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ABSTRACT 

Although capable of sexual reproduction, many plants also rely heavily on clonal reproduction. The 

formation of multiple, physiologically-independent units with the same genotype has important 

implications for spatial genetic structure and genetic diversity in these plants. The endangered scrub-

dwelling perennial, Polygonella myriophylla is known to reproduce both sexually and clonally but no 

study to date has been able to investigate the spatial genetic patterns that occur in this species. I use 

microsatellite markers to investigate questions about clonal structure and genetic diversity in five 

populations of P. myriophylla and address some of the implications of my findings for conservation of 

this species: Overall, I find that 57% of sampled clusters of P. myriophylla are composed of a single 

genet (genetic individual) with multiple physiological units (ramets) while the remainder are made up 

of two or more genets. I found differences in both clonal reproduction and genetic diversity among 

populations. I also found evidence of limited gene flow even over small spatial scales (less than 10 

km) and for at least 4 genetic clusters occurring within the species range. Despite high levels of 

genetic diversity overall, there is evidence of reduced genetic diversity in two populations My results 

suggest that high levels of clonality may be important in maintaining genetic diversity in P. 

myriophylla. I also provide evidence that dirt roadsides may not represent a refuge for this species.  
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CHAPTER 1: INTRODUCTION 

Although sexual reproduction predominates in vertebrates, asexual or clonal reproduction is 

extremely common in many other taxa, including fungi, protists, bacteria, some invertebrates, and 

plants (Anderson & Kohn 1995; Ayre & Hughes 2000; Klimes 1997; Simon et al. 1999). Clonal 

reproduction can take a variety of forms but all have the same basic result: creation of a new 

physiologically independent unit with an identical genotype to the parent. In plants, one of the most 

common forms of clonality is vegetative reproduction, in which new physiological individuals are 

formed without spores or gametes (Klimes 1997). Although many discussions of sexual and clonal 

reproduction treat it as an either-or decision (Doncaster et al. 2000; Hamilton et al. 1990), many 

organisms utilize both (Green & Noakes 1995; Handel 1985). This results in a host of interesting 

interactions, with clonal reproduction driving changes in sexual reproduction and vice versa 

(Hamilton et al. 1987; Handel 1985). Clonal reproduction changes the distribution and diversity of 

genotypes in a population, ultimately impacting the genetic diversity, population structure, and 

potentially the very survival of an organism (Aarssen 2008; Honnay & Bossuyt 2005; Pan & Price 

2001). The particular impacts of clonality on these characteristics of a species are highly dependent 

on both the demographic characteristics of that species and the manner in which it employs clonal 

reproduction (Engelstadter 2008; Judson 1997; Liu et al. 2009). Understanding the implications of 

clonal reproduction becomes particularly important when the species in question is threatened or 

endangered, and clonality can serve as a “double-edged sword” when conservation is a priority. 

Clonality-induced changes in genetic structure may cause a loss of genetic diversity and amplify the 

impact of reduced population size. For example, when used extensively, clonal reproduction can 

result in clusters of identical genotypes, especially when mobility of the organisms is limited (Araki et 
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al. 2009; Charpentier 2001; Handel 1985; Herben & Novoplansky 2008). These clusters then 

promote inbreeding, because the most readily available mates are also the most closely related. When 

self-fertilization is possible, this clustering of closely related genotypes may result in high levels of 

inbreeding leading to a rapid reduction of genetic diversity within the population (Leiss et al. 2009; 

Thompson et al. 2008). The negative interaction between self-fertilization and clonal reproduction is 

expected to create selection pressure favoring self-incompatibility. However, this phenomenon has 

not been conclusively demonstrated (Jacquemyn & Honnay 2008; Vallejo-Marin & O'Brien 2007). 

When self-fertilization is not possible, genotypic clustering can inhibit outcrossing and reduce 

effective population size, ultimately reducing genetic diversity(Liao et al. 2009). Another way in 

which clonal reproduction results in the loss of genetic diversity occurs when relatively few 

genotypes are able to outcompete others, resulting in a dramatic reduction in the effective 

population size (Lhuillier et al. 2006; Mock et al. 2008; Noel et al. 2007). In the most extreme 

circumstances, a single genotype may dominate a habitat patch, completely eliminating the 

opportunity for outcrossing and potentially halting sexual reproduction altogether (Lhuillier et al. 

2006).  

Interestingly, clonal reproduction can also forestall the loss of genetic diversity in some 

circumstances and allow more time for management strategies to be devised. By creating additional 

physiologically independent units the chance of death for any individual genotype is reduced (Pan & 

Price 2001; Seligman & Henkin 2003). This results in maintenance of alleles in the population for 

longer periods of time and reduces the impact of stochastic events on the genetic makeup of a 

population. Clonality also permits those alleles to be retained in the population long-term, even if 

sexual reproduction is impossible due to poor conditions or a lack of mates (Aarssen 2008; Dorken 

& Eckert 2001; Honnay & Bossuyt 2005). These effects are especially important in small species in 
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which each physiological individual is relatively short-lived (Aarssen 2008). In the case of plants, 

clonal reproduction also enables a larger and more prominent floral display, which may attract 

pollinators and increase opportunities for outcrossing (Charpentier 2001; Leiss et al. 2009). 

Plants of all types frequently employ clonal reproduction but it is especially common in small 

angiosperms (Aarssen 2008; Crepet & Niklas 2009). As a result, a single genetic individual, or genet, 

may be made up of many physiologically independent units, or ramets. Mobility of genotypes is 

extremely limited in plants and the spatial genetic structure created by patterns of ramets and genets 

can play a major role in the larger patterns of genetic diversity (Reisch et al. 2007). The type of clonal 

reproduction is a key factor in the spatial genetic structure of plants, and may be thought of as 

occurring along a gradient (Doust 1981; Herben & Novoplansky 2008). At one end of the gradient is 

phalanx type reproduction, where new ramets are formed immediately next to previously existing 

ramets. This creates a clustered pattern of genets in the population with all ramets from a single 

genet being in close proximity to one another. At the opposite end of the spectrum is guerilla type 

clonal recruitment, in which new ramets are dispersed over considerable distances from the 

previously existing ramets. When guerilla recruitment predominates, individual ramets from a single 

genet will be found widely scattered and interspersed, with little or no clustering by genotype (Doust 

1981). 

