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ABSTRACT 

 

Our understanding of natural fire regimes in human-dominated landscapes is limited.  

Fire regimes operating in the pyrogenic ecosystems of Florida have been altered by fire 

suppression and fuel fragmentation.  This is especially true of North Merritt Island, Florida, 

where human impacts have led to an incomplete knowledge of current fire regimes.  We know 

that growing season fires frequently occurred within general return intervals and that many 

native terrestrial species require fire to remain viable.  A 20-year plus period of fire suppression 

caused structural and compositional changes to vegetation/fuels that led to catastrophic fires and 

the decline of native species populations such as the Florida Scrub-Jay.  Fire has been 

reintroduced as a means to reduce fuels and maintain habitat requirements for native species.  

Scientific studies have documented the effects and benefits of prescribed burning on 

KSC/MINWR habitat/fuels structure.  The necessity for fire to maintain vegetation/fuels 

structure and composition on the landscape is clear so fire is being applied to the landscape 

despite our imperfect knowledge of the native fire regime.  It is imperative for the survival of 

many native species that fire managers be able to mimic the results of the native fire regime.  

Fire regime research is difficult in shrublands, and using dendrochronologic techniques are often 

not possible in flatwoods communities.  I therefore used a process of remote sensing, GIS 

mapping, and spatial modeling to quantify lightning fire ignition properties, the current managed 

fire regime, and the natural fire regime.   

 Chapter one develops a new remote sensing technique to accurately map burned areas in 

Florida scrub and pine flatwoods dominated communities on Kennedy Space Center, Merritt 

Island National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force 
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Station, Florida.  At the center of this technique is a newly developed separation index (SI) that 

was used to evaluate each individual satellite image band for its power to discriminate unburned 

and burned areas.  Burned areas were classified and found to be highly accurate in relation to 

empirical fire records.  This chapter addressed a number of issues relevant to the classification of 

burned areas including: the effect of geographic extent of remote sensing data on classification, 

determining the best bands for classification, and cleaning classification results by using GIS 

masking.  It also serves as the first published effort to map fire scars in the Florida scrub and 

flatwoods vegetative communities of the southeastern U.S. using image processing techniques. 

 Chapter two quantified a managed fire regime on John F. Kennedy Space Center, Florida 

and surrounding federal properties by mapping all fires between 1983 to 2005 using the image 

processing technique developed in chapter one, time series satellite imagery, and GIS techniques.  

The goals were to: (1) determine if an image processing technique designed for individual fire 

scar mapping could be applied to an image time series for mapping a managed fire regime in a 

rapid re-growth pyrogenic system; (2) develop a method for labeling mapped fire scar 

confidence knowing that a formal accuracy analysis was not possible; and (3) compare results of 

the managed fire regime with regional information on natural fire regimes to look for 

similarities/differences that might help optimize management for persistence of native fire-

dependent species.  The area burned by managed fire peaked when the drought index was low 

and was reduced when the drought index was high.  This contrasts with the expectations 

regarding the natural fire regime of this region.   

 Chapter three quantified the natural lightning ignition regime on Kennedy Space Center, 

Merritt Island National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air 

Force Station, Florida.  Lightning is the natural ignition source in Florida, substantiating the need 
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for understanding lightning fire incidence.  Sixteen years of lightning data (1986-2003, excluding 

1987 and 2002 due to missing data) from the NASA Cloud to Ground Lightning Surveillance 

System and fire ignition records were used to quantify the relationship between lightning 

incidence and fire ignition.  Precipitation influenced the efficiency of lightning ignitions, 

particularly July precipitation.  Negative polarity strikes caused the majority of ignitions.  Pine 

flatwoods was ignited more frequently than expected given equal chance of ignition among 

landcover types.  About half (51%) of detected fires were instantaneous ignitions and the other 

49% were delayed an average of two days.  Summer lightning ignitions were dominant, 

especially during July, with only one winter lightning ignition. 

 Chapter four used an existing fire regime model (HFire) to simulate the natural fire 

regime (prior to European settlement) on Kennedy Space Center, Merritt Island National 

Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida.  

A sensitivity analysis was performed to establish which parameters were most important and the 

range of variation surrounding empirically derived model information from the same model.  A 

mosaic pattern of small fires dominated this fire regime with extremely large fires occurring 

during dry La Nina periods.  Dead fuel moisture and wind speed had the largest influence on 

model outcome.  The majority of variability was found to be in the largest fires.   

 The research presenter here provides a comprehensive perspective on current and historic 

fire regimes that may be useful for optimizing land management on Kennedy Space Center, 

Merritt Island National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air 

Force Station, Florida and throughout the southeastern United States.  Native fire dependent 

species are suffering from many changes imposed from human alteration.   The success of 

conservation efforts protecting native fire dependent species hinge on my factors.   Two of the 
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largest factors are first protecting native habitat and then secondly managing that protected 

habitat to mimic natural maintenance processes for suitable structure and composition which 

may favor their demography.  This study focuses on developing techniques necessary for 

producing information that can aid the optimization of fire management on these properties and 

within the southeastern United States, but may be useful in other fire maintained ecosystems 

globally.    
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INTRODUCTION 

 

Returning the effects of natural fire processes to conservation landscapes with altered fire 

regimes is of great importance.  Fire plays an important role determining vegetation composition, 

structure, and pattern (Bond and Van Wilgen 1996).  Many species have evolved, adapted and 

become dependent on natural fire regimes (Noss and Cooperrider 1994, Whelan 1995, Bond and 

Van Wilgen 1996).  The influence of individual fire events over longer periods of time are 

collectively known as a fire regime.  The natural fire regime of a region is defined by its fire 

type, fire intensity, fire size, return interval, seasonality, and spatial pattern (Christensen 1985, 

Agee 1993).  Urbanization combined with other human factors have altered natural fire regimes 

through such influences as fuel removal, fuel alteration, fuel fragmentation, and fire exclusion or 

suppression (Bond and Van Wilgen 1996).  Alteration of ecosystem structure and composition 

has contributed to the decline of many species populations (e.g., Menges and Hawkes 1998, 

Breininger and Carter 2003, Quintana-Ascencio et al. 2003, Webb and Shine 2008).   

Many conservation areas suffer from these same human influences altering the natural 

fire regime.  For example, many conservation areas have been subject to fire suppression directly 

or indirectly; the areas themselves are relatively small limiting natural fire dynamics, or they 

have some degree of fuel fragmentation limiting the spread and extent of fires (Noss and 

Cooperrider 1994, Duncan and Schmalzer 2004).   

Fires that occur from lightning ignitions or arson in many conservation areas are 

controlled or suppressed to protect harvestable natural resources, human structures, or human 

lives.  In areas where fire has been largely absent, prescribed fire may be used.  Managed fire is 

used to reduce fuels to safe levels; it is used to maintain fuel/vegetation/habitat composition and 
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structure (e.g., Adrian and Farinetti 1995).  Few conservation areas have good fire history 

information or a complete record of the natural fire regime for that area or region.  This reference 

information is useful as a background for restoration and management decisions guiding fire 

management (Beckage et al. 2005).   

As desirable as it may be, it may be difficult or impossible to return to the natural fire 

regime in most conservation areas.  In fact, trying to return directly to natural fire regimes may 

be harmful for some ecosystems and the species presently inhabiting them (Whelan 1995, 

Veblen et al. 2000, Heinlein et al. 2005).  In other very large conservation areas letting nature 

take over and allowing naturally ignited fires to burn may be the best policy (Baker 1992).  Most 

conservation areas require a fire management policy, and many require direct fire management to 

sustain native biodiversity.  This is especially important in pyrogenic communities hosting 

habitat specialists that require fire to either maintain habitat conditions or demographic 

processes.  Fire management policy may be best constructed and implemented with knowledge 

of the historic fire regime within that region.  Our ability to return to natural fire regimes may be 

limited, but we must learn to closely mimic the results of native fire regime processes to 

maintain vegetation structure and composition. 

The best way to help conservationists and land managers to achieve this goal may be to 

quantify as much as possible about the current and natural fire regime of an area.  Many studies 

have successfully reconstructed fire histories and elements of fire regimes.  The majority of these 

studies have used dendrochronologic techniques (Swetnam et al. 1999, Veblen et al. 2000, 

Heyerdahl et al. 2001, Stephens 2001, Heinlein et al. 2005).  These techniques work very well in 

areas that have an even spatial distribution of suitable long lived tree species that scar during fire 

and are not killed by the event.  Other studies have successfully used stratigraphic techniques to 
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reconstruct fire histories (Clark 1990, Carcaillet et al. 2001, Lynch et al. 2004).  Stratigraphic 

techniques work well for fire frequency reconstructions and may be less suitable for spatial 

reconstruction.  Mapping fire histories using remote sensing techniques have also been 

successful (Minnich 1983, Johnson et al. 1990, Weir et al. 2000).  This technique works best in 

areas with relatively slow growing vegetation where fire scar boundaries remain visible from 

remotely sensed imagery for some duration after the fire event.  Recorded fire records are also a 

good source of historic fire regime information but are limited to areas with good recorded 

history (Keeley et al. 1999, Cleland et al. 2004). 

 Reconstruction of fire regimes and fire histories in shrub systems are especially difficult.  

Typically they do not have an even spatial distribution of trees that are suitable for 

dendrochronologic techniques.  Fast growing shrub systems present additional challenges, 

making fire scar boundaries transient and difficult to map using remote sensing techniques.  

Pyrogenic systems in Florida may present the ultimate challenge for fire regime reconstruction.  

The vegetation recovers very quickly after fire (Schmalzer and Hinkle 1992a) and the pyrogenic 

ecosystems with trees such as pine flatwoods systems are not suitable for dendrochronological 

tree scar dating because the trees either do not scar or are completely killed by fire.  The trees 

thick bark protect them from scaring during low intensity fires but are often killed during high 

intensity fire events as the canopies are consumed and top killed.  Stratigraphic techniques are 

suboptimal for fire interval delineation and in some systems can only determine the length of 

time that fire has been an active force on the landscape (Shepherd 2002).   

 Computer modeling has become a viable option for simulating fire regimes as modeling 

capabilities have advanced simultaneously with computer technology.  Two main types of 

models have evolved, with the first being fire event simulation models and the second being 
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landscape fire succession models.  Fire event simulation models are generally used to predict 

individual fire event behavior.  Landscape fire succession models incorporate vegetation 

succession making these models capable of simulating long-duration ecosystem dynamics.  

There are at least 45 landscape fire succession models in use today (Keane et al. 2004).  These 

models have been created for different purposes in a diverse range of ecosystems.  The majority 

of these models have been used to investigate long duration landcover dynamics, of which fire is 

a major influence (Ratz 1995, Noble and Gitay 1996, Klenner et al. 2000, Kurz et al. 2000, 

Groeneveld et al. 2002, Mouillot et al. 2002, Chew et al. 2004).  Fewer of these models have 

been designed specifically to simulate fire regimes.  Many of the landscape fire succession 

models require statistical information derived from empirical fire regime data as input, making 

them unsuitable for reconstructing natural fire regimes (Li 2000).  They may be used for 

answering a different type of question, such as addressing landscape dynamics under a known 

fire regime.    

Computer simulations have been successfully used to reconstruct elements of both 

natural and human influenced fire regimes.  The regional fire regime simulation model 

(REFIRES) was created to simulate prehistoric and modern fire regimes of the coastal California 

chaparral ecosystems (Davis and Burrows 1994).  Application of the model produced a map of 

simulated fire history, fire size distribution, fire recurrence interval, final patch size, and age 

distributions.  The SEM-LAND model was created to simulate the fire regime of forests in west-

central Alberta, Canada (Li 2000).  The fire cycle, known as the average period required to burn 

a cumulative area equivalent to the entire area under investigation, was modeled.  This modeling 

effort also produced a time since fire distribution and forest age map.  Fire pattern was inferred 

by using the forest age mosaic map.  The SEM-LAND model was also used to simulate the fire 
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regime of central Saskatchewan (Li et al. 2005).  The model was used to model the fire cycle, 

mean fire size, fire number per year, and mean forest age.  The DISPATCH model was used to 

simulate pre-EuroAmerican settlement and post-settlement fire regimes in the Boundary Waters 

Canoe Area, Minnesota (Baker 1992).  Application of this model indicates that settlement has 

caused smaller, less frequent fires relative to the pre-EuroAmerican period.  Fire suppression 

after settlement caused even smaller and less frequent fires and brought about an increase in 

mean landscape age, an increase in richness and diversity of the landscape, and a decline in mean 

patch size (Baker 1999). 

Quantifying potential fire ignition and actual natural ignition rate is also important for a 

complete understanding of any fire regime and its influence on ecosystem dynamics and 

biodiversity.  Several studies have documented lightning occurrence and its relationship to fire 

regimes.  Lightning and human fire frequency, size, and seasonality were studied in a Brazilian 

savannah for purposes of comparing natural and managed fire regimes (Ramos-Neto and Pivello 

2000).  The study concluded that the managed fire regime was not taking advantage of the 

beneficial effects of the natural fire regime and was likely reducing biodiversity.  A lightning 

study conducted in the central cordillera area of Canada revealed very different lightning strike 

effectiveness in relative spatial proximity on either side of the continental divide (Weirzchowski 

et al. 2002).  This study found that on average it took over 14,000 lightning strikes to start a fire 

in Alberta vs. fewer than 50 strikes in British Columbia.  This study found that lightning fire 

incidence was greatly different in many of the protected areas and this information had important 

fire management implications.  A lightning study conducted in Finland found a lightning fire 

density gradient decreasing from south to north in that country (Larjavaara et al. 2005).  The 
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authors stressed that this variability suggested that different management approaches are needed 

to support natural forest structures, processes, and biodiversity in different parts of the country.   

 This research used a combination of remote sensing, GIS, and modeling techniques to 

document the current and historic natural fire regime for Kennedy Space Center (KSC), Merritt 

Island National Wildlife Refuge(MINWR), Canaveral National Seashore (CNS), and Cape 

Canaveral Air Force Station (CCAFS), Florida.  It 1) developed an processing routine using 

multispectral satellite imagery to classify burned areas in the fast growing flatwoods and oak 

scrub terrestrial communities.  It then 2) developed a fire history for the past 20 years of fire 

management, using the previously developed classification technique and a time series of 

multispectral satellite imagery.  Next 3) it used the NASA/USAF Cloud-to-Ground Lightning 

Surveillance System (CGLSS) data and MINWR fire incidence records to quantify the 

relationship between lightning activity and fire ignition for the past 20 years.  It then 4) used an 

existing fire regime vegetation succession model (HFire) to simulate elements of the natural fire 

regime on KSC/MINWR/CNS/CCAFS.  This work will facilitate an understanding of the 

difference between the current managed fire regime and the natural fire regime while helping to 

optimize land management actions for persistence of native fire dependent species.  There are 

many fire dependent species of special concern on these properties (e.g., Florida Scrub-Jay, 

eastern indigo snake, the eastern gopher tortoise, drysand pinweed, giant orchid).  Adaptive fire 

management is being implemented on these properties in an effort to improve fire management, 

and the information from this work will provide direct input into this process.  The information 

will also benefit fire managers throughout the southeastern United States, and many of the novel 

techniques developed here will transfer to delineating fire regimes globally. 
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DEVELOPMENT OF AN IMAGE PROCESSING TECHNIQUE FOR CLASSIFYING 

FIRE SCARS IN A FIRE ADAPTED ECOSYSTEM IN EAST-CENTRAL FLORIDA 

 

Published as: Shao, G., and B.W. Duncan.  2007.  Effects of band combinations and GIS 

masking on fire-scar mapping at local scales in East-Central Florida, USA.  Canadian Journal of 

Remote Sensing 33:250-259.  Used with the permission of the Canadian Aeronautics and Space 

Institute. 

 

Introduction 

 

 Fire is an important ecological factor maintaining vegetation in East-Central Florida 

(Abrahamson and Hartnet, 1990; Myers, 1990; Duncan and Schmalzer, 2004). The historic 

natural fire regime of this region consisted of frequent spring and summer fires ignited by 

lightning (Duncan and Schmalzer, 2004).  The fire regime of an area is defined by fire type 

(ground vs. crown), intensity, size, return interval, seasonality, and spatial pattern.  Native 

vegetation and many animal populations of this region are dependent on this fire regime (Stout, 

2001).  An example of a fire dependent species in this region is the Florida Scrub-Jay 

(Aphelocoma coerulescens).  The Florida Scrub-Jay is a threatened species that nests in oak 

scrub vegetation which resprouts after fire (Bowman and Woolfenden, 2002).  Florida Scrub-Jay 

demography has been observed to peak in oak scrub habitat with optimum structure (120-170 cm 

tall scrub with scattered sand openings and little to no overstory) maintained by fire (Breininger 

and Carter, 2003).  The recovery rate of oak scrub is highly variable and can take as few as 4 

years or as many as 12 years to reach 120 cm tall after a fire occurs. If there is no fire for 15 
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years or greater, the oak scrub vegetation structure will change from shrubs to a closed canopy 

forest, becoming unsuitable for most native fire dependent species (Schmalzer 2003). 

 The National Aeronautics and Space Administration (NASA) began acquiring land in 

early 1962 on Merritt Island, along the east coast of central Florida, where the John F. Kennedy 

Space Center (KSC) is located (Figure 1). A 57,000 ha area is managed primarily by the U.S. 

Fish and Wildlife Service as the Merritt Island National Wildlife Refuge (MINWR). After 

NASA acquired the land, fire suppression went into effect on KSC until 1981. Fire suppression 

activity in the area combined with other anthropogenic influences (vegetation removal by 

facilities, roads, citrus farming, etc.) has altered vegetation structure, composition, and pattern on 

the landscape reducing habitat for many plant and animal species. For example, the Florida 

Scrub-Jay population has experienced a dramatic decline throughout KSC/MINWR (Breininger 

et al., 1996). Restoration of the native vegetation structure using prescribed fire began in 1981 

and then in 1992 mechanical treatment techniques were added and have become the major focus 

for natural resource management at KSC/MINWR (Schmalzer and Hinkle, 1992; Duncan et al., 

1999; Duncan and Schmalzer, 2004). Breininger et al. (2002) suggested that understanding 

spatial variations in fire frequencies among vegetation types is important for sustaining suitable 

habitat structure for specialized plants and animals. Vegetation at KSC/MINWR has been 

frequently  burned (annually within selected FMUs) by prescribed fires since 1981. Documented 

fire records exist of all fires on KSC/MINW, including fire date, fire management units (FMUs), 

and estimated area burned, but no detailed fire scar-pattern maps or area information are 

available. Optimization of fire management on KSC/MINWR for fire dependent native species 

requires that accurate spatial fire history records exist, including time since last burn and fire 

frequency information.  
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Figure 1. The location of NASA Kennedy Space Center (KSC) and Merritt Island National 

Wildlife Refuge (MINWR) in East-Central Florida, USA.  Relevant fire management units 

(FMU) are indicated. The shaded eight FMUs were burned in 1986-1987 and were used for 

masking; the labeled four FMUs were used for band selection and accuracy assessment.  

 

 During the past two decades remote sensing has been used to identify and map fire scars 

in natural vegetation all around the world (Boyd and Danson, 2005). However, the remote 

sensing techniques used depend on the scale required for mapping. Eva and Bambin (1998) 

suggest that the most reliable strategy for estimating the extent of fire scars is through use of a 

multisensor approach in which estimates of burned area acquired from low-spatial-resolution 

data are calibrated with high-spatial-resolution data.  Pre 2000, the main low-resolution sensor 

employed in continental to global-scale fire-scar detection was the Advanced Very High 
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Resolution Radiometer (AVHRR) on board the NOAA polar-orbiting platforms (Fuller, 2000; 

Maggi and Stroppiana, 2002). Recently, additional low-spatial-resolution remote sensing data 

from SPOT and MODIS are available for fire-scar mapping  (e.g., Amiro and Chen, 2003; 

Tansey et al., 2004; Csiszar et al., 2005). These sensors have multiple spectral bands but only a 

subset of these bands (and/or newly transformed bands), are used for fire-scar mapping. A study 

by Boschetti et al. (2004) that involved a comparison of three fire-scar datasets derived from 

low-resolution data showed major disagreements in terms of areal estimates.  This suggests that 

fire-scar mapping using low resolution remote sensing data needs further improvement.  

 Landsat data have been broadly employed for fire-scar mapping at both regional and 

local scales (e.g., Ranson et al., 2003; Hudak and Brockett, 2004; Mitri and Gitas, 2004; Pu and 

Gong, 2004).  However, how to use data characterized by low spectral resolution and what 

wavelengths (bands) are best for mapping fire scars requires further study. Pereira and Setzer 

(1993) found that Thematic Mapper (TM) channel 4 was the best for identifying fire scars, 

followed by channel 5, 3, and 7.  Pu and Gong (2004) suggested that TM bands 4 and 7, the 

Normalized Difference Vegetation Index (NDVI) derived from TM4 and TM7, and the NDVI 

derived from TM bands 4 and 3, provided the best discrimination between burned scars and areas 

of unburned vegetation. Hudak and Brockett (2004) compared the Tasseled Cap (TC) and 

Principal Components (PC) Transformations for mapping fire scars and found that PC helped 

differentiate the spectral signal of fire scars in each image. Patterson and Yool (1998) pointed out 

that bands transformed using the TC transformation resulted in a 17% higher overall 

classification accuracy than bands produced for the PC transform.  Past studies, either at small or 

large scales, suggest that the usefulness of individual bands for fire-scar mapping depends on the 

data source (sensor), fire intensity, fire extent, and vegetation types. Less research has focused on 
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studying the effects of varying geographic extents of remote sensing data on band selection and 

classification accuracy. In previous studies, classification accuracy has been used to evaluate 

how useful individual bands are for mapping fire scars (e.g., Pu and Gong, 2004); however, it is 

time consuming to perform classification experiments with every possible band combination 

from multi-spectral imagery. 

