 06-May-04 Southern Lagoon
BZ04F57 F 154 calf 07-May-04 Southern Lagoon
BZ04F60 F 273 adult 11-May-04 Drowned Cayes
BZ04F61 F 259 adult 12-May-04 Drowned Cayes
BZ04F62 F 298 adult 12-May-04 Drowned Cayes
BZ04F65 F 204 subadult 17-Nov-04 Drowned Cayes
BZ04F67 F 219 subadult 17-Nov-04 Drowned Cayes
BZ04F68 F 252 adult 19-Nov-04 Southern Lagoon
BZ04F69 F 285 adult 20-Nov-04 Southern Lagoon
BZ04F72 F 263 adult 21-Nov-04 Southern Lagoon
BZ04F73 F 283 adult 22-Nov-04 Southern Lagoon
BZ04F75 F 260 adult 22-Nov-04 Southern Lagoon
BZ04F76 F 172 calf 22-Nov-04 Southern Lagoon
BZ04M51 M 215 subadult 04-May-04 Southern Lagoon
BZ04M54 M 270 adult 06-May-04 Southern Lagoon
BZ04M58 M 293 adult 10-May-04 Drowned Cayes
BZ04M59 M 241 adult 11-May-04 Drowned Cayes
BZ04M63 M 238 adult 13-May-04 Drowned Cayes
BZ04M64 M 284 adult 13-May-04 Drowned Cayes
BZ04M66 M 277 adult 17-Nov-04 Drowned Cayes
BZ04M70 M 192 subadult 20-Nov-04 Southern Lagoon
BZ04M71 M 250 adult 21-Nov-04 Southern Lagoon
BZ04M74 M 286 adult 22-Nov-04 Southern Lagoon
BZ04M77 M 256 adult 22-Nov-04 Southern Lagoon
BZ05F80 F 234 adult 17-Apr-05 Southern Lagoon
BZ05F81 F 212 subadult 17-Apr-05 Southern Lagoon
BZ05F82 F 273 adult 22-Apr-05 Drowned Cayes
BZ05M79 M 225 subadult 17-Apr-05 Southern Lagoon
BZ05M83 M 286 adult 23-Apr-05 Drowned Cayes
BZ05M84 M 253 adult 23-Apr-05 Drowned Cayes
BZ97M01 M 306 adult 07-Nov-02 Western Lagoon
BZ98M06 M 285 adult 07-May-04 Southern Lagoon
BZ99M10 M 255 adult 09-Mar-02 Southern Lagoon  
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Puerto Rico
CPR-03-01 M 212 subadult 20-Jul-02 Guayanilla
CPR-03-02 F 251 adult 21-Jul-03 Guayanilla
CPR-03-03 F 236 adult 07-Nov-03 Boqueron
CPR-04-01 F 193 subadult 10-Jun-04 Boqueron
NEPST-872 U U adult 15-Nov-03 Salinas
TPR-07 M 265 adult 01-May-05 Ceiba
TPR-11 F 296 adult 03-Nov-03 Boqueron
TPR-13 F 299 adult 17-Jul-03 Boqueron
TPR-14 M 250 adult 18-Jul-03 Boqueron
TPR-15 F 296 adult 20-Jul-03 Guayanilla
TPR-16 M 287 adult 04-Nov-03 Boqueron
TPR-17 M 310 adult 05-Nov-03 Guayanilla
TPR-18 F 267 adult 05-Nov-03 Guayanilla
TPR-19 M 249 adult 06-Nov-03 Guayanilla
TPR-20 F 288 adult 07-Jun-04 Guayanilla
TPR-21 F 297 adult 07-Jun-04 Guayanilla
TPR-22 M 256 adult 08-Jun-04 Guayanilla
TPR-23 F 261 adult 10-Jun-04 Boqueron
TPR-28 M 273 adult 29-Apr-05 Ceiba
TPR-29 F 264 adult 29-Apr-05 Ceiba
TPR-31 F 250 adult 30-Apr-05 Ceiba
TPR-32 F 250 adult 01-May-05 Ceiba
TPR-33 M 252 adult 02-May-05 Ceiba  

 
(U) = Unknown 
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