In addition to the impacts of vegetative recruitment, genetic structure in plants is also affected by 

historical patterns of colonization and long distance gene flow. In species where long-distance gene 

flow is rare and areas of suitable habitat are naturally fragmented, local adaptation to environmental 

conditions is expected to be important and species may possess characteristics that prevent the loss 

of genetic diversity even with limited gene flow (Hamrick 2004). This may result in the formation of 
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multiple genetic clusters, with little gene flow across areas of unsuitable habitat and high gene flow 

within patches of suitable habitat. Alternately, a more continuous pattern of increasing genetic 

isolation with increasing geographic distance between populations, or isolation by distance (IBD) 

may be seen (Wright 1943). As a result, it is important to understand both fine scale patterns of 

genetic diversity derived from clonal and sexual reproduction, and larger scale patterns derived from 

habitat fragmentation and long-distance gene flow. For example, working with the endangered plant 

Centauria horrida, Mameli et al. (2008) found evidence for two distinct genetic clusters, correlated with 

a 30 km gap in suitable habitat, a result that indicated that the two clusters needed to be considered 

separately for conservation planning. 

The Lake Wales Ridge is an elevated area consisting primarily of scrub habitat that was the shoreline 

of Florida during glacial minima of the Pleistocene. The region is of particular interest for 

conservation planners because it is home to many rare and endemic species, including one species of 

bird, one mammal, many other vertebrates and invertebrates, and more than 21 species of plants. 

Moreover, at least 80% of the xeric upland habitat that characterizes the ridge, and upon which 

these species depend, had been lost by 2007 (Turner et al. 2006; Weekley et al. 2008). Genetic 

studies of scrub species on the LWR have demonstrated a high degree of variation in reproductive 

patterns, genetic diversity, and population structure. One plant, Ziziphus celata, has been found to 

occur almost exclusively as uniclonal populations (Godt et al. 1997; Weekley et al. 2002), while other 

plants show genetic diversity ranging from relatively low to extremely high (Dolan et al. 1999; Evans 

et al. 2000; McDonald & Hamrick 1996). Additionally, some species show almost no population 

structure, with more than 95% of variation being found within populations, while others are highly 

genetically structured, with more than 50% of variation being found among populations. Studies of 

the Florida scrub-jay and the sand skink both show evidence of multiple genetic clusters within the 
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Lake Wales Ridge, and this clustering is combined with a general pattern of isolation by distance in 

the case of the skinks (Coulon et al. 2008; Richmond et al. 2009). 

My study focused on Polygonella myriophylla, a clonal, allelopathic shrub currently listed as endangered 

at both the federal and state level (Turner et al. 2006; Weekley et al. 2008). Although it is most 

closely associated with the Lake Wales Ridge, and has even been used to help define the boundaries 

of that ridge in some areas (Weekley et al. 2008), it is also found on two other Central Florida ridges, 

though only on the portions of those ridges closest to the Lake Wales Ridge. Polygonella myriophylla is 

considered an important component of healthy scrub habitat and may play an important role in 

moderating the effects of fire by impacting the growth and distribution of scrub vegetation through 

its allelopathic effects (Weidenhamer & Romeo 1989, 2004). 

Polygonella myriophylla typically grows in distinct clusters that are surrounded by a margin of bare sand, 

resulting from the allelopathic chemicals released by the plant. Attempted sexual reproduction is 

common and plants produce flowers year-round, but seeds and seedlings are rarely observed 

(Quintana-Ascencio et al. 2008). A recent study found that less than 1% of flowers result in seeds, 

and seedlings occur almost exclusively after disturbance events (Quintana-Ascencio et al. 2008). 

Most reproduction in this species appears to occur clonally, through adventitious rooting of 

branches running near the ground. Over time, these rooted branches may disconnect from the 

parent plant and as a result each genetically unique individual (genet) may be comprised of many 

independently rooted branches (ramets; Fig. 1). Because multiple seedlings may sprout in close 

proximity to one another (Quintana-Ascencio et al. 2008) it is impossible to determine from a visual 

inspection whether all ramets within a single cluster of P. myriophylla belong to the same genet or 

multiple genets. To circumvent this problem in the absence of molecular markers, a previous field 
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study defined a “functional genet” as a ramet or group of ramets of P. myriophylla separated from 

other ramets by more than 30 cm (Quintana-Ascencio et al. 2008). This study is the first to evaluate 

the utility of this operational definition through the use of genetic markers. 

 

Figure 1: Diagram illustrating the distinction between ramet and genet. Each filled circle represents a single, 
independently rooted branch, or ramet. Each empty circle surrounds all ramets of a single genetic individual, 
or genet. Colors correspond to unique genets. This figure shows five ramets that together make up two genets. 

 

Polygonella myriophylla generally occurs in two types of habitat: scrub typical of its native range, and 

along the side of dirt roads that cut through scrub habitat (Quintana-Ascencio et al. 2008). These 

two habitats are subjected to different disturbance regimes. Scrub patches typically experience 

periodic fires (every 15-100 years; Meyers 1990), currently in the form of prescribed burns, after 

which P. myriophylla must sprout from seed. In contrast to the episodic disturbance occurring in 

scrub habitats, P. myriophylla growing in roadside patches experience more continuous disturbance in 

form of continuously shifting sand, which alters the likelihood of ramet formation through 

adventitious rooting and increases variability in growth rate and other demographic features 



7 

 

(Quintana-Ascencio et al. 2008). P. myriophylla growing along roadsides may also be less likely to 

experience fire which may alter the rate at which new genets (seedlings) can enter the population. 

Additionally, the scrub habitats in which P. myriophylla occur differ in patch size, isolation from other 

scrub patches, and time since fire. Small habitat patch size and isolation of a habitat patch may 

reduce genetic diversity of populations over time as a result of genetic drift and increased inbreeding 

(Aguilar et al. 2008). A previous study using allozymes identified high levels of genetic diversity in P. 

myriophylla but was not able to evaluate clonal structure and thus could not consider the impact of 

clonal reproduction on population genetic structure and genetic diversity (Lewis & Crawford 1995). 

I used microsatellite markers to investigate clonal reproduction and spatial patterns of genetic 

diversity in Polygonella myriophylla. The questions I sought to address are: 1) Does the distribution of 

ramets and genets suggest a phalanx or guerilla type of vegetative recruitment strategy? 2) Does the 

frequency of clonal reproduction differ between sites or between habitat types within sites? 3) Do 

some populations contain more genetic variation than others? 4) Is there an effect of isolation by 

distance within the species range? 5) Are there multiple genetic clusters, and if so, how are they 

distributed? 
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CHAPTER 2: MATERIALS AND METHODS 

Sample collection 

I selected four locations where P. myriophylla is known to occur, representing most of the north-

south extent of the species range (Figs. 2 and 3; Turner et al. 2006). The northernmost site, Dr. 