 Remotely sensed data are often integrated with geographic information systems (GIS), as 

part of the fire scar mapping process (Chuvieco and Congalton, 1989).  A GIS can be used to 

provide various ancillary data to enhance and validate image data classification (Sunar and 

Ozkan, 2001). High-quality remote sensing data are most frequently available in spring, relative 

to other seasons at KSC/MINWR.  This is because spring is the driest season in this region and is 

typified by relatively long periods of cloud-free skies without storms.  

 The purpose of this paper is to compare various masking/classification options using 

Landsat TM data in concert with FMUs linked with existing KSC/MINWR fire records. As an 

initial effort in mapping fire scars for fire-adapted vegetation in East-Central Florida, a 

classification experiment was conducted to provide information on a number of relevant issues 

related to the mapping and classification of fire scars using remotely sensed data.  These include:  

 the effect of masking (pre and post-classification) on classification accuracy, and 

 detection of the best and optimum number of bands (or derived bands) for classification. 

The results from studying these issues will not only be useful for fire scar mapping world wide 

but will be especially important for future fire mapping efforts in Florida and the southeast U.S. 

where reliable methods for mapping fires at this landscape scale (1:24,000-1:50,000) are not 

available.  
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Methods 

 

 The data used for conducting the classification experiment included GIS data layers of 

the KSC boundary, fire management units, historical fire records associated with FMUs, and 

Landsat5 TM data, Path 16 and Row 40, acquired on April 21, 1987. The TM data set was 

rectified in State Plane coordinates in meters to make it spatially compatible with the GIS data 

layers.  For safe management of fires, KSC/MINWR has been divided up into 61 FMUs.  These 

FMUs are of different size/shape and are separated by non-flammable fire lines so that managed 

fires can be contained within selected areas.  The FMUs are named using a numbering system 

with the first digit being a regional designator and the second digit after the decimal being a 

subunit within that region.  Some of the units are further subdivided using letter designators such 

as A,B,C, etc.  Based on the historical fire records, eight FMUs were partially burned with 

controlled fires between October 1986 and April 1987 (Fig. 1). Fire scars at only four FMUs 

were previously digitized and those at FMU9.4 were published (Breininger et al., 2002). Fire 

scar data for FMU9.4 were used for sorting and selecting individual bands, while those for the 

other three FMUs (5.1, 9.5, 9.7) were used to compute classification accuracy (Fig. 2).  To 

maximize classification accuracy, two different masking routines were tested and described. 
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Figure 2.  A work flow diagram of stepwise image processing for mapping fire scars at 

KSC/MINWR with Landsat TM data. 

 

 

Geographic Extent Determination by GIS Masking 

 

 The rectified TM data set was masked with the KSC/MINWR boundary (Fig. 2: right) 

and with eight burned FMUs (Fig. 2: left), respectively. The resultant image data sets are called 

KSC TM data and Burned-FMU data. The Normalized Difference Vegetation Index (NDVI) 

between TM bands 4 and 3, PC Transformation, and TC Transformation were computed from 
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KSC TM data and Burned-FMU data, respectively. Rather than stretch to 8 bits, the original 

values of the transformed bands were used for classification.  

 To determine the association of how much information is in each TM band and each 

principal component, the correlation of each TM band k with each PC p was computed using the 

following formula (Jensen 2004): 

k

pkp

kp
Var

a
R        (1) 

where, akp is the eigenvector for bank k and component p, p = pth eigenvalue, and Vark is 

variance of band k in the covariance matrix. 

 

Band Selection 

 

 To evaluate the potential of every band to separate burned and unburned areas, the 

overlap area of histograms between burned and unburned area was used.  The new transformed 

bands and the original TM bands were overlaid with FMU9.4 fire scar data.  FMU9.4 was the 

only one used here so the others (5.1, 9.6, and 9.7) would be available later for accuracy 

assessment. Histograms of pixels values for each band were computed for burned and unburned 

areas (Fig. 3). To avoid bias caused by the land cover type with larger area, the overlay area was 

divided by the area of a smaller land cover type. A simple index is calculated as follows: 
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where, SIi,j is separation index between cover types i and j (0 ≤ SIi,j ≤ 1), Ai,j is the overlap area 

between cover types i and j, Ai
 
or

 
Aj is area for cover type i or j, and Min represents the minimum 

function (using a smaller number between Ai
 
and

 
Aj). 

 

 

 

Figure 3.  An illustration of the overlap of two histograms. Type i (dashed line) and j (dot line) 

can represent burned and unburned cover types.  Ai,j represents the overlap areas between burned 

and unburned cover types. Ai or Aj represents area for burned or unburned cover types. 

 

 

 The higher the SIi,j value, the more discriminative power the band has to separate the two 

cover types. All the bands with SIi,j value greater than 0.1 were accepted for classification. Bands 

with SI values > 0.5 were called the most suitable bands and were stacked into a single image. 
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Classification and Assessment 

 

 For each TM data set, original TM data, NDVI, selected PC bands, selected TC bands, 

the total of these bands, and the most suitable bands were used independently for classification. 

The unsupervised classification algorithm ISODATA was employed. The number of spectral 

classes was 20, the number of iterations was 20, and the convergence threshold was 0.99 for all 

the classifications with different band combinations.  The 20 spectral classes were then manually 

recoded into two information classes, burned and unburned to form the classified fire-scar maps. 

For each classification, an error matrix table was formed by overlaying the classification map 

with the digitized map from FMUs 5.1, 9.6, and 9.7. There were a total of 17,800 pixels in the 

three FMUs. Producer‟s accuracy and user‟s accuracy for burned-area cover type were 

computed. The mean accuracy value between producer‟s and user‟s accuracy was computed for 

each classification. Fire-scar maps created with different bands were quantitatively compared 

with a Z-test based on the error matrix tables (Congalton and Green, 1999). All the image data 

analyses were performed with Erdas Imagine (www.leica.com). 

 

Post-Classification Cleaning 

 

 Following each classification with the KSC TM data set, the fire-scar maps were masked 

with a GIS data layer of the eight burned FMUs (Fig. 2).  This masking process, called post-

classification cleaning, took advantage of the MINWR fire records and masked out any unburned 

FMUs.  This step removed commission errors outside burned FMUs and assured a noise-free 

fire-car map. When the Burned-FMU TM data set was used for classification, no further masking 
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was needed for the fire-scar maps from the Burned-FMU data.  This was because the FMUs 

already represented the finest masking unit in this study. 

 

 

Results 

 

Geographic Extent 

 

 KSC TM data: Among all the 15 bands, including 7 original TM, 1 NDVI, 4 PC, and 3 

TC bands, the bands with SI values > 0.5 were PC4, TM4, TC2, and NDVI (Fig. 4). The first 

four PC bands had SI values higher than 0.1. Among the four PC bands, PC4 had the highest SI 

value (Fig. 4b). The eigenvalues for the four PCs were 8538.5, 696.1, 118.8, and 45.5, 

respectively (Table 1). They contained 99.9% of the total data variance. The PC1 seemed 

correlated with every TM band, PC2 correlated with only the near- and middle-infrared bands, 

and other PCs not correlated with any TM bands (Table 1). 
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Figure 4.  A comparison of SI values: (a) 7 original TM, 1 NDVI, and 3 TC bands common to 

both FMU9.4 and KSC/MINWR area and (b) 3 PC bands for FMU9.4 and 4 PC bands for  

KSC/MINWR area. 

 

 

 Burned-FMU data: Among all the 14 bands, including 7 original TM, 1 NDVI, 3 PC, and 

3 TC bands, the bands with SI values > 0.5 were TM4, TC2, NDVI, and PC3 (Fig. 4). The first 

three PC bands had SI values greater than 0.1. Among the three PC bands, PC3 had the highest 

SI value (Fig. 4b). The eigenvalues for the three PCs were 585.4, 365.4, and 26.2, respectively 
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(Table 2). They contained 96.6% of the total data variance. The PC1 seemed correlated with 

every TM band except for the thermal-infrared band, PC2 correlated with only the near-, middle-

, and thermal-infrared bands, PC3 correlated with the visible bands, PC4 correlated with the 

thermal-infrared band and other PCs not correlated with any TM bands (Table 2). 

 

Table 1: The relationship of the original TM bands to the PCs from the KSC TM data set. 

 

Original 

TM Bands 

Principal Components 

1 2 3 4 5 6 7 

1 0.8110 -0.1257 0.0680 -0.0475 0.0178 -0.0014 -0.0037 

2 0.9825 -0.0789 0.1254 -0.1076 -0.0040 0.0020 0.0329 

3 0.9675 0.0356 0.2179 -0.0948 -0.0772 0.0150 -0.0090 

4 0.8812 0.4070 -0.2135 -0.1100 -0.0037 -0.0104 -0.0012 

5 0.8320 0.5447 0.0783 0.0653 0.0120 0.0232 0.0005 

6 0.9712 -0.1434 -0.0569 0.0507 -0.0056 0.0000 0.0006 

7 0.7828 0.5412 0.2659 0.1223 -0.0092 -0.0924 0.0005 

Eigenvalues 8538.5 696.1 118.8 45.5 3.7 2.6 0.5 

 

 

 

Table 2: The relationship of the original TM bands to the PCs from the Burned-FMU TM data 

set. 

 

Original 

TM Bands 

Principal Components 

1 2 3 4 5 6 7 

1 0.8167 -0.1424 -0.5228 0.1527 -0.0200 -0.1309 0.0184 

2 0.8592 0.1993 -0.4135 0.1279 -0.0488 0.0536 -0.1757 

3 0.8767 -0.1209 -0.4290 0.0542 -0.1108 0.1246 0.0504 

4 0.5314 0.8338 0.0474 0.1240 0.0279 0.0023 0.0035 

5 0.9795 -0.1474 0.0848 -0.0961 -0.0493 -0.0075 -0.0013 

6 -0.0100 -0.8712 0.1688 0.4436 -0.0979 -0.0012 -0.0008 

7 0.7108 -0.6831 -0.0056 0.0468 0.1526 0.0124 0.0010 

Eigenvalues 585.4 363.4 26.2 25.7 6.3 1.4 0.6 
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Band Selection 

 

 TM4 had the highest SI value among the 7 original TM bands, followed by TM2, TM6, 

and TM7 (Fig. 4a). TM1, TM3, and TM5 had the lowest SI values. NDVI‟s SI value was lower 

than TM4‟s SI value but higher than other TM bands‟ SI values. Among TC bands, TC2, a 

greenness band, had the highest SI value, which was even higher than NDVI‟s SI value. TC1 

(brightness) and TC3 (wetness) were less capable than TC2 at separating burned and unburned 

vegetation.  

 

Classification Accuracy 

 

 When the KSC TM data set was used for classification, the mean of producer‟s and user‟s 

accuracies for the burned cover class was 96.5% for the four most suitable bands (PC4, TM4, 

TC2, and NDVI), which was higher than that for 3 TC bands (94.3%), original 7 TM bands 

(93.9%), 4 PC bands (93.2%), NDVI (93.2%), and all 15 bands (91.6%) (Fig. 5a). When the 

lower value between producer‟s and user‟s accuracy was used for comparisons, the differences in 

classification accuracy among the six classifications were even greater: 95.8% for the four most 

suitable bands, 93.0% for the original 7 TM bands, 92.2% for the 4 PC bands, 90.8% for the 3 

TC bands, and 90.6% for the 15 bands. The Z-test suggests that the classification map created 

with the four most suitable bands was significantly more accurate than those created with any of 

the other band combinations at a 99% confidence level (Table 3). The maps created with 7 TM, 4 

PC, and 3 TC bands had significantly higher accuracy than those created with NDVI alone and 

all 15 bands. 
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Table 3: Z-values based on error matrix tables between different classification maps created with 

spectral bands derived from KSC TM data set. 

 

 NDVI 4 PC 

Bands 

3 TC 

Bands 

All 15 

Bands 

4 most 

suitable 

bands 

7 TM Bands 7.21* 1.08 2.02 8.86* 15.03* 

NDVI  6.24* 5.12* 1.39 21.88* 

4 PC Bands   0.98 16.38* 7.87* 

3 TC Bands    6.67* 16.73* 

All 15 Bands     24.15* 

Note: sign * indicates significant difference at a 99% confidence level. 

 

 

 When the Burned-FMU TM data set was used for classification, the original 7 TM bands, 

1 NDVI band, 3 PC bands, 3 TC bands, all 14 bands, and the four most suitable bands (TM4, 

TC2, NDVI, and PC3) resulted in mean accuracy ranging from 91.2 to 93.8% for the burned 

cover type (Fig. 5b). Band NDVI alone resulted in the lowest mean accuracy. If the lower value 

between producer‟s and user‟s accuracy was used for comparison, the classification with the four 

most suitable bands had a relatively higher accuracy, which was 93.7%, better than 

classifications with other bands, whose lower values of producer‟s and user‟s accuracy were 

92.2, 92.1, 91.2, 91.1, and 89.4% for the original 7 TM, 3 PC, 3 TC, NDVI, and all 14 bands, 

respectively. By comparing Z-values at a 99% confidence level, all the six classification maps 

were grouped into three accuracy levels: the highest accuracy group contained maps created with 

7 TM, 3 PC, and the four most suitable bands; the lowest accuracy group contained maps created 

with NDVI and all 14 bands; the map created with 3 TC bands was in the middle (Table 4). 
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 Figure 5.  A comparison in classification accuracy among different band combinations derived 

from the KSC TM data set (a) and the Burned-FMU TM Data set (b). PA is producer‟s accuracy, 
UA is user‟s accuracy, and MA is the mean of producer‟s and user‟s accuracy. 
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Table 4: Z-values based on error matrix tables between different maps created with spectral 

bands derived from Burned-FMU TM data set. 

 

 NDVI 3 PC 

Bands 

3 TC 

Bands 

All 14 

Bands 

4 most 

suitable 

bands 

7 TM Bands 9.13* 0.78 2.72* 6.66* 1.85 

NDVI  10.09* 6.33* 2.26 11.10* 

3 PC Bands   3.54* 7.54* 1.11 

3 TC Bands    3.94* 4.59* 

All 14 Bands     8.54* 

Note: sign * indicates significant difference at a 99% confidence level. 

 

 

 

 When all the accuracy statistics were considered, the classifications with both TM data 

sets had a similar trend in classification accuracy: the four most suitable bands resulted in the 

best maps while NDVI and the stack of all the bands resulted in the worst classifications; the 

fire-scar maps created with the four most suitable bands had low variation between producer‟s 

and user‟s accuracy; both fire-scar maps created with the original 7 TM, 3 PC, or 3 TC bands had 

similar combinations of producer‟s and user‟s accuracy. The classification with the KSC TM 

data set was generally superior to the classification with the Burned-FMU TM data set. The Z-

value between the two maps created with the four most suitable bands derived from image data 

for KSC and burned FMUs was 15.83, much higher than the critical Z-value of 2.58 at a 99% 

confidence level.  

 

Post-Classification Cleaning 

 

 Because the four most suitable bands derived from the KSC TM data set resulted in 

higher classification accuracy than those derived from the Burned-FMU TM data set, the 

procedure described with the right-hand column of Fig. 2 was the better choice. In this case, the 
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four most suitable bands derived from the KSC TM data set were chosen for final classification. 

The immediate result of image data classification with the four most suitable bands contained 

information about old fire scars and misclassification noise in other FMUs. To reduce noise in 

the fire-scar map, the resultant classification map was masked with a GIS data layer of the eight 

burned FMUs (Fig. 6).  

 

 

 

Figure 6. The reduction of classification noise through GIS masking.  A comparison of before 

and after GIS masking with fire scars shown in black. Fire scars were classified using PC4, TM4, 

TC2, and NDVI derived from the KSC TM data set. 
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Discussion 

 

Effects of Geographic Extent 

 

 In addition to the significant increase in classification accuracy by using the four most 

suitable bands for both TM data sets, there was another slight increase in classification accuracy 

when masked with the burned FMUs (Fig. 5). This may have to do with the fact that burned 

FMUs were so small in area that the local variability of the TM data could not represent the 

global variability of typical cover classes.  A difference in geographic extent of the TM data also 

affects transformed PC bands.  From this point of view, geographic extent of remote sensing data 

cannot be overlooked in image data classification.   

 The most effective PC bands for fire-scar mapping were not those with the highest or 

lowest eigenvalues. In other words, the PC band with a relatively low eigenvalue was powerful 

in discriminating burned from unburned areas. This is because fire scars were local phenomena 

and spectral variance between burned and unburned cover types in the study area accounted for a 

small fraction of the total data variance and did not enter the earlier components. The covariance 

matrix used to generate PCs is a global variability measure of the original image segment, and 

local variability may appear in a later component (Richards, 1986). This was exactly what 

happened when mapping fire scars with PC bands in this study. Due to the differences in 

geographic extent between the FMU and KSC TM data sets, the PCs that capture the variance 

between burned and unburned areas did not necessarily stay in the same order. The geographic 

extent of remote sensing data and its influence on band selection and classification accuracy may 
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explain the band selection variation of past studies, as they were conducted at different spatial 

scales. 

 During the process of assigning or recoding every spectral class into an information class, 

pixel responses inside and outside of burned FMUs could be visually compared to each other if 

the KSC TM data set was used. Such a recoding procedure is more reliable than being restricted 

to the burned FMUs only. This was another reason why the KSC TM data set resulted in higher 

classification accuracy than Burned-FMU TM. 

 

Band Selection 

 

 Fire scars in the fire-adapted vegetation at KSC/MINWR are relatively small in terms of 

geographic extent but their spatial variation determines habitat suitability for the Florida Scrub-

Jay (Breininger et al., 1998). Time since fire influences vegetation height and the pattern of fire 

determines the mosaic pattern of vegetation heights, influencing Florida Scrub-Jay demography 

(Breininger and Carter 2003).  Minor vegetation changes can alter habitat conditions for 

threatened and endangered animals and plants (Schmalzer, 2003). The sensitive nature of the 

habitat demands a high standard for mapping fire scars at KSC/MINWR. We chose to use 

Landsat TM data because they are available since the mid 1980s and have suitable spatial and 

spectral resolution. We examined several groups of spectral bands to obtain the optimal 

classification. This was a different approach from fire-scar mapping with NDVI alone (e.g., 

Salvador, 2000) or with all the PC bands (e.g., Hudak and Brockett, 2004). Our experiment 

suggests that too few (e.g., NDVI alone) or too many bands (e.g., total 14 or 15 bands) were not 

optimal for mapping fire scars at KSC/MINWR.  
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 Comparing individual bands and their capabilities for identifying fire scars was an 

effective approach for band selection (e.g., Pereira and Setzer, 1993; Pu and Gong, 2004). 

Classification accuracy has been used for evaluating individual bands, but image data 

classification is a time-consuming process. Unlike other statistical methods of feature selection, 

such as Transformed-Divergence (Jensen, 2004), which are used to measure how close two 

signatures are for different band combinations in supervised classification, the separation index 

or SI in this study is a non-parametric measure for exclusively examining how effective each 

individual band is for separating two classes. In discriminating burned and unburned areas, the SI 

proved convenient and dependable for band comparisons. Our results suggest that bands with 

high SI values, when combined, can result in relatively high classification accuracy. This 

quantitative method may have a general applicability for mapping fire scars with remotely 

sensed data. 

 It is not surprising that TM4, NDVI, and TC2 are capable of separating burned and 

unburned areas, because they all reflect the greenness of land surface. Although these three 

bands are correlated, they do not completely represent each other. Because the selected PC bands 

were not correlated with TM4 (Table 1&2), their roles in increasing classification accuracy may 

be more important than any other individual green bands.  

 

Classification Assessment 

 

 A number of accuracy statistics or measures can be derived from error matrices 

(Congalton and Green, 1999) but each has unique implications (Foody, 2002). The mean 

accuracy in this study has a similar meaning to the Individual Classification Success Index 
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proposed by Koukoulas and Blackburn (2001). Normally the difference between user‟s and 

producer‟s accuracy for a cover type has a close relationship with the area to be estimated for 

that type (Shao et al., 2003). Classifications with the same mean accuracy but with a large 

difference between user‟s and producer‟s accuracy, have different implications in terms of area 

estimation accuracy for a given cover type. Because the Z-test uses all the numbers of an error 

matrix, it indirectly considers the variations of user‟s and producer‟s accuracy. For example, the 

fire-scar map created with 3 TC bands derived from the Burned-FMU TM data set was 

significantly different from different maps created with other band combinations, though its 

mean accuracy value was close to those of the other maps (Fig. 5a). An ideal fire-scar map 

should have high mean accuracy but low difference between user‟s and producer‟s accuracy. 

That explains how the fire-scar map based on the four most suitable bands derived from the 

Burned-FMU TM data set was superior to other maps in the FMU masking experiment (Fig. 5a). 

The fire-scar map based on the four most suitable bands derived from the KSC TM data set was 

indeed the best choice because it had the highest mean acccuracy and relatively low difference 

between user‟s accuracy and producer‟s accuracy (Fig. 5b). Since both the fire-scar maps based 

on the four most suitable bands were better than those based on other bands, the combination of 

the most suitable bands seemed reliable in enhancing the accuracy of the fire-scar mapping even 

if they were correlated.  

 

Summary and Conclusions 

 

 Both band combination and the geographic extent of remote sensing data affects the 

quality of fire-scar maps produced.  Therefore, a reliable image processing procedure for 
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mapping fire scars at KSC must include four steps. Step one was to mask the TM data with the 

KSC boundary data layer. The resultant TM data set contains information beyond burned areas. 

Step two was to use the separation index (SI) to evaluate each individual band for its potential 

capability in discriminating unburned and burned areas. By comparing and sorting all the bands 

of interest, it was possible to select reliable bands for image data classification. Step three was to 

compare classifications with selected band groups derived from Landsat TM data. This helped 

determine the best band combinations for discriminating unburned and burned areas. Step four 

was to clean the classification map by masking it with the burned FMUs GIS layer. This 

removed all the noise outside the burned FMUs and beyond the fire-detection period, resulting in 

an accurate fire-scar map. 