Phillips, FL (Dr. P) is located on the Mt. Dora ridge. The other three sites, Allen Davis Broussard 

Catfish Creek State Park (CTC); Lake Wales Ridge National Wildlife Refuge Carter Creek Tract 

(CRC); and Lake Placid, FL (LP) are located on the Lake Wales ridge. I sampled from multiple areas 

at CRC and CTC (Fig. 3). At CRC, I collected samples within the scrub habitat in three macroplots 

that were managed with different strategies: burned, roller chopped, and undisturbed. I also sampled 

along the dirt roads dividing the CRC macroplots. Because these areas were not separated by 

unsuitable habitat and occurred over less than 1 km I consider them one population, except when 

considering differences between road and scrub plants. At CTC, I collected samples in the scrub and 

along dirt roads from two areas separated by approximately 7 km of mostly unsuitable habitat. These 

two areas are identified as CTC A and CTC B and are considered separate populations unless 

otherwise noted. 

Within each site, I selected clusters of P. myriophylla to sample haphazardly. Each new cluster was 

picked by moving away from the previous cluster until another cluster was seen. In instances where 

another cluster was immediately visible from the cluster being sampled I ensured that sampled 

clusters were separated by at least 5 meters of bare ground or other vegetation. The location of each 

cluster was recorded using a Tremble GPS unit with submeter accuracy. For all clusters larger than 

30 cm in diameter and with more than one ramet (86% of sampled clusters), I collected leaves from 

two or more ramets and recorded the distance(s) between the samples in centimeters using a tape 
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measure (Fig. 4). I collected a total of 291 ramets from 153 clusters of P. myriophylla. The total 

number of samples and clusters for each site is given in Tables 1 and 2. Leaf samples consisted of 

approximately 40-60 young leaves, placed in a plastic bag containing Drierite dessicant (Drierite co.).  
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Figure 2: Topographic map of the central Florida showing collection sites for Polygonella myriophylla. Yellow 
outline denotes the boundary of the Lakes Wales Ridge and circles indicate collection sites. Pink = Dr. P, Red 
= CTC A, Purple = CTC B, Blue = CRC, Green = LP. 
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Figure 3: Satellite images showing collection localities for Polygonella myriophylla. Top left – Dr. P (pink). 
Top right – CTC (red = CTC A, purple = CTC B). Bottom left – CRC (blue). Bottom right – LP (green). 
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Figure 4: Diagram of collection method used to sample clusters of Polygonella myriophylla. The pink circle 
indicates the outermost extent of the sampled cluster. Yellow circles are the branches where the leaf samples 
were taken. Green line is the distance between samples. 

 

Table 1: Number of clusters (NCL) and ramets (NR) for all populations of P. myriophylla collected for this 
study. Dr. P = Dr. Phillips, CTC = Catfish Creek, CRC = Carter Creek, LP = Lake Placid 

Population Dr. P CTC A CTC B CRC LP Total 

NR 44 38 42 151 16 291 

NCl 22 24 22 75 10 153 

 

Table 2: Number of clusters (NCL) and ramets (NR) for all subpopulations of P. myriophylla collected at the 
CRC site. MP2 = Macroplot 2, MP3 = Macroplot 3, MP4 = Macroplot 4, Road = Roadside between macroplots 

Subpopulation MP2 MP3 MP4 Road Total 

NR 14 44 34 59 151 

NCl 7 22 16 30 75 
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To extract DNA, I pulverized the leaf tissue by placing approximately 20-25 dried leaves in a 2.0mL 

screw-top microcentrifuge tube with 10-15 2.0 mm zirconia beads, then shaking the tube for 3 

minutes in the MiniBeadBeater 16 (BioSpec Products, Inc.).  After the cell walls were disrupted I 

used a standard DNA extraction protocol designed for plant tissue (Qiagen Plant DNeasy Mini Kit). 

I verified successful DNA extraction by visualizing a portion of the extract on a 1% agarose gel or 

by quantifying the extracted product using a Nanodrop spectrophotometer (Thermo Scientific, Inc.). 

Marker development and genotyping 

I used a microsatellite isolation protocol based on the method used in Edwards et al. (2007), 

summarized here. I began by cutting the total genomic DNA into shorter pieces using the Sau3AI 

restriction enzyme and then ligating the fragments produced to the Sau3AI linkers. I enriched the 

library for CA repeats by hybridizing the fragments with a biotinylated (CA)15 probe. I captured the 

target fragments using Streptavidin MagneSphere Paramagnetic Particles (Promega) and washed the 

beads with a series of buffers. The stringency, or quantity of nonmicrosatellite-containing DNA 

washed off of the beads, was adjusted by changing the concentration and temperature of the buffer 

used. After the washes were completed, I stripped the probe from the DNA and cloned the 

enriched product using a PCR cloning kit (Qiagen). To screen for microsatellites I performed two 

PCRs on each cloned sample, one containing only the M13F and T7 primers, and one containing 

M13F, T7, and a (CA)15 repeat primer (Degner et al. 2009). Samples containing a repeat region 

produce a shorter band or smear in the (CA)15 PCR relative to the two-primer PCR. I screened 768 

samples and found 115 (15%) in which the PCR results indicated potential presence of a repeat. I 

sent the PCR product from all positive samples to the Nevada Genomics Center for sequencing in 

both directions on an ABI 3730 DNA analyzer.  I screened all sequences for repeat regions, 
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compared repeat-containing sequences and removed identical sequences. Through this screening 

procedure, I identified 29 unique repeat-containing regions. 

I designated the 29 repeat-containing sequences as Pmyr_001-Pmyr_029 and designed 1-4 primer 

pairs for each of the potential loci using the program Primer3 v0.4.0 (Rozen & Skaletsky 2000). I 

attached an M13 tag to the end of all forward primers (Schuelke 2000). I tested primer pairs for 

amplification by running PCR reactions for each pair using the P. myriophylla sample from which the 

primers were derived as a positive control and one additional P. myriophylla sample. If primer pairs 

successfully amplified these two individuals, I tested them with an additional subset of P. myriophylla 

samples from across the species range. In this second test, I used a PCR technique that attaches a 

fluorescently labeled M13 primer to the amplified microsatellite, allowing products to be visualized 

on a CEQ 8000 DNA analyzer (Beckman-Coulter; Schuelke 2000). I checked a portion of PCR 

product from the labeled PCRs on a 2% agarose gel and purified the remaining product using the 

manufacturers recommended procedure before loading the plate onto the CEQ.  I used the 

Beckman-Coulter CEQ software to analyze readouts and to look for topologies consistent with 

microsatellites. I scored loci with appropriate topologies for the sample set to check for 

polymorphism, or variation among individuals within the sample.  

After polymorphic (n = 4) loci were identified, I obtained direct labeled forward primers for those 

loci to facilitate genotyping. PCR conditions for amplification of polymorphic loci can be found in 

Table 3. To test for cross-species amplification I attempted to amplify polymorphic loci in three 

additional Polygonella species that occur in the same scrub habitat as P. myriophylla and represent each 

of three major phylogenetic clades found within the genus Polygonella (Lewis & Crawford 1995): P. 

basiramia, P. robusta, and P. polygama. 
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Table 3: Primers, repeat length, and PCR conditions for all loci used in this study. 

Locus Primers (5’ – 3’) Repeat MgCl2 

(mM) 

Temp 

(°C) 
Pmyr_001 F - AAT CCT GAA TTC CCT TCA ATAT CA10 2.0 55 

 R - TGG TAT GTG TTT CTG CTG AG    

Pmyr_015 F - GGC ACA TGT GAC CTA AAT CT CA11CA10 3.4 56 

 R - ACA CTA TAA GCT TTG TTA CAC C    

Pmyr_020 F - ACT TGC CCT GCA CTA ACT C CT13CT5CA7 3.4 60 

 R - GTT TCA CCT CCT ACA TCA GCA AAG    

Pmyr_023 F - TGT CGA GGA AAC TAG ACG TT CA22 3.4 56 

 R - GTT TGC TAA AGG TCT GGA TGT GAA    

 

Clonal structure and diversity 

To evaluate clonal structure and to remove duplicate genotypes from population genetic analyses, I 

compared all multilocus genotypes (MLGs) using the program GenClone v2.0 (Arnaud-Haond & 

Belkhir 2007), which determines the number of MLGs present and also identifies genotypes that 

may represent mistakes in the genotyping process or somatic mutations. I removed duplicate MLGs 

and analyzed those remaining using the program Gimlet v1.3.3 (Valiere 2002) to identify the 

probability of identity (PID) for each genotype. The PID is the probability that two full siblings 

would share a MLG, given the frequency of each allele in the population being measured (Valiere 

2002). I calculated PIDs at the population level. I considered any shared MLG with a PID ≤ 0.05 to 

be evidence that the samples sharing the MLG represented ramets of a single genet.  

For each population, I calculated the proportion of clones (PC) as the number of clusters where all 

samples shared a MLG divided by the total number of clusters sampled. I compared the distances 



16 

 

between ramets for clusters that contained one genet to those that contained multiple genets using a 

one-tailed t-test to determine if the average size of clusters containing multiple genets was larger 

than those containing a single genet.  

Hardy-Weinberg equilibrium and linkage 

To evaluate loci for deviations from Hardy-Weinberg equilibrium (HWE) and test for linkage 

disequilibrium after duplicate genotypes were removed, I used the program Arlequin 3.11 (Excoffier 

et al. 2005). To look for the presence of null alleles or genotyping errors due to large allele dropout 

or stutter, I used the program Microchecker v2.2.3 (Van Oosterhout et al. 2004).  

Genetic diversity and population genetic structure  

I performed an AMOVA to determine the distribution of variation within and among populations 

using Arlequin 3.11 (Excoffier et al. 2005) and estimated values of FST (Weir & Cockerham 1984) for 

all pairwise populations using the program GenePop v4.0 (Raymond & Rousset 1995; Rousset 

2008). I also calculated expected and observed heterozygosity (HE and HO, respectively), number of 

alleles (A) and allelic richness (AR) for each population. To check for evidence of isolation by 

distance I used the program IBDWS v3.1.6 (Jensen et al. 2005) to perform a Mantel test. 

 To determine the number of genetic clusters (K) present in the P. myriophylla species range I used 

STRUCTURE v2.3.1 (Pritchard et al. 2000) and the R package Geneland (Guillot et al. 2005; Guillot 

et al. 2008). For STRUCTURE, I used both an admixture model with no location data and an 

admixture model that included information about sampling localities. Both models assumed 

correlated allele frequencies between populations. The inclusion of location data allows 

STRUCTURE to better predict the number of clusters for small data sets and is not prone to the 
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identification of spurious clusters (Hubisz et al. 2009). All STRUCTURE analyses were run for K = 

1 through K = 10, with a burnin of 1.5 x 105 generations and run time of 3.5 x 105 generations. The 

ΔK criterion (Evanno et al. 2005), which measures the change in the likelihood value between 

different values of K, was used to select the most likely number of clusters under each model.  

For Geneland, I performed 10 independent runs and chose the best run based on the mean 

posterior density. For each run, I used the spatial model and assumed uncorrelated allele frequencies. 

As with STRUCTURE, I evaluated the number of clusters for K = 1 through K = 10. As 

recommended in the user manual for Geneland, I set the maximum rate of the Poisson process to 

equal the number of individuals (genets; n = 191) and the maximum number of nuclei in the free 

Voronoi tessellation to three times that number. Each run had 3 x 105 MCMC iterations, recorded 

every 50 iterations, and had a post process burnin of 2000 saved iterations. 
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CHAPTER 3: RESULTS 

Marker development 

Of the 29 loci initially screened, nine successfully amplified and exhibited microsatellite-like 

topologies. Four of the nine frequently amplified more than the expected two alleles (P. myriophylla is 

diploid; Lewis & Crawford 1995). This amplification of additional products occurred for all primers 

developed for these loci, so the loci were discarded. Of the remaining five loci, one locus was fixed 

in all populations and four were polymorphic. These four loci were retained for this study and were 

polymorphic in all populations. Locus Pmyr_001 had the lowest diversity, with 6 alleles across the 

species range and 2-6 alleles per population. Pmyr_023 had the highest diversity: 35 alleles total, 7-31 

per population (Table 4). Because a four locus genotype was required to adequately identify clones 

based on PID, I discarded all samples for which all loci had not amplified after a minimum of three 

attempts to do so. The total number of ramets for which I obtained a complete MLG is given in 

Table 4.  