 There are many options for fire-scar mapping with geospatial data. Specific mapping 

techniques depend not only sensor type, but also on vegetation type and fire properties (Eva and 

Lambin, 1998; Boyd and Danson, 2005). The comparison of various classification options in this 

study not only led to a reliable approach to detect detailed fire scars within the rapidly growing 

vegetation of this region, but also highlighted four general concerns: (1) the geographic extent of 

remote sensing data used for classification affects discriminative power of individual bands 

generated from the data and, therefore, cannot be overlooked for classification; (2) many spectral 

bands can be derived from remote sensing data but only a limited number of bands can lead to 

satisfactory results for a specific classification purpose; eigenvalues should not solely be relied 

on for PC band selections; (3) a classification based on too few or too many bands is a poor 

choice, while an optimum band combination depends on the discriminative capability of the 

individual bands, but not on the correlations among the bands; and (4) GIS masking is an 

effective method of cleaning fire-scar maps. The mask-GIS data layers can be obtained from 
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ground records or with coarser-resolution remote sensing data. Administrative regions, natural 

watersheds, or management units can be used as mask data. 

 This remote sensing technique will support both historic and future fire scar mapping 

work on KSC/MINWR as well as other locations in the southeastern United States and fire 

dependent systems world wide.  The technique will be applied to annual Thematic Mapper 

imagery derived from the historic Landsat archive dating back to the early 1980‟s.  It will also be 

relied upon for future fire scar mapping on KSC/MINWR.  Fires in this region typically form 

complex mosaic patterns with enclaves of unburned fuels throughout the burned area, requiring 

inordinate amounts of effort to map by field survey.  This remote sensing technique will provide 

a means to map future fire scars in an efficient and consistent manner.   

 This technique is most readily transferable to areas with some existing fire records 

documenting the date and general location of past fires.  Geographic masking can be 

accomplished using many types of spatial tessellation maps such as FMUs (as performed here), 

watershed, property boundaries, or other mappable units.  Future work may strive to increase 

available information by documenting fire intesities and mixed pixel contributions by 

burned/unburned fractions. 
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DELINEATING A MANAGED FIRE REGIME AND EXPLORING ITS 

RELATIONSHIP TO THE NATURAL FIRE REGIME IN EAST CENTRAL FLORIDA, 

USA; A REMOTE SENSING AND GIS APPROACH 

 

Published as: Duncan, B.W., G. Shao, and F.W. Adrian.  2009.  Delineating a Managed Fire 

Regime and Exploring its Relationship to the Natural Fire Regime in East Central Florida, USA: 

A Remote Sensing and GIS Approach.  Forest Ecology and Management 258:132-145. 

 

Introduction 

 

The behavior of many individual fire events summed over years is collectively known as 

a fire regime and is defined by fire type, intensity/severity, size, return interval, seasonality, and 

spatial pattern (Christensen, 1985; Agee, 1993).  Natural fire regimes have been altered by 

humans and no longer maintain many fire-dependent ecosystems around the globe.  Human 

influences such as fuel removal, fuel fragmentation, fire suppression, and increased fire 

frequencies are among the principle factors altering natural fire regimes (Leach and Givnish, 

1996; Cochrane, 2003; Duncan and Schmalzer, 2004; Heinlein et al., 2005).  Many ecosystems 

are suffering from altered fire regimes (Olson and Platt, 1995; Allen et al., 2002; Odion et al., 

2004), and as a result have allowed fire sensitive exotic species to thrive (Brooks et al., 2004).  

Fire management is now necessary as a synthetic forcing to approximate natural fire regimes 

(Noss and Cooperrider, 1994).   

The ability of land managers to mimic natural fire regimes may be essential to sustain 

diverse assemblages of native fire-adapted species.  Monitoring of managed fire regimes is thus 

important to evaluate management goals, provide information necessary for adaptive 

management, and compare to natural fire regimes.  Remote sensing techniques are suitable for 
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fire monitoring in many open or crowning fire-maintained systems (Minnich, 1983; Salvador et 

al., 2000; Russell-Smith et al., 2003; Bowman et al., 2004; Fisher et al., 2006).  Relatively new 

satellite fire monitoring tools such as MODIS Fire, TRMM VIRS, and ATSR-2 are superb for 

recent (post - 1995) fire history mapping at coarse scales (Csiszar et al., 2005; Bradley and 

Millington, 2006).  For longer fire histories, especially when fine detail pattern information is 

necessary, mapping fire scars from a time series of high resolution imagery is preferred (Fuller, 

2000; Bowman et al., 2003).   

A managed fire regime has been in place on Kennedy Space Center (KSC)/Merritt Island 

National Wildlife Refuge (MINWR) since 1981.  This managed fire regime includes prescribed 

and natural lightning fires, all of which are ultimately controlled.  Text records have been 

maintained documenting the cause, size, and general management unit location of every known 

fire on these properties.  Detailed fire boundary information is missing from these records and is 

necessary to aid effective habitat management of native fire maintained species.  This pyrogenic 

system is home to many fire-dependent native species that have been in decline in the 

southeastern United States due to habitat destruction and fire regime alteration.  One such 

species is the Florida Scrub-Jay (Aphelocoma coerulescens Bosc.), which is dependent on fine 

scale burn patterns for optimum demographic performance (Breininger et al., 2006).   

In this paper our goal was to answer the following three questions: 1) Could an image 

processing technique developed for mapping individual fire scars (Shao and Duncan, 2007) be 

applied to an image time series to map/describe a managed fire regime, within a rapid re-growth 

pyrogenic system on KSC/MINWR and surrounding federal properties of east central Florida, 

USA?  2) Could we develop a method for determining the level of confidence with which each 

fire scar was mapped, because the historic nature of this fire regime reconstruction would inhibit 
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our ability to conduct a formal accuracy assessment of our maps?  3) Could we compare the 

results of this managed fire regime with expected spatio-temporal patterns of the natural fire 

regime from other published studies to assess differences and help improve fire management 

benefiting native fire dependent species? 

 

Background/Study Site 

 

The United States federal government began acquiring land in the 1950s on Cape 

Canaveral and in 1962 on north Merritt Island, along the east coast of central Florida.  KSC 

covers 57,000 ha of land, which is primarily managed by the U.S. Fish and Wildlife Service as 

the Merritt Island National Wildlife Refuge with a smaller portion managed by the National Park 

Service as the Canaveral National Seashore (CNS).  Cape Canaveral Air Force Station (CCAFS) 

is 6,475 ha and occupies the Cape Canaveral barrier island (Figure 7).  After the federal 

government acquired the land, fires were suppressed until 1981, at which point catastrophic 

wildfires (due to fuel build up) became a safety and operations problem on KSC/MINWR.  The 

first fire management plan for KSC/MINWR was developed in 1981 to reduce dangerous fuel 

levels and prevent future fuel build up (Lee et al., 1981; Adrian et al., 1983).  The realization that 

natural communities were becoming degraded and concern for wildlife species led to fire being 

used as a tool for restoring and maintaining natural communities on KSC/MINWR (Schmalzer et 

al., 1994).   
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Figure 7.  The geographic locations of Kennedy Space Center, Merritt Island National Wildlife 

Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station. 

 

When referring to these properties collectively we will use the first letter from each 

location and shorten the name from KSC/MINWR/CNS/CCAFS to KMCC.  KMCC occupies a 

barrier island complex covered with a diverse assemblage of fire-adapted terrestrial vegetative 

communities.  Upland xeric sites are dominated by oak scrub vegetation (Quercus spp.), while 

mesic sites are dominated by flatwoods (e.g., saw  palmetto (Serenoa repens (W. Bartram) 

Small), staggebrush (Lyonia Nutt. spp.), holly (Ilex L. sp.), and an overstory of slash pine (Pinus 

elliotii Engelm.)) (Schmalzer and Hinkle, 1992a; Schmalzer and Hinkle, 1992b).  Because the 

landscape is comprised of relict dunes forming ridge-swale topography, there are interleaving 

swale marshes and hammocks on hydric soils between the xeric ridges.  The swales are 
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dominated by cordgrass (Spartina bakeri Merr.) and bluestem (Andropogon L. spp.), while the 

hardwood hammocks are dominated by live oak (Quercus virginiana Mill.) and laurel oak 

(Quercus laurifolia Michx.) and have a structure that is much less flammable than surrounding 

communities.  Coastal strand occurs just inland of the coastal dunes and is a shrub community 

with saw palmetto, sea grape (Coccoloba uvifera L.), wax myrtle (Myrica cerifera L.) being 

dominant (Schmalzer et al., 1999).  An extensive network of industrial infrastructure and 

facilities supporting launch operations are present. 

Many of KMCC‟s species of special concern are directly dependent on habitat structures 

maintained by fire.  This is the case for the Florida Scrub-Jay; it is listed as a federally threatened 

species and is considered an indicator of suitable habitat conditions for many other species.  

Suitable Scrub-Jay habitat includes areas with sandy openings, sufficient scrub oak cover, little 

or no tree cover, and shrub heights of 1 to 2 meters (Woolfenden and Fitzpatrick, 1984; 

Breininger et al., 1995; Duncan et al., 1999).  KMCC is one of the three remaining population 

cores for the Florida Scrub-Jay (Stith et al., 1996).   

On these federal properties, arson fire is generally not part of the contemporary fire 

regime.  This is because much of the area within this study is inside secured boundaries 

restricting human ignitions to prescribed fires only.  In contrast, arson and escaped incendiary 

fires are now a major component of many contemporary fire regimes in the southeastern United 

States (Genton et al., 2006).  For this reason, the federal properties in this study are ideal for 

studying a managed fire regime because it is not confounded by unplanned anthropogenic 

wildfire. 
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Methods 

 

Burn scar classification 

 

A time series of multispectral satellite imagery was used to map fire scars (burned areas 

identifiable on imagery by bare ground and dark charcoal/ash appearance).  The image data 

consists of multiple bands collected in the visible and infrared spectral wavelengths that are used 

for classification and discriminative purposes.  Two images a year were used to maximize the 

number of fire scars mapped, due to the rapid vegetation growth rates following disturbance on 

KMCC (Schmalzer and Hinkle, 1992b; Schmalzer, 2003).  A total of 40 satellite scenes (pre-

processed with geometric and radiometric correction) were used dating from 1984 to 2005, 39 

were Landsat Thematic Mapper (TM) images and 1 was a SPOT image needed to fill a gap in 

TM availability (Table 5).  Using the first image from 1984, we were able to map some of the 

fires that occurred in 1983. Because there was only one SPOT image we employed a 

conventional unsupervised classification (Jensen 2005) on the original bands and used the 

MINWR fire records to select the best classified image.  The image processing technique that 

was used to classify fire scars in each individual Landsat TM scene was more rigorous and 

followed Shao and Duncan (2007).  This source should be consulted for details on the technique, 

including accuracy assessment information.   
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Table 5.  Multispectral satellite imagery used to map fires on Kennedy Space Center, Merritt 

Island National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force 

Station.  Landsat Thematic Mapper (TM) scenes are path 16, row 40 with less than 10 percent 

cloud cover and pre-processed to level 1T (geometric and radiometric correction).  A single 

Satellite Pour l‟Observation de la Terre (SPOT) scene was used to fill a gap in landsat coverage 
with the K/J designation 536/280 and pre-processed to level 2A (geometric and radiometric 

correction). 

 

Image Date 

(YYYY MM DD) 

Image 

Type 

Satellite # Image Date 

(YYYY MM DD) 

Image 

Type 

Satellite # 

1984 05 14 TM 5 1995 12 07 TM 5 

1984 11 06 TM 5 1996 03 12 TM 5 

1985 01 09 TM 5 1996 12 09 TM 5 

1985 05 17 TM 5 1997 01 26 TM 5 

1986 04 02 TM 5 1997 06 19 TM 5 

1986 08 24 TM 5 1998 03 02 TM 5 

1987 04 21 TM 5 1998 07 24 TM 5 

1987 12 01 TM 5 1998 12 31 TM 5 

1988 04 07 TM 5 1999 01 16 TM 5 

1988 12 19 TM 5 1999 09 05 TM 5 

1989 04 26 TM 5 2000 01 11 TM 7 

1989 11 20 TM 5 2000 04 05 SPOT 4 

1990 10 06 TM 5 2001 04 01 TM 5 

1991 08 06 TM 5 2001 08 25 TM 7 

1992 05 04 TM 5 2002 02 17 TM 5 

1993 01 31 TM 5 2002 04 22 TM 5 

1993 07 10 TM 5 2003 01 19 TM 7 

1994 05 26 TM 5 2003 05 27 TM 7 

1994 11 02 TM 5 2004 05 05 TM 5 

1995 03 26 TM 5 2005 0 305 TM 5 

 

 

This classification routine consists of the following general steps: 

(1) Each satellite scene was rectified to State Plane NAD83 Meters to be compatible with 

existing spatial data and so it could be clipped to the geographic boundaries of the federal 

properties (See Shao and Duncan 2007 for complete discussion of the influence of geographic 

area on classification results);  
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(2) A nonparametric separation index (SI) was used to select the best bands for 

classifying burned areas.  The ideal bands have burned and unburned areas separated by their 

spectral signature, making them unique and easy to classify, hence the separation index.  For 

each band, histograms of pixel spectral values were computed for burned and unburned areas as 

derived by visual interpretation and MINWR fire records.  Areas were derived by knowing the 

image pixel size (e.g., Landsat TM is 30 meter) and frequency from the histograms.  To avoid 

bias caused by the burned or unburned cover type with larger area, the overlap area was divided 

by the area of the smaller cover type. SI is calculated as follows: 
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where, SIi,j is separation index between cover types i and j (0 ≤ SIi,j ≤ 1), Ai,j is the overlap area 

between cover types i and j, Ai
 
or

 
Aj is area for cover type i or j, and Min represents the minimum 

function (smaller number between Ai
 
and

 
Aj). 

The higher the SIi,j value, the more discriminative power the band has to separate the two 

cover types. All the bands with an SIi,j value greater than 0.1 were accepted for classification. 

Bands with SI values > 0.5 were designated the most suitable bands.  One TM band (TM4 – near 

infrared), and three transformed bands (Normalized Difference Vegetation Index, Principal 

Component 4, and Tasseled Cap 2) (Jensen, 2005) were collectively used for classifying burned 

from unburned areas; 

(3) The unsupervised classification algorithm ISODATA was employed because it is a 

consistent and repeatable classification method suitable for use on an image time series. The 
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number of spectral classes was 20, the number of iterations was 20, and the convergence 

threshold was 0.99 for all the classifications with different band combinations.  The 20 spectral 

classes were then manually recoded into two information classes, burned and unburned, to form 

the classified fire-scar maps; and,   

(4) Following each classification, the fire-scar maps were masked with a GIS data layer 

of the burned fire management units (FMUs).  This masking process, called post-classification 

cleaning, took advantage of the MINWR fire records and masked out any unburned FMUs.  This 

step removed commission errors outside burned FMUs and helped produce a high quality fire-

scar map.  

 

GIS database 

 

After the fire scar maps were visually inspected and identified problems were rectified, 

the final thematic maps were converted from ERDAS Imagine (Leica Geosystems 2008) into 

ArcGIS GRID format (ESRI 2008), and then to a vector format.  Attribute information such as 

burn date, FMU, type of burn (prescribed vs. natural), and age (time since last burn), were added 

to the fire scar maps.  Because MINWR maintained a database containing both natural and 

prescribed fires on KMCC since 1977, it was possible to assess and label fire boundary 

confidence by comparing visual evidence of burn scars on the satellite images and the classified 

burn scars with the MINWR fire records.  If there was agreement between all forms of evidence, 

the burn scar was labeled with a high confidence value, and if not, the burn scar was labeled with 

a lower value of confidence. The confidence value (CV) ranged from 1 to 4 and was also added 

to the fire scar maps (Figure 8).  A CV of 1 indicates low confidence in fire scar boundaries with 
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a value of 3 or 4 indicating high confidence in mapped fire boundaries.  This is a similar 

application of classifying landcover confidence (Liu et al., 2004), but modified for application to 

mapping fire scars.  Results are presented with confidence level information, allowing the 

selection of mapped features based on the confidence in which the fire scars were mapped.  The 

confidence values are important because they provide a means for documenting mapped feature 

quality despite the inability to conduct a formal accuracy analysis due to the historic nature of 

this study.  

 The time difference between each fire date and the date of the closest image acquired 

after that fire (used to map that fire scar) was recorded in months and called the delta burn date.  

This was done for each recorded fire using the MINWR fire database and combined with the 

confidence item information.  We wanted to know how fast the rapidly growing vegetation in 

this region takes to obscure fire scars, indicating how many images are required per year to map 

high quality (high confidence) fire scar boundaries.  Insight into this question could be gained by 

exploring how the mapped confidence decreased with increased time since burn (delta burn 

date).  In addition, each fire scar was categorized into one of three dominant landcover types 

(wetland, flatwoods, or scrub) to determine how re-growth rates of each landcover type 

influences the ability to map high quality fire scar boundaries. 
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Figure 8.  The process of determining and labeling fire boundary confidence values (CV).  The 

diagram on the left symbolizes the fire records kept by Merritt Island National Wildlife Refuge 

(MINWR).  The diagram in the middle represents fire scars mapped from satellite imagery.  The 

diagram on the right shows how the information is used to label mapped confidence values.   
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Landscape age, landscape fire frequency, and dominant burn season maps were created in 

the GIS.  An Arc Macro Language program was written to combine all of the individual fire 

boundary maps into a single GIS data file.  Burn date attribute information was exported to 

Microsoft Access (Microsoft 2008) for each burn polygon (record) in the database.  The season 

of burn was tallied and then the attribute information was appended back to the GIS database 

where a map showing the dominant burn season (most frequently burned season) for each area 

was produced.  Seasons were defined so that the months of December, January, and February 

comprised Winter, the months of March, April, and May comprised Spring, the months of June, 

July, and August comprised Summer, and the months of September, October, and November 

comprised Fall. 

To analyze the relationship between annual fire area and drought variation, burn area by 

year, month, season, and drought data were organized in Microsoft Excel (Microsoft 2008).  

Statistical analysis was performed in the statistical software package, SPSS (SPSS Version 12.0 

2008).  The drought information used was the cumulative severity index (CSI) or Keetch-Byram 

Drought Index (Keetch and Byram, 1988).  These data were recorded by MINWR personnel for 

1995 to 2004, excluding 1996.  The CSI is a cumulative algorithm for estimating fire potential 

from meteorological inputs such as daily maximum temperature, daily total precipitation and 

mean annual precipitation.  The CSI daily values were averaged by month for statistical analysis. 
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Results 

 

Mapped confidence and fire boundary degradation 

 

The delta burn date values were the smallest for wetlands and largest for scrub landcover 

types (Table 6). This trend was the same for the delta burn dates with CVs of 3 and 4.  There 

were 24 fire scars labeled with a confidence greater than 3 and a delta burn date period greater 

than six months (these were the largest delta burn dates and had the highest confidence values).  

All except one of these fires were growing season fires indicating that growing season fire scars 

may have a longer residency time on the landscape making them easier to map using remote 

sensing.  The growing season varies for each species but the core growing season for dominants 

in this system is from April through early October. 

 

Table 6.  Delta burn date statistics for fire scars mapped between 1983 and 2005 on KMCC, 

Florida.  Delta burn date is the time difference in months between a fire and the next image in 

time series (after that fire) used to map the burn scar.  Confidence values of a) 1 through 4 and b) 

3 through 4. 

 

(a)  

Cover type Mean Median Minimum Maximum 

Wetlands 3.0 2.0 1 11 

Flatwoods 3.7 3.0 1 10 

Scrub 4.0 3.0 1 10 

 

 

(b)  

Cover type Mean Median Minimum Maximum 

Wetlands 2.3 2.0 1 6 

Flatwoods 3.9 4.0 1 10 

Scrub 4.0 3.0 1 10 
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Seasonality/Area/Size managed fire regime elements 

 

A total of 54,175 ha were mapped as burned between 1983 and 2005.  Of that total, 

48,601 ha were mapped as burned with a CV > 1.  Only 10 percent of the mapped burn area had 

a CV = 1.  The amount of area burned peaked in 2003 for all confidence values and peaked in 

1997 for CV > 1, with reduced amounts of burned area in 1999 and 1990, respectively (Figure 

9).  Area burned peaked in the month of November with the lowest amount in October (total can 

be found by taking the average multiplied by number of years = 21) (Figure 10).  Annual 

variability in monthly area burned was generally low, with variability being greatest in 

November, the month with the highest average and total burn area.  Area burned reached a 

maximum in the winter season and a minimum in the spring for all CVs and a minimum in the 

summer for CV > 1 (Figure 11).  Annual variability in season burned is very low with uniformly 

small standard error bars. 

The CSI values for each year were highly variable (Figure 12, A-I).  The monthly mean 

for all years indicated that the CSI peaked in May and reached a low in October (Figure 12, J).  

April is typically the start of the spring dry period (Mailander 1990) so we investigated the 

relationship between April drought index and area burned.  Total area burned and CSI for April 

of each year (1995,1997-2004) were normally distributed (Shapiro-Wilk test, P = 0.598, P = 

0.719) and negatively correlated (r = -0.693, P < 0.038).   

Areal extents for single fires had a mean of 198 ha, a median of 112 ha, a minimum of 

0.73 ha, and a maximum of 1,324 ha for all CVs.  For CVs > 1, the mean was 209 ha, the median 

was 126 ha, the minimum was 1.26 ha, and the maximum was the same at 1,324 ha. 
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Figure 9.  Mapped burn scar area by year for Kennedy Space Center, Merritt Island National 

Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station.  Areas 

were summarized by confidence values 1 and 2 through 4. 

 

 

 

 

Figure 10.  Annual average burn area by month for Kennedy Space Center, Merritt Island 

National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station.  

Winter was comprised of Dec., Jan., and Feb.; Spring was Mar., Apr., May; Summer was Jun., 

Jul., Aug.; and Fall was Sep., Oct., Nov.  Areas were summarized by confidence values 1 and 2 

through 4 for the period of 1984-2004.  Error bars represent standard error for confidence values 

1 through 4. 
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Figure 11.  Annual average burn area by season for Kennedy Space Center, Merritt Island 

National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station.  

Winter was comprised of Dec., Jan., and Feb.; Spring was Mar., Apr., May; Summer was Jun., 

Jul., Aug.; and Fall was Sep., Oct., Nov.  Areas were summarized by confidence values 1 and 2 

through 4 for the period of 1984-2004.  Error bars represent standard error for confidence values 

1 through 4. 