In all but one population, a MLG with four loci was sufficient to obtain a PID value of ≤0.05. The 

exception to this was the Dr. P population, where approximately half of the samples with 4 locus 

MLGs had population-level PID values between 0.05 and 0.1. Because the Dr. P site did not show 

significant deviations from HWE after removal of duplicate MLGs I considered it unlikely that there 

were a high number of undetected clones. Additionally, there were only 7 clusters where both 

branches sampled shared a genotype, so the expected number of misidentified clones within the 

population is less than 1. As a result I retained all samples from the Dr. P site for this study.  
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After Bonferoni correction (P = 0.0025) linkage was detected for only a single pair of loci in one 

population and deviations from HWE were significant for only one locus x population combination 

(Pmyr_023 in CRC). This did not exceed the number of significant results expected under neutral 

conditions. Null alleles were detected in two loci in one population (Pmyr_020 and Pmyr_023 in 

CRC) and one locus in each of two populations (Pmyr_020 in CTC B, Pmyr_023 in Dr. P) but the 

levels identified were less than 10%. I did not find evidence of genotyping errors due to large allele 

dropout or stutter for any locus in any population using Micro-checker. Because no locus or 

population consistently deviated from neutral expectations, all loci and populations were retained for 

use in this study. 

Clonal distribution 

Across all populations the Pc was 57% and within populations it ranged from 37-66% (Table 4). The 

proportion was lowest at the Dr. P site and highest in CRC. When only two ramets were sampled 

from a cluster (n = 105) the Pc was 58%. When more than 2 ramets were sampled from a single 

cluster of P. myriophylla (n = 5) the Pc was 40%, two genets were detected 40% of the time and more 

than 2 genets were detected 20% of the time. The average diameter of clusters with a single genet 

was 165.3 cm and the average diameter of clusters containing multiple genets was 264.9 cm and 

multigenet clusters were significantly larger (P < 0.001). In one instance, the same genet was 

detected in two adjacent clusters separated by just over 5 meters.  

Genetic diversity 

Expected heterozygosity (HE) ranged from 0.41 to 0.95 for each locus and 0.61 to 0.79 for each 

population (Table 4). Observed heterozygosity (HO) was generally similar to or lower than HE. The 

largest difference between the two values was found in the CTC A site, where overall HO was 
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significantly lower than HE (P = 0.0001). HO was also lower than HE in the CTC B site, but the 

difference was comparable to other sites and was not significant (P = 0.05). Both HO and HE for Dr. 

P were lower than values for any other site. Allelic richness (AR), rarified to 12 diploid genets, 

showed a similar pattern, with values for Dr. P being the lowest across all loci (Table 4).  



21 

 

Table 4: Population genetic information for all loci and populations of P. myriophylla used in this study. AT = 
total number of alleles, A = alleles per population, AR = allelic richness (rarified to 12 individuals), HO = 
observed heterozygosity, HE = expected heterozygosity, NR = Number of ramets, NG = number of genets, NCl 
= Number of clusters, PC = proportion of clones.  

  

Locus AT  Dr. P CTC A CTC B CRC LP 

All Loci  NR 40 31 41 131 15 

  NG 33 23 32 91 12 

  NCl 19 11 19 56 5 

  PC 0.37 0.64 0.47 0.66 0.60 

Pmyr_001 6 A 2 3 4 6 3 

  AR 2.0 3.0 3.4 4.6 3 

  HO 0.45 0.43 0.53 0.69 0.42 

  HE 0.41 0.52 0.59 0.67 0.45 

Pmyr_015 29 A 9 12 13 20 11 

  AR 7.0 8.3 9.1 11.8 11 

  HO 0.64 0.65 0.81 0.92 0.92 

  HE 0.74 0.79 0.86 0.92 0.88 

Pmyr_020 17 A 8 7 9 12 8 

  AR 5.6 6.4 7.2 7.9 8 

  HO 0.67 0.74 0.78 0.71 0.50 

  HE 0.65 0.81 0.83 0.81 0.80 

Pmyr_023 35 A 7 12 15 31 12 

  AR 5.8 10.0 10.9 15.2 12 

  HO 0.67 0.70 0.81 0.82 1.00 

  HE 0.76 0.86 0.90 0.95 0.87 

Overall  HO 0.61 0.63 0.73 0.79 0.71 

  HE 0.64 0.75 0.80 0.84 0.75 
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Population genetic structure 

I found that 7.8% of the total variation was distributed among populations (global FST 0.078) and 

92.2% was within populations. My estimates of pairwise FST between populations ranged from 0.028 

- 0.120 (Table 5) which represents low to moderate population differentiation (Wright 1978). I 

found the highest population differentiation (FST = 0.120) between Dr. P and the two CTC 

populations and the lowest (FST = 0.028) between Dr. P and LP. I found no effect of isolation by 

distance using the program IBDWS (P = 0.534). 

 

Table 5: Geographic (km; above diagonal) and genetic (FST; below diagonal) distances for all populations of 
Polygonella  myriophylla used in this study. 

Population Dr. P CTC A CTC B CRC LP 

Dr. P - 

 

 

46 52 96 126 

CTC A 0.120 - 

 

7 50 80 

CTC B 0.116 0.072 - 

 

44 74 

CRC 0.091 0.080 0.056 - 

 

30 

LP 0.081 0.028 0.045 0.056 - 

 

 

The number of clusters recovered using STRUCTURE varied depending on the model employed. 

For the admixture model with no location prior, I found the most likely number of clusters based on 

the ΔK criterion to be 7, which also had the highest likelihood value (-3401.244 ±28.551). An 

evaluation of the bar plot for K = 7 (data not shown) showed that this result was biologically 

unrealistic and no clear clusters were being formed.  
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Using the admixture model with a location prior, I identified the most likely number of clusters 

based on the ΔK criterion to be two and there was an additional peak at K = 4, which also had the 

highest likelihood value (likelihood for K = 2 is -3432.284 ±1.354, likelihood for K = 4 is -3243.792 

±13.329). The two clusters identified were Dr. P and a cluster containing all Lake Wales ridge 

populations (Fig. 5). Because STRUCTURE primarily identifies the highest level of population 

structure and the ΔK and likelihood measures gave conflicting results I reran the analysis with the 

Dr. P population removed. This additional run also used the admixture model with a location prior 

and the most likely K based on both the ΔK and likelihood criteria was K = 3 (likelihood -2864 

±7.673). The three clusters identified correspond to CTC A, CTC B, and CRC (Fig. 5). The LP 

samples do not show a strong association with any cluster but are most closely associated with the 

CRC cluster. 

Results from Geneland are similar to those from STRUCTURE. With all sites included, Geneland 

identified K = 4 as the most likely number of clusters and all ten runs showed the same 4 clusters. 

The clusters identified in the best run are shown in Figure 6 and correspond to Dr. P, CTC A + LP, 

CTC B, and CRC. The only meaningful difference between the STRUCTURE and Geneland results 

is the assignment of the LP samples to the same cluster as CTC A by Geneland and the same cluster 

as CRC by STRUCTURE. 
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Figure 5: Bar graphs from STRUCTURE analyses showing A) K = 2 clusters for the species range as a whole 
and B) K = 3 clusters for the Lake Wales Ridge only. The Y axis shows values for the proportion of each 
genotype attributed to a particular cluster and the X axis shows population names. 
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Figure 6: Genetic clusters inferred using Geneland. Left - topographic map of the Lake Wales Ridge (outlined 
in yellow) showing collection sites for this study. Right - Geneland heat maps (right) showing posterior 
probabilities of belonging to one of four inferred clusters. Yellow indicates areas with a high probability of 
genotypes from that area belonging to a genetic cluster, orange and red represent lower probabilities of 
belonging to that cluster. Colored dots correspond to collection sites. Pink = Dr. P, Red = CTC A, Purple = 
CTC B, Blue = CRC, Green = LP.   
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CHAPTER 4: DISCUSSION 

Marker development 

Marker development was extremely difficult for P. myriophylla. Sequences of positive PCR products 

identified many sections of highly similar DNA. Additionally, during the process of screening 

potential loci, nearly half had to be rejected due to the presence of more than 2 alleles in multiple 

samples, regardless of the primer pair used to amplify the locus. These problems were unique to the 

loci in question, as the same samples did not have extra alleles when amplified for other loci. 

Although P. myriophylla is currently diploid, these two pieces of evidence point toward a history of 

extensive gene or genome duplication, which may make this species of interest for future studies of 

genome evolution. 

Clonal diversity 

There is extensive clonal reproduction in P. myriophylla, with more than half of the sampled clusters 

of this species containing only a single genet. However, the proportion of clones varies widely 

between sites and the factors influencing the proportion of clones could not be identified in this 

study. Interestingly, the lowest proportion of clones was found at the Dr. P site, which showed less 

overall genetic diversity, even though the number of genets sampled in that population was the 

second highest in this study. This decrease in clonal reproduction may be the cause of the genetic 

depression observed in that population, as more genetic individuals die because they are represented 

by only a few branches and are more prone to loss in stochastic events. Alternately, the genetic 

depression may be unlinked to the proportion of clones and may result from another process. 
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Of P. myriophylla clusters where more than 2 samples were collected, two were found to represent 

only a single genet, two contained two genets, and only one had more than 2 genets detected (5 

ramets sampled, 4 genets detected). These results (40% one genet, 60% more than 1 genet) are 

similar to those found using only two samples per cluster (58% one genet, 42% more than 1 genet) 

and suggest that my within-cluster sampling was adequate to estimate general patterns of clonal 

recruitment in P. myriophylla. Though there are certainly instances where some genets within a cluster 

were not detected in this study, the ability to detect additional genets with increased sampling effort 

must be weighed against the loss in sampling efficiency. A 50% increase in sampling effort would 

likely only have detected 1-5 additional genets per population, which would be unlikely to have a 

significant impact on my analyses.  

The average size of clusters that contained a single genet was significantly smaller than the average 

size of clusters containing more than one genet. This pattern was also consistent within populations 

(data not shown). It is unclear whether the larger clusters with multiple genets represent places 

where multiple, previously distinct clusters grew together over time, or habitat patches where 

multiple seedlings began growing in close proximity. Further study will be necessary to answer this 

question. 

As expected, given that clonal recruitment in P. myriophylla occurs primarily through adventitious 

rooting, the spatial distribution of genets reflects a phalanx-type recruitment process in which new 

clones are produced by branches rooting and separating from the parent plant. I found only one 

instance of possible clonal recruitment at a distance more than 5 m, in which the same MLG was 

found at two consecutive sampling points. Based on the PID values recovered for the CTC A 

population (average PID = 0.024), it would not be unexpected to find one instance of samples that 
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share a MLG as a result of being siblings rather than being members of the same genet. Thus, this 

may represent either clonal reproduction over a longer than expected distance or two closely related 

genets occurring in close proximity to one another.  

The phalanx type recruitment that occurs in P. myriophylla is likely both a help and a hindrance in the 

maintenance of genetic diversity within a population. Because the species is capable on self-

fertilization, large clusters made up of multiple ramets of the same genet have the potential to 

increase the opportunity for inbreeding and may reduce the availability of outcrossed pollen. 

However, the shifting sand and harsh environment within the scrub habitat favored by this species 

makes the ability to produce multiple physiologically independent units important for the long term 

survival of a genet (Quintana-Ascencio et al. 2008). This effect may be enough to offset the negative 

repercussions of inbreeding. 

Genetic diversity 

Overall levels of genetic diversity are very high in Polygonella myriophylla, especially in light of its status 

as a clonal, self-fertilizing, endangered species with a highly restricted range. This pattern was noted 

during marker development when only one monomorphic locus was discovered and all other loci 

were highly polymorphic. All populations contain private alleles, and all loci have some alleles that 

are shared across all populations. The highest incidence of private alleles occurs in Carter Creek 

(CRC), which has 18 private alleles, and the lowest is Dr. Phillips (Dr. P), which has only 1 private 

allele. Private alleles were found for all loci except Pmyr_001. 

The highest levels of genetic diversity are found at the CRC site. Of 87 alleles identified in this study 

across all loci and populations, 70 (80%) are found in CRC, which also has the highest allelic 
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richness and highest heterozygosity of the populations studied. Allelic richness and heterozygosity 

values are also high for the Catfish Creek B (CTC B) and Lake Placid (LP) sites. The high level of 

diversity found at the LP site is particularly interesting, because very few samples were collected 

there (15 ramets, 12 genets) largely due to difficulty in finding P. myriophylla. My results suggest that 

the LP population was once much larger and has only recently experienced population declines. 

Only two populations, Dr. P and CTC A, show evidence of a reduced heterozygosity. In the case of 

Dr. P, both HO and HE were low relative to other populations, which I hypothesize is a result of 

long-term isolation of that population from other populations of P. myriophylla as a result of its 

location on the Mt Dora ridge. The situation in CTC appears to be more complex. The division of 

the two populations collected in the Catfish Creek preserve by STRUCTURE and Geneland, along 

with the relatively high FST value found between them, suggests that there may be restriction of gene 

flow even over short distances in this species. The two CTC populations also show different levels 

of heterozygosity, which may be linked to demographic differences between the populations. At 

CTC A, most plants grow on the edges of dirt roadways and there are very few plants present in the 

scrub. In contrast, at CTC B, most plants grow in the scrub habitat and only a few are closely 

associated with roadways. As a result, there is likely little gene flow between P. myriophylla growing 

along roadsides and those growing in the scrub habitat at CTC. At CRC, plants grow in both the 

scrub and roadside in close proximity to one another, which should allow for frequent gene flow. 