 

 

Frequency/Return interval managed fire regime element 

 

The mean fire frequency was 12 fires per year (274 total fires/23 years), the minimum 

was four fires per year, and the maximum was 24 fires per year for all confidence values.  For 

CVs > 1, the mean fire frequency was 10 per year (233 total fires/23 years), the minimum fire 

frequency was one per year, and the maximum was 19 per year.  Fire frequency peaked in 1997 

and the low was in 1990 for years with a complete burn record (Figure 13). 
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Figure 12.  Cumulative Severity Index (CSI) drought data presented by monthly average.  

Drought index for A) 1995, B) 1997, C) 1998, D) 1999, E) 2000, F) 2001, G) 2002, H) 2003, I) 

2004, and J) monthly average for all years. 
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Figure 13.  Mapped burn frequency by year for Kennedy Space Center, Merritt Island National 

Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station.  

Frequencies were summarized by confidence values 1 and 2 through 4. 

 

 

The fire cycle is defined as the amount of time needed to burn an area equal to the study 

site, in this case, 27,500 ha (area of open water excluded).  The fire cycle (fire rotation) at 

KSC/MINWR, excluding CCAFS and CNS, was 12 years for all CVs and 13 years for CVs > 1.  

Because the fire cycle is measured in years, the initial year (1983) of study was excluded from 

the calculation, because the available satellite imagery did not allow mapping of all fires for that 

year.  The calculation started with 1984 and each annual burn total was added until the 

flammable area of the study site (27,500 ha) was reached, the number of years added became the 

fire cycle. The fire cycle was very similar to the return interval of 11.5 years for all confidence 

values and 13 years for CVs > 1.  The return interval is calculated by dividing the upland 
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flammable area (27,500 ha) by the average area burned each year (2,393 ha).  The same 

calculation was followed for CVs > 1 (2,120 ha). 

 

Spatial pattern managed fire regime element 

 

The landscape mosaic maps cover 21,528 ha for all CVs and 20,659 ha for CVs > 1.  We 

present the confidence maps 2 through 4 in this paper because they represent areas that we are 

certain burned.  Recent burn categories are prevalent on the age class mosaic map and tend to 

occur in large blocky polygons due to the burns being conducted in management units with 

linear boundaries (Figure 14).  The age mosaic map has a mean polygon size of 2.65 ha, a 

minimum of 0.002 ha, and a maximum of 887 ha.  The majority of the burned area is in the 

young age classes (Figure 14, histogram inset).  The age mosaic map also makes it evident that 

fire has been excluded from much of CNS and the majority of CCAFS. 

Fire frequency was manifested in much finer scale patterns than the age mosaic map and 

there is a single fire frequency hot spot that burned seven or eight times (Figure 15).  The 

frequency mosaic map is a combination of the 233 fires that occurred between 1983 and 2005 

with CVs > 1.  This map has a mean polygon size 0.90 ha, a minimum of 0.002 ha, and a 

maximum of 222 ha.  The majority of area on this landscape belongs to the low frequency 

categories (Figure 15, histogram inset).  Winter season burns were prominent (Figure 16).  The 

multiple burn season category covered the largest area, with the smallest being the spring season 

(Figure 16, histogram inset).   
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Figure 14.  Landscape age mosaic map and associated area (inset) for Kennedy Space Center, 

Merritt Island National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air 

Force Station.  Age is the time since last burn, initialized from 2006, the year the mapping was 

complete.  Areas shown are for confidence values greater than one.   
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Figure 15.  Fire frequency map and associated area (inset) for Kennedy Space Center, Merritt 

Island National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force  

Station.  Frequencies derived by overlying all mapped fires with a confidence value greater than 

one and summing the number of times each area burned.   
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Figure 16.  Dominant burn season map and associated area (inset) for Kennedy Space Center, 

Merritt Island National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air 

Force Station.  Areas shown are for confidence values greater than one.   
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Discussion 

 

Mapped confidence and fire boundary degradation 

 

  Due to the rapid vegetation growth rates, we did not know how many images would be 

needed annually to guarantee that we could map every fire that occurred in our study.  

Experience dictated that one a year would not be suitable to map accurate boundaries so we 

acquired two (one spring and one fall) each year.  Because the time gap between images was not 

always exactly six months apart (some were longer), it allowed us to explore the limits of our 

classification technique to delineate high confidence fire scar boundaries after time intervals 

exceeding six months following fire.   The confidence values helped provide guidance on 

mapping quality (high confidence) fire scar boundaries and their degradation with time since 

burn.  We tested the outer limits of detectability, for example, using our first image in the series, 

we tried to map fires as far back into 1983 as possible and lost the ability to detect any fire scars 

occurring eleven months prior to the date of image acquisition.  Getting the optimum number of 

images in series is important so that an ideal balance can be created between reducing imagery 

costs, minimizing classification effort, and maximizing the quality of fire regime reconstruction.  

If our primary objective was to map fire scars in marshes, than we would need a higher number 

of annual images, likely a minimum of three.  We conclude that for general mapping of fire 

scars, two images a year spaced about six months apart, acquired in the spring and fall is 

reasonable in relation to the tradeoffs discussed above.  The number of images may be dependent 

on the time of year also, for example, to map marsh fire scars it might be necessary to have 

images every two months during the growing season but further apart during other times of the 
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year.  More study may be required to truly optimize the number of images in this system or any 

other. 

Using the confidence information, we determined that the most persistent fire scars were 

left by growing season fires.  These fires had the largest delta burn dates and this may signify 

that growing season fires take a longer time to reestablish vegetative cover following 

disturbance.  This makes sense as the large flush of leaves occur at the beginning of the growing 

season (generally late March) prior to most of these fires and then the plants are dormant in 

fall/winter. 

 

Comparison of managed and natural fire regimes 

 

Seasonality/Area/Size fire regime elements 

 

Current theory derived from empirical evidence holds that most burning under the natural 

fire regime occurred during the early growing season (April-June) in this region (Slocum et al., 

2003; Platt et al., 2006).  Large fires would occur at this time of year because fuels were dry, 

ground water levels were low, and lightning frequencies were relatively high simultaneously.  

The April-June period is the maximum in the mean rain-free interval and minimum in mean 

ground water level for this region (Mailander, 1990; Schmalzer and Hinkle, 1990; Platt et al., 

2006).   Limited convective storm activity begins during this time, providing lightning activity 

but not yet depositing large quantities of rainfall.  These factors created ideal conditions for 

large, extreme fire events during late spring/early summer in this region.  This was particularly 
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true during La Niña periods that magnified dry early growing season periods (Harrison and 

Meindl, 2001; Beckage et al., 2005).   

The largest fire recorded in this present study was 1,324 ha during the La Niña period in 

June of 1998 ignited by lightning.  This fire would have burned a much larger area if it were not 

controlled.   This fire burned across many fire lines and consumed nearly all fuels in its path 

before it was brought under control (Breininger et al., 2002).  Fire modeling shows that large, 

extensive fires likely occurred across this landscape before fragmentation was prevalent (Duncan 

and Schmalzer, 2004).   

The negative correlation of April CSI and total acreage burned indicates that under the 

managed fire regime the opposite of the natural system is occurring with the largest acreages 

burning when April CSI values are low.  April is typically the first month of the dry season, and 

if April is extremely dry, this will limit prescribed burning until appreciable rain occurs.  During 

periods of drought (high CSI), area burned declines and during wet periods (low CSI) area 

burned increases.  Under the managed fire regime, November is also the month of maximum 

area burned annually, and winter is the season that most area is burned.   

The influence of burn season has been investigated in some of the fire adapted 

communities of the southeast and these results have implications for survival of many fire 

dependent species in this ecosystem (Hiers et al., 2000; Liu et al., 2005; Brewer, 2006).  

Generally, burn season has a larger influence on the abundance of seeding species than 

resprouting species in this region.  Burn season influences flowering and hence seed generation 

of wiregrass (Aristida stricta Michx.), an important foundational species supporting fire in the 

understory of longleaf pine and flatwoods communities (Outcalt, 1994; Mulligan and Kirkman, 
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2002).  Burn season was found to have little effect on post-fire recovery of resprouting Florida 

scrub species in the flatwoods communities on KSC/MINWR (Foster and Schmalzer, 2003).   

The influence of burn season is clearly important depending on the ecosystem and the 

species within them.  Fire is not the only seasonal natural phenomenon influencing ecosystem 

structure.  Fires followed by flooding produce unfavorable conditions for pine and palm 

establishment (Platt et al., 2006).  Fire intensity is also an important factor that influences the 

pattern of shrub abundance (Thaxton and Platt, 2006).  We mapped fire presence/absence in this 

study, but it may be possible to map fire severity from Landsat TM data as it has been achieved 

in other ecosystems (Patterson and Yool, 1998; van Wagtendonk et al., 2004; Duffy et al., 2007; 

Stow et al., 2007; Wimberly and Reilly, 2007). 

The annual area burned and fire frequency (Figures 9 and 13) show a cyclical nature by 

rising and falling within an 8 to 10 year pattern.  When El Niño and southern oscillation (ENSO) 

events are superimposed on these it appears that there may be a relationship between them 

(Figure 17).  Area burned and fire frequencies from managed fires tended to increase during or 

immediately after El Niño events and declined during or immediately after La Niña events.  The 

variability in lag time between the onset of sea surface temperature changes, climatic response 

and fire management action made determining the specific relationship between ENSO events 

and area burned difficult for the relatively short duration of this study. 

The combination of drought and lightning determines the seasonality of the natural fire 

regime in this region (Beckage et al. 2005; Slocum et at. 2007).  The variability of the CSI data 

suggests that the availability of a natural ignition source (lightning) is the timing mechanism and 

the key to the seasonality of the natural fire regime.  The highest mean CSI is reached in May 

and the lowest value is reached in October.  This result backs the findings in the literature.  The 
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variability found in the individual years however, suggests that because drought values can be 

high during just about any month within any given year, the critical factor is lightning 

availability, creating a coincidence of both.  The CSI drought index considers rainfall, 

temperature, and ultimately soil moisture (Keetch and Byram, 1988), so when CSI values 

approach 600 it is very likely that a fire will ignite given an ignition source.  The CSI data for 

1998 has both the lowest and highest CSI values of any year in this study.  This year was known 

for its rapid turn around from El Niño to La Niña and the outbreak of wildfires during the 

summer of this year due to the drought and “dry” lightning strikes (Pye et al., 2002).   
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Figure 17.  Burned area by year with El Niño Southern oscillation events superimposed.  El Niño 

events are indicated by EN and La Niña events are indicated by LN.  Areas shown are for all 

confidence values. 
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Frequency/Return interval fire regime element 

 

The fire return interval and fire cycle indicate relatively frequent managed fire.  

Estimated fire return interval ranges in Florida for mesic flatwoods are from 1 to 8 years and 8 to 

25 years for scrubby flatwoods (FNAI & DNR 1990).  These communities are dominant in our 

study area, supporting our fire cycle and return interval values.  Fire return interval information 

can be used to compare the difference between and within systems for both natural and 

contemporary fire regimes (Odion and Hanson, 2008), but it is important to get dependable 

return interval values into the literature to facilitate comparison.   

 

Spatial pattern fire regime element 

 

  Burn pattern is also important and is influenced by season (Slocum et al., 2007).  Fuel 

connectivity is higher during the early growing season, particularly during La Niña (Beckage et 

al., 2005) when it is relatively hot and dry, leading to extensive hot fires.  Naturally ignited late 

growing season fires tend to be patchy and small relative to fires during the spring drought.  This 

is the period of highest rain fall, and fuels are generally saturated and do not burn as readily.  

High hydroperiod marshes are full of water at this time and influence burn pattern in the coastal 

ridge-swale topography present at KMCC. 

The potential exists for a positive feedback cycle to occur between invasive exotic 

species and an altered fire regime (Vitousek, 1990; Brooks et al., 2004).  Once exotics are 

present, it is possible that they gain an advantage over native species through an altered fire 

regime.  With the decline of native foundational species which historically supported natural fire 
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regimes a negative feedback cycle is created or reinforced (Leach and Givnish, 1996; Outcalt et 

al., 1999; Schmalzer and Adrian, 2001).  Burn season and fire frequency are important elements 

of any fire regime that may influence which species are successful.  The dominant burn season 

map is useful to look for potential species selection bias that may be introduced by a managed 

fire regime based on burn season and frequency.  This dominant burn season map is most useful 

when the link between fire frequency, fire season, and species demography are known.   

The landscape age map has the majority of its area in the young age classes as new fire 

scars over burn the old ones (Figure 14, histogram inset).  There is a spike in area that is 9 years 

old, having not burned since 1997.  There are many small areas that have not been burned for 

longer time periods.  These are modern fire refugia and the reason for their resistance to burning 

should be investigated.  Many of these areas may have made a transition to a less flammable 

fuel/landcover type, which is often the case with a long fire absence (Duncan et al., 1999).  The 

lack of fire in the federal properties surrounding KSC/MINWR makes it appear that they are 

behind schedule with prescribed burning activities. 

The age map shows the latest fire scar over the top of existing burns and reveals a much 

coarser pattern than the frequency map, shaped by FMU boundaries and fire breaks.  The actual 

physical height structure/stature evident from the fuels/vegetation on the landscape will primarily 

resemble the pattern of the last fire scar or most recent fire scars.  Comparing the Figure 14 

histogram inset and Figure 9, it becomes evident that significant over burning of an area (new 

fire) generally does not take place for about seven years.  This makes the pattern of each 

individual fire important (because it will persist for years) when considering native fire-

dependent species and their habitat needs.  The Florida Scrub-Jay is one such species that is 
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dependent on a particular habitat structure maintained by fire (Breininger and Carter, 2003; 

Breininger et al., 2006). 

 

General considerations of mapping a managed fire regime 

 

Managed fire regimes operate under restrictions in addition to the natural controls that 

governed natural fire.  Stringent permitting requirements must be met to receive a burn permit.  

Primary among them are wind speed, wind direction, relative humidity, drought index, smoke 

dispersion, and impacts of smoke on roads and surrounding cities.  In addition, conducting 

prescribed burns on KMCC has its own set of restrictions (Adrian, 2006).  The spaceport has 

clean room facilities housing expensive payloads being readied for launch into space.  Managers 

in charge of the many spaceport operations often have input into the burn schedule.  These 

restrictions combined with crew and equipment requirements influence the date, location, and 

size of the prescribed burns that take place.   

One of the requirements of controlling fires within a geographic area is the presence of 

non-flammable fire breaks.  This includes roads (dirt or paved) that are just about completely 

void of fuels or fire lines cleared to mineral soils.  The result is that burns often have very 

geometric shapes.  This is very evident particularly in the age and dominant season of burn maps 

where burn boundaries are made up of straight lines.  Natural fire boundaries would likely follow 

natural ecotone boundaries bordering less flammable fuels such as high hydroperiod marshes, 

water bodies, or less flammable fuels such as closed canopy hammocks or Florida scrub fuels 

(Myers, 1990).  These fire ecotone interactions would rarely leave straight burn boundaries.  Fire 

refugia may also have been created and maintained by the combination of the predominant wind 
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pattern and these natural fire breaks.  Human made fire lines are now largely responsible for the 

burn patterns found on the landscape and are a contributing factor leading to the low annual burn 

area variability. 

The age classes found on the landscape age map were initialized from the year of 2006.  

This was the year that the remote sensing of the fire scars was carried out and all of the GIS 

maps were created.  These age classes will be updated when recent imagery is available to map 

the latest fires and update the database.  We attempted to map every fire that occurred within the 

study site boundaries during the study period.  Although many small fires did get mapped, some 

very small fires that occur in the MINWR fire records were not visible on the imagery and did 

not get mapped. 

The classification algorithm performs best in the upland xeric communities (Shao and 

Duncan, 2007) and has some difficulty in hydric systems, where dark soils and standing water 

may be confused for burn scars.  Safe-guards were instituted to minimize classification errors.  

Post-classification cleaning or masking was the first safe-guard, the next was to edit out features 

that consistently did not change with time on previous years imagery (known wetland features) 

and then lastly, using the confidence values.  The confidence value allows the user to remove any 

fire scar that might have questionable boundaries from consideration.  The irony is that the actual 

number of fires mapped and area mapped as burned may be closer to reality when confidence 

values of 1 are included.  For this reason the normality and correlation statistics were performed 

on the full data set including all confidence values.    
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Conclusion 

 

This study used remote sensing and GIS techniques to map and describe a managed fire 

regime on KMCC in east central Florida, USA.  Our image processing technique (developed for 

mapping individual fire scars) was applied to an image time series for successfully mapping and 

describing a managed fire regime.  We developed a system for labeling mapped confidence for 

each delineated fire scar and demonstrated its utility.  This information was used for 

preferentially selecting fire scars to include or exclude from analysis.  It was also used for 

studying the degradation of fire scar boundaries with time since burn.  This information can be 

used for aiding the selection of a suitable number of images in time series, helping maximize 

information capture for fire regime mapping projects.   

We were able to make comparisons between a managed fire regime and recorded 

information on natural fire regimes in the southeastern USA.  The managed fire regime reacts 

and functions very differently during wet and dry meteorological periods compared to natural 

fire regimes of this region.  There is an opposing reaction to these meteorological periods, during 

wet conditions; most area was burned under the managed fire regime and a minimum amount of 

area would burn under the natural fire regime.  The opposite occurred during dry periods; little 

area burned under the managed fire regime and a maximum would burn under the natural fire 

regime.  April precipitation was an effective predictor for this relationship. 

These findings are important because establishing sound fire management practices to 

mimic the influence of natural fire regimes is increasingly import in the fire-maintained and fire-

adapted communities around the world.  If fire management is not properly and carefully 

executed, entire populations of rare species can be at serious risk for survival (Odion and Tyler, 
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2002).  Mimicking natural processes that once effectively maintained diverse assemblages of 

biodiversity is a very challenging proposition, especially considering imposed anthropogenic 

influences.  The uncertainties surrounding effective fire management make monitoring 

necessary.  Monitoring fire management programs in relation to demography of native species 

will allow us to learn from successes and failures.  Rigorous, scientifically-based adaptive 

management strategies are being developed to help streamline management efforts in complex 

systems such as the one studied here.  Being able to quantify current fire regimes is an important 

part of improving future fire management to support native fire-dependent species.  This paper is 

a step toward this goal by developing techniques for confidently delineating fire scars in rapid 

growth scrub systems, allowing the documentation of a managed fire regime.  The results here 

are particularly relevant in east central Florida and the Southeastern U.S., but the techniques may 

be applicable to any pyrogenic system world wide. 
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Introduction 

 

The fire regime of an area is defined by its fire type, intensity (severity), size, return interval, 

seasonality, and spatial pattern (Christensen 1985).  While fires start naturally through lightning 

or volcanic activity, anthropogenic ignitions such as arson and escaped incendiary fires heavily 

influence many fire regimes globally (Bond and van Wilgen 1996; Vigilante et al. 2004; Genton 

et al. 2006; Syphard et al. 2007).  Changes in ignition source over time combined with fire 

suppression and fuel fragmentation have altered most fire regimes.  Many contemporary fire 

regimes now only partially resemble those typical of the past.  This is the case in the southeastern 

United States, particularly Florida, it incurs one of the highest rates of lightning incidence in 

North America (Orville and Huffines 2001; Murphy and Holle 2005).  The natural fire regime in 

Florida, defined here as the fire regime prior to European settlement, was comprised of frequent, 

lightning-ignited fires (Abrahamson and Hartnett 1990; Brewer 2006; Slocum et al. 2007).  

Various native species (e.g., the Florida Scrub-Jay (Aphelocoma coerulescens), Highlands scrub 

hypericum (Hypericum cumulicola))  adapted and became dependent on this fire regime and are 

struggling with declining populations under contemporary fire regimes (Quintana-Ascencio et al. 

1998; Breininger et al. 2006; Menges et al. 2006).   
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Fire management programs are now trying to reverse anthropogenic influences to either 

reduce dangerous fuel levels or to restore habitat for native fire-dependent species.  To restore 

and maintain habitat for native fire-dependent species, it is necessary to have sound, 

scientifically based information detailing the natural fire regime.  In most areas it may not be 

possible to return to a “natural fire regime”, but it is possible for land managers to mimic some 

of the processes and resulting patterns.  The relationship between cloud to ground lightning and 

fire ignition is a fundamental component of the natural fire regime, which must be quantified so 

that fire/land managers can approximate natural system conditions and behaviors. 

Lightning research in Florida has contributed significantly to our current knowledge of 

this natural force.  Many research studies that documented electrical properties of lightning were 

conducted in Florida (Livingston and Krider 1978; Beasley et al. 1983; Shindo and Uman 1989; 

Rakov and Huffines 2003).  Additional lightning research focusing on lightning climatology 

(e.g., (Hodanish et al. 1997; Mitchener and Parker 2005) and predictive modeling (e.g., (Reap 

1994; Shafer and Fuelberg 2006) has also occurred in Florida. 

The majority of the studies detailing the relationship between cloud to ground lightning 

and fire ignition have taken place in the boreal forest (Flannigan and Wotton 1991; Nash and 

Johnson 1996; Wierzchowski et al. 2002; Larjavaara et al. 2004; Larjavaara et al. 2005; 

Krawchuk et al. 2006; Kilinc and Beringer 2007) or other regions outside of the southeastern 

United States (Minnich et al. 1993; Petersen and Drewa 2006).  Surprisingly, there have not been 

any lightning fire ignition studies published in the literature that link the characteristics of cloud 

to ground lightning and fire ignition in Florida.  However, one study details the spatial patterns 

of fire by different means of ignition, including lightning, for Florida‟s St. Johns River Water 

Management District (Genton et al. 2006).  Another documented that negative polarity cloud to 
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ground lightning strikes initiated more fires than positive polarity lightning (Mitchener and 

Parker 2005). 