There is no reduction in heterozygosity for roadside samples at CRC. I hypothesize that roadside 

habitat is acting as a sink for this species, and that in the absence of scrub populations as a source of 

new genetic material roadside populations become genetically depauperate. A previous study 

suggested there is higher mortality and greater demographic variability in roadside habitats which 

may contribute to increased inbreeding and relatively rapid loss of genets in the roadside (Quintana-



30 

 

Ascencio et al. 2008). This is in contrast to a previous hypothesis that suggested that dirt roadsides 

might be acting as a refuge for scrub species that depend on open patches of habitat in order to 

grow (Petru & Menges 2004; Quintana-Ascencio et al. 2007). 

The high level of genetic diversity found in this study is similar to the results found in a previous 

study that used allozymes to examine genetic diversity in 11 Polygonella species. Lewis and Crawford 

(1995) found higher genetic diversity in endemic Polygonella species (including P. myriophylla, P. 

basiramia, P. macrophylla, and P. parksii) than in their more widespread congeners (P. americana, P. 

articulata, P. gracilis, P. polygama, P. robusta and P. fimbriata). Although 15 years have passed between 

these studies and results from allozyme and microsatellite based studies are not directly comparable, 

my results also show high levels of genetic diversity in P. myriophylla and suggest that, in general, 

genetic diversity is being retained over short time periods in this species.  

Population genetic structure 

In general, my estimates of FST show low to moderate population differentiation, and the global FST 

of 0.078 suggests moderate differentiation across the species range. Only LP has pairwise FST values 

that qualify as low. The low estimates of FST may result from the low sample size for the LP 

population and likely represent an underestimate of actual population differentiation. There is clear 

evidence of restricted gene flow between populations even when separated by less than 10 km (CTC 

A to CTC B, 7 km, FST =0.072).  Despite spatial clustering of clones and restricted gene flow 

between populations, I did not find evidence of a link between geographic and genetic distance at 

the level of the species range. It is likely that these populations of P. myriophylla are not in migration-

drift equilibrium, as a result of long-term retention of alleles through clonal recruitment and very 
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low rates of sexual reproduction. Because opportunities for dispersal are closely tied to sexual 

reproduction in plants, low rates of sexual reproduction will also limit dispersal.  

The STRUCTURE results are dependent on the model selected. Runs that did not include location 

priors found the best evidence for 7 clusters, but this did not produce a biologically relevant result. 

A species range level analysis that included the location prior found the best evidence for 2 clusters: 

one including only the Dr. P site located on the Mt Dora Ridge, and one containing all 4 sites (CTC 

A, CTC B, CRC, and LP) located on the Lake Wales Ridge. This result is biologically reasonable, 

given that populations on different ridges have likely been separated for a considerable time and 

ridges are separated by areas of habitat that are unsuitable for scrub species (Weekley et al. 2008). 

The presence of an additional peak in the ΔK values at K = 4 suggested an additional level of 

population structure, therefore I analyzed the data for the Lake Wales Ridge sites only. This analysis 

found that K = 3 based on both ΔK and likelihood criteria. The three clusters identified were CTC 

A, CTC B, and CRC. The LP samples did not clearly associate with any cluster, but there was not 

sufficient support to assign them to their own cluster, likely because of the low sample size for that 

site (NG = 12).  

The addition of location priors to STRUCTURE is relatively recent, but initial testing suggests it is a 

robust procedure, which improves the analysis without the risk of identifying spurious clusters on 

the basis of poor location information. The use of location priors is indicated when the data set is 

small (in sample size or in number of loci) and when the location data can be reasonably assumed to 

add information (Hubisz et al. 2009). My data set for P. myriophylla meets both of these criteria, with 

four loci and FST values that indicate restricted gene flow between locations. Additionally, 

STRUCTURE reports the effect of the locations priors on the model outcome through the 
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parameter „r‟, and values less than 1 indicate that the model is not being overly influenced by 

location data (Hubisz et al. 2009). Because location priors are indicated for this dataset, values of r 

were low (avg r = 0.34), and I did not find biologically realistic clustering using the model without 

location data, I consider the results from the location prior model to be more reliable.  

My Geneland results support the results from STRUCTURE; both the hierarchical analysis used to 

assign 4 clusters and the decision to use the location prior. Although the two programs are similar, 

they use different algorithms to assign clusters and have different methods of incorporating spatial 

information into the analysis. The results of both programs suggest that genetic structure in P. 

myriophylla is weak, but present. The only significant difference between the results of the two 

programs is the cluster to which the LP samples are assigned. This difference is most likely due to a 

lack of information in the LP samples. Only 12 distinct genotypes were collected from LP due to the 

small size of the population there. The heterozygosity and allelic richness of that site suggest that the 

LP population was once much larger and is not adequately characterized by the sample collected in 

the now suburban landscape. 
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CHAPTER 5: IMPLICATIONS 

Clonal reproduction and estimates of population size 

The results of this study confirm the importance of using genetic markers in order to obtain reliable 

estimates of population size and structure in clonal plants. For P. myriophylla, estimates of the 

number of genets based on numbers of rooted branches would tend to dramatically overestimate the 

population size, since each genet may have multiple ramets, while those based on the number of 

clusters of plants would underestimate it. The previous working definition of a genet is not an 

adequate descriptor of the distribution of ramets and genets in this species. In many cases I 

identified multiple genets within clusters of P. myriophylla, which would not have been predicted 

based on the working definition. In general, smaller clusters are more likely to be made up of a 

single genet of P. myriophylla and larger clusters are more likely to have multiple genets, but I could 

not identify a specific cutoff of distance between clusters or cluster size that could be used for a 

working definition. 

My results also indicate that there is a need to assess the frequency of clonality and clonal structure 

independently for each population. Across the species range as a whole I found approximately 1.35 

times as many genets as clusters of P. myriophylla. The ratio of clusters to genets varied with the 

population sampled, however, from as low as 1.25 (in CRC) and as high as 1.57 (in Dr. P). Although 

these differences might not be critical in a more widespread species they are very important in an 

endangered species where each genet is relatively more valuable in maintaining diversity. These 

differences among populations should be taken into account when determining management 

strategies for P. myriophylla. 
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Genetic diversity 

The CRC population of P. myriophylla is the most genetically diverse of those I sampled and may be 

the largest extant population. This site should be given high priority in any management plan for this 

species and may also be a good source population if any attempts are to be made to repopulate areas 

from which P. myriophylla has been extirpated. In particular, although the CRC site is already a 

protected area, my results suggest that protection of P. myriophylla may need to be given a higher 

priority in management decisions than other species that occur there. Special care should be taken to 

preserve genetic diversity in this population of P. myriophylla because diversity lost from CRC cannot 

be reintroduced from other portions of the species range. CRC also has the highest proportion of 

clones out of all populations included in this study. This may be driven by the high genetic diversity, 

with the healthiest plants being capable of producing multiple ramets, or may be driving the high 

genetic diversity by keeping rare alleles in the population for longer periods of time. Alternativetely, 

high clonality and high genetic diversity may both be linked to some other factor not measured in 

this study. Because clonality can be observed in “real time” but changes in genetic diversity will lag 

behind, the proportion of clones may prove to be a useful proxy for genetic diversity in this species. 