Our goal was to separate the lightning ignition component from the contemporary 

background anthropogenic fire regime to define the natural fire ignition regime for Kennedy 

Space Center (KSC), Merritt Island National Wildlife Refuge (MINWR), Canaveral National 

Seashore (CNS), and Cape Canaveral Air Force Station (CCAFS), Florida.  The managed 

contemporary fire regime on these properties has been delineated and described in a separate 

study, for details please refer to Duncan et al. (2009).  The lightning fire ignition regime we 

delineated in this study includes the lightning ignition frequency, lightning ignition seasonality, 

lightning ignited fire size, spatial lightning and ignition densities, and properties of lightning that 

ignite fires.  The influence of precipitation on lightning ignition efficiency and fire size was also 

investigated.  We wanted to delineate the natural fire ignition regime while referencing existing 

knowledge generated from previous studies to help improve opportunities for land managers to 

mimic natural fire processes, ultimately benefiting native fire dependent species.  Florida, like 

other fire adapted regions of the world, has many conservation areas designed to protect native 

species but a limited amount of scientifically sound information on which land managers can 

base fire management decisions.  Our results will help fill a current information gap and allow 

the parameterization of future modeling efforts which may predict optimum management 

strategies for maintaining conservation areas.  This study will be directly applicable on these 

federal properties, throughout Florida, the southeast United States, and will serve as an example 

of how to isolate and quantify the natural ignition component from contemporary fire regimes 

world wide. 
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Methods 

 

Study site and background information 

 

KSC is 57,000 ha and is primarily managed by the U.S. Fish and Wildlife Service as the 

MINWR with a smaller portion managed by the National Park Service as CNS(Figure 18).  

CCAFS is 6,475 ha and occupies the Cape Canaveral barrier island.  Because these properties 

overlap to some degree and we are studying all of the federally owned area, we will use the first 

letter from each location and shorten the name from KSC/MINWR/CNS/CCAFS to KMCC.  

KMCC forms a barrier island complex covered with a diverse assemblage of fire-adapted 

terrestrial vegetative communities.  Coastal strand occurs just inland of the coastal dunes and is a 

shrub community with saw palmetto (Serenoa repens), sea grape (Coccoloba uvifera), wax 

myrtle (Myrica cerifera) and other species being dominant.  Coastal scrub occurs on neutral to 

alkaline sandy soils; a shrub form of live oak (Quercus virginiana) is the dominant species along 

with saw palmetto.  Inland, upland xeric sites are dominated by oak scrub vegetation (Quercus 

spp.), while mesic sites are dominated by flatwoods (e.g.,  palmetto, staggerbrush (Lyonia spp.), 

holly (Ilex sp.), and an overstory of slash pine (Pinus elliottii).  Because the landscape is 

comprised of relict dunes forming ridge swale topography, there are interleaving swale marshes 

and hammocks on hydric soils between the xeric ridges.  The swales are dominated by sand 

cordgrass (Spartina bakeri) and bluestem (Andropogon spp.), while the hardwood hammocks are 

dominated by live oak (Quercus virginiana) and laurel oak (Quercus laurifolia) and have a 

structure that is much less flammable than surrounding communities.  Salt marsh borders these 

barrier islands and is dominated by sand cordgrass grading into saw palmetto and the flatwoods 
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community on higher elevations.  These communities are dominated by species that resprout 

following fire (Schmalzer 2003).  Maps showing the distribution of these landcover types can be 

found in Duncan et al. (2004). 
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Figure 18.  The geographic locations of Kennedy Space Center, Merritt Island National Wildlife 

Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida. 

 

 

The growing season varies for each species, but the core growing season for dominants in 

this central Florida system is from April through early October.  Early and late growing season 

are also used to describe periods in time that cross seasonal boundaries and tend to differ in 

humidity and precipitation.  Early growing season is relatively dry and refers to the time period 
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of April through the start of the wet convective storm season, which typically starts in late June 

or early July.  Late growing season refers to the time period when the wet convective storm 

season begins (either mid to late June or as late as mid July in dry periods) and then ends in 

September or early October with the completion of the convective storm season. 

Native Americans used fire in this region to thin vegetation and to increase forage, which 

would attract prey for hunting.  Not that much is known about their fire practices but it is 

believed that they did not greatly alter the natural fire regime through suppression.  It is thought 

that they actually supplemented the natural fire frequencies across central Florida (Davison and 

Bratton 1986; Duncan et al. 1999). 

 

Cloud to Ground Lightning Surveillance System 

 

The Cloud to Ground Lightning Surveillance System (CGLSS) records the geographic 

location of cloud to ground lightning strikes surrounding the KMCC region.  The system is 

comprised of a sensor network located throughout east central Florida and a position analyzer 

located on CCAFS where the data are maintained and stored via computer.  The system has a 

detection rate of 98% and positional accuracy of 350 meters at 95% confidence (Roeder et al. 

2005).  The CGLSS records date, time, strength/polarity, and location for each lightning strike.  

CGLSS data were mapped using ArcGIS software via the geographic coordinates, with all other 

data recorded as attribute information.  Cloud to ground lightning locations outside of the federal 

property boundaries of KMCC were excluded from the data set. 

 



70 

 

Fire records 

 

A fire database containing fire name, date, location, type, cause, and size exists for all 

fires on KMCC and is maintained by the MINWR personnel.  These data have been collected 

since 1977.  Included in this database is a type of fire referred to as a “natural out”.  A natural out 

is a fire that was ignited by lightning, went undetected while burning, and then went out on its 

own.  These fires were recorded by periodic visual observation from helicopter surveys.  

Helicopter surveys were suspended in 2000 due to funding constraints.  Each fire location is 

recorded in the township, range, section system with the management unit of the fire also being 

recorded.  The township and range information for all lightning ignited fires were converted into 

latitude and longitude by recording the center coordinate of the corresponding section in ArcGIS.  

The mapped accuracy of fire centers are, at worst, 0.8 km from the true position. 

 

Lightning GIS 

 

The CGLSS and fire data for 1986 through 2003, excluding 1987 and 2002 due to 

missing CGLSS data, were overlaid and analyzed in a GIS.  Data were collected for distance, 

normalized signal strength, polarity, and number of return strokes for nearest lightning strike to 

actual fire locations by date.  Normalized signal strength (NSTR) is the estimated peak current of 

the return stroke recorded in kilo-amperes (ka) and is normalized for the inferred distance to the 

return stroke.  Included in the NSTR value is the polarity indicated by a plus or minus sign.  

Cloud to ground lightning density within 1 and 2 km from each actual fire was also recorded.  In 

the cases where there were no lightning strikes recorded for the same date of a recorded fire, 
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previous days' lightning strikes were overlaid until a reasonable match could be recorded.  This 

delay in ignition is known as holdover time (Wotton and Martell 2005). 

 

Lightning incidence, ignition frequency and landcover 

 

Fire occurrence has been shown to vary among landcover types so a chi-squared analysis 

was performed to determine if ignition and lightning frequencies occurred more or less than 

expected for each landcover class. Landcover is used to refer to a specific category of vegetation, 

and fuels are used to refer to the structure of vegetation that is available for consumption by fire 

within or between landcover types. A 1990 landcover map was used because it represented 

landcover at a central time during this study and because it also represented overstory structure 

within its classification system, pine overstory structure is an important factor determining 

flammability in this system (Duncan et al. 1999; Duncan et al. 2004).  For details about the 

landcover types and there mapped distributions, see Duncan et al. 2004.  The null hypothesis for 

the chi-squared analysis was no relationship between landcover category and frequency of 

fire/strikes.  To explore the strength of these relationships (effect size) simultaneous binomial 

confidence intervals (Neu et al. 1974; Byers et al. 1984) were used to compare occurrence 

frequency of both fire and lightning strikes versus landcover type availability.  The technique 

calculates a set of simultaneous confidence intervals using a Bonferroni correction to adjust 

individual alpha levels for multiple comparisons.  This is useful to determine if the expected 

proportion of occurrence (lightning ignition type and strike type category) falls within or outside 

the interval.  If outside the interval, we conclude that the expected and actual are significantly 

different.   
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Precipitation and ignition frequency 

 

 Precipitation controls many important variables influencing fire ignition.  We used both 

correlation analysis and regression techniques to learn more about the relationship between 

precipitation and lightning fire ignitions.  The data consisted of the ratio of the number of strikes 

to the number of ignitions for each month of the study.  The natural log of the response variable 

was used to better meet the assumptions of the linear regression model. 

 

Lightning properties and fire ignition 

 

The characteristics of lightning strikes that ignite fires have been shown to vary; so we 

used several techniques to investigate their relationship.  Pearson correlation analysis was 

performed to investigate the relationship between the number of lightning strikes and the number 

of fires.  It was also used to investigate the relationship between precipitation and the number of 

lightning fires.  A log-linear analysis was performed to determine if the number of return strokes 

(multiplicity) were different between lightning strikes that ignited fires and those that did not.  A 

null hypothesis stating that there was no difference was used.  The log-linear technique was 

selected for this test because it is suited to count data with an error term following a Poisson 

distribution.  A Wilcoxon Rank Sum test was used to look for differences between the NSTR 

values of lightning strikes that started fire and those that did not.  The null hypothesis was that 

there was no difference between strike NSTR for cloud to ground lightning strikes that started 

fires and those that did not start fires.   
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Results 

 

Lightning and lightning fire ignitions 

 

Lightning characteristics 

 

The CGLSS recorded 110,300 lightning strikes on these federal properties.  The annual mean 

was (6,892), median was (6,705), the minimum number for any year was 3,647 strikes in 1988, 

and the maximum was 10,648 in 1990.   The number of cloud to ground lightning strikes have 

risen and fallen through the duration of this study indicating the potential for a larger, cyclical 

trend (Figure 19).  The majority of the cloud to ground lightning strikes, 101,678 (91.5%), were 

negatively charged; 8,619 (8.5%), were positively charged.  The spatial density of lightning 

strikes averaged across all years was highest on the west side of the federal property decreasing 

to the east (Figure 20). 
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Figure 19.  Cloud to ground lightning frequency by year on Kennedy Space Center, Merritt 

Island National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force 

Station, Florida.   

 

 

 

 

Figure 20.  Average lightning density/km
2
 for 1986 through 2003 excluding 1987 and 2002 on 

Kennedy Space Center, Merritt Island National Wildlife Refuge, Canaveral National Seashore, 

and Cape Canaveral Air Force Station, Florida.   
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Lightning fire characteristics 

 

There were 230 fires ignited by lightning within the boundaries of these federal 

properties for the years that correspond to the CGLSS data.  The annual mean was 14 and 

median was 12. The minimum number of ignitions in a year was two occurring in 1995 and 

1996; the maximum was 39 occurring in 1992.  The number of lightning ignitions again 

displayed a rising and falling trend (Figure 21).  Out of the 230 fires, 40 were natural outs, 

accounting for about 17% of the total.  The recorded size of the natural outs was small. The mean 

was 0.08 ha, median was 0.04 ha, the minimum was 0.04 ha, and the maximum was 0.8 ha.  The 

mean size of extinguished fires was 16 ha, the median was 0.2 ha, the minimum was 0.04 ha, and 

the maximum was 1,012 ha.  The minimum area reported for all fires was 0.04 ha (0.1 ac).  

Moderately high ignition densities occurred at the north end of the study site with the highest 

densities in the southwestern portion (Figure 22).  Average lightning strike densities were 2.5 

strikes per km
2
 per day and 9 strikes per km

2
 per day within a 1 km and a 2 km radius of each 

lightning ignition, respectively. 
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Figure 21.  Ignition frequency by year on Kennedy Space Center, Merritt Island National 

Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida.  

 

 

  

Figure 22.  Lightning ignition density/km
2
 for 1986 through 2003 excluding 1987 and 2002 on 

Kennedy Space Center, Merritt Island National Wildlife Refuge, Canaveral National Seashore, 

and Cape Canaveral Air Force Station, Florida. 
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Lightning fire frequency and season  

 

The lightning ignition frequencies were concentrated during the summer months (Figure 

23).  The month of July had the greatest number of ignitions with 94, and the only winter month 

with any ignitions was January, with one fire.  By season, winter (Dec, Jan, Feb) had one 

ignition, spring (Mar, Apr, May) had 27 ignitions, summer (Jun, Jul, Aug) had 189, and fall (Sep, 

Oct, Nov) had 13 ignitions.  Natural outs were concentrated during the month of July with 28 

(70%) (Figure 23).  Seasonally, winter had one natural out, spring had one, summer had 33, and 

fall had five.  Holdover ignition times reveal an almost even distribution of instantaneous and 

delayed ignitions 118 (51%) to 112 (49%), respectively.  The maximum ignition delay was 23 

days, and the average was two days. 

 

 

Figure 23.  Lightning fire frequency by month on Kennedy Space Center, Merritt Island National 

Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida.  

Frequencies were summarized for fires that were detected/controlled and undetected fires that 

extinguished themselves (natural outs). 
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Precipitation and lightning fire frequency 

 

The annual number of lightning ignitions and July precipitation were normally distributed 

(Shapiro-Wilk test, P = 0.132, P = 0.276) and negatively correlated (r = -0.719, P = 0.002).  

Summer time precipitation variability is  highest during the early summer season (Table 1).  The 

month of June had the smallest and greatest precipitation total of the summer months, while early 

July is dryer than late July.  Regressing the natural log of the strike to ignition ratio vs. 

precipitation revealed that lightning ignition efficiency declines with increasing precipitation 

(Figure 24).  Residuals from this model met statistical assumptions and had an R
2
 = 0.37, 

indicating a structural relationship in the data.  

 

 

Table 7.  Precipitation amounts (cm) for different time periods during the Summer on Kennedy 

Space Center/Merritt Island National Wildlife Refuge/Canaveral National Seashore/Cape 

Canaveral Air Force Station from 1986 to 2003 excluding 1987 and 2002. 

 

Time period Min Max Median Mean Var. Std dev. 

June 1.52 30.23 17.54 17.07 73.87 8.59 

July 2.95 28.96 11.34 12.16 53.46 7.31 

Aug 4.27 25.96 13.75 14.62 46.58 6.83 

July1-15 0.00 11.96 5.35 5.47 13.25 3.64 

July16-31 0.20 19.69 5.79 6.70 29.45 5.43 

June-July15 7.95 39.01 19.20 22.54 104.91 10.24 

July16-Aug 8.41 43.87 20.84 21.32 67.23 8.20 

 



79 

 

 

 

Figure 24.  Regression plot displaying the relationship between the natural log of the strike to 

ignition ratio and precipitation on Kennedy Space Center, Merritt Island National Wildlife 

Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida. 

 

 

Strike to ignition ratios 

 

The ratio of cloud to ground lightning strikes to ignitions for each year varied with a 

mean of 881, a median of 491, a minimum of 233 in 1992, and maximum of 3,647 in 1996.  

There were a few years that had an inordinately large ratio of strikes to ignitions (Figure 25).  

These same years had above average precipitation (Figure 26).  The monthly ratio of cloud to 

ground strikes had a mean of 812, a median of 536, a minimum in July of 309, and a maximum 

in October of 2,153 (Figure 27).  The annual number of cloud to ground lightning strikes and the 

number of actual ignitions were normally distributed (Shapiro-Wilk test, P = 0.488, P = 0.083) 

and not significantly correlated (r = 0.398, P = 0.126).   
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Figure 25.  Annual lightning strike to ignition ratio for Kennedy Space Center, Merritt Island 

National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, 

Florida.  The lightning strike to ignition ratio is derived by dividing the total number of cloud to 

ground lightning strikes by the total number of ignitions for each year. 

 

 

 

 

 

Figure 26.  Precipitation, above and below the mean as measured at the National Atmospheric 

Deposition Program collection site on Kennedy Space Center, Merritt Island National Wildlife 

Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida.  The mean 

precipitation value for the years from 1986 through 2003 excluding 1987 and 2002 is 127.9, all 

values are in centimeters.  
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Figure 27.  Monthly lightning strike to ignition ratio for Kennedy Space Center, Merritt Island 

National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, 

Florida.  The lightning strike to ignition ratio is derived by dividing the total number of cloud to 

ground lightning strikes by the total number of ignitions for each month.  There were no 

ignitions during February, November and December. 

 

Fire size and season 

 

Fire size was typically small, with 220 fires smaller than 12 ha and only ten larger in size.  

During the fall, winter, and spring most lightning fires were small (Table 8).  A few lightning 

fires accounted for the majority of  total area burned by lightning ignition (Figure 28).  The 

majority of the large fires occurred early in the summer season.  There were three very large 

lightning fires during this study.  The first of these fires occurred on July 6
th

 of 1992 with a size 

of 486 ha, the second and third occurred on June 21
st
 1998 with sizes of 643 ha and 1,012 ha, 

respectively.   
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Table 8.  Fire size statistics by season on Kennedy Space Center/Merritt Island National Wildlife 

Refuge/Canaveral National Seashore/Cape Canaveral Air Force Station.  The seasons are 

comprised of the months designated in parenthesis.  The summer season is split in half and 

divided into early and late summer with the largest fires occurring during the early summer.  

Areas are in hectares and 0.04 ha is the minimum recorded fire size. 

 

Season Frequency Min. Size Max Size Mean Median 

Winter (12,1,2) 1 0.04 0.04 0.04 0.04 

Spring (3,4,5) 27 0.04 12.14 2.23 0.20 

Summer (6,7,8) 189 0.04 1,011.74 15.22 0.08 

Fall (9,10,11) 13 0.04 10.12 1.58 0.04 

Early Summer (6/1-7/15) 95 0.04 1,011.74 24.93 0.04 

Late Summer (7/16-8/31) 94 0.04 218.54 5.71 0.12 

 

 

 

 

 

 

Figure 28.  The proportion of ranked fires (small to large) and the proportion of area burned by 

lightning fires on Kennedy Space Center, Merritt Island National Wildlife Refuge, Canaveral 

National Seashore, and Cape Canaveral Air Force Station, Florida.  A few large fires accounted 

for the majority of area burned by lightning fires. 
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Lightning fire incidence and landcover type 

 

The chi-squared test indicated significant differences between actual ignition and 

expected ignition (X
2
 = 329.6, df = 12, P < 0.00001), and between actual lightning strike 

frequency and expected frequency in the different landcover classes (X
2
 = 1235.8, df = 12, P < 

0.00001).  The simultaneous interval confidence method indicated that there was slightly more 

fire ignitions in the disturbed uplands and forested wetlands than expected given their area 

(Table 9).  There were significantly fewer fire ignitions in the water category, and slightly fewer 

in the „other‟ category (including the landcover types sand/barren, mangrove, and coastal strand) 

confirming the technique performed properly.  The lightning strike proportions and the type 

availability were very tightly bunched with the largest separations (significant differences) 

occurring in the flatwoods, water, forested wetlands and other landcover types.  The occurrence 

of fire in the flatwoods landcover type occurred much more frequently than would be expected 

given equal chance of ignition among landcover types. 

 

Lightning properties and fire ignition 

 

Comparing the nearest cloud to ground lightning strike and ignition location indicated 

that 215 (93%) of the ignitions were caused by negatively charged lightning strikes and 15 (7%) 

were caused by positively charged lightning.  Negative polarity lightning was dominant during 

all seasons with 83% of all strikes being negatively charged in winter, 88% in spring, 93% in 

summer, and 90% during fall.  The multiplicity (number of strokes per flash), had a average of 

2.4, a median of 2.0,  minimum of one, and a maximum of 14, for strikes that initiated fires.  The 
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number of return strokes from lightning strikes that started fires and those that did not were 

significantly different (F = 4.27, P = 0.0387).  Normalized signal strength was also significantly 

different for lightning strikes that started fire and for those that did not (W = 5935327, P = 

0.0026).  The NSTR values were lower (more negative) for non-fire igniting lightning strikes.   

 

 

Table 9.  Proportions of landcover type, cloud to ground lightning strikes and lightning ignited 

fires occurring on Kennedy Space Center, Merritt Island National Wildlife refuge, Canaveral 

National Seashore, and Cape Canaveral Air Force Station, Florida.  Confidence intervals are 

given for lightning strikes and lightning ignited fires, showing if they differed significantly from 

that expected based on proportion of each landcover type.  Proportions in bold have 95% 

confidence intervals above, and those underlined are below, the proportions of landcover type. 

 

Landcover p(Landcover)  p(Strikes) CI (95%)  p(Fires) CI (95%) 

Urban 0.050  0.049 (0.048, 0.050)  0.067 (0.047, 0.088) 
Agriculture 0.012  0.015 (0.014, 0.015)  0.032 (0.018, 0.046) 
Flatwoods 0.080  0.090 (0.089, 0.092)  0.301 (0.264, 0.339) 
Scrub 0.101  0.096 (0.095, 0.097)  0.112 (0.086, 0.138) 
Hammock 0.068  0.076 (0.075, 0.077)  0.089 (0.066, 0.113) 
Disturbed uplands 0.021  0.022 (0.021, 0.022)  0.045 (0.028, 0.062) 
Water 0.387  0.363 (0.361, 0.365)  0.067 (0.047, 0.088) 
Forested wetlands 0.039  0.045 (0.044, 0.046)  0.093 (0.069, 0.117) 
Freshwater marsh 0.057  0.067 (0.066, 0.068)  0.058 (0.039, 0.077) 
Saltwater marsh 0.073  0.078 (0.076, 0.079)  0.067 (0.047, 0.088) 
Disturbed marsh 0.019  0.022 (0.021, 0.022)  0.026 (0.013, 0.038) 
Spoil 0.027  0.028 (0.027, 0.028)  0.022 (0.010, 0.034) 
Other 0.065  0.050 (0.049, 0.051)  0.019 (0.008, 0.030) 
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Discussion 

 

Strike to ignition ratios and precipitation 

 

 Fewer lightning strikes are needed to ignite fires during dry, rain-free periods. For the 

central Florida landscape, this was most pronounced in July.  The years of 1994, 1995, and 1996 

required many more strikes than average (881) to ignite a single fire.  The precipitation records 

on Merritt Island indicate that these years were all above average and are the only consecutive 

years during this study with above average precipitation.  The year of 1997 was also an above 

average year for precipitation but fewer than the average lightning strikes were needed to ignite a 

single fire.  This year was an El Niño year and the majority of its precipitation fell during 

November and December.  Until November, 1997 was actually fairly dry with Palmer 

Hydrologic Drought Index values consistently in the -1 to -2 range, indicating dry conditions (the 

index ranges from -6 to +6, dry to wet, respectively).  This explains why there was a drop in the 

lightning strike to ignition ratio for 1997.  These findings were supported by the regression 

between precipitation and the strike to ignition ratio as well as the negative correlation between 

the number of ignitions and July precipitation.  Generally, when it has rained, more strikes are 

required to ignite fires and especially when July is dry, fewer strikes are needed to ignite fires 

and when July is wet, it takes more lightning strikes to ignite fires.  July rainfall is particularly 

important because it corresponds with the peak in lightning incidence.  This trend is clearly 

visible in the monthly strike to ignition ratio data.  The fewest strikes are required to ignite fires 

in July just after the annual dry period, and the maximum number of strikes is required to ignite 

fires in October after the summer wet season (Mailander 1990).   
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Fire size, season and precipitation 

 

The majority of lightning fires occurred during the wet season and they were small, 

supporting the conclusion that most fires in this natural system were small.  Natural outs greatly 

contributed to this trend.  The resources necessary to document natural out fires are significant 

and generally out of reach for most organizations.  As a result recording of small fires, 

particularly natural outs, are usually lacking in many empirical data sets (Nash and Johnson 

1996; Cui and Perera 2008).  Natural out fires were documented for 14 of the 16 years in this 

study before suspension of funding for helicopter support.  Natural outs were all smaller than 0.8 

ha (2 acres), and the overwhelming majority occurred during the wet and humid growing season.  