There is a significant reduction in HO compared to HE in the CTC A population, in which plants are 

found primarily along the roadside, that is not seen in either the nearby CTC B population (in which 

plants are found primarily in the scrub), or in plants collected along the roadside in CRC (where 

plants grow in both the scrub and roadside). Because HE is not reduced in CTC A compared to CTC 

B, the discrepancy between HO and HE is likely due to increased inbreeding occurring in the roadside 

habitat. This suggests that roadside populations of P. myriophylla may ultimately be acting as genetic 

sinks, unable to maintain the high levels of genetic diversity normally found in this species without 
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regular gene flow from scrub plants. This potential role of the roadside populations as genetic sinks 

needs to be further investigated if roadside plants are to be included in any management plan for this 

species. 

Reduced heterozygosity is also found in the Dr. P population, the only population studied that 

occurs outside of the Lake Wales Ridge. Unlike CTC A, HE is also reduced at Dr. P compared to all 

other populations studied. In fact, the Dr. P population has the lowest HO, HE, and AR of all sites 

studied. This affects the results of the clone analysis by driving PID values up from an average of 

0.0182 in other populations to an average of 0.0473 in Dr. P. These results suggest that the Dr. P 

population has experienced multiple generations of low population size, most likely combined with 

very low gene flow with other populations. The lack of private alleles in Dr. P, despite a relatively 

high sample size, suggests that the loss of alleles through genetic drift has outpaced the generation of 

new alleles via mutation in this population. From a conservation standpoint, the Dr. P population 

seems to offer little in terms of genetic diversity; however, it represents a natural experiment of the 

impacts of low population size in this species. Further work investigating whether genetic diversity 

continues to decline in this population and the rate at which it is being lost could be of considerable 

use in creating a management plan for P. myriophylla. 

The LP population of P. myriophylla provides evidence of the lag that exists between changes in 

population size and structure and changes in genetic markers. Genetic diversity at LP, as measured 

by heterozygosity and allelic richness, is second only to CRC, but the LP population is rapidly 

dwindling and may become extinct within the next few years as a result of development and fire 

suppression (pers. comm.., Quintana-Ascencio). This extinction will likely occur long before 

evidence of a declining population numbers can be expected to show up in genetic analyses. The 
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clonal reproduction and long lifespan of P. myriophylla reduce the genetic impact of small populations 

and buffer the plant against stochastic events but cannot stave off the complete loss of habitat 

occurring in this region. 

Population structure 

Despite the low number of populations and loci used in this study, I was able to detect moderate 

genetic structure. The most obvious divergence is found between the populations on the Lakes 

Wales Ridge and the Dr. P site on the Mount Dora ridge. However, this divergence appears to be 

driven by reduced genetic diversity of the Dr. P site, as the Dr. P population contains only a single 

private allele. If possible, additional populations on the Mount Dora ridge should be sampled for 

comparison to the Lake Wales Ridge sites. This will allow us to determine whether the detected 

divergence is between the two ridges, or is unique to the Dr. P site. 

Although there is population differentiation, even at relatively small spatial scales, most variation in 

P. myriophylla is found within populations. This is useful from a conservation perspective as it 

suggests that this species is well adapted to a fragmented distribution. Additionally, conservation 

efforts targeted at a few large populations should permit most of the genetic diversity currently 

present in the species to be retained. The Carter Creek and Catfish Creek populations are good 

candidates for such efforts. 

Management and planning 

My results for P. myriophylla should be useful for informing management decisions for Lake Wales 

Ridge habitats. Although most variation is found within populations, and conserving only the Carter 

Creek population would result in approximately 80% of the genetic variation found in my study 
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being retained, I also found some evidence of limited gene flow among populations. This pattern is 

somewhat unusual for an endangered species with a highly restricted and fragmented habitat, but is 

shared with several other plant species found on the ridge (Dolan et al. 1999; McDonald & Hamrick 

1996). This suggests that the best management strategy for P. myriophylla and other high-diversity, 

low-structure species on the ridge is to focus on a few sites with larger populations rather than many 

sites with small populations. Sites where all of these plants co-occur are of particular importance for 

conservation, as they represent an excellent opportunity to preserve a large amount of genetic 

diversity for multiple species, and management at these sites should pay particular attention to the 

needs of these species.  

Although the scrub endemic plants found on the Lake Wales Ridge share the same habitats and 

histories, their differing demographic characteristics result in a range of genetic patterns and very 

different management needs. Demographic characteristics can be broadly associated with particular 

genetic patterns, for instance self-fertilization with low diversity and high inbreeding, these 

associations cannot be relied upon to accurately predict the amount and distribution of genetic 

diversity in any particular species. In the case of P. myriophylla, despite a capacity for self-fertilization, 

low sexual recruitment, and highly specific habitat requirements that might have predicted low 

diversity within populations and extensive genetic structure, I found high genetic diversity within 

populations (and overall) and only moderate genetic structure. This highlights the importance of 

performing genetic studies for multiple species in a habitat before devising a conservation strategy 

for that area. 
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Future research 

Despite the high levels of genetic diversity found in this and previous studies of P. myriophylla, there 

is still cause for concern. Loss of diversity in some populations (i.e. Dr. P and CTC A) shows that 

this species is sensitive to reduced population sizes, isolation, and potentially to changes in habitat or 

disturbance regime. Changes in genetic diversity are not immediately evident, and P. myriophylla relies 

extensively on clonal recruitment which can further delay genetic evidence of small populations. As 

a result, we are likely not yet seeing the genetic effects of the extensive loss of scrub habitat that has 

occurred in Central Florida, and especially on the Lake Wales Ridge, over the last 30 years (Turner et 

al. 2006; Weekley et al. 2008). 

The unexpected relationship between high levels of clonal reproduction and high levels of genetic 

diversity points toward an important role for clonal reproduction in the maintenance of genetic 

diversity in P. myriophylla. This study cannot determine whether there is a causal link between the two 

measures; additional research will be necessary to address this question.  
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