Presumably the wet, humid conditions at this time of year controlled the size of these fires and 

they went undetected.  In light of the delayed (hold over) ignitions, it is reasonable to assume 

that not all of these fires would have stayed small.  Some of these small fires may have started 

and burned until conditions became unfavorable, entered a smoldering state, and then reignited 

when conditions became favorable, ultimately growing to be larger fires.  Most of the fires 

(83%) in this study were controlled.  Of the fires that were controlled, the mean size was 16 ha, 

with a median of 0.2 ha, indicating that fire suppression was successful at controlling most fires 

before they became large and that many natural fires would have at least been 16 ha in size or 

larger.  There were three very large lightning fires that contributed most of the area burned, and 

all of these fires were during the first half of the growing season.  The two largest fires occurred 

during the very dry La Niña period of 1998.  During the early growing season, dry periods are 

intermixed with wet periods creating a large amount of precipitation variation when compared 
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with the late growing season.  The amount of actual precipitation is very comparable between 

early and late growing season but the later part is more consistently wet, limiting favorable 

conditions for large fires.  It is during these dry early season periods that the large fires occurred.  

The month of June had the least and greatest amount of rain during the duration of this study.  

The number of lightning strikes required to ignite a fire is at a minimum during the month of July 

and increases until peaking in October, just after the maximum of September rainfall (Mailander 

1990). 

There was a large size discrepancy between the fires that commonly occurred (under wet 

and average meteorological conditions) and those that occurred during the less frequent drought 

periods.  Evidence suggests that natural, large fires occurred in Florida during the drought 

periods in the early growing season ( Brenner 1991; Beckage et al. 2005).  El Niño Southern 

Oscillation patterns are strongly linked to this trend, and the most extreme fires likely occurred 

during these climatic events (Brenner 1991; Beckage and Platt 2003; Beckage et al. 2003), as 

indicated in this study.  The majority of the fires in this study were controlled, and they ranged 

from small to medium in size.  This is because they occurred under average meteorological 

conditions making them relatively easy to control, as opposed to the ones during drought periods 

that were difficult to control, hence their large size.  Evidence for the medium-sized fires (under 

400 ha) is limited because fire suppression and control appear to be most effective in this size 

class.  The smallest fires (natural outs) are not influenced by suppression efforts and the largest 

fires burn under extreme meteorological conditions when control efforts are less effective.  

Under the natural fire regime, large fires would have been infrequent relative to small and 

medium fires.  These frequent, small and medium-sized fires would have created a mosaic of 

different aged fuels on the natural landscape.  This mosaic of fuels would have greatly influenced 



88 

 

flammability and propensity to burn (Myers 1990; Breininger et al 2002), ultimately influencing 

fire patterns through a feedback of fuels ready to carry fire based on structure, referred to as self 

organization (Cui and Perera 2008).  These burn patterns would have created a complex physical 

arrangement of vegetation influencing habitat quality for fire dependent species, such as the 

Florida Scrub-Jay (Breininger and Carter 2003).  The Florida Scrub-Jays demography peaks in 

habitat with sand openings and oak scrub heights of approximately 120 cm (Breininger et al. 

2006).  These are very specific conditions that do not persist on the landscape without frequent 

fire (Schmalzer 2003).  For these conditions to persist through time, there must be a rotation of 

vegetation into this structure on the landscape. 

 

Lightning fire incidence and landcover type 

 

Areas with the highest lightning incidence did not correspond directly to areas with the 

highest ignition incidence.  The southwestern side of the federal properties has the highest 

average lightning density and therefore the greatest overall ignition potential.  The greatest 

ignition density however is found where there is a convergence of highly flammable landcover 

and relatively high lightning incidence.  Areas of high ignition density in the north and the 

highest density in the southwest corner of the study area correspond to areas comprised of pine 

flatwoods landcover.  The pine flatwoods landcover type displayed significantly higher than 

expected ignition incidence.  In general the difference between the amount of actual lightning 

strikes per landcover category and expected is very small.  The confidence intervals are tight 

because the lightning strike sample size is extremely large.  The largest differences are in the 

water and the other categories (less strikes than expected), with flatwoods, hammocks, and 
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freshwater marsh (more strikes than expected) following in that order.  There are slightly more 

lightning strikes in each of the flatwoods, hammocks, and freshwater marsh categories, but in the 

actual ignitions, flatwoods is the only one of these three categories to have a greatly larger 

amount of actual ignitions.  This finding may be supportive of earlier studies (Mitchener and 

Parker 2005), who found that lightning density was not the dominant factor determining fire 

ignition within national forests of the southeastern United States.  Pine fuel types in general have 

been found to be highly susceptible to lightning ignition(Latham and Schlieter 1989), while 

flatwoods flammability has long been noted due to its pine overstory and flammable understory 

(Myers 1990; Duncan et al. 1999).   

 

Lightning properties and fire ignition 

 

Negative polarity lightning strikes overwhelmingly started fires in this study.  This differs 

from early studies asserting that lightning with long continuing current (LCC) started fires and 

because positive strikes have a higher probability of LCC, positive strikes had greater ignition 

potential ( Fuquay et al. 1972; Flannigan and Wotton 1991).  More information is now available 

suggesting that negative lightning polarity is an important ignition source igniting fires in many 

ecosystems (e.g., Flannigan and Wotton 1991; Orville and Silver 1997;  Larjavaara et al. 2005; 

Mitchener and Parker 2005).  Lightning polarity varies geographically and seasonally in North 

America (Orville and Silver 1997).  Negative polarity lightning is the dominant polarity in the 

southeast.  In this study, negative polarity is dominant even during the winter season, and the 

annual background polarity values are similar to the ignition proportions for both positive and 

negative polarities.  Thus lightning ignitions are occurring with the same proportions as available 
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lightning polarity.  Also, lightning strikes initiating fires are negatively polarized, but they do not 

possess a large negative magnitude.  Negative strike multiplicity has been shown to be the 

highest in the southeast, United States (Orville 1994).  Multiplicity has been linked with ignition 

probabilities (Flannigan and Wotton 1991; Larjavaara et al. 2005).  Different results have been 

found however.  Flannigan and Wotton (1991) found that the average negative multiplicity was a 

very important predictor and correlated with lightning ignition, while Lajavaara et al. (2005) 

showed that higher multiplicity decreased ignition probability.  Multiplicity values that ignited 

fires in this study were significantly lower than background values. 

 

General considerations and management implications 

 

A caveat of this study is that fuel fragmentation by roads, buildings, agriculture, and 

exotic species has influenced the flammability of the landscape in this study.  The influence of 

fuel fragmentation on fire spread and fire size was modeled in this landscape, it was found to 

reduce both (Duncan and Schmalzer 2004).  The removal of fuels and the replacement of 

flammable native fuels by less flammable exotic species potentially influenced both the number 

of fire starts and the rate of fire spread, affecting fire size. 

Fire managers wanting to mimic the results of the natural fire regime to benefit native fire 

dependent species will benefit from the information generated by this study.  A primary example 

is the current managed fire regime burns the maximum area in November  (Duncan et al. 2009) 

and this study shows that there was not a single lightning ignition for the duration of this study, 

during November.  The influence of fire season could have a profound impact on demography of 

some species (Outcalt 1994) and as an example, should be considered by fire managers.  The 
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number, timing, size, and location of natural fires are all important references for fire managers 

attempting to mimic the natural fire regimes in fire maintained systems worldwide. 

 

Conclusion 

 

This empirical study used lightning data from the CGLSS and fire ignition records to quantify 

the relationship between lightning incidence and fire ignitions for 16 years on KMCC.  The study 

clearly indicated the natural seasonality of fire in this fire adapted system with the largest 

frequency of lightning ignition (82%) occurring in the summer and the smallest frequency (0.4 

%) during the winter.  A few large early growing season fires accounted for the majority of the 

area burned with the largest fires occurring during the 1998 La Niña drought.  The frequent small 

fires occurred in the late growing season under moist, humid conditions.  Rainfall was an 

important factor determining the efficiency of lightning fire starts, with fewer ignitions during 

years with high July precipitation.  The spring and early summer period  required the fewest 

lightning strikes to ignite fires.  The pine flatwoods landcover type was ignited more frequently 

than expected by chance.  Fire ignitions were predominantly caused by negative polarity 

lightning strikes that were in proportion to background values with low return stroke 

multiplicities. 

This study isolated the natural lightning ignition regime component from the background 

managed fire regime including prescribed and lightning ignitions (see Duncan et al. 2009 for 

description and details of the contemporary managed fire regime) to answer many long standing 

questions about the relationship between cloud to ground lightning and fire ignition in this 

region.  We know that the natural fire regime maintained the native flora and fauna and 
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mimicking it is an important step to sustaining viable populations of native species in fire 

dependent systems.  If fire management is not properly and carefully executed, entire 

populations of rare species can be at serious risk for survival (Odion and Tyler 2002).  This study 

is directly relevant for existing fire management programs on these properties and throughout the 

southeast United States, it will help parameterize models used to optimize future fire 

management (e.g., define ignition frequency, density location and seasonality needed as inputs to 

fire regime models), and will add additional information to the growing number of studies 

quantifying the environmental factors driving lightning fire initiation.  
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SIMULATING THE NATURAL FIRE REGIME ON A BARRIER ISLAND COMPLEX 

ALONG THE CENTRAL EAST COAST OF FLORIDA 

 

Introduction 

 

 The fire regime of a region is defined by its fire type, fire intensity, fire size, return 

interval, seasonality, and spatial pattern (Christensen 1985, Agee 1993).  Humans have altered 

fire regimes by suppressing fires, shifting fire seasonality, fragmenting fuels, propagating non-

native fuels, and permitting unnaturally high fuel loads.  Understanding how anthropogenic 

influences have altered fire regimes is important when attempting to manage conservation areas 

for the survival of native fire-dependent species. A reference outlining the natural fire regime is 

useful to foster an understanding of the environment that native fire-dependent species have 

adapted to and coexisted in.  Fire has been an active force on global ecosystems for millions of 

years (Bond and Wilgen 1996).  A thorough knowledge of the difference between the natural fire 

regime and contemporary fire regimes is essential to effectively and efficiently manage habitat 

for fire-dependent species.  Many fire-dependent species populations are declining in their native 

ecosystems with fire regime alteration being a large contributing factor (e.g., Noss and 

Cooperrider 1994, Breininger and Carter 2003, Quintana-Ascencio et al. 2003, Webb and Shine 

2008). 

 Florida is dominated by fire-adapted vegetative communities that have seen their 

composition and structure modified by fire regime alteration (Myers and Ewel 1990, Duncan et 

al. 1999).  The dominant terrestrial communities are pine flatwoods, dry parries, Florida scrub, 

and high pine (Abrahamson and Hartnett 1990, Myers and Ewel 1990).  These vegetation 
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communities do not lend themselves to recording and preserving past fire history and present 

many problems for natural fire regime reconstructions.  The prevailing regeneration strategy in 

the understory of these communities is through re-sprouting after being top killed by frequent 

fire.  The relatively short lived sand pine with thin bark (Pinus clasusa) are easily killed by 

moderate to intense fires.  The longer lived slash pines (P. elliotii var. elliottii, P. elliotii var. 

densa) and longleaf pine (P. palustris) with their thick protective bark generally do not scar from 

low and moderate intensity fires but are killed by intense fire.  This generally limits the utility of 

dendrochronologic techniques for historic fire regime reconstruction.  With the convergence of 

particular circumstances, it is possible to use dendrochronology to reconstruct historic fire 

regimes in Florida (Huffman 2004).  However, that study was conducted on a protected barrier 

island where past turpentining operations had stripped the protective bark from the pines 

allowing fires to scar the trees and facilitated fire scar dating.  Stratographic varve dating has 

been used in Florida but has had limited success reconstructing historic fire dates (Shepherd 

2002).  Remote sensing techniques have been used for reconstructing fire histories but are 

limited to recent time periods (Duncan et al. 2009a).   

 Computer simulation is a alternative that has shown promise for reconstructing historic 

fire regimes in many ecosystems outside of Florida (Baker 1992, Davis and Burrows 1994, Li 

2000).  There are at least 45 landscape fire succession models in use today (Keane et al. 2004).  

A few of the models have been successfully applied in shrubland systems that also share 

attributes of the Florida ecosystems and lack a natural record of fire history.  The regional fire 

regime simulation model (REFIRES) was created to simulate prehistoric and modern fire 

regimes of the coastal California chaparral ecosystems (Davis and Burrows 1994).  The HFire 

simulation model has also been applied in the California chaparral ecosystem (Morais 2001, 
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Peterson et al. 2009).  Both applications generated fire regime information such as maps of fire 

history, fire size distribution, fire recurrence interval, final patch size, and age distributions.  

 The cluster of federal properties known as Kennedy Space Center (KSC), Merritt Island 

National Wildlife Refuge (MINWR), Canaveral National Seashore (CNS), and Cape Canaveral 

Air Force Station (CCAFS) in Florida is the largest conservation area on the Atlantic coast of 

Florida.  These properties have fire management programs that actively conduct prescribed burns 

to reduce/maintain fuel loads and to manage habitat for native fire-dependent species (Adrian 

and Farinetti 1995).  The goal of this work is to apply the HFire model (Morias 2001) to simulate 

the natural fire regime (prior to European alteration) on KSC/MINWR/CNS/CCAFS.  The model 

was parameterized with empirical information from previous studies and meteorological data.  A 

sensitivity analysis was performed to determine the importance of each parameter and to 

establish a range of variation surrounding the empirical model.  This approach offers an 

opportunity to apply an advanced fire regime model built on the best current fire simulation 

algorithms to estimate the natural fire regime in dynamic, fire-adapted ecosystem and provide a 

possible range of variation surrounding that estimate.   

 

Study Site and Background 

 

The United States federal government began acquiring land in the 1950s on Cape 

Canaveral and in 1962 on north Merritt Island, along the east coast of central Florida.  KSC 

covers 57,000 ha of land and waters, which is primarily managed by the U.S. Fish and Wildlife 

Service as the Merritt Island National Wildlife Refuge with a smaller portion managed by the 

National Park Service as the Canaveral National Seashore (CNS).  Cape Canaveral Air Force 
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Station (CCAFS) is 6,475 ha and occupies the Cape Canaveral barrier island (Figure 29).  When 

referring to these properties collectively we will use the first letter from each location and 

shorten the name from KSC/MINWR/CNS/CCAFS to KMCC.   
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Figure 29.  The geographic locations of Kennedy Space Center, Merritt Island National Wildlife 

Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida. 

 

KMCC occupies a barrier island complex covered with a diverse assemblage of fire-

adapted terrestrial vegetative communities.  Upland xeric sites are dominated by oak scrub 

vegetation (Quercus spp.), while mesic sites are dominated by flatwoods (e.g., saw  palmetto 

(Serenoa repens (W. Bartram) Small), staggebrush (Lyonia Nutt. spp.), holly (Ilex L. spp.), and 

an overstory of slash pine (Pinus elliotii Engelm.)) (Schmalzer and Hinkle, 1992a; Schmalzer 

and Hinkle, 1992b).  Because the landscape is comprised of relict dunes forming ridge-swale 

topography, there are interleaving swale marshes and hammocks on hydric soils between the 
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xeric ridges.  The swales are dominated by cordgrass (Spartina bakeri Merr.) and bluestem 

(Andropogon L. spp.), while the hardwood hammocks are dominated by live oak (Quercus 

virginiana Mill.) and laurel oak (Quercus laurifolia Michx.) and have a structure that is much 

less flammable than surrounding communities.  Coastal strand occurs just inland of the coastal 

dunes and is a shrub community with saw palmetto, sea grape (Coccoloba uvifera L.), and wax 

myrtle (Myrica cerifera L.) being dominant (Schmalzer et al., 1999).   

 

Methods 

 

 HFire (Highly Optimized Tolerance Fire Spread Model) is a spatially explicit raster-

based model that can be used as a single event model or to simulate fire regimes over long time 

periods.  The model is based on the Rothermel fire spread equations (Rothermel 1972) and can 

use standard (Anderson 1982, Scott and Burgan 2005) or custom fuel models.  This model uses 

adaptive time steps and finite fractional distance techniques to solve the problem of distorted fire 

shapes using traditional raster fire spread models (Morais 2001, Peterson et al. 2009).  This 

model was used because it can be parameterized for Florida vegetation communities, is based on 

the robust Rothermel equations,  it is computationally efficient, provides spatial output, and has 

been found to be reasonably accurate when simulating historic fire events (Peterson et al. 2009).   

 Configuration files are used to operate HFire for simulating fire regimes (Table 10).  

Parameterizing is accomplished through these files and run in a command window on a PC to 

execute each simulation.  The parameters for the empirical HFire model run are shown in the 

fourth column of Table 10.  The spatial resolution for the modeling was 30 meters.  This 

resolution was consistent with previous fire regime mapping work on these properties (Duncan et 
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al 2009a) and is reasonable tradeoff between spatial detail and computing efficiency.   Spatial 

resolution larger than 30 meters would reduce computation time but would have generalized the 

ridge-swale topography, misrepresenting the distribution of fuels on the KMCC landscape.  To 

create a natural fuels map devoid of anthropogenic features (roads, railways, buildings, 

agricultural fields, etc.), these features were removed from a 1920 landcover map (Duncan et al. 

2004) by using soils maps and soils vegetation relationships (Duncan et al. 2000).  Each 

landcover type was converted to one of 13 standard fire behavior models (Anderson 1982) with 

swale marshes assigned to the short grass fire behavior model 1.  The tall grass model 3 could 

have been used in these marshes, as Spartina bakeri is prominant in many of these marshes.  The 

problem with using the tall grass model is that it can cause unrealistically fast rates of fire spread 

in these marshes (Duncan and Schmalzer 2004).  Oak scrub was assigned to the chaparral model 

4 and pine flatwoods was assigned to the southern rough fuel model 7.  Hammocks and wetlands 

hardwoods were assigned to the fire behavior model number 8.  Specific fuel load information 

allowing the model to predict fire behavior was input through a sub file.  The elevation grid was 

given a uniform value of three meters and the slope and aspect grids were given values of zero.  

This barrier island landscape has very slight topographic relief of one to two meters.  This small 

relief influences the distribution of fuels, which influences fire behavior.  Despite the zero values 

in the slope and aspect grids, the most important aspects of topography are incorporated into the 

modeling through the fuels grid.  Rather than starting with uniform fire history of zero age, the 

output from a previous model run of 300 years was used to help reduce initial modeling 

conditions.   
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Table 10.  HFire Configuration file parameters.   

Variable Entry Type Units/Format Empirical 

Start date User defined Yr/mo/day/hour 2000/3/1/0 

End date User defined Yr/mo/day/hour 2500/10/31/0 

Simulation Time step User defined Seconds 3600 

Ignition frequency User defined Number/yr 14 

Random seed User defined Number 1260624655 

Fire extinction thresholds User defined Hour/spread rate (m/s) 3/.05 

Extreme fire weather frequency User defined Number/yr 0.8 

Ellipse adjustment factor User defined Real number 0.66 

Wind speed adjustment factor User defined type BHP 

Failed ignition cell threshold User defined Number 1 

Fuel models File Number 1,4,7,8 

Vegetation regeneration File Number File 

Wind direction (hourly)* File degrees File 

Wind speed (hourly)* File Km/hr or mile/hr File 

Dead 10hr fuel moisture (hourly)* File Percent File 

Live fuel moisture (hourly)* File Percent File 

Elevation (30 m) Spatial file Meters File 

Slope (30 m) Spatial file Degrees File 

Aspect (30 m) Spatial file Degrees File 

Fire history (30 m) Spatial file Age/years File 

Export Output files .txt, .asc, .png, etc. Files 

* Parameterization needed for regular and extreme weather conditions 

 

Vegetation regeneration with time since fire information was gathered by utilizing twenty 

five years of vegetation monitoring data (Schmalzer 2003) combined with expert opinion on 

specific transitions for each fuel type.  Ignition frequency was derived from a previous study 

(Duncan et al. 2009b) delineated the lightning ignition regime on KMCC.  Fires were simulated 

for March through October because natural winter fires rarely occur (Duncan et al. 2009b).  The 

HFire model was originally written to simulate fire in the chaparral ecosystem of California, 

which experiences extreme fire weather known as Santa Anna events.  The model accommodates 

these extreme fire weather events, which here have been utilized to represent La Niña events that 

occur in Florida.  La Niña events take place during the ENSO cycle in Florida on a roughly 

seven year rotation.  ENSO cycles greatly influence fire dynamics in Florida with wet El Niño 
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events reducing area burned and dry La Niña events enhancing area burned (Brenner 1991, 

Harrison and Meindl 2001, Goodrick and Hanley 2009).  In the central Florida region, extreme 

fire years have occurred in the fire record on a rotation of 23 plus or minus 5 years (Davison and 

Bratton 1986).  This corresponds to about every third or fourth La Niña event being extreme, 

such as the 1998 year.  An extreme fire event frequency of 0.8 events a year, averaged one 

extreme fire year every 23 years, mimicking the empirical records.     

 The fire extinction thresholds of 3 hours and 0.05 m/s were used.  If a fire did not spread 

outside of a single cell in three hours or the rate of spread was less than 0.05m/s for an hour the 

fire was extinguished by the model.  A failed ignition threshold of 1 cell was used.  If a fire grew 

to larger than one cell it could only be classified as a successful ignition and fire.  The ellipse 

adjustment factor was set at 0.66 because that value was found to be the most realistic in relation 

to modeling historic fires (Peterson et al. 2009).  The meteorological inputs were taken from the 

network of weather station on KSC.  A wind speed adjustment factor is applied to wind speeds 

collected high on towers to adjust them to represent speeds at mid flame heights (usually eye-

level).  This saved time reducing the effort it takes to calculate and enter the winds at mid flame 

heights initially.  Fuel moistures were taken from data recorded by MINWR personnel and other 

unpublished fuel moisture data collected on KMCC (Duncan and Schmalzer 2004).   

 Ten model runs were conducted with the empirical parameter settings and different 

random seed numbers.  These runs were averaged and are referred to as the composite empirical 

run, which have a standard error associated with each measure.  The mean of the ten means, the 

median of the ten medians, the minimum of the ten minimums, and the maximum of the ten 

maximums will be presented. 
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 A sensitivity analysis was performed to determine the importance of each input variable 

and to establish the range of variability from the empirical model run.  Each model input was 

varied both positively and negatively by ten percent.  The random number seed was held 

constant for all sensitivity model runs forcing the HFire model to be deterministic, isolating the 

influence of each input variable one at a time. The first empirical model run used the same 

random seed number as the other sensitivity analysis runs.  This run is labeled empirical and was 

used to represent the empirical model outcome in the sensitivity analysis. 

 The FRAGSTATS program (McGarigal and Marks 1995) was used to quantify the spatial 

pattern of age polygons predicted by each model run.  A subset of landscape metrics were 

selected to represent the spatial distribution of polygons on the landscape.  Each of these metrics 

were selected based on their relevance to quantifying spatial pattern of burn age and their ease of 

interpretation. 

 

Results 

 

 The composit empirical simulation predicted that the mean fire size was 152 ha (standard 

error of 1.59), the median was 0.09 ha (standard error of 0.08), the minimum was 0.09 ha 

(standard error of < 0.0001), and the maximum size was 9,153 ha (standard error of 403.6) for 

the five hundred years of simulation.  The composite annual mean fire area was 2,043 ha 

(standard error of 20.8), the median was 1,518 ha (standard error of 27.1) , the minimum was 

0.18 ha (standard error of 0.53), and maximum was 15,060 ha (standard error of 527.5) .  The 

largest fires overall and annually were recorded during La Niña events.  The amount of annual 

area burned followed a rising and falling cyclical pattern (Figure 30) with significant negative 
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autocorrelation at one (r = -0.161, p < 0.001) and eight years (r = -0.101, p < .0006) and positive 

autocorrelation at 11 years (r = 0.101, p 0.003) (Figure 31).  The majority of the fires predicted to 

burn in this system were very small (Figure 32).  
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Figure 30.  Time series of annual area burned for the empirical HFire model run on Kennedy 

Space Center, Merritt Island National Wildlife Refuge, Canaveral National Seashore, and Cape 

Canaveral Air Force Station, Florida.  
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Figure 31.  Autocorrelation coefficeient and 95% confidence limit values for the annual area 

time series generated using the HFire model on Kennedy Space Center, Merritt Island National 

Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida. 

 

 

 

 

 

Figure 32.  The proportion of ranked fires (small to large) and the proportion of area burned 

during the empirical HFire model simulation on Kennedy Space Center, Merritt Island National 

Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida. 
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 The model started an average of 6,726 fires (standard error of 33.4) over 500 years.  

Many of those fires (average of 3,417, standard error 18.1) or 51% failed to spread and ended up 

classified as failed ignitions.  The composite mean of annual fires was 13.8, the median was 

13.9, the minimum was 2.0, and the maximum was 29.0.  The annual fire frequency increased 

and decreased through time (Figure 33) but did not display a cyclical pattern or any significant 

autocorrelation. 
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Figure 33.  Time series of annual fire frequency for the empirical HFire model run on Kennedy 

Space Center, Merritt Island National Wildlife Refuge, Canaveral National Seashore, and Cape 

Canaveral Air Force Station, Florida. 

 

 

 The fire cycle is the number of years it takes to burn area equivalent to the study sites 

burnable area.  The composite mean fire cycle was 14.4 years, the median was 14.2 years, the 

minimum was 7 years and the maximum was 21 years.  The return interval was calculated by 
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dividing the burnable area (29,541 ha) by the annual average fire size (2,043 ha), resulting in a 

return interval of 14.4 years. 

 The landscape age map displays a mosaic pattern of different age areas (Figure 34).  The 

landscape age pattern is dominated by smooth curved boundaries with the only straight edges 

cause by the federal land boundaries.  The empirical model run had 1,079 different age patches 

on it.  The largest patch constituted 32 percent of the study area (largest patch index), a mean 

patch area of 64 ha, and 189 different age patches (patch richness).  The area distribution by age 

class is skewed with most of the burned area being younger than 50 years old (Figure 35).  The 

composite empirical average area distribution by mapped age class shows a distribution that is 

also skewed to the younger ages and peaks in the eight to ten age class (Figure 36).  The standard 

error is the greatest in the two year age class and least in the 301 to 500 year age class.   
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Figure 34.  Landscape age map produced by the empirical HFire simulation for Kennedy Space 

Center, Merritt Island National Wildlife Refuge, Canaveral National Seashore, and Cape 

Canaveral Air Force Station, Florida. 
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Figure 35.  Frequency distribution of area by age class for the empirical HFire simulation on 

Kennedy Space Center, Merritt Island National Wildlife Refuge, Canaveral National Seashore, 

and Cape Canaveral Air Force Station, Florida.  This distribution represents the age categories 

from the empirical map in Figure 34.   

 

 

Figure 36.  Frequency distribution of the average composite empirical area by age class.  

Distribution was generated by averaging the ten empirical HFire model runs.   Error bars 

represent standard error for each age class. 
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Sensitivity Analysis and the Natural Range of Variability 

 

  The sensitivity analysis revealed that there were six inputs that had a large influence on 

the output of the HFire model (Figure 37).  The combination of regular and La Niña dead fuels 

and regular and La Niña wind speeds appeared to influence the outcome the most, particularly in 

the medium sized fires.  Differencing the six most sensitive parameters and the empirical area 

burned results revealed that the combination of regular and La Niña dead fuels and regular and 

La Niña wind speeds again produced the largest differences from the empirical run (Figure 38).  

The most interesting result however, is that the greatest differences are in the largest fires and not 

in the medium sized fires.  The largest magnitude effects of varying the inputs positively ten 

percent were in the combination of the regular and La Niña wind speed (increase of 7.5%) and 

the regular and La Niña dead fuel moisture content (decrease of 6.2%).  The largest magnitude 

effects of varying the inputs negatively ten percent were in the combination of regular and La 

Niña dead fuel moistures (increase of 5.1%) and dead fuel moistures (increase of 5.1%).  The 

largest combined difference was the regular and La Niña wind speed of 12.3%, regular and La 

Niña dead fuel moistures of 11.3%, and dead fuel moistures of 10.5%.   

 The landscape metrics that were selected to diagnose the age structure predicted by the 

HFire model revealed a wide range of values (Table 11).  The number of patches and the mean 

landscape patch area were normally distributed (Shapiro-Wilk test, P = 0.253, P = 0.178) and 

negatively correlated (r = -0.99, P < 0.001), while the number of patches and patch richness were 

normally distributed (Shapiro-Wilk test, P = 0.647) and positively correlated (r = 0.94, P < 

0.001).   
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 There was a wide range of fire sizes that may serve as an indication of the potential range 

of variability in this system (Table 12).  The mean total fire size for all 500 year simulations was 

988,625 ha, the median was 1,021,100 ha, the minimum was 519,993 ha, and maximum was 

1,292,625 ha.  The difference between the minimum and maximum value is 40%.  There was 

also a large range of variation in the maximum individual fire sizes with a mean of 7,731 ha, a 

median of 7,630 ha, a minimum of 5,289 ha, and a maximum of 10,320 ha.  The difference 

between the minimum and maximum was 51%.  Total fire frequencies displayed a bit tighter 

distribution with a mean of 6,740, a median of 6,751, a minimum of 6,300, and maximum of 

7,178.  This was only a difference of 12% between minimum and maximum fire frequencies. 
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Figure 37.  HFire model sensitivity analysis results, comparing the six largest magnitude 

differences from the empirically parameterized model run.  Random seed number was held 

constant for all sensitivity simulations isolating the influence of input parameter variation. 



111 

 

 

-6

-4

-2

0

2

4

6

0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
t 

a
re

a
 d

if
fe

re
n

ce

Percent fires

Dfuel-10%

Dfuel+10%

-8

-6

-4

-2

0

2

4

6

0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
t 

a
re

a
 d

if
fe

re
n

ce

Percent fires

R&LDfuel-10%

R&LDfuel+10%

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
t 

a
re

a
 d

if
fe

re
n

ce

Percent fires

Wsp-10%

Wsp+10%

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
t 

a
re

a
 d

if
fe

re
n

ce

Percent fires

R&Lwsp-10%

R&Lwsp+10%

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
t 

a
re

a
 d

if
fe

re
n

ce

Percent fires

Lwsp-10%

Lwsp+10%

-3

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
t 

a
re

a
 d

if
fe

re
n

ce

percent fires

Ign-10%

Ign+10%

 
 

Figure 38.  The Difference between the sensitivity analysis runs and the empirical model runs. 

The empirical model run is the horizontal line in the middle.  The six model runs displaying the 

largest differences are shown.  The random seed number was held constant for all sensitivity 

analysis simulations to isolate the influence of input parameter variation.  Abbreviations are: 

R&LDfuel = regular and La Niña dead fuel, Dfuel = regular dead fuel, Wsp = wind speed, 

R&Lwsp = regular and La Niña wind speed, Lwsp = La Niña wind speed, and Ign = ignition 

frequency. 
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Table 11.  Select landscape metrics for the large magnitude sensitivity analysis model runs on 

KMCC.  Abbreviations are: NP = number of patches, LPI = largest patch index, TE = Total edge, 

AM = area mean, PR = patch richness, dfm = dead fuel moisture, and wsp = wind speed.   

Model Run NP LPI TE AM PR 

Empirical 1079 32 1,361,400 64 189 

Dead fuel Moisture -10% 1631 58 1,954,170 42 281 

Dead fuel Moisture +10% 1626 60 1,919,550 43 308 

Reg. & La Nina dfm -10% 1429 30 1,885,110 48 256 

Reg. & La Nina dfm +10% 1595 31 1,985,910 43 276 

Wind speed -10% 1331 31 1,826,730 52 215 

Wind speed +10% 1095 61 1,672,500 63 189 

Reg. & La Nina wsp-10% 1394 31 1,795,890 50 202 

Reg. & la Nina wsp+10% 965 60 1,593,930 72 152 

 

 

 

 The full range of spatial variability was revealed by using the large magnitude sensitivity 

analysis runs and the FRAGSTATS program (Table 13).  The relationship of the empirical 

model run (Table 4) can be compared to the distribution of landscape metric values from all runs 

(Table 11).  The number of patches, largest patch index, total edge, and patch richness for the 

empirical run was below the mean near the low end of the range; however, the area mean and 

perimeter area mean were above the overall mean and near the maximum value for those metrics.  

There was a difference of 41% between the smallest and largest number of patches, a difference 

of 51% in the largest patch index, a difference of 42% in the area mean, and a difference of 51% 

for patch richness. 
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Table 12.  Maximum fire area and total burn frequency values for HFire model output on 

Kennedy Space Center/Merritt Island National Wildlife Refuge/Canaveral National 

Seashore/Cape Canaveral Air Force Station, Florida .  Empirical 2 through empirical 10 have 

unique random seed numbers, all other runs have the same random seed numbers to facilitate 

comparison within the sensitivity analysis. 

Model Run Total Burned 

Area (ha) 

Max. Individual 

Fire Area (ha) 

Total Burn 

Frequency 

Empirical 1032291 5866 6730 

Empirical 2 1068640 5865 6756 

Empirical 3 1040307 7720 6491 

Empirical 4 1017558 6519 6826 

Empirical 5 970863 5289 6684 

Empirical 6 983539 7817 6721 

Empirical 7 1022562 9153 6631 

Empirical 8 1015630 7540 6758 

Empirical 9 1066885 8092 6838 

Empirical 10 1019247 8724 6826 

Ellipse adjustment factor -10% 1062584 6539 6679 

Ellipse adjustment factor +10% 986404 7413 6755 

Reg. & La Niña dead fuel moist. -10% 788712 9543 6811 

Reg. & La Niña dead fuel moist. +10% 519993 9593 6934 

Reg. & La Niña wind speed -10% 918390 8944 6740 

Reg. & La Niña wind speed +10% 1292625 7528 6659 

Dead fuel moisture -10% 761110 7237 6821 

Dead fuel moisture +10% 540205 8838 6863 

La Niña dead fuel. moisture -10% 1058339 8558 6748 

La Niña dead fuel. moisture +10% 1067532 10016 6610 

La Niña wind speed -10% 1076376 9168 6689 

La Niña wind speed +10% 1053048 5664 6773 

Wind speed -10% 897010 6189 6754 

Wind speed +10% 1275102 7294 6674 

La Niña Annual frequency -10% 990491 7960 6757 

La Niña Annual frequency +10% 1050416 6450 6736 

Annual Ignition -10% 1019639 10320 6300 

Annual Ignition +10% 1086017 6633 7178 
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Table 13.  The landscape metrics range of variability for all sensitivity analysis HFire model 

runs.  Abbreviations are: NP = number of patches, LPI = largest patch index, TE = total edge, 

AM = area mean, PR = patch richness.   

 

Statistic NP LPI TE AM PR 

Mean 1349 44 1777243 53 230 

Median 1394 32 1826730 50 215 

Minimum 965 30 1361400 42 152 

Maximum 1631 61 1985910 72 308 

 

 

Discussion 

 

Fire size 

 

The model predicted the majority of fires to be small.  The cumulative fire size 

distribution generated by the model is very similar to an empirically derived distribution for this 

site (Duncan et al. 2009b).  The modeled distribution has a higher percentage of medium sized 

fires presumably due to a lack of fire suppression efforts.  Fire suppression is most effective 

within the medium size fires because the small fires are mostly undetected (Duncan et al 2009b), 

and the large fires burn under extreme meteorological conditions, making fires difficult to 

control or suppress in the contemporary managed fire regime.  The largest individual fire was 

9,153 ha in size, which is much larger than both the largest lightning fire (1,012 ha) and human 

ignited fire (1,324 ha) that were previously documented (Duncan et al. 2009a, Duncan et al. 

2009b).  The largest individual fire in this study was from a La Niña year.  All the largest 

lightning fires on record for this site have burned during past La Niña events (Duncan et al. 

2009b).  The smallest fires 0.09 ha were very similar in size to the other studies at 0.04 ha.  This 
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information indicates that the predicted natural fire sizes were wide ranging and more variable 

than under the managed fire regime. 

Grouping the fires in annual blocks reveals much the same pattern.  The largest area 

burned annually was recorded during a La Niña year.  The 15,060 ha maximum was much larger 

than the annual total recorded for the managed fire regime of 4,078 ha (Duncan et al. 2009a).  

The minimum burned annually within the managed fire regime was 603 ha.  As with the 

individual fire sizes, the predicted range of annually grouped fire size is much greater.   

Previous studies suggest that the largest fires in Florida occur during La Niña events 

(Brenner 1991, Beckage et al. 2003, Duncan et al. 2009a and b).  There is empirical evidence, 

however, that large fires do repeatedly occur during the spring dry periods (Beckage et al 2005, 

Duncan et al. 2009b).  The model supports this because there were many very large fires that 

occurred during non-La Niña years. 

The time series of annual area burned predicted a cyclical pattern with fire area being the 

most dissimilar (negative autocorrelation) for ten years and then switching to be similar (positive 

autocorrelation) at eleven years.  There are two likely factors combining to create this pattern, 

fuel loadings and climate variability.  The pattern is the most dissimilar in the first year 

following fire likely due to lack of fuels supporting fire.  For the next ten years the pattern of 

dissimilarity continues with a peak in the dissimilarity at eight years.  This may be climate driven 

with the ENSO cycle being around 7 years.  The pattern switches to being one of similarity at 

eleven years and then generally repeats itself.  As an example of this pattern, if the cycle starts 

during a year with lots of area burned then the point at which there is the smallest area burned is 

the following year (not much fuel left to burn) and then next, around eight years followed at 

eleven years by another year with a large amount of area burned.  The model is predicting this 
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cycle which has a resemblance to the ENSO cycle at roughly an interval of 7 years that has been 

shown to influence area burned in Florida and the southeast (Brenner 1991, Beckage et al. 2003).  

The eighth year could be explained by being a wet El Niño year followed by a dry La Niña year 

at the eleventh year.  The model also hinted at a longer time interval of roughly 325 years where 

there would be years with inordinately large area burned.  Because the model was only run for 

500 years, it is difficult to determine if this would be predicted as a cyclical reoccurring pattern.  

We know that there are long term climatic cycles that may also influence fire cycles (Goodrick 

and Hanley 2009).  The model would have to be run for a longer time period and include more 

meteorological data to investigate longer period trends. 

 

Frequency 

 

 The HFire model builds a Poisson distribution around the mean fire frequency that is user 

entered through the configuration file.  For this reason, the mean (13.8 ignitions per year) was 

very similar to the mean from the empirical study (14 ignitions per year), the minimum was 

exactly the same for empirical and modeled at two, but the maximum (29) was smaller than the 

maximum empirical (39) ignition frequency value (Duncan et al. 2009b).  The range in modeled 

ignition frequency values was less than was observed in the empirical study.  Because the 

number of fires influences the distribution of fire on the landscape, the model was possibly 

underestimating both predicted area burned and the spatial pattern of fire. 
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Seasonality 

 

The season and month that these large fires took place can be tracked but this information 

is of limited use.  The model does not solicit information on the seasonal/monthly distribution of 

ignition and then the model randomly samples the meteorological data by time.  The distribution 

of fires by season and month were plotted but showed little useful information.  For these 

reasons, a year is the minimum temporal unit that should be quantified using this version of the 

fire regime model.   

 

Spatial Pattern 

 

 Smooth curved boundaries dominated the pattern of age classes on the landscape.  The 

managed fire regime pattern on this same landscape has prominent straight edges from the 

human-made fire management unit boundaries and fire breaks.  The prominent fuel break 

crossing Merritt Island in an east-west direction is Banana Creek.  This fuel break restricted fire 

spread across the center and widest part of the Merritt Island.   

 Most of the burned area was in the young age categories.  The single empirical map and 

its age distribution (Figure 35) differed from the averaged composite empirical area by age class 

distribution (Figure 36) in a couple of ways.  The first is that the single distribution peaked in the 

eleven to fifteen year age class and the composite empirical average distribution peaked in the 

eight to ten year age class.  The single distribution had very little area in the one year age class 

while the composite empirical average distribution had more area routinely in that category.  
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Another important difference was that the single distribution had the second highest amount of 

area in the 26 to 50 year age class when on average it was the fourth from the largest class by 

area.  The composite average distribution resembled a normal arrangement more than the single 

distribution.  An interesting similarity was that both distributions dipped with less area in the six 

to seven year age category.  Another similarity was that the area burned tapers off after 51 years 

of age.  The single empirical run peaks in the eleven to fifteen year category with the fire cycle 

and return interval values also falling in this year range.  After 15 years there was significant 

over burning (cycling of burn area) on the landscape with some areas taking longer (generally up 

to 50 years) to burn again.  The eleven to fifteen year category is the second greatest area 

category in the composite average distribution with the amount of area declining from this point. 

There was a mosaic of over a thousand different age patches on the landscape comprised 

of 189 different age patches at the end of the empirical model run.  These may be conservative 

estimates because the model predicts the spread of a uniform burn pattern propagating from a 

single ignition point.  Enclaves or islands of unburned fuels may not be realistically represented 

by this process.  Spot fires that are secondary ignitions started by hot embers drifting aloft from 

an existing fire are common in this system (Duncan and Schmalzer 2004), and are not 

represented by the model.  The remote sensing process of mapping fires for the managed fire 

regime revealed a much finer/detailed pattern of both fire boundaries and within boundary 

pattern (Duncan et al. 2009a).  The absence of enclaves and spot fires undoubtedly influence the 

final pattern on the landscape. 
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Sensitivity Analysis and the Natural Range of Variability 

 

 The sensitivity analysis revealed that there were several parameters that were more 

influential than others.  Wind speed and dead fuel moisture consistently produced the largest 

magnitude differences.  The single largest difference in fire area was less than the ten percent 

input variation in each parameter during the sensitivity analysis.  This revealed that the model is 

driven by a combination of parameters cooperatively.  Wind speed had a direct effect on 

modeled fire area with increased wind speeds resulting in larger area burned.  Dead fuel 

moistures had an inverse effect on the model outcome as reducing fuel moisture, increased 

burned area.  Although having a small effect on area burned, a positive increase in the number of 

ignitions also increased the amount of area burned.  Perhaps the lack of major influence was due 

to this system being dominated by small fires.  The number of ignitions would likely have a 

larger influence in systems with larger fires.   

 The sensitivity analysis revealed that the positive and negative adjusted parameters had 

different responses when differenced from the empirical result (Figure 38).  The positively 

increased parameters all had spiked shaped distributions with abrupt run ups to the largest 

percent difference and an even more abrupt descent back to the empirical value at 100%.  This 

distribution indicates that the larger the fire, the larger the increase in area burned.  The 

negatively adjusted parameters generally displayed a more gradual run up and return to 100%.  

In some cases the peak was gradual and reached an asymptote at lower fire sizes than the 

positively adjusted parameters of the same type.   In this case as fire size increased, the effect of 

the negative parameter did not increase at the same rate, lessening its influence at the larger fire 



120 

 

sizes.  The negatively adjusted parameters generally have a larger influence on the moderately 

large fires and may influence the largest fires less.   

By using all of the sensitivity analysis model runs, the model predicted that there was an 

inverse relationship between the number of patches and the mean fire size on the landscape.  It 

also indicated a direct relationship between patch richness (number of age classes) and patch 

number.  Ecologically this means that spatial landscape pattern, specifically patch richness and 

mean fire size vary through time, both seasonally, with wet and dry seasons (small and large fires 

respectively) and on a longer time frame, with climatic variations such as El Niño and La Niña 

(small and large fires respectively). 

 The sensitivity analysis information combined with the information generated by multiple 

empirical model runs indicated that the majority of variability were in the large, extreme values.  

There was less variation in the minimum values than in the maximum values.  For this reason, I 

concentrate my discussion of variability on the large extreme values. 

 The range of fire size variation indicated that some very large fires are expected to occur 

on these federal properties.  The model indicates that the largest fires would be of greatest size if 

there were fewer fires.  An explanation for this may be that over many years, fewer fires on the 

landscape would reduce the discontinuity between fuels capable of carrying fire, creating a more 

even-aged fuel bed.  With more fires, a fuel mosaic is created with a patchwork of different 

age/fuel loadings.   The younger areas have less fuel and may not burn as well, acting as a fuel 

break.  The total burned area show the cumulative effect of altering each input parameter.  

Increasing fuel moisture just a little can have a large impact over time just as increasing wind 

speed for both regular and La Niña periods can dramatically increase the amount of area burned 

over a long time period.  As expected, the burn frequency was the lowest for the run having the 
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fewest ignitions and the greatest the run having the greatest number of ignitions.  There is not 

much difference between the two ignition frequency extremes; in fact, when divided out by the 

total number of years in the simulation it is only about two ignitions per year.   

 The landscape metrics for the large magnitude sensitivity analysis runs summarized the 

spatial distribution of age classes on the landscape (Table 11 and Table 13).  The empirical 

model results are generally at the lower end of the range of variability.  Reducing fuel moisture 

increased the number of landscape patches to the highest number in the study and caused the 

smallest patch area mean.  The model suggests that there is a negative relationship between the 

two.   The smallest landscape patch (largest patch index) value was caused by reducing regular 

and La Niña fuel moisture, reinforcing the previous finding.   Increasing the wind speed caused 

there to be the fewest patches, the largest landscape patch mean area, and smallest patch 

richness.  The model suggests that the higher winds cause fires to spread and become larger than 

would otherwise occur, reducing the number of different age patches on the landscape.  This is 

reinforced by the largest patch index, because the largest value was caused by increasing the 

wind speed.  The highest patch richness was caused by increasing fuel moisture values.  The 

model predicts that higher fuel moistures cause increased resistance to burn; so more patches of 

different ages are ultimately left unburned. 

 

General observations and model limitations 

 

 The Banana Creek feature running in an east-west direction limited individual fire sizes.  

Fire sizes would undoubtedly be larger if this non-flammable feature was not on this landscape.  

A Monte Carlo model structure may be necessary to accurately quantify the true range of 
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variation.  It is likely that the approach used here covered the major variability but an even larger 

number of simulations exploring all possible parameter value combinations would help make 

certain that all subtleties were covered.  The standard errors derived by averaging the empirically 

parameterized runs were generally small indicating, that the predicted stochastic range of 

variation for the empirical run was limited and generally captured in the modeling structure used 

here. 

 The HFire model was designed to model fires in the chaparral system.  The vegetation 

regeneration/succession routine in this model is restricted to 30 years post-fire.  In a chaparral 

system fuel accumulation may cease to differ significantly after this time frame but the 

flammability will increase.  In the southeast and especially on KMCC within the oak scrub 

community, flammability can actually decrease with time since fire.  Long fire suppression 

periods can cause the structure of oak scrub to become xeric hammock reducing flammability 

(Schmalzer and Hinkle 1992b, Duncan et al. 1999).  This is less critical for simulations under 

natural conditions but could be important for simulations on the contemporary landscape.  The 

model currently does well to predict fire size, return interval, and spatial distribution of ages on 

the landscape.  If seasonal and monthly trends could be predicted, this would add to the utility of 

the model.  This would likely require more input data but could extend the models usefulness to 

predicting all elements of a fire regime. 

 It may also be useful to allow specific distribution values to be input through the 

parameter files.  Currently the mean is the only value entered.  The full distribution of values 

may be available in some locations, and the model should take advantage of that information.  As 

an example in this experiment, minimum and maximum ignition frequencies are available but 

not utilized.  The result is that the model output may not be as informative and realistic as 



123 

 

possible.  The absolute effect of this was not explored in this study but would be useful to 

explore in the future. 

 

Conclusion 

 

 Fire regime modeling can be useful in the absence of a traditional means of 

reconstructing fire regimes such as dendrochronology.  The raster based HFire model represents 

the latest in fire regime models, it improves efficiency and accuracy from previous models, it is 

based on the robust Rothermel equations, and it is currently; being benchmarked and evaluated 

by the United States Forest Service (Peterson et al. 2009).  The Hfire fire regime model does 

well to predict fire size, return intervals, and spatial distributions of age classes.  Other fire 

regime elements such as intensity and seasonality are not directly supported by this model. 

 The model was parameterized primarily using empirically-derived values from studies 

conducted on these federal properties.  The model predicted that the natural fire regime was 

dominated by a mosaic of quickly recycling small fires, with fewer medium and large fires on 

the landscape.  Large fires were common during La Niña ENSO events but also occurred during 

regular weather conditions.  The largest difference from the empirical-derived output values 

obtained from varying input parameters by ten percent in the sensitivity analysis was 7.5%.  

Total ranges of variability were from 13% to 55% for fire sizes and landscape metrics.  The 

empirical run was at the lower end of the range of variability indicating that potential variation is 

greatest at the large value extremes. 

 The information generated in this study may be directly useful to land managers who 

have an interest in mimicking the natural fire regime for purposes of managing habitat for native 
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fire dependent species.  There are gaps in the information but together with empirical findings 

from other studies the results can be extremely informative.  Many of the findings in this study 

reinforce results gathered by empirical means and others may be new and warrant further study.  

This study represents only one of many steps in a quest to quantify the natural fire regime in a 

region that has been shaped and maintained by fire.  Mimicking aspects, or the results of the 

natural fire regime and adapting them on the contemporary landscape within the boundaries of 

conservation areas may be one of the best hopes for conserving many native fire-dependent 

species in this region.  This will take more study including empirical and modeling as well as 

innovative land management to apply the critical information. 
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GENERAL DISCUSSION/SUMMARY/CONCLUSION 

 

Major Differences between the managed fire regime and natural fire regime 

 

Seasonality 

 

 Seasonality of the managed and natural fire regimes are very different.  The managed fire 

regime behaved inversely to the natural fire regime in relation to meteorological moisture 

conditions (Duncan et al. 2009a).  Large areas typically burn in Florida during spring droughts 

and dry La Niña periods (Brenner 1991, Slocum et al. 2003).  Under the managed fire regime, 

burned area declined during drought periods and increased during wet periods. 

 The majority of area burned under the managed fire regime is during the winter season 

and during the month of November.  There was only one winter lightning ignition during the 16 

year natural ignition study and none during the month of November.  The peak in lightning 

ignition was during the summer season specifically during the month of July.  The current HFire 

model is not parameterized to predict seasonal and monthly differences in fire during 

simulations.  Annual differences are the finest temporal unit that can practically be predicted 

using the current version of the model. 

 

Fire size/area 

 

 All the evidence in this research point to the natural fire regime being dominated by 

many very frequent small fires (Table 14).  These small fires occur particularly during the moist, 

late growing season.  The empirical studies indicated that the largest fires occurred during the 
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spring droughts, particularly the La Niña droughts.  The HFire model results indicate that it is 

also possible for large fires to occur during non-La Niña periods.   The modeled fire sizes display 

a wider range of fire size than the managed fire size.  This is particularly true of the largest fire 

sizes between the managed and modeled natural fire regimes.  The maximum fire size is 

estimated to be four times the size of the managed fire size.   

 

Table 14.  Comparison of fire regime fire sizes for Kennedy Space Center/Merritt Island 

National Wildlife Refuge/Canaveral National Seashore/Cape Canaveral Air Force Station, 

Florida. 

 

Fire regime  Mean Median Minimum Maximum 

Managed fire regime 198 112 0.73 1,324 

Lightning fire regime 13 0.08 0.04 1,012 

Simulated natural fire regime 153 0.09 0.09 5,865 

 

 

 Both the lightning ignition regime and the modeled natural fire regime have fire size 

distributions that are largely made up of small fires (Table 14).  The managed fire regime does 

not have the same distribution structure of fire size because there are fewer very small fires and 

the largest fires are not as large.  The fire size distribution structure is very similar for the 

lightning fire regime and the simulated natural fire regime (Figure 39).  The main difference 

between them is in the medium sized fires.  This difference would have to be attributed to fire 

suppression efforts.  The smallest fires, many of which go undetected and go out on their own 

(natural outs) will stay small regardless, while large fires generally burn under severe conditions 
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and there is little that can be done to control/extinguish them.  Fire control and suppression 

efforts are therefore most effective for medium sized fires and this is displayed in the difference 

between these curves. 

 

 

 

Figure 39.  Comparison of cumulative fire size distributions from the lightning ignition regime 

(solid line) and the modeled natural fire regime (dashed line) for Kennedy Space Center/Merritt 

Island National Wildlife Refuge/Canaveral National Seashore/Cape Canaveral Air Force Station, 

Florida. 
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Fire frequency/Return Interval 

 

 The fire cycle and fire return interval numbers are very similar for both the managed fire 

regime and the modeled fire regime.  The entire range of values is between 11.5 and 14 years.  

There is a difference however.   The fire size distribution for the modeled natural fire regime is 

primarily made up of very small fires but roughly every 11 years there is a large fire event.  It 

would take a very long time for the fire cycle to be completed with all of these small fires but 

less frequent very large fires help close the fire cycle in roughly two years more than the 

managed fire regime.  The managed fire regime has a smaller range of fire sizes with more 

medium sized fires that add up consistently, quickly closing the fire cycle. 

 

Spatial pattern 

 

 There is a striking difference between the age patterns left on the landscape by the 

different fire regimes.  The age pattern from the managed fire regime is comprised of evenly 

sized geometric areas, the result of fire management unit boundaries and fire breaks.  The pattern 

left from the modeled natural fire regime is a mosaic of different sized, mostly round shapes.  

The remote sensing classification processes also contributes a detailed internal pattern that the 

modeled age patches do not possess.  Because not all areas burned inside the fire boundary, the 

remote sensing method is able to map out the unburned internal areas.  The model estimates the 

fire spread and the outer patch boundary.  The model does not estimate and represent the internal 

complexity that may occur within those boundaries. 
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 The dominant burn season map revealed areas that were primarily burned during different 

seasons.  There are areas that have mostly burned during the winter.  Based on the lightning 

ignition regime, the likelihood of areas repeatedly burning during the winter season are remote 

under the natural fire regime.   

 

Management implications 

 

 To mimic the natural fire regime there are some points that should be made in light of the 

information made available by these studies.  The lightning ignition regime study indicates that 

there should be an average of 14 ignitions per year with some years having fewer and some 

more.  The annual range was between 2 to 39 per year.  There is a large difference between the 

season of burn in the managed fire regime and the natural lightning driven fire regime.  A shift in 

burn season would need to be accomplished to mimic the natural fire regime on these properties.  

Chapter two discusses some of the implications of the influence of different fire seasons on 

native seeding and sprouting species.  Essentially, resprouting species appear to be affected little 

by the winter fire regime (Foster and Schmalzer 2003), while seeding species such as wiregrass 

have been shown to be affected (Outcalt 1994, Mulligan and Kirkman 2002).  Wiregrass is an 

important foundational species with its fine fuel characteristics that help carry fire in longleaf 

pine and flatwoods communities.  With prolonged winter fire, species like wiregass will likely 

decline.  Wiregrass vegetatively sprouts following fire during any season but floweres and seeds 

during growing season fires (Maliakal et al. 2000).  Wiregrass is not currently a dominant 

component of the vegetative composition of the communities found on these sites (personal 

communication with Paul Schmalzer).  The problem is that these properties were subject to a 
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long period of fire suppression (Duncan et al. 1999).  We don't know what the historical 

composition of this landscape truly was, and there are no areas that have burned under a natural 

fire regime that can be used as control for this information.  Visual evidence does support the 

notion that wiregrass sprouting/vigor does increase following growing season fire in some 

flatwoods sites on these properties.   

 Late growing season fires were generally smaller than early growing season fires.  Each 

year there is a switch from the dry, early growing season into the wet, late growing season.   The 

spring months of April and May are typically dry and that is when the majority of the large fires 

occur in Florida (Slocum et al. 2007).  The month of June has high variability in precipitation; 

June can either be very wet or very dry.  If June is wet, then there is a shift to smaller fire sizes in 

June, and if not, then the shift occurs later in July.  The data suggest that this shift in fire size 

consistently occurs after the middle of July, as July is consistently wet with less variability.  To 

mimic the natural fire regime, large fires would be conducted during the early growing season 

and small fires would generally take place in the late growing season after the middle of July. 

 There should be far more small fires in this system than large ones.  There may be several 

ways to achieve small fires.  The first is to follow the natural fire regime and take advantage of 

moisture conditions to keep fires small or put fire lines in to break up larger fire units.  The 

pattern of fire breaks may also be important.  The managed fire regime displayed a very 

geometric pattern on the landscape.  It is unclear that the pattern of fire breaks matter much.  It 

has been noted in the past that aerial predators can take advantage of straight edges (Duncan et 

al. 1995).  Future curved fire breaks can be put in to break up the blocky pattern.  With modern 

machinery temporary fire breaks may also be an option. 
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 Growing season fire scars were present on the landscape for a longer duration than non-

growing season fires.  This may be an important subtlety when considering how to restore and 

maintain open mineral, sand openings.  Mineral sand openings are a prominent landscape feature 

that Florida scrub species depend on (Woolfenden and Fitzpatrick 1984, Quintana-Ascencio et 

al. 1998, Breininger and Carter 2003, Menges et al. 2006) and land managers are concerned with 

maintaining.  Mineral sand openings may be present on the landscape for longer duration if 

growing season fires are used. 

 Pine aforestation has become a problem with alteration of native fire regimes in Florida 

and on these federal properties (Duncan et al. 1999).  Growing season fire followed by 

submersion produce unfavorable conditions limiting recruitment of pine trees and palm trees 

(Platt et al. 2006, Menges and Marks 2008).   

 The pine flatwoods community was ignited by lightning fire much more frequently than 

other types.  Fires probably started in this community and then spread into other adjacent types 

such as Florida scrub (Myers 1990, Breininger et al. 2002).  When considering subdividing fire 

management units to create smaller fires this detail must be taken into account.   

 Exotic species have also had an influence on landscape flammability.  Exotics can both 

increase (Lippincott 2000) and decrease flammability on a landscape, having important 

ramifications for fuel continuity and fire spread (Duncan and Schmalzer 2004). 

 

New/reinforcing science information 

 

 The work presented in this document was most specifically conducted to aid the 

management of fuels and habitat for the goal of sustaining native fire dependent species in 
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Florida.  In addition there are many innovative developments and new scientific information 

within this work that has the potential to advance fire science.  The image processing technique 

developed a non-parametric separability index that is different from popular statistical feature 

selection routines such as transformed divergence and Jeffreys-Matusita distance techniques 

(Shao and Duncan 2007).  These traditional techniques rely on training data from each class 

within each image band being normally distributed (Jensen 2005).  The separability index is very 

simple and cuts the effort substantially to select bands which maximize classification accuracy.  

Conceptually, the separability index uses area under the curve to look for the bands which best 

separate burned from unburned image signatures.  It is very simple, the band that has the smallest 

overlap area (common area) between burned and unburned has the highest seperability index 

value (closest to one) and is the best for classifying burned from unburned (Figure 40).  This is 

because the image signatures are the most distinct making burned and unburned areas easy to 

classify. 
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Figure 40.  Conceptual diagram of the separability index for (a) when burned and unburned areas 

are ambiguous and overly each other in image signature space and (b) when there is less 

ambiguity between burned and unburned image signatures. 
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This method of sorting and selecting the best bands for classifying fire scars may be used for 

classifying any spatial feature on any landscape.  Because the Separability Index is so easy to use 

and is distribution free, it would not be surprising to see it widely used in favor of the traditional 

methods. 

 Geographic information systems have been used in spatial science since the 1980‟s.  New 

methods are still being devised to take advantage of its benefits, this study is no different.  In 

chapter two a system was developed to label the confidence for which historic fire boundaries 

were mapped.  This approach is an outgrowth of a technique used to classify the quality of 

mapped landcover information (Liu et al. 2004).  The conceptual underpinnings remained the 

same but we adapted the concept for use in fire scar mapping.  The technique assigns a 

confidence value to each mapped fire scar so the user can include or exclude it from 

consideration in any application.  The confidence values is derived base on the cross validation 

of empirical fire records with remotely sensed information.  This technique has ramifications far 

beyond its original application because it provides a means to assign a quality label to mapped 

historic features.  It was used in this study to quantify fire boundary degradation with time since 

fire.  It has another use that may be very significant and is yet unexplored.  Generally the quality 

of mapped historic features post hoc is unknown.  Because a classic accuracy assessment can 

generally not be conducted on historic maps, this confidence technique provides a second option 

for quantifying the quality of historic mapped features that would otherwise not exist.  

 There were two other techniques used in this study that took advantage of the capabilities 

of GIS technology that are innovative and may be useful for other studies.  The first is tracking 

the spatial cumulative frequency on the landscape.  Each fire was given a count item and then 
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summed to produce a final frequency map.  A similar coding was used to track season of burn 

information to track spatial bias in season of burn patterns on the landscape.   

 There was much lightning fire ignition information generated that may not directly 

benefit land managers concerned with managing habitat for conservation of fire-dependent 

species.  This information included lightning polarity, lightning multiplicity, the abundance of 

natural outs, the abundance of hold-over ignitions, and the ignition to lightning strike ratio.  This 

information directly helps quantify the lightning ignition regime in this region providing useful 

reference information to those who study aspects of lightning meteorology here and elsewhere. 

 

Model limitations/improvement and future analysis 

 

 Season of burn is a fire regime element.  The current version of the HFire model is not 

parameterized for simulation of seasonal influences on the fire regime.  A monthly distribution 

of ignition probability could be included in future versions of the model.  The meteorlogical and 

fuels inputs can already support a more detailed seasonal ignition regime because the data are 

entered by year, month, day, and hour.  For sites with empirical information regarding the 

specific temporal distribution of ignition, this would allow a more robust fire regime simulation.  

The empirical information that now exists for these federal properties gives insight into this 

problem.  As a good example, the cumulative severity index data showed that droughts can occur 

during all seasons.  This indicates that there are many times when fuel conditions would be right 

to carry extreme fire.  The timing of dry fuels with an ignition source is the key to the natural fire 

regime.  Fuels may be able to carry fire at many times during a given year but the probability of 

an ignition is only high during the growing season.  With the HFire model, we witnessed that the 
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largest fires occurred during non-La Nina years.  Empirical data throughout Florida, including 

the empirical set here, suggests that this is unlikely.  Without the proper parameterization in 

HFire, we do not know for sure if it is possible for the largest fires to occur during non-La Nina 

years?  Empirical evidence suggests not, so further research is needed. 

 Another useful addition would be the ability to assign ignition probabilities to fuel types.  

The empirical information showed that pine flatwoods was ignited more than other types.  This 

would add the ability to make the simulations more realistic and explore the spatial patterns that 

may have been present under the natural fire regime. 

 The vegetation regeneration routine is not optimum for the ecosystems here on these 

properties.  The Hfire model allows for only 30 years of vegetation succession.  Oak scrub will 

convert to xeric hammock with absence of fire.  Xeric hammock is much less flammable because 

of its mature treelike structure that creates a moist understory environment.  This transition often 

takes longer than 30 years and so do many other secessional transitions that can occur with long 

fire free periods.  The model was developed for the chaparral system and after 30 years the fuel 

buildup is more or less complete.  As we have pointed out this is not the case in Florida and for 

the HFire model to be universal, a longer successional routine is necessary.   

 A burn frequency map would also be a nice addition so that the patterns of fire frequency 

can be tracked through time.  Fire intensity information would also be a welcome addition to 

model output.   
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Considerations of Managing Fire on the Space Port, Florida 

 

 As discussed in Chapter two there are many restrictions limiting the management of fire 

in this system.  There are the common permitting restrictions such as safety for all personnel 

involved in fire operations and the general public.  Visibility on roads from smoke is an example 

of the types of safety permitting requirements.  The infrastructure of Space Port operations 

imposes an entirely unique set of restrictions.  There are fuel farms and fuel storage facilities, 

along with clean rooms that frequently have multi-billion dollar satellites inside of them being 

readied for launch into space.  Facility managers in charge of facilities such as these are 

generally not willing to allow fires if there is the slightest chance that it may threaten their 

operations.  When prescribed fire is being discussed on the Space Port, conflict resolution skills 

are necessary.  These restrictions combined with weather requirements make scheduling 

prescribed fires challenging.   

 A chain of communication has been established on the space port.  This is in an effort to 

minimize the chance that prescribed fires will be restricted for any reason, other than a legitimate 

significant hazard to space launch mission.  More work is needed by all stake-holders to work 

out a system that will maximize opportunities to conduct fire on these important conservation 

properties. 